WorldWideScience

Sample records for lung imaging studies

  1. Recent lung imaging studies

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Radionuclide lung imaging procedures have been available for 11 years but only the perfusion examination has been used extensively and mainly for the diagnosis of pulmonary embolism (P.E.). Its ability to reveal localized ischemia makes it a valuable test of regional lung function as well as a useful diagnostic aid in P.E. Although it had been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing P.E. from COPD. In this review emphasis is placed on our recent experience with both of these inhalation procedures in comparison with pulmonary function tests and roentgenography for the early detection of COPD in population studies. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging for a functional diagnosis of P.E. Two new developments in regional lung diffusion imaging, performed after the inhalation of radioactive gases and/or rapidly absorbed radioaerosols are described. The experimental basis for their potential clinical application in pulmonary embolism detection is presented

  2. Imaging Primary Lung Cancers in Mice to Study Radiation Biology

    International Nuclear Information System (INIS)

    Kirsch, David G.; Grimm, Jan; Guimaraes, Alexander R.; Wojtkiewicz, Gregory R.; Perez, Bradford A.; Santiago, Philip M.; Anthony, Nikolas K.; Forbes, Thomas; Doppke, Karen

    2010-01-01

    Purpose: To image a genetically engineered mouse model of non-small-cell lung cancer with micro-computed tomography (micro-CT) to measure tumor response to radiation therapy. Methods and Materials: The Cre-loxP system was used to generate primary lung cancers in mice with mutation in K-ras alone or in combination with p53 mutation. Mice were serially imaged by micro-CT, and tumor volumes were determined. A comparison of tumor volume by micro-CT and tumor histology was performed. Tumor response to radiation therapy (15.5 Gy) was assessed with micro-CT. Results: The tumor volume measured with free-breathing micro-CT scans was greater than the volume calculated by histology. Nevertheless, this imaging approach demonstrated that lung cancers with mutant p53 grew more rapidly than lung tumors with wild-type p53 and also showed that radiation therapy increased the doubling time of p53 mutant lung cancers fivefold. Conclusions: Micro-CT is an effective tool to noninvasively measure the growth of primary lung cancers in genetically engineered mice and assess tumor response to radiation therapy. This imaging approach will be useful to study the radiation biology of lung cancer.

  3. Dynamic Studies of Lung Fluid Clearance with Phase Contrast Imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Williams, Ivan; Irvine, Sarah C.; Morgan, Michael J.; Paganin, David M.; Lewis, Rob A.; Pavlov, Konstantin; Hooper, Stuart B.; Wallace, Megan J.; Siu, Karen K. W.; Yagi, Naoto; Uesugi, Kentaro

    2007-01-01

    Clearance of liquid from the airways at birth is a poorly understood process, partly due to the difficulties of observing and measuring the distribution of air within the lung. Imaging dynamic processes within the lung in vivo with high contrast and spatial resolution is therefore a major challenge. However, phase contrast X-ray imaging is able to exploit inhaled air as a contrast agent, rendering the lungs of small animals visible due to the large changes in the refractive index at air/tissue interfaces. In concert with the high spatial resolution afforded by X-ray imaging systems (<100 μm), propagation-based phase contrast imaging is ideal for studying lung development. To this end we have utilized intense, monochromatic synchrotron radiation, together with a fast readout CCD camera, to study fluid clearance from the lungs of rabbit pups at birth. Local rates of fluid clearance have been measured from the dynamic sequences using a single image phase retrieval algorithm

  4. Study of the ventilatory lung motion imaging in primary lung cancer

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Yazaki, Yosikazu; Kitabayashi, Hiroshi; Sekiguchi, Morie.

    1996-01-01

    Using perfusion lung scintigrams with Tc-99m macroaggregated alubumin at maximal inspiration (I) and expiration (E), images of the ventilatory lung motion, which was calculated and delineated by an expression as (E-I)/I, were obtained in 84 cases with primary lung cancer, and its clinical significance in the diagnosis of primary lung cancer was studied. The image of (E-I)/I consisted of positive and negative components. The former visualized the motion of the regional intrapulmonary areas and the latter showed the motion of the lung border. The sum of positive (E-I)/I in the lung with the primary lesion which was lower than that in the contralateral lung, was significantly low in cases with hilar mass, pleural effusion and TNM classification of T3+T4. The sum of positive (E-I)/I in both lungs and vital capacity was relatively low in cases with hilar mass, pleural effusion, TNM classification of T3+T4 and M1. The distribution pattern of pulmonary perfusion and positive (E-I)/I was fairly matched in 48 cases, but mismatch was observed in 36 cases. In the image of negative (E-I)/I, decreased motion of the lung border including the diaphragm was shown in cases with pleural adhesion and thickening, pleural effusion, phrenic nerve palsy and other conditions with hypoventilation. This technique seems to be useful for the estimation of regional pulmonary function of pulmonary perfusion and lung motion, the extent and pathophysiology of primary lung cancer. (author)

  5. Study of the ventilatory lung motion imaging in primary lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige [Shinshu Univ., Matsumoto, Nagano (Japan). Shool of Allied Medical Sciences; Tanaka, Masao; Yazaki, Yosikazu; Kitabayashi, Hiroshi; Sekiguchi, Morie

    1996-12-01

    Using perfusion lung scintigrams with Tc-99m macroaggregated alubumin at maximal inspiration (I) and expiration (E), images of the ventilatory lung motion, which was calculated and delineated by an expression as (E-I)/I, were obtained in 84 cases with primary lung cancer, and its clinical significance in the diagnosis of primary lung cancer was studied. The image of (E-I)/I consisted of positive and negative components. The former visualized the motion of the regional intrapulmonary areas and the latter showed the motion of the lung border. The sum of positive (E-I)/I in the lung with the primary lesion which was lower than that in the contralateral lung, was significantly low in cases with hilar mass, pleural effusion and TNM classification of T3+T4. The sum of positive (E-I)/I in both lungs and vital capacity was relatively low in cases with hilar mass, pleural effusion, TNM classification of T3+T4 and M1. The distribution pattern of pulmonary perfusion and positive (E-I)/I was fairly matched in 48 cases, but mismatch was observed in 36 cases. In the image of negative (E-I)/I, decreased motion of the lung border including the diaphragm was shown in cases with pleural adhesion and thickening, pleural effusion, phrenic nerve palsy and other conditions with hypoventilation. This technique seems to be useful for the estimation of regional pulmonary function of pulmonary perfusion and lung motion, the extent and pathophysiology of primary lung cancer. (author)

  6. Radioaerosol imaging of the lung. An IAEA [CRP] group study

    International Nuclear Information System (INIS)

    Yong Whee Bahk; Isawa, Toyoharu

    1994-01-01

    of the BARC nebulizer, already published in 1979, are described in much greater detail with many blue-print diagrams. The efficacy of and easy access to the nebulizer have been tested and established against commercially available nebulizers. The comparative studies have been conducted on aerosol lung scan images using the BARC and other nebulizers. The results of extended clinical applications are presented: the diseases investigated include COPD, bronchial obstruction, compensatory overinflation, acute pneumonia, tuberculosis, focal and diffuse interstitial fibrosis, diffuse panbronchiolitis, lung edema and bronchogenic carcinoma and metastasis. Of these, COPD was used as a model disease group, in which an analytical interpretation of scan alterations has been attempted to establish a differential diagnostic scheme of clinically related but pathologically different diseases. It was aimed at emphasizing the potential role of aerosol scan in making specific diagnosis of the individual diseases on the basis of both anatomical and physiological alterations as they are portrayed in aerosol lung scans. More clinical applications are described in association with embolism, inhalation bums and glue-sniffing. In regard with the aerosol scan technique, a modification has been introduced to improve scan image quality with enhanced resolution by maximally avoiding background noise so that the scan may provide more graphic information. The tests that examine nonrespiratory lung functions such as mucociliary transport and lung permeability are also discussed in this monograph for the future study. In order to epitomize the ready practicability, economical aspect and excellent reproducibility of radioaerosol lung scan by using the BARC nebulizer, a forum is provided for case presentation of those who have enthusiastically participated in this CRP group study during the past 5 years. Because of the limits in space, the number of cases presented are squeezed to a mininium. It is

  7. Radioaerosol imaging of the lung. An IAEA [CRP] group study

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yong Whee [Departments of Radiology and Nuclear Medicine, Kangnam St. Mary' s Hospital, Catholic University Medical College, Seoul (Korea, Republic of); Isawa, Toyoharu [Tohoku University Research Institute for Chest Disease and Cancer, Sendai (Japan); eds.

    1994-07-01

    of the BARC nebulizer, already published in 1979, are described in much greater detail with many blue-print diagrams. The efficacy of and easy access to the nebulizer have been tested and established against commercially available nebulizers. The comparative studies have been conducted on aerosol lung scan images using the BARC and other nebulizers. The results of extended clinical applications are presented: the diseases investigated include COPD, bronchial obstruction, compensatory overinflation, acute pneumonia, tuberculosis, focal and diffuse interstitial fibrosis, diffuse panbronchiolitis, lung edema and bronchogenic carcinoma and metastasis. Of these, COPD was used as a model disease group, in which an analytical interpretation of scan alterations has been attempted to establish a differential diagnostic scheme of clinically related but pathologically different diseases. It was aimed at emphasizing the potential role of aerosol scan in making specific diagnosis of the individual diseases on the basis of both anatomical and physiological alterations as they are portrayed in aerosol lung scans. More clinical applications are described in association with embolism, inhalation bums and glue-sniffing. In regard with the aerosol scan technique, a modification has been introduced to improve scan image quality with enhanced resolution by maximally avoiding background noise so that the scan may provide more graphic information. The tests that examine nonrespiratory lung functions such as mucociliary transport and lung permeability are also discussed in this monograph for the future study. In order to epitomize the ready practicability, economical aspect and excellent reproducibility of radioaerosol lung scan by using the BARC nebulizer, a forum is provided for case presentation of those who have enthusiastically participated in this CRP group study during the past 5 years. Because of the limits in space, the number of cases presented are squeezed to a mininium. It is

  8. Studies on diagnosis of lung emphysema by CT image using experimental models and clinical cases

    International Nuclear Information System (INIS)

    Nakatani, Seiki

    1998-01-01

    Since the detailed report between the degree of functional disorder in lung emphysema and the analysis of CT image is quite unknown, the present study was attempted to produce the experimental model of lung emphysema with various stages by the administration of papain to the focal lobe in canine lung. Using this model or clinical lung emphysema, the relationship between the degree of destruction of alveolar walls, clinical pulmonary functions and CT images was investigated. CT scan was performed at the level of 50% vital capacity in both experimental models and clinical subjects by using spirometric gating CT. CT density histogram was obtained from CT image which was produced by using the developed software for this purpose. Densitometric parameters, such as mean CT value, %LAA, the peak in the histogram and 5% tile were selected from CT image. Papain solution of 5 mg/kg body weight was cumulatively administered to the left lower lobe in canine lung, resulting in the destruction of lung alveolar walls in parallel to the increasing dosage of papain. There was a significant correlation between not only the increasing dosage of papain, but also %FEV 1.0 and CT densitometric parameters, indicating that the histological changes of alveolar walls and the lung function in lung emphysema could be estimated by analysis of CT image. These experimental and clinical studies suggest that the analysis of CT image can reflect the pathophysiological changes in the lung and be useful for precise clinical diagnosis of lung emphysema. (author)

  9. Magnetic resonance lung function – a breakthrough for lung imaging and functional assessment? A phantom study and clinical trial

    Directory of Open Access Journals (Sweden)

    Rauh Manfred

    2006-08-01

    Full Text Available Abstract Background Chronic lung diseases are a major issue in public health. A serial pulmonary assessment using imaging techniques free of ionizing radiation and which provides early information on local function impairment would therefore be a considerably important development. Magnetic resonance imaging (MRI is a powerful tool for the static and dynamic imaging of many organs. Its application in lung imaging however, has been limited due to the low water content of the lung and the artefacts evident at air-tissue interfaces. Many attempts have been made to visualize local ventilation using the inhalation of hyperpolarized gases or gadolinium aerosol responding to MRI. None of these methods are applicable for broad clinical use as they require specific equipment. Methods We have shown previously that low-field MRI can be used for static imaging of the lung. Here we show that mathematical processing of data derived from serial MRI scans during the respiratory cycle produces good quality images of local ventilation without any contrast agent. A phantom study and investigations in 85 patients were performed. Results The phantom study proved our theoretical considerations. In 99 patient investigations good correlation (r = 0.8; p ≤ 0.001 was seen for pulmonary function tests and MR ventilation measurements. Small ventilation defects were visualized. Conclusion With this method, ventilation defects can be diagnosed long before any imaging or pulmonary function test will indicate disease. This surprisingly simple approach could easily be incorporated in clinical routine and may be a breakthrough for lung imaging and functional assessment.

  10. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  11. A study on image diagnosis of lung impairment caused by aspiration

    International Nuclear Information System (INIS)

    Takata, Hidenao

    2000-01-01

    Purpose of the present study is to evaluate lung impairment in an acute aspiration model by using new CT method and to assess the application of the method for clinical cases. Subjects in experimental model were anesthetized and mechanically ventilated beagle dogs (n=5), and subjects in clinical cases were patients with aspiration in acute phase (n=5). For the preparation of the acute aspiration model, 2% Gastrografin (diatrizoate megulumine) aqueous solution was instilled cumulatively (0.1-3.0 ml/kg) into the right main bronchus through the endobronchial tube. Two methods of CT scan, Spirometric gating CT (SGCT) and Dynamic CT, were performed before and after instillation. SGCT can adjust the pulmonary volume at each scan by built-in spirometer. Three-dimensional reconstruction of the whole lung image was obtained with scan data by SGCT. Dynamic CT method was utilized for assessment of the ventilation dynamics. Continuous scan of the lung at the carina level was performed during ventilation and time-series image data were obtained at a rate of 5 frames/sec. The CT densitometry of the Dynamic CT images were carried out and time-attenuation curves with ventilation were analyzed. In experimental model, the whole lung images by SGCT after instillation showed invasion of Gastrografin into right lower lobe and the compensatory overinflation in the other lobes. The time-attenuation curves by Dynamic CT showed that both the mean and amplitude of the attenuation increased in the right lower lobe where the Gastrografin instilled. But the amplitude decreased when the mean value showed no apparent change at the first period of instillation. In acute phase of the aspiration, the amplitude will be the sensitive index of the ventilation impairment. In clinical case subjects were scanned during spontaneous breathing by Dynamic CT. Both the mean and amplitude of the attenuation of the time-increased when the aspiration occurred. After four days passed, the mean value increased

  12. Lung imaging in pulmonary disease

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone

  13. The dysmorphic lung: imaging findings

    International Nuclear Information System (INIS)

    Mata, J.M.; Caceres, J.

    1996-01-01

    Congenital lung malformations are not infrequent and can be discovered in adults. It is, therefore, necessary to know their radiological manifestations in order to avoid diagnostic errors. We classify the congenital lung malformations in two main groups: dysmorphic lung and focal pulmonary malformations. We review the radiological spectrum of dysmorphic lung, based on a classification that emphasises the pulmonary abnormality, adding variants when diaphragmatic or venous abnormalities are present. In our opinion this approach allows for a rational use of advanced imaging techniques (CT, MRI). (orig.). With 13 figs

  14. The dysmorphic lung: imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Mata, J.M. [SDI-UDIAT, Consorci Hospitalari del Parc Tauli, Parc Tauli s/n, E-08208 Barcelona (Spain)]|[Universitat Autonoma de Barcelona, Barcelona (Spain); Caceres, J. [Universitat Autonoma de Barcelona, Barcelona (Spain)]|[Hospital de la Santa Creu i Sant Pau, Barcelona (Spain)

    1996-08-01

    Congenital lung malformations are not infrequent and can be discovered in adults. It is, therefore, necessary to know their radiological manifestations in order to avoid diagnostic errors. We classify the congenital lung malformations in two main groups: dysmorphic lung and focal pulmonary malformations. We review the radiological spectrum of dysmorphic lung, based on a classification that emphasises the pulmonary abnormality, adding variants when diaphragmatic or venous abnormalities are present. In our opinion this approach allows for a rational use of advanced imaging techniques (CT, MRI). (orig.). With 13 figs.

  15. Study and preparation of 99Tcm-GP kit for lung ventilation imaging

    International Nuclear Information System (INIS)

    Zhu Lin; Meng Fanmin; Zhang Jihong; Hong Tao; Liu Yunzhong; Liu Xiujie

    1997-01-01

    The preparation of the lyophilizing reagent, D-glucose-l-phosphate (GP) kit and the method of using this kit to label 99 Tc m to form 99 Tc m -GP for lung ventilation imaging at room temperature in a simple, rapid procedure are described. The stability of the lyophilizing reagent kit under various stock conditions is examined. The results show that all of the 99 Tc m -GP yields by the lyophilizing reagent kit are above 95% at 4 degree C (cold), 20-25 degree C (room temperature) and 40 degree C (oven) for 180, 90 and 3 days, respectively. The clinical practice indicates that in comparison with 99 Tc m -DTPA, 99 Tc m -GP has remarkable difference (P 99 Tc m -GP is an ideal radioaerosol for SPECT studies of lung ventilation. It has high alveolar deposition rate but low adhesion in the major airways compared to those of 99 Tc m -DTPA. 99 Tc m -GP also features prolonged pulmonary clearance time

  16. Lung cancer imaging

    CERN Document Server

    Ravenel, James G

    2013-01-01

    This book provides a guide to the diagnosis, staging and overview of the management of lung cancer relevant to practicing radiologists so that they can better understand the decision making issues and provide more useful communication to treating physicians.

  17. Noninvasive imaging of experimental lung fibrosis.

    Science.gov (United States)

    Zhou, Yong; Chen, Huaping; Ambalavanan, Namasivayam; Liu, Gang; Antony, Veena B; Ding, Qiang; Nath, Hrudaya; Eary, Janet F; Thannickal, Victor J

    2015-07-01

    Small animal models of lung fibrosis are essential for unraveling the molecular mechanisms underlying human fibrotic lung diseases; additionally, they are useful for preclinical testing of candidate antifibrotic agents. The current end-point measures of experimental lung fibrosis involve labor-intensive histological and biochemical analyses. These measures fail to account for dynamic changes in the disease process in individual animals and are limited by the need for large numbers of animals for longitudinal studies. The emergence of noninvasive imaging technologies provides exciting opportunities to image lung fibrosis in live animals as often as needed and to longitudinally track the efficacy of novel antifibrotic compounds. Data obtained by noninvasive imaging provide complementary information to histological and biochemical measurements. In addition, the use of noninvasive imaging in animal studies reduces animal usage, thus satisfying animal welfare concerns. In this article, we review these new imaging modalities with the potential for evaluation of lung fibrosis in small animal models. Such techniques include micro-computed tomography (micro-CT), magnetic resonance imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), and multimodal imaging systems including PET/CT and SPECT/CT. It is anticipated that noninvasive imaging will be increasingly used in animal models of fibrosis to gain insights into disease pathogenesis and as preclinical tools to assess drug efficacy.

  18. Lung cancer risk and cancer-specific mortality in subjects undergoing routine imaging test when stratified with and without identified lung nodule on imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Saez, Noemi [Miguel Hernandez University, Public Health, History of Science and Ginecology Department, Alicante (Spain); Hernandez-Aguado, Ildefonso; Pastor Valero, Maria; Parker, Lucy Anne; Lumbreras, Blanca [Miguel Hernandez University, Public Health, History of Science and Ginecology Department, Alicante (Spain); CIBER en Epidemiologia y Salud Publica, Madrid (Spain); Vilar, Jose; Domingo, Maria Luisa [Peset Hospital, Radiodiagnostic Department, Valencia (Spain); Gonzalez-Alvarez, Isabel; Lorente, Maria Fermina [San Juan Hospital, Radiodiagnostic Department, San Juan de Alicante (Spain)

    2015-12-15

    To assess the risk of lung cancer and specific mortality rate in patients with and without solitary pulmonary nodules (SPN) on chest radiograph and CT. This prospective study included 16,078 patients ≥35 years old (893 of them had an SPN detected with either chest radiograph or CT) and 15,185 without SPN. Patients were followed up for 18 months or until being diagnosed with lung cancer. Risk and mortality lung cancer were calculated in both groups with Poisson regression. In patients with SPN, incidence of lung cancer was 8.3 % (95 % CI 6.0-11.2) on radiograph and 12.4 % (95 % CI 9.3-15.9) on CT. A chronic obstructive pulmonary disease in patients with radiographs (odds ratio 2.62; 95 % CI 1.03, 6.67) and smoking habit (odds ratio 20.63; 95 % CI 3.84, 110.77) in patients with CT were associated with a higher probability of lung cancer. Large nodule size and spiculated edge were associated with lung cancer on both CT and radiograph. Lung cancer-specific mortality was lower in patients with SPN than in those without SPN (1.73/1000 person-years, 95 % CI 1.08-2.88 vs. 2.15/1000 person-years, 95 % CI 1.25-3.96). The risk of lung cancer for patients with SPN is higher in clinical populations than in screening studies. Moreover, patients with SPN showed lower mortality than those without SPN. (orig.)

  19. Lung cancer risk and cancer-specific mortality in subjects undergoing routine imaging test when stratified with and without identified lung nodule on imaging study

    International Nuclear Information System (INIS)

    Gomez-Saez, Noemi; Hernandez-Aguado, Ildefonso; Pastor Valero, Maria; Parker, Lucy Anne; Lumbreras, Blanca; Vilar, Jose; Domingo, Maria Luisa; Gonzalez-Alvarez, Isabel; Lorente, Maria Fermina

    2015-01-01

    To assess the risk of lung cancer and specific mortality rate in patients with and without solitary pulmonary nodules (SPN) on chest radiograph and CT. This prospective study included 16,078 patients ≥35 years old (893 of them had an SPN detected with either chest radiograph or CT) and 15,185 without SPN. Patients were followed up for 18 months or until being diagnosed with lung cancer. Risk and mortality lung cancer were calculated in both groups with Poisson regression. In patients with SPN, incidence of lung cancer was 8.3 % (95 % CI 6.0-11.2) on radiograph and 12.4 % (95 % CI 9.3-15.9) on CT. A chronic obstructive pulmonary disease in patients with radiographs (odds ratio 2.62; 95 % CI 1.03, 6.67) and smoking habit (odds ratio 20.63; 95 % CI 3.84, 110.77) in patients with CT were associated with a higher probability of lung cancer. Large nodule size and spiculated edge were associated with lung cancer on both CT and radiograph. Lung cancer-specific mortality was lower in patients with SPN than in those without SPN (1.73/1000 person-years, 95 % CI 1.08-2.88 vs. 2.15/1000 person-years, 95 % CI 1.25-3.96). The risk of lung cancer for patients with SPN is higher in clinical populations than in screening studies. Moreover, patients with SPN showed lower mortality than those without SPN. (orig.)

  20. Functional image-based radiotherapy planning for non-small cell lung cancer: A simulation study

    International Nuclear Information System (INIS)

    Bates, Emma L.; Bragg, Christopher M.; Wild, Jim M.; Hatton, Matthew Q.F.; Ireland, Rob H.

    2009-01-01

    Background and purpose: To investigate the incorporation of data from single-photon emission computed tomography (SPECT) or hyperpolarized helium-3 magnetic resonance imaging ( 3 He-MRI) into intensity-modulated radiotherapy (IMRT) planning for non-small cell lung cancer (NSCLC). Material and methods: Seven scenarios were simulated that represent cases of NSCLC with significant functional lung defects. Two independent IMRT plans were produced for each scenario; one to minimise total lung volume receiving ≥20 Gy (V 20 ), and the other to minimise only the functional lung volume receiving ≥20 Gy (FV 20 ). Dose-volume characteristics and a plan quality index related to planning target volume coverage by the 95% isodose (V PTV95 /FV 20 ) were compared between anatomical and functional plans using the Wilcoxon signed ranks test. Results: Compared to anatomical IMRT plans, functional planning reduced FV 20 (median 2.7%, range 0.6-3.5%, p = 0.02), and total lung V 20 (median 1.5%, 0.5-2.7%, p = 0.02), with a small reduction in mean functional lung dose (median 0.4 Gy, 0-0.7 Gy, p = 0.03). There were no significant differences in target volume coverage or organ-at-risk doses. Plan quality index was improved for functional plans (median increase 1.4, range 0-11.8, p = 0.02). Conclusions: Statistically significant reductions in FV 20 , V 20 and mean functional lung dose are possible when IMRT planning is supplemented by functional information derived from SPECT or 3 He-MRI.

  1. Radioaerosol lung imaging - history and pharmaceuticals

    International Nuclear Information System (INIS)

    Isawa, Toyoharu

    1994-01-01

    The first use of a radioactive tracer to study lung function was made by Knipping and others in 1955. They used radioactive 133 Xe (xenon) gas as an inhalation agent in a patient with lung cancer and found that distal to a tumor no radioactivity was detected indicating no ventilation although chest x-rays appeared as if there was active ventilation. Subsequently with advance in technology a number of radioactive gases such as 81m Kr (krypton) and cyclotron produced 15 O 2 (oxygen), 11 C (carbon) and 13 N 2 (nitrogen) became available to assess regional lung function. The advantages of these gases are manifold, but their utility is mostly limited due to high cost. An alternative to the use of radioactive gases to study regional ventilation is the use of particulate radioactive aerosol. Radioaerosol inhalation lung imaging technique was developed in 1965 almost simultaneously by Taplin and others and Pircher and others just 2 years following Taplin's invention of 131 I-MAA for perfusion lung imaging. Their main aim was to use 131 I-human serum albumin (HSA), and 99m Tc-HSA, 131 I-rose bengal, 197 Hg-chlormerodrin and colloidal 198 Au as agents for radioaerosol generation, and Taplin himself preferred 198 Au colloids for serial studies from economical reasons. Already in 1965, however, Taplin said that the best agent would be 99m Tc-HSA. Pircher used 131 I-HSA aerosol. Taplin already noted at that time that the inhaled aerosol was removed from the lungs mainly by ciliary action and that it was not absorbed either from the lungs or the intestine. Anyway it is noteworthy that the idea of radioaerosol inhalation lung imaging was proposed soon after the advent of perfusion lung imaging. Besides 131 I-HSA and colloidal 198 Au, the following agents have been or are currently being used. The superiority of 99m TC over other radioisotopes used in the past is beyond dispute

  2. Image-guided adaptive gating of lung cancer radiotherapy: a computer simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Aristophanous, Michalis; Rottmann, Joerg; Park, Sang-June; Berbeco, Ross I [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [Department of Radiology, NTT Hospital, Sapporo (Japan); Shirato, Hiroki, E-mail: maristophanous@lroc.harvard.ed [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan)

    2010-08-07

    The purpose of this study is to investigate the effect that image-guided adaptation of the gating window during treatment could have on the residual tumor motion, by simulating different gated radiotherapy techniques. There are three separate components of this simulation: (1) the 'Hokkaido Data', which are previously measured 3D data of lung tumor motion tracks and the corresponding 1D respiratory signals obtained during the entire ungated radiotherapy treatments of eight patients, (2) the respiratory gating protocol at our institution and the imaging performed under that protocol and (3) the actual simulation in which the Hokkaido Data are used to select tumor position information that could have been collected based on the imaging performed under our gating protocol. We simulated treatments with a fixed gating window and a gating window that is updated during treatment. The patient data were divided into different fractions, each with continuous acquisitions longer than 2 min. In accordance to the imaging performed under our gating protocol, we assume that we have tumor position information for the first 15 s of treatment, obtained from kV fluoroscopy, and for the rest of the fractions the tumor position is only available during the beam-on time from MV imaging. The gating window was set according to the information obtained from the first 15 s such that the residual motion was less than 3 mm. For the fixed gating window technique the gate remained the same for the entire treatment, while for the adaptive technique the range of the tumor motion during beam-on time was measured and used to adapt the gating window to keep the residual motion below 3 mm. The algorithm used to adapt the gating window is described. The residual tumor motion inside the gating window was reduced on average by 24% for the patients with regular breathing patterns and the difference was statistically significant (p-value = 0.01). The magnitude of the residual tumor motion

  3. Scintigraphic and MR perfusion imaging in preoperative evaluation for lung volume reduction surgery. Pilot study results

    International Nuclear Information System (INIS)

    Johkoh, Takeshi; Mueller, N.L.; Kavanagh, P.V

    2000-01-01

    To compare MR perfusion imaging with perfusion scintigraphy in the evaluation of patients with pulmonary emphysema being considered for lung volume reduction surgery. Six patients with pulmonary emphysema and two normal individuals were evaluated by MR perfusion imaging, perfusion scintigraphy, and selective bilateral pulmonary angiography. MR images were obtained with an enhanced fast gradient recalled echo with three-dimensional Fourier transformation technique (efgre 3D) (6.3/1.3; flip angle, 30 deg C; field of view, 45-48 cm; matrix, 256 x 160). The presence or absence of perfusion defects in each segment was evaluated by two independent observers. Using angiography as the gold standard, the sensitivity, specificity, and accuracy of MR perfusion imaging in detecting focal perfusion abnormalities were 90%, 87%, and 89%, respectively, while those of perfusion scintigraphy were 71%, 76%, and 71%, respectively. The diagnostic accuracy of MR perfusion imaging was significantly higher than that of scintigraphy (p<0.001, McNemar test). There was good agreement between two observers for MR perfusion imaging (kappa statistic, 0.66) and only moderate agreement for perfusion scintigraphy (kappa statistic, 0.51). MR perfusion imaging is superior to perfusion scintigraphy in the evaluation of pulmonary parenchymal perfusion in patients with pulmonary emphysema. (author)

  4. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kuenzler, Thomas [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Grezdo, Jozef [Department of Radiotherapy, St Elisabeth Institute of Oncology, Bratislava (Slovakia); Bogner, Joachim [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria); Birkfellner, Wolfgang [Center for Biomedical Engineering and Physics, Medical University Vienna, Vienna (Austria); Georg, Dietmar [Department of Radiotherapy and Radiobiology, Medical University Vienna, Vienna (Austria)

    2007-04-21

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm{sup 3} tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm{sup 3} were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical

  5. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    International Nuclear Information System (INIS)

    Kuenzler, Thomas; Grezdo, Jozef; Bogner, Joachim; Birkfellner, Wolfgang; Georg, Dietmar

    2007-01-01

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm 3 tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm 3 were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical target

  6. Lung cancer and angiogenesis imaging using synchrotron radiation

    International Nuclear Information System (INIS)

    Liu Xiaoxia; Zhao Jun; Xu, Lisa X; Sun Jianqi; Gu Xiang; Liu Ping; Xiao Tiqiao

    2010-01-01

    Early detection of lung cancer is the key to a cure, but a difficult task using conventional x-ray imaging. In the present study, synchrotron radiation in-line phase-contrast imaging was used to study lung cancer. Lewis lung cancer and 4T1 breast tumor metastasis in the lung were imaged, and the differences were clearly shown in comparison to normal lung tissue. The effect of the object-detector distance and the energy level on the phase-contrast difference was investigated and found to be in good agreement with the theory of in-line phase-contrast imaging. Moreover, 3D image reconstruction of lung tumor angiogenesis was obtained for the first time using a contrast agent, demonstrating the feasibility of micro-angiography with synchrotron radiation for imaging tumor angiogenesis deep inside the body.

  7. Lung cancer mimicking lung abscess formation on CT images

    OpenAIRE

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Patient: Male, 64 Final Diagnosis: Lung pleomorphic carcinoma Symptoms: Cough • fever Medication: — Clinical Procedure: — Specialty: Oncology Objective: Unusual clinical course Background: The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resemble...

  8. Lung cancer mimicking lung abscess formation on CT images.

    Science.gov (United States)

    Taira, Naohiro; Kawabata, Tsutomu; Gabe, Atsushi; Ichi, Takaharu; Kushi, Kazuaki; Yohena, Tomofumi; Kawasaki, Hidenori; Yamashiro, Toshimitsu; Ishikawa, Kiyoshi

    2014-01-01

    Male, 64 FINAL DIAGNOSIS: Lung pleomorphic carcinoma Symptoms: Cough • fever - Clinical Procedure: - Specialty: Oncology. Unusual clinical course. The diagnosis of lung cancer is often made based on computed tomography (CT) image findings if it cannot be confirmed on pathological examinations, such as bronchoscopy. However, the CT image findings of cancerous lesions are similar to those of abscesses.We herein report a case of lung cancer that resembled a lung abscess on CT. We herein describe the case of 64-year-old male who was diagnosed with lung cancer using surgery. In this case, it was quite difficult to distinguish between the lung cancer and a lung abscess on CT images, and a lung abscess was initially suspected due to symptoms, such as fever and coughing, contrast-enhanced CT image findings showing a ring-enhancing mass in the right upper lobe and the patient's laboratory test results. However, a pathological diagnosis of lung cancer was confirmed according to the results of a rapid frozen section biopsy of the lesion. This case suggests that physicians should not suspect both a lung abscesses and malignancy in cases involving masses presenting as ring-enhancing lesions on contrast-enhanced CT.

  9. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  10. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  11. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    International Nuclear Information System (INIS)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2010-01-01

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  12. Imaging of Occupational Lung Disease.

    Science.gov (United States)

    Champlin, Jay; Edwards, Rachael; Pipavath, Sudhakar

    2016-11-01

    Occupational lung diseases span a variety of pulmonary disorders caused by inhalation of dusts or chemical antigens in a vocational setting. Included in these are the classic mineral pneumoconioses of silicosis, coal worker's pneumoconiosis, and asbestos-related diseases as well as many immune-mediated and airway-centric diseases, and new and emerging disorders. Although some of these have characteristic imaging appearances, a multidisciplinary approach with focus on occupational exposure history is essential to proper diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Detection of pulmonary nodules on lung X-ray images. Studies on multi-resolutional filter and energy subtraction images

    International Nuclear Information System (INIS)

    Sawada, Akira; Sato, Yoshinobu; Kido, Shoji; Tamura, Shinichi

    1999-01-01

    The purpose of this work is to prove the effectiveness of an energy subtraction image for the detection of pulmonary nodules and the effectiveness of multi-resolutional filter on an energy subtraction image to detect pulmonary nodules. Also we study influential factors to the accuracy of detection of pulmonary nodules from viewpoints of types of images, types of digital filters and types of evaluation methods. As one type of images, we select an energy subtraction image, which removes bones such as ribs from the conventional X-ray image by utilizing the difference of X-ray absorption ratios at different energy between bones and soft tissue. Ribs and vessels are major causes of CAD errors in detection of pulmonary nodules and many researches have tried to solve this problem. So we select conventional X-ray images and energy subtraction X-ray images as types of images, and at the same time select ∇ 2 G (Laplacian of Guassian) filter, Min-DD (Minimum Directional Difference) filter and our multi-resolutional filter as types of digital filters. Also we select two evaluation methods and prove the effectiveness of an energy subtraction image, the effectiveness of Min-DD filter on a conventional X-ray image and the effectiveness of multi-resolutional filter on an energy subtraction image. (author)

  14. Estimation of regional lung expansion via 3D image registration

    Science.gov (United States)

    Pan, Yan; Kumar, Dinesh; Hoffman, Eric A.; Christensen, Gary E.; McLennan, Geoffrey; Song, Joo Hyun; Ross, Alan; Simon, Brett A.; Reinhardt, Joseph M.

    2005-04-01

    A method is described to estimate regional lung expansion and related biomechanical parameters using multiple CT images of the lungs, acquired at different inflation levels. In this study, the lungs of two sheep were imaged utilizing a multi-detector row CT at different lung inflations in the prone and supine positions. Using the lung surfaces and the airway branch points for guidance, a 3D inverse consistent image registration procedure was used to match different lung volumes at each orientation. The registration was validated using a set of implanted metal markers. After registration, the Jacobian of the deformation field was computed to express regional expansion or contraction. The regional lung expansion at different pressures and different orientations are compared.

  15. Autofluorescence Imaging and Spectroscopy of Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2016-12-01

    Full Text Available Lung cancer is one of the most common cancers, with high mortality rate worldwide. Autofluorescence imaging and spectroscopy is a non-invasive, label-free, real-time technique for cancer detection. In this study, lung tissue sections excised from patients were detected by laser scan confocal microscopy and spectroscopy. The autofluorescence images demonstrated the cellular morphology and tissue structure, as well as the pathology of stained images. Based on the spectra study, it was found that the majority of the patients showed discriminating fluorescence in tumor tissues from normal tissues. Therefore, autofluorescence imaging and spectroscopy may be a potential method for aiding the diagnosis of lung cancer.

  16. The relationship between ventilatory lung motion and pulmonary perfusion shown by ventilatory lung motion imaging

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Nakatsuka, Tatsuya; Yoshimura, Kazuhiko; Hirose, Yoshiki; Hirayama, Jiro; Kobayashi, Toshio; Handa, Kenjiro

    1991-01-01

    Using ventilatory lung motion imaging, which was obtained from two perfusion lung scintigrams with 99m Tc-macroaggregated albumin taken in maximal inspiration and maximal expiration, the lung motion (E-I/I) of the each unilateral lung was studied in various cardiopulmonary diseases. The sum of (E-I)/I(+) of the unilateral lung was decreased in the diseased lung for localized pleuropulmonary diseases, including primary lung cancer and pleural thickening, and in both lungs for heart diseases, and diffuse pulmonary diseases including diffuse interstitial pneumonia and diffuse panbronchiolitis. The sum of (E-I)/I(+) of the both lungs, which correlated with vital capacity and PaO 2 , was decreased in diffuse interstitial pneumonia, pulmonary emphysema, diffuse panbronchiolitis, primary lung cancer, pleural diseases and so on. (E-I)/I(+), correlated with pulmonary perfusion (n=49, r=0.51, p 81m Kr or 133 Xe (n=49, r=0.61, p<0.001) than pulmonary perfusion. The ventilatory lung motion imaging, which demonstrates the motion of the intra-pulmonary areas and lung edges, appears useful for estimating pulmonary ventilation of the perfused area as well as pulmonary perfusion. (author)

  17. A study on 99mTc-macroaggregated albumin as lung imaging agent

    International Nuclear Information System (INIS)

    Xu Rongzhu; Fan Guangyu; Liu Yinmei; Bai Suzhen

    1990-01-01

    A method for the preparation of macroaggregated albumin (MAA) kits labelled with 99m Tc for lung scanning is described. The tween-80 is used as both dispersing agent and stable agent in order to raise uniformity and concentration of MAA particle size, which is between 10 to 100 μm. More than 80% particles are in the range of 10-60 μm. A millilitre MAA solution contains 5.3 x 10 6 particles. The lyophilized MAA kits are stable within eight months. The unlyophilized MAA kits are stable within 51 days. The radiochemical yield is >95% and the radiochemical purity is determined by paper chromatography. In addition, centrifuge method is used in combination with micro paper chromatography, in order to obtain the percentage of 99m Tc(IV) bound to the MAA, the percentage of unreduced 'free' 99m Tc(VII) and the percentage of reduced-hydrolyzed form of 99n Tc(IV). Blank centrifuge test of the 99m Tc(IV)-Sn colloid shows that about 85% 99m Tc(IV) is found in the supernatant solution. This method is simple and rapid. After eight hours the radiochemical purity of the labelled 99m Tc-MAA sample placed at 16 deg C and 22 deg C remains >95%. The organ distribution of LACA 18-26g mice meets the standard of the same product in the US pharmacopeia. The results of the study with rabbits by scanning with γ-camera indicate that the activity in the lung of the rabbit reaches a high level between 2-3 hours after injection. The toxic test and nonsterile and nonpyrogen test are very satisfactory and meet the standard of the Chinese pharmacopeia

  18. Application of I-123 HIPDM as a lung imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W J; Coupal, J J; Dillon, M L; Kung, H F

    1988-04-01

    N,N,N'-Trimethyl-N'-(2-Hydroxyl-3-Methyl-5-/sup 123/I Iodobenzyl)-1,3-Propanediamine.Hcl (/sup 123/I-HIPDM) has been used for diagnosis of patients with strokes and demantias. Since this radiopharmaceutical is also accumulated in the lung, we routinely performed a lung image or images immediately prior to cerebral planar and SPECT images after a 3-5 mCi /sup 123/I-HIPDM injection. During the past 14 months, we obtained 78 (age from 41 to 92 years, average 66.7+-8.9 years; 64 males, 14 females) suspected stroke or dementia patients' lung images. All lung images were correlated to chest X-ray (CXR) or CT and other clinical data. Sixty five of 78 patients had normal lungs showing homogeneous distribution of activity throughout the lungs which correlated well to normal CXR and/or CT studies. Abnormal scintigraphic patterns of the 13 patients included lung defect (5 bronchogenic carcinoma with or without atelectasis) and decreased uptake in apices (8 chronic obstructive pulmonary disease). The findings of pulmonary intrathoracic pathologies on lung images with /sup 123/I-HIPDM suggests further evaluation of the agent for detection of localized pulmonary diseases and pulmonary physiological studies relating to amine metabolism.

  19. Unevenness on aerosol inhalation lung images and lung function

    International Nuclear Information System (INIS)

    Teshima, Takeo; Isawa, Toyoharu; Hirano, Tomio; Ebina, Akio; Shiraishi, Koichiro; Konno, Kiyoshi

    1985-01-01

    The unevenness or inhomogeneity of aerosol deposition patterns on radioaerosol inhalation lung images has been interpreted rather qualitatively in the clinical practice. We have reported our approach to quantitatively analyze the radioactive count distribution on radioaerosol inhalation lung images in relation to the actual lung function data. We have defined multiple indexes to express the shape and the unevenness of the count distribution of the lung images. To reduce as much as possible the number of indexes to be used in the regression functions, the method of selection of variables was introduced to the multiple regression analysis. Because some variables showed greater coefficients of simple correlation, while others did not, multicollinearity of variables had to be taken into consideration. For this reason, we chose a principal components regression analysis. The multiple regression function for each item of pulmonary function data thus established from analysis of 67 subjects appeared usable as a predictor of the actual lung function: for example, % VC (vital capacity) could be estimated by using four indexes out of the multiple ones with a coefficient of multiple correlation (R) of 0.753, and FEVsub(1.0) % (forced expiratory volume in one second divided by forced expiratory volume), by 7 indexes with R = 0.921. Pulmonary function data regarding lung volumes and lung mechanics were estimated more accurately with greater R's than those for lung diffusion, but even in the latter the prediction was still statistically significant at p less than 0.01. We believe the multiple regression functions thus obtained are useful for estimating not only the overall but also the regional function of the lungs. (author)

  20. Automatic Detection of Lung and Liver Lesions in 3-D Positron Emission Tomography Images: A Pilot Study

    Science.gov (United States)

    Lartizien, Carole; Marache-Francisco, Simon; Prost, Rémy

    2012-02-01

    Positron emission tomography (PET) using fluorine-18 deoxyglucose (18F-FDG) has become an increasingly recommended tool in clinical whole-body oncology imaging for the detection, diagnosis, and follow-up of many cancers. One way to improve the diagnostic utility of PET oncology imaging is to assist physicians facing difficult cases of residual or low-contrast lesions. This study aimed at evaluating different schemes of computer-aided detection (CADe) systems for the guided detection and localization of small and low-contrast lesions in PET. These systems are based on two supervised classifiers, linear discriminant analysis (LDA) and the nonlinear support vector machine (SVM). The image feature sets that serve as input data consisted of the coefficients of an undecimated wavelet transform. An optimization study was conducted to select the best combination of parameters for both the SVM and the LDA. Different false-positive reduction (FPR) methods were evaluated to reduce the number of false-positive detections per image (FPI). This includes the removal of small detected clusters and the combination of the LDA and SVM detection maps. The different CAD schemes were trained and evaluated based on a simulated whole-body PET image database containing 250 abnormal cases with 1230 lesions and 250 normal cases with no lesion. The detection performance was measured on a separate series of 25 testing images with 131 lesions. The combination of the LDA and SVM score maps was shown to produce very encouraging detection performance for both the lung lesions, with 91% sensitivity and 18 FPIs, and the liver lesions, with 94% sensitivity and 10 FPIs. Comparison with human performance indicated that the different CAD schemes significantly outperformed human detection sensitivities, especially regarding the low-contrast lesions.

  1. Diagnostic Imaging of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kemal Kara

    2012-12-01

    Full Text Available Lung cancer is the most common cause of cancer related death in men and women. It is frequently seen among men than in women and male-female ratio is 1.5:1. Common epidemiological factors that increase risk of lung cancer is smoking. Early age to start smoking, high number of smoking cigarettes per a day and depth of inhalation increase risk of lung cancer. 25% of patients with lung cancer are nonsmokers that passively exposed to cigarette smoke. Occupational exposure to substances such as asbestos, arsenic, nickel, beryllium, mustard gas increases the risk of lung cancer. The well defined risk factor is exposure to asbestos. In addition advanced age, diffuse pulmonary fibrosis, chronic obstructive pulmonary disease (COPD and genetic predisposition are the risk factors that increases lung cancer. [TAF Prev Med Bull 2012; 11(6.000: 749-756

  2. A pilot study imaging integrin αvβ3 with RGD PET/CT in suspected lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Song [Shandong Cancer Hospital and Institute, Department of Radiation Oncology, Jinan, Shandong (China); University of Jinan-Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, Jinan, Shandong (China); Wu, Honghu [Wuyi County People' s Hospital of Hengshui City, Hengshui, Hebei Province (China); Li, Wenwu; Zhao, Shuqiang; Teng, Xuepeng; Lu, Hong [Shandong Cancer Hospital and Institute, Department of Radiology, Jinan, Shandong (China); Hu, Xudong; Wang, Suzhen; Yu, Jinming; Yuan, Shuanghu [Shandong Cancer Hospital and Institute, Department of Radiation Oncology, Jinan, Shandong (China)

    2015-12-15

    Angiogenesis is an essential step in tumour development and metastasis. Integrin αvβ3 plays a major role in angiogenesis, tumour growth and progression. A new tracer, {sup 18}F-AL-NOTA-PRGD2, denoted as {sup 18}F-alfatide, has been developed for positron emission tomography (PET) imaging of integrin αvβ3. This is a pilot study to test the safety and diagnostic value of {sup 18}F- arginine-glycine-aspartic acid (RGD) PET/computed tomography (CT) in suspected lung cancer patients. Twenty-six patients with suspected lung cancer on enhanced CT underwent {sup 18}F-alfatide RGD PET/CT examination before surgery and puncture biopsy. Standard uptake values (SUVs) and the tumour-to-blood ratios were measured, and diagnoses were pathologically confirmed. RGD PET/CT with {sup 18}F-alfatide was performed successfully in all patients and no clinically significant adverse events were observed. The {sup 18}F-alfatide RGD PET/CT analysis correctly recognized 17 patients with lung cancer, 4 patients (hamartoma) as true negative, and 5 patients (4 chronic inflammation and 1 inflammatory pseudotumour) as false positive. The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of {sup 18}F-alfatide RGD PET/CT for the diagnosis of suspected lung cancer patients was 100, 44.44, 80.77, 77.27, and 100 %, respectively. The area under a receiver operating characteristic (ROC) curve was 0.75 (P = 0.038), and ROC analysis suggested an SUVmax cut-off value of 2.65 to differentiate between malignant lesions and benign lesions. The SUV for malignant lesions was 5.37 ± 2.17, significantly higher than that for hamartomas (1.60 ± 0.11; P < 0.001). The difference between the tumour-to-blood ratio for malignant lesions (4.13 ± 0.91) and tissue of interest-to-blood ratio for hamartomas (1.56 ± 0.24) was also statistically significant (P < 0.001). Neither the SUVmax nor the tumour-to-blood ratio was significantly different between malignant

  3. Radioaerosol lung imaging in small airways disease

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, T; Dorow, P; Felix, R

    1981-06-01

    Aerosol inhalation lung imaging was performed in 35 asymptomatic smokers who have been selected on the basis of abnormal findings in small airways pulmonary function tests. Qualitative (image inspection) and quantitative (aerosol distribution index = ADI) analysis of the radioaerosol lung patterns was accomplished. Compared to healthy subjects as well as to patients with chronic obstructive lung disease significant differences of mean aerosol distribution homogeneity were observed. A characteristic type of abnormal aerosol pattern, indicating peripheral airways obstruction, was found in 71% of the patients with small airways disease.

  4. CT imaging of coexisting pulmonary tuberculosis and lung cancer

    International Nuclear Information System (INIS)

    Lv Yan; Xie Ruming; Zhou Xinhua; Zhou Zhen; Xu Jinping; He Wei; Guo Lifang; Ning Fenggang

    2013-01-01

    Objective: To study the CT characteristics of coexisting pulmonary tuberculosis and lung cancer. Methods: One hundred and four patients of coexisting pulmonary tuberculosis and lung cancer proved by histology, cytology or clinical underwent CT examination. All patients were divided into two groups, group Ⅰ were the patients with the lung cancer after tuberculosis or both found simultaneously (group Ⅰ a with peripheral lung cancer and group Ⅰ b with central lung cancer), group Ⅱ with tuberculosis during lung cancer chemotherapy (group Ⅱ a with peripheral lung cancer and group Ⅱ b with central lung cancer). Imaging characteristics of tuberculosis and lung cancer were compared. χ"2 test and t test were used for the statistical analysis. Results: Of 104 patients, there were 92 patients (88.5%) in group Ⅰ and 12 patients (11.5%) in group Ⅱ. Seventy patients (76.1%) of lung cancer and tuberculosis were located in the same lobe and 22 patients (23.9%) in the different lobes in group Ⅰ. There was no significant difference in distribution of tuberculosis between group Ⅰ and group Ⅱ (χ"2 = 4.302, P = 0.507). The fibrous stripes, nodules of calcification and pleural adhesion of tuberculosis were statistically significant between the two groups (χ"2 = 22.737, 15.193, 27.792, P < 0.05). There were 33 central lung cancers and 71 peripheral lung cancers. In group Ⅰ a (64 patients of peripheral lung cancers), 39 patients (60.9%) had typical manifestations and most of the lesions were ≥ 3 cm (n = 49, 76.6%), solid lesions showed variable enhancement. Conclusions: Secondary tuberculosis during lung cancer chemotherapy has the same CT characteristics with the common active tuberculosis. The morphology, enhancement pattern of lesion and follow-up are helpful for the diagnosis of lung cancer after tuberculosis. (authors)

  5. Tuberculosis in the lung (image)

    Science.gov (United States)

    Tuberculosis is caused by a group of organisms: Mycobacterium tuberculosis, M bovis , M africanum and a few other rarer subtypes. Tuberculosis usually appears as a lung (pulmonary) infection. However, ...

  6. Uniform background assumption produces misleading lung EIT images.

    Science.gov (United States)

    Grychtol, Bartłomiej; Adler, Andy

    2013-06-01

    Electrical impedance tomography (EIT) estimates an image of conductivity change within a body from stimulation and measurement at body surface electrodes. There is significant interest in EIT for imaging the thorax, as a monitoring tool for lung ventilation. To be useful in this application, we require an understanding of if and when EIT images can produce inaccurate images. In this paper, we study the consequences of the homogeneous background assumption, frequently made in linear image reconstruction, which introduces a mismatch between the reference measurement and the linearization point. We show in simulation and experimental data that the resulting images may contain large and clinically significant errors. A 3D finite element model of thorax conductivity is used to simulate EIT measurements for different heart and lung conductivity, size and position, as well as different amounts of gravitational collapse and ventilation-associated conductivity change. Three common linear EIT reconstruction algorithms are studied. We find that the asymmetric position of the heart can cause EIT images of ventilation to show up to 60% undue bias towards the left lung and that the effect is particularly strong for a ventilation distribution typical of mechanically ventilated patients. The conductivity gradient associated with gravitational lung collapse causes conductivity changes in non-dependent lung to be overestimated by up to 100% with respect to the dependent lung. Eliminating the mismatch by using a realistic conductivity distribution in the forward model of the reconstruction algorithm strongly reduces these undesirable effects. We conclude that subject-specific anatomically accurate forward models should be used in lung EIT and extra care is required when analysing EIT images of subjects whose background conductivity distribution in the lungs is known to be heterogeneous or exhibiting large changes.

  7. Uniform background assumption produces misleading lung EIT images

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Adler, Andy

    2013-01-01

    Electrical impedance tomography (EIT) estimates an image of conductivity change within a body from stimulation and measurement at body surface electrodes. There is significant interest in EIT for imaging the thorax, as a monitoring tool for lung ventilation. To be useful in this application, we require an understanding of if and when EIT images can produce inaccurate images. In this paper, we study the consequences of the homogeneous background assumption, frequently made in linear image reconstruction, which introduces a mismatch between the reference measurement and the linearization point. We show in simulation and experimental data that the resulting images may contain large and clinically significant errors. A 3D finite element model of thorax conductivity is used to simulate EIT measurements for different heart and lung conductivity, size and position, as well as different amounts of gravitational collapse and ventilation-associated conductivity change. Three common linear EIT reconstruction algorithms are studied. We find that the asymmetric position of the heart can cause EIT images of ventilation to show up to 60% undue bias towards the left lung and that the effect is particularly strong for a ventilation distribution typical of mechanically ventilated patients. The conductivity gradient associated with gravitational lung collapse causes conductivity changes in non-dependent lung to be overestimated by up to 100% with respect to the dependent lung. Eliminating the mismatch by using a realistic conductivity distribution in the forward model of the reconstruction algorithm strongly reduces these undesirable effects. We conclude that subject-specific anatomically accurate forward models should be used in lung EIT and extra care is required when analysing EIT images of subjects whose background conductivity distribution in the lungs is known to be heterogeneous or exhibiting large changes. (paper)

  8. Diagnostic imaging of lung cancer with In-111-MDEGD

    International Nuclear Information System (INIS)

    Nakajima, Susumu; Hayashi, Hideo; Maeda, Tomio

    1987-01-01

    Indium-111-mono DTPA-ethyleneglycol Ga deuterporphyrin (In-111-MDEGD) is a new tumor imaging agent in lung cancer. The agent has been studied with golden hamsters bearing adenocarcinoma, C57 black mice bearing Lewis lung adenocarcinoma, and nude mice bearing human lung adenocarcinoma xerografts. It has been revealed that the tumor-to-lung, tumor-to-kidney, and tumor-to-blood ratios are higher for In-111-MDEGD than for Ga-67 citrate widely used in imaging tumors, and that the agent is not accumulated in inflammatory lesions. The results were encouraging enough to start clinical diagnostic trials in lung cancer. In this paper, an overview of In-111-MDEGD, along with its preliminary data, is given. (Namekawa, K.)

  9. Multiple image x-radiography for functional lung imaging

    Science.gov (United States)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  10. Usefulness of gallium imaging in the evaluation of lung cancer

    International Nuclear Information System (INIS)

    Alazraki, N.

    1980-01-01

    The current enthusiasm for gallium (Ga) citrate as a tumor imaging agent reflects the need of clinical medicine for a good tumor imaging agent. Ga-67 was most consistently and reliably taken up in lung tumors, with sensitivities of Ga imaging positivity in lung cancer ranging from 85 to 95%. Subsequent studies on Ga-67 led to the recognition of its preferential concentration in inflammatory lesions and abscess. These reports resulted in the clinical application of Ga-67 imaging as a diagnostic tool in the evaluation of patients with suspected abscesses. Mechanisms of Ga localization in tumor and inflammatory lesions are not currently well understood. Data regarding the thresholds of various factors which determine visibility of a lung tumor by Ga-67 imaging have been described in some detail. The factors include lesion size, depth in tissue, gallium concentration in tumor relative to background, type of film and instrumentation used, and count rates obtained

  11. Prenatal diagnosis of fetal lung maturity by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hitoshi; Kakizaki, Dai; Nagai, Atsushi; Akutagawa, Osamu; Itokazu, Isao; Iso, Kazuo; Abe, Kimihiko; Takayama, Masaomi [Tokyo Medical Coll. (Japan); Nohira, Tomoyoshi [Tokyo Medical Coll. (Japan). Hachioji Medical Center

    2003-04-01

    The objective of this study was to evaluate the usefulness of magnetic resonance imaging (MRI) for prenatal diagnosis of fetal lung maturity. The subjects comprised 28 singleton fetuses, and underwent MRI in the third trimester (32.71{+-}3.00 wks). After obtaining axial and coronal scout images of the whole pelvis, we obtained a transverse image, a coronal image and a sagittal image of fetuses with a half-Fourier acquisition single-shot turbo-spin-echo (HASTE) sequence, determined the intensity level of the fetal lung (right lung intensity level: RL, left lung intensity level: LL). The intensity level of background outside of the maternal body was obtained as the control intensity level (CL). The contrast value (CV) of each fetal lung was calculated by the numerical formula; CV=(RL or LL-CL)/CL. We evaluated the changes of CV during the third trimester and relationship between CV and gestational weeks. There was no significant correlation between gestational weeks and RL (P=.3887), LL (P=.2367). There was a significant increase in both right and left CV (RCV=(RL-CL)/CL: P=.0108, LCV=(LL-CL)/CL: P=.0165) with gestational age. It was suggested that the fetal lung maturation could be diagnosed with HASTE using the CV formula. (author)

  12. Prenatal diagnosis of fetal lung maturity by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Itoh, Hitoshi; Kakizaki, Dai; Nagai, Atsushi; Akutagawa, Osamu; Itokazu, Isao; Iso, Kazuo; Abe, Kimihiko; Takayama, Masaomi; Nohira, Tomoyoshi

    2003-01-01

    The objective of this study was to evaluate the usefulness of magnetic resonance imaging (MRI) for prenatal diagnosis of fetal lung maturity. The subjects comprised 28 singleton fetuses, and underwent MRI in the third trimester (32.71±3.00 wks). After obtaining axial and coronal scout images of the whole pelvis, we obtained a transverse image, a coronal image and a sagittal image of fetuses with a half-Fourier acquisition single-shot turbo-spin-echo (HASTE) sequence, determined the intensity level of the fetal lung (right lung intensity level: RL, left lung intensity level: LL). The intensity level of background outside of the maternal body was obtained as the control intensity level (CL). The contrast value (CV) of each fetal lung was calculated by the numerical formula; CV=(RL or LL-CL)/CL. We evaluated the changes of CV during the third trimester and relationship between CV and gestational weeks. There was no significant correlation between gestational weeks and RL (P=.3887), LL (P=.2367). There was a significant increase in both right and left CV (RCV=(RL-CL)/CL: P=.0108, LCV=(LL-CL)/CL: P=.0165) with gestational age. It was suggested that the fetal lung maturation could be diagnosed with HASTE using the CV formula. (author)

  13. Feasibility study of image guided radiotherapy for lung tumor using online and offline cone-beam CT setup verification

    International Nuclear Information System (INIS)

    Li Hongsheng; Li Baosheng; Lu Jie; Yin Yong; Yu Ningsha; Chen Yiru

    2009-01-01

    Objective: To investigate the feasibility of online and offline cone-beam CT(CBCT) guided radiotherapy for lung cancer. Methods: Fourteen patients with lung tumor treated by three-dimensional conformal radiotherapy were investigated. Online kV CBCT scan, image registration and setup correction were performed before and immediately after radiotherapy. CBCT online-guided correction data were used to calculate the population-based CTV-PTV margins under the condition of non-correction and correction in every fraction respectively. The numbers of initial images and the population-based CTV-PTV margins after the offline compensation of the system setup error were evaluated with the permission of 0.5 mm and 1.5 mm maximal residue error, respectively. Results: Under the condition of non-correction, the required margins for total error were 5.7 mm, 8.0 mm and 7.8 mm in the left-right (x axis), cranio-caudal (y axis) and anterior-posterior(z axis) directions, respectively. When the tumor was corrected in every fraction, the required margins for intra-fraction error were 2.4 mm, 2.4 mm and 2.3 mm in x,y and z axes, respectively. To correct the systematic setup error, 9 sets of CBCT images for 3.3 mm, 3.7 mm and 3.6 mm PTV margins, and 7 sets of CBCT images for 3.9 mm, 4.3 mm and 4.3 mm PTV margins in x,y and z axes were necessary when 0.5 mm and 1.5 mm maximal residue error were permitted respectively. Conclusions: Both of the online CBCT correction and the offline adaptive correction can markedly reduce the impact of setup error and reduce the required PTV margins accordingly. It is feasible to deliver the online and offline image guided radiation for patients with lung tumor. (authors)

  14. Recent developments in NMR imaging of lung

    International Nuclear Information System (INIS)

    Ailion, D.C.

    1989-01-01

    This presentation describes the phenomenon of tissue-induced inhomogeneous broadening due to the air/water interfaces in lung and includes a description of its physical basis, imaging and nonimaging techniques for its observation, recent theoretical development of the present stage of understanding of the mechanisms underlying the relaxation times T 1 and T 2 will also be given. Finally, a description of the rapid line scan (RLS) technique for obtaining rapid, artifactfree images of moving objects, such as the lungs of spontaneously breathing animals, is presented. (author). 19 refs.; 13 figs

  15. Multimodal imaging of lung cancer and its microenvironment (Conference Presentation)

    Science.gov (United States)

    Hariri, Lida P.; Niederst, Matthew J.; Mulvey, Hillary; Adams, David C.; Hu, Haichuan; Chico Calero, Isabel; Szabari, Margit V.; Vakoc, Benjamin J.; Hasan, Tayyaba; Bouma, Brett E.; Engelman, Jeffrey A.; Suter, Melissa J.

    2016-03-01

    Despite significant advances in targeted therapies for lung cancer, nearly all patients develop drug resistance within 6-12 months and prognosis remains poor. Developing drug resistance is a progressive process that involves tumor cells and their microenvironment. We hypothesize that microenvironment factors alter tumor growth and response to targeted therapy. We conducted in vitro studies in human EGFR-mutant lung carcinoma cells, and demonstrated that factors secreted from lung fibroblasts results in increased tumor cell survival during targeted therapy with EGFR inhibitor, gefitinib. We also demonstrated that increased environment stiffness results in increased tumor survival during gefitinib therapy. In order to test our hypothesis in vivo, we developed a multimodal optical imaging protocol for preclinical intravital imaging in mouse models to assess tumor and its microenvironment over time. We have successfully conducted multimodal imaging of dorsal skinfold chamber (DSC) window mice implanted with GFP-labeled human EGFR mutant lung carcinoma cells and visualized changes in tumor development and microenvironment facets over time. Multimodal imaging included structural OCT to assess tumor viability and necrosis, polarization-sensitive OCT to measure tissue birefringence for collagen/fibroblast detection, and Doppler OCT to assess tumor vasculature. Confocal imaging was also performed for high-resolution visualization of EGFR-mutant lung cancer cells labeled with GFP, and was coregistered with OCT. Our results demonstrated that stromal support and vascular growth are essential to tumor progression. Multimodal imaging is a useful tool to assess tumor and its microenvironment over time.

  16. Validation study of an interpolation method for calculating whole lung volumes and masses from reduced numbers of CT-images in ponies.

    Science.gov (United States)

    Reich, H; Moens, Y; Braun, C; Kneissl, S; Noreikat, K; Reske, A

    2014-12-01

    Quantitative computer tomographic analysis (qCTA) is an accurate but time intensive method used to quantify volume, mass and aeration of the lungs. The aim of this study was to validate a time efficient interpolation technique for application of qCTA in ponies. Forty-one thoracic computer tomographic (CT) scans obtained from eight anaesthetised ponies positioned in dorsal recumbency were included. Total lung volume and mass and their distribution into four compartments (non-aerated, poorly aerated, normally aerated and hyperaerated; defined based on the attenuation in Hounsfield Units) were determined for the entire lung from all 5 mm thick CT-images, 59 (55-66) per animal. An interpolation technique validated for use in humans was then applied to calculate qCTA results for lung volumes and masses from only 10, 12, and 14 selected CT-images per scan. The time required for both procedures was recorded. Results were compared statistically using the Bland-Altman approach. The bias ± 2 SD for total lung volume calculated from interpolation of 10, 12, and 14 CT-images was -1.2 ± 5.8%, 0.1 ± 3.5%, and 0.0 ± 2.5%, respectively. The corresponding results for total lung mass were -1.1 ± 5.9%, 0.0 ± 3.5%, and 0.0 ± 3.0%. The average time for analysis of one thoracic CT-scan using the interpolation method was 1.5-2 h compared to 8 h for analysis of all images of one complete thoracic CT-scan. The calculation of pulmonary qCTA data by interpolation from 12 CT-images was applicable for equine lung CT-scans and reduced the time required for analysis by 75%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences

    International Nuclear Information System (INIS)

    Fink, C.; Puderbach, M.; Zaporozhan, J.; Plathow, C.; Kauczor, H.-U.; Ley, S.

    2005-01-01

    The aim of this study was to evaluate the image quality of time-resolved echo-shared parallel MRA of the lung. The pulmonary vasculature of nine patients (seven females, two males; median age: 44 years) with pulmonary disease was examined using a time-resolved MRA sequence combining echo sharing with parallel imaging (time-resolved echo-shared angiography technique, or TREAT). The sharpness of the vessel borders, conspicuousness of peripheral lung vessels, artifact level, and overall image quality of TREAT was assessed independently by four readers in a side-by-side comparison with non-echo-shared time-resolved parallel MRA data (pMRA) previously acquired in the same patients. Furthermore, the SNR of pulmonary arteries (PA) and veins (PV) achieved with both pulse sequences was compared. The mean voxel size of TREAT MRA was decreased by 24% compared with the non-echo-shared MRA. Regarding the sharpness of the vessel borders, conspicuousness of peripheral lung vessels, and overall image quality the TREAT sequence was rated superior in 75-76% of all cases. If the TREAT images were preferred over the pMRA images, the advantage was rated as major in 61-71% of all cases. The level of artifacts was not increased with the TREAT sequence. The mean interobserver agreement for all categories ranged between fair (artifact level) and good (overall image quality). The maximum SNR of TREAT did not differ from non-echo-shared parallel MRA (PA: TREAT: 273±45; pMRA: 280±71; PV: TREAT: 273±33; pMRA: 258±62). TREAT achieves a higher spatial resolution than non-echo-shared parallel MRA which is also perceived as an improved image quality. (orig.)

  18. Integrin αβ3-Targeted Imaging of Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chen

    2005-03-01

    Full Text Available A series of radiolabeled cyclic arginine-glycineaspartic acid (RGD peptide ligands for cell adhesion molecule integrin αβ3-targeted tumor angiogenesis targeting are being developed in our laboratory. In this study, this effort continues by applying a positron emitter 64Cu-labeled PEGylated dimeric RGD peptide radiotracer 64Cu-DOTA-PEG-E[c(RGDyK]2 for lung cancer imaging. The PEGylated RGD peptide indicated integrin αβ3 avidity, but the PEGylation reduced the receptor binding affinity of this ligand compared to the unmodified RGD dimer. The radiotracer revealed rapid blood clearance and predominant renal clearance route. The minimum nonspecific activity accumulation in normal lung tissue and heart rendered high-quality orthotopic lung cancer tumor images, enabling clear demarcation of both the primary tumor at the upper lobe of the left lung, as well as metastases in the mediastinum, contralateral lung, diaphragm. As a comparison, fluorodeoxyglucose (FDG scans on the same mice were only able to identify the primary tumor, with the metastatic lesions masked by intense cardiac uptake and high lung background. 64Cu-DOTA-PEGE[c(RGDyK]2 is an excellent positron emission tomography (PET tracer for integrin-positive tumor imaging. Further studies to improve the receptor binding affinity of the tracer and subsequently to increase the magnitude of tumor uptake without comprising the favorable in vivo kinetics are currently in progress.

  19. Estimation of gas and tissue lung volumes by MRI: functional approach of lung imaging.

    Science.gov (United States)

    Qanadli, S D; Orvoen-Frija, E; Lacombe, P; Di Paola, R; Bittoun, J; Frija, G

    1999-01-01

    The purpose of this work was to assess the accuracy of MRI for the determination of lung gas and tissue volumes. Fifteen healthy subjects underwent MRI of the thorax and pulmonary function tests [vital capacity (VC) and total lung capacity (TLC)] in the supine position. MR examinations were performed at inspiration and expiration. Lung volumes were measured by a previously validated technique on phantoms. Both individual and total lung volumes and capacities were calculated. MRI total vital capacity (VC(MRI)) was compared with spirometric vital capacity (VC(SP)). Capacities were correlated to lung volumes. Tissue volume (V(T)) was estimated as the difference between the total lung volume at full inspiration and the TLC. No significant difference was seen between VC(MRI) and VC(SP). Individual capacities were well correlated (r = 0.9) to static volume at full inspiration. The V(T) was estimated to be 836+/-393 ml. This preliminary study demonstrates that MRI can accurately estimate lung gas and tissue volumes. The proposed approach appears well suited for functional imaging of the lung.

  20. [An experimental study on the Chinese lung adenocarcinoma cell clone CPA-Yang1-BR with brain metastasis potency in nude mice and in vivo imaging research].

    Science.gov (United States)

    Lei, Bei; Cao, Jie; Shen, Jie; Zhao, Lanxiang; Liang, Sheng; Meng, Qinggang; Xie, Wenhui; Yang, Shunfang

    2013-08-20

    Lung cancer is the leading cause of cancer-related death in men and women. It is also the most common cause of brain metastases. A brain metastasis model is difficult to be established because of the presence of the blood-brain barrier (BBB) and the lack of optimal methods for detecting brain metastasis in nude mice. Thus, the establishment of a Chinese lung adenocarcinoma cell line and its animal model with brain metastasis potency and in vivo research is of great significance. CPA-Yang1 cells were obtained from a patient with human lung adenocarcinoma by lentiviral vector-mediated transfection of green fluorescence protein. Intracardiac inoculation of the cells was performed in nude mice, and brain metastatic lesions were detected using micro ¹⁸F FDG-PET/CT scanners, small animal in vivo imaging system for fluorescence, radionuclide and X ray fused imaging, magnetic resonance imaging (MRI) with sense body detection, and resection. The samples were divided into two parts for cell culture and histological diagnosis. The process was repeated in vivo and in vitro for four cycles to obtain a novel cell clone, CPA-Yang1-BR. A novel cell clone, CPA-Yang1-BR, was obtained with a brain metastatic rate of 50%. The use of MRI for the detection of brain metastases has obvious advantages. An experimental Chinese lung adenocarcinoma cell clone (CPA-Yang1-BR) and its animal model with brain metastasis potency in nude mice were established. MRI with sense body or micro MRI may be used as a sensitive, accurate, and noninvasive method to detect experimental brain metastases in intact live immunodeficient mice. The results of this study may serve as a technical platform for brain metastases from lung adenocarcinoma.

  1. Estimation of error in maximal intensity projection-based internal target volume of lung tumors: a simulation and comparison study using dynamic magnetic resonance imaging.

    Science.gov (United States)

    Cai, Jing; Read, Paul W; Baisden, Joseph M; Larner, James M; Benedict, Stanley H; Sheng, Ke

    2007-11-01

    To evaluate the error in four-dimensional computed tomography (4D-CT) maximal intensity projection (MIP)-based lung tumor internal target volume determination using a simulation method based on dynamic magnetic resonance imaging (dMRI). Eight healthy volunteers and six lung tumor patients underwent a 5-min MRI scan in the sagittal plane to acquire dynamic images of lung motion. A MATLAB program was written to generate re-sorted dMRI using 4D-CT acquisition methods (RedCAM) by segmenting and rebinning the MRI scans. The maximal intensity projection images were generated from RedCAM and dMRI, and the errors in the MIP-based internal target area (ITA) from RedCAM (epsilon), compared with those from dMRI, were determined and correlated with the subjects' respiratory variability (nu). Maximal intensity projection-based ITAs from RedCAM were comparatively smaller than those from dMRI in both phantom studies (epsilon = -21.64% +/- 8.23%) and lung tumor patient studies (epsilon = -20.31% +/- 11.36%). The errors in MIP-based ITA from RedCAM correlated linearly (epsilon = -5.13nu - 6.71, r(2) = 0.76) with the subjects' respiratory variability. Because of the low temporal resolution and retrospective re-sorting, 4D-CT might not accurately depict the excursion of a moving tumor. Using a 4D-CT MIP image to define the internal target volume might therefore cause underdosing and an increased risk of subsequent treatment failure. Patient-specific respiratory variability might also be a useful predictor of the 4D-CT-induced error in MIP-based internal target volume determination.

  2. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p automatic quantification of wide range of measurements.

  3. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, Takahiro [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Ito, Yoichi M. [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Miyamoto, Naoki [Department of Medical Physics, Hokkaido University Hospital, Sapporo (Japan); Inoue, Tetsuya [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Katoh, Norio [Department of Radiation Oncology, Hokkaido University Hospital, Sapporo (Japan); Shimizu, Shinichi [Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan); Department of Radiation Oncology, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Umegaki, Kikuo [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo (Japan); Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo (Japan); Shirato, Hiroki [Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University, Sapporo (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo (Japan)

    2017-01-01

    Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.

  4. Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study.

    Science.gov (United States)

    Kanehira, Takahiro; Matsuura, Taeko; Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki; Ito, Yoichi M; Miyamoto, Naoki; Inoue, Tetsuya; Katoh, Norio; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2017-01-01

    To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 lung, and treatment times were evaluated. Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Weight preserving image registration for monitoring disease progression in lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Haseem, Ashraf

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan...... the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans...

  6. Emphysema. Imaging for endoscopic lung volume reduction

    International Nuclear Information System (INIS)

    Storbeck, B.; Oldigs, M.; Rabe, K.F.; Weber, C.; University Medical Center Hamburg-Eppendorf

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by two entities, the more airway-predominant type (''bronchitis'') on the one hand, and emphysema-predominant type on the other. Imaging via high-resolution computed tomography plays an important role in phenotyping COPD. For patients with advanced lung emphysema, new endoscopic lung volume reduction therapies (ELVR) have been developed. Proper selection of suitable patients requires thin-section reconstruction of volumetric CT image data sets also in coronal and sagittal orientation are required. In the current manuscript we will describe emphysema subtypes (centrilobular, paraseptal, panlobular), options for quantifying emphysema and this importance of regional distribution (homogeneous or heterogeneous, target area) as this is crucial for patient selection. Analysis of the interlobular fissures is obligatory despite the lack of standardization, as incomplete fissures indicate collateral ventilation (CV) via parenchymal bridges, which is an important criterion in choosing endoscopic methods of LVR. Every radiologist should be familiar with modern LVR therapies such as valves and coils, and furthermore should know what a lung doctor expects from radiologic evaluation (before and after ELVR). Finally we present a checklist as a quick reference for all steps concerning imaging for ELVR.

  7. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  8. Weight preserving image registration for monitoring disease progression in lung CT.

    Science.gov (United States)

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  9. SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients

    International Nuclear Information System (INIS)

    Eslick, E; Kipritidis, J; Keall, P; Bailey, D; Bailey, E

    2014-01-01

    Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images using deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients

  10. Image-guided radiotherapy and motion management in lung cancer

    DEFF Research Database (Denmark)

    Korreman, Stine

    2015-01-01

    In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps...

  11. SU-E-J-189: Determination of Markerless Lung Tumor Position in Real Time: A Feasibility Study Using a Novel Tomo-Cinegraphy Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Hu, E; Yu, C; Lee, M; Lasio, G [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: A Tomo-Cinegraphy (TC) is a method to generate a series of temporal tomographic images from projection images of the on-board imager (OBI) while gantry is moving. It is to test if this technique is useful to determine a lung tumor position during treatments. Methods: Tomographic image via background subtraction, TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). This idea was extended to a TC, which enables to generate tomographic images of same geometry from the projection of different gantry angles and different breathing phases. Projection images of a lung patient for CBCT acquisition are used to generate TC images. A region of interest (ROI) is selected around a tumor adding 2cm margins. Center of mass (COM) of the ROI is traced to determine tumor position for every projection images. Results: Tumor is visible in the TC images while the OBI projections are not. The coordinates of the COMs represent the temporal tumor positions. While, it is not possible to trace the tumor motion using the projection images. A source of time delay is the time to acquire projection images, which is always less than a second. Conclusion: TC allows tracking the tumor positions without fiducial markers in real time for some lung patients, if the projection images are acquired during treatments. Partially supported by NIH R01CA133539.

  12. Ventilation-perfusion lung imaging in diaphragmatic paralysis

    International Nuclear Information System (INIS)

    Chopra, S.K.; Taplin, G.V.

    1977-01-01

    Clinical, radiological, physiological, and lung imaging findings from a patient with paralysis of the diaphragm are described. Dyspnea, hypoxemia and hypercapnia increased when the patient changed from the upright to the supine positions. Ventilation (V) and perfusion (P) images of the right lung appeared to be relatively normal and remained nearly the same in the upright and supine positions. In contrast, V/P images of the left lung were smaller than those of the right lung in the upright position and decreased further in the supine position. In addition, the size of the ventilation image was much smaller than that of the perfusion

  13. Repetitive Imaging of Reporter Gene Expression in the Lung

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Richard

    2003-10-01

    Full Text Available Positron emission tomographic imaging is emerging as a powerful technology to monitor reporter transgene expression in the lungs and other organs. However, little information is available about its usefulness for studying gene expression over time. Therefore, we infected 20 rats with a replication-deficient adenovirus containing a fusion gene encoding for a mutant Herpes simplex virus type-1 thymidine kinase and an enhanced green fluorescent protein. Five additional rats were infected with a control virus. Pulmonary gene transfer was performed via intratracheal administration of vector using a surfactant-based method. Imaging was performed 4–6 hr, and 4, 7, and 10 days after gene transfer, using 9-(4-[18F]-fluoro-3-hydroxymethylbutylguanine, an imaging substrate for the mutant kinase. Lung tracer uptake assessed with imaging was moderately but significantly increased 4–6 hr after gene transfer, was maximal after 4 days, and was no longer detectable by 10 days. The temporal pattern of transgene expression measured ex vivo with in vitro assays of thymidine kinase activity and green fluorescent protein was similar to imaging. In conclusion, positron emission tomography is a reliable new tool to evaluate the onset and duration of reporter gene expression noninvasively in the lungs of intact animals.

  14. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    Science.gov (United States)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  15. TH-CD-209-11: Simulation Study of Real-Time-Image Gating On Spot Scanning Proton Therapy for Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kanehira, T; Inoue, T; Katoh, N [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Matsuura, T; Umegaki, K [Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan); Takao, S; Matsuzaki, Y; Fujii, Y; Fujii, T; Miyamoto, N [Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Shimizu, S; Shirato, H [Department of Radiation Oncology, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido (Japan); Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To study the impact of a real-time-image gating on spot scanning proton therapy for lung tumors and to examine the suitable size of the gating window (GW). Methods: We investigated a real-time-image gated proton therapy (RGPT), in which two fluoroscopic units monitor a gold sphere fiducial in real-time, and the proton beam is irradiated only when the marker enters within the pre-assigned GW. We designed 5 treatment plans for 7 lung cancer patients: RGPT with a GW of ±1, 2, 5, and 8 mm and free-breathing proton therapy (FBPT) using the end-exhale and average images of 4-dimensional (4D) CT, respectively. 70 Gy(RBE)/10fr was prescribed to 99% of the targets. The time-series data of the three-dimensional marker positions (RTRT data) were grouped into 10 phases to associate with the phases of 4DCT. The 4D dose distributions were calculated using the plan information, RTRT Data, 4DCT, and modeled accelerator pattern. The dose distribution in each respiratory phase was deformed into the end-exhale CT. The D99 and D5-95 of CTV (with a criteria of D99>95% and D5-95<5%), V20 of Lung-GTV, and treatment times were evaluated. Results: GWs ≤ ±2 mm satisfied the criteria of CTV in all cases, whereas GWs ≥ ±5 mm did not satisfy the criteria in some cases. The V20 was reduced by more than 18.9% (relative to FBPT) for GW ≤ ±2 mm, but equaled or even surpassed the FBPT for GWs ≥ ±5 mm. The irradiation times for the ±1, 2, 5, and 8 mm GWs and FBPT were 372.4±208.3, 215.2±51.5, 180.9±31.6, 178.4±21.2, and 140.1±15.2 s, respectively. The GW of ±1 mm caused large variation in irradiation time among the patients. Conclusion: In RGPT for lung cancer, the most suitable GW, in terms of good dose preservation without prolonging the therapeutic beam delivery, is ±2 mm.

  16. 3D Interpolation Method for CT Images of the Lung

    Directory of Open Access Journals (Sweden)

    Noriaki Asada

    2003-06-01

    Full Text Available A 3-D image can be reconstructed from numerous CT images of the lung. The procedure reconstructs a solid from multiple cross section images, which are collected during pulsation of the heart. Thus the motion of the heart is a special factor that must be taken into consideration during reconstruction. The lung exhibits a repeating transformation synchronized to the beating of the heart as an elastic body. There are discontinuities among neighboring CT images due to the beating of the heart, if no special techniques are used in taking CT images. The 3-D heart image is reconstructed from numerous CT images in which both the heart and the lung are taken. Although the outline shape of the reconstructed 3-D heart is quite unnatural, the envelope of the 3-D unnatural heart is fit to the shape of the standard heart. The envelopes of the lung in the CT images are calculated after the section images of the best fitting standard heart are located at the same positions of the CT images. Thus the CT images are geometrically transformed to the optimal CT images fitting best to the standard heart. Since correct transformation of images is required, an Area oriented interpolation method proposed by us is used for interpolation of transformed images. An attempt to reconstruct a 3-D lung image by a series of such operations without discontinuity is shown. Additionally, the same geometrical transformation method to the original projection images is proposed as a more advanced method.

  17. Functional validation and comparison framework for EIT lung imaging.

    Science.gov (United States)

    Grychtol, Bartłomiej; Elke, Gunnar; Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy

    2014-01-01

    Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.

  18. Decrease in the ability to detect elevated lung thallium due to delay in commencing imaging after exercise

    International Nuclear Information System (INIS)

    Rothendler, J.A.; Boucher, C.A.; Strauss, H.W.; Pohost, G.M.; Okada, R.D.

    1985-01-01

    Post-exercise elevation of the lung/myocardial thallium ratio and a high lung clearance rate between initial and delayed images have been reported to be markers for exercise-induced left ventricular (LV) dysfunction associated with coronary artery disease (CAD). The authors performed thallium exercise tests on 60 patients, 42 with CAD, in order to determine the effect of delaying initial imaging on detection of elevated lung thallium. In addition to images obtained at 2 minutes and at 2 hours after exercise, 18-minute images were also obtained to simulate such a delay. Because of rapid isotope clearance in those with initially elevated lung activity, there was decreased sensitivity of both the initial lung/myocardial ratio and lung thallium clearance for detecting CAD, using the 18-minute image as the initial post exercise study. They conclude that initial imaging should be done in the anterior view early after exercise to optimize detection of elevated lung thallium

  19. Monotonicity-based electrical impedance tomography for lung imaging

    Science.gov (United States)

    Zhou, Liangdong; Harrach, Bastian; Seo, Jin Keun

    2018-04-01

    This paper presents a monotonicity-based spatiotemporal conductivity imaging method for continuous regional lung monitoring using electrical impedance tomography (EIT). The EIT data (i.e. the boundary current-voltage data) can be decomposed into pulmonary, cardiac and other parts using their different periodic natures. The time-differential current-voltage operator corresponding to the lung ventilation can be viewed as either semi-positive or semi-negative definite owing to monotonic conductivity changes within the lung regions. We used these monotonicity constraints to improve the quality of lung EIT imaging. We tested the proposed methods in numerical simulations, phantom experiments and human experiments.

  20. Evaluation of connectivity map-discovered celastrol as a radiosensitizing agent in a murine lung carcinoma model: Feasibility study of diffusion-weighted magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Hong Young Jun

    Full Text Available This study was designed to identify potential radiosensitizing (RS agents for combined radio- and chemotherapy in a murine model of human lung carcinoma, and to evaluate the in vivo effect of the RS agents using diffusion-weighted magnetic resonance imaging (DW-MRI. Radioresistance-associated genes in A549 and H460 cells were isolated on the basis of their gene expression profiles. Celastrol was selected as a candidate RS by using connectivity mapping, and its efficacy in lung cancer radiotherapy was tested. Mice inoculated with A549 carcinoma cells were treated with single ionizing radiation (SIR, single celastrol (SC, or celastrol-combined ionizing radiation (CCIR. Changes in radiosensitization over time were assessed using DW-MRI before and at 3, 6, and 12 days after therapy initiation. The tumors were stained with hematoxylin and eosin at 6 and 12 days after therapy. The percentage change in the apparent diffusion coefficient (ADC value in the CCIR group was significantly higher than that in the SC and SIR group on the 12th day (Mann-Whitney U-test, p = 0.05; Kruskal-Wallis test, p < 0.05. A significant correlation (Spearman's rho correlation coefficient of 0.713, p = 0.001 was observed between the mean percentage tumor necrotic area and the mean ADC values after therapy initiation. These results suggest that the novel radiosensitizing agent celastrol has therapeutic effects when combined with ionizing radiation (IR, thereby maximizing the therapeutic effect of radiation in non-small cell lung carcinoma. In addition, DW-MRI is a useful noninvasive tool to monitor the effects of RS agents by assessing cellularity changes and sequential therapeutic responses.

  1. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Wolf, Gerhard K; Arnold, John H; Adler, Andy

    2010-01-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation–deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation–deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem

  2. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres.

    Science.gov (United States)

    Grychtol, Bartłomiej; Wolf, Gerhard K; Adler, Andy; Arnold, John H

    2010-08-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation-deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation-deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem.

  3. Dynamic magnetic resonance imaging in assessing lung function in adolescent idiopathic scoliosis: a pilot study of comparison before and after posterior spinal fusion

    Directory of Open Access Journals (Sweden)

    Lam Wynnie WM

    2007-11-01

    Full Text Available Abstract Background Restrictive impairment is the commonest reported pulmonary deficit in AIS, which improves following surgical operation. However, exact mechanism of how improvement is brought about is unknown. Dynamic fast breath-hold (BH-MR imaging is a recent advance which provides direct quantitative visual assessment of pulmonary function. By using above technique, change in lung volume, chest wall and diaphragmatic motion in AIS patients before and six months after posterior spinal fusion surgery were measured. Methods 16 patients with severe right-sided predominant thoracic scoliosis (standing Cobb's angle 50° -82°, mean 60° received posterior spinal fusion without thoracoplasty were recruited into this study. BH-MR sequences were used to obtain coronal images of the whole chest during full inspiration and expiration. The following measurements were assessed: (1 inspiratory, expiratory and change in lung volume; (2 change in anteroposterior (AP and transverse (TS diameter of the chest wall at two levels: carina and apex (3 change in diaphragmatic heights. The changes in parameters before and after operation were compared using Wilcoxon signed ranks test. Patients were also asked to score their breathing effort before and after operation using a scale of 1–9 with ascending order of effort. The degree of spinal surgical correction at three planes was also assessed by reformatted MR images and correction rate of Cobb's angle was calculated. Results The individual or total inspiratory and expiratory volume showed slight but insignificant increase after operation. There was significantly increase in bilateral TS chest wall movement at carina level and increase in bilateral diaphragmatic movements between inspiration and expiration. The AP chest wall movements, however, did not significantly change. The median breathing effort after operation was lower than that before operation (p There was significant reduction in coronal Cobb's angle

  4. Optical and Functional Imaging in Lung Cancer

    NARCIS (Netherlands)

    K.H. van der Leest (Cor)

    2010-01-01

    textabstractLung cancer is the second most common cancer in men and women, and is the leading cause of cancer related death. In industrialized countries the mortality rate of lung cancer is higher than the mortality rate of breast, colorectal and prostate cancer combined 1. When lung cancer is

  5. Regional assessment of treatment in lung cancer using lung perfusion and ventilation images

    International Nuclear Information System (INIS)

    Horikoshi, Masaki; Teshima, Takeo; Yanagimachi, Tomohiro; Ogata, Yuuko; Nukiwa, Toshihiro

    2000-01-01

    In 30 patients with lung cancer undergoing non-surgical treatment, we performed perfusion lung imaging using 99m Tc-MAA and inhalation lung studies using Technegas before and after treatment and evaluated regional perfusion and ventilation status in the lung regions where bronchogenic carcinoma was located. Regional ventilation status was preserved rather than perfusion counterpart (V>P) in 18 patients (18/30=60.0%) before treatment, while the former was better than the latter in 27 patients (27/30=90.0%) after treatment, indicating that regional ventilation status improved more significantly than regional perfusion counterpart after treatment (P=0.005). We also classified the therapeutic effect for regional perfusion and ventilation status as improved, unchanged, or worsened, respectively; improvement in regional perfusion status was observed in 17 patients (56.7%) and that in regional ventilation status in 24 patients (80.0%). There was a statistically significant correlation between improved regional perfusion and ventilation status (P=0.0018) when therapeutic effect was recognized. The patients who showed improvement in regional perfusion status after treatment always showed improved regional ventilation status, but 7 patients showed either unchanged or worsened regional perfusion status after treatment, although regional ventilation status was improved. In conclusion the pulmonary vascular beds seem more vulnerable to bronchogenic carcinoma and improvement in regional perfusion status was revealed to be more difficult than that in regional ventilation status after treatment. (author)

  6. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q; Zhang, M; Chen, T; Yue, N; Zou, J [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Proton and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.

  7. The preparation and characterization of peptide's lung cancer imaging agent

    International Nuclear Information System (INIS)

    Liu Jianfeng; Chu Liping; Wang Yan; Wang Yueying; Liu Jinjian; Wu Hongying

    2010-01-01

    Objective: To screen in vivo lung cancer specific binding seven peptides by T7 phage display peptide library, so as to prepare peptide's lung cancer early diagnostic agent. Methods: Use phage display in vivo technology, the 7-peptide phage that binding the lung cancer specifically was obtained, then the DNA sequence was measured and the seven peptide was synthesized. After labeled by 125 I, the seven peptide was injected into mice via vein and the distribution was observed. Results: One peptide was obtained by four rounds screening, and the peptide can bind lung cancer tissue specifically. Two hours after injection get the best imaging of lung cancer, metabolism of peptide in mice is fast, the distribution in vivo is decrease six hours and almost disappear 20 hours after injection. Conclusion: The peptide can image and diagnose lung cancer better. (authors)

  8. Lung Nodule Detection in CT Images using Neuro Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    M. Usman Akram

    2013-07-01

    Full Text Available Automated lung cancer detection using computer aided diagnosis (CAD is an important area in clinical applications. As the manual nodule detection is very time consuming and costly so computerized systems can be helpful for this purpose. In this paper, we propose a computerized system for lung nodule detection in CT scan images. The automated system consists of two stages i.e. lung segmentation and enhancement, feature extraction and classification. The segmentation process will result in separating lung tissue from rest of the image, and only the lung tissues under examination are considered as candidate regions for detecting malignant nodules in lung portion. A feature vector for possible abnormal regions is calculated and regions are classified using neuro fuzzy classifier. It is a fully automatic system that does not require any manual intervention and experimental results show the validity of our system.

  9. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics

    International Nuclear Information System (INIS)

    Eichinger, Monika; Tetzlaff, Ralf; Puderbach, Michael; Woodhouse, Neil; Kauczor, H.-U.

    2007-01-01

    Since many pulmonary diseases present with a variable regional involvement, modalities for assessment of regional lung function gained increasing attention over the last years. Together with lung perfusion and gas exchange, ventilation, as a result of the interaction of the respiratory pump and the lungs, is an indispensable component of lung function. So far, this complex mechanism is still mainly assessed indirectly and globally. A differentiation between the individual determining factors of ventilation would be crucial for precise diagnostics and adequate treatment. By dynamic imaging of the respiratory pump, the mechanical components of ventilation can be assessed regionally. Amongst imaging modalities applicable to this topic, magnetic resonance imaging (MRI), as a tool not relying on ionising radiation, is the most attractive. Recent advances in MRI technology have made it possible to assess diaphragmatic and chest wall motion, static and dynamic lung volumes, as well as regional lung function. Even though existing studies show large heterogeneity in design and applied methods, it becomes evident that MRI is capable to visualise pulmonary function as well as diaphragmatic and thoracic wall movement, providing new insights into lung physiology. Partly contradictory results and conclusions are most likely caused by technical limitations, limited number of studies and small sample size. Existing studies mainly evaluate possible imaging techniques and concentrate on normal physiology. The few studies in patients with lung cancer and emphysema already give a promising outlook for these techniques from which an increasing impact on improved and quantitative disease characterization as well as better patient management can be expected

  10. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.

    Science.gov (United States)

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-05-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.

  11. Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ciet, Pierluigi; Tiddens, Harm A.W.M. [Erasmus Medical Center, Department of Radiology, Sophia Children' s Hospital, Rotterdam (Netherlands); Erasmus Medical Center, Department of Pediatric Pulmonology and Allergology, Sophia Children' s Hospital, Rotterdam (Netherlands); Wielopolski, Piotr A. [Erasmus Medical Center, Department of Radiology, Sophia Children' s Hospital, Rotterdam (Netherlands); Wild, Jim M. [University of Sheffield, Academic Radiology, Sheffield (United Kingdom); Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Departments of Radiology and Medicine, Pulmonary Divisions, Boston, MA (United States); Morana, Giovanni [Ca' Foncello Regional Hospital, Department of Radiology, Treviso (Italy); Lequin, Maarten H. [University Medical Center, Department of Radiology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2015-12-15

    Pediatric chest MRI is challenging. High-resolution scans of the lungs and airways are compromised by long imaging times, low lung proton density and motion. Low signal is a problem of normal lung. Lung abnormalities commonly cause increased signal intensities. Among the most important factors for a successful MRI is patient cooperation, so the long acquisition times make patient preparation crucial. Children usually have problems with long breath-holds and with the concept of quiet breathing. Young children are even more challenging because of higher cardiac and respiratory rates giving motion blurring. For these reasons, CT has often been preferred over MRI for chest pediatric imaging. Despite its drawbacks, MRI also has advantages over CT, which justifies its further development and clinical use. The most important advantage is the absence of ionizing radiation, which allows frequent scanning for short- and long-term follow-up studies of chronic diseases. Moreover, MRI allows assessment of functional aspects of the chest, such as lung perfusion and ventilation, or airways and diaphragm mechanics. In this review, we describe the most common MRI acquisition techniques on the verge of clinical translation, their problems and the possible solutions to make chest MRI feasible in children. (orig.)

  12. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  13. Evaluation of lung injury induced by pingyangmycin with 99Tcm-HMPAO lung imaging

    International Nuclear Information System (INIS)

    Zhao Changjiu; Yang Zhijie; Fu Peng; Zhang Rui

    2005-01-01

    Objective: To investigate the lung uptake of 99 Tc m -hexamethyl propylene amine oxime (HMPAO) in pingyangmycin-induced lung injury and its mechanism. Methods: 24 white rabbits were randomly divided into 4 groups. Group I: the control with normal diet. In group II, III and IV 0.2, 0.3 and 0.5 mg/kg pingyangmycin were given respectively by marginal vein of ear every other day. 99 Tc m -HMPAO static lung imaging was performed before and 8, 16, 24, 32 d after injection of pingyangmycin. 7 pixel x 5 pixel regions of interest (ROIs) were drawn on the right lung(R) and right upper limb(B), R/B were calculated. Also, 2 ml venous blood was withdrawn for measurement of endothelin by radioimmunoassay. 16 d after pingyangmycin in group IV and 32 d in group I, II and III, all the rabbits were sacrificed. Both lungs were examined immediately under light and electron microscopy. Results: Compared with the control group, there were statistical differences of 99 Tc m -HMPAO lung uptake in group II, III and IV (P 99 Tc m -HMPAO lung imaging can detect early pingyangmycin-induced lung injury. The endothelium of lung microcapillary is presumably the main location site of 99 Tc m -HMPAO abnormal concentration. (authors)

  14. Brain imaging before primary lung cancer resection: a controversial topic.

    Science.gov (United States)

    Hudson, Zoe; Internullo, Eveline; Edey, Anthony; Laurence, Isabel; Bianchi, Davide; Addeo, Alfredo

    2017-01-01

    International and national recommendations for brain imaging in patients planned to undergo potentially curative resection of non-small-cell lung cancer (NSCLC) are variably implemented throughout the United Kingdom [Hudson BJ, Crawford MB, and Curtin J et al (2015) Brain imaging in lung cancer patients without symptoms of brain metastases: a national survey of current practice in England Clin Radiol https://doi.org/10.1016/j.crad.2015.02.007]. However, the recommendations are not based on high-quality evidence and do not take into account cost implications and local resources. Our aim was to determine local practice based on historic outcomes in this patient cohort. This retrospective study took place in a regional thoracic surgical centre in the United Kingdom. Pathology records for all patients who had undergone lung resection with curative intent during the time period January 2012-December 2014 were analysed in October 2015. Electronic pathology and radiology reports were accessed for each patient and data collected about their histological findings, TNM stage, resection margins, and the presence of brain metastases on either pre-operative or post-operative imaging. From the dates given on imaging, we calculated the number of days post-resection that the brain metastases were detected. 585 patients were identified who had undergone resection of their lung cancer. Of these, 471 had accessible electronic radiology records to assess for the radiological evidence of brain metastases. When their electronic records were evaluated, 25/471 (5.3%) patients had radiological evidence of brain metastasis. Of these, five patients had been diagnosed with a brain metastasis at initial presentation and had undergone primary resection of the brain metastasis followed by resection of the lung primary. One patient had been diagnosed with both a primary lung and a primary bowel adenocarcinoma; on review of the case, it was felt that the brain metastasis was more likely to have

  15. Diffusion-weighted MR imaging of the normal fetal lung

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence; Bammer, Roland

    2008-01-01

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 ± 0.44 μm 2 /ms (mean ± SD) in the apex, 1.99 ± 0.42 μm 2 /ms (mean ± SD) in the middle third, and 1.91 ± 0.41 μm 2 /ms (mean ± SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  16. Diffusion-weighted MR imaging of the normal fetal lung

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria); Bammer, Roland [University of Stanford, Department of Radiology, Stanford, CA (United States)

    2008-04-15

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 {+-} 0.44 {mu}m{sup 2}/ms (mean {+-} SD) in the apex, 1.99 {+-} 0.42 {mu}m{sup 2}/ms (mean {+-} SD) in the middle third, and 1.91 {+-} 0.41 {mu}m{sup 2}/ms (mean {+-} SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  17. Computerized comprehensive data analysis of Lung Imaging Database Consortium (LIDC)

    International Nuclear Information System (INIS)

    Tan Jun; Pu Jiantao; Zheng Bin; Wang Xingwei; Leader, Joseph K.

    2010-01-01

    Purpose: Lung Image Database Consortium (LIDC) is the largest public CT image database of lung nodules. In this study, the authors present a comprehensive and the most updated analysis of this dynamically growing database under the help of a computerized tool, aiming to assist researchers to optimally use this database for lung cancer related investigations. Methods: The authors developed a computer scheme to automatically match the nodule outlines marked manually by radiologists on CT images. A large variety of characteristics regarding the annotated nodules in the database including volume, spiculation level, elongation, interobserver variability, as well as the intersection of delineated nodule voxels and overlapping ratio between the same nodules marked by different radiologists are automatically calculated and summarized. The scheme was applied to analyze all 157 examinations with complete annotation data currently available in LIDC dataset. Results: The scheme summarizes the statistical distributions of the abovementioned geometric and diagnosis features. Among the 391 nodules, (1) 365 (93.35%) have principal axis length ≤20 mm; (2) 120, 75, 76, and 120 were marked by one, two, three, and four radiologists, respectively; and (3) 122 (32.48%) have the maximum volume overlapping ratios ≥80% for the delineations of two radiologists, while 198 (50.64%) have the maximum volume overlapping ratios <60%. The results also showed that 72.89% of the nodules were assessed with malignancy score between 2 and 4, and only 7.93% of these nodules were considered as severely malignant (malignancy ≥4). Conclusions: This study demonstrates that LIDC contains examinations covering a diverse distribution of nodule characteristics and it can be a useful resource to assess the performance of the nodule detection and/or segmentation schemes.

  18. Magnetic resonance imaging of respiratory movement and lung function

    International Nuclear Information System (INIS)

    Tetzlaff, R.; Eichinger, M.

    2009-01-01

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [de

  19. Helical-Tip Needle for Transthoracic Percutaneous Image-Guided Biopsy of Lung Tumors: Results of a Pilot Prospective Comparative Study with a Standard Tru-Cut Needle

    Energy Technology Data Exchange (ETDEWEB)

    Veltri, Andrea, E-mail: andrea.veltri@unito.it; Busso, Marco; Sardo, Diego; Angelino, Valeria; Priola, Adriano M. [University of Torino, Department of Radiology, San Luigi Gonzaga Hospital (Italy); Novello, Silvia [University of Torino, Department of Oncology, San Luigi Gonzaga Hospital (Italy); Barba, Matteo [University of Torino, Department of Radiology, San Luigi Gonzaga Hospital (Italy); Gatti, Gaia; Righi, Luisella [University of Torino, Department of Pathology, San Luigi Gonzaga Hospital (Italy)

    2017-06-15

    PurposeTo prospectively evaluate feasibility and diagnostic performance of the 14-gauge helical-tip (Spirotome™, Cook{sup ®} Medical, Bloomington, USA) needle in transthoracic needle biopsy (TTNB) of lung lesions, compared to a conventional 18-gauge Tru-Cut needle.Materials and MethodsStudy was institutional review board approved, with informed consent obtained. Data from synchronous Spirotome and Tru-Cut image-guided TTNB of 20 consecutive patients with malignant peripheral lung tumors larger than 3 cm were enrolled for pathologic characterization and mutational analysis. Samples obtained with Spirotome and Tru-Cut needle were compared for fragmentation, length, weight, morphologic and immunohistochemistry typifying, tumor cellularity (TC) and DNA concentration.ResultsThe technical success rate for TTNB with Spirotome was 100%, and no major complications occurred. Less fragmentation (mean 2 vs. 3 fragments, P = .418), greater weight (mean 13 vs. 8.5 mg, P = .027) and lower length (mean 10.2 vs. 12.6 mm, P = .174) were observed with Spirotome compared to Tru-Cut needle. Accuracy of Spirotome and Tru-Cut needle in defining cancer histotype was similar (90%). Absolute and relative TC (mean 42 vs. 38, 124 vs. 108/10HPF), and DNA concentration (mean 49.6 vs. 39.0 ng/μl) were higher with Spirotome compared to Tru-Cut needle, with no statistical significance (P = .787 and P = .140, respectively).Conclusions Percutaneous 14-gauge Spirotome TTNB of selected lesions is feasible and accurate. It provides adequate samples for diagnosis, comparable to 18-gauge Tru-Cut needle, with a higher amount of tumor tissue (weight, TC, DNA concentration) even in shorter samples.

  20. Medical image of the week: achalasia with lung abscess

    Directory of Open Access Journals (Sweden)

    Tey KR

    2016-05-01

    Full Text Available No abstract available. Article truncated after 150 words. An 80-year old woman with past medical history of high grade serous fallopian tube carcinoma presented with 2 months history of productive cough. This was associated with shortness of breath and subjective fever, chills and weight loss of 5 pounds over 2 months. She was treated with outpatient antibiotics without improvement of symptoms. Patient was afebrile on presentation, hemodynamically stable, and saturating at 99% on room air. Lung examinations revealed dullness on percussion of left lower lung field and reduced breath sounds on the same area. Computed tomographic imaging revealed a large lung abscess on left lower lobe (Figure 1 and moderately dilated esophagus and fluid filled to the level of gastro-esophagus junction. Barium swallow study showed a classic bird-beak like appearance (Figure 2. There was no contrast that passed through the gastro-esophagus junction during the entire course of the barium study. Upper endoscopy was performed to rule out intraluminal ...

  1. Imaging of macrophage-related lung diseases

    International Nuclear Information System (INIS)

    Marten, Katharina; Hansell, David M.

    2005-01-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  2. Gallium and imaging studies

    International Nuclear Information System (INIS)

    Vogel, H.C.

    1982-01-01

    The indications for the use of 67 Gallium imaging studies of the lungs are discussed. In spite of localization of 67 Ga in a large variety of neoplastic and inflammatory tissues, there is only limited application of the lung study in the differential diagnosis of pulmonary diseases. The chest radiograph will continue to be the principal tool for evaluation of pulmonary diseases. The 67 Ga-citrate scan serves as a study complementary to the chest radiograph, as it indicates the localization, extent and degree of activity of lung disease with greater accuracy than radiography. Gallium-67 scanning may be used in the evaluation of patients with lymphoreticular neoplasms, especially Hodgkin-disease and malignant lymphoma both during initial staging and in evaluation of the response to therapy. The 67 Ga-citrate scan is useful in the pre-operative evaluation of patients with lung cancer. Hilar and mediastinal lymphadenopathy are accurately revealed. The lung study is non-invasive and complementary to mediastinoscopy by showing from which glands a biopsy might be taken. Unsuspected extrathoracic secondaries may be shown up, as well as pulmonary metastases from malignancies elsewhere, although the metastases must be at least 1,5 cm in size. The 67 Ga lung scan is valuable in the evaluation of pulmonary infiltrates of suspicious infective etiology, the differentiation between pulmonary infection and pneumonia in selected cases, follow-up of sarcoid patients on corticosteroid therapy, evaluation of inflammatory activity of idiopathic pulmonary fibrosis and the early detection of neo-plastic or inflammatory diseases before the chest radiograph reveals abnormality, e.g. in diffuse carcinomatosis or Pneumocystis carinii-infection. The sensitivity of tumors to radiation or chemotherapy may be shown

  3. Functional validation and comparison framework for EIT lung imaging.

    Directory of Open Access Journals (Sweden)

    Bartłomiej Grychtol

    Full Text Available INTRODUCTION: Electrical impedance tomography (EIT is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen. In this way, large and discrete shifts in global and regional lung air content were elicited. METHODS: We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm, GREIT (a more recent consensus algorithm for lung imaging, truncated singular value decomposition (TSVD, several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. RESULTS AND CONCLUSIONS: Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.

  4. Clinical significance of increased lung/heart ratio in 210Tl stress myocardial image

    International Nuclear Information System (INIS)

    Liu Zaoli; Chang Fengqin; Zhang Fengge; Wang Xiaoyuan; Liu Liuhua

    1990-01-01

    230 cases were studied with 201 Tl stress image. The results showed that the lung/heart ratio closely correlated with the presence and severity of coronary heart disease (CHD). Among them, 18 cases (7.8%) showed significantly elevated lung/heart ratio (> 0.50). It was confirmed that all of the 18 cases have severe CHD with left ventricular insufficiency. The author emphasizes that measurement of the lung/heart ratio during 201 Tl stress myocardial image may be useful for the assessment of the severity, evalation of the left ventricular function and judgement of prognosis in CHD

  5. Preparation of 99Tcm-CLP imaging probe of lung carcinoma

    International Nuclear Information System (INIS)

    Qiang Yonggang; Liao Yonghua

    2004-01-01

    The process of preparing an imaging micro-probe 99 Tc m -CLP from bovine nose cartilage is described in detail. Both labeled rate and radiochemical purity of 99 Tc m -CLP are greater than 90%, and KA is 1.12 x 10 9 L/mol in vitro. After the Balb/c nu/nu mice with lung cancer were intravenously injected by the 99 Tc m -CLP, the radioactivity was found to be well concentrated at the lung-cancer region, which suggests that the 99 Tc m -CLP micro-probe can be used in imaging study of lung carcinoma. (authors)

  6. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer

    Science.gov (United States)

    Weng, Sheng; Xu, Xiaoyun; Li, Jiasong; Wong, Stephen T. C.

    2017-10-01

    Lung cancer is the most prevalent type of cancer and the leading cause of cancer-related deaths worldwide. Coherent anti-Stokes Raman scattering (CARS) is capable of providing cellular-level images and resolving pathologically related features on human lung tissues. However, conventional means of analyzing CARS images requires extensive image processing, feature engineering, and human intervention. This study demonstrates the feasibility of applying a deep learning algorithm to automatically differentiate normal and cancerous lung tissue images acquired by CARS. We leverage the features learned by pretrained deep neural networks and retrain the model using CARS images as the input. We achieve 89.2% accuracy in classifying normal, small-cell carcinoma, adenocarcinoma, and squamous cell carcinoma lung images. This computational method is a step toward on-the-spot diagnosis of lung cancer and can be further strengthened by the efforts aimed at miniaturizing the CARS technique for fiber-based microendoscopic imaging.

  7. Radiation pneumonitis: generalised lung changes detected by radionuclide imaging following focal lung irradiation

    International Nuclear Information System (INIS)

    Ball, D.; Sephton, R.; Irving, L.; Crennan, E.

    1992-01-01

    The usefulness of a nuclear imaging technique as a means of detecting radiation-induced lung injury is examined. The technique involves the patient inhaling modified technegas TM , a gas-like radiotracer which is an ultra fine particulate dispersion. This crosses the alveolar-capillary membrane and the clearance rate of the tracer from the lungs is presumed to reflect membrane permeability. A case of a patient who, after receiving localised radiotherapy and chemotherapy for lung cancer, developed symptoms and signs of radiation pneumonitis is reported. Pre- and post-radiotherapy investigations using the nuclear technique showed acceleration of rates of tracer clearance from both lungs, consistent with generalised changes in alveolar-capillary membrane permeability. It is suggested that the symptoms of radiation pneumonitis may in part result from pathophysiologic changes in nonirradiated lung which may appear radiologically normal. 4 refs., 2 figs

  8. The clinical usefulness of magnetic resonance imaging for lung cancer

    International Nuclear Information System (INIS)

    Kobayashi, Hideo; Tanaka, Osamu; Hata, Enjyo; Fukushima, Kanae; Ishihara, Teruo; Matsuoka, Rokuro; Osawa, Tadashi; Kitamura, Satoshi

    1987-01-01

    Sixty patients with lung cancer, including 35 operated cases and 4 autopsy cases, were studied by magnetic resonance imaging (MRI). Transverse and coronal imaging were performed by spin-echo sequence with electrocardiogram gating. MRI clearly demonstrated the normal mediastinal and hilar structures. More than 90 % of pulmonary vessels and lobar bronchi were identified. Seventy six percent of mediastinal and hilar lymph nodes shown on resected materials to be over than 1 cm in diameter were detected, as compared to 82 % for hilar nodes alone. Staging for T factor, tumor size were fairly accurate but P factor was correctly diagnosed of 64 %. In atelectasis, the pulmonary artery was presented as a linear structure, and this finding has not been reported yet. Our experience suggests that MRI is useful for the diagnosis of atelectasis, vascular involvement, and hilar lymphadenopathy. (author)

  9. Evaluation of radiographic imaging techniques in lung nodule detection

    International Nuclear Information System (INIS)

    Ho, J.T.; Kruger, R.A.

    1989-01-01

    Dual-energy radiography appears to be the most effective technique to address bone superposition that compromises conventional chest radiography. A dual-energy, single-exposure, film-based technique was compared with a dual-energy, dual-exposure technique and conventional chest radiography in a simulated lung nodule detection study. Observers detected more nodules on images produced by dual-energy techniques than on images produced by conventional chest radiography. The difference between dual-energy and conventional chest radiography is statistically significant and the difference between dual-energy, dual-exposure and single-exposure techniques is statistically insignificant. The single-exposure technique has the potential to replace the dual-exposure technique in future clinical application

  10. Comparison of Tumor Volumes as Determined by Pathologic Examination and FDG-PET/CT Images of Non-Small-Cell Lung Cancer: A Pilot Study

    International Nuclear Information System (INIS)

    Yu Jinming; Li Xinke; Xing Ligang; Mu Dianbin; Fu Zheng; Sun Xiaorong; Sun Xiangyu; Yang Guoren; Zhang Baijiang; Sun Xindong; Ling, C. Clifton

    2009-01-01

    Purpose: To determine the cut-off standardized uptake value (SUV) on 18 F fluoro-2-deoxy-glucose (FDG) positron emission tomography/computed tomography (FDG-PET/CT) images that generates the best volumetric match to pathologic gross tumor volume (GTV path ) for non-small-cell lung cancer (NSCLC). Methods and Materials: Fifteen patients with NSCLC who underwent FDG-PET/CT scans followed by lobectomy were enrolled. The surgical specimen was dissected into 5-7-μm sections at approximately 4-mm intervals and stained with hematoxylin and eosin. The tumor-containing area was outlined slice by slice and the GTV path determined by summing over all the slices, taking into account the interslice thickness and fixation-induced volume reduction. The gross tumor volume from the PET images, GTV PET , was determined as a function of cut-off SUV. The optimal threshold or optimal absolute SUV was defined as the value at which the GTV PET was the same as the GTV path . Results: The fixation process induced a volumetric reduction to 82% ± 10% (range, 62-100%) of the original. The maximal SUV was 10.1 ± 3.6 (range, 4.2-18.7). The optimal threshold and absolute SUV were 31% ± 11% and 3.0 ± 1.6, respectively. The optimal threshold was inversely correlated with GTV path and tumor diameter (p path or tumor diameter (p > 0.05). Conclusion: This study evaluated the use of GTV path as a criterion for determining the optimal cut-off SUV for NSCLC target volume delineation. Confirmatory studies including more cases are being performed.

  11. Medical image of the week: lung entrapment

    Directory of Open Access Journals (Sweden)

    Natt B

    2016-07-01

    Full Text Available No abstract available. Article truncated at 150 words. A 74-year-old woman with a history of breast cancer 10 years ago treated with lumpectomy and radiation presented for evaluation of shortness of breath. She was diagnosed with left sided pleural effusion which was recurrent requiring multiple thoracenteses. There was increased pleural fludeoxyglucose (FDG uptake on PET-CT indicative of recurrent metastatic disease. She underwent a medical pleuroscopy since the pleural effusion analysis did not reveal malignant cells although the suspicion was high and tunneled pleural catheter placement as adjuvant chemotherapy was initiated. Figure 1 shows a pleurscopic view of the collapsed left lung and the effusion in the left hemi thorax. Figure 2 shows extensive involvement of the visceral pleura with metastatic disease preventing complete lung inflation. Figure 3 shows persistent pneumothorax-ex-vacuo despite pleural catheter placement confirming the diagnosis of entrapment. Incomplete lung inflation can be due to pleural disease, endobronchial lesions or chronic telecasts. Lung entrapment and trapped lung ...

  12. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  13. Fuzzy modeling of electrical impedance tomography images of the lungs

    International Nuclear Information System (INIS)

    Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione; Borges, Joao Batista; Amato, Marcelo Britto Passos

    2008-01-01

    Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)

  14. Real-time images of tidal recruitment using lung ultrasound.

    Science.gov (United States)

    Tusman, Gerardo; Acosta, Cecilia M; Nicola, Marco; Esperatti, Mariano; Bohm, Stephan H; Suarez-Sipmann, Fernando

    2015-12-01

    Ventilator-induced lung injury is a form of mechanical damage leading to a pulmonary inflammatory response related to the use of mechanical ventilation enhanced by the presence of atelectasis. One proposed mechanism of this injury is the repetitive opening and closing of collapsed alveoli and small airways within these atelectatic areas-a phenomenon called tidal recruitment. The presence of tidal recruitment is difficult to detect, even with high-resolution images of the lungs like CT scan. The purpose of this article is to give evidence of tidal recruitment by lung ultrasound. A standard lung ultrasound inspection detected lung zones of atelectasis in mechanically ventilated patients. With a linear probe placed in the intercostal oblique position. We observed tidal recruitment within atelectasis as an improvement in aeration at the end of inspiration followed by the re-collapse at the end of expiration. This mechanism disappeared after the performance of a lung recruitment maneuver. Lung ultrasound was helpful in detecting the presence of atelectasis and tidal recruitment and in confirming their resolution after a lung recruitment maneuver.

  15. Evaluation of Neonatal Lung Volume Growth by Pulmonary Magnetic Resonance Imaging in Patients with Congenital Diaphragmatic Hernia.

    Science.gov (United States)

    Schopper, Melissa A; Walkup, Laura L; Tkach, Jean A; Higano, Nara S; Lim, Foong Yen; Haberman, Beth; Woods, Jason C; Kingma, Paul S

    2017-09-01

    To evaluate postnatal lung volume in infants with congenital diaphragmatic hernia (CDH) and determine if a compensatory increase in lung volume occurs during the postnatal period. Using a novel pulmonary magnetic resonance imaging method for imaging neonatal lungs, the postnatal lung volumes in infants with CDH were determined and compared with prenatal lung volumes obtained via late gestation magnetic resonance imaging. Infants with left-sided CDH (2 mild, 9 moderate, and 1 severe) were evaluated. The total lung volume increased in all infants, with the contralateral lung increasing faster than the ipsilateral lung (mean ± SD: 4.9 ± 3.0 mL/week vs 3.4 ± 2.1 mL/week, P = .005). In contrast to prenatal studies, the volume of lungs of infants with more severe CDH grew faster than the lungs of infants with more mild CDH (Spearman's ρ=-0.086, P = .01). Although the contralateral lung volume grew faster in both mild and moderate groups, the majority of total lung volume growth in moderate CDH came from increased volume of the ipsilateral lung (42% of total lung volume increase in the moderate group vs 32% of total lung volume increase in the mild group, P = .09). Analysis of multiple clinical variables suggests that increased weight gain was associated with increased compensatory ipsilateral lung volume growth (ρ = 0.57, P = .05). These results suggest a potential for postnatal catch-up growth in infants with pulmonary hypoplasia and suggest that weight gain may increase the volume growth of the more severely affected lung. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Detection and Severity Scoring of Chronic Obstructive Pulmonary Disease Using Volumetric Analysis of Lung CT Images

    International Nuclear Information System (INIS)

    Hosseini, Mohammad Parsa; Soltanian-Zadeh, Hamid; Akhlaghpoor, Shahram

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease.While there is no cure for COPD and the lung damage associated with this disease cannot be reversed, it is still very important to diagnose it as early as possible. In this paper, we propose a novel method based on the measurement of air trapping in the lungs from CT images to detect COPD and to evaluate its severity. Twenty-five patients and twelve normal adults were included in this study. The proposed method found volumetric changes of the lungs from inspiration to expiration. To this end, trachea CT images at full inspiration and expiration were compared and changes in the areas and volumes of the lungs between inspiration and expiration were used to define quantitative measures (features). Using these features,the subjects were classified into two groups of normal and COPD patients using a Bayesian classifier. In addition, t-tests were applied to evaluate discrimination powers of the features for this classification. For the cases studied, the proposed method estimated air trapping in the lungs from CT images without human intervention. Based on the results, a mathematical model was developed to relate variations of lung volumes to the severity of the disease. As a computer aided diagnosis (CAD) system, the proposed method may assist radiologists in the detection of COPD. It quantifies air trapping in the lungs and thus may assist them with the scoring of the disease by quantifying the severity of the disease

  17. Image-derived biomarkers and multimodal imaging strategies for lung cancer management

    Energy Technology Data Exchange (ETDEWEB)

    Sauter, Alexander W. [Eberhard Karls University Tuebingen, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Eberhard Karls University Tuebingen, Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany); Schwenzer, Nina; Pfannenberg, Christina [Eberhard Karls University Tuebingen, Diagnostic and Interventional Radiology, Department of Radiology, Tuebingen (Germany); Divine, Mathew R.; Pichler, Bernd J. [Eberhard Karls University Tuebingen, Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany)

    2015-04-01

    Non-small-cell lung cancer is the most common type of lung cancer and one of the leading causes of cancer-related death worldwide. For this reason, advances in diagnosis and treatment are urgently needed. With the introduction of new, highly innovative hybrid imaging technologies such as PET/CT, staging and therapy response monitoring in lung cancer patients have substantially evolved. In this review, we discuss the role of FDG PET/CT in the management of lung cancer patients and the importance of new emerging imaging technologies and radiotracer developments on the path to personalized medicine. (orig.)

  18. Imaging of cystic fibrosis lung disease and clinical interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Wielpuetz, M.O.; Eichinger, M.; Kauczor, H.U. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology with Nuclear Medicine; Biederer, J. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Gross-Gerau Community Hospital (Germany). Radiologie Darmstadt; Wege, S. [Heidelberg University Hospital (Germany). Dept. of Pulmonology and Respiratory Medicine; Stahl, M.; Sommerburg, O. [Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Div. of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center; Mall, M.A. [Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Div. of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center; Heidelberg University Hospital (Germany). Dept. of Translational Pulmonology; Puderbach, M. [Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology; Translational Lung Research Center Heidelberg (TLRC) (Germany); Heidelberg University Hospital (Germany). Dept. of Diagnostic and Interventional Radiology with Nuclear Medicine; Hufeland Hospital, Bad Langensalza (Germany). Dept. of Diagnostic and Interventional Radiology

    2016-09-15

    Progressive lung disease in cystic fibrosis (CF) is the life-limiting factor of this autosomal recessive genetic disorder. Increasing implementation of CF newborn screening allows for a diagnosis even in pre-symptomatic stages. Improvements in therapy have led to a significant improvement in survival, the majority now being of adult age. Imaging provides detailed information on the regional distribution of CF lung disease, hence longitudinal imaging is recommended for disease monitoring in the clinical routine. Chest X-ray (CXR), computed tomography (CT) and magnetic resonance imaging (MRI) are now available as routine modalities, each with individual strengths and drawbacks, which need to be considered when choosing the optimal modality adapted to the clinical situation of the patient. CT stands out with the highest morphological detail and has often been a substitute for CXR for regular severity monitoring at specialized centers. Multidetector CT data can be post-processed with dedicated software for a detailed measurement of airway dimensions and bronchiectasis and potentially a more objective and precise grading of disease severity. However, changing to CT was inseparably accompanied by an increase in radiation exposure of CF patients, a young population with high sensitivity to ionizing radiation and lifetime accumulation of dose. MRI as a cross-sectional imaging modality free of ionizing radiation can depict morphological hallmarks of CF lung disease at lower spatial resolution but excels with comprehensive functional lung imaging, with time-resolved perfusion imaging currently being most valuable.

  19. Diagnostic yield of preoperative computed tomography imaging and the importance of a clinical decision for lung cancer surgery

    International Nuclear Information System (INIS)

    Sato, Shuichi; Koike, Teruaki; Yamato, Yasushi

    2010-01-01

    This study aimed to evaluate the diagnostic yield of preoperative computed tomography (CT) imaging and the validity of surgical intervention based on the clinical decision to perform surgery for lung cancer or suspected lung cancer. We retrospectively evaluated 1755 patients who had undergone pulmonary resection for lung cancer or suspected lung cancer. CT scans were performed on all patients. Surgical intervention to diagnose and treat was based on a medical staff conference evaluation for the suspected lung cancer patients who were pathologically undiagnosed. We evaluated the relation between resected specimens and preoperative CT imaging in detail. A total of 1289 patients were diagnosed with lung cancer by preoperative pathology examination; another 466 were not pathologically diagnosed preoperatively. Among the 1289 patients preoperatively diagnosed with lung cancer, the diagnoses were confirmed postoperatively in 1282. Among the 466 patients preoperatively undiagnosed, 435 were definitively diagnosed with lung cancer, and there were 383 p-stage I disease patients. There were 38 noncancerous patients who underwent surgery with a diagnosis of confirmed or suspected lung cancer. Among the 1755 patients who underwent surgery, 1717 were pathologically confirmed with lung cancer, and the diagnostic yield of preoperative CT imaging was 97.8%. Among the 466 patients who were preoperatively undiagnosed, 435 were compatible with the predicted findings of lung cancer. Diagnostic yields of preoperative CT imaging based on clinical evaluation are sufficiently reliable. Diagnostic surgical intervention was acceptable when the clinical probability of malignancy was high and the malignancy was pathologically undiagnosed. (author)

  20. Krypton for computed tomography lung ventilation imaging: preliminary animal data.

    Science.gov (United States)

    Mahnken, Andreas H; Jost, Gregor; Pietsch, Hubertus

    2015-05-01

    The objective of this study was to assess the feasibility and safety of krypton ventilation imaging with intraindividual comparison to xenon ventilation computed tomography (CT). In a first step, attenuation of different concentrations of xenon and krypton was analyzed in a phantom setting. Thereafter, 7 male New Zealand white rabbits (4.4-6.0 kg) were included in an animal study. After orotracheal intubation, an unenhanced CT scan was obtained in end-inspiratory breath-hold. Thereafter, xenon- (30%) and krypton-enhanced (70%) ventilation CT was performed in random order. After a 2-minute wash-in of gas A, CT imaging was performed. After a 45-minute wash-out period and another 2-minute wash-in of gas B, another CT scan was performed using the same scan protocol. Heart rate and oxygen saturation were measured. Unenhanced and krypton or xenon data were registered and subtracted using a nonrigid image registration tool. Enhancement was quantified and statistically analyzed. One animal had to be excluded from data analysis owing to problems during intubation. The CT scans in the remaining 6 animals were completed without complications. There were no relevant differences in oxygen saturation or heart rate between the scans. Xenon resulted in a mean increase of enhancement of 35.3 ± 5.5 HU, whereas krypton achieved a mean increase of 21.9 ± 1.8 HU in enhancement (P = 0.0055). The use of krypton for lung ventilation imaging appears to be feasible and safe. Despite the use of a markedly higher concentration of krypton, enhancement is significantly worse when compared with xenon CT ventilation imaging, but sufficiently high for CT ventilation imaging studies.

  1. Tracking Regional Tissue Volume and Function Change in Lung Using Image Registration

    Directory of Open Access Journals (Sweden)

    Kunlin Cao

    2012-01-01

    Full Text Available We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL fluid delivered to the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation coefficient was 0.81. The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.

  2. Imaging and screening in lung cancer

    Directory of Open Access Journals (Sweden)

    Matteo Giaj Levra

    2008-12-01

    Full Text Available Lung cancer is the main cause of death for neoplasia in the world. Hence it’s growing the necessity to investigate screening tests to detect tumoral lesions at the early stages: several trials have been performed to establish the best method, target and frequence of the screening to offer. CT, X-ray, PET, sputum citology and CAD software are here analyzed, together with the associated statistics and bias.

  3. PET imaging of lung inflammation with [18F]FEDAC, a radioligand for translocator protein (18 kDa.

    Directory of Open Access Journals (Sweden)

    Akiko Hatori

    Full Text Available PURPOSE: The translocator protein (18 kDa (TSPO is highly expressed on the bronchial and bronchiole epithelium, submucosal glands in intrapulmonary bronchi, pneumocytes and alveolar macrophages in human lung. This study aimed to perform positron emission tomography (PET imaging of lung inflammation with [(18F]FEDAC, a specific TSPO radioligand, and to determine cellular sources enriching TSPO expression in the lung. METHODS: An acute lung injury model was prepared by intratracheal administration of lipopolysaccharide (LPS to rat. Uptake of radioactivity in the rat lungs was measured with small-animal PET after injection of [(18F]FEDAC. Presence of TSPO was examined in the lung tissue using Western blot and immunohistochemical assays. RESULTS: The uptake of [(18F]FEDAC increased in the lung with the progress of inflammation by treatment with LPS. Pretreatment with a TSPO-selective ligand PK11195 showed a significant decrease in the lung uptake of [(18F]FEDAC due to competitive binding to TSPO. TSPO expression was elevated in the inflamed lung section and its level responded to the [(18F]FEDAC uptake and severity of inflammation. Increase of TSPO expression was mainly found in the neutrophils and macrophages of inflamed lungs. CONCLUSION: From this study we conclude that PET with [(18F]FEDAC may be a useful tool for imaging TSPO expression and evaluating progress of lung inflammation. Study on human lung using [(18F]FEDAC-PET is promising.

  4. MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence; Mittermayer, Christoph

    2007-01-01

    To purpose of this paper is to study the relation between normal lung maturation signal and changes in intensity ratios (SIR) and to determine which magnetic resonance imaging sequence provides the strongest correlation of normal lung SIs with gestational age. 126 normal singleton pregnancies (20-37 weeks) were examined with a 1.5 Tesla unit. Mean SIs for lungs, liver, and gastric fluid were assessed on six different sequences, and SIRs of lung/liver (LLSIR) and lung/gastric fluid (LGSIR) were correlated with gestational age for each sequence. To evaluate the feasibility of SIRs in the prediction of the state of the lung maturity, accuracy of the predicted SIRs (D*) was measured by calculating relative residuals (D*-D)/D for each sequence. LLSIRs showed significant changes in every sequence (p<0.05), while LGSIRs only on two sequences. Significant differences were shown for the mean of absolute residuals for both LLSIRs (p<0.001) and for LGSIRs (p=0.003). Relative residuals of LLSIRs were significantly smaller on T1-weighted sequence, whereas they were significantly higher for LGSIRs on FLAIR sequence. Fetal liver seems to be adequate reference for the investigation of lung maturation. T1-weighted sequence was the most accurate for the measurement of the lung SIs; thus, we propose to determine LLSIR on T1-weighted sequence when evaluating lung development. (orig.)

  5. MRI investigation of normal fetal lung maturation using signal intensities on different imaging sequences

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria); Mittermayer, Christoph [Medical University of Vienna, Department of Pediatrics, Vienna (Austria)

    2007-03-15

    To purpose of this paper is to study the relation between normal lung maturation signal and changes in intensity ratios (SIR) and to determine which magnetic resonance imaging sequence provides the strongest correlation of normal lung SIs with gestational age. 126 normal singleton pregnancies (20-37 weeks) were examined with a 1.5 Tesla unit. Mean SIs for lungs, liver, and gastric fluid were assessed on six different sequences, and SIRs of lung/liver (LLSIR) and lung/gastric fluid (LGSIR) were correlated with gestational age for each sequence. To evaluate the feasibility of SIRs in the prediction of the state of the lung maturity, accuracy of the predicted SIRs (D*) was measured by calculating relative residuals (D*-D)/D for each sequence. LLSIRs showed significant changes in every sequence (p<0.05), while LGSIRs only on two sequences. Significant differences were shown for the mean of absolute residuals for both LLSIRs (p<0.001) and for LGSIRs (p=0.003). Relative residuals of LLSIRs were significantly smaller on T1-weighted sequence, whereas they were significantly higher for LGSIRs on FLAIR sequence. Fetal liver seems to be adequate reference for the investigation of lung maturation. T1-weighted sequence was the most accurate for the measurement of the lung SIs; thus, we propose to determine LLSIR on T1-weighted sequence when evaluating lung development. (orig.)

  6. Incidental lung cancers and positive computed tomography images in people living with HIV

    DEFF Research Database (Denmark)

    Ronit, Andreas; Kristensen, Thomas; Klitbo, Ditte M.

    2017-01-01

    in 901 patients, including 113 at high risk for lung cancer. A positive image was found in 28 (3.1% of the entire cohort and 9.7% of the high-risk group). Nine patients (all in the high-risk group) had invasive procedures undertaken with no serious adverse events. Lung cancer (stages IA, IIA, and IIIA......Objective: Lung cancer screening with low-dose computed tomography (LDCT) of high-risk groups in the general population is recommended by several authorities. This may not be feasible in people living with HIV (PLWHIV) due to higher prevalence of nodules. We therefore assessed the prevalence...... of positive computed tomography (CT) images and lung cancers in PLWHIV. Design: The Copenhagen comorbidity in HIV infection (COCOMO) study is an observational, longitudinal cohort study. Single-round LDCT was performed with subsequent clinical follow-up (NCT02382822). Method: Outcomes included histology...

  7. Imaging in lung transplants: Checklist for the radiologist

    International Nuclear Information System (INIS)

    Madan, Rachna; Chansakul, Thanissara; Goldberg, Hilary J

    2014-01-01

    Post lung transplant complications can have overlapping clinical and imaging features, and hence, the time point at which they occur is a key distinguisher. Complications of lung transplantation may occur along a continuum in the immediate or longer postoperative period, including surgical and mechanical problems due to size mismatch and vascular as well as airway anastomotic complication, injuries from ischemia and reperfusion, acute and chronic rejection, pulmonary infections, and post-transplantation lymphoproliferative disorder. Life expectancy after lung transplantation has been limited primarily by chronic rejection and infection. Multiple detector computed tomography (MDCT) is critical for evaluation and early diagnosis of complications to enable selection of effective therapy and decrease morbidity and mortality among lung transplant recipients

  8. Molecular Imaging and Precision Medicine in Lung Cancer.

    Science.gov (United States)

    Zukotynski, Katherine A; Gerbaudo, Victor H

    2017-01-01

    Precision medicine allows tailoring of preventive or therapeutic interventions to avoid the expense and toxicity of futile treatment given to those who will not respond. Lung cancer is a heterogeneous disease functionally and morphologically. PET is a sensitive molecular imaging technique with a major role in the precision medicine algorithm of patients with lung cancer. It contributes to the precision medicine of lung neoplasia by interrogating tumor heterogeneity throughout the body. It provides anatomofunctional insight during diagnosis, staging, and restaging of the disease. It is a biomarker of tumoral heterogeneity that helps direct selection of the most appropriate treatment, the prediction of early response to cytotoxic and cytostatic therapies, and is a prognostic biomarker in patients with lung cancer. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  9. Pharmacological studies of the lung with PET

    International Nuclear Information System (INIS)

    Syrota, A.

    1986-10-01

    Positron emission tomography (PET), known to be used for lung ventilation and perfusion studies, can also be used in pharmacology to obtain information that is otherwise not available. The lung takes up biologically active substances which can be inactivated or activated, and synthesises and releases others. Such information in man has been obtained from samples of human lungs, or from in vivo first-pass studies, invasive or not, as well as from in vivo kinetic studies using external detection methods with scintillation cameras. PET provides now quantitative regional data in the human lung

  10. Lung function imaging methods in Cystic Fibrosis pulmonary disease.

    Science.gov (United States)

    Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R

    2017-05-17

    Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.

  11. Development of a personalized training system using the Lung Image Database Consortium and Image Database resource Initiative Database.

    Science.gov (United States)

    Lin, Hongli; Wang, Weisheng; Luo, Jiawei; Yang, Xuedong

    2014-12-01

    The aim of this study was to develop a personalized training system using the Lung Image Database Consortium (LIDC) and Image Database resource Initiative (IDRI) Database, because collecting, annotating, and marking a large number of appropriate computed tomography (CT) scans, and providing the capability of dynamically selecting suitable training cases based on the performance levels of trainees and the characteristics of cases are critical for developing a efficient training system. A novel approach is proposed to develop a personalized radiology training system for the interpretation of lung nodules in CT scans using the Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) database, which provides a Content-Boosted Collaborative Filtering (CBCF) algorithm for predicting the difficulty level of each case of each trainee when selecting suitable cases to meet individual needs, and a diagnostic simulation tool to enable trainees to analyze and diagnose lung nodules with the help of an image processing tool and a nodule retrieval tool. Preliminary evaluation of the system shows that developing a personalized training system for interpretation of lung nodules is needed and useful to enhance the professional skills of trainees. The approach of developing personalized training systems using the LIDC/IDRL database is a feasible solution to the challenges of constructing specific training program in terms of cost and training efficiency. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  12. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J [Rush University Medical Center, Chicago, IL (United States)

    2016-06-15

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  13. TH-CD-207A-08: Simulated Real-Time Image Guidance for Lung SBRT Patients Using Scatter Imaging

    International Nuclear Information System (INIS)

    Redler, G; Cifter, G; Templeton, A; Lee, C; Bernard, D; Liao, Y; Zhen, H; Turian, J; Chu, J

    2016-01-01

    Purpose: To develop a comprehensive Monte Carlo-based model for the acquisition of scatter images of patient anatomy in real-time, during lung SBRT treatment. Methods: During SBRT treatment, images of patient anatomy can be acquired from scattered radiation. To rigorously examine the utility of scatter images for image guidance, a model is developed using MCNP code to simulate scatter images of phantoms and lung cancer patients. The model is validated by comparing experimental and simulated images of phantoms of different complexity. The differentiation between tissue types is investigated by imaging objects of known compositions (water, lung, and bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is used to investigate image noise properties for various quantities of delivered radiation (monitor units(MU)). Patient scatter images are simulated using the validated simulation model. 4DCT patient data is converted to an MCNP input geometry accounting for different tissue composition and densities. Lung tumor phantom images acquired with decreasing imaging time (decreasing MU) are used to model the expected noise amplitude in patient scatter images, producing realistic simulated patient scatter images with varying temporal resolution. Results: Image intensity in simulated and experimental scatter images of tissue equivalent objects (water, lung, bone) match within the uncertainty (∼3%). Lung tumor phantom images agree as well. Specifically, tumor-to-lung contrast matches within the uncertainty. The addition of random noise approximating quantum noise in experimental images to simulated patient images shows that scatter images of lung tumors can provide images in as fast as 0.5 seconds with CNR∼2.7. Conclusions: A scatter imaging simulation model is developed and validated using experimental phantom scatter images. Following validation, lung cancer patient scatter images are simulated. These simulated

  14. Status and Advances of RGD Molecular Imaging in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ning YUE

    2014-12-01

    Full Text Available Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  15. A role of computed tomography or magnetic resonance imaging for cystic lung diseases in children

    International Nuclear Information System (INIS)

    Yanagihara, Jun; Shimotake, Takashi; Deguchi, Eiichi; Tokiwa, Kazuaki; Iwai, Naomi

    1995-01-01

    Fourteen children with cystic lung diseases were imaged using computed tomography (CT) and/or magnetic resonance imaging (MRI). These patients studied included 7 patients with bronchogenic cyst of lung, 4 with pulmonary sequestration, 1 with congenital cystic adenomatoid malformation, 1 with lung abscess, and 1 with cystic bronchoectasis. MRI identified all lesions seen on the chest radiographs. It was particularly valuable delineating contents of bronchogenic cyst without the need for contrast material enhancement. However, MRI was not quite as sensitive as CT that detected very small abnormalities, because MRI had more artifacts than those of CT. In conclusion, we believe that both CT and MRI are needed for differential diagnosis of lung diseases in children. (author)

  16. A role of computed tomography or magnetic resonance imaging for cystic lung diseases in children

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, Jun; Shimotake, Takashi; Deguchi, Eiichi; Tokiwa, Kazuaki; Iwai, Naomi [Kyoto Prefectural Univ. of Medicine (Japan)

    1995-06-01

    Fourteen children with cystic lung diseases were imaged using computed tomography (CT) and/or magnetic resonance imaging (MRI). These patients studied included 7 patients with bronchogenic cyst of lung, 4 with pulmonary sequestration, 1 with congenital cystic adenomatoid malformation, 1 with lung abscess, and 1 with cystic bronchoectasis. MRI identified all lesions seen on the chest radiographs. It was particularly valuable delineating contents of bronchogenic cyst without the need for contrast material enhancement. However, MRI was not quite as sensitive as CT that detected very small abnormalities, because MRI had more artifacts than those of CT. In conclusion, we believe that both CT and MRI are needed for differential diagnosis of lung diseases in children. (author).

  17. Role of radio-aerosol and perfusion lung imaging in early detection of chronic obstructive lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Garg, A; Pande, J N; Guleria, J S; Gopinath, P G

    1983-04-01

    The efficacy of radio-aerosol and perfusion lung imaging in the early detection of chronic obstructive lung disease was evaluated in 38 subjects. The subjects included 5 non-smokers, 21 smokers with minimal or no respiratory symptoms and 12 patients with chronic obstructive lung disease. Each subject consented to a respiratory questionaire, detailed physical examination, chest X-ray examinations, detailed pulmonary function tests and sup(99m)Tc-radioaerosol-inhalation lung imaging. Perfusion lung imaging with sup(99m)Tc-labelled macroaggregated albumin was performed in 22 subjects. A significant correlation (P<0.001) was observed between the degree of abnormalities on radio-aerosol imaging and pulmonary function tests (PFTs) including forced expiratory volume in 1 s, maximum midexpiratory flow rate and mean transit time analysis. Abnormal radio-aerosol patterns and deranged PFTs were observed in 21 subjects each. Of 21 subjects with abnormal radioaerosol pattern 8 had normal PFTs. Of 21 subjects with abnormal PFTs 8 had normal aerosol images. Aerosol lung images and PFTs were abnormal more frequently than perfusion lung images. The results suggest that radio-aerosol lung imaging is as sensitive an indicator as PFTs for early detection of chronic obstructive lung disease and can be usefully combined with PFTs for early detection of alteration in pulmonary physiology in smokers.

  18. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    Directory of Open Access Journals (Sweden)

    David Fecher

    Full Text Available Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.

  19. Fetal lung volume measurement by MRI with high-speed imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Hisao; Kaku, Kenshi [Chiba Univ. (Japan). Hospital

    2002-08-01

    Although ultrasonography is widely used for fetal morphologic observation, magnetic resonance imaging (MRI) has gained popularity as a new prenatal diagnostic method with recent introduction of high-speed imaging systems. Infants with lung hypoplasia affecting respiratory function require intensive management starting immediately after birth. Therefore, accurate prenatal differential diagnosis and severity evaluation are extremely important for these fetuses. The aim of this study is to measure fetal lung volume using a computer-based, three-dimensional MRI imaging system and to evaluate the possibility of clinical applications of this procedure. A total of 96 fetuses were evaluated, all were morphologically abnormal, and MRI was done for advanced assessment from 24 to 39 weeks gestation. Three-directional views of fetal chest were imaged by Signa Horizon, 1.5 Tesla, version 5.6 (General Electronics) with the following conditions; coil: TORSO coil, sequence: SSFSE (single shot fast spin echo), slice thickness: 5 mm, and imaging speed: 2 seconds/slice. To calculate the lung volume and create three-dimensional image, the lung area in each slice was traced out, then multiplied using computer image processing. Simultaneously, the volumes of all slices were summed to give the volume of each lung. Linear regression analysis and analysis of covariance (ANCOVA) were used for statistical analyses. In all cases, clear images were obtained, and were adequate for three-dimensional evaluation of the fetal lung. Thirty-five fetuses had poor outcomes, such as intrauterine fetal death, neonatal death, and intensive respiratory care. Regression lines of lung volume versus gestational week were calculated for these fetuses with poor outcome and 61 other fetuses with good outcome. ANCOVA, with gestational week as a covariant, revealed a significant intergroup difference in the lung volume (p<0.001). Similarly, regression lines of lung volume versus fetal body weight estimated by

  20. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    Science.gov (United States)

    Reconstruction of Human Lung Morphology Models from Magnetic Resonance ImagesT. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  1. Assessment of tumors of the lung apex by imaging techniques

    International Nuclear Information System (INIS)

    Rueda, J.; Serrano, F.; Pain, M.I.; Rodriguez, F.

    1996-01-01

    The purpose of this study was to analyze the value of MR in the preoperative staging of tumors of the lung apex and detection of local invasion of adjacent structures to determine its influence on the therapeutic approach. We obtained plain X-ray images in two planes, as well as CT and Mr images, in 12 patients with Pan coast tumor in whom there was surgical (n=8) or clinical (n=4) evidence of invasion. The objective was to assess local infiltration of brain stem and chest wall soft tissue, enveloping of the subclavian artery, substantial involvement of the brachial plexus and destruction of the vertebral body. In our series, MR was superior to the other imaging techniques in predicting the involvement of the structures surrounding the tumor. In conclusion, MR should be performed in a patient diagnosed by plain radiography as having an apical tumors to assess local tumor extension, while CT should be done to detect mediastinal lymph node involvement and distant metastases. 19 refs

  2. Prospective Evaluation of Dual-Energy Imaging in Patients Undergoing Image Guided Radiation Therapy for Lung Cancer: Initial Clinical Results

    International Nuclear Information System (INIS)

    Sherertz, Tracy; Hoggarth, Mark; Luce, Jason; Block, Alec M.; Nagda, Suneel; Harkenrider, Matthew M.; Emami, Bahman; Roeske, John C.

    2014-01-01

    Purpose: A prospective feasibility study was conducted to investigate the utility of dual-energy (DE) imaging compared to conventional x-ray imaging for patients undergoing kV-based image guided radiation therapy (IGRT) for lung cancer. Methods and Materials: An institutional review board-approved feasibility study enrolled patients with lung cancer undergoing IGRT and was initiated in September 2011. During daily setup, 2 sequential respiration-gated x-ray images were obtained using an on-board imager. Imaging was composed of 1 standard x-ray image at 120 kVp (1 mAs) and a second image obtained at 60 kVp (4 mAs). Weighted logarithmic subtraction of the 2 images was performed offline to create a soft tissue-selective DE image. Conventional and DE images were evaluated by measuring relative contrast and contrast-to-noise ratios (CNR) and also by comparing spatial localization, using both approaches. Imaging dose was assessed using a calibrated ion chamber. Results: To date, 10 patients with stage IA to IIIA lung cancer were enrolled and 57 DE images were analyzed. DE subtraction resulted in complete suppression of overlying bone in all 57 DE images, with an average improvement in relative contrast of 4.7 ± 3.3 over that of 120 kVp x-ray images (P<.0002). The improvement in relative contrast with DE imaging was seen for both smaller (gross tumor volume [GTV] ≤5 cc) and larger tumors (GTV >5 cc), with average relative contrast improvement ratios of 3.4 ± 4.1 and 5.4 ± 3.6, respectively. Moreover, the GTV was reliably localized in 95% of the DE images versus 74% of the single energy (SE images, (P=.004). Mean skin dose per DE image set was 0.44 ± 0.03 mGy versus 0.43 ± 0.03 mGy, using conventional kV imaging parameters. Conclusions: Initial results of this feasibility study suggest that DE thoracic imaging may enhance tumor localization in lung cancer patients receiving kV-based IGRT without increasing imaging dose

  3. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions.

    Science.gov (United States)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-05-01

    The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10-37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to

  4. A Dirichlet process mixture model for automatic {sup 18}F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Giri, Maria Grazia, E-mail: mariagrazia.giri@ospedaleuniverona.it; Cavedon, Carlo [Medical Physics Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Mazzarotto, Renzo [Radiation Oncology Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Ferdeghini, Marco [Nuclear Medicine Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy)

    2016-05-15

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a

  5. A Dirichlet process mixture model for automatic 18F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    International Nuclear Information System (INIS)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-01-01

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on 18 F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve

  6. Estimation of lung volume and pulmonary blood volume from radioisotopic images

    International Nuclear Information System (INIS)

    Kanazawa, Minoru

    1989-01-01

    Lung volume and pulmonary blood volume in man were estimated from the radioisotopic image using single photon emission computed tomography (SPECT). Six healthy volunteers were studied in a supine position with normal and altered lung volumes by applying continuous negative body-surface pressure (CNP) and by positive end-expiratory pressure (PEEP). 99m Tc labeled human serum albumin was administered as an aerosol to image the lungs. The CNP caused the diaphragm to be lowered and it increased the mean lung tissue volume obtained by SPECT from 3.09±0.49 l for baseline to 3.67±0.62 l for 10 cmH 2 O (p 2 O (p 2 O), respectively. The PEEP also increased the lung tissue volume to 3.68±0.68 l for 10 cmH 2 O as compared with the baseline (p 2 O PEEP. The lung tissue volume obtained by SPECT showed a positive correlation with functional residual capacity measured by the He dilution method (r=0.91, p 99m Tc-labeled red blood cells. The L/H ratio decreased after either the CNP or PEEP, suggesting a decrease in the blood volume per unit lung volume. However, it was suggested that the total pulmonary blood volume increased slightly either on the CNP (+7.4% for 10 cmH 2 O, p 2 O,p<0.05) when we extrapolated the L/H ratio to the whole lungs by multiplying the lung tissue volume obtained by SPECT. We concluded that SPECT could offer access to the estimation of lung volume and pulmonary blood volume in vivo. (author)

  7. Boron absorption imaging in rat lung colon adenocarcinoma metastases

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bortolussi, S [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bruschi, P [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Fossati, F [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Vittor, K [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Nano, R [Dipartimento di Biologia Animale Universita degli Studi di Pavia (Italy); Facoetti, A [Dipartimento di Biologia Animale Universita degli Studi di Pavia (Italy); Chiari, P [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bakeine, J [Dipartimento di Scienze Biomediche e Biotecnologie Universita degli Studi di Brescia (Italy); Clerici, A [Dipartimento di Chirurgia Universita degli Studi di Pavia (Italy); Ferrari, C [Dipartimento di Chirurgia Universita degli Studi di Pavia (Italy); Salvucci, O [Dipartimento di Scienze Biomediche e Biotecnologie Universita degli Studi di Brescia (Italy)

    2006-05-15

    Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher {sup 10}B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of {sup 10}B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.

  8. Feasibility of using ‘lung density’ values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients

    International Nuclear Information System (INIS)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-01-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m"−"3, pneumonia; 306 ± 38.6 kg m"−"3, atelectasis; 497 ± 130 kg m"−"3, pleural effusion; 467 ± 113 kg m"−"3: Steel–Dwass test, p < 0.05). In addition, in order to compare lung density with CT image pixels, the image resolution of CT images, which was originally 512 × 512 pixels, was changed to 16 × 16 pixels to match that of the EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m"−"3) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT. (paper)

  9. Feasibility of using 'lung density' values estimated from EIT images for clinical diagnosis of lung abnormalities in mechanically ventilated ICU patients.

    Science.gov (United States)

    Nebuya, Satoru; Koike, Tomotaka; Imai, Hiroshi; Iwashita, Yoshiaki; Brown, Brian H; Soma, Kazui

    2015-06-01

    This paper reports on the results of a study which compares lung density values obtained from electrical impedance tomography (EIT), clinical diagnosis and CT values (HU) within a region of interest in the lung. The purpose was to assess the clinical use of lung density estimation using EIT data. In 11 patients supported by a mechanical ventilator, the consistency of regional lung density measurements as estimated by EIT was validated to assess the feasibility of its use in intensive care medicine. There were significant differences in regional lung densities recorded in the supine position between normal lungs and diseased lungs associated with pneumonia, atelectasis and pleural effusion (normal; 240 ± 71.7 kg m(-3), pneumonia; 306 ± 38.6 kg m(-3), atelectasis; 497 ± 130 kg m(-3), pleural effusion; 467 ± 113 kg m(-3): Steel-Dwass test, p EIT images. The results of CT and EIT images from five patients in an intensive care unit showed a correlation coefficient of 0.66 ± 0.13 between the CT values (HU) and the lung density values (kg m(-3)) obtained from EIT. These results indicate that it may be possible to obtain a quantitative value for regional lung density using EIT.

  10. Computational morphology of the lung and its virtual imaging

    International Nuclear Information System (INIS)

    Kitaoka, Hiroko

    2002-01-01

    The author proposes an entirely new approach called 'virtual imaging' of an organ based on 'computational morphology'. Computational morphology describes mathematically design as principles of an organ structure to generate the organ model via computer, which can be called virtual organ. Virtual imaging simulates image data using the virtual organ. The virtual organ is divided into cubic voxels, and the CT value or other intensity value for each voxel is calculated according to the tissue properties within the voxel. The validity of the model is examined by comparing virtual images with clinical images. Computational image analysis methods can be developed based on validated models. In this paper, computational anatomy of the lung and its virtual X-ray imaging are introduced

  11. Preparation and evaluation of (131I)AgI particles: potential lungs perfusion imaging agent

    International Nuclear Information System (INIS)

    Chattopadhyay, Sankha; Das, Sujata Saha; Sinha, Samarendu; Sarkar, Bharat Ranjan; Ganguly, Shantanu; Chandra, Susmita; De, Kakali; Mishra, Mridula

    2010-01-01

    Since the discovery of iodine-131 (t 1/2 : 8 d) by Livingood and Seaborg (1938), this, and other radioisotopes of iodine, have found widespread use in nuclear medicine. The purpose of the present work was to formulate Ag 131 I particles and bio-evaluate the same. The Ag 131 I particles were prepared in acidic condition having 100% R.C. Purity. The biological evaluation of Ag 131 1 particles was made by injecting about 111-185 MBq of Ag 131 I particles preparations in female albino rabbits (2-2.5 kg weight) intravenously by femoral vein under urethane anesthesia. Imaging studies were performed under Gamma Camera. The entire amount of the Ag 131 I particles were found to deposit in the lungs and remained there almost unchanged for a certain period of time after the intervenous administration. The images showed excellent, uniform lung uptake with no interference from liver and spleen to the lower regions of right and left lobes. It showed a high accumulation in the rabbits lungs (>99%) and remained constant for at least for 20 min. It is also worthy to study with 123 I/ 124 I labelled AgI for lung imaging study. In conclusion, the synthetic radiopharmaceutical ( 131 I)-Silver iodide colloid can be prepared with a large particle size, in a simple and practical manner, and it has good potential for use as a perfusion imaging agent in lung scans

  12. CASE STUDY – HIV AND LUNG DISEASE

    African Journals Online (AJOL)

    2011-04-02

    Apr 2, 2011 ... pathology deep to the paraseptal bullae. An intercostal drain tip is seen in the left lateral pleural space. Fig. 2. Axial computed tomography scan on lung windows. Large bilateral paraseptal bullae are demonstrated with residual antero-medial pneumothorax. 37. CASE STUDY – HIV AND LUNG DISEASE ...

  13. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    Science.gov (United States)

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  14. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Teo, S.-K. [Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632 (Singapore); Tan, C. H. [Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433 (Singapore); Tham, I. W. K. [Department of Radiation Oncology, National University Cancer Institute, Singapore 119082 (Singapore)

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  15. Pixel based statistical analysis of differences between lung SPECT images: methodological aspects

    International Nuclear Information System (INIS)

    Bendada, S.; Rocchisani, J.L.M.; Moretti, J.L.

    2002-01-01

    The statistical parametric mapping method is applied in Neurology for activation studies. We had adapted this powerful method on Lungs SPECT to help for the diagnosis and the follow-up of pulmonary embolism and other lung diseases. The SPECT slices of pairs of examination were normalized thanks to the total acquired counts, reconstruction background subtracted, smoothed and realigned. A parametric image of statistical differences was finally computed. We had thus obtained a 3D image showing regions of improved or altered region under treatment. A tuning of the various parameters could lead to more accurate image. This new approach of lung SPECT processing appears to be a promising useful tool for the physician. (author)

  16. Lung scintigraphy

    International Nuclear Information System (INIS)

    Dalenz, Roberto.

    1994-01-01

    A review of lung scintigraphy, perfusion scintigraphy with SPECT, lung ventilation SPECT, blood pool SPECT. The procedure of lung perfusion studies, radiopharmaceutical, administration and clinical applications, imaging processing .Results encountered and evaluation criteria after Biello and Pioped. Recommendations and general considerations have been studied about relation of this radiopharmaceutical with other pathologies

  17. CT image construction of a totally deflated lung using deformable model extrapolation

    International Nuclear Information System (INIS)

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim

    2011-01-01

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  18. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry.

    Science.gov (United States)

    Christensen, Gary E; Song, Joo Hyun; Lu, Wei; El Naqa, Issam; Low, Daniel A

    2007-06-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  19. Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry

    International Nuclear Information System (INIS)

    Christensen, Gary E.; Song, Joo Hyun; Lu, Wei; Naqa, Issam El; Low, Daniel A.

    2007-01-01

    Breathing motion is one of the major limiting factors for reducing dose and irradiation of normal tissue for conventional conformal radiotherapy. This paper describes a relationship between tracking lung motion using spirometry data and image registration of consecutive CT image volumes collected from a multislice CT scanner over multiple breathing periods. Temporal CT sequences from 5 individuals were analyzed in this study. The couch was moved from 11 to 14 different positions to image the entire lung. At each couch position, 15 image volumes were collected over approximately 3 breathing periods. It is assumed that the expansion and contraction of lung tissue can be modeled as an elastic material. Furthermore, it is assumed that the deformation of the lung is small over one-fifth of a breathing period and therefore the motion of the lung can be adequately modeled using a small deformation linear elastic model. The small deformation inverse consistent linear elastic image registration algorithm is therefore well suited for this problem and was used to register consecutive image scans. The pointwise expansion and compression of lung tissue was measured by computing the Jacobian of the transformations used to register the images. The logarithm of the Jacobian was computed so that expansion and compression of the lung were scaled equally. The log-Jacobian was computed at each voxel in the volume to produce a map of the local expansion and compression of the lung during the breathing period. These log-Jacobian images demonstrate that the lung does not expand uniformly during the breathing period, but rather expands and contracts locally at different rates during inhalation and exhalation. The log-Jacobian numbers were averaged over a cross section of the lung to produce an estimate of the average expansion or compression from one time point to the next and compared to the air flow rate measured by spirometry. In four out of five individuals, the average log

  20. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    Science.gov (United States)

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  1. Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Full Text Available The combination of positron emission tomography (PET and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient (DSC was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  2. Quantitative study on lung volume and lung perfusion using SPECT and CT in thoracal tumors

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Strauss, L.G.

    1988-01-01

    22 patients with space occupying lesions in the thoracal region were investigated by computer tomography and by perfusion scintigraphy using SPECT. In order to evaluate the CT images quantitatively, the lung volume was determined using approximation method and compared with the perfusion in the SPECT study. For this, anatomically equivalent transaxial SPECT slices had been coordinated to the CT slices. Between the determined lung volumes and the activity in the ocrresponding layers, a statistically significant correlation was found. It could be shown that the stronger perfusion, frequently observed at the right side of the healthy lung, may be explained by an higher volume of the right pulmonary lobe. Whereas in benign displacing processes the relation activity to volume was similar to the one of the healthy lung, a strongly reduced perfusion together with inconspicuous lung volumes became apparent with malignant tumors. In addition to the great morphological evidence of CT and SPECT studies, additional informations regarding the dignity of displacing processes may be derived from the quantitative evaluation of both methods. (orig.) [de

  3. Dual modality CT/PET imaging in lung cancer staging

    International Nuclear Information System (INIS)

    Diaz, Gabriel A.

    2005-01-01

    Purpose: To compare the diagnostic capability of PET-HCT image fusion and helical computed tomography (HCT) for nodal and distant metastases detection in patients with lung cancer. Material and methods: Between February, 2003 and March, 2004 sixty-six consecutive lung cancer patients (45 men and 21 women, mean ages: 63 years old, range: 38 to 96 years old) who underwent HCT and PET-HCT fusion imaging were evaluated retrospectively. All patients had histological confirmation of lung cancer and a definitive diagnosis established on the basis of pathology results and/or clinical follow-up. Results: For global nodal staging (hilar and mediastinal) HCT showed a sensitivity, specificity, positive predictive value and negative predictive value of 72%, 47%, 62% and 58% respectively, versus 94%, 77%, 83% and 92% corresponding to PET-HCT examination. For assessment of advanced nodal stage (N3) PET-HCT showed values of 92%, 100%, 100% and 98% respectively. For detection of distant metastasis, HCT alone had values of 67%, 93%, 84% and 83% respectively versus 100%, 98%, 96% and 100% for the PET-HCT fusion imaging. In 20 (30%) patients under-staged or over-staged on the basis of HCT results, PET-HCT allowed accurate staging. Conclusions: PET-HCT fusion imaging was more effective than HCT alone for nodal and distant metastasis detection and oncology staging. (author)

  4. Image processing based detection of lung cancer on CT scan images

    Science.gov (United States)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  5. Respiration-correlated image guidance is the most important radiotherapy motion management strategy for most lung cancer patients

    DEFF Research Database (Denmark)

    Korreman, Stine; Persson, Gitte; Nygaard, Ditte Eklund

    2012-01-01

    The purpose of this study was to quantify the effects of four-dimensional computed tomography (4DCT), 4D image guidance (4D-IG), and beam gating on calculated treatment field margins in a lung cancer patient population....

  6. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV: A prospective study.

    Science.gov (United States)

    Zhu, Huiyuan; Zhang, Lian; Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen

    2017-01-01

    The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P images than of CHRCT images (Pimages (P 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period.

  7. Magnetic Resonance Imaging of Ventilation and Perfusion in the Lung

    Science.gov (United States)

    Prisk, Gordon Kim (Inventor); Hopkins, Susan Roberta (Inventor); Buxton, Richard Bruce (Inventor); Pereira De Sa, Rui Carlos (Inventor); Theilmann, Rebecca Jean (Inventor); Cronin, Matthew Vincent (Inventor)

    2017-01-01

    Methods, devices, and systems are disclosed for implementing a fully quantitative non-injectable contrast proton MRI technique to measure spatial ventilation-perfusion (VA/Q) matching and spatial distribution of ventilation and perfusion. In one aspect, a method using MRI to characterize ventilation and perfusion in a lung includes acquiring an MR image of the lung having MR data in a voxel and obtaining a breathing frequency parameter, determining a water density value, a specific ventilation value, and a perfusion value in at least one voxel of the MR image based on the MR data and using the water density value to determine an air content value, and determining a ventilation-perfusion ratio value that is the product of the specific ventilation value, the air content value, the inverse of the perfusion value, and the breathing frequency.

  8. The role of lung imaging in pulmonary embolism

    Science.gov (United States)

    Mishkin, Fred S.; Johnson, Philip M.

    1973-01-01

    The advantages of lung scanning in suspected pulmonary embolism are its diagnostic sensitivity, simplicity and safety. The ability to delineate regional pulmonary ischaemia, to quantitate its extent and to follow its response to therapy provides valuable clinical data available by no other simple means. The negative scan effectively excludes pulmonary embolism but, although certain of its features favour the diagnosis of embolism, the positive scan inherently lacks specificity and requires angiographic confirmation when embolectomy, caval plication or infusion of a thrombolytic agent are contemplated. The addition of simple ventilation imaging techniques with radioxenon overcomes this limitation by providing accurate analog estimation or digital quantitation of regional ventilation: perfusion (V/Q) ratios fundamental to understanding the pathophysiologic consequences of embolism and other diseases of the lung. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7p495-bFig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13 PMID:4602128

  9. ''Inhalation lung imaging with radioactive aerosols and gases''

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1977-01-01

    Lung imaging procedures, performed after the inhalation of /sup 99m/Tc labeled aerosols, 133 Xe and /sup 81m/Kr gases, were used to visualize the sites of airway obstruction and regional abnormalities of ventilatory function in normal volunteers, patients with obstructive airway disease, and pulmonary embolism suspects. Comparisons were made of three methods regarding their functional significance, diagnostic merits, and limitations. A new nebulizer-radioaerosol delivery system is described

  10. Preserving Functional Lung Using Perfusion Imaging and Intensity-Modulated Radiation Therapy for Advanced-Stage Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shioyama, Yoshiyuki; Jang, Si Young; Liu, H. Helen; Guerrero, Thomas; Wang, Xuanmin; Gayed, Isis W.; Erwin, William D.; Liao, Zhongxing; Chang, Joe Y.; Jeter, Melenda; Yaremko, Brian P.; Borghero, Yerko O.; Cox, James D.; Komaki, Ritsuko; Mohan, Radhe

    2007-01-01

    Purpose: To assess quantitatively the impact of incorporating functional lung imaging into intensity-modulated radiation therapy planning for locally advanced non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen patients with advanced-stage NSCLC who underwent radiotherapy were included in this study. Before radiotherapy, each patient underwent lung perfusion imaging with single-photon-emission computed tomography and X-ray computed tomography (SPECT-CT). The SPECT-CT was registered with simulation CT and was used to segment the 50- and 90-percentile hyperperfusion lung (F50 lung and F90 lung). Two IMRT plans were designed and compared in each patient: an anatomic plan using simulation CT alone and a functional plan using SPECT-CT in addition to the simulation CT. Dosimetric parameters of the two types of plans were compared in terms of tumor coverage and avoidance of normal tissues. Results: In incorporating perfusion information in IMRT planning, the median reductions in the mean doses to the F50 and F90 lung in the functional plan were 2.2 and 4.2 Gy, respectively, compared with those in the anatomic plans. The median reductions in the percentage of volume irradiated with >5 Gy, >10 Gy, and >20 Gy in the functional plans were 7.1%, 6.0%, and 5.1%, respectively, for F50 lung, and 11.7%, 12.0%, and 6.8%, respectively, for F90 lung. A greater degree of sparing of the functional lung was achieved for patients with large perfusion defects compared with those with relatively uniform perfusion distribution. Conclusion: Function-guided IMRT planning appears to be effective in preserving functional lung in locally advanced-stage NSCLC patients

  11. Comparison of aerosol inhalation lung images using BARC and other nebulizers

    International Nuclear Information System (INIS)

    Isawa, Toyoharu; Teshima, Takeo; Anazawa, Yoshiki; Miki, Makoto

    1994-01-01

    Various factors determine the site of inhaled aerosol deposition in the lungs. They are the size of aerosol the composition of carrier gas of the aerosol, the airflow rate, physico-chemical properties of the carrier gas or the aerosol, the shape and structure of the airways, and the body position during inhalation. Aerosol inhalation lung images were obtained in the same subjects using 99m Tc-human serum albumin aerosol generated by 3 different aerosol generators each producing different-sized aerosol and 2 or 3 days apart from each study. The size of aerosol produced by an ultrasonic nebulizer (Mistogen) was 1.93 Micron in activity median aerodynamic diameter (AMAD) with its geometric standard deviation (σg) of 1.73, that by a jet nebulizer (Ultra Vent) was 1.04 micron in AMAD with its σg of 1.71, and that by our BARC nebulizer, a type of a jet nebulizer, was 0.84 micron in AMAD with its σg of 1.73. In addition Technegas was also applied to selected patients. The latter produced aerosol of less than 0.2 micron in size at the largest and the majority, say, 95% or more of the generated aerosol was less than 0.1 micron in size by electron Microscopy. Each subject inhaled aerosol in resting tidal breathing through a mouth-piece with a one way double J valve with the nose clipped in the sitting position. After inhaling approximately 2-3 mCi (74 to 111 MBq) in the thorax, four view lung images were taken: anterior, posterior, and right and left laterals. 300 K counts per view were collected. They were not only pictured on polaroid films as analogue data but also recorded and stored in a computer as digital data. In case of Technegas breathing it for the RV (residual volume) to the TLC (total lung capacity) level followed by breath-holding for 5 to 10 sec in duration was repeated 2 to 3 times as a breathing maneuver instead of tidal breathing. Otherwise deposition efficiency of Technegas is very little because of the small size of the Technegas. Representative 10

  12. Prognostic classification with laboratory parameters or imaging techniques in small-cell lung cancer

    NARCIS (Netherlands)

    de Jong, Wouter K.; Fidler, Vaclav; Groen, Harry J. M.

    PURPOSE: Our aim in this study was to compare prognostic models based on laboratory tests with a model including imaging information in small-cell lung cancer. PATIENTS AND METHODS: A retrospective analysis was performed on 156 consecutive patients. Three existing models based on laboratory tests

  13. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    Science.gov (United States)

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI.

  14. Using Dual Fluorescence Reporting Genes to Establish an In Vivo Imaging Model of Orthotopic Lung Adenocarcinoma in Mice.

    Science.gov (United States)

    Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu

    2016-12-01

    Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.

  15. Magnetic Resonance Imaging of the Lung as an Alternative for a Pregnant Woman with Pulmonary Tuberculosis.

    Science.gov (United States)

    Schloß, Manuel; Heckrodt, Jan; Schneider, Christian; Discher, Thomas; Krombach, Gabriele Anja

    2015-05-01

    We report a case of a pregnant 21-year-old woman with pulmonary tuberculosis in which magnetic resonance imaging of the lung was used to assess the extent and characteristics of the pathological changes. Although the lung has been mostly ignored in magnetic resonance imaging for many decades, today technical development enables detailed examinations of the lung. The technique is now entering the clinical arena and its indications are increasing. Magnetic resonance imaging of the lung is not only an alternative method without radiation exposure, it can provide additional information in pulmonary imaging compared to other modalities including computed tomography. We describe a successful application of magnetic resonance imaging of the lung and the imaging appearance of post-primary tuberculosis. This case report indicates that magnetic resonance imaging of the lung can potentially be the first choice imaging technique in pregnant women with suspected pulmonary tuberculosis.

  16. Imaging Cellular Proliferation During Chemo-Radiotherapy: A Pilot Study of Serial 18F-FLT Positron Emission Tomography/Computed Tomography Imaging for Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Everitt, Sarah; Hicks, Rodney J.; Ball, David; Kron, Tomas; Schneider-Kolsky, Michal; Walter, Tania; Binns, David; Mac Manus, Michael

    2009-01-01

    Purpose: To establish whether 18 F-3'-deoxy-3'-fluoro-L-thymidine ( 18 F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial 18 F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline 18 F-FLT PET/CT scans were compared with routine staging 18 F-FDG PET/CT scans. Two on-treatment 18 F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptake of 18 F-FLT on PET/CT corresponded to staging 18 F-FDG PET/CT abnormalities. 18 F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of 18 F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in 18 F-FLT tumor uptake of 0.58 x baseline. A marked reduction of 18 F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that 18 F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of 18 F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.

  17. Lesion removal and lesion addition algorithms in lung volumetric data sets for perception studies

    Science.gov (United States)

    Madsen, Mark T.; Berbaum, Kevin S.; Ellingson, Andrew; Thompson, Brad H.; Mullan, Brian F.

    2006-03-01

    Image perception studies of medical images provide important information about how radiologists interpret images and insights for reducing reading errors. In the past, perception studies have been difficult to perform using clinical imaging studies because of the problems associated with obtaining images demonstrating proven abnormalities and appropriate normal control images. We developed and evaluated interactive software that allows the seamless removal of abnormal areas from CT lung image sets. We have also developed interactive software for capturing lung lesions in a database where they can be added to lung CT studies. The efficacy of the software to remove abnormal areas of lung CT studies was evaluated psychophysically by having radiologists select the one altered image from a display of four. The software for adding lesions was evaluated by having radiologists classify displayed CT slices with lesions as real or artificial scaled to 3 levels of confidence. The results of these experiments demonstrated that the radiologist had difficulty in distinguishing the raw clinical images from those that had been altered. We conclude that this software can be used to create experimental normal control and "proven" lesion data sets for volumetric CT of the lung fields. We also note that this software can be easily adapted to work with other tissue besides lung and that it can be adapted to other digital imaging modalities.

  18. A Systematic Review of the Prevalence and Pattern of Imaging Defined Post-TB Lung Disease.

    Directory of Open Access Journals (Sweden)

    Jamilah Meghji

    Full Text Available Tuberculosis is an important risk factor for chronic respiratory disease in resource poor settings. The persistence of abnormal spirometry and symptoms after treatment are well described, but the structural abnormalities underlying these changes remain poorly defined, limiting our ability to phenotype post-TB lung disease in to meaningful categories for clinical management, prognostication, and ongoing research. The relationship between post-TB lung damage and patient-centred outcomes including functional impairment, respiratory symptoms, and health related quality of life also remains unclear.We performed a systematic literature review to determine the prevalence and pattern of imaging-defined lung pathology in adults after medical treatment for pleural, miliary, or pulmonary TB disease. Data were collected on study characteristics, and the modality, timing, and findings of thoracic imaging. The proportion of studies relating imaging findings to spirometry results and patient morbidity was recorded. Study quality was assessed using a modified Newcastle-Ottowa score. (Prospero Registration number CRD42015027958.We identified 37 eligible studies. The principle features seen on CXR were cavitation (8.3-83.7%, bronchiectasis (4.3-11.2%, and fibrosis (25.0-70.4%, but prevalence was highly variable. CT imaging identified a wider range of residual abnormalities than CXR, including nodules (25.0-55.8%, consolidation (3.7-19.2%, and emphysema (15.0-45.0%. The prevalence of cavitation was generally lower (7.4-34.6% and bronchiectasis higher (35.0-86.0% on CT vs. CXR imaging. A paucity of prospective data, and data from HIV-infected adults and sub-Saharan Africa (sSA was noted. Few studies related structural damage to physiological impairment, respiratory symptoms, or patient morbidity.Post-TB structural lung pathology is common. Prospective data are required to determine the evolution of this lung damage and its associated morbidity over time. Further

  19. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV: A prospective study.

    Directory of Open Access Journals (Sweden)

    Huiyuan Zhu

    Full Text Available The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT scan with a small scan field of view (FOV provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P 0.05. These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period.

  20. Optimization of CT image reconstruction algorithms for the lung tissue research consortium (LTRC)

    Science.gov (United States)

    McCollough, Cynthia; Zhang, Jie; Bruesewitz, Michael; Bartholmai, Brian

    2006-03-01

    To create a repository of clinical data, CT images and tissue samples and to more clearly understand the pathogenetic features of pulmonary fibrosis and emphysema, the National Heart, Lung, and Blood Institute (NHLBI) launched a cooperative effort known as the Lung Tissue Resource Consortium (LTRC). The CT images for the LTRC effort must contain accurate CT numbers in order to characterize tissues, and must have high-spatial resolution to show fine anatomic structures. This study was performed to optimize the CT image reconstruction algorithms to achieve these criteria. Quantitative analyses of phantom and clinical images were conducted. The ACR CT accreditation phantom containing five regions of distinct CT attenuations (CT numbers of approximately -1000 HU, -80 HU, 0 HU, 130 HU and 900 HU), and a high-contrast spatial resolution test pattern, was scanned using CT systems from two manufacturers (General Electric (GE) Healthcare and Siemens Medical Solutions). Phantom images were reconstructed using all relevant reconstruction algorithms. Mean CT numbers and image noise (standard deviation) were measured and compared for the five materials. Clinical high-resolution chest CT images acquired on a GE CT system for a patient with diffuse lung disease were reconstructed using BONE and STANDARD algorithms and evaluated by a thoracic radiologist in terms of image quality and disease extent. The clinical BONE images were processed with a 3 x 3 x 3 median filter to simulate a thicker slice reconstructed in smoother algorithms, which have traditionally been proven to provide an accurate estimation of emphysema extent in the lungs. Using a threshold technique, the volume of emphysema (defined as the percentage of lung voxels having a CT number lower than -950 HU) was computed for the STANDARD, BONE, and BONE filtered. The CT numbers measured in the ACR CT Phantom images were accurate for all reconstruction kernels for both manufacturers. As expected, visual evaluation of the

  1. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    Directory of Open Access Journals (Sweden)

    REYHANEH SEPEHR

    2013-07-01

    Full Text Available Reactive oxygen species (ROS have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI in adults and bronchopulmonary dysplasia (BPD in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD, referred to as NADH redox ratio (NADH RR has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2 pups, hyperoxic (90% O2 pups, pups treated with LPS (normoxic + LPS, and pups treated with LPS and hyperoxia (hyperoxic + LPS. Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~ 31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  2. A technique for adaptive image-guided helical tomotherapy for lung cancer

    International Nuclear Information System (INIS)

    Ramsey, Chester R.; Langen, Katja M.; Kupelian, Patrick A.; Scaperoth, Daniel D.; Meeks, Sanford L.; Mahan, Stephen L.; Seibert, Rebecca M.

    2006-01-01

    Purpose: The gross tumor volume (GTV) for many lung cancer patients can decrease during the course of radiation therapy. As the tumor reduces in size during treatment, the margin added around the GTV effectively becomes larger, which can result in the excessive irradiation of normal lung tissue. The specific goal of this study is to evaluate the feasibility of using image-guided adaptive radiation therapy to adjust the planning target volume weekly based on the previous week's CT image sets that were used for image-guided patient setup. Methods and Materials: Megavoltage computed tomography (MVCT) images of the GTV were acquired daily on a helical tomotherapy system. These images were used to position the patient and to measure reduction in GTV volume. A planning study was conducted to determine the amount of lung-sparing that could have been achieved if adaptive therapy had been used. Treatment plans were created in which the target volumes were reduced after tumor reduction was measured. Results: A total of 158 MVCT imaging sessions were performed on 7 lung patients. The GTV was reduced by 60-80% during the course of treatment. The tumor reduction in the first 60 days of treatment can be modeled using the second-order polynomial R 0.0002t 2 - 0.0219t + 1.0, where R is the percent reduction in GTV, and t is the number of elapsed days. Based on these treatment planning studies, the absolute volume of ipsilateral lung receiving 20 Gy can be reduced between 17% and 23% (21% mean) by adapting the treatment delivery. The benefits of adaptive therapy are the greatest for tumor volumes ≥25 cm 3 and are directly dependent on GTV reduction during treatment. Conclusions: Megavoltage CT-based image guidance can be used to position lung cancer patients daily. This has the potential to decrease margins associated with daily setup error. Furthermore, the adaptive therapy technique described in this article can decrease the volume of healthy lung tissue receiving above 20 Gy

  3. New techniques for imaging and analyzing lung tissue

    International Nuclear Information System (INIS)

    Roggli, V.L.; Ingram, P.; Linton, R.W.; Gutknecht, W.F.; Mastin, P.; Shelburne, J.D.

    1984-01-01

    The recent technological revolution in the field of imaging techniques has provided pathologists and toxicologists with an expanding repertoire of analytical techniques for studying the interaction between the lung and the various exogenous materials to which it is exposed. Analytical problems requiring elemental sensitivity or specificity beyond the range of that offered by conventional scanning electron microscopy and energy dispersive X-ray analysis are particularly appropriate for the application of these newer techniques. Electron energy loss spectrometry, Auger electron spectroscopy, secondary ion mass spectrometry, and laser microprobe mass analysis each offer unique advantages in this regard, but also possess their own limitations and disadvantages. Diffraction techniques provide crystalline structural information available through no other means. Bulk chemical techniques provide useful cross-checks on the data obtained by microanalytical approaches. It is the purpose of this review to summarize the methodology of these techniques, acknowledge situations in which they have been used in addressing problems in pulmonary toxicology, and comment on the relative advantages and disadvantages of each approach. It is necessary for an investigator to weigh6 each of these factors when deciding which technique is best suited for any given analytical problem; often it is useful to employ a combination of two or more of the techniques discussed. It is anticipated that there will be increasing utilization of these technologies for problems in pulmonary toxicology in the decades to come. 92 references, 10 figures, 2 tables

  4. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M [Stanford University School of Medicine, Stanford, CA (United States); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P [Stanford University, Stanford, CA (United States); Diehn, M [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.

  5. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    International Nuclear Information System (INIS)

    Negahdar, M; Yamamoto, T; Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P; Diehn, M

    2014-01-01

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding

  6. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET

    International Nuclear Information System (INIS)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2008-01-01

    Small animal positron emission tomography (PET) with 18 F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal 18 F-FDG PET. Methods: To determine the impact of anesthesia on 18 F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of 18 F-FDG in various tissues were evaluated. The 18 F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of 18 F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased 18 F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest 18 F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by 18 F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal 18 F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire 18 F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model

  7. Dose distribution in lungs and thyroid from scatter photons of x-ray mammography imaging

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.

    2006-01-01

    The contribution of scatter photons in dose of mammography image in thyroid and lungs are studied. Thyroid and in the form of distribution function and total delivered dose studied by direct measurement with Thermoluminescence dosimeter. The results of measurements compared to other published measurements and the total dose compared to our modelling with Monte Carlo method.. Our phantoms for direct measurement of Dose are a compressed breast phantom placed on a female RANDO phantom. The results of modelling and measurement are in agreement for the total delivered dose to thyroid and lungs and comparable to doses reported by the other researcher

  8. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Science.gov (United States)

    Rodrigues, Pedro L.; Rodrigues, Nuno F.; Duque, Duarte; Granja, Sara; Correia-Pinto, Jorge; Vilaça, João L.

    2014-01-01

    Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers. PMID:25250057

  9. Automated Image Analysis of Lung Branching Morphogenesis from Microscopic Images of Fetal Rat Explants

    Directory of Open Access Journals (Sweden)

    Pedro L. Rodrigues

    2014-01-01

    Full Text Available Background. Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development from microscopic images. Methods. The outer contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.

  10. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    Science.gov (United States)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  11. SU-F-T-191: 4D Dose Reconstruction of Intensity Modulated Proton Therapy (IMPT) Based On Breathing Probability Density Function (PDF) From 4D Cone Beam Projection Images: A Study for Lung Treatment

    International Nuclear Information System (INIS)

    Zhou, J; Ding, X; Liang, J; Zhang, J; Wang, Y; Yan, D

    2016-01-01

    Purpose: With energy repainting in lung IMPT, the dose delivered is approximate to the convolution of dose in each phase with corresponding breathing PDF. This study is to compute breathing PDF weighted 4D dose in lung IMPT treatment and compare to its initial robust plan. Methods: Six lung patients were evaluated in this study. Amsterdam shroud image were generated from pre-treatment 4D cone-beam projections. Diaphragm motion curve was extract from the shroud image and the breathing PDF was generated. Each patient was planned to 60 Gy (12GyX5). In initial plans, ITV density on average CT was overridden with its maximum value for planning, using two IMPT beams with robust optimization (5mm uncertainty in patient position and 3.5% range uncertainty). The plan was applied to all 4D CT phases. The dose in each phase was deformed to a reference phase. 4D dose is reconstructed by summing all these doses based on corresponding weighting from the PDF. Plan parameters, including maximum dose (Dmax), ITV V100, homogeneity index (HI=D2/D98), R50 (50%IDL/ITV), and the lung-GTV’s V12.5 and V5 were compared between the reconstructed 4D dose to initial plans. Results: The Dmax is significantly less dose in the reconstructed 4D dose, 68.12±3.5Gy, vs. 70.1±4.3Gy in the initial plans (p=0.015). No significant difference is found for the ITV V100, HI, and R50, 92.2%±15.4% vs. 96.3%±2.5% (p=0.565), 1.033±0.016 vs. 1.038±0.017 (p=0.548), 19.2±12.1 vs. 18.1±11.6 (p=0.265), for the 4D dose and initial plans, respectively. The lung-GTV V12.5 and V5 are significantly high in the 4D dose, 13.9%±4.8% vs. 13.0%±4.6% (p=0.021) and 17.6%±5.4% vs. 16.9%±5.2% (p=0.011), respectively. Conclusion: 4D dose reconstruction based on phase PDF can be used to evaluate the dose received by the patient. A robust optimization based on the phase PDF may even further improve patient care.

  12. Lung metastases detection in CT images using 3D template matching

    International Nuclear Information System (INIS)

    Wang, Peng; DeNunzio, Andrea; Okunieff, Paul; O'Dell, Walter G.

    2007-01-01

    The aim of this study is to demonstrate a novel, fully automatic computer detection method applicable to metastatic tumors to the lung with a diameter of 4-20 mm in high-risk patients using typical computed tomography (CT) scans of the chest. Three-dimensional (3D) spherical tumor appearance models (templates) of various sizes were created to match representative CT imaging parameters and to incorporate partial volume effects. Taking into account the variability in the location of CT sampling planes cut through the spherical models, three offsetting template models were created for each appearance model size. Lung volumes were automatically extracted from computed tomography images and the correlation coefficients between the subregions around each voxel in the lung volume and the set of appearance models were calculated using a fast frequency domain algorithm. To determine optimal parameters for the templates, simulated tumors of varying sizes and eccentricities were generated and superposed onto a representative human chest image dataset. The method was applied to real image sets from 12 patients with known metastatic disease to the lung. A total of 752 slices and 47 identifiable tumors were studied. Spherical templates of three sizes (6, 8, and 10 mm in diameter) were used on the patient image sets; all 47 true tumors were detected with the inclusion of only 21 false positives. This study demonstrates that an automatic and straightforward 3D template-matching method, without any complex training or postprocessing, can be used to detect small lung metastases quickly and reliably in the clinical setting

  13. Tracking boundary movement and exterior shape modelling in lung EIT imaging

    International Nuclear Information System (INIS)

    Biguri, A; Soleimani, M; Grychtol, B; Adler, A

    2015-01-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT. (paper)

  14. Tracking boundary movement and exterior shape modelling in lung EIT imaging.

    Science.gov (United States)

    Biguri, A; Grychtol, B; Adler, A; Soleimani, M

    2015-06-01

    Electrical impedance tomography (EIT) has shown significant promise for lung imaging. One key challenge for EIT in this application is the movement of electrodes during breathing, which introduces artefacts in reconstructed images. Various approaches have been proposed to compensate for electrode movement, but no comparison of these approaches is available. This paper analyses boundary model mismatch and electrode movement in lung EIT. The aim is to evaluate the extent to which various algorithms tolerate movement, and to determine if a patient specific model is required for EIT lung imaging. Movement data are simulated from a CT-based model, and image analysis is performed using quantitative figures of merit. The electrode movement is modelled based on expected values of chest movement and an extended Jacobian method is proposed to make use of exterior boundary tracking. Results show that a dynamical boundary tracking is the most robust method against any movement, but is computationally more expensive. Simultaneous electrode movement and conductivity reconstruction algorithms show increased robustness compared to only conductivity reconstruction. The results of this comparative study can help develop a better understanding of the impact of shape model mismatch and electrode movement in lung EIT.

  15. Clinical potential for imaging in patients with asthma and other lung disorders.

    Science.gov (United States)

    DeBoer, Emily M; Spielberg, David R; Brody, Alan S

    2017-01-01

    The ability of lung imaging to phenotype patients, determine prognosis, and predict response to treatment is expanding in clinical and translational research. The purpose of this perspective is to describe current imaging modalities that might be useful clinical tools in patients with asthma and other lung disorders and to explore some of the new developments in imaging modalities of the lung. These imaging modalities include chest radiography, computed tomography, lung magnetic resonance imaging, electrical impedance tomography, bronchoscopy, and others. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Image-guided radiotherapy for fifty-eight patients with lung cancer

    International Nuclear Information System (INIS)

    Liang Jun; Zhang Tao; Wang Wenqin

    2009-01-01

    Objective: To study the value of image-guided radiotherapy (IGRT) in lung cancer. Methods: From Mar. 2007 to Dec. 2007,58 patients with lung cancer were treated with IGRT. Set-up errors in each axial direction was calculated based on IGRT images of each patient. The change of GTV was evaluated on both cone-beam CT and CT simulator images. Results: Twenty-two patients with left lung cancer,30 with right lung cancer, 5 with mediastinal lymphanode metastasis and one with vertebra metastasis were included. The set-up error in x, y and z axes was (0.02±0.26) cm, (0.14±0.49) cm and ( -0.13± 0.27) cm, respectively,while the rotary set-up error in each axis was -0.15 degree ± 1.59 degree, -0.01 degree ± 1.50 degree and 0.12 degree ±1.08 degree, respectively. The set-up errors were significantly decreased by using of IGRT. GTV movement was observed in 15 patients (25.9%) ,including 5 with left upper lung cancer. GTV moving to the anterior direction was observed in 9 patients,including 4 with]eft upper lung cancer. GTV reduced in 23 (44.2%) patients during treatment. Asymmetric GTV reduction of 22 lesions was observed,with a mean reductive volume of 4.9 cm 3 . When GTV began to shrink,the irradiation dose was 4 -46 Gy, with 20 -30 Gy in 9 patients. Conclusions: The use of IGRT can significantly reduce set-up errors. GTV movement and reduction are observed in some cases. The time to modify the target volume needs to be further studied. (authors)

  17. Study of lung perfusion in colagenosis

    International Nuclear Information System (INIS)

    Macedo de Carvalho, A.C.; Calegaro, J.U.M.

    1982-01-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized. (author) [es

  18. Study of lung perfusion in colagenosis

    Energy Technology Data Exchange (ETDEWEB)

    Macedo de Carvalho, A C; Calegaro, J U.M. [Fundacao Hospitalar do Distrito Federal, Distrito Federal (Brazil). Unidade de Medicina Nuclear

    1982-07-01

    The lung involvement in the various types of colagenosis has been widely described in the literature. However, the study of lung perfusion utilizing radionuclides has been only mentioned in a few papers. With the intention of ascertaining the importance of the lung perfusion scanning in colagenosis, ten cases were studied, seven of which were females and three males, with the following pathologies: 4 rheumatoid arthritis, 4 systemic lupus eritematosous, 1 scleroderma and 1 scleroderma plus dermatomyositis. The ages of the patients varied from 20 to 73 years, and the duration of the disease from 1 month to 39 years. The lung scanning showed perfusion defects in 100% of the cases, not related with the type of colagenosis, duration of the disease, sex or age. On the other hand, the X rays study showed alterations in only 2 patients (20% of the cases). The ventilatory and respiratory functions were tested on 7 patients showing alteration (mixed pattern with predominance of the restrictive factor) in only one (14.3%), while the other patients were normal (85.7%). The importance of the lung perfusion scanning study in all patients with collagen vascular diseases is emphasized.

  19. Fetal lung volume in congenital diaphragmatic hernia: association of prenatal MR imaging findings with postnatal chronic lung disease.

    Science.gov (United States)

    Debus, Angelika; Hagelstein, Claudia; Kilian, A Kristina; Weiss, Christel; Schönberg, Stefan O; Schaible, Thomas; Neff, K Wolfgang; Büsing, Karen A

    2013-03-01

    To assess whether chronic lung disease (CLD) in surviving infants with congenital diaphragmatic hernia (CDH) is associated with lung hypoplasia on the basis of the results of antenatal observed-to-expected fetal lung volume (FLV) ratio measurement at magnetic resonance (MR) imaging. The study received approval from the institutional review board, with waiver of informed consent for this retrospective review from patients who had previously given informed consent for prospective studies. The ratio of observed to expected FLV at MR imaging was calculated in 172 fetuses with CDH. At postpartum day 28, the need for supplemental oxygen implicated the diagnosis of CLD. At day 56, patients with CLD were assigned to one of three groups-those with mild, moderate, or severe CLD-according to their demand for oxygen. Logistic regression analysis was used to assess the prognostic value of the individual observed-to-expected FLV ratio for association with postnatal development of CLD. Children with CLD were found to have significantly smaller observed-to-expected FLV ratios at MR imaging than infants without CLD (P CLD revealed significant differences in observed-to-expected FLV ratio between patients with mild CLD and those with moderate (P = .012) or severe (P = .007) CLD. For an observed-to-expected FLV ratio of 5%, 99% of patients with CDH developed CLD, compared with less than 5% of fetuses with an observed-to-expected FLV ratio of 50%. Perinatally, development and grade of CLD were further influenced by the need for extracorporeal membrane oxygenation (ECMO) (P CLD in surviving infants with CDH is associated with the prenatally determined observed-to-expected FLV ratio. Early neonatal therapeutic decisions can additionally be based on this ratio. Perinatally, ECMO requirement and gestational age at delivery are useful in further improving the estimated probability of CLD.

  20. Lung tumor segmentation in PET images using graph cuts.

    Science.gov (United States)

    Ballangan, Cherry; Wang, Xiuying; Fulham, Michael; Eberl, Stefan; Feng, David Dagan

    2013-03-01

    The aim of segmentation of tumor regions in positron emission tomography (PET) is to provide more accurate measurements of tumor size and extension into adjacent structures, than is possible with visual assessment alone and hence improve patient management decisions. We propose a segmentation energy function for the graph cuts technique to improve lung tumor segmentation with PET. Our segmentation energy is based on an analysis of the tumor voxels in PET images combined with a standardized uptake value (SUV) cost function and a monotonic downhill SUV feature. The monotonic downhill feature avoids segmentation leakage into surrounding tissues with similar or higher PET tracer uptake than the tumor and the SUV cost function improves the boundary definition and also addresses situations where the lung tumor is heterogeneous. We evaluated the method in 42 clinical PET volumes from patients with non-small cell lung cancer (NSCLC). Our method improves segmentation and performs better than region growing approaches, the watershed technique, fuzzy-c-means, region-based active contour and tumor customized downhill. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hamid Tebyanian

    2017-12-01

    CONCLUSION: Decellularized lung tissue can be used in the laboratory to study various aspects of pulmonary biology and physiology and also, these results can be used in the continued improvement of engineered lung tissue.

  2. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  3. Image findings and follow-up of lung echinococcosis after chemotherapy with liposome-entrapped albendazole

    International Nuclear Information System (INIS)

    Muhebaiti Mahesuti; Liu Wenyan; Ma Wenli; Wen Hao; Taxipulati

    2007-01-01

    Objective: To evaluate the image features of lung echinococcosis under chemotherapy with liposome-entrapped albendazole. Methods: Sixteen patients with lung echinococcosis who took orally liposome-entrapped albendazole (10 mg/kg, Bid, 3 to 10 months) were examined by X-ray film, CT or MR before therapy and followed-up by those imaging studies after therapy. The morphological changes of the lesions as reflected on imaging findings were reviewed, with correlation of the clinic check-ups and laboratory tests, to judge effectiveness of the treatment. Results: Five cases were completely cured. The treatment was effective in 6 cases, partially effective in 4 and invalid in 1 case. The imaging findings included: cavity formation in 7 cases due to hydatid cyst degeneration and absorption of cyst liquid; reduction in lesion size in 6 cases; disappearance of lesion or decrease in lesion numbers in 2 cases; increase in lesion density and blurring of cyst wall in 6 cases duo to cyst consolidation; rupture, shrinkage, collapse of cyst inner membrane in 3 cases; calcification of the cyst wall or contents in 6 cases. Conclusions: It is shown that liposome-entrapped albendazole chemotherapy has curative effect for lung echinococcosis. Imaging examinations are effective for monitoring the evolution of the disease by depicting the morphologic-pathologic changes of the lesions. (authors)

  4. Imaging and Pathological Features of Percutaneous Cryosurgery on Normal Lung Evaluated in a Porcine Model

    Directory of Open Access Journals (Sweden)

    Lizhi NIU

    2010-07-01

    Full Text Available Background and objective Lung cancer is one of the most commonly occurring malignancies and frequent causes of death in the world. Cryoablation is a safe and alternative treatment for unresectable lung cancer. Due to the lung being gas-containing organ and different from solid organs such as liver and pancreas, it is difficult to achieve the freezing range of beyond the tumor edge 1 cm safety border. The aim of this study is to examine the effect of different numbers of freeze cycles on the effectiveness of cryoablation on normal lung tissue and to create an operation guideline that gives the best effect. Methods Six healthy Tibetan miniature pigs were given a CT scan and histological investigation after percutaneous cryosurgery. Cryoablation was performed as 2 cycles of 10 min of active freezing in the left lung; each freeze followed by a 5 min thaw. In the right lung, we performed the same 2 cycles of 5 min of freezing followed by 5 min of thawing. However, for the right lung, we included a third cycle of consisting of 10 min of freezing followed by 5 min of thawing. Three cryoprobes were inserted into the left lung and three cryoprobes in the right lung per animal, one in the upper and two in the lower lobe, so as to be well away from each other. Comparison under the same experimental condition was necessary. During the experiment, observations were made regarding the imaging change of ice-ball. The lungs were removed postoperatively at 3 intervals: 4 h, 3 d of postoperation and 7 d of postoperation, respectively, to view microscopic and pathological change. Results The ice-ball grew gradually in relation to the increase in time, and the increase in number of cycles. The size of the cryolesion (hypothesis necrotic area in specimens, over time, became larger in size than the size of the ice-ball during operation, regardless of whether 2 or 3 freeze-thaw cycles were performed. The area of necrosis was gradually increased over the course of time

  5. Classification of normal and abnormal images of lung cancer

    Science.gov (United States)

    Bhatnagar, Divyesh; Tiwari, Amit Kumar; Vijayarajan, V.; Krishnamoorthy, A.

    2017-11-01

    To find the exact symptoms of lung cancer is difficult, because of the formation of the most cancers tissues, wherein large structure of tissues is intersect in a different way. This problem can be evaluated with the help of digital images. In this strategy images will be examined with basic operation of PCA Algorithm. In this paper, GLCM method is used for pre-processing of the snap shots and function extraction system and to test the level of diseases of a patient in its premature stage get to know it is regular or unusual. With the help of result stage of cancer will be evaluated. With the help of dataset and result survival rate of cancer patient can be estimated. Result is based totally on the precise and wrong arrangement of the patterns of tissues.

  6. The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; McNair, Helen A.; Cronin, Bernadette; Courbon, Frederic; Bedford, James L.; Brada, Michael

    2005-01-01

    Background and purpose: Patients with non-small cell lung cancer (NSCLC) often have inhomogeneous lung perfusion. Radiotherapy planning computed tomography (CT) scans have been accurately co-registered with lung perfusion single photon emission computed tomography (SPECT) scans to design radiotherapy treatments which limit dose to healthy 'perfused' lung. Patients and methods: Patients with localised NSCLC had CT and SPECT scans accurately co-registered in the planning system. The SPECT images were used to define a volume of perfused 'functioning' lung (FL). Inverse planning software was used to create 3D-conformal plans, the planning objective being either to minimise the dose to whole lungs (WL) or to minimise the dose to FL. Results: Four plans were created for each of six patients. The mean difference in volume between WL and FL was 1011.7 cm 3 (range 596.2-1581.1 cm 3 ). One patient with bilateral upper lobe perfusion deficits had a 16% reduction in FLV 2 (the percentage volume of functioning lung receiving ≥20 Gy). The remaining patients had inhomogeneous perfusion deficits such that inverse planning was not able to sufficiently optimise beam angles to avoid functioning lung. Conclusion: SPECT perfusion images can be accurately co-registered with radiotherapy planning CT scans and may be helpful in creating treatment plans for patients with large perfusion deficits

  7. Anatomic, functional and molecular imaging in lung cancer precision radiation therapy: treatment response assessment and radiation therapy personalization

    Science.gov (United States)

    Everitt, Sarah; Schimek-Jasch, Tanja; Li, X. Allen; Nestle, Ursula; Kong, Feng-Ming (Spring)

    2017-01-01

    This article reviews key imaging modalities for lung cancer patients treated with radiation therapy (RT) and considers their actual or potential contributions to critical decision-making. An international group of researchers with expertise in imaging in lung cancer patients treated with RT considered the relevant literature on modalities, including computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET). These perspectives were coordinated to summarize the current status of imaging in lung cancer and flag developments with future implications. Although there are no useful randomized trials of different imaging modalities in lung cancer, multiple prospective studies indicate that management decisions are frequently impacted by the use of complementary imaging modalities, leading both to more appropriate treatments and better outcomes. This is especially true of 18F-fluoro-deoxyglucose (FDG)-PET/CT which is widely accepted to be the standard imaging modality for staging of lung cancer patients, for selection for potentially curative RT and for treatment planning. PET is also more accurate than CT for predicting survival after RT. PET imaging during RT is also correlated with survival and makes response-adapted therapies possible. PET tracers other than FDG have potential for imaging important biological process in tumors, including hypoxia and proliferation. MRI has superior accuracy in soft tissue imaging and the MRI Linac is a rapidly developing technology with great potential for online monitoring and modification of treatment. The role of imaging in RT-treated lung cancer patients is evolving rapidly and will allow increasing personalization of therapy according to the biology of both the tumor and dose limiting normal tissues. PMID:29218270

  8. Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: a simulation study.

    Science.gov (United States)

    Schullcke, B; Krueger-Ziolek, S; Gong, B; Jörres, R A; Mueller-Lisse, U; Moeller, K

    2017-10-10

    Electrical impedance tomography (EIT) has mostly been used in the Intensive Care Unit (ICU) to monitor ventilation distribution but is also promising for the diagnosis in spontaneously breathing patients with obstructive lung diseases. Beside tomographic images, several numerical measures have been proposed to quantitatively assess the lung state. In this study two common measures, the 'Global Inhomogeneity Index' and the 'Coefficient of Variation' were compared regarding their capability to reflect the severity of lung obstruction. A three-dimensional simulation model was used to simulate obstructed lungs, whereby images were reconstructed on a two-dimensional domain. Simulations revealed that minor obstructions are not adequately recognized in the reconstructed images and that obstruction above and below the electrode plane may result in misleading values of inhomogeneity measures. EIT measurements on several electrode planes are necessary to apply these measures in patients with obstructive lung diseases in a promising manner.

  9. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    International Nuclear Information System (INIS)

    Redler, G; Bernard, D; Templeton, A; Chu, J; Nair, C Kumaran; Turian, J

    2015-01-01

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  10. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  11. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  12. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  13. A naturally occurring contrast agent for OCT imaging of smokers' lung

    International Nuclear Information System (INIS)

    Yang Ying; Bagnaninchi, Pierre O; Whiteman, Suzanne C; Pittius, Daniel Gey van; Haj, Alicia J El; Spiteri, Monica A; Wang, Ruikang K

    2005-01-01

    Optical coherence tomography (OCT) offers great potential for clinical applications in terms of its cost, safety and real-time imaging capability. Improvement of its resolution for revealing sub-layers or sub-cellular components within a tissue will further widen its application. In this study we report that carbon pigment, which is frequently present in the lungs of smokers, could be used as a contrast agent to improve the OCT imaging of lung tissue. Carbon produced an intense bright OCT image at a relatively deep location. The parallel histopathological section analysis confirmed the presence of carbon pigment in such tissues. The underlying mechanism of the OCT image formation has been discussed based on a model system in which carbon particles were dispersed in agar gel. Calculations and in-depth intensity profiles of OCT revealed that higher refractive index particles with a size close to or smaller than the wavelength would greatly increase backscattering and generate a sharp contrast, while a particle size several times larger than the wavelength would absorb or obstruct the light path. The naturally occurring contrast agent could provide a diagnostic biomarker of lung tissue in smokers. Furthermore, carbon under such circumstances, can be used as an effective exogenous contrast agent, with which specific components or tissues exhibiting early tumour formation can be optically labelled to delineate the location and boundary, providing potential for early cancer detection and its treatment

  14. SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Cazoulat, G; Owen, D; Matuszak, M; Balter, J; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanical model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these

  15. Automated segmentation of murine lung tumors in x-ray micro-CT images

    Science.gov (United States)

    Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis

    2014-03-01

    Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.

  16. Critical evaluation of lung scintigraphy in cystic fibrosis: study of 113 patients

    International Nuclear Information System (INIS)

    Piepsz, A.; Wetzburger, C.; Spehl, M.; Machin, D.; Dab, I.; Ham, H.R.; Vandevivere, J.; Baran, D.

    1980-01-01

    A long-term study has been performed on 285 lung perfusion scintigrams obtained from 113 patients with cystic fibrosis. Transverse and longitudinal comparisons with clinical and radiological scores, as well as retrospective analysis of the deceased patients, were the methods used in order to evaluate the importance of the scintigraphic images. It appears that lung scintigraphy is the best index of the regional lung impairment, and contributes, as does a chest radiograph, to the early detection of lung lesions, the two methods being complementary

  17. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer

    OpenAIRE

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Background Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. Methods CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A cli...

  18. Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets, Complementary/Innovative Treatment, and Therapeutic Modalities

    Science.gov (United States)

    2011-02-01

    Therapeutic and Imaging Agents to Lung Cancer (PI and co-PI: Renata Pasqualini , Ph.D., Wadih Arap, M.D., Ph.D.) The studies outlined in this proposal...with Drs. Pasqualini , Arap, and Wistuba. The IHC staining of lung cancer TMAs (390 cases) has been completed. We are working with investigators to...Project 3, R. Pasqualini ). This project was completed and a manuscript is in preparation by Dr. Pasqualini’s lab. b) Molecular abnormalities

  19. Application of CT perfusion imaging in radiotherapy for lung cancer

    International Nuclear Information System (INIS)

    Xia Guangrong; Liu Guimei; He Wen; Jin Guohua; Xie Ruming; Xu Yongxiang; Li Xiaobo; Li Xuebing

    2011-01-01

    Objective: To investigate the value of CT perfusion imaging in evaluation of therapeutic effect and prognosis in radiotherapy for lung cancer. Methods: Fifty-one cases of lung cancer who were unable or refused to be operated on, 36 males and 15 females, aged 37-80, underwent CT perfusion imaging, 29 of which only before radiotherapy and 22 before and after radiotherapy twice. The images were collected by cine dynamic scanning (5 mm/4 slices) and input into the GE AW4.0 workstation for data processing. The slice positions of CT imaging were determined according to the largest tumor size in CT scan. Regions of interest of tumor were drawn at the region corresponding to the original images of CT perfusion. Radiotherapy was performed after CT perfusion imaging. Relevant parameters, including blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability surface (PS) were calculated. The treatment response after radiotherapy was evaluated by RECIST. At 2 -4 weeks after the treatment, CT examination was conducted once more. Results: The tests of the 51 patients showed that the BV was 13.6 ml·100 g -1 , the BF was 129.5 ml·min -1 ·100 g -1 , the MTT was 9.1 s, and the PS was 10.0 ml· min -1 · 100 g -1 before radiotherapy. The tests of the 22 of the 51 patients showed that the values of BV and BF after radiotherapy were 7.6 ml· 100 g -1 and 97.8 ml·min -1 · 100 g -1 , respectively, both lower than those before radiotherapy (11.2 and 108.7 ml·min -1 ·100 g -1 , respectively), however, both not significantly (t=1.28, 0.40, P>0.05); and the values of MTT and PS after radiotherapy were 8.9 s and 7.8 ml·min -1 · 100 g -1 , respectively, both not significantly higher than those before radiotherapy (7.2 s and 6.8 ml· min -1 · 100 g -1 , respectively, t=-1.15, -0.57, P>0.05). The mean area of tumor after radiotherapy was 1189.6 mm 2 , significantly less than that before radiotherapy (1920.3 mm 2 , t=3.98, P<0.05). The MTT of the SCLC patients was 12

  20. Clinical chest CAD system for lung cancer, COPD, and osteoporosis based on MDCT images

    International Nuclear Information System (INIS)

    Matsuhiro, Mikio; Suzuki, Hidenobu; Saita, Shinsuke

    2011-01-01

    Lung cancer kills more people than any other cancer worldwide. Lung cancer screening using low-dose CT have been performed in many countries. Comparative reading of current and past CT images is important for evaluation of pulmonary nodules in lung cancer CT screening. However, primary problem in comparative reading is mismatch of slice and nodule positions caused by lung variation. It is hard for physicians to manually match slice positions, nodule positions, and evaluate the nodule's degree of change. A system to assist smooth comparative reading is necessary. We proposed a comparative reading system for lung cancer CT screening. A distinctive feature is highly accurate matching method of region of interest based on thoracic organs registration. Pulmonary blood vessels registration using analysis of the tree structure is performed. The system is evaluated by 1 mm and 2 mm slice thickness CT images obtained from lung cancer CT screening. We show how it is useful for lung cancer CT screening. (author)

  1. Spirometrically gated /sup 133/Xe ventilation imaging and phase analysis for assessment of regional lung function

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Tomio (Kanto Teishin Hospital, Tokyo (Japan))

    1984-10-01

    The purpose of this study is to develop the technique of performing spirometrically gated /sup 133/Xe ventilation imaging and to evaluate its clinical usefulness for the assessment of regional ventilatory function in various lung diseases. Patients rebreathed /sup 133/Xe gas through the system with constant rates signaled by a metronome. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p < 0.001) and down slope of flow-volume curve (r=0.55, p < 0.001), and less prominently with %VC (r=0.42, p < 0.01). Mean S.D. in patients with COPD (12.3 +- 6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3 +- 1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD.

  2. Spirometrically gated 133Xe ventilation imaging and phase analysis for assessment of regional lung function

    International Nuclear Information System (INIS)

    Inoue, Tomio

    1984-01-01

    The purpose of this study is to develop the technique of performing spirometrically gated 133 Xe ventilation imaging and to evaluate its clinical usefulness for the assessmentof regional ventilatory function in various lung diseases. Patients rebreathe d 133 Xe gas through the system with constant rates signaled by a metronom. The trigger signals from the patients were recorded in a minicomputer for 60 respiratory cycles simultaneously with posterior lung images. Functional images (phase analysis images) indicating phase and amplitude of regional ventilation were constructed by the first harmonic Fourier analysis. Materials included 13 normal volunteers and patients with COPD (24), lung cancer (5), pulmonary embolism (4) and others (20). In normal controls, phase analysis images before respiratory motion correction revealed gradual decrease in amplitude from base to apex with uniform phase distribution. The amplitude and phase distribution after respiratory motion correction became even more uniform. In patients with COPD, phase analysis images showed asymmetrical and irregular amplitude distribution with non-uniform phase distribution. The standard deviation (S.D.) of phase histogram correlated well with FEVsub(1.0)% (r=0.71, p<0.001) and down slope of flowvolume curve (r=0.55, p<0.001), and less prominently with %VC (r=0.42, p<0.01). Mean S.D. in patients with COPD (12.3+-6.5 degree, mean+-1 s.d.) was significantly larger than in normal controls (6.3+-1.5). Amplitude profile curve analysis revealed 83% sensitivity for the detection of abnormal spirometric respiratory function test. Data aquisition and processing of present method are rapid and easy to perform. The phase analysis of the gated ventilation images should prove useful in the clinical evaluation of patients with uneven ventilation such as COPD. (J.P.N.)

  3. Differentiating invasive and pre-invasive lung cancer by quantitative analysis of histopathologic images

    Science.gov (United States)

    Zhou, Chuan; Sun, Hongliu; Chan, Heang-Ping; Chughtai, Aamer; Wei, Jun; Hadjiiski, Lubomir; Kazerooni, Ella

    2018-02-01

    We are developing automated radiopathomics method for diagnosis of lung nodule subtypes. In this study, we investigated the feasibility of using quantitative methods to analyze the tumor nuclei and cytoplasm in pathologic wholeslide images for the classification of pathologic subtypes of invasive nodules and pre-invasive nodules. We developed a multiscale blob detection method with watershed transform (MBD-WT) to segment the tumor cells. Pathomic features were extracted to characterize the size, morphology, sharpness, and gray level variation in each segmented nucleus and the heterogeneity patterns of tumor nuclei and cytoplasm. With permission of the National Lung Screening Trial (NLST) project, a data set containing 90 digital haematoxylin and eosin (HE) whole-slide images from 48 cases was used in this study. The 48 cases contain 77 regions of invasive subtypes and 43 regions of pre-invasive subtypes outlined by a pathologist on the HE images using the pathological tumor region description provided by NLST as reference. A logistic regression model (LRM) was built using leave-one-case-out resampling and receiver operating characteristic (ROC) analysis for classification of invasive and pre-invasive subtypes. With 11 selected features, the LRM achieved a test area under the ROC curve (AUC) value of 0.91+/-0.03. The results demonstrated that the pathologic invasiveness of lung adenocarcinomas could be categorized with high accuracy using pathomics analysis.

  4. A 4DCT imaging-based breathing lung model with relative hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shinjiro; Choi, Sanghun [IIHR – Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A. [Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [IIHR – Hydroscience & Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Mechanical and Industrial Engineering, The University of Iowa, 3131 Seamans Center, Iowa City, IA 52242 (United States)

    2016-12-01

    To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.

  5. The preparation and identification of peptide imaging agent of lung cancer

    International Nuclear Information System (INIS)

    Chu Liping; Wang Yan; Wang Yueying; Liu Jinjian; Wu Hongying; Liu Jianfeng

    2010-01-01

    Objective: To screen in vivo lung cancer specific binding 7-peptide from T7 phage display random peptide library and prepare peptide imaging agent in early in early diagnosis of lung cancer. Methods: Used phage display in vivo technology to get the 7-peptide phage that can bind the lung cancer specifically, then sequenced and synthesized 7-peptide. After being labeled by 125 I, this 7-peptide was injected into mice via vein and the distribution in the mice tumor mold was observed. Results: One 7-peptide was obtained after four rounds of screening, and the peptide could bind lung cancer tissue specifically. Metabolism of this peptide in mice was fast and imaging of lung cancer was best two hours later after injection. The distribution in vivo decreased and almost disappeared after six hours. Conclusion: This 7-peptide could be used to image and diagnose of lung cancer effectively. (authors)

  6. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Youbing, E-mail: youbing-yin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Choi, Jiwoong, E-mail: jiwoong-choi@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Hoffman, Eric A., E-mail: eric-hoffman@uiowa.edu [Department of Radiology, The University of Iowa, Iowa City, IA 52242 (United States); Department of Biomedical Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242 (United States); Tawhai, Merryn H., E-mail: m.tawhai@auckland.ac.nz [Auckland Bioengineering Institute, The University of Auckland, Auckland (New Zealand); Lin, Ching-Long, E-mail: ching-long-lin@uiowa.edu [Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2013-07-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C{sub 1} continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung.

  7. A multiscale MDCT image-based breathing lung model with time-varying regional ventilation

    Science.gov (United States)

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2012-01-01

    A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749

  8. Usefulness of computerized method for lung nodule detection on digital chest radiographs using similar subtraction images from different patients

    International Nuclear Information System (INIS)

    Aoki, Takatoshi; Oda, Nobuhiro; Yamashita, Yoshiko; Yamamoto, Keiji; Korogi, Yukunori

    2012-01-01

    Purpose: The purpose of this study is to evaluate the usefulness of a novel computerized method to select automatically the similar chest radiograph for image subtraction in the patients who have no previous chest radiographs and to assist the radiologists’ interpretation by presenting the “similar subtraction image” from different patients. Materials and methods: Institutional review board approval was obtained, and the requirement for informed patient consent was waived. A large database of approximately 15,000 normal chest radiographs was used for searching similar images of different patients. One hundred images of candidates were selected according to two clinical parameters and similarity of the lung field in the target image. We used the correlation value of chest region in the 100 images for searching the most similar image. The similar subtraction images were obtained by subtracting the similar image selected from the target image. Thirty cases with lung nodules and 30 cases without lung nodules were used for an observer performance test. Four attending radiologists and four radiology residents participated in this observer performance test. Results: The AUC for all radiologists increased significantly from 0.925 to 0.974 with the CAD (P = .004). When the computer output images were available, the average AUC for the residents was more improved (0.960 vs. 0.890) than for the attending radiologists (0.987 vs. 0.960). Conclusion: The novel computerized method for lung nodule detection using similar subtraction images from different patients would be useful to detect lung nodules on digital chest radiographs, especially for less experienced readers.

  9. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    Science.gov (United States)

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. Copyright © 2015 the American Physiological Society.

  10. Do Tumors in the Lung Deform During Normal Respiration? An Image Registration Investigation

    International Nuclear Information System (INIS)

    Wu Jianzhou; Lei Peng; Shekhar, Raj; Li Huiling; Suntharalingam, Mohan; D'Souza, Warren D.

    2009-01-01

    Purpose: The purpose of this study was to investigate whether lung tumors may be described adequately using a rigid body assumption or whether they deform during normal respiration. Methods and Materials: Thirty patients with early stage non-small-cell lung cancer underwent four-dimensional (4D) computed tomography (CT) simulation. The gross tumor volume (GTV) was delineated on the 4D CT images. Image registration was performed in the vicinity of the GTV. The volume of interest for registration was the GTV and minimal volume of surrounding non-GTV tissue. Three types of registration were performed: translation only, translation + rotation, and deformable. The GTV contour from end-inhale was mapped to end-exhale using the registration-derived transformation field. The results were evaluated using three metrics: overlap index (OI), root-mean-squared distance (RMS), and Hausdorff distance (HD). Results: After translation only image registration, on average OI increased by 21.3%, RMS and HD reduced by 1.2 mm and 2.0 mm, respectively. The succeeding increases in OI after translation + rotation and deformable registration were 1.1% and 1.4% respectively. The succeeding reductions in RMS were 0.1 mm and 0.2 mm respectively. No reduction in HD was observed after translation + rotation and deformable image registration compared with translation only registration. The difference in the results from the three registration scenarios was independent of GTV size and motion amplitude. Conclusions: The primary effect of normal respiration on lung tumors was the translation of tumors. Rotation and deformation of lung tumors was determined to be minimal.

  11. Quantitative measurement of Y90 brehmmstrahlung images after of Y90 Sir-Spheres implantation to assess lung shunting

    International Nuclear Information System (INIS)

    Forwood, Nicholas J.; Pocock, Nicholas; Shin, Jane; Young, Andy M; Szeto, Edwin R.

    2009-01-01

    Full text: Background: In clinical practice the dose of Y 9 0 Sir-Spheres is calculated using a pre injection of Tc 9 9 m MAA. There is however a potential difference due to the different properties of Tc 9 9 m MAA and Y 9 0 Sir-Spheres. We assessed the concordance of lung shunting of Y 9 0 Sir-Spheres estimated using Y 9 0 Bremsstrahlung imaging, compared to shunting assessed using Tc 9 9 m MAA. Methods: 15 Patients were evaluated using 150-200 MBq of Tc 9 9 m MAA injected into the hepatic artery under angiographic guidance. Whole body images were acquired using a LEAP collimator (window of 140 kEv+/-10%). The patients were subsequently treated with Y 9 0 Sir-Spheres. After microspheres injection, whole body brehmsstrahlung images were acquired using a medium energy collimator (window settings of 75 kEv +/- 20%). Tc 9 9 m MAA images were paired with their corresponding bremsstrahlung image and lung shunting in the stu ides calculated simultaneously. Each paired dataset was analyzed by 5 operators. Results: The mean lung shunting for Tc 9 9 m MAA acquisition was 3.32% (SD 2.03) which was significantly lower than the lung shunting using the Y 9 0 acquisitions: mean 16.19% (SD of 6.43). The Pearson coefficient was r = 0.62 (p 9 0 Sir-Spheres bremsstrahlung imaging is higher than that calculated by Tc 9 9 m MAA imaging. The relationship is not sufficiently strong to use bremsstahlung imaging to retrospectively quantify the lung-to-liver shunting as indicated using Tc 9 9 M AA. Further studies are underway to assess the reliability of Tc 9 9 m MAA lung uptake calculations in determining the dose of Y 9 0 Sir-Spheres.

  12. Shrinking lung syndrome as a manifestation of pleuritis: a new model based on pulmonary physiological studies.

    Science.gov (United States)

    Henderson, Lauren A; Loring, Stephen H; Gill, Ritu R; Liao, Katherine P; Ishizawar, Rumey; Kim, Susan; Perlmutter-Goldenson, Robin; Rothman, Deborah; Son, Mary Beth F; Stoll, Matthew L; Zemel, Lawrence S; Sandborg, Christy; Dellaripa, Paul F; Nigrovic, Peter A

    2013-03-01

    The pathophysiology of shrinking lung syndrome (SLS) is poorly understood. We sought to define the structural basis for this condition through the study of pulmonary mechanics in affected patients. Since 2007, most patients evaluated for SLS at our institutions have undergone standardized respiratory testing including esophageal manometry. We analyzed these studies to define the physiological abnormalities driving respiratory restriction. Chest computed tomography data were post-processed to quantify lung volume and parenchymal density. Six cases met criteria for SLS. All presented with dyspnea as well as pleurisy and/or transient pleural effusions. Chest imaging results were free of parenchymal disease and corrected diffusing capacities were normal. Total lung capacities were 39%-50% of predicted. Maximal inspiratory pressures were impaired at high lung volumes, but not low lung volumes, in 5 patients. Lung compliance was strikingly reduced in all patients, accompanied by increased parenchymal density. Patients with SLS exhibited symptomatic and/or radiographic pleuritis associated with 2 characteristic physiological abnormalities: (1) impaired respiratory force at high but not low lung volumes; and (2) markedly decreased pulmonary compliance in the absence of identifiable interstitial lung disease. These findings suggest a model in which pleural inflammation chronically impairs deep inspiration, for example through neural reflexes, leading to parenchymal reorganization that impairs lung compliance, a known complication of persistently low lung volumes. Together these processes could account for the association of SLS with pleuritis as well as the gradual symptomatic and functional progression that is a hallmark of this syndrome.

  13. Effects of smoking on lung uptake of 201Tl during exercise myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Ouyang Wei; He Guorong; Liu Jinhua

    2004-01-01

    Objective: To investigate the influence of smoking on lung uptake of 201 Tl during myocardial perfusion imaging. Methods: Ninety-two healthy subjects, with normal 201 Tl myocardial perfusion imaging findings but no evidence of left ventricular hypertrophy and pulmonary disease, were divided into three groups, smoker, nonsmoker and quitted smoker groups. Exercise/delay 201 Tl myocardial perfusion imaging was performed on all subjects included. Lung/heart ratio was defined on the anterior planar image obtained during exercise tomography. Results: Both the lung/heart ratios during exercise in smoker (0.40 ± 0.07, F=10.635, P 201 Tl lung/heart ratios in smokers are higher than in nonsmokers and this must be kept in mind when 201 Tl lung/heart ratios are used clinically, even in quitted smokers

  14. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Walkup, Laura L. [Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States); Woods, Jason C. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Cincinnati Children' s Hospital Medical Center, Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati, OH (United States)

    2016-12-15

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  15. Quantitative CT characterization of pediatric lung development using routine clinical imaging

    International Nuclear Information System (INIS)

    Stein, Jill M.; Brody, Alan S.; Fleck, Robert J.; Walkup, Laura L.; Woods, Jason C.

    2016-01-01

    The use of quantitative CT analysis in children is limited by lack of normal values of lung parenchymal attenuation. These characteristics are important because normal lung development yields significant parenchymal attenuation changes as children age. To perform quantitative characterization of normal pediatric lung parenchymal X-ray CT attenuation under routine clinical conditions in order to establish a baseline comparison to that seen in pathological lung conditions. We conducted a retrospective query of normal CT chest examinations in children ages 0-7 years from 2004 to 2014 using standard clinical protocol. During these examinations semi-automated lung parenchymal segmentation was performed to measure lung volume and mean lung attenuation. We analyzed 42 CT examinations in 39 children, ages 3 days to 83 months (mean ± standard deviation [SD] = 42 ± 27 months). Lung volume ranged 0.10-1.72 liters (L). Mean lung attenuation was much higher in children younger than 12 months, with values as high as -380 Hounsfield units (HU) in neonates (lung volume 0.10 L). Lung volume decreased to approximately -650 HU by age 2 years (lung volume 0.47 L), with subsequently slower exponential decrease toward a relatively constant value of -860 HU as age and lung volume increased. Normal lung parenchymal X-ray CT attenuation decreases with increasing lung volume and age; lung attenuation decreases rapidly in the first 2 years of age and more slowly thereafter. This change in normal lung attenuation should be taken into account as quantitative CT methods are translated to pediatric pulmonary imaging. (orig.)

  16. Efficacy of 67 gallium ECT imaging in lymphoma, infection, and lung carcinoma: A comparison with planar imaging

    International Nuclear Information System (INIS)

    Harwood, S.J.; Anderson, M.W.; Klein, R.C.; Friedman, B.I.; Carroll, R.G.

    1984-01-01

    Emission computed tomography (ECT) studies were performed on a GE 400 A/T camera and ADAC computers (system 3 and system 3300). Thirty-three sets of ECT and planar images were obtained in 20 patients over a six month period. Imaging was performed 48 hours after the intravenous administration of 5 mc of Gallium 67 citrate. No bowel preparation was employed. Comparison is made of the initial nuclear medicine report derived from planar and ECT imaging aided by clinical knowledge versus the consensus opinion of two nuclear medicine physicians reading the planar images along with minimal clinical information. The lymphoma series consists of 18 scans in 10 patients. There were 5 scans in which a false negative planar interpretation was changed to a true positive ECT interpretation. Sensitivity of planar imaging for lymphoma was 58% which rose to 100% with addition of ECT information. There were no false positives by either technique. There were 5 sets of scans in 5 lung carcinoma patients. Sensitivity of the planar images was 60% because of 2 false negative results. Sensitivity of the ECT technique was 100%. There were no false positives. The infection series consists of 10 scans in 5 patients. Sensitivity of ECT was 100%, sensitivity of planar was 66%. There was 1 false positive planar. For the total series the accuracy of planar imaging was 69% and the predictive value of a negative planar interpretation was 44%. Corresponding values for ECT imaging were 100%. The authors' experience demonstrates significant increase in sensitivity without loss of specificity resulting from the use of Emission Computed Tomography in both chest and abdomen in patients with lymphoma, infection, and lung cancer

  17. FDG-PET imaging for the staging and follow-up of small cell lung cancer

    International Nuclear Information System (INIS)

    Schumacher, T.; Brink, I.; Mix, M.; Reinhardt, M.; Moser, E.; Nitzsche, E.; Herget, G.; Digel, W.; Henke, M.

    2001-01-01

    The staging procedures for small cell lung cancer do not differ appreciably from those for other forms of lung cancer. For practical purposes, the TNM stages are usually collapsed into a simple binary classification: limited disease and extensive disease. This study was performed to answer the question of whether fluorine-18 labelled 2-deoxy-2-D-glucose positron emission tomography (FDG-PET) imaging permits appropriate work-up (including both primary and follow-up staging) of patients presenting with small cell lung cancer, as compared with currently recommended staging procedures. Thirty-six FDG-PET examinations were performed in 30 patients with histologically proven small cell lung cancer. Twenty-four patients were examined for primary staging while four were imaged for therapy follow-up only. Two patients underwent both primary staging and up to four examinations for therapy follow-up. Static PET imaging was performed according to a standard protocol. Image reconstruction was based on an ordered subset expectation maximization algorithm including post-injection segmented attenuation correction. Results of FDG-PET were compared with those of the sum of other staging procedures. Identical results from FDG-PET and the sum of the other staging procedures were obtained in 23 of 36 examinations (6 x limited disease, 12 x extensive disease, 5 x no evidence of disease). In contrast to the results of conventional staging, FDG-PET indicated extensive disease resulting in an up-staging in seven patients. In one patient in whom there was no evidence for tumour on conventional investigations following treatment, FDG-PET was suggestive of residual viability of the primary tumour. Furthermore, discordant results were observed in five patients with respect to lung, bone, liver and adrenal gland findings, although in these cases the results did not affect staging as limited or extensive disease. Moreover, FDG-PET appeared to be more sensitive for the detection of metastatic

  18. Impact of 4D-(18)FDG-PET/CT imaging on target volume delineation in SBRT patients with central versus peripheral lung tumors. Multi-reader comparative study.

    Science.gov (United States)

    Chirindel, Alin; Adebahr, Sonja; Schuster, Daniel; Schimek-Jasch, Tanja; Schanne, Daniel H; Nemer, Ursula; Mix, Michael; Meyer, Philipp; Grosu, Anca-Ligia; Brunner, Thomas; Nestle, Ursula

    2015-06-01

    Evaluation of the effect of co-registered 4D-(18)FDG-PET/CT for SBRT target delineation in patients with central versus peripheral lung tumors. Analysis of internal target volume (ITV) delineation of central and peripheral lung lesions in 21 SBRT-patients. Manual delineation was performed by 4 observers in 2 contouring phases: on respiratory gated 4DCT with diagnostic 3DPET available aside (CT-ITV) and on co-registered 4DPET/CT (PET/CT-ITV). Comparative analysis of volumes and inter-reader agreement. 11 cases of peripheral and 10 central lesions were evaluated. In peripheral lesions, average CT-ITV was 6.2 cm(3) and PET/CT-ITV 8.6 cm(3), resembling a mean change in hypothetical radius of 2 mm. For both CT-ITVs and PET/CT-ITVs inter reader agreement was good and unchanged (0.733 and 0.716; p=0.58). All PET/CT-ITVs stayed within the PTVs derived from CT-ITVs. In central lesions, average CT-ITVs were 42.1 cm(3), PET/CT-ITVs 44.2 cm(3), without significant overall volume changes. Inter-reader agreement improved significantly (0.665 and 0.750; p1 ml in average for all observers. The addition of co-registered 4DPET data to 4DCT based target volume delineation for SBRT of centrally located lung tumors increases the inter-observer agreement and may help to avoid geographic misses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Serial lung imaging with /sup 123/I-IMP in localized pulmonary lesions

    Energy Technology Data Exchange (ETDEWEB)

    Nakajo, Masayuki; Shimada, Jurio; Shimozono, Michiko; Uchiyama, Noriaki; Hiraki, Yoshiyuki; Shinohara, Shinji.

    1988-05-01

    /sup 123/I-IMP (N-isopropyl-p-(/sup 123/I)-iodoamphetamine) dynamic (1 frame/min for 25 mins), 30-min and 4-hr static lung imaging was performed in a total of 65 patients with roentgenographic evidence of localized pulmonary lesion (12 with pneumonia, one with lung abscess, 5 with pulmonary tuberculosis, 3 with pneumoconiosis, one with lung fluke disease and 43 with various histological types of primary lung cancer). The findings in 65 of 70 (95 %) lesions in the initial 1 or 2-min dynamic /sup 123/I-IMP images were analogous to those obtained by /sup 99m/Tc-MAA lung perfusion imaging and decreased activity was observed in 68 of 70 (97 %) lesions, suggesting that the initial images mainly reflected the relative distribution of pulmonary arterial blood flow. However, /sup 123/I-IMP accumulated differently according to the pathological conditions afterwards. Decrease activity from /sup 123/I-IMP was contineously observed in a cavity of the lung abscess, 2 of 2 tuberculomas, 3 of 7 large nodules of pneumoconiosis and all of the 42 cancerous lesions which were possible to be evaluated. Gradual increased in activity relative to that of ''normal lung fields'' was observed in all 14 lesions of pneumonia; pneumonic lesions of the lung abscess, tuberculosis and lung fluke disease; 4 of 7 large nodules of pneumoconiosis; all of 8 atelectatic lesions and 32 of 44 areas surrounding cancers (most of them had roentgenographic evidence of infiltrating shadows). Thus /sup 123/I-IMP accumulated increasingly in pneumonic and atelectatic lesions, while it appeared not to accumulate in such lesions replacing lung tissues as cavity, caseous and fibrous lesions and primary lung cancers. /sup 123/I-IMP can be used as a new lung imaging agent to provide diagnostic informations on the property of pulmonary lesions.

  20. Serial lung imaging with 123I-IMP in localized pulmonary lesions

    International Nuclear Information System (INIS)

    Nakajo, Masayuki; Shimada, Jurio; Shimozono, Michiko; Uchiyama, Noriaki; Hiraki, Yoshiyuki; Shinohara, Shinji.

    1988-01-01

    123 I-IMP (N-isopropyl-p-[ 123 I]-iodoamphetamine) dynamic (1 frame/min for 25 mins), 30-min and 4-hr static lung imaging was performed in a total of 65 patients with roentgenographic evidence of localized pulmonary lesion (12 with pneumonia, one with lung abscess, 5 with pulmonary tuberculosis, 3 with pneumoconiosis, one with lung fluke disease and 43 with various histological types of primary lung cancer). The findings in 65 of 70 (95 %) lesions in the initial 1 or 2-min dynamic 123 I-IMP images were analogous to those obtained by 99m Tc-MAA lung perfusion imaging and decreased activity was observed in 68 of 70 (97 %) lesions, suggesting that the initial images mainly reflected the relative distribution of pulmonary arterial blood flow. However, 123 I-IMP accumulated differently according to the pathological conditions afterwards. Decrease activity from 123 I-IMP was contineously observed in a cavity of the lung abscess, 2 of 2 tuberculomas, 3 of 7 large nodules of pneumoconiosis and all of the 42 cancerous lesions which were possible to be evaluated. Gradual increased in activity relative to that of ''normal lung fields'' was observed in all 14 lesions of pneumonia; pneumonic lesions of the lung abscess, tuberculosis and lung fluke disease; 4 of 7 large nodules of pneumoconiosis; all of 8 atelectatic lesions and 32 of 44 areas surrounding cancers (most of them had roentgenographic evidence of infiltrating shadows). Thus 123 I-IMP accumulated increasingly in pneumonic and atelectatic lesions, while it appeared not to accumulate in such lesions replacing lung tissues as cavity, caseous and fibrous lesions and primary lung cancers. 123 I-IMP can be used as a new lung imaging agent to provide diagnostic informations on the property of pulmonary lesions. (author)

  1. Lung release of HIPDM: A new index of lung dysfunction for clinical and experimental studies

    International Nuclear Information System (INIS)

    Pistolesi, M.; Miniati, M.; Ghelarducci, L.

    1985-01-01

    Lung uptake, metabolism and release of amines has been experimentally documented. The authors studied in rabbit and man the lung kinetics of radioiodinated N-N-N'-trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)-1, 3-propanediamine (HIPDM). In rabbits, after i.v. injection, 95% of HIPDM is kept within the lungs and is then released with a mean time (t-bar) of several hours as assessed both in vivo, by gamma camera external counting (n=5; t-bar=7.0 hrs), and in vitro by measuring activity in lung homogenates at various times after injection (n=56; t-bar=7.6 hrs). In 10 healthy non smoking subjects t-bar was 6.4 +- 1 hrs, whereas it was 12.1 +- 2 hrs in 10 asymptomatic smokers with normal pulmonary function tests. Preliminary clinical studies showed that HIPDM lung release is delayed in non smoking patients with primary pulmonary hypertension (n=4; t-bar=11.5 +- 2 hrs) and to a greater extent in adult respiratory distress syndrome (n=4; t-bar=25.8 +- 5hrs), whereas it was not significantly affected in cardiogenic pulmonary edema (n=4; t-bar=8.8 +- 2 hrs). Hence, both smoke exposure and injury to the lung microcirculation may impair HIPDM lung kinetics. HIPDM external counting may therefore provide a new index of lung dysfunction in man. Rabbit can be used as a model to evaluate HIPDM lung kinetics in experimentally induced lung injury

  2. Precision cut lung slices as an efficient tool for in vitro lung physio-pharmacotoxicology studies.

    Science.gov (United States)

    Morin, Jean-Paul; Baste, Jean-Marc; Gay, Arnaud; Crochemore, Clément; Corbière, Cécile; Monteil, Christelle

    2013-01-01

    1.We review the specific approaches for lung tissue slices preparation and incubation systems and the research application fields in which lung slices proved to be a very efficient alternative to animal experimentation for biomechanical, physiological, pharmacological and toxicological approaches. 2.Focus is made on air-liquid interface dynamic organ culture systems that allow direct tissue exposure to complex aerosol and that best mimic in vivo lung tissue physiology. 3.A compilation of research applications in the fields of vascular and airway reactivity, mucociliary transport, polyamine transport, xenobiotic biotransformation, chemicals toxicology and complex aerosols supports the concept that precision cut lung slices are a very efficient tool maintaining highly differentiated functions similar to in vivo lung organ when kept under dynamic organ culture. They also have been successfully used for lung gene transfer efficiency assessment, for lung viral infection efficiency assessment, for studies of tissue preservation media and tissue post-conditioning to optimize lung tissue viability before grafting. 4.Taken all together, the reviewed studies point to a great interest for precision cut lung slices as an efficient and valuable alternative to in vivo lung organ experimentation.

  3. Oxygen-enhanced magnetic resonance ventilation imaging of lung

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Chen Qun; Hatabu, Hiroto

    2001-01-01

    The oxygen-enhanced magnetic resonance (MR) ventilation imaging is a new technique, and the full extent of its physiological significance has not been elucidated. This review article includes background on (1) respiratory physiology; (2) mechanism and optimization of oxygen-enhanced MR imaging technique; (3) recent applications in animal and human models; and (4) merits and demerits of the technique in comparison with hyperpolarized noble gas MR ventilation imaging. Application of oxygen-enhanced MR ventilation imaging to patients with pulmonary diseases has been very limited. However, we believe that further basic studies, as well as clinical applications of this new technique will define the real significance of oxygen-enhanced MR ventilation imaging in the future of pulmonary functional imaging and its usefulness for diagnostic radiology

  4. A COMPREHENSIVE FRAMEWORK FOR AUTOMATIC DETECTION OF PULMONARY NODULES IN LUNG CT IMAGES

    Directory of Open Access Journals (Sweden)

    Mehdi Alilou

    2014-03-01

    Full Text Available Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive Computer Aided Diagnosis (CADx framework for detection of the lung nodules in computed tomography images. The four major components of the developed framework are lung segmentation, identification of candidate nodules, classification and visualization. The process starts with segmentation of lung regions from the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally, a combination of a rule-based procedure and support vector machine classifier (SVM is utilized to classify the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC image dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable detection performance (Sensitivity: 0.80; Fp/Scan: 3.9. Furthermore, we visualize a range of anatomical structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity Projection (MIP volume rendering method that will enable the radiologists to accurately and easily estimate the distance between the lung structures and the nodules which are frequently difficult at best to recognize from CT images.

  5. Uranium miner lung cancer study. Final report

    International Nuclear Information System (INIS)

    Saccomanno, G.

    1986-06-01

    This study on uranium miners was started in 1957 and extended through June 30, 1986. It consisted of the routine screening of sputum from uranium miners of the Colorado Plateau, and collection of surgical and autopsy material from uranium miners who developed lung cancer. The projects resulted in: (1) Proof, for the first time, that cancer takes from 10 to 15 years to develop from the maximum accumulated carcinogenic insult and can be demonstrated through progressive cellular changes of the bronchial tree; (2) Development of a method for preserving, concentrating, and processing sputum samples. This is known as the Saccomanno Technique, and is used worldwide in diagnosing lung cancer; (3) Publication of the 1st and 2nd editions of a full-color textbook entitled ''Diagnostic Pulmonary Cytology;'' (4) Presentation of conclusive data on the effects of cigarette smoking and alpha progeny radiation on uranium miners, and information on safe radiation exposure levels; (5) Development of a brush-wash tube for collecting, concentrating, and preparing bronchial brushings and washings; (6) Development of cytological criteria which has improved sensitivity from 30% to about 60%; (7) Development of criteria for cytologic identification of carcinoma in situ, making it possible to diagnose lung cancer before it can be detected on chest x-ray

  6. Hyperpolarized 129Xe MRI: A viable functional lung imaging modality?

    International Nuclear Information System (INIS)

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2007-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3 He as their imaging agent of choice rather than 129 Xe. This preference has been predominantly due to, 3 He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129 Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129 Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO 2 ) by observation of 129 Xe signal decay. We note that the measurement of pO 2 by observation of 129 Xe signal decay is more complex than that for 3 He because of an additional signal loss mechanism due to interphase diffusion of 129 Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO 2 that accounts for both traditional T 1 decay from pO 2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output

  7. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers.

    Science.gov (United States)

    Rozario, Timothy; Bereg, Sergey; Yan, Yulong; Chiu, Tsuicheng; Liu, Honghuan; Kearney, Vasant; Jiang, Lan; Mao, Weihua

    2015-05-08

    In order to locate lung tumors on kV projection images without internal markers, digitally reconstructed radiographs (DRRs) are created and compared with projection images. However, lung tumors always move due to respiration and their locations change on projection images while they are static on DRRs. In addition, global image intensity discrepancies exist between DRRs and projections due to their different image orientations, scattering, and noises. This adversely affects comparison accuracy. A simple but efficient comparison algorithm is reported to match imperfectly matched projection images and DRRs. The kV projection images were matched with different DRRs in two steps. Preprocessing was performed in advance to generate two sets of DRRs. The tumors were removed from the planning 3D CT for a single phase of planning 4D CT images using planning contours of tumors. DRRs of background and DRRs of tumors were generated separately for every projection angle. The first step was to match projection images with DRRs of background signals. This method divided global images into a matrix of small tiles and similarities were evaluated by calculating normalized cross-correlation (NCC) between corresponding tiles on projections and DRRs. The tile configuration (tile locations) was automatically optimized to keep the tumor within a single projection tile that had a bad matching with the corresponding DRR tile. A pixel-based linear transformation was determined by linear interpolations of tile transformation results obtained during tile matching. The background DRRs were transformed to the projection image level and subtracted from it. The resulting subtracted image now contained only the tumor. The second step was to register DRRs of tumors to the subtracted image to locate the tumor. This method was successfully applied to kV fluoro images (about 1000 images) acquired on a Vero (BrainLAB) for dynamic tumor tracking on phantom studies. Radiation opaque markers were

  8. Diagnostic Accuracy of Dynamic Contrast Enhanced Magnetic Resonance Imaging in Characterizing Lung Masses

    Science.gov (United States)

    Inan, Nagihan; Arslan, Arzu; Donmez, Muhammed; Sarisoy, Hasan Tahsin

    2016-01-01

    Background Imaging plays a critical role not only in the detection, but also in the characterization of lung masses as benign or malignant. Objectives To determine the diagnostic accuracy of dynamic magnetic resonance imaging (MRI) in the differential diagnosis of benign and malignant lung masses. Patients and Methods Ninety-four masses were included in this prospective study. Five dynamic series of T1-weighted spoiled gradient echo (FFE) images were obtained, followed by a T1-weighted FFE sequence in the late phase (5th minutes). Contrast enhancement patterns in the early (25th second) and late (5th minute) phase images were evaluated. For the quantitative evaluation, signal intensity (SI)-time curves were obtained and the maximum relative enhancement, wash-in rate, and time-to-peak enhancement of masses in both groups were calculated. Results The early phase contrast enhancement patterns were homogeneous in 78.2% of the benign masses, while heterogeneous in 74.4% of the malignant tumors. On the late phase images, 70.8% of the benign masses showed homogeneous enhancement, while most of the malignant masses showed heterogeneous enhancement (82.4%). During the first pass, the maximum relative enhancement and wash-in rate values of malignant masses were significantly higher than those of the benign masses (P = 0.03 and 0.04, respectively). The cutoff value at 15% yielded a sensitivity of 85.4%, specificity of 61.2%, and positive predictive value of 68.7% for the maximum relative enhancement. Conclusion Contrast enhancement patterns and SI-time curve analysis of MRI are helpful in the differential diagnosis of benign and malignant lung masses. PMID:27703654

  9. Optimisation of quantitative lung SPECT applied to mild COPD: a software phantom simulation study.

    Science.gov (United States)

    Norberg, Pernilla; Olsson, Anna; Alm Carlsson, Gudrun; Sandborg, Michael; Gustafsson, Agnetha

    2015-01-01

    The amount of inhomogeneities in a (99m)Tc Technegas single-photon emission computed tomography (SPECT) lung image, caused by reduced ventilation in lung regions affected by chronic obstructive pulmonary disease (COPD), is correlated to disease advancement. A quantitative analysis method, the CVT method, measuring these inhomogeneities was proposed in earlier work. To detect mild COPD, which is a difficult task, optimised parameter values are needed. In this work, the CVT method was optimised with respect to the parameter values of acquisition, reconstruction and analysis. The ordered subset expectation maximisation (OSEM) algorithm was used for reconstructing the lung SPECT images. As a first step towards clinical application of the CVT method in detecting mild COPD, this study was based on simulated SPECT images of an advanced anthropomorphic lung software phantom including respiratory and cardiac motion, where the mild COPD lung had an overall ventilation reduction of 5%. The best separation between healthy and mild COPD lung images as determined using the CVT measure of ventilation inhomogeneity and 125 MBq (99m)Tc was obtained using a low-energy high-resolution collimator (LEHR) and a power 6 Butterworth post-filter with a cutoff frequency of 0.6 to 0.7 cm(-1). Sixty-four reconstruction updates and a small kernel size should be used when the whole lung is analysed, and for the reduced lung a greater number of updates and a larger kernel size are needed. A LEHR collimator and 125 (99m)Tc MBq together with an optimal combination of cutoff frequency, number of updates and kernel size, gave the best result. Suboptimal selections of either cutoff frequency, number of updates and kernel size will reduce the imaging system's ability to detect mild COPD in the lung phantom.

  10. Quality control of technetium-labelled lung imaging agents

    International Nuclear Information System (INIS)

    Chervu, L.R.; Vallabhajosula, S.R.; Blaufox, M.D.

    1977-01-01

    A study has been made of the labelling of macroaggregated albumin particles (MAA) with sup(99m)Tc using three commercial kits, and the results compared with those obtained with albumin microspheres. The tagging efficiency was measured by three different methods, and the chemistry and radiochemical nature of the sup(99m)Tc-MAA supernates or eluates were also investigated. The total body distribution of the sup(99m)Tc-MAA supernates was determined in mice after tail-vein injection. The results indicated that technetium-labelled MAA preparations may contain sup(99m)Tc-tagged albumin, similar to human serum albumin in solution. The nature of labelling pattern of MAA and the albumin microspheres indicated that the macroaggregates and microspheres were not completely or uniformly labelled during a one-step addition of pertechnetate. The lung aggregates had a large residual labelling capacity. Consideration is given to the significance of these results in lung perfusion studies. (U.K.)

  11. Small lung cancers: improved detection by use of bone suppression imaging--comparison with dual-energy subtraction chest radiography.

    Science.gov (United States)

    Li, Feng; Engelmann, Roger; Pesce, Lorenzo L; Doi, Kunio; Metz, Charles E; Macmahon, Heber

    2011-12-01

    To determine whether use of bone suppression (BS) imaging, used together with a standard radiograph, could improve radiologists' performance for detection of small lung cancers compared with use of standard chest radiographs alone and whether BS imaging would provide accuracy equivalent to that of dual-energy subtraction (DES) radiography. Institutional review board approval was obtained. The requirement for informed consent was waived. The study was HIPAA compliant. Standard and DES chest radiographs of 50 patients with 55 confirmed primary nodular cancers (mean diameter, 20 mm) as well as 30 patients without cancers were included in the observer study. A new BS imaging processing system that can suppress the conspicuity of bones was applied to the standard radiographs to create corresponding BS images. Ten observers, including six experienced radiologists and four radiology residents, indicated their confidence levels regarding the presence or absence of a lung cancer for each lung, first by using a standard image, then a BS image, and finally DES soft-tissue and bone images. Receiver operating characteristic (ROC) analysis was used to evaluate observer performance. The average area under the ROC curve (AUC) for all observers was significantly improved from 0.807 to 0.867 with BS imaging and to 0.916 with DES (both P chest radiographs. Further improvements can be achieved by use of DES radiography but with the requirement for special equipment and a potential small increase in radiation dose. © RSNA, 2011.

  12. Czech studies of lung cancer and radon

    International Nuclear Information System (INIS)

    Tomasek, L.

    2002-01-01

    According to the International Agency for Research on Cancer, there is a significant evidence to classify radon as a carcinogen. Using extrapolations from occupational studies, it can be shown that for some countries environmental exposure to radon is the second most important cause of lung cancer in the general population after cigarette smoking. Czech studies among uranium miners, established in 1970 by Josef Sevc, and in the general population aim to contribute to knowledge on the risk from radon, particularly by evaluating temporal factors and interaction of radon exposure and smoking

  13. Histological evaluation of lung cancer with T2-weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Ohta, Takashi; Matsuura, Yoshifumi; Shioya, Sumie; Ohta, Yasuyo

    1995-01-01

    We investigated the differences in signal intensity of lung cancer tissue and non-cancerous lung tissues on T 2 -weighted magnetic resonance (MR) images. MR images were obtained from patients with squamous cell carcinoma (n=6), adenocarcinoma (n=5), small cell carcinoma (n=5), and large cell carcinoma (n=1). To compare the MR signal intensity between tissues, we calculated the signal intensity ratios for tumor/skeletal muscle and lung/skeletal muscle. The MR signal intensity for each tissue was measured with a densitometer and T 2 -weighted MR images with a similar window and a center. The value of the signal intensity ratio for squamous cell carcinoma (3.26±0.76) was greater than those for adenocarcinoma (1.99±0.50, p<0.05), small cell carcinoma (2.35±0.60), large cell carcinoma (2.46), and non-cancerous lung tissues (1.70±0.68, p<0.02). The values of the MR signal intensity ratio for non-cancerous lung tissues were 2.00 for a collapsed lung, 0.93 for a fibrotic lung, and 2.18 for a fibrotic lung with obstructive pneumonia. The results suggest that the MR signal intensity ratio for pathologic tissues/normal skeletal muscle can be a useful indicator for qualitative and quantitative MR imaging diagnosis. (author)

  14. RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE IMAGES

    Science.gov (United States)

    RATIONALE A description of lung morphological structure is necessary for modeling the deposition and fate of inhaled therapeutic aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images with the goal of creating a framework for anato...

  15. COMPUTER RECONSTRUCTION OF A HUMAN LUNG MORPHOLOGY MODEL FROM MAGNETIC RESONANCE (MR) IMAGES

    Science.gov (United States)

    A mathematical description of the morphological structure of the lung is necessary for modeling and analysis of the deposition of inhaled aerosols. A morphological model of the lung boundary was generated from magnetic resonance (MR) images, with the goal of creating a frame...

  16. Investigating the Feasibility of Rapid MRI for Image-Guided Motion Management in Lung Cancer Radiotherapy

    Directory of Open Access Journals (Sweden)

    Amit Sawant

    2014-01-01

    Full Text Available Cycle-to-cycle variations in respiratory motion can cause significant geometric and dosimetric errors in the administration of lung cancer radiation therapy. A common limitation of the current strategies for motion management is that they assume a constant, reproducible respiratory cycle. In this work, we investigate the feasibility of using rapid MRI for providing long-term imaging of the thorax in order to better capture cycle-to-cycle variations. Two nonsmall-cell lung cancer patients were imaged (free-breathing, no extrinsic contrast, and 1.5 T scanner. A balanced steady-state-free-precession (b-SSFP sequence was used to acquire cine-2D and cine-3D (4D images. In the case of Patient 1 (right midlobe lesion, ~40 mm diameter, tumor motion was well correlated with diaphragmatic motion. In the case of Patient 2, (left upper-lobe lesion, ~60 mm diameter, tumor motion was poorly correlated with diaphragmatic motion. Furthermore, the motion of the tumor centroid was poorly correlated with the motion of individual points on the tumor boundary, indicating significant rotation and/or deformation. These studies indicate that image quality and acquisition speed of cine-2D MRI were adequate for motion monitoring. However, significant improvements are required to achieve comparable speeds for truly 4D MRI. Despite several challenges, rapid MRI offers a feasible and attractive tool for noninvasive, long-term motion monitoring.

  17. Investigating the feasibility of rapid MRI for image-guided motion management in lung cancer radiotherapy.

    Science.gov (United States)

    Sawant, Amit; Keall, Paul; Pauly, Kim Butts; Alley, Marcus; Vasanawala, Shreyas; Loo, Billy W; Hinkle, Jacob; Joshi, Sarang

    2014-01-01

    Cycle-to-cycle variations in respiratory motion can cause significant geometric and dosimetric errors in the administration of lung cancer radiation therapy. A common limitation of the current strategies for motion management is that they assume a constant, reproducible respiratory cycle. In this work, we investigate the feasibility of using rapid MRI for providing long-term imaging of the thorax in order to better capture cycle-to-cycle variations. Two nonsmall-cell lung cancer patients were imaged (free-breathing, no extrinsic contrast, and 1.5 T scanner). A balanced steady-state-free-precession (b-SSFP) sequence was used to acquire cine-2D and cine-3D (4D) images. In the case of Patient 1 (right midlobe lesion, ~40 mm diameter), tumor motion was well correlated with diaphragmatic motion. In the case of Patient 2, (left upper-lobe lesion, ~60 mm diameter), tumor motion was poorly correlated with diaphragmatic motion. Furthermore, the motion of the tumor centroid was poorly correlated with the motion of individual points on the tumor boundary, indicating significant rotation and/or deformation. These studies indicate that image quality and acquisition speed of cine-2D MRI were adequate for motion monitoring. However, significant improvements are required to achieve comparable speeds for truly 4D MRI. Despite several challenges, rapid MRI offers a feasible and attractive tool for noninvasive, long-term motion monitoring.

  18. Quantification of heterogeneity in lung disease with image-based pulmonary function testing.

    Science.gov (United States)

    Stahr, Charlene S; Samarage, Chaminda R; Donnelley, Martin; Farrow, Nigel; Morgan, Kaye S; Zosky, Graeme; Boucher, Richard C; Siu, Karen K W; Mall, Marcus A; Parsons, David W; Dubsky, Stephen; Fouras, Andreas

    2016-07-27

    Computed tomography (CT) and spirometry are the mainstays of clinical pulmonary assessment. Spirometry is effort dependent and only provides a single global measure that is insensitive for regional disease, and as such, poor for capturing the early onset of lung disease, especially patchy disease such as cystic fibrosis lung disease. CT sensitively measures change in structure associated with advanced lung disease. However, obstructions in the peripheral airways and early onset of lung stiffening are often difficult to detect. Furthermore, CT imaging poses a radiation risk, particularly for young children, and dose reduction tends to result in reduced resolution. Here, we apply a series of lung tissue motion analyses, to achieve regional pulmonary function assessment in β-ENaC-overexpressing mice, a well-established model of lung disease. The expiratory time constants of regional airflows in the segmented airway tree were quantified as a measure of regional lung function. Our results showed marked heterogeneous lung function in β-ENaC-Tg mice compared to wild-type littermate controls; identified locations of airway obstruction, and quantified regions of bimodal airway resistance demonstrating lung compensation. These results demonstrate the applicability of regional lung function derived from lung motion as an effective alternative respiratory diagnostic tool.

  19. Radioaerosol inhalation lung imaging for the diagnosis of chronic obstructive pulmonary diseases in Thailand. Final report for the period 10 December 1987 - 15 December 1993

    International Nuclear Information System (INIS)

    Buachum, V.

    1993-12-01

    The radionuclide pulmonary function studies such as aerosol inhalation lung imaging, mucociliary clearance and pulmonary epithelial were developed and studied in normal and chronic obstructive pulmonary disease. The results of the aerosol inhalation lung imaging in 71 cases of COPD revealed that the aerosol inhalation lung scan was the most sensitive test for the diagnosis of early COPD as compared to the chest X-ray, vascular perfusion lung scan and spirometric test (% FEVI). The aerosol and perfusion lung scan were also performed in 21 cases of carcinoma of lung who had been treated with external radiation or chemotherapy. The result of study revealed 5 patients died during treatment, 5 patients were slightly improved, no significant change was detected in 10 cases and deterioration was found in one patient. The lung scintigraphy was studied in 15 cases of well differentiated carcinoma of thyroid with pulmonary metastasis who had I-131 treatment. The study showed that the radioactive iodine treatment dose had minimal effect on the post treatment lung imaging study. The perfusion and aerosol study in 15 cases of operated patients revealed no evidence of pulmonary embolism in post operative study. Abnormal vascular disease or pulmonary embolism was observed in one patient preoperatively. 12 refs, 13 figs, 13 tabs

  20. Radioaerosol inhalation lung imaging for the diagnosis of chronic obstructive pulmonary diseases in Thailand. Final report for the period 10 December 1987 - 15 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Buachum, V [Chulalongkorn Univ., Bangkok (Thailand). Nuclear Medicine Div.

    1993-12-01

    The radionuclide pulmonary function studies such as aerosol inhalation lung imaging, mucociliary clearance and pulmonary epithelial were developed and studied in normal and chronic obstructive pulmonary disease. The results of the aerosol inhalation lung imaging in 71 cases of COPD revealed that the aerosol inhalation lung scan was the most sensitive test for the diagnosis of early COPD as compared to the chest X-ray, vascular perfusion lung scan and spirometric test (% FEVI). The aerosol and perfusion lung scan were also performed in 21 cases of carcinoma of lung who had been treated with external radiation or chemotherapy. The result of study revealed 5 patients died during treatment, 5 patients were slightly improved, no significant change was detected in 10 cases and deterioration was found in one patient. The lung scintigraphy was studied in 15 cases of well differentiated carcinoma of thyroid with pulmonary metastasis who had I-131 treatment. The study showed that the radioactive iodine treatment dose had minimal effect on the post treatment lung imaging study. The perfusion and aerosol study in 15 cases of operated patients revealed no evidence of pulmonary embolism in post operative study. Abnormal vascular disease or pulmonary embolism was observed in one patient preoperatively. 12 refs, 13 figs, 13 tabs.

  1. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W [UT Southwestern Medical Center, Dallas, Texas (United States); Rozario, T; Bereg, S [University of Texas at Dallas, Richardson, Texas (United States); Klash, S [Premier Cancer Centers, Dallas, TX (United States)

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  2. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    Science.gov (United States)

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    Purpose The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners. PMID:26352144

  3. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.

    Directory of Open Access Journals (Sweden)

    Ryutaro Kakinuma

    Full Text Available The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT scanners.This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner.The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU] was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001. The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001 for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures.Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.

  4. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    Directory of Open Access Journals (Sweden)

    Hua KL

    2015-08-01

    Full Text Available Kai-Lung Hua,1 Che-Hao Hsu,1 Shintami Chusnul Hidayati,1 Wen-Huang Cheng,2 Yu-Jen Chen3 1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 2Research Center for Information Technology Innovation, Academia Sinica, 3Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. Keywords: nodule classification, deep learning, deep belief network, convolutional neural network

  5. Imaging and imagining chronic obstructive pulmonary disease (COPD): Uruguayans draw their lungs.

    Science.gov (United States)

    Wainwright, Megan

    2017-09-11

    This anthropological study investigated what people imagined chronic obstructive pulmonary disease to look like in their lungs, what may be influencing these images and how this imagery shapes embodiment. Employing graphic elicitation, in one of multiple ethnographic interviews, participants were asked to draw their lungs: "If we could look inside your chest now, what would we see?" Lung drawings and accompanying narratives and fieldnotes from 14 participants were analyzed for themes and patterns. The theme of "imaging/imagining" emerged and three distinct patterns within this theme were identified: the microscope perspective, the X-ray perspective and the reduced pulmonary capacity perspective. These patterns demonstrate how embodiment can be shaped by an integration and reinterpretation of the medical images that form part of everyday clinic visits and pulmonary rehabilitation. Medical technology and images impact patients' embodiment. Understanding this is important for rehabilitation practitioners who work in a challenging space created by potentially conflicting medical narratives: on the one hand, chronic obstructive pulmonary disease is incurable permanent damage, and on the other, improvement is possible through rehabilitation. Drawing could be integrated into pulmonary rehabilitation and may help identify perceptions of the body that could hinder the rehabilitation process. Implications for rehabilitation Drawings, when combined with interviews, can lead to a deeper and more complex understanding of patients' perspectives and embodiment. Rehabilitation practitioners should be concerned with how patients embody the medical technology and imagery they are exposed to as part of the educational component of pulmonary rehabilitation and healthcare generally. Asking patients to visualize their illness through drawing may help pulmonary rehabilitation practitioners identify perceptions of the body which could hinder the patient's ability to reap the full benefit

  6. Lung nodule detection in pediatric chest CT: quantitative relationship between image quality and radiologist performance.

    Science.gov (United States)

    Li, Xiang; Samei, Ehsan; Barnhart, Huiman X; Gaca, Ana Maria; Hollingsworth, Caroline L; Maxfield, Charles M; Carrico, Caroline W T; Colsher, James G; Frush, Donald P

    2011-05-01

    To determine the quantitative relationship between image quality and radiologist performance in detecting small lung nodules in pediatric CT. The study included clinical chest CT images of 30 pediatric patients (0-16 years) scanned at tube currents of 55-180 mA. Calibrated noise addition software was used to simulate cases at three nominal mA settings: 70, 35, and 17.5 mA, resulting in quantum noise of 7-32 Hounsfield Unit (HU). Using a validated nodule simulation technique, lung nodules with diameters of 3-5 mm and peak contrasts of 200-500 HU were inserted into the cases, which were then randomized and rated independently by four experienced pediatric radiologists for nodule presence on a continuous scale from 0 (definitely absent) to 100 (definitely present). The receiver operating characteristic (ROC) data were analyzed to quantify the relationship between diagnostic accuracy (area under the ROC curve, AUC) and image quality (the product of nodule peak contrast and displayed diameter to noise ratio, CDNR display). AUC increased rapidly from 0.70 to 0.87 when CDNR display increased from 60 to 130 mm, followed by a slow increase to 0.94 when CDNR display further increased to 257 mm. For the average nodule diameter (4 mm) and contrast (350 HU), AUC decreased from 0.93 to 0.71 with noise increased from 7 to 28 HU. We quantified the relationship between image quality and the performance of radiologists in detecting lung nodules in pediatric CT. The relationship can guide CT protocol design to achieve the desired diagnostic performance at the lowest radiation dose.

  7. Redox-responsive manganese dioxide nanoparticles for enhanced MR imaging and radiotherapy of lung cancer

    Science.gov (United States)

    Cho, Mi Hyeon; Choi, Eun-Seok; Kim, Sehee; Goh, Sung-Ho; Choi, Yongdoo

    2017-12-01

    In this study, we synthesized manganese dioxide nanoparticles (MnO2 NPs) stabilized with biocompatible polymers (polyvinylpyrrolidone and polyacrylic acid) and analyzed their effect on non-small cell lung cancer (NSCLC) cells with or without gefitinib resistance in vitro. MnO2 NPs showed glutathione (GSH)-responsive dissolution and subsequent enhancement in magnetic resonance (MR) imaging. Of note, treatment with MnO2 NPs induced significant cytotoxic effects on NSCLC cells, and additional dose-dependent therapeutic effects were obtained upon X-ray irradiation. Normal cells treated with MnO2 NPs were viable at the tested concentrations. In addition, increased therapeutic efficacy could be achieved when the cells were treated with MnO2 NPs in hypoxic conditions. Therefore, we conclude that the use of MnO2 NPs in MR imaging and combination radiotherapy may be an efficient strategy for the imaging and therapy of NSCLC.

  8. The association of systemic microvascular changes with lung function and lung density: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Bianca Harris

    Full Text Available Smoking causes endothelial dysfunction and systemic microvascular disease with resultant end-organ damage in the kidneys, eyes and heart. Little is known about microvascular changes in smoking-related lung disease. We tested if microvascular changes in the retina, kidneys and heart were associated with obstructive spirometry and low lung density on computed tomography. The Multi-Ethnic Study of Atherosclerosis recruited participants age 45-84 years without clinical cardiovascular disease. Measures of microvascular function included retinal arteriolar and venular caliber, urine albumin-to-creatinine ratio and, in a subset, myocardial blood flow on magnetic resonance imaging. Spirometry was measured following ATS/ERS guidelines. Low attenuation areas (LAA were measured on lung fields of cardiac computed tomograms. Regression models adjusted for pulmonary and cardiac risk factors, medications and body size. Among 3,397 participants, retinal venular caliber was inversely associated with forced expiratory volume in one second (FEV(1 (P<0.001 and FEV(1/forced vital capacity (FVC ratio (P = 0.04. Albumin-to-creatinine ratio was inversely associated with FEV(1 (P = 0.002 but not FEV(1/FVC. Myocardial blood flow (n = 126 was associated with lower FEV(1 (P = 0.02, lower FEV(1/FVC (P = 0.001 and greater percentage LAA (P = 0.04. Associations were of greater magnitude among smokers. Low lung function was associated with microvascular changes in the retina, kidneys and heart, and low lung density was associated with impaired myocardial microvascular perfusion. These cross-sectional results suggest that microvascular damage with end-organ dysfunction in all circulations may pertain to the lung, that lung dysfunction may contribute to systemic microvascular disease, or that there may be a shared predisposition.

  9. Lung magnetic resonance imaging for pneumonia in children

    International Nuclear Information System (INIS)

    Liszewski, Mark C.; Goerkem, Suereyya; Sodhi, Kushaljit S.; Lee, Edward Y.

    2017-01-01

    Technical factors have historically limited the role of MRI in the evaluation of pneumonia in children in routine clinical practice. As imaging technology has advanced, recent studies utilizing practical MR imaging protocols have shown MRI to be an accurate potential alternative to CT for the evaluation of pneumonia and its complications. This article provides up-to-date MR imaging techniques that can be implemented in most radiology departments to evaluate pneumonia in children. Imaging findings in pneumonia on MRI are also reviewed. In addition, the current literature describing the diagnostic performance of MRI for pneumonia is discussed. Furthermore, potential risks and limitations of MRI for the evaluation of pneumonia in children are described. (orig.)

  10. Lung magnetic resonance imaging for pneumonia in children.

    Science.gov (United States)

    Liszewski, Mark C; Görkem, Süreyya; Sodhi, Kushaljit S; Lee, Edward Y

    2017-10-01

    Technical factors have historically limited the role of MRI in the evaluation of pneumonia in children in routine clinical practice. As imaging technology has advanced, recent studies utilizing practical MR imaging protocols have shown MRI to be an accurate potential alternative to CT for the evaluation of pneumonia and its complications. This article provides up-to-date MR imaging techniques that can be implemented in most radiology departments to evaluate pneumonia in children. Imaging findings in pneumonia on MRI are also reviewed. In addition, the current literature describing the diagnostic performance of MRI for pneumonia is discussed. Furthermore, potential risks and limitations of MRI for the evaluation of pneumonia in children are described.

  11. Lung magnetic resonance imaging for pneumonia in children

    Energy Technology Data Exchange (ETDEWEB)

    Liszewski, Mark C. [Montefiore Medical Center and Albert Einstein College of Medicine, Department of Radiology, Division of Pediatric Radiology, Bronx, NY (United States); Goerkem, Suereyya [Erciyes University School of Medicine, Department of Radiology, Pediatric Radiology Section, Kayseri (Turkey); Sodhi, Kushaljit S. [Post Graduate Institute of Medical Education and Research, Department of Radiodiagnosis and Imaging, Chandigarh (India); Lee, Edward Y. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2017-10-15

    Technical factors have historically limited the role of MRI in the evaluation of pneumonia in children in routine clinical practice. As imaging technology has advanced, recent studies utilizing practical MR imaging protocols have shown MRI to be an accurate potential alternative to CT for the evaluation of pneumonia and its complications. This article provides up-to-date MR imaging techniques that can be implemented in most radiology departments to evaluate pneumonia in children. Imaging findings in pneumonia on MRI are also reviewed. In addition, the current literature describing the diagnostic performance of MRI for pneumonia is discussed. Furthermore, potential risks and limitations of MRI for the evaluation of pneumonia in children are described. (orig.)

  12. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    International Nuclear Information System (INIS)

    Desai, S.R.; Ryan, S.M.; Colby, T.V.

    2003-01-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed

  13. Smoking-related interstitial lung diseases: histopathological and imaging perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.R.; Ryan, S.M.; Colby, T.V

    2003-04-01

    The present review focuses on the interstitial lung diseases related to smoking. Thus, the pathology and radiology of Langerhans cell histiocytosis, desquamative interstitial pneumonia, respiratory bronchiolitis and respiratory bronchiolitis-associated-interstitial lung disease are considered. The more tenuous association between pulmonary fibrosis and smoking is also discussed.

  14. Beam’s-eye-view imaging during non-coplanar lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen S. F., E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross I. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    image sequence was acquired for all other gantry–couch rotations (δ = 1.18–10.29 mm). Conclusions: Non-coplanar beams with gantry–couch rotation of (θ = 30°, ϕ = 330°), (θ = 210°, ϕ = 10°), and (θ = 250°, ϕ = 30°) have the highest accuracy for BEV lung tumor localization. Additionally, gantry angles of 150°, 210°, 250°, and 350° also offer good tracking performance. The beam geometries (θ = 90° and 230°, ϕ = 10°) and (θ = 270°, ϕ = 30°) are associated with substantial automatic localization errors. Overall, lung tumor visibility and tracking performance were patient dependent for a substantial number of the gantry–couch angle combinations studied.

  15. Lung scintigraphy; Centellograma pulmonar

    Energy Technology Data Exchange (ETDEWEB)

    Dalenz, Roberto

    1994-12-31

    A review of lung scintigraphy, perfusion scintigraphy with SPECT, lung ventilation SPECT, blood pool SPECT. The procedure of lung perfusion studies, radiopharmaceutical, administration and clinical applications, imaging processing .Results encountered and evaluation criteria after Biello and Pioped. Recommendations and general considerations have been studied about relation of this radiopharmaceutical with other pathologies.

  16. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    International Nuclear Information System (INIS)

    Huang, Q; Zhang, Y; Liu, Y; Hu, L; Yin, F; Cai, J; Miller, W

    2014-01-01

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different

  17. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q; Zhang, Y [Duke University, Durham, NC (United States); Liu, Y [Duke University (United States); Hu, L; Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States); Miller, W [University of Virginia, Charlottesville, VA (United States)

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different

  18. Functional imaging of the lung using a gaseous contrast agent: {sup 3}Helium-magnetic resonance imaging; Funktionelle Bildgebung der Lunge mit gasfoermigem Kontrastmittel: {sup 3}Helium-Magnetresonanztomographie

    Energy Technology Data Exchange (ETDEWEB)

    Gast, K.K.; Heussel, C.P. [Klinik mit Poliklinik fuer Radiologie, Klinikum der Johannes Gutenberg-Univ., Mainz (Germany); Schreiber, W.G. [AG Medizinische Physik, Klinik mit Poliklinik fuer Radiologie, Klinikum der Johannes Gutenberg-Univ., Mainz (Germany); Kauczor, H.U. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany)

    2005-05-01

    Current imaging methods of the lung concentrate on morphology as well as on the depiction of the pulmonary parenchyma. The need of an advanced and more subtle imaging technology compared to conventional radiography is met by computed topograhy as the method of choice. Nevertheless, computed tomography yields very limited functional information. This is to be derived from arterial blood gas analysis, spirometry and body plethysmography. These methods, however, lack the scope for regional allocation of any pathology. Magnetic resonance imaging of the lung has been advanced by the use of hyperpolarised {sup 3}Helium as an inhaled gaseous contrast agent. The inhalation of the gas provides functional data by distribution, diffusion and relaxation of its hyperpolarised state. Because anatomical landmarks of the lung can be visualised as well, functional information can be linked with regional information. Furthermore, the method provides high spatial and temporal resolution and lacks the potential side-effects of ionising radiation. Four different modalities have been established: 1. Spin density imaging studies the distribution of gas, normally after a single inhalation of contrast gas in inspiratory breath hold. 2. Dynamic cine imaging studies the distribution of gas with respect to regional time constants of pulmonary gas inflow. 3. Diffusion weighted imaging can exhibit the presence and severity of pulmonary airspace enlargement, as in pulmonary emphysema. 4. Oxygen sensitive imaging displays intrapulmonary oxygen partial pressure and its distribution. Currently, the method is limited by comparably high costs and limited availability. As there have been recent developments which might bring this modality closer to clinical use, this review article will comprise the methodology as well as the current state of the art and standard of knowledge of magnetic resonance imaging of the lung using hyperpolarised {sup 3}Helium. (orig.)

  19. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    International Nuclear Information System (INIS)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-01-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm.A hybrid DIR algorithm is proposed based on, a biomechanical model–based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used.Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone.The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5

  20. A fast time-difference inverse solver for 3D EIT with application to lung imaging.

    Science.gov (United States)

    Javaherian, Ashkan; Soleimani, Manuchehr; Moeller, Knut

    2016-08-01

    A class of sparse optimization techniques that require solely matrix-vector products, rather than an explicit access to the forward matrix and its transpose, has been paid much attention in the recent decade for dealing with large-scale inverse problems. This study tailors application of the so-called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a large number of voxels to cover the whole domain, so its application to real-time imaging, for example monitoring of lung function, remains scarce since the large number of degrees of freedom of the problem extremely increases storage space and reconstruction time. This study shows the great potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its accuracy for imaging small-size anomalies.

  1. Automated interpretation of PET/CT images in patients with lung cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Jakobsson, David; Olofsson, Fredrik

    2007-01-01

    cancer. METHODS: A total of 87 patients who underwent PET/CT examinations due to suspected lung cancer comprised the training group. The test group consisted of PET/CT images from 49 patients suspected with lung cancer. The consensus interpretations by two experienced physicians were used as the 'gold...... method measured as the area under the receiver operating characteristic curve, was 0.97 in the test group, with an accuracy of 92%. The sensitivity was 86% at a specificity of 100%. CONCLUSIONS: A completely automated method using artificial neural networks can be used to detect lung cancer......PURPOSE: To develop a completely automated method based on image processing techniques and artificial neural networks for the interpretation of combined [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) images for the diagnosis and staging of lung...

  2. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  3. A statistical method for lung tumor segmentation uncertainty in PET images based on user inference.

    Science.gov (United States)

    Zheng, Chaojie; Wang, Xiuying; Feng, Dagan

    2015-01-01

    PET has been widely accepted as an effective imaging modality for lung tumor diagnosis and treatment. However, standard criteria for delineating tumor boundary from PET are yet to develop largely due to relatively low quality of PET images, uncertain tumor boundary definition, and variety of tumor characteristics. In this paper, we propose a statistical solution to segmentation uncertainty on the basis of user inference. We firstly define the uncertainty segmentation band on the basis of segmentation probability map constructed from Random Walks (RW) algorithm; and then based on the extracted features of the user inference, we use Principle Component Analysis (PCA) to formulate the statistical model for labeling the uncertainty band. We validated our method on 10 lung PET-CT phantom studies from the public RIDER collections [1] and 16 clinical PET studies where tumors were manually delineated by two experienced radiologists. The methods were validated using Dice similarity coefficient (DSC) to measure the spatial volume overlap. Our method achieved an average DSC of 0.878 ± 0.078 on phantom studies and 0.835 ± 0.039 on clinical studies.

  4. Association of emphysema-like lung on cardiac computed tomography and mortality in persons without airflow obstruction: the Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study

    Science.gov (United States)

    Oelsner, Elizabeth C.; Hoffman, Eric A.; Folsom, Aaron R.; Carr, J. Jeffrey; Enright, Paul L.; Kawut, Steven M.; Kronmal, Richard; Lederer, David; Lima, Joao A. C.; Lovasi, Gina S.; Shea, Steven; Barr, R. Graham

    2015-01-01

    Background Whereas low lung function is known to predict mortality in the general population, the prognostic significance of emphysema on computed tomography (CT) in persons without chronic obstructive pulmonary disease (COPD) remains uncertain. Objective To determine whether greater emphysema-like lung on CT is associated with all-cause mortality among persons without airflow obstruction or COPD in the general population. Design Prospective cohort study. Setting Population-based, multiethnic sample from 6 US communities. Participants 2965 participants ages 45-84 years without airflow obstruction on spirometry. Measurements Emphysema-like lung was defined on cardiac CT as the number of lung voxels less than -950 Hounsfield Units, and was adjusted for the number of total imaged lung voxels. Results Among 2965 participants, 50.9% of whom never smoked, there were 186 deaths over a median of 6.2 years. Greater emphysema-like lung was independently associated with increased mortality (adjusted hazard ratio [HR]1.14 per one-half of the interquartile range, 95% CI 1.04-1.24, P=0.004), adjusting for potential confounders including cardiovascular risk factors and the forced expiratory volume in one second. Generalized additive models supported a linear association between emphysema-like lung and mortality without evidence for a threshold. The association was of greatest magnitude among smokers, although multiplicative interaction terms did not support effect modification by smoking status. Limitations Cardiac CT scans did not include lung apices. The number of deaths was limited among subgroup analyses. Conclusions Emphysema-like lung on CT was associated with all-cause mortality among persons without airflow obstruction or COPD in a general population sample, particularly among smokers. Recognition of the independent prognostic significance of emphysema on CT among patients without COPD on spirometry is warranted. Primary Funding Source NIH/NHLBI. PMID:25506855

  5. Computer-aided detection of early interstitial lung diseases using low-dose CT images

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Cheol; Kim, Soo Hyung [School of Electronics and Computer Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Tan, Jun; Wang Xingwei; Lederman, Dror; Leader, Joseph K; Zheng Bin, E-mail: zhengb@upmc.edu [Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2011-02-21

    This study aims to develop a new computer-aided detection (CAD) scheme to detect early interstitial lung disease (ILD) using low-dose computed tomography (CT) examinations. The CAD scheme classifies each pixel depicted on the segmented lung areas into positive or negative groups for ILD using a mesh-grid-based region growth method and a multi-feature-based artificial neural network (ANN). A genetic algorithm was applied to select optimal image features and the ANN structure. In testing each CT examination, only pixels selected by the mesh-grid region growth method were analyzed and classified by the ANN to improve computational efficiency. All unselected pixels were classified as negative for ILD. After classifying all pixels into the positive and negative groups, CAD computed a detection score based on the ratio of the number of positive pixels to all pixels in the segmented lung areas, which indicates the likelihood of the test case being positive for ILD. When applying to an independent testing dataset of 15 positive and 15 negative cases, the CAD scheme yielded the area under receiver operating characteristic curve (AUC = 0.884 {+-} 0.064) and 80.0% sensitivity at 85.7% specificity. The results demonstrated the feasibility of applying the CAD scheme to automatically detect early ILD using low-dose CT examinations.

  6. Gadolinium-DTPA enhancement of regional lymph nodes of lung cancer in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Iwai, Naomichi; Yamaguchi, Yutaka

    1991-01-01

    Enhanced MR imagings were performed on thirty-one patients with lung cancer by intravenous administration of 0.1 mmol/kg Gadolinium-DTPA (Gd-DTPA). A spin-echo pulse sequence (SE 400/40) with 0.5-T MR system was used. The Gd-DTPA enhancement of lymph nodes was studied for 67 nodes (29 metastatic lymph nodes and 38 non-metastatic lymph nodes) on the hilar and mediastinal region. The mean signal intensity of metastatic lymph nodes was enhanced higher than that of non-metastatic lymph nodes (p<0.001). On the criterion of the signal intensity change (the cutoff point: 800 S.I) at 5 minutes after administration, the diagnostic rates on retrospective study showed a sensitivity of 79 %, a specificity of 84 % and an overall accuracy of 82%. These data show higher rates than those of the size criteria. This study suggests a significant potential for improved detection of lymph node metastasis of lung cancer with Gd-DTPA enhanced MR imaging. (author)

  7. Magnetic resonance imaging of respiratory movement and lung function; Magnetresonanztomographie der Atembewegung und Lungenfunktion

    Energy Technology Data Exchange (ETDEWEB)

    Tetzlaff, R. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie (E010), Heidelberg (Germany); Deutsches Krebsforschungszentrum (DKFZ), Abteilung Medizinische und Biologische Informatik, Heidelberg (Germany); Eichinger, M. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie (E010), Heidelberg (Germany)

    2009-08-15

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [German] Die Lungenfunktion wird bislang hauptsaechlich durch die Spirometrie oder Plethysmographie untersucht. Diese Methoden sind zwar sehr leistungsfaehig zur Diagnostik von Lungenerkrankungen, sind jedoch globale Messmethoden, deren Messparameter immer die Summe aller funktionellen Einheiten der Lunge beschreiben. Veraenderungen, die auf eine Teilkomponente der Atempumpe beschraenkt sind oder kleine Teile des Lungengewebes betreffen, koennen durch gesunde Lungenanteile kompensiert werden. Mit dynamischen bildgebenden Verfahren koennten solche regionalen Veraenderungen erfasst und so eine fruehere Therapie ermoeglicht werden. Die Magnetresonanztomographie (MRT) bietet sich hier ideal an, da sie als Schnittbildverfahren weder die Probleme der Bildverzerrung, der Projektionsverfahren noch die Strahlenbelastung der Computertomographie hat. Allerdings wird die MRT der Lunge durch das geringe Signal des

  8. A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury.

    Science.gov (United States)

    Gómez-Laberge, Camille; Arnold, John H; Wolf, Gerhard K

    2012-03-01

    Patients with acute lung injury or acute respiratory distress syndrome (ALI/ARDS) are vulnerable to ventilator-induced lung injury. Although this syndrome affects the lung heterogeneously, mechanical ventilation is not guided by regional indicators of potential lung injury. We used electrical impedance tomography (EIT) to estimate the extent of regional lung overdistension and atelectasis during mechanical ventilation. Techniques for tidal breath detection, lung identification, and regional compliance estimation were combined with the Graz consensus on EIT lung imaging (GREIT) algorithm. Nine ALI/ARDS patients were monitored during stepwise increases and decreases in airway pressure. Our method detected individual breaths with 96.0% sensitivity and 97.6% specificity. The duration and volume of tidal breaths erred on average by 0.2 s and 5%, respectively. Respiratory system compliance from EIT and ventilator measurements had a correlation coefficient of 0.80. Stepwise increases in pressure could reverse atelectasis in 17% of the lung. At the highest pressures, 73% of the lung became overdistended. During stepwise decreases in pressure, previously-atelectatic regions remained open at sub-baseline pressures. We recommend that the proposed approach be used in collaborative research of EIT-guided ventilation strategies for ALI/ARDS.

  9. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    Science.gov (United States)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  10. CT triage for lung malignancy: coronal multiplanar reformation versus images in three orthogonal planes.

    Science.gov (United States)

    Kusk, Martin Weber; Karstoft, Jens; Mussmann, Bo Redder

    2015-11-01

    Generation of multiplanar reformation (MPR) images has become automatic on most modern computed tomography (CT) scanners, potentially increasing the workload of the reporting radiologists. It is not always clear if this increases diagnostic performance in all clinical tasks. To assess detection performance using only coronal multiplanar reformations (MPR) when triaging patients for lung malignancies with CT compared to images in three orthogonal planes, and to evaluate performance comparison of novice and experienced readers. Retrospective study of 63 patients with suspicion of lung cancer, scanned on 64-slice multidetector computed tomography (MDCT) with images reconstructed in three planes. Coronal images were presented to four readers, two novice and two experienced. Readers decided whether the patients were suspicious for malignant disease, and indicated their confidence on a five-point scale. Sensitivity and specificity on per-patient basis was calculated with regards to a reference standard of histological diagnosis, and compared with the original report using McNemar's test. Receiver operating characteristic (ROC) curves were plotted to compare the performance of the four readers, using the area under the curve (AUC) as figure of merit. No statistically significant difference of sensitivity and specificity was found for any of the readers when compared to the original reports. ROC analysis yielded AUCs in the range of 0.92-0.93 for all readers with no significant difference. Inter-rater agreement was substantial (kappa = 0.72). Sensitivity and specificity were comparable to diagnosis using images in three planes. No significant difference was found between experienced and novice readers. © The Foundation Acta Radiologica 2014.

  11. Multi-Modal Imaging in a Mouse Model of Orthotopic Lung Cancer.

    Science.gov (United States)

    Patel, Priya; Kato, Tatsuya; Ujiie, Hideki; Wada, Hironobu; Lee, Daiyoon; Hu, Hsin-Pei; Hirohashi, Kentaro; Ahn, Jin Young; Zheng, Jinzi; Yasufuku, Kazuhiro

    2016-01-01

    Investigation of CF800, a novel PEGylated nano-liposomal imaging agent containing indocyanine green (ICG) and iohexol, for real-time near infrared (NIR) fluorescence and computed tomography (CT) image-guided surgery in an orthotopic lung cancer model in nude mice. CF800 was intravenously administered into 13 mice bearing the H460 orthotopic human lung cancer. At 48 h post-injection (peak imaging agent accumulation time point), ex vivo NIR and CT imaging was performed. A clinical NIR imaging system (SPY®, Novadaq) was used to measure fluorescence intensity of tumor and lung. Tumor-to-background-ratios (TBR) were calculated in inflated and deflated states. The mean Hounsfield unit (HU) of lung tumor was quantified using the CT data set and a semi-automated threshold-based method. Histological evaluation using H&E, the macrophage marker F4/80 and the endothelial cell marker CD31, was performed, and compared to the liposomal fluorescence signal obtained from adjacent tissue sections. The fluorescence TBR measured when the lung is in the inflated state (2.0 ± 0.58) was significantly greater than in the deflated state (1.42 ± 0.380 (n = 7, p<0.003). Mean fluorescent signal in tumor was highly variable across samples, (49.0 ± 18.8 AU). CT image analysis revealed greater contrast enhancement in lung tumors (a mean increase of 110 ± 57 HU) when CF800 is administered compared to the no contrast enhanced tumors (p = 0.0002). Preliminary data suggests that the high fluorescence TBR and CT tumor contrast enhancement provided by CF800 may have clinical utility in localization of lung cancer during CT and NIR image-guided surgery.

  12. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  13. Clinical value of lung uptake of iodine-123 metaiodobenzylguanidine (MIBG), a myocardial sympathetic nerve imaging agent, in patients with chronic heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiuli; Hasegawa, Shinji; Yoshioka, Jun [Osaka Univ., Suita (Japan). Graduate School of Medicine] (and others)

    2001-10-01

    This study investigated the clinical value of I-123 MIBG pulmonary accumulation and washout in patients with chronic heart failure (CHF). Nineteen patients with CHF and 15 normal volunteers (NL) were included. The uptake ratio of heart to mediastinum (H/M), that of lung fields to mediastinum (L/M), and washout rate (WR) of the heart and lung fields were calculated in anterior planar images and compared with results of echocardiography and cardiac catheterization. In the CHF group, the lung uptake in delayed images increased and lung WR was decreased, suggesting pulmonary endothelial lesions. Furthermore, there was a negative correlation between right and left lung WR and pulmonary arterial diastolic pressure (PA(D)) and pulmonary arterial systolic pressure (PA(S)) in the CHF group. Since the WR of MIBG reflected PA, it may be used as an index of severity of cardiac dysfunction. (author)

  14. Different imaging methods in the assessment of radiation-induced lung injury following hemithorax irradiation for pleural mesothelioma

    International Nuclear Information System (INIS)

    Maasilta, P.; Kivisaari, L.; Mattson, K.

    1990-01-01

    The authors have characterized the radiation-induced lung-injury on serial chest X-rays, CTs and ultralow field MRs and evaluated the clinical value and cost/benefit ratio of the different imaging methods in 30 patients receiving high-dose hemithorax irradiation for pleural mesothelioma. Lung injury was severe in all patients, but non-specific and essentially as described in text-books. CT provided no clinically relevant, cost effective diagnostic advantage over conventional X-rays in the detection of early or late radiation-induced lung injury, but it was necessary for the evaluation of the disease status of the mesothelioma. The possible advantage of MR over CT could not be evaluated and needs further studies. Optimal time-points for imaging CTs or MRs to detect early radiation-induced lung injury following high dose hemithorax irradiation were during the latter part of the treatment or very shortly after the end of the irradiation. Late injury or irreversible fibrosis develop rapidly after 6 months and was clearly documented by chest X-rays. The authors recommend serial chest X-rays at 1-2, 6 and 12 months following radiotherapy as a cost-effective method for the detection of radiation-induced lung injury with additional CTs to document the stage of mesothelioma, when needed. (author). 31 refs.; 4 figs

  15. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art

    International Nuclear Information System (INIS)

    Lee, Geewon; Lee, Ho Yun; Park, Hyunjin; Schiebler, Mark L.; Beek, Edwin J.R. van; Ohno, Yoshiharu; Seo, Joon Beom; Leung, Ann

    2017-01-01

    Highlights: • Radiomics is the post-processing and analysis of large amounts of quantitative imaging features that can be derived from medical images. • Radiomics features can reflect the spatial complexity, genomic heterogeneity, and subregional identification of lung cancer. • Currently available radiomic features can be divided into four major categories. • The major challenge is to integrate radiomic data with clinical, pathological, and genomic information. - Abstract: With the development of functional imaging modalities we now have the ability to study the microenvironment of lung cancer and its genomic instability. Radiomics is defined as the use of automated or semi-automated post-processing and analysis of large amounts of quantitative imaging features that can be derived from medical images. The automated generation of these analytical features helps to quantify a number of variables in the imaging assessment of lung malignancy. These imaging features include: tumor spatial complexity, elucidation of the tumor genomic heterogeneity and composition, subregional identification in terms of tumor viability or aggressiveness, and response to chemotherapy and/or radiation. Therefore, a radiomic approach can help to reveal unique information about tumor behavior. Currently available radiomic features can be divided into four major classes: (a) morphological, (b) statistical, (c) regional, and (d) model-based. Each category yields quantitative parameters that reflect specific aspects of a tumor. The major challenge is to integrate radiomic data with clinical, pathological, and genomic information to decode the different types of tissue biology. There are many currently available radiomic studies on lung cancer for which there is a need to summarize the current state of the art.

  16. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geewon [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Radiology and Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of); Lee, Ho Yun, E-mail: hoyunlee96@gmail.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Park, Hyunjin [School of Electronic and Electrical Engineering and Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon (Korea, Republic of); Schiebler, Mark L. [Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, WI (United States); Beek, Edwin J.R. van [Clinical Research Imaging Centre, Edinburgh Imaging, Queen' s Medical Research Institute, University of Edinburgh, Edinburgh (United Kingdom); Ohno, Yoshiharu [Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe-shi 650-0017 (Japan); Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe-shi 650-0017 (Japan); Seo, Joon Beom [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Leung, Ann [Department of Radiology, Stanford University, Palo Alto, CA (United States)

    2017-01-15

    Highlights: • Radiomics is the post-processing and analysis of large amounts of quantitative imaging features that can be derived from medical images. • Radiomics features can reflect the spatial complexity, genomic heterogeneity, and subregional identification of lung cancer. • Currently available radiomic features can be divided into four major categories. • The major challenge is to integrate radiomic data with clinical, pathological, and genomic information. - Abstract: With the development of functional imaging modalities we now have the ability to study the microenvironment of lung cancer and its genomic instability. Radiomics is defined as the use of automated or semi-automated post-processing and analysis of large amounts of quantitative imaging features that can be derived from medical images. The automated generation of these analytical features helps to quantify a number of variables in the imaging assessment of lung malignancy. These imaging features include: tumor spatial complexity, elucidation of the tumor genomic heterogeneity and composition, subregional identification in terms of tumor viability or aggressiveness, and response to chemotherapy and/or radiation. Therefore, a radiomic approach can help to reveal unique information about tumor behavior. Currently available radiomic features can be divided into four major classes: (a) morphological, (b) statistical, (c) regional, and (d) model-based. Each category yields quantitative parameters that reflect specific aspects of a tumor. The major challenge is to integrate radiomic data with clinical, pathological, and genomic information to decode the different types of tissue biology. There are many currently available radiomic studies on lung cancer for which there is a need to summarize the current state of the art.

  17. Early detection of lung cancer from CT images: nodule segmentation and classification using deep learning

    Science.gov (United States)

    Sharma, Manu; Bhatt, Jignesh S.; Joshi, Manjunath V.

    2018-04-01

    Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.

  18. Level-set-based reconstruction algorithm for EIT lung images: first clinical results.

    Science.gov (United States)

    Rahmati, Peyman; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz; Adler, Andy

    2012-05-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure-volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM.

  19. Level-set-based reconstruction algorithm for EIT lung images: first clinical results

    International Nuclear Information System (INIS)

    Rahmati, Peyman; Adler, Andy; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz

    2012-01-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure–volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM. (paper)

  20. Short dynamic FDG-PET imaging protocol for patients with lung cancer

    International Nuclear Information System (INIS)

    Torizuka, Tatsuo; Nobezawa, Shuji; Kanno, Toshihiko; Ouchi, Yasuomi; Momiki, Shigeru; Kasamatsu, Norio; Yoshikawa, Etsuji; Futatsubashi, Masami; Okada, Hiroyuki

    2000-01-01

    This positron emission tomography (PET) study was designed to compare 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) kinetic parameters of tumours derived from imaging frames of 0-60 min post FDG injection with those derived from shorter imaging frames of 0-30 min. Dynamic FDG-PET scans were performed on 20 patients with primary lung cancers for 1 h after intravenous injection of FDG. Images were reconstructed with attenuation correction using transmission images obtained with a germanium-68 ring source immediately before FDG injection. A region of interest (ROI) was placed on the plane of the maximal tumour FDG uptake. Arterial input function was estimated from an ROI defined in the left atrium. Based on the standard three-compartment metabolic model, we calculated the rate constants (K 1 -k 3 ) and influx constant K i = K 1 k 3 /(k 2 +k 3 ) using the imaging frames for 60 min and 30 min post FDG injection. The standardized uptake value (SUV) of tumour was measured using the imaging frame of 50-60 min post injection. High correlations were observed between kinetic parameters (K 1 , k 2 , k 3 and K i ) derived from imaging frames of 0-60 min and 0-30 min [0.231±0.114 vs 0.260±0.174 (r=0.958), 1.149±1.038 vs 1.565±2.027 (r=0.968), 0.259±0.154 vs 0.311±0.194 (r=0.886) and 0.044±0.022 vs 0.048±0.023 (r=0.961), respectively, P i showed an excellent agreement between the two methods (y=-0.0041+0.09831x). Mean SUV of the lung cancers was 6.58±2.85. It is concluded that the briefer 30-min acquisition may yield essentially the same results as the standard 60-min imaging protocol, thus offering a time saving in dynamic PET studies in which the model parameters are desired. (orig.)

  1. Micropapillary Lung Cancer with Breast Metastasis Simulating Primary Breast Cancer due to Architectural Distortion on Images

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Ran; Hong, Eun Kyung; Lee, See Yeon [Center for Breast Cancer, National Cancer Center, Goyang (Korea, Republic of); Ro, Jae Yoon [The Methodist Hospital, Weill Medical College of Cornell University, Houston (United States)

    2012-03-15

    A 47-year-old Korean woman with right middle lobe lung adenocarcinoma, malignant pleural effusion, and multiple lymph node and bone metastases, after three months of lung cancer diagnosis, presented with a palpable right breast mass. Images of the right breast demonstrated architectural distortion that strongly suggested primary breast cancer. Breast biopsy revealed metastatic lung cancer with a negative result for estrogen receptor (ER), progesterone receptor (PR) and mammaglobin, and a positive result for thyroid transcription factor-1 (TTF-1). We present a case of breast metastasis from a case of lung cancer with an extensive micropapillary component, which was initially misinterpreted as a primary breast cancer due to unusual image findings with architectural distortion.

  2. Evaluation of classification method of lung lobe for multi-slice CT images

    International Nuclear Information System (INIS)

    Sakurai, Kousuke; Matsuhiro, Mikio; Saita, Shinsuke

    2010-01-01

    Recently, due to the introduction of multi-slice CT, to obtain a high resolution 3D CT image is possible in a short time. The temporal and spatial resolutions are high, so a highly accurate 3D image analysis is possible. To develop a structure analysis of the lung is needed and to be used as a fundamental technology for early detection of the disease. By separating the lung into lung lobes may provide important information for analysis, diagnosis and treatment of lung diseases. Therefore in this report, we adapt to abnormality example with the classification algorithms using the anatomical information of the bronchus, the pulmonary vein and interlobar fissure information, we evaluate the classification. (author)

  3. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    International Nuclear Information System (INIS)

    Kitchen, M J; Habib, A; Lewis, R A; Fouras, A; Dubsky, S; Wallace, M J; Hooper, S B

    2010-01-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  4. T2 relaxation time in MR imaging of normal and abnormal lung parenchyma

    International Nuclear Information System (INIS)

    Mayo, J.R.; McKay, A.; Mueller, N.L.

    1990-01-01

    To measure the T2 relaxation times of normal and abnormal lung parenchyma and to evaluate the influence of field strength and lung inflation on T2. Five healthy volunteers and five patients with diffuse lung disease were imaged at 0.15 and 1.5 T. Excised normal pig lung was imaged at 0.15 and 1.5 T and analyzed in a spectrometer at 2.0 T. Single-echo (Hahn) pulse sequences (TR, 2,000 msec; TE, 20, 40, 60, 80, and 100 msec) were compared with multiecho trains (Carr-Purcell-Meiboom-Gill [CPMG] at 0.15 T (TR, 2,000 msec; TE, 20-40-60... 240 msec) and 2.0 T (TR, 2,000 msec; TE, 1, 2, 3,..., 10msec). T2 relaxation times calculated from single-echo sequences showed considerable variation between 0.15 and 2.0 T. T2 also changed with lung inflation. However, the T2 measurements on CPMG sequences did not change significantly (P > .05) with field strength and were only minimally affected by lung inflation. The mean ± SD T2 values for normal lung were 99 ± 8 and for abnormal lung were 84 ± 17. Lung parenchyma T2 measurements obtained with the use of conventional single-echo pulse sequences are variable and inaccurate because of inflation and field strength dependent magnetic susceptibility effects that lead to rapid nonrecoverable dephasing. The results indicate that multiecho sequences with appropriately short echo spacings yield more reproducible determinations of T2, which are independent of field strength and less dependent on lung inflation

  5. Comparison of image features calculated in different dimensions for computer-aided diagnosis of lung nodules

    Science.gov (United States)

    Xu, Ye; Lee, Michael C.; Boroczky, Lilla; Cann, Aaron D.; Borczuk, Alain C.; Kawut, Steven M.; Powell, Charles A.

    2009-02-01

    Features calculated from different dimensions of images capture quantitative information of the lung nodules through one or multiple image slices. Previously published computer-aided diagnosis (CADx) systems have used either twodimensional (2D) or three-dimensional (3D) features, though there has been little systematic analysis of the relevance of the different dimensions and of the impact of combining different dimensions. The aim of this study is to determine the importance of combining features calculated in different dimensions. We have performed CADx experiments on 125 pulmonary nodules imaged using multi-detector row CT (MDCT). The CADx system computed 192 2D, 2.5D, and 3D image features of the lesions. Leave-one-out experiments were performed using five different combinations of features from different dimensions: 2D, 3D, 2.5D, 2D+3D, and 2D+3D+2.5D. The experiments were performed ten times for each group. Accuracy, sensitivity and specificity were used to evaluate the performance. Wilcoxon signed-rank tests were applied to compare the classification results from these five different combinations of features. Our results showed that 3D image features generate the best result compared with other combinations of features. This suggests one approach to potentially reducing the dimensionality of the CADx data space and the computational complexity of the system while maintaining diagnostic accuracy.

  6. TU-A-12A-01: Consistency of Lung Expansion and Contraction During Respiration: Implications for Quantitative Imaging

    International Nuclear Information System (INIS)

    Patton, T; Du, K; Bayouth, J; Christensen, G; Reinhardt, J

    2014-01-01

    Purpose: Four-dimensional computed tomography (4DCT) can be used to evaluate longitudinal changes in pulmonary function. The sensitivity of such measurements to identify function change may be improved with reproducible breathing patterns. The purpose of this study was to determine if inhale was more consistent than exhale, i.e., lung expansion during inhalation compared to lung contraction during exhalation. Methods: Repeat 4DCT image data acquired within a short time interval from 8 patients. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. Equivalent lung volumes (ELV) were used for 5 subjects and equivalent title volumes (ETV) for the 3 subjects who experienced a baseline shift between scans. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2mm distance-to-agreement and 5% ventilation difference. The gamma pass rates were then compared using paired t-test to determine if there was a significant difference. Results: Inhalation was more reproducible than exhalation. In the 5 ELV subjects 78.5% of the lung voxels met the gamma criteria for expansion during inhalation when comparing the two scans, while significantly fewer (70.9% of the lung voxels) met the gamma criteria for contraction during exhalation (p = .027). In the 8 total subjects analyzed the average gamma pass rate for expansion during inhalation was 75.2% while for contraction during exhalation it was 70.3%; which trended towards significant (p = .064). Conclusion: This work implies inhalation is more reproducible than exhalation, when equivalent respiratory volumes are considered. The reason for this difference is unknown. Longitudinal investigation of pulmonary function change based on inhalation images appears appropriate for Jacobian-based measure of

  7. Functional Image-Guided Radiotherapy Planning in Respiratory-Gated Intensity-Modulated Radiotherapy for Lung Cancer Patients With Chronic Obstructive Pulmonary Disease

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan); Nishibuchi, Ikuno; Murakami, Yuji; Kenjo, Masahiro; Kaneyasu, Yuko; Nagata, Yasushi [Department of Radiation Oncology, Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima City (Japan)

    2012-03-15

    Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung. Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.

  8. Learning with distribution of optimized features for recognizing common CT imaging signs of lung diseases

    Science.gov (United States)

    Ma, Ling; Liu, Xiabi; Fei, Baowei

    2017-01-01

    Common CT imaging signs of lung diseases (CISLs) are defined as the imaging signs that frequently appear in lung CT images from patients. CISLs play important roles in the diagnosis of lung diseases. This paper proposes a novel learning method, namely learning with distribution of optimized feature (DOF), to effectively recognize the characteristics of CISLs. We improve the classification performance by learning the optimized features under different distributions. Specifically, we adopt the minimum spanning tree algorithm to capture the relationship between features and discriminant ability of features for selecting the most important features. To overcome the problem of various distributions in one CISL, we propose a hierarchical learning method. First, we use an unsupervised learning method to cluster samples into groups based on their distribution. Second, in each group, we use a supervised learning method to train a model based on their categories of CISLs. Finally, we obtain multiple classification decisions from multiple trained models and use majority voting to achieve the final decision. The proposed approach has been implemented on a set of 511 samples captured from human lung CT images and achieves a classification accuracy of 91.96%. The proposed DOF method is effective and can provide a useful tool for computer-aided diagnosis of lung diseases on CT images.

  9. A method for smoothing segmented lung boundary in chest CT images

    Science.gov (United States)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  10. Magnetic resonance imaging of lung infections in children

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, Ville; Ruuskanen, Olli [Turku University Hospital, Department of Paediatrics, Turku (Finland); Svedstroem, Erkki [Turku University Hospital, Department of Radiology, Turku (Finland)

    2008-11-15

    The advantages and limitations of MRI in lung infections in children have not been well established. This article illustrates the MRI findings in children with pneumonia caused by Mycoplasma pneumoniae, Streptococcus pneumoniae, and other pathogens. Lung parenchymal, pleural, and lymph node abnormalities are well characterized by MRI. Loculation of pleural fluid is detected in children with empyema. Contrast enhancement may be useful in the differentiation of active inflammation from noninflammatory changes. MRI can be particularly useful in the follow-up of children with chronic pulmonary diseases. (orig.)

  11. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J. [University Children' s Hospital Zuerich, Department of Diagnostic Imaging, Zuerich, CH (Switzerland); University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); Higashigaito, Kai [University Hospital Zuerich, Institute of Diagnostic and Interventional Radiology, Zuerich (Switzerland); Jung, Andreas [University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); University Children' s Hospital Zuerich, Division of Pneumology, Zuerich (Switzerland)

    2018-02-15

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  12. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    International Nuclear Information System (INIS)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J.; Higashigaito, Kai; Jung, Andreas

    2018-01-01

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  13. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Menten, Martin J., E-mail: martin.menten@icr.ac.uk; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe, E-mail: uwe.oelfke@icr.ac.uk [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5NG (United Kingdom)

    2015-12-15

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  14. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy

    International Nuclear Information System (INIS)

    Menten, Martin J.; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2015-01-01

    Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of

  15. Using dual-energy x-ray imaging to enhance automated lung tumor tracking during real-time adaptive radiotherapy.

    Science.gov (United States)

    Menten, Martin J; Fast, Martin F; Nill, Simeon; Oelfke, Uwe

    2015-12-01

    Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated by weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Regular dual-energy imaging was able to increase tracking accuracy in left-right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. This study has highlighted the influence of patient anatomy on the success rate of real

  16. The use of the Kalman filter in the automated segmentation of EIT lung images

    International Nuclear Information System (INIS)

    Zifan, A; Chapman, B E; Liatsis, P

    2013-01-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging. (paper)

  17. The use of the Kalman filter in the automated segmentation of EIT lung images.

    Science.gov (United States)

    Zifan, A; Liatsis, P; Chapman, B E

    2013-06-01

    In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.

  18. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    Science.gov (United States)

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  19. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Mathieu Salaün

    Full Text Available Several matrix metalloproteinases (MMPs are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging.To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma.K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors.In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27, but in none of the non-invasive (0/4 (p=0.001.MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer.

  20. MMP-13 In-Vivo Molecular Imaging Reveals Early Expression in Lung Adenocarcinoma

    Science.gov (United States)

    Salaün, Mathieu; Peng, Jing; Hensley, Harvey H.; Roder, Navid; Flieder, Douglas B.; Houlle-Crépin, Solène; Abramovici-Roels, Olivia; Sabourin, Jean-Christophe; Thiberville, Luc; Clapper, Margie L.

    2015-01-01

    Introduction Several matrix metalloproteinases (MMPs) are overexpressed in lung cancer and may serve as potential targets for the development of bioactivable probes for molecular imaging. Objective To characterize and monitor the activity of MMPs during the progression of lung adenocarcinoma. Methods K-rasLSL-G12D mice were imaged serially during the development of adenocarcinomas using fluorescence molecular tomography (FMT) and a probe specific for MMP-2, -3, -9 and -13. Lung tumors were identified using FMT and MRI co-registration, and the probe concentration in each tumor was assessed at each time-point. The expression of Mmp2, -3, -9, -13 was quantified by qRT-PCR using RNA isolated from microdissected tumor cells. Immunohistochemical staining of overexpressed MMPs in animals was assessed on human lung tumors. Results In mice, 7 adenomas and 5 adenocarcinomas showed an increase in fluorescent signal on successive FMT scans, starting between weeks 4 and 8. qRT-PCR assays revealed significant overexpression of only Mmp-13 in mice lung tumors. In human tumors, a high MMP-13 immunostaining index was found in tumor cells from invasive lesions (24/27), but in none of the non-invasive (0/4) (p=0.001). Conclusion MMP-13 is detected in early pulmonary invasive adenocarcinomas and may be a potential target for molecular imaging of lung cancer. PMID:26193700

  1. Lung

    International Nuclear Information System (INIS)

    DeNardo, G.L.; Blankenship, W.J.; Burdine, J.A. Jr.; DeNardo, S.J.

    1975-01-01

    At present no simple statement can be made relative to the role of radionuclidic lung studies in the pediatric population. It is safe to assume that they will be used with increasing frequency for research and clinical applications because of their sensitivity and ready applicability to the pediatric patient. Methods comparable to those used in adults can be used in children older than 4 years. In younger children, however, a single injection of 133 Xe in solution provides an index of both regional perfusion and ventilation which is easier to accomplish. This method is particularly valuable in infants and neonates because it is rapid, requires no patient cooperation, results in a very low radiation dose, and can be repeated in serial studies. Radionuclidic studies of ventilation and perfusion can be performed in almost all children if the pediatrician and the nuclear medicine specialist have motivation and ingenuity. S []ontaneous pulmonary vascular occlusive disease which occurs in infants and pulmonary emboli in children are easily detected using radionuclides. The pathophysiologic defects of pulmonary agenesis, bronchopulmonary sequestration, and foreign body aspiration may be demonstrated by these techniques. These techniques also appear to be useful in following patients with bronchial asthma, cystic fibrosis, congenital emphysema, and postinfection pulmonary abnormalities. (auth)

  2. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    Energy Technology Data Exchange (ETDEWEB)

    Soufi, M [Shahid Beheshti University, Tehran, Tehran (Iran, Islamic Republic of); Asl, A Kamali [Shahid Beheshti University, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of); Geramifar, P [Shariati Hospital, Tehran, Iran., Tehran, Tehran (Iran, Islamic Republic of)

    2015-06-15

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  3. SU-D-201-06: Random Walk Algorithm Seed Localization Parameters in Lung Positron Emission Tomography (PET) Images

    International Nuclear Information System (INIS)

    Soufi, M; Asl, A Kamali; Geramifar, P

    2015-01-01

    Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lung lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm 3 . For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and

  4. The effect of inspiration on airway dimensions measured in CT images from the Danish Lung Cancer Screening Trial

    DEFF Research Database (Denmark)

    Petersen, Jens; Wille, Mathilde; Thomsen, Laura

    2013-01-01

    of the same subject using image registration. Mixed effect models were used to predict the relative change in lumen diameter (LD) and wall thickness (WT) in airways of generation 0 (trachea) to 6 based on relative changes in the segmented total lung volume (TLV). Results: On average, 1.0, 2.0, 3.9, 7.6, 15...... and Materials: We selected from the Danish Lung Cancer Screening Trial 978 subjects without COPD who were scanned annually for 5 years with low-dose multi-slice CT. Using in-house developed software, the lungs and airways were automatically segmented and corresponding airway branches were found in all scans......Purpose: Airway dimensions measured from CT are increasingly being used to investigate diseases such as chronic obstructive pulmonary disease (COPD). In this study, we investigate the effect of differences in inspiration level on such measurements in voluntary inspiration breathhold scans. Methods...

  5. Experimental study on early detection of alloxan-induced pulmonary injury by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Awai, Kazuo; Fukuda, Hiroshi; Nakamura, Susumu; Fujikawa, Koichi; Utsumi, Toshio; Kajima, Toshio; Azuma, Kazuyoshi; Ito, Katsuhide.

    1995-01-01

    We studied the early detection of alloxan-induced pulmonary injury by magnetic resonance imaging in vivo. Permeability edema was induced in ten rats by intravenous injection of alloxan at 100 mg/Kg. T1-and T2-weighted images were acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging and examined microscopically. CT images were also acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging, and the wet-to-dry ratio of the lung was measured. In T1-weighted images, relative signal intensity from the lung with permeability edema rose from 30 min to 120 min, and was greater than that from normal lung every time. In T2-weighted images, there was no statistically significant difference in relative signal intensity of the lung between permeability edema and the control during 120 min. In CT images, there was also no statistically significant difference in lung density between permeability edema and the control during 120 min. There was no statistically significant difference in the wet-to-dry lung ratio between edematous lung and normal lung. In histological study, mild congestion and interstitial edema were observed in edematous lung. These results suggest the potential capability of MR imaging in detecting the early phase of permeability pulmonary edema. (author)

  6. Pre- and post-bronchodilator lung function as predictors of mortality in the Lung Health Study

    Directory of Open Access Journals (Sweden)

    Diaz-Guzman Enrique

    2011-10-01

    Full Text Available Abstract Background Chronic obstructive pulmonary disease (COPD is supposed to be classified on the basis of post-bronchodilator lung function. Most longitudinal studies of COPD, though, do not have post-bronchodilator lung function available. We used pre-and post bronchodilator lung function data from the Lung Health Study to determine whether these measures differ in their ability to predict mortality. Methods We limited our analysis to subjects who were of black or white race, on whom we had complete data, and who participated at either the 1 year or the 5 year follow-up visit. We classified subjects based on their baseline lung function, according to COPD Classification criteria using both pre- and post-bronchodilator lung function. We conducted a survival analysis and logistic regression predicting death and controlling for age, sex, race, treatment group, smoking status, and measures of lung function (either pre- or post-bronchodilator. We calculated hazard ratios (HR with 95% confidence intervals (CI and also calculated area under the curve for the logistic regression models. Results By year 15 of the study, 721 of the original 5,887 study subjects had died. In the year 1 sample survival models, a higher FEV1 % predicted lower mortality in both the pre-bronchodilator (HR 0.87, 95% CI 0.81, 0.94 per 10% increase and post-bronchodilator (HR 0.84, 95% CI 0.77, 0.90 models. The area under the curve for the respective models was 69.2% and 69.4%. Similarly, using categories, when compared to people with "normal" lung function, subjects with Stage 3 or 4 disease had similar mortality in both the pre- (HR 1.51, 95% CI 0.75, 3.03 and post-bronchodilator (HR 1.45, 95% CI 0.41, 5.15 models. In the year 5 sample, when a larger proportion of subjects had Stage 3 or 4 disease (6.4% in the pre-bronchodilator group, mortality was significantly increased in both the pre- (HR 2.68, 95% CI 1.51, 4.75 and post-bronchodilator (HR 2.46, 95% CI 1.63, 3

  7. Active contour modes Crisp: new technique for segmentation of the lungs in CT images

    International Nuclear Information System (INIS)

    Reboucas Filho, Pedro Pedrosa; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2011-01-01

    This paper proposes a new active contour model (ACM), called ACM Crisp, and evaluates the segmentation of lungs in computed tomography (CT) images. An ACM draws a curve around or within the object of interest. This curve changes its shape, when some energy acts on it and moves towards the edges of the object. This process is performed by successive iterations of minimization of a given energy, associated with the curve. The ACMs described in the literature have limitations when used for segmentations of CT lung images. The ACM Crisp model overcomes these limitations, since it proposes automatic initiation and new external energy based on rules and radiological pulmonary densities. The paper compares other ACMs with the proposed method, which is shown to be superior. In order to validate the algorithm a medical expert in the field of Pulmonology of the Walter Cantidio University Hospital from the Federal University of Ceara carried out a qualitative analysis. In these analyses 100 CT lung images were used. The segmentation efficiency was evaluated into 5 categories with the following results for the ACM Crisp: 73% excellent, without errors, 20% acceptable, with small errors, and 7% reasonable, with large errors, 0% poor, covering only a small part of the lung, and 0% very bad, making a totally incorrect segmentation. In conclusion the ACM Crisp is considered a useful algorithm to segment CT lung images, and with potential to integrate medical diagnosis systems. (author)

  8. Synchrotron microradiography study on acute lung injury of mouse caused by PM2.5 aerosols

    International Nuclear Information System (INIS)

    Tong Yongpeng; Zhang Guilin; Li Yan; Tan Mingguan; Wang Wei; Chen Jianmin; Hwu Yeukuang; Hsu, Pei-Chebg; Je, Jung Ho; Margaritondo, Giorgio; Song Weiming; Jiang, Rongfang; Jiang Zhihai

    2006-01-01

    In order to investigate FeSO 4 , ZnSO 4 (the two of main metal compositions of Shanghai PM 2.5 (particle matter with those aerodynamical diameter 2.5 aerosol particles, FeSO 4 , ZnSO 4 and their mixtures were instilled intratracheally into mouse lungs for experiment. By 2 days after instillation, the live mice were checked in vivo by synchrotron refractive index microradiography. In addition after extracted and examined by dissection, the right lobes of lung were fixed by formalin, then imaged by synchrotron microradiography again. Corresponding parts of those lung tissues were embedded in paraffin for histopathologic study. The synchrotron X-ray microradiographs of live mouse lung showed different lung texture changes after instilled with different toxic solutions. Hemorrhage points in lung were observed more from those mice instilled by FeSO 4 contained toxin solutions groups. Bronchial epithelial hyperplasia can be observed in ZnSO 4 contained solution-instilled groups from histopathologic analysis. It was found that the acute lung injury of mice caused by solution of PM 2.5 + FeSO 4 + ZnSO 4 was more serious than other toxin solutions. Results suggested that FeSO 4 mainly induced hemorrhage and ZnSO 4 mainly induced inflammation and bronchiolar epithelial hyperplasia in the early toxicological effects of PM 2.5

  9. Lung uptake of thallium-201 on resting myocardial imaging in assessment of pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, N.; Yonekura, Y.; Yamamoto, K. (Kyoto Univ. (Japan). Hospital)

    1981-03-01

    We have noted increased lung uptake of thallium-201 on resting myocardial images in patients with congestive heart failure. To evaluate this phenomenon, lung uptake of thallium on resting myocardial imaging was examined in 328 patients with various cardiovascular diseases. Increased lung uptake was observed in 117 cases (78%) with myocardial infarction, 32 (37%) with angina pectoris, 6 (27%) with hypertensive heart disease, 7 (30%) with hypertrophic cardiomyopathy, 6 (100%) with congestive cardiomyopathy, 11 (100%) with valvular heart disease, and 7 (71%) with congenital heart disease, however, only one (5%) of normal subjects revealed increased uptake. Left ventricular ejection fraction was evaluated in 32 cases with ischemic heart disease on the same day and it was significantly decreased as the lung uptake of thallium increased. Increased thallium activity in the lung seemed to be another noninvasive marker of lift heart failure in ischemic heart disease. Lung uptake of thallium was compared with pulmonary congestive signs on chest X-ray in 29 cases. The uptake was well correlated with the degree of pulmonary edema, and thallium myocardial image revealed remarkably increased lung uptake in all the patients accompanied with pulmonary interstitial edema on chest X-ray. Therefore, this phenomenon will demonstrate pulmonary edema, since thallium may be extracted to the increased interstitial distribution space of the lung as well as the myocardium in a patient with pulmonary edema. We conclude that thallium myocardial scintigraphy is useful not only in identification and localization of myocardial ischemia or infarction, but also in evaluation of pulmonary edema at the same time.

  10. Lung uptake of thallium-201 on resting myocardial imaging in assessment of pulmonary edema

    International Nuclear Information System (INIS)

    Tamaki, Nagara; Yonekura, Yoshiharu; Yamamoto, Kazutaka

    1981-01-01

    We have noted increased lung uptake of thallium-201 on resting myocardial images in patients with congestive heart failure. To evaluate this phenomenon, lung uptake of thallium on resting myocardial imaging was examined in 328 patients with various cardiovascular diseases. Increased lung uptake was observed in 117 cases (78%) with myocardial infarction, 32 (37%) with angina pectoris, 6 (27%) with hypertensive heart disease, 7 (30%) with hypertrophic cardiomyopathy, 6 (100%) with congestive cardiomyopathy, 11 (100%) with valvular heart disease, and 7 (71%) with congenital heart disease, however, only one (5%) of normal subjects revealed increased uptake. Left ventricular ejection fraction was evaluated in 32 cases with ischemic heart disease on the same day and it was significantly decreased as the lung uptake of thallium increased. Increased thallium activity in the lung seemed to be another noninvasive marker of lift heart failure in ischemic heart disease. Lung uptake of thallium was compared with pulmonary congestive signs on chest X-ray in 29 cases. The uptake was well correlated with the degree of pulmonary edema, and thallium myocardial image revealed remarkably increased lung uptake in all the patients accompanied with pulmonary interstitial edema on chest X-ray. Therefore, this phenomenon will demonstrate pulmonary edema, since thallium may be extracted to the increased interstitial distribution space of the lung as well as the myocardium in a patient with pulmonary edema. We conclude that thallium myocardial scintigraphy is useful not only in identification and localization of myocardial ischemia or infarction, but also in evaluation of pulmonary edema at the same time. (author)

  11. Radiomic features analysis in computed tomography images of lung nodule classification.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Chen

    Full Text Available Radiomics, which extract large amount of quantification image features from diagnostic medical images had been widely used for prognostication, treatment response prediction and cancer detection. The treatment options for lung nodules depend on their diagnosis, benign or malignant. Conventionally, lung nodule diagnosis is based on invasive biopsy. Recently, radiomics features, a non-invasive method based on clinical images, have shown high potential in lesion classification, treatment outcome prediction.Lung nodule classification using radiomics based on Computed Tomography (CT image data was investigated and a 4-feature signature was introduced for lung nodule classification. Retrospectively, 72 patients with 75 pulmonary nodules were collected. Radiomics feature extraction was performed on non-enhanced CT images with contours which were delineated by an experienced radiation oncologist.Among the 750 image features in each case, 76 features were found to have significant differences between benign and malignant lesions. A radiomics signature was composed of the best 4 features which included Laws_LSL_min, Laws_SLL_energy, Laws_SSL_skewness and Laws_EEL_uniformity. The accuracy using the signature in benign or malignant classification was 84% with the sensitivity of 92.85% and the specificity of 72.73%.The classification signature based on radiomics features demonstrated very good accuracy and high potential in clinical application.

  12. Image dissimilarity-based quantification of lung disease from CT

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Loog, Marco; Lo, Pechin

    2010-01-01

    In this paper, we propose to classify medical images using dissimilarities computed between collections of regions of interest. The images are mapped into a dissimilarity space using an image dissimilarity measure, and a standard vector space-based classifier is applied in this space. The classif......In this paper, we propose to classify medical images using dissimilarities computed between collections of regions of interest. The images are mapped into a dissimilarity space using an image dissimilarity measure, and a standard vector space-based classifier is applied in this space...

  13. Quantitative study of late injury in the irradiated mouse lung using computer graphics

    International Nuclear Information System (INIS)

    Tanabe, Masahiro; Furuse, Takeshi; Rapachietta, D.R.; Kallman, R.F.

    1990-01-01

    It is reported that quantitative histological analysis using current imaging technology and computer graphics is useful in studying late injury in the irradiated lung (with and without added chemotherapy), and that it correlated closely with results of the functional breathing rate test. (author). 7 refs.; 1 fig

  14. Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tokihiro; Loo, Billy W Jr; Keall, Paul J [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Dr, Stanford, CA 94305-5847 (United States); Kabus, Sven; Lorenz, Cristian; Von Berg, Jens; Blaffert, Thomas [Department of Digital Imaging, Philips Research Europe, Roentgenstrasse 24-26, D-22335 Hamburg (Germany); Klinder, Tobias, E-mail: Tokihiro@stanford.edu [Clinical Informatics, Interventional, and Translational Solutions, Philips Research North America, Briarcliff Manor, NY 10510 (United States)

    2011-04-07

    A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIR{sup sur}) and volumetric (DIR{sup vol}), and two metrics: Hounsfield unit (HU) change (V{sub HU}) and Jacobian determinant of deformation (V{sub Jac}), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. V{sub HU} resulted in statistically significant differences for both DIR{sup sur} (0.14 {+-} 0.14 versus 0.29 {+-} 0.16, p = 0.01) and DIR{sup vol} (0.13 {+-} 0.13 versus 0.27 {+-} 0.15, p < 0.01). However, V{sub Jac} resulted in non-significant differences for both DIR{sup sur} (0.15 {+-} 0.07 versus 0.17 {+-} 0.08, p = 0.20) and DIR{sup vol} (0.17 {+-} 0.08 versus 0.19 {+-} 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A

  15. In vitro studies of human lung carcinogenesis.

    Science.gov (United States)

    Harris, C C; Lechner, J F; Yoakum, G H; Amstad, P; Korba, B E; Gabrielson, E; Grafstrom, R; Shamsuddin, A; Trump, B F

    1985-01-01

    Advances in the methodology to culture normal human lung cells have provided opportunities to investigate fundamental problems in biomedical research, including the mechanism(s) of carcinogenesis. Using the strategy schematically shown in Figure 1, we have initiated studies of the effects of carcinogens on the normal progenitor cells of the human cancers caused by these carcinogens. Extended lifespans and aneuploidy were found after exposure of mesothelial cells to asbestos and bronchial epithelial cells to nickel sulfate. These abnormal cells may be considered to be preneoplastic and at an intermediate position in the multistage process of carcinogenesis. Human bronchial epithelial cells can also be employed to investigate the role of specific oncogenes in carcinogenesis and tumor progression. Using the protoplast fusion method for high frequency gene transfection, vHa-ras oncogene initiates a cascade of events in the normal human bronchial cells leading to their apparent immortality, aneuploidy, and tumorigenicity in athymic nude mice. These results suggest that oncogenes may play an important role in human carcinogenesis.

  16. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Danny [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Greer, Peter B. [School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, NSW (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Ludbrook, Joanna; Arm, Jameen; Hunter, Perry [Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Pollock, Sean; Makhija, Kuldeep; O' brien, Ricky T. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Kim, Taeho [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Keall, Paul, E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia)

    2016-03-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  17. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    International Nuclear Information System (INIS)

    Lee, Danny; Greer, Peter B.; Ludbrook, Joanna; Arm, Jameen; Hunter, Perry; Pollock, Sean; Makhija, Kuldeep; O'brien, Ricky T.; Kim, Taeho; Keall, Paul

    2016-01-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  18. 68Ga-DOTATATE PET/CT imaging of indeterminate pulmonary nodules and lung cancer.

    Directory of Open Access Journals (Sweden)

    Ronald Walker

    Full Text Available 18F-FDG PET/CT is widely used to evaluate indeterminate pulmonary nodules (IPNs. False positive results occur, especially from active granulomatous nodules. A PET-based imaging agent with superior specificity to 18F-FDG for IPNs, is badly needed, especially in areas of endemic granulomatous nodules. Somatostatin receptors (SSTR are expressed in many malignant cells including small cell and non-small cell lung cancers (NSCLCs. 68Ga-DOTATATE, a positron emitter labeled somatostatin analog, combined with PET/CT imaging, may improve the diagnosis of IPNs over 18F-FDG by reducing false positives. Our study purpose was to test this hypothesis in our region with high endemic granulomatous IPNs.We prospectively performed 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT scans in the same 30 patients with newly diagnosed, treatment-naïve lung cancer (N = 14 or IPNs (N = 15 and one metastatic nodule. 68Ga-DOTATATE SUVmax levels at or above 1.5 were considered likely malignant. We analyzed the scan results, correlating with ultimate diagnosis via biopsy or 2-year chest CT follow-up. We also correlated 68Ga-DOTATATE uptake with immunohistochemical (IHC staining for SSTR subtype 2A (SSTR2A in pathological specimens.We analyzed 31 lesions in 30 individuals, with 14 (45% being non-neuroendocrine lung cancers and 1 (3% being metastatic disease. McNemar's result comparing the two radiopharmaceuticals (p = 0.65 indicates that their accuracy of diagnosis in this indication are equivalent. 68Ga-DOTATATE was more specific (94% compared to 81% and less sensitive 73% compared to 93% than 18F-FDG. 68Ga-DOTATATE uptake correlated with SSTR2A expression in tumor stroma determined by immunohistochemical (IHC staining in 5 of 9 (55% NSCLCs.68Ga-DOTATATE and 18F-FDG PET/CT had equivalent accuracy in the diagnosis of non-neuroendocrine lung cancer and 68Ga-DOTATATE was more specific than 18F-FDG for the diagnosis of IPNs. IHC staining for SSTR2A receptor expression correlated with

  19. Lung Nodule Image Classification Based on Local Difference Pattern and Combined Classifier.

    Science.gov (United States)

    Mao, Keming; Deng, Zhuofu

    2016-01-01

    This paper proposes a novel lung nodule classification method for low-dose CT images. The method includes two stages. First, Local Difference Pattern (LDP) is proposed to encode the feature representation, which is extracted by comparing intensity difference along circular regions centered at the lung nodule. Then, the single-center classifier is trained based on LDP. Due to the diversity of feature distribution for different class, the training images are further clustered into multiple cores and the multicenter classifier is constructed. The two classifiers are combined to make the final decision. Experimental results on public dataset show the superior performance of LDP and the combined classifier.

  20. Lung Nodule Image Classification Based on Local Difference Pattern and Combined Classifier

    Directory of Open Access Journals (Sweden)

    Keming Mao

    2016-01-01

    Full Text Available This paper proposes a novel lung nodule classification method for low-dose CT images. The method includes two stages. First, Local Difference Pattern (LDP is proposed to encode the feature representation, which is extracted by comparing intensity difference along circular regions centered at the lung nodule. Then, the single-center classifier is trained based on LDP. Due to the diversity of feature distribution for different class, the training images are further clustered into multiple cores and the multicenter classifier is constructed. The two classifiers are combined to make the final decision. Experimental results on public dataset show the superior performance of LDP and the combined classifier.

  1. SU-F-J-30: Application of Intra-Fractional Imaging for Pretreatment CBCT of Breath-Hold Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D; Jermoumi, M; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2016-06-15

    Purpose: Clinical implementation of gated lung SBRT requires tools to verify the accuracy of the target positioning on a daily basis. This is a particular challenge on Elekta linacs where the XVI imaging system does not interface directly to any commercial gating solution. In this study, we used the Elekta’s intra-fractional imaging functionality to perform the pretreatment CBCT verifications and evaluated both the image quality and gating accuracy. Methods: To use intrafraction imaging tools for pretreatment verifications, we planned a 360-degree arc with 1mmx5mm MLC opening. This beam was designed to drive the gantry during the gated CBCT data collection. A Catphan phantom was used to evaluate the image quality for the intra-fractional CBCT. A CIRS lung phantom with a 3cm sphereinsert and a moving chest plate were programmed with a simulated breathhold breathing pattern was used to check the gating accuracy. A C-Rad CatalystHD surface mapping system was used to provide the gating signal. Results: The total delivery time of the arc was 90 seconds. The uniformity and low contrast resolution for the intra-fractional CBCT was 1.5% and 3.6%, respectively. The values for the regular CBCT were 1.7% and 2.5%, respectively. The spatial resolution was 7 line-pairs/cm and the 3D spatial integrity was less than 1mm for the intra-fractional CBCT. The gated CBCT clearly demonstrated the accuracy of the gating image acquisition. Conclusion: The intra-fraction CBCT capabilities on an Elekta linac can be used to acquire pre-treatment gated images to verify the accuracy patient positioning. This imaging capability should provide for accurate patient alignments for the delivery of lung SBRT. This research was partially supported by Elekta.

  2. Automatic Classification of Normal and Cancer Lung CT Images Using Multiscale AM-FM Features

    Directory of Open Access Journals (Sweden)

    Eman Magdy

    2015-01-01

    Full Text Available Computer-aided diagnostic (CAD systems provide fast and reliable diagnosis for medical images. In this paper, CAD system is proposed to analyze and automatically segment the lungs and classify each lung into normal or cancer. Using 70 different patients’ lung CT dataset, Wiener filtering on the original CT images is applied firstly as a preprocessing step. Secondly, we combine histogram analysis with thresholding and morphological operations to segment the lung regions and extract each lung separately. Amplitude-Modulation Frequency-Modulation (AM-FM method thirdly, has been used to extract features for ROIs. Then, the significant AM-FM features have been selected using Partial Least Squares Regression (PLSR for classification step. Finally, K-nearest neighbour (KNN, support vector machine (SVM, naïve Bayes, and linear classifiers have been used with the selected AM-FM features. The performance of each classifier in terms of accuracy, sensitivity, and specificity is evaluated. The results indicate that our proposed CAD system succeeded to differentiate between normal and cancer lungs and achieved 95% accuracy in case of the linear classifier.

  3. A proposed new imaging pathway for patients with suspected lung cancer

    International Nuclear Information System (INIS)

    Macpherson, R.; Benamore, R.; Panakis, N.; Sayeed, R.; Breen, D.; Bradley, K.; Carter, R.; Baldwin, D.; Craig, J.; Gleeson, F.

    2012-01-01

    Aims: PET-CT scans are routinely performed in patients with lung cancer after investigation by chest x-ray (CXR) and CT scan, when these have demonstrated potentially curable disease. If the majority of patients with lung cancer potentially suitable for curative treatment could be identified earlier in the diagnostic pathway on the basis of CXR findings they could be referred for PET-CT imaging without a prior CT scan. We investigated the clinical and financial implications of adopting such a strategy. Materials and methods: The details of 1187 patients referred with suspected lung cancer between July 2006 and August 2009 were analysed. The initial CXR and subsequent imaging of patients fit for curative treatment (Performance Status 0/1, FEV1 > 1.0) were reviewed (n = 251). The clinical and financial implications of referring patients for first line PET-CT if deemed potentially curable based on CXR findings were assessed. Results: 107 of 1187 patients had potentially curable lung cancer on PS, lung function, CT and PET-CT. 96 of these 107 patients (90%) were correctly identified on CXR. 149 patients overall were diagnosed as potentially curable on CXR. Referring suitable patients for an immediate PET-CT scan resulted in a reduction in the time to complete staging investigations. Conclusions: Early PET-CT scanning for patients with suspected lung cancer, potentially suitable for curative therapy could result in more efficient staging with little additional cost.

  4. A proposed new imaging pathway for patients with suspected lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Macpherson, R.; Benamore, R. [Department of Radiology, Churchill Hospital, Oxford (United Kingdom); Panakis, N. [Department of Clinical Oncology, Churchill Hospital, Oxford (United Kingdom); Sayeed, R. [Department of Cardiothoracic Surgery, John Radcliffe Hospital, Oxford (United Kingdom); Breen, D. [Department of Respiratory Medicine, Churchill Hospital, Oxford (United Kingdom); Bradley, K.; Carter, R. [Department of Radiology, Churchill Hospital, Oxford (United Kingdom); Baldwin, D. [Department of Respiratory Medicine, Nottingham City Hospital, Nottingham (United Kingdom); Craig, J. [York Health Economics Consortium Ltd, University of York, York (United Kingdom); Gleeson, F., E-mail: fergus.gleeson@nds.ox.ac.uk [Department of Radiology, Churchill Hospital, Oxford (United Kingdom)

    2012-06-15

    Aims: PET-CT scans are routinely performed in patients with lung cancer after investigation by chest x-ray (CXR) and CT scan, when these have demonstrated potentially curable disease. If the majority of patients with lung cancer potentially suitable for curative treatment could be identified earlier in the diagnostic pathway on the basis of CXR findings they could be referred for PET-CT imaging without a prior CT scan. We investigated the clinical and financial implications of adopting such a strategy. Materials and methods: The details of 1187 patients referred with suspected lung cancer between July 2006 and August 2009 were analysed. The initial CXR and subsequent imaging of patients fit for curative treatment (Performance Status 0/1, FEV1 > 1.0) were reviewed (n = 251). The clinical and financial implications of referring patients for first line PET-CT if deemed potentially curable based on CXR findings were assessed. Results: 107 of 1187 patients had potentially curable lung cancer on PS, lung function, CT and PET-CT. 96 of these 107 patients (90%) were correctly identified on CXR. 149 patients overall were diagnosed as potentially curable on CXR. Referring suitable patients for an immediate PET-CT scan resulted in a reduction in the time to complete staging investigations. Conclusions: Early PET-CT scanning for patients with suspected lung cancer, potentially suitable for curative therapy could result in more efficient staging with little additional cost.

  5. PET imaging approaches for inflammatory lung diseases: Current concepts and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Delphine L., E-mail: chend@wustl.edu [Divisions of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Campus Box 8225, 510S, Kingshighway Blvd, St. Louis, MO (United States); Schiebler, Mark L. [Department of Radiology, UW-Madison School of Medicine and Public Heath, Madison, WI (United States); Goo, Jin Mo [Department of Radiology, Seoul National University, Seoul (Korea, Republic of); Beek, Edwin J.R. van [Clinical Research Imaging Centre, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh (United Kingdom)

    2017-01-15

    Highlights: • Positron emission tomography can provide molecular information inflammatory lung disease mechanisms and assess targeted treatment responses. • {sup 18}F-Fluorodeoxyglucose, {sup 18}F-(+/−)NOS, and {sup 18}F-fluciclatide have potential for serving as biomarkers of inflammation and fibrosis. • PET can complement computed tomography and magnetic resonance imaging to improve our understanding of inflammatory lung disease mechanisms. - Abstract: Inflammatory lung disease is one of the most common clinical scenarios, and yet, it is often poorly understood. Inflammatory lung disorders, such as chronic obstructive pulmonary diseases, which are causing significant mortality and morbidity, have limited therapeutic options. Recently, new treatments have become available for pulmonary fibrosis. This review article will describe the new insights that are starting to be gained from positron emission tomography (PET) methods, by targeting molecular processes using dedicated radiotracers. Ultimately, this should aid in deriving better pathophysiological classification of these disorders, which will ultimately result in better evaluation of novel therapies.

  6. kV x-ray dual digital tomosynthesis for image guided lung SBRT

    Science.gov (United States)

    Partain, Larry; Boyd, Douglas; Kim, Namho; Hernandez, Andrew; Daly, Megan; Boone, John

    2016-03-01

    Two simulated sets of digital tomosynthesis images of the lungs, each acquired at a 90 degree angle from the other, with 19 projection images used for each set and SART iterative reconstructed, gives dual tomosynthesis slice image quality approaching that of spiral CT, and with a data acquisition time that is 3% of that of cone beam CT. This fast kV acquisition, should allow near real time tracking of lung tumors in patients receiving SBRT, based on a novel TumoTrakTM multi-source X-ray tube design. Until this TumoTrakTM prototype is completed over the next year, its projected performance was simulated from the DRR images created from a spiral CT data set from a lung cancer patient. The resulting dual digital tomosynthesis reconstructed images of the lung tumor were exceptional and approached that of the gold standard Feldkamp CT reconstruction of breath hold, diagnostic, spiral, multirow, CT data. The relative dose at 46 mAs was less than 10% of what it would have been if the digital tomosynthesis had been done at the 472 mAs of the CT data set. This is for a 0.77 fps imaging rate sufficient to resolve respiratory motion in many free breathing patients during SBRT. Such image guidance could decrease the magnitudes of targeting error margins by as much as 20 mm or more in the craniocaudal direction for lower lobe lesions while markedly reducing dose to normal lung, heart and other critical structures. These initial results suggest a wide range of topics for future work.

  7. Evaluation of imaging of the ventilatory lung motion in pulmonary diseases

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Kanai, Hisakata; Tanaka, Masao; Hirayama, Jiro; Handa, Kenjiro

    1988-01-01

    Using perfusion lung scintigram with 99m Tc-macroaggregated albumin at maximal expiration (E) and inspiration (I), images of the motion of the regional pulmonary areas and lung margins during ventilation ((E-I)/I) was obtained in patients with various respiratory diseases. The image of (E-I)/I consisted of positive and negative components. The former component visualized the motion of the regional pulmonary areas that corresponded with the ventilatory amplitude of the videodensigram. The sum of the positive component of (E-I)/I in both lungs correlated with the vital capacity (n = 50, r = 0.62). It was 163.5 ± 52.5 in cases with a vital capacity of more than 3.01, 94.1 ± 61.5 in primary lung cancer, 89.2 ± 44.7 in chronic obstructive lung diseases and 69.0 ± 27.5 in diffuse interstitial pneumonia. The distribution pattern of pulmonary perfusion and the positive component of (E-I)/I matched fairly in many cases, but did not match in some cases. The negative component of (E-I)/I demonstrated the ventilatory motion of the lung margin and its decreased activity was shown in cases with hypoventilation of various causes including pleural diseases. The sum of the negative component of (E-I)/I in the both lungs correlated with the vital capacity (n = 50, r = 0.44). These results suggest that this technique is useful to estimate the regional pulmonary ventilatioin and motion of the lung margins. (author)

  8. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs

    Science.gov (United States)

    Tawhai, Merryn H; Hoffman, Eric A

    2013-01-01

    Improved understanding of structure and function relationships in the human lungs in individuals and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways - from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model - will be reviewed. The interaction of CFD models with local parenchymal tissue expansion - assessed by image registration - allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed. CFD simulation of airflow and particle transport in the human lung has been pursued by a number of research groups, whose interest has been in studying flow physics and airways resistance, improving drug delivery, or investigating which populations are most susceptible to inhaled pollutants. The three most important factors that need to be considered in airway CFD studies are lung structure, regional lung function, and flow characteristics. Their correct treatment is important because the transport of therapeutic or pollutant particles is dependent on the characteristics of the flow by which they are transported; and the airflow in the lungs is dependent on the geometry of the airways and how ventilation

  9. The Impact of Optimal Respiratory Gating and Image Noise on Evaluation of Intratumor Heterogeneity on 18F-FDG PET Imaging of Lung Cancer.

    Science.gov (United States)

    Grootjans, Willem; Tixier, Florent; van der Vos, Charlotte S; Vriens, Dennis; Le Rest, Catherine C; Bussink, Johan; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Visvikis, Dimitris; Visser, Eric P

    2016-11-01

    Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most

  10. Change in lung function in never-smokers with nontuberculous mycobacterial lung disease: A retrospective study

    Directory of Open Access Journals (Sweden)

    Takehiko Kobayashi

    2018-05-01

    Full Text Available Purpose: Never-smokers account for a large proportion of subjects in general population studies on nontuberculous mycobacteria lung disease (NTM-LD. However, the influence of NTM infection on the lung function of never-smokers has not yet been evaluated. The aim of this study was to determine how NTM-LD impairs the lung function in never-smokers, and whether there are an association between successful NTM-LD treatment in radiologic outcomes and improvement in lung function of never-smokers with NTM-LD or not. Methods: We performed a retrospective study of patients (1 who have never smoked during their lifetime; (2 with at least two respiratory specimens from sputum, one bronchial washing sample, or one lung tissue that were culture positive for the same NTM species; and (3 who underwent at least two pulmonary function tests. We enrolled healthy never-smokers as the control group. Results: In 22 never-smokers with NTM-LD, the median forced expiratory volume in 1 s (FEV1 and forced vital capacity (FVC at baseline was lower than those in 9 healthy never-smokers [1800 vs 2080 ml (p = 0.23 and 2230 vs 2620 ml (p = 0.06], respectively. The median change in FEV1 in never-smokers with NTM-LD was lower than that in healthy never-smokers [−70 vs 20 ml per year (p = 0.07, respectively]. On univariate analysis, baseline %-predicted FEV1 in never-smokers with NTM-LD was associated with changes in FVC (p = 0.026 and FEV1 (p = 0.013. Anti-NTM treatment was administered for at least 1 year in 19 patients (86.4%. The relationship between worsening chest CT findings and rapid progressive decline in both FVC (p = 0.66 and FEV1 (p = 0.23 were not significant. Conclusion: Never-smokers with NTM-LD showed lung function decline. There was no association between successful NTM-LD treatment in radiologic outcomes and improvement in lung function of never-smokers. Keywords: Lung function, Never-smoker, Nontuberculous mycobacterial

  11. Estimation of lung shunt fraction from simultaneous fluoroscopic and nuclear images

    Science.gov (United States)

    van der Velden, Sandra; Bastiaannet, Remco; Braat, Arthur J. A. T.; Lam, Marnix G. E. H.; Viergever, Max A.; de Jong, Hugo W. A. M.

    2017-11-01

    Radioembolisation with yttrium-90 (90Y) is increasingly used as a treatment of unresectable liver malignancies. For safety, a scout dose of technetium-99m macroaggregated albumin (99mTc-MAA) is used prior to the delivery of the therapeutic activity to mimic the deposition of 90Y. One-day procedures are currently limited by the lack of nuclear images in the intervention room. To cope with this limitation, an interventional simultaneous fluoroscopic and nuclear imaging device is currently being developed. The purpose of this simulation study was to evaluate the accuracy of estimating the lung shunt fraction (LSF) of the scout dose in the intervention room with this device and compare it against current clinical methods. Methods: A male and female XCAT phantom, both with two respiratory profiles, were used to simulate various LSFs resulting from a scout dose of 150 MBq 99mTc-MAA. Hybrid images were Monte Carlo simulated for breath-hold (5 s) and dynamic breathing (10 frames of 0.5 s) acquisitions. Nuclear images were corrected for attenuation with the fluoroscopic image and for organ overlap effects using a pre-treatment CT-scan. For comparison purposes, planar scintigraphy and mobile gamma camera images (both 300 s acquisition time) were simulated. Estimated LSFs were evaluated for all methods and compared to the phantom ground truth. Results: In the clinically relevant range of 10-20% LSF, hybrid imaging overestimated LSF with approximately 2 percentage points (pp) and 3 pp for the normal and irregular breathing phantoms, respectively. After organ overlap correction, LSF was estimated with a more constant error. Errors in planar scintigraphy and mobile gamma camera imaging were more dependent on LSF, body shape and breathing profile. Conclusion: LSF can be estimated with a constant minor error with a hybrid imaging device. Estimated LSF is highly dependent on true LSF, body shape and breathing pattern when estimated with current clinical methods. The hybrid

  12. Analysis of the ultrasonic image of adrenal metastasis in primary lung cancer

    International Nuclear Information System (INIS)

    Bai Ling; Yang Tao; Tang Ying; Mao Jingning; Chen Wei; Wang Yong; Zhang Yan

    2009-01-01

    Objective: To investigate the ultrasonic image of adrenal metastasis in primary lung cancer. Methods: The ultrasonic imaging characteristics of fourteen patients with adrenal metastasis in primary lung cancer were retrospectively reviewed. In all the cases, US-guided percutaneous biopsy was performed for pathological evaluation during the clinical diagnosis. Results and Conclusion: In ultrasonography the adrenal metastatic tumors were manifested as solitary in all the cases, well-defined in 10 cases, irregularly shaped in 10 cases, hypoechoic in 13 cases, and 1 case showed cystoid structure in the tumor. The maximum diameter of the tumor was 3.0-15.3 cm. 9 cases were metastatic adenocarcinoma. The sonographic appearance of adrenal metastasis in primary lung cancer has its characteristics. Ultrasonography can find adrenal metastalic tumors easily and contribute to diagnosis. (authors)

  13. Ant Colony Optimization Approaches to Clustering of Lung Nodules from CT Images

    Directory of Open Access Journals (Sweden)

    Ravichandran C. Gopalakrishnan

    2014-01-01

    Full Text Available Lung cancer is becoming a threat to mankind. Applying machine learning algorithms for detection and segmentation of irregular shaped lung nodules remains a remarkable milestone in CT scan image analysis research. In this paper, we apply ACO algorithm for lung nodule detection. We have compared the performance against three other algorithms, namely, Otsu algorithm, watershed algorithm, and global region based segmentation. In addition, we suggest a novel approach which involves variations of ACO, namely, refined ACO, logical ACO, and variant ACO. Variant ACO shows better reduction in false positives. In addition we propose black circular neighborhood approach to detect nodule centers from the edge detected image. Genetic algorithm based clustering is performed to cluster the nodules based on intensity, shape, and size. The performance of the overall approach is compared with hierarchical clustering to establish the improvisation in the proposed approach.

  14. Lung vessel segmentation in CT images using graph-cuts

    Science.gov (United States)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  15. Improvement in visibility of simulated lung nodules on computed radiography (CR) chest images by use of temporal subtraction technique

    International Nuclear Information System (INIS)

    Oda, Nobuhiro; Fujimoto, Keiji; Murakami, Seiichi; Katsuragawa, Shigehiko; Doi, Kunio; Nakata, Hajime

    1999-01-01

    A temporal subtraction image obtained by subtraction of a previous image from a current one can enhance interval change on chest images. In this study, we compared the visibility of simulated lung nodules on CR images with and without temporal subtraction. Chest phantom images without and with simulated nodules were obtained as previous and current images, respectively, by a CR system. Then, subtraction images were produced with an iterative image warping technique. Twelve simulated nodules were attached on various locations of the chest phantom. The diameter of nodules having a CT number of 47 ranged from 3 mm to 10 mm. Seven radiologists subjectively evaluated the visibility of simulated nodules on CR images with and without temporal subtraction using a three-point rating scale (0: invisible, +1: questionable, +2:visible). The minimum diameter of simulated nodules visible at a frequency greater than 50% was 4 mm on the CR images with temporal subtraction and 6 mm on those without. Our results indicated that the subtraction images clearly improved the visibility of simulated nodules. (author)

  16. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker.

    Science.gov (United States)

    Horn, Felix C; Marshall, Helen; Collier, Guilhem J; Kay, Richard; Siddiqui, Salman; Brightling, Christopher E; Parra-Robles, Juan; Wild, Jim M

    2017-09-01

    Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 ( 3 He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔR net ) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔR net showed significant correlation (P treatment effect was detected with all metrics; however, ΔR net showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. © RSNA, 2017 Online supplemental material is available for this article.

  17. Pathological and microbiological studies on pneumonic lungs from Danish calves

    DEFF Research Database (Denmark)

    Tegtmeier, Conny; Uttenthal, Åse; Friis, N.F.

    1999-01-01

    During 1 year, the association between microbiological and pathological findings in 72 lungs from calves submitted to the Danish Veterinary Laboratory for diagnostic purposes was studied. All cases mere evaluated pathologically and bacteriologically, whereas only 68 cases were examined...

  18. Diagnostic significance of lung ventilation study with sup(81m)Kr gas

    International Nuclear Information System (INIS)

    Narabayashi, Isamu; Ito, Yasuhiko; Ohtsuka, Nobuaki; Muranaka, Akira; Yokobayashi, Tsuneo

    1979-01-01

    Lung ventilation study was performed on 43 patients by the continuous inhalation of sup(81m)Kr gas from a 81 Rb-sup(81m)Kr generator (Nihon Mediphysics Inc. Hyogo Japan). The patients were measured in a sitting position using a scintillation camera in conjunction with a data processor. In 37 cases, scintigraphic findings were compared with those of sup(99m)Tc-MAA images. We discussed the ventilation/perfusion mismatching cases, especially in those of the pulmonary arterial abnormarity and lung cancer. In some of the discrepancy between ventilation and perfusion, nuclear angiography with sup(99m)Tc-HSA was performed. The following results were obtained by those studies. 1) The distribution of sup(81m)Kr gas within the lung is considered proportional to regional ventilation because of a short half life of sup(81m)Kr (13 seconds). 2) The ventilation image with sup(81m)Kr gas was clearly visualized because of the lower gamma-ray energy and much accumulation of activity. 3) Combined use of ventilation-perfusion scintigraphy and nuclear angiography often gave us new additional informations about the pathophysiological condition of lung. 4) In mismatching cases of lung cancer, perfusion was usually more impaired than ventilation. (author)

  19. Deformable image registration for geometrical evaluation of DIBH radiotherapy treatment of lung cancer patients

    DEFF Research Database (Denmark)

    Ottosson, Wiviann; Lykkegaard Andersen, J. A.; Borrisova, S.

    2014-01-01

    locally advanced non-small cell lung cancer patients were included, each with a planning-, midterm- and final CT (pCT, mCT, fCT) and 7 CBCTs acquired weekly and on the same day as the mCT and fCT. All imaging were performed in both FB and DIBH, using Varian RPM system for respiratory tracking...

  20. Pulmonary imaging techniques in the diagnosis of occupational interstitial lung disease

    International Nuclear Information System (INIS)

    Leonard, J.F.; Templeton, P.A.

    1992-01-01

    The chest radiograph is extensively used in evaluating workers at risk for developing occupational lung disease. Other pulmonary imaging techniques used in conjunction with the initial chest radiograph include conventional computed tomography, high resolution computed tomography, and gallium scintigraphy. This chapter evaluates the use of these techniques and their appropriate applications in the pneumoconioses, hypersensitivity pneumonitis, berylliosis, and hard metal diseases.65 references

  1. The aging lung. Clinical and imaging findings and the fringe of physiological state

    International Nuclear Information System (INIS)

    Schroeder, T.H.; Storbeck, B.; Rabe, K.F.; Weber, C.; Universitaetsklinikum Hamburg-Eppendorf, Hamburg

    2015-01-01

    Since aspects of demographic transition have become an essential part of socioeconomic, medical and health-care research in the last decades, it is vital for the radiologist to discriminate between normal ageing related effects and abnormal imaging findings in the elderly. This article reviews functional and structural aspects of the ageing lung and focuses on typical ageing related radiological patterns.

  2. Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility

    International Nuclear Information System (INIS)

    Beek, E.J.R. van; Schmiedeskamp, J.; Filbir, F.; Heil, W.; Wolf, M.; Otten, E.; Wild, J.M.; Paley, M.N.J.; Fichele, S.; Woodhouse, N.; Swift, A.; Knitz, F.; Mills, G.H.

    2003-01-01

    The aim of this study was to test the feasibility of a central production facility with distribution network for implementation of hyperpolarized 3-helium MRI. The 3-helium was hyperpolarized to 50-65% using a large-scale production facility based at a university in Germany. Using a specially designed transport box, containing a permanent low-field shielded magnet and dedicated iron-free glass cells, the hyperpolarized 3-helium gas was transported via airfreight to a university in the UK. At this location, the gas was used to perform in vivo MR experiments in normal volunteers and patients with chronic obstructive lung diseases. Following initial tests, the transport (road-air-road cargo) was successfully arranged on six occasions (approximately once per month). The duration of transport to imaging averaged 18 h (range 16-20 h), which was due mainly to organizational issues such as working times and flight connections. During the course of the project, polarization at imaging increased from 20% to more than 30%. A total of 4 healthy volunteers and 8 patients with chronic obstructive pulmonary disease were imaged. The feasibility of a central production facility for hyperpolarized 3-helium was demonstrated. This should enable a wider distribution of gas for this novel technology without the need for local start-up costs. (orig.)

  3. Radiation dose reduction for CT lung cancer screening using ASIR and MBIR: a phantom study.

    Science.gov (United States)

    Mathieu, Kelsey B; Ai, Hua; Fox, Patricia S; Godoy, Myrna Cobos Barco; Munden, Reginald F; de Groot, Patricia M; Pan, Tinsu

    2014-03-06

    The purpose of this study was to reduce the radiation dosage associated with computed tomography (CT) lung cancer screening while maintaining overall diagnostic image quality and definition of ground-glass opacities (GGOs). A lung screening phantom and a multipurpose chest phantom were used to quantitatively assess the performance of two iterative image reconstruction algorithms (adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR)) used in conjunction with reduced tube currents relative to a standard clinical lung cancer screening protocol (51 effective mAs (3.9 mGy) and filtered back-projection (FBP) reconstruction). To further assess the algorithms' performances, qualitative image analysis was conducted (in the form of a reader study) using the multipurpose chest phantom, which was implanted with GGOs of two densities. Our quantitative image analysis indicated that tube current, and thus radiation dose, could be reduced by 40% or 80% from ASIR or MBIR, respectively, compared with conventional FBP, while maintaining similar image noise magnitude and contrast-to-noise ratio. The qualitative portion of our study, which assessed reader preference, yielded similar results, indicating that dose could be reduced by 60% (to 20 effective mAs (1.6 mGy)) with either ASIR or MBIR, while maintaining GGO definition. Additionally, the readers' preferences (as indicated by their ratings) regarding overall image quality were equal or better (for a given dose) when using ASIR or MBIR, compared with FBP. In conclusion, combining ASIR or MBIR with reduced tube current may allow for lower doses while maintaining overall diagnostic image quality, as well as GGO definition, during CT lung cancer screening.

  4. [Occupational factors influencing lung cancer in women in epidemiological studies].

    Science.gov (United States)

    Swiatkowska, Beata

    2011-01-01

    Lung cancer is the most common cancer in men, although the alarming statistics of recent years indicate that this pathology affects also more likely a group of women and in recent years has become the leading cause of cancer deaths among Polish women. This article presents the main issues relating to occupational determinants of lung cancer in women. The results of the analysis show that the number of neoplastic diseases, including the lung cancer, recognized as an occupational disease in Poland is low, particularly among women. A major factor hampering the certification of occupational etiology of lung cancer is a long latency period, no differences in terms of the clinical and morphological characteristics from lung cancer occurring in the general population, and relatively small number of identified occupational carcinogens. Analysis of the available literature on the adverse workplace conditions shows that only a few epidemiological studies focus on the problem of job-related risk among women, and only some of them provide detailed results for lung cancer. Moreover, the abundant literature on the subject concerning the male workers might not be fully relevant because of possible differences in hormonal, genetic and other gender-related biological differences that may significantly modify the risk of cancer in women. These aspects cause that the true contribution of occupational factors to the risk of lung cancer, particularly in women, is underestimated.

  5. New design of N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) lung imaging in the patient with lung cancer

    International Nuclear Information System (INIS)

    Tanaka, Eiko; Mishima, Michiaki; Kawakami, Kenzo; Sakai, Naoki; Sugiura, Naoharu; Ohi, Motoharu; Kuno, Kenshi; Taniguchi, Takashi; Itoh, Harumi.

    1995-01-01

    N-isopropyl-p-[ 123 I]iodoamphetamine ( 123 I-IMP) was injected intravenously into primary non small cell lung carcinoma patients (n=17). The average pixel count ratios of the cancerous area to the whole lung was measured in the initial and delayed images. In the initial image, this ratio was less than 1.0 for the entire group of patients, and was thought to reflect decreased blood flow in the cancerous tissues. The rate of counts within a ROI in the delayed image to counts in the same ROI in the initial image was also calculated and called the remain rate. The remain rate (delayed count/initial count) was significantly higher in the cancerous area than in the whole lung (0.65±0.30, median 0.62, 0.38±0.05, median 0.38, p<0.01). This observation was thought to be due to a relative decrease in the blood flow and the accumulation of IMP, which forms pools within the alveolar spaces of the cancerous areas. The image prepared with the remain rate revealed a hot image in the cancerous regions, even when this was not apparent in the delayed image. The remain rate image may therefore be useful in the identification of cancerous areas in lung tissue if it is used in comparison with the initial image. (author)

  6. Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Arimura, H; Toyofuku, F; Higashida, Y; Onizuka, Y; Terashima, H; Egashira, Y; Shioyama, Y; Nomoto, S; Honda, H; Nakamura, K; Yoshidome, S; Anai, S

    2009-01-01

    The purpose of this study was to develop a computerized method for estimation of the location of a lung tumor in cine images on an electronic portal imaging device (EPID) without implanted markers during stereotactic body radiotherapy (SBRT). Each tumor region was segmented in the first EPID cine image, i.e., reference portal image, based on a multiple-gray level thresholding technique and a region growing technique, and then the image including the tumor region was cropped as a 'tumor template' image. The tumor location was determined as the position in which the tumor template image took the maximum cross-correlation value within each consecutive portal image, which was acquired in cine mode on the EPID in treatment. EPID images with 512 x 384 pixels (pixel size: 0.56 mm) were acquired at a sampling rate of 0.5 frame s -1 by using energies of 4, 6 or 10 MV on linear accelerators. We applied our proposed method to EPID cine images (226 frames) of 12 clinical cases (ages: 51-83, mean: 72) with a non-small cell lung cancer. As a result, the average location error between tumor points obtained by our method and the manual method was 1.47 ± 0.60 mm. This preliminary study suggests that our method based on the tumor template matching technique might be feasible for tracking the location of a lung tumor without implanted markers in SBRT.

  7. Aerosolized gadolinium-DTPA for demonstration of pulmonary ventilation in MR imaging of the lung

    International Nuclear Information System (INIS)

    Haage, P.; Adam, G.; Karaagac, S.; Pfeffer, J.G.; Glowinski, A.; Doehmen, S.; Guenther, R.W.; Misselwitz, B.; Tacke, J.

    2000-01-01

    Purpose: Magnetic resonance assessment of lung ventilation with aerosolized Gd-DTPA. Methods: Eleven experimental procedures were carried out in a domestic pig model. The intubated pigs were aerosolized for 30 minutes with an aqueous formulation of Gd-DTPA. The contrast agent aerosol was generated by a small particle aerosol generator. Imaging was performed on a 1.5 T MR imager using a T 1 -weighted turbo spin echo sequence with respiratory gating (T R 141 ms, T E 8.5 ms, 6 averages, slice thickness 10 mm). Pulmonary signal intensities before and after ventilation were measured in peripheral portions of both lungs. Results: Immediately after ventilation with aerosolized Gd-DTPA, the signal intensity in both lungs increased significantly in all animals with values up to 237% above baseline (mean 139%±48%), but within some cases considerable regional intra- and interindividual intensity differences. Distinctive parenchymal enhancement was readily visualized in all eleven cases with good spatial resolution. Conclusion: The presented data indicate that Gd-DTPA in aerosolized form can be used to demonstrate pulmonary ventilation in large animals with lung volumes comparable to man. Further experimental trials are necessary to improve reproducibility and to define the scope of this method for depicting lung disease. (orig.) [de

  8. The lungs

    International Nuclear Information System (INIS)

    Macey, D.J.; Marshall, R.

    1982-01-01

    Currently emission tomography of the lungs is only practical for perfusion images with sup(99m)Tc microaggregates and ventilation images with sup(81m)Kr. The following topics are touched on: the rotating gamma camera single photon ECT system, spatial resolution and linearity, resolution in phantom studies, area and volume studies, quantitation studies, with particular reference to the authors' experience of perfusion and ventilation in investigations of pulmonary embolism. (U.K.)

  9. Assessment of lung ventilation by MR imaging: current status and future perspectives

    International Nuclear Information System (INIS)

    Kauczor, Hans-Ulrich; Hanke, Alexander; Beek, Edwin J.R. van

    2002-01-01

    The aim of this paper is to review the present status of novel MRI techniques as a new important instrument for functional ventilation imaging. The current status and future perspectives in research and clinical applications are summarized. Morphological lung imaging is based on chest radiography and computed tomography, whereas scintigraphy is used for ventilation imaging. During recent years, MRI has emerged as a new means for functional imaging of ventilation. Aerosolized contrast agents and oxygen are used in proton imaging, whereas non-proton imaging relies on fluorine compounds, such as sulfur hexafluoride and perfluorcarbons, or on hyperpolarized noble gases, such as helium-3 or xenon-129. All the gases are administered as inhaled ''contrast agents'' for imaging of the airways and airspaces. In general, straightforward images demonstrate the homogeneity of ventilation in a breath-hold and allow for determination of ventilated lung. The different properties of the different compounds enable the measurement of additional functional parameters. They comprise airspace size, regional oxygen partial pressure, and analysis of ventilation distribution, ventilation/perfusion ratios, and gas exchange, including oxygen uptake. Novel MRI techniques provide the potential for functional imaging of ventilation. The next steps include definition of the value and the potential of the different contrast mechanisms as well as determination of the significance of the functional information with regard to physiological research and patient management in chronic obstructive pulmonary disease and others. (orig.)

  10. 99Tcm-MIBI imaging in diagnosing benign/malign pulmonary disease and analysis of lung cancer DNA content

    International Nuclear Information System (INIS)

    Feng Yanlin; Tan Jiaju; Yang Jie; Zhu Zheng; Yu Fengwen; He Xiaohong; Huang Kemin; Yuan Baihong; Su Shaodi

    2002-01-01

    Objective: To evaluate the value of 99 Tc m -methoxyisobutylisonitrile (MIBI) lung imaging in diagnosing benign/malign pulmonary disease and the relation of 99 Tc m -MIBI uptake ratio (UR) with lung cancer DNA content. Methods: Early and delay imaging were performed on 27 cases of benign lung disease and 46 cases of malign lung disease. Visual analysis of the images and T/N uptake ratio measurement were performed on every case. Cancer cell DNA content and DNA index (DI) were measured in 24 cases of malign pulmonary disease. Results: The delay phase UR was 1.13 ± 0.19 in benign disease group, and the delay phase UR was 1.45 ± 0.21 in malign disease group (t6.51, P 99 Tc m -MIBI is not an ideal imaging agent for differentiating pulmonary benign/malign disease. Lung cancer DNA content may be reflected by delay phase UR

  11. Evaluation of usefulness of thallium-201-SPECT and CT images in differential diagnosis between organizing pneumonia and primary lung cancer

    International Nuclear Information System (INIS)

    Nakamura, Kazuhiko; Fujiwara, Yoshio; Ogawa, Hirofumi; Nakano, Kenji; Ogawa, Toshihide

    2007-01-01

    We tried differential diagnosis between organizing pneumonia and primary lung cancer using CT and 201 Tl single photon emission computed tomography (SPECT) images. CT images were estimated margin, air space consolidation, air bronchogram, ground-glass attenuation, spicula and indentation of the lesions. 201 Tl SPECT images were evaluated early and delayed lesion-to-normal contralateral lung uptake ratio (ER and DR) and retention index (RI). Clearness of margin and ground-glass attenuation of CT images of organizing pneumonia were significant different from those of primary lung cancer. On the other hand, DR and RI of organizing pneumonia were significant lower than those of primary lung cancer. We emphasized that 201 Tl SPECT was useful to evaluate differential diagnosis between organizing pneumonia and primary lung cancer. (author)

  12. Utility of magnetic resonance imaging and nuclear magnetic resonance-based metabolomics for quantification of inflammatory lung injury

    Science.gov (United States)

    Serkova, Natalie J.; Van Rheen, Zachary; Tobias, Meghan; Pitzer, Joshua E.; Wilkinson, J. Erby; Stringer, Kathleen A.

    2008-01-01

    Magnetic resonance imaging (MRI) and metabolic nuclear magnetic resonance (NMR) spectroscopy are clinically available but have had little application in the quantification of experimental lung injury. There is a growing and unfulfilled need for predictive animal models that can improve our understanding of disease pathogenesis and therapeutic intervention. Integration of MRI and NMR could extend the application of experimental data into the clinical setting. This study investigated the ability of MRI and metabolic NMR to detect and quantify inflammation-mediated lung injury. Pulmonary inflammation was induced in male B6C3F1 mice by intratracheal administration of IL-1β and TNF-α under isoflurane anesthesia. Mice underwent MRI at 2, 4, 6, and 24 h after dosing. At 6 and 24 h lungs were harvested for metabolic NMR analysis. Data acquired from IL-1β+TNF-α-treated animals were compared with saline-treated control mice. The hyperintense-to-total lung volume (HTLV) ratio derived from MRI was higher in IL-1β+TNF-α-treated mice compared with control at 2, 4, and 6 h but returned to control levels by 24 h. The ability of MRI to detect pulmonary inflammation was confirmed by the association between HTLV ratio and histological and pathological end points. Principal component analysis of NMR-detectable metabolites also showed a temporal pattern for which energy metabolism-based biomarkers were identified. These data demonstrate that both MRI and metabolic NMR have utility in the detection and quantification of inflammation-mediated lung injury. Integration of these clinically available techniques into experimental models of lung injury could improve the translation of basic science knowledge and information to the clinic. PMID:18441091

  13. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung.

    Science.gov (United States)

    Darquenne, Chantal; Fleming, John S; Katz, Ira; Martin, Andrew R; Schroeter, Jeffry; Usmani, Omar S; Venegas, Jose; Schmid, Otmar

    2016-04-01

    Development of a new drug for the treatment of lung disease is a complex and time consuming process involving numerous disciplines of basic and applied sciences. During the 2015 Congress of the International Society for Aerosols in Medicine, a group of experts including aerosol scientists, physiologists, modelers, imagers, and clinicians participated in a workshop aiming at bridging the gap between basic research and clinical efficacy of inhaled drugs. This publication summarizes the current consensus on the topic. It begins with a short description of basic concepts of aerosol transport and a discussion on targeting strategies of inhaled aerosols to the lungs. It is followed by a description of both computational and biological lung models, and the use of imaging techniques to determine aerosol deposition distribution (ADD) in the lung. Finally, the importance of ADD to clinical efficacy is discussed. Several gaps were identified between basic science and clinical efficacy. One gap between scientific research aimed at predicting, controlling, and measuring ADD and the clinical use of inhaled aerosols is the considerable challenge of obtaining, in a single study, accurate information describing the optimal lung regions to be targeted, the effectiveness of targeting determined from ADD, and some measure of the drug's effectiveness. Other identified gaps were the language and methodology barriers that exist among disciplines, along with the significant regulatory hurdles that need to be overcome for novel drugs and/or therapies to reach the marketplace and benefit the patient. Despite these gaps, much progress has been made in recent years to improve clinical efficacy of inhaled drugs. Also, the recent efforts by many funding agencies and industry to support multidisciplinary networks including basic science researchers, R&D scientists, and clinicians will go a long way to further reduce the gap between science and clinical efficacy.

  14. Lung pathologies analyzed with multi-frequency electrical impedance tomography: Pilot animal study.

    Science.gov (United States)

    Aguiar Santos, Susana; Czaplik, Michael; Orschulik, Jakob; Hochhausen, Nadine; Leonhardt, Steffen

    2018-03-31

    In critically ill patients, correct diagnosis of lung disease is essential for successful therapy. Therefore, this study investigated whether new multi-frequency electrical impedance tomography (mfEIT) can detect, monitor and differentiate between pathologies associated with the acute respiratory distress syndrome (ARDS). For this pilot study, 12 pigs were randomized into an ARDS (bronchoalveolar lavage) group (n = 7) and a healthy control group (n = 5). Animals were monitored by means of mfEIT. In addition to functional images, a new impaired-ventilation (rImpVent) index was developed and frequency-difference images were computed and analyzed. Amplitude functional images revealed only small differences between the groups. However, phase functional images were of greater importance in distinguishing between lung pathologies. Correlation images showed substantial differences between the two groups. The new rImpVent index achieved high sensitivity (91%) and specificity (92%) in detecting PaO 2 /FiO 2  ≤ 200 mmHg. mfEIT was able to detect lung edema, differentiate this from atelectasis, and also monitor their progress over time in terms of global and regional differences. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. In vivo fluorescence imaging of bacteriogenic cyanide in the lungs of live mice infected with cystic fibrosis pathogens.

    Directory of Open Access Journals (Sweden)

    Seong-Won Nam

    Full Text Available BACKGROUND: Pseudomonas aeruginosa (PA and Burkholderia cepacia complex (Bcc, commonly found in the lungs of cystic fibrosis (CF patients, often produce cyanide (CN, which inhibits cellular respiration. CN in sputa is a potential biomarker for lung infection by CF pathogens. However, its actual concentration in the infected lungs is unknown. METHODS AND FINDINGS: This work reports observation of CN in the lungs of mice infected with cyanogenic PA or Bcc strains using a CN fluorescent chemosensor (4',5'-fluorescein dicarboxaldehyde with a whole animal imaging system. When the CN chemosensor was injected into the lungs of mice intratracheally infected with either PA or B. cepacia strains embedded in agar beads, CN was detected in the millimolar range (1.8 to 4 mM in the infected lungs. CN concentration in PA-infected lungs rapidly increased within 24 hours but gradually decreased over the following days, while CN concentration in B. cepacia-infected lungs slowly increased, reaching a maximum at 5 days. CN concentrations correlated with the bacterial loads in the lungs. In vivo efficacy of antimicrobial treatments was tested in live mice by monitoring bacteriogenic CN in the lungs. CONCLUSIONS: The in vivo imaging method was also found suitable for minimally invasive testing the efficacy of antibiotic compounds as well as for aiding the understanding of bacterial cyanogenesis in CF lungs.

  16. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.

    Science.gov (United States)

    Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-04-05

    To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.

  17. Effect of image-guided hypofractionated stereotactic radiotherapy on peripheral non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Wang SW

    2016-08-01

    Full Text Available Shu-wen Wang,1 Juan Ren,1 Yan-li Yan,2 Chao-fan Xue,2 Li Tan,2 Xiao-wei Ma2 1Department of Radiotherapy, First Affiliated Hospital of Xian Jiaotong University, 2Medical School of Xian Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Abstract: The objective of this study was to compare the effects of image-guided hypofractionated radiotherapy and conventional fractionated radiotherapy on non-small-cell lung cancer (NSCLC. Fifty stage- and age-matched cases with NSCLC were randomly divided into two groups (A and B. There were 23 cases in group A and 27 cases in group B. Image-guided radiotherapy (IGRT and stereotactic radiotherapy were conjugately applied to the patients in group A. Group A patients underwent hypofractionated radiotherapy (6–8 Gy/time three times per week, with a total dose of 64–66 Gy; group B received conventional fractionated radiotherapy, with a total dose of 68–70 Gy five times per week. In group A, 1-year and 2-year local failure survival rate and 1-year local failure-free survival rate were significantly higher than in group B (P<0.05. The local failure rate (P<0.05 and distant metastasis rate (P>0.05 were lower in group A than in group B. The overall survival rate of group A was significantly higher than that of group B (P=0.03, and the survival rate at 1 year was 87% vs 63%, (P<0.05. The median survival time of group A was longer than that of group B. There was no significant difference in the incidence of complications between the two groups (P>0.05. Compared with conventional fractionated radiation therapy, image-guided hypofractionated stereotactic radiotherapy in NSCLC received better treatment efficacy and showed good tolerability. Keywords: non-small-cell lung cancer, hypofractionated radiotherapy, stereotactic radiotherapy, segmentation, intensity-modulated radiotherapy, image-guided radiation therapy technology

  18. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-02-15

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule{>=}3 mm,''''nodule<3 mm,'' and ''non-nodule{>=}3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked &apos

  19. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans

    International Nuclear Information System (INIS)

    2011-01-01

    Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (''nodule≥3 mm,''''nodule<3 mm,'' and ''non-nodule≥3 mm''). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked ''nodule'' by at least one radiologist. 2669 of these lesions were marked ''nodule≥3 mm'' by at least one radiologist, of which 928 (34.7%) received such marks from all

  20. Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases

    International Nuclear Information System (INIS)

    Boda-Heggemann, Judit; Wenz, Frederik; Lohr, Frank; Frauenfeld, Anian; Weiss, Christel; Simeonova, Anna; Neumaier, Christian; Siebenlist, Kerstin; Attenberger, Ulrike; Heußel, Claus Peter; Schneider, Frank

    2014-01-01

    Stereotactic Ablative RadioTherapy (SABR) of lung tumors/metastases has been shown to be an effective treatment modality with low toxicity. Outcome and toxicity were retrospectively evaluated in a unique single-institution cohort treated with intensity-modulated image-guided breath-hold SABR (igSABR) without external immobilization. The dose–response relationship is analyzed based on Biologically Equivalent Dose (BED). 50 lesions in 43 patients with primary NSCLC (n = 27) or lung-metastases of various primaries (n = 16) were consecutively treated with igSABR with Active-Breathing-Coordinator (ABC®) and repeat-breath-hold cone-beam-CT. After an initial dose-finding/-escalation period, 5x12 Gy for peripheral lesions and single doses of 5 Gy to varying dose levels for central lesions were applied. Overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC) and toxicity were analyzed. The median BED2 was 83 Gy. 12 lesions were treated with a BED2 of <80 Gy, and 38 lesions with a BED2 of >80 Gy. Median follow-up was 15 months. Actuarial 1- and 2-year OS were 67% and 43%; respectively. Cause of death was non-disease-related in 27%. Actuarial 1- and 2-year PFS was 42% and 28%. Progression site was predominantly distant. Actuarial 1- and 2 year LC was 90% and 85%. LC showed a trend for a correlation to BED2 (p = 0.1167). Pneumonitis requiring conservative treatment occurred in 23%. Intensity-modulated breath-hold igSABR results in high LC-rates and low toxicity in this unfavorable patient cohort with inoperable lung tumors or metastases. A BED2 of <80 Gy was associated with reduced local control

  1. Scattering features for lung cancer detection in fibered confocal fluorescence microscopy images.

    Science.gov (United States)

    Rakotomamonjy, Alain; Petitjean, Caroline; Salaün, Mathieu; Thiberville, Luc

    2014-06-01

    To assess the feasibility of lung cancer diagnosis using fibered confocal fluorescence microscopy (FCFM) imaging technique and scattering features for pattern recognition. FCFM imaging technique is a new medical imaging technique for which interest has yet to be established for diagnosis. This paper addresses the problem of lung cancer detection using FCFM images and, as a first contribution, assesses the feasibility of computer-aided diagnosis through these images. Towards this aim, we have built a pattern recognition scheme which involves a feature extraction stage and a classification stage. The second contribution relies on the features used for discrimination. Indeed, we have employed the so-called scattering transform for extracting discriminative features, which are robust to small deformations in the images. We have also compared and combined these features with classical yet powerful features like local binary patterns (LBP) and their variants denoted as local quinary patterns (LQP). We show that scattering features yielded to better recognition performances than classical features like LBP and their LQP variants for the FCFM image classification problems. Another finding is that LBP-based and scattering-based features provide complementary discriminative information and, in some situations, we empirically establish that performance can be improved when jointly using LBP, LQP and scattering features. In this work we analyze the joint capability of FCFM images and scattering features for lung cancer diagnosis. The proposed method achieves a good recognition rate for such a diagnosis problem. It also performs well when used in conjunction with other features for other classical medical imaging classification problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Lung function in type 2 diabetes: the Normative Aging Study.

    Science.gov (United States)

    Litonjua, Augusto A; Lazarus, Ross; Sparrow, David; Demolles, Debbie; Weiss, Scott T

    2005-12-01

    Cross-sectional studies have noted that subjects with diabetes have lower lung function than non-diabetic subjects. We conducted this analysis to determine whether diabetic subjects have different rates of lung function change compared with non-diabetic subjects. We conducted a nested case-control analysis in 352 men who developed diabetes and 352 non-diabetic subjects in a longitudinal observational study of aging in men. We assessed lung function among cases and controls at three time points: Time0, prior to meeting the definition of diabetes; Time1, the point when the definition of diabetes was met; and Time2, the most recent follow-up exam. Cases had lower forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) at all time points, even with adjustment for age, height, weight, and smoking. In multiple linear regression models adjusting for relevant covariates, there were no differences in rates of FEV1 or FVC change over time between cases and controls. Men who are predisposed to develop diabetes have decreased lung function many years prior to the diagnosis, compared with men who do not develop diabetes. This decrement in lung function remains after the development of diabetes. We postulate that mechanisms involved in the insulin resistant state contribute to the diminished lung function observed in our subjects.

  3. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method.

    Science.gov (United States)

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-05-16

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.

  4. Nanoradioliposomes molecularly modulated to study the lung deep lymphatic drainage

    Directory of Open Access Journals (Sweden)

    Maria Filomena Rabaça Roque Botelho

    2009-03-01

    Full Text Available Lung deep lymphatic drainage (LDLD plays an important role in the removal of foreign materials from lungs being alveolar macrophages the first line of phagocytic defence with high affinity for pathogenic microorganisms. Bacillus subtilis is a well-known genome- decoded saprophyte of the human respiratory tract used in research and in the biotechnology industry.Lung deep lymphatic chains (LDLC constitute one of the first sites of lung tumours’ dissemination. In this work we intended to develop and validate a non-invasive method for assessing LDLC by nanoradioliposomes aerosolised modulated on the Bacillus subtilis spore wall. The final goal was to produce a nanoradioliposome formulation that can mimics the dynamics of preferential removal of spores by LDLD and present the ideal properties as a tracer for molecular imaging studies.Seven different liposomal formulations were tested, and the formulation-F demonstrated physicochemical and radiopharmaceutical properties that make it an ideal candidate as an in vivo probe for molecular imaging studies of the LDLC.Nanoradioliposomes of the formulation-F after labelling with 99mTc-HMPAO were administered as aerosols to 20 Sus scrofa. Hilar and interpulmonary communications were visualized in first 5 minutes post-inhalation, infradiaphragmatic chains between 10 and 20 minutes, the ganglia of the aortic chain at 20 minutes and those of the renal hilar region at 30 minutes. Conclusion: the proposed method enables visualization of deep lymphatic lung network and lymph nodes. Besides, this technique involving the modulation of nanoradioliposomes targeting specific organs or tissues may be an important tool for diagnostic or even for therapeutic purposes. Resumo: A drenagem linfática pulmonar profunda (DLPP desempenha um papel importante na remoção de materiais estranhos, constituindo os macrófagos alveolares a primeira linha de defesa fagocitária, dada a grande afinidade para

  5. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    International Nuclear Information System (INIS)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R.; Kunisaki, Shaun M.

    2015-01-01

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI vol was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  6. CT imaging of congenital lung lesions: effect of iterative reconstruction on diagnostic performance and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, Jay E.; Smith, Ethan A.; Dillman, Jonathan R. [University of Michigan Health System, Section of Pediatric Radiology, Department of Radiology, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States); Kunisaki, Shaun M. [University of Michigan Health System, Section of Pediatric Surgery, Department of Surgery, C.S. Mott Children' s Hospital, Ann Arbor, MI (United States)

    2015-07-15

    Different iterative reconstruction techniques are available for use in pediatric computed tomography (CT), but these techniques have not been systematically evaluated in infants. To determine the effect of iterative reconstruction on diagnostic performance, image quality and radiation dose in infants undergoing CT evaluation for congenital lung lesions. A retrospective review of contrast-enhanced chest CT in infants (<1 year) with congenital lung lesions was performed. CT examinations were reviewed to document the type of lung lesion, vascular anatomy, image noise measurements and image reconstruction method. CTDI{sub vol} was used to calculate size-specific dose estimates (SSDE). CT findings were correlated with intraoperative and histopathological findings. Analysis of variance and the Student's t-test were used to compare image noise measurements and radiation dose estimates between groups. Fifteen CT examinations used filtered back projection (FBP; mean age: 84 days), 15 used adaptive statistical iterative reconstruction (ASiR; mean age: 93 days), and 11 used model-based iterative reconstruction (MBIR; mean age: 98 days). Compared to operative findings, 13/15 (87%), 14/15 (93%) and 11/11 (100%) lesions were correctly characterized using FBP, ASiR and MBIR, respectively. Arterial anatomy was correctly identified in 12/15 (80%) using FBP, 13/15 (87%) using ASiR and 11/11 (100%) using MBIR. Image noise was less for MBIR vs. ASiR (P < 0.0001). Mean SSDE was different among groups (P = 0.003; FBP = 7.35 mGy, ASiR = 1.89 mGy, MBIR = 1.49 mGy). Congenital lung lesions can be adequately characterized in infants using iterative CT reconstruction techniques while maintaining image quality and lowering radiation dose. (orig.)

  7. Lung PET scan

    Science.gov (United States)

    ... Chest PET scan; Lung positron emission tomography; PET - chest; PET - lung; PET - tumor imaging; ... Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, ...

  8. Imaging of Combat-Related Thoracic Trauma - Blunt Trauma and Blast Lung Injury.

    Science.gov (United States)

    Lichtenberger, John P; Kim, Andrew M; Fisher, Dane; Tatum, Peter S; Neubauer, Brian; Peterson, P Gabriel; Carter, Brett W

    2018-03-01

    Combat-related thoracic trauma (CRTT) is a significant contributor to morbidity and mortality of the casualties from Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF). Penetrating, blunt, and blast injuries are the most common mechanisms of trauma to the chest. Imaging plays a key role in the battlefield management of CRTT casualties. This work discusses the imaging manifestations of thoracic injuries from blunt trauma and blast injury, emphasizing epidemiology and diagnostic clues seen during OEF and OIF. The assessment of radiologic findings in patients who suffer from combat-related blunt thoracic trauma and blast injury is the basis of this work. The imaging modalities for this work include multi-detector computed tomography (MDCT) and chest radiography. Multiple imaging modalities are available to imagers on or near the battlefront, including radiography, fluoroscopy, and MDCT. MDCT with multi-planar reconstructions is the most sensitive imaging modality available in combat hospitals for the evaluation of CRTT. In modern combat, blunt and blast injuries account for a significant portion of CRTT. Individual body armor converts penetrating trauma to blunt trauma, leading to pulmonary contusion that accounted for 50.2% of thoracic injuries during OIF and OEF. Flail chest, a subset of blunt chest injury, is caused by significant blunt force to the chest and occurs four times as frequently in combat casualties when compared with the civilian population. Imaging features of CRTT have significant diagnostic and prognostic value. Pulmonary contusions on chest radiography appear as patchy consolidations in the acute setting with ill-defined and non-segmental borders. MDCT of the chest is a superior imaging modality in diagnosing and evaluating pulmonary contusion. Contusions on MDCT appear as crescentic ground-glass opacities (opacities through which lung interstitium and vasculature are still visible) and areas of consolidation that often do not

  9. An image acquisition and registration strategy for the fusion of hyperpolarized helium-3 MRI and x-ray CT images of the lung

    Science.gov (United States)

    Ireland, Rob H.; Woodhouse, Neil; Hoggard, Nigel; Swinscoe, James A.; Foran, Bernadette H.; Hatton, Matthew Q.; Wild, Jim M.

    2008-11-01

    The purpose of this ethics committee approved prospective study was to evaluate an image acquisition and registration protocol for hyperpolarized helium-3 magnetic resonance imaging (3He-MRI) and x-ray computed tomography. Nine patients with non-small cell lung cancer (NSCLC) gave written informed consent to undergo a free-breathing CT, an inspiration breath-hold CT and a 3D ventilation 3He-MRI in CT position using an elliptical birdcage radiofrequency (RF) body coil. 3He-MRI to CT image fusion was performed using a rigid registration algorithm which was assessed by two observers using anatomical landmarks and a percentage volume overlap coefficient. Registration of 3He-MRI to breath-hold CT was more accurate than to free-breathing CT; overlap 82.9 ± 4.2% versus 59.8 ± 9.0% (p < 0.001) and mean landmark error 0.75 ± 0.24 cm versus 1.25 ± 0.60 cm (p = 0.002). Image registration is significantly improved by using an imaging protocol that enables both 3He-MRI and CT to be acquired with similar breath holds and body position through the use of a birdcage 3He-MRI body RF coil and an inspiration breath-hold CT. Fusion of 3He-MRI to CT may be useful for the assessment of patients with lung diseases.

  10. Use of morphologic filters in the computerized detection of lung nodules in digital chest images

    International Nuclear Information System (INIS)

    Yoshimura, H.; Giger, M.L.; Doi, K.; Ahn, N.; MacMahon, H.

    1989-01-01

    The authors have previously described a computerized scheme for the detection of lung nodules based on a difference-image approach, which had a detection accuracy of 70% with 7--8 false positives per image. Currently, they are investigating morphologic filters for the further enhancement/suppression of nodule-signals and the removal of false-positives. Gray-level morphologic filtering is performed on clinical chest radiographs digitized with an optical drum scanner. Various shapes and sequences of erosion and dilation filters (i.e., determination of the minimum and maximum gray levels, respectively) were examined for signal enhancement and suppression for sue in the difference- image approach

  11. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  12. Chest Computed Tomographic Image Screening for Cystic Lung Diseases in Patients with Spontaneous Pneumothorax Is Cost Effective.

    Science.gov (United States)

    Gupta, Nishant; Langenderfer, Dale; McCormack, Francis X; Schauer, Daniel P; Eckman, Mark H

    2017-01-01

    Patients without a known history of lung disease presenting with a spontaneous pneumothorax are generally diagnosed as having primary spontaneous pneumothorax. However, occult diffuse cystic lung diseases such as Birt-Hogg-Dubé syndrome (BHD), lymphangioleiomyomatosis (LAM), and pulmonary Langerhans cell histiocytosis (PLCH) can also first present with a spontaneous pneumothorax, and their early identification by high-resolution computed tomographic (HRCT) chest imaging has implications for subsequent management. The objective of our study was to evaluate the cost-effectiveness of HRCT chest imaging to facilitate early diagnosis of LAM, BHD, and PLCH. We constructed a Markov state-transition model to assess the cost-effectiveness of screening HRCT to facilitate early diagnosis of diffuse cystic lung diseases in patients presenting with an apparent primary spontaneous pneumothorax. Baseline data for prevalence of BHD, LAM, and PLCH and rates of recurrent pneumothoraces in each of these diseases were derived from the literature. Costs were extracted from 2014 Medicare data. We compared a strategy of HRCT screening followed by pleurodesis in patients with LAM, BHD, or PLCH versus conventional management with no HRCT screening. In our base case analysis, screening for the presence of BHD, LAM, or PLCH in patients presenting with a spontaneous pneumothorax was cost effective, with a marginal cost-effectiveness ratio of $1,427 per quality-adjusted life-year gained. Sensitivity analysis showed that screening HRCT remained cost effective for diffuse cystic lung diseases prevalence as low as 0.01%. HRCT image screening for BHD, LAM, and PLCH in patients with apparent primary spontaneous pneumothorax is cost effective. Clinicians should consider performing a screening HRCT in patients presenting with apparent primary spontaneous pneumothorax.

  13. Lung pathology after radiotherapy. Radiation protection (Bibliographic study)

    International Nuclear Information System (INIS)

    Pellerin, A.J.F.

    1975-01-01

    The point of departure of this work is the book by Weir and Michaelson entitled 'Pulmonary Radiation Reactions', where the authors sum up present knowledge on lung reactions to ionizing radiation exposure from the anatomopathological, metabolic and chemical, functional, clinical and experimental viewpoints in turn. The aim is not to contribute anything new to lung cancerology or to specific lung radiotherapy but merely to attemps, from a survey of recent literature on the irradiated lung, to extract concrete elements liable to improve to some extent the survival conditions of patients subjected to strong lung irradiation during radiotherapy centred on the thorax. Publications over the last ten years alone are abundant and varied. Not all are mentioned since many studies and results overlap and finally some hundred of the most representative texts have been chosen. In any case the conclusion, with that of Weir and Michaelson, is that not enough radiobiological data are yet available to allow present radiotherapeutical treatments on the lung region to be improved with certainty [fr

  14. Study of metastatic foci by CT in autopsied lung cancer

    International Nuclear Information System (INIS)

    Koga, Mitsuru; Nobe, Yoshifumi; Fujii, Kyoichi.

    1983-01-01

    The authors reexamined all of the image diagnoses made during whole hospitalization in 11 lung cancer cases with autopsy. Of 39 metastatic foci observed at autopsy in the liver, kidney, pancreas, adrenal and brain, 12 had been diagnosed on transverse CT images before death. Three foci were missed at initial readings. The period from CT to autopsy was less than 3 months for 9 of 12 correctly diagnosed foci. For 13 of 27 foci undetected by CT, CT was conducted more than 3 months before death. (Chiba, N)

  15. An imaging flow cytometry method to assess ricin trafficking in A549 human lung epithelial cells.

    Science.gov (United States)

    Jenner, Dominic; Chong, Damien; Walker, Nicola; Green, A Christopher

    2018-02-01

    The endocytosis and trafficking of ricin in mammalian cells is an important area of research for those producing ricin anti-toxins and other ricin therapeutics. Ricin trafficking is usually observed by fluorescence microscopy techniques. This gives good resolution and leads to a detailed understanding of the internal movement of ricin within cells. However, microscopy techniques are often hampered by complex analysis and quantification techniques, and the inability to look at ricin trafficking in large populations of cells. In these studies we have directly labelled ricin and assessed if its trafficking can be observed using Imaging Flow Cytometry (IFC) both to the cytoplasmic region of cells and specifically to the Golgi apparatus. Using IDEAS® data analysis software the specific fluorescence location of the ricin within the cells was analysed. Then, using cytoplasmic masking techniques to quantify the number of cells with endocytosed cytoplasmic ricin or cells with Golgi-associated ricin, kinetic endocytosis curves were generated. Here we present, to the authors' knowledge, the first example of using imaging flow cytometry for evaluating the subcellular transport of protein cargo, using the trafficking of ricin toxin in lung cells as a model. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  16. Choice of reconstructed tissue properties affects interpretation of lung EIT images.

    Science.gov (United States)

    Grychtol, Bartłomiej; Adler, Andy

    2014-06-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization.

  17. Choice of reconstructed tissue properties affects interpretation of lung EIT images

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Adler, Andy

    2014-01-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization. (paper)

  18. SU-C-18A-04: 3D Markerless Registration of Lung Based On Coherent Point Drift: Application in Image Guided Radiotherapy

    International Nuclear Information System (INIS)

    Nasehi Tehrani, J; Wang, J; Guo, X; Yang, Y

    2014-01-01

    Purpose: This study evaluated a new probabilistic non-rigid registration method called coherent point drift for real time 3D markerless registration of the lung motion during radiotherapy. Method: 4DCT image datasets Dir-lab (www.dir-lab.com) have been used for creating 3D boundary element model of the lungs. For the first step, the 3D surface of the lungs in respiration phases T0 and T50 were segmented and divided into a finite number of linear triangular elements. Each triangle is a two dimensional object which has three vertices (each vertex has three degree of freedom). One of the main features of the lungs motion is velocity coherence so the vertices that creating the mesh of the lungs should also have features and degree of freedom of lung structure. This means that the vertices close to each other tend to move coherently. In the next step, we implemented a probabilistic non-rigid registration method called coherent point drift to calculate nonlinear displacement of vertices between different expiratory phases. Results: The method has been applied to images of 10-patients in Dir-lab dataset. The normal distribution of vertices to the origin for each expiratory stage were calculated. The results shows that the maximum error of registration between different expiratory phases is less than 0.4 mm (0.38 SI, 0.33 mm AP, 0.29 mm RL direction). This method is a reliable method for calculating the vector of displacement, and the degrees of freedom (DOFs) of lung structure in radiotherapy. Conclusions: We evaluated a new 3D registration method for distribution set of vertices inside lungs mesh. In this technique, lungs motion considering velocity coherence are inserted as a penalty in regularization function. The results indicate that high registration accuracy is achievable with CPD. This method is helpful for calculating of displacement vector and analyzing possible physiological and anatomical changes during treatment

  19. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning

    Science.gov (United States)

    Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.

    2017-09-01

    To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving  ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving  ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p  =  0.04) and 0.2% (range: 0 to 4.1%; p  =  0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.

  20. Image processing algorithm of computer-aided diagnosis in lung cancer screening by CT

    International Nuclear Information System (INIS)

    Yamamoto, Shinji

    2004-01-01

    In this paper, an image processing algorithm for computer-aided diagnosis of lung cancer by X-ray CT is described, which has been developed by my research group for these 10 years or so. CT lung images gathered at the mass screening stage are almost all normal, and lung cancer nodules will be found as the rate of less than 10%. To pick up such a very rare nodules with the high accuracy, a very sensitive detection algorithm is requested which is detectable local and very slight variation of the image. On the contrary, such a sensitive detection algorithm introduces a bad effect that a lot of normal shadows will be detected as abnormal shadows. In this paper I describe how to compromise this complicated subject and realize a practical computer-aided diagnosis tool by the image processing algorithm developed by my research group. Especially, I will mainly focus my description to the principle and characteristics of the Quoit filter which is newly developed as a high sensitive filter by my group. (author)

  1. Evaluation of image guided motion management methods in lung cancer radiotherapy

    International Nuclear Information System (INIS)

    Zhuang, Ling; Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun

    2014-01-01

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  2. Evaluation of image guided motion management methods in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Ling [Department of Radiation Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, Michigan 48201 (United States); Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun, E-mail: jun.zhou@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073 (United States)

    2014-03-15

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  3. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    International Nuclear Information System (INIS)

    Shieh, C; Huang, C; Keall, P; Feain, I

    2015-01-01

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used to select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance

  4. Comparison of KVCBCT based on deformable image registration of adaptive planning and static 3DCRT planning for patients with lung cancer

    International Nuclear Information System (INIS)

    Hou Yong; Yin Yong; Wang Pengcheng; Ma Chengsheng

    2012-01-01

    Objective: To comparison of kilo-voltage cone-beam CT (KVCBCT) deformable image registration of adaptive planning and static planning for patients with lung cancer,and evaluate their characters. Methods: Five patients with lung cancer were in the study. Two sets image were acquired every three days and were concatenated to one set. Ten sets CBCT image and planning CT image were transferred a commercial deformable image registration software. The planning CT was deformed to each set CBCT and the contours delineated, the new contour were labeled CBCT f1 -CBCT f10 . Transfer of each deformed planning CT and CBCT f1 -CBCT f10 back into the treatment planning system enable re-calculation of actual dose distribution, then we obtain CT planning and fractional CBCT contour planning, the CBCT planning were labeled CBCT p1 -CBCT p10 . Ten times CBCT planning of every patient were added to acquire a total dose accumulation planning (DA plan), comparison of dose distribution and dose-volume histogram in CT plan and DA plan for fractionation dose and accumulation dose of left, right, total lung, PTV and spinal-cord. The difference of two plan was analyzed by Wilcoxson's sign rank test. Results: The max and min dose of PTV, the left, right, total lung V 5 , V 10 , V 20 , V 30 , V 50 , spinal-cord max dose, and the left,right and total lung mean dose in DA plan were smaller than in CT plan (z=-2.02 - -2.03, P 95 in DA plan was as well as in CT plan (z=-1.48, -1.21, P=0.138, 0.225). Conclusions: KVCBCT based deformable image registration of adaptive planning reduce the dose of lung and spinal-cord, and enhance the dose of PTV. This provides a tool for exploring adaptive radiotherapy strategies. (authors)

  5. [Pediatric lung lesions: a clinicopathological study of 215 cases].

    Science.gov (United States)

    Niu, Huilin; Wang, Fenghua; Liu, Wei; Wang, Yong; Chen, Zhengrong; Gao, Qiu; Yi, Peng; Li, Liping; Zeng, Rongxin

    2015-09-01

    To investigate clinical and pathological features of lung lesions in children. Clinical manifestations, radiologic imaging, histopathological features and immunohistochemical results were analyzed in 215 cases of lung lesions in children. A total of 215 cases of lung lesions in children aged 0 day to 13 years (average age of 27.2 months and the median age of 18.0 months) were selected, including 137 male and 78 female patients with a male to female ratio of 1.76:1.00. The incidence of congenital lung disease was higher in patients of less than 1 year old than those of over 1 year old age, and the difference of the two groups was statistically significant (P = 0.004). 142 cases had acquired lung diseases, and 73 cases had congenital bronchopulmonary dysplasia. Lung abscess was the most common lesion seen in 86 cases (40.0%), including 1 case of fungal abscess. Congenital pulmonary airway malformation (CPAM) was the second most common, seen in 44 patients (20.5%), including 20 cases of type 1, 18 cases of type 2 and 6 cases of type 4 CPAM. Pulmonary sequestration was found in 25 cases (11.6%) including 14 cases of intralobar type and 11 cases of extralobar type. Two cases of extralobar pulmonary sequestration showed simultaneous CPAM2 type 2 lesion. Other lesions included tuberculosis (13 cases, 6.0%), emphysema (12 cases, 5.6%), interstitial pneumonia (7 cases, 3.2%), pulmonary hemorrhage (6 cases, 2.8%), bronchogenic cyst (4 cases, 1.9%), bronchiolitis obliterans (2 cases, 0.9%), idiopathic pulmonary hemosiderin deposition disease (2 cases, 0.9%) and 1 cases of lung non-specific changes. 13 cases of neoplastic lesions (6.0%) were found, of which 11 cases were primary tumors (5.1%), including inflammatory myofibroblastic tumor in 5 patients (2.3%), pleuropulmonary blastoma in 5 cases (1 case of type I, 2 type II and 2 type III) and 1 case of mucoepidermoid carcinoma (0.5%) and 2 cases of metastatic tumors (hepatoblastoma and Wilm's tumor, 0.9%). Infectious diseases

  6. Immuno PET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo

    DEFF Research Database (Denmark)

    Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.

    2016-01-01

    -infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [64Cu]DOTA-JF5 distinguishedIPA from bacterial lung infections and...

  7. Emphysema Is Common in Lungs of Cystic Fibrosis Lung Transplantation Patients: A Histopathological and Computed Tomography Study

    OpenAIRE

    Mets, Onno M.; Roothaan, Suzan M.; Bronsveld, Inez; Luijk, Bart; van de Graaf, Ed A.; Vink, Aryan; de Jong, Pim A.

    2015-01-01

    Background Lung disease in cystic fibrosis (CF) involves excessive inflammation, repetitive infections and development of bronchiectasis. Recently, literature on emphysema in CF has emerged, which might become an increasingly important disease component due to the increased life expectancy. The purpose of this study was to assess the presence and extent of emphysema in endstage CF lungs. Methods In explanted lungs of 20 CF patients emphysema was semi-quantitatively assessed on histology speci...

  8. Experimental studies of the reimplantation of irradiated lung in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, T; Fujimura, S; Sohara, Y; Kawakami, M; Okaniwa, G [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer

    1978-02-01

    In order to treat the patients with lung cancer who have impaired cardiopulmonary function, a new method is designed, which includes the following steps; 1) pneumonectomy, 2) resection of tumor-bearing lobe, 3) /sup 60/Co irradiation to the remaining lobe, and 4) orthotopic reimplantation of the irradiated lung. The purpose of present study is to clarify the feasibility to use this method clinically. Using adult mongreal dogs, left lung was excised, irradiated and reimplanted. Radiation was carried out from 2,000 rad to 4,000 rad. Viability and function of reimplanted lungs were evaluated by their survival time, serial chest x-ray films, sup(99m)Tc-MAA perfusion scanning, unilateral pulmonary artery occlusion test and histologic examinations. Of 17 animals, 12 survived postoperative period and following results were obtained; 1) no dogs developed pulmonary edema, 2) only one dog was considered to die from acute radiation pneumonitis, 3) serial perfusion scanning showed a gradual decrease in flow distribution to the transplanted lung, 4) the right pulmonary occlusion test done in the dog irradiated with 2,000 rad revealed well reserved pulmonary function 2 months after the operation, and 5) histologically, most irradiated lungs revealed so-called ''late reaction'' of lung fibrosis, but there was the case with nearly normal findings after 6 months from the operation. Although many reports concerning to the radiation pneumonitis are published, there have not been any such reports as the present study. From our experiment, it may be indicated that there is a feasibility to use this new method clinically.

  9. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    Science.gov (United States)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  10. Are lung imaging reporting and data system categories clear to radiologists? A survey of the Korean Society of Thoracic Radiology members on ten difficult -to classify scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Hee; Ahn, Myeong Im [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Chong, Se Min [Dept. of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    To evaluate possible variability in chest radiologists' interpretations of the Lung Imaging Reporting and Data System (Lung-RADS) on difficult-to-classify scenarios. Ten scenarios of difficult-to-classify imaginary lung nodules were prepared as an online survey that targeted Korean Society of Thoracic Radiology members. In each question, a description was provided of the size, consistency, and interval change (new or growing) of a lung nodule observed using annual repeat computed tomography, and the respondent was instructed to choose one answer from five choices: category 2, 3, 4A, or 4B, or 'un-categorizable.' Consensus answers were established by members of the Korean Imaging Study Group for Lung Cancer. Of the 420 answers from 42 respondents (excluding multiple submissions), 310 (73.8%) agreed with the consensus answers; eleven (26.2%) respondents agreed with the consensus answers to six or fewer questions. Assigning the imaginary nodules to categories higher than the consensus answer was more frequent (16.0%) than assigning them to lower categories (5.5%), and the agreement rate was below 50% for two scenarios. When given difficult-to-classify scenarios, chest radiologists showed large variability in their interpretations of the Lung-RADS categories, with high frequencies of disagreement in some specific scenarios.

  11. Poster - 48: Clinical assessment of ExacTrac stereoscopic imaging of spine alignment for lung SBRT

    International Nuclear Information System (INIS)

    Sattarivand, Mike; Summers, Clare; Robar, James

    2016-01-01

    Purpose: To evaluate the validity of using spine as a surrogate for tumor positioning with ExacTrac stereoscopic imaging in lung stereotactic body radiation therapy (SBRT). Methods: Using the Novalis ExacTrac x-ray system, 39 lung SBRT patients (182 treatments) were aligned before treatment with 6 degrees (6D) of freedom couch (3 translations, 3 rotations) based on spine matching on stereoscopic images. The couch was shifted to treatment isocenter and pre-treatment CBCT was performed based on a soft tissue match around tumor volume. The CBCT data were used to measure residual errors following ExacTrac alignment. The thresholds for re-aligning the patients based on CBCT were 3mm shift or 3° rotation (in any 6D). In order to evaluate the effect of tumor location on residual errors, correlations between tumor distance from spine and individual residual errors were calculated. Results: Residual errors were up to 0.5±2.4mm. Using 3mm/3° thresholds, 80/182 (44%) of the treatments required re-alignment based on CBCT soft tissue matching following ExacTrac spine alignment. Most mismatches were in sup-inf, ant-post, and roll directions which had larger standard deviations. No correlation was found between tumor distance from spine and individual residual errors. Conclusion: ExacTrac stereoscopic imaging offers a quick pre-treatment patient alignment. However, bone matching based on spine is not reliable for aligning lung SBRT patients who require soft tissue image registration from CBCT. Spine can be a poor surrogate for lung SBRT patient alignment even for proximal tumor volumes.

  12. Lung ventilation image by visualisation of the 133Xe elimination coefficient

    International Nuclear Information System (INIS)

    Mehier, H.; Mallet, J.J.; Veillas, G.; Cabocel, J.P.; Peyrin, J.O.

    1975-01-01

    A simple method is proposed for calculation of the 133 Xe elimination coefficient and its graphical representation giving a functional lung ventilation image, the advantages of the method are that it uses a small computing unit and above all involves only the start of the wash out phase, the only moment when xenon elimination belongs to a decreasing monoexponential time function. The validity of the method is illustrated by three typical results [fr

  13. Imaging of tumor viability in lung cancer. Initial results using 23Na-MRI

    International Nuclear Information System (INIS)

    Henzler, T.; Apfaltrer, P.; Haneder, S.; Schoenberg, S.O.; Fink, C.; Konstandin, S.; Schad, L.; Schmid-Bindert, G.; Manegold, C.; Wenz, F.

    2012-01-01

    23 Na-MRI has been proposed as a potential imaging biomarker for the assessment of tumor viability and the evaluation of therapy response but has not yet been evaluated in patients with lung cancer. We aimed to assess the feasibility of 23 Na-MRI in patients with lung cancer. Three patients with stage IV adenocarcinoma of the lung were examined on a clinical 3 Tesla MRI system (Magnetom TimTrio, Siemens Healthcare, Erlangen, Germany). Feasibility of 23 Na-MRI images was proven by comparison and fusion of 23 Na-MRI with 1 H-MR, CT and FDG-PET-CT images. 23 Na signal intensities (SI) of tumor and cerebrospinal fluid (CSF) of the spinal canal were measured and the SI ratio in tumor and CSF was calculated. One chemonaive patient was examined before and after the initiation of combination therapy (Carboplatin, Gemcitabin, Cetuximab). All 23 Na-MRI examinations were successfully completed and were of diagnostic quality. Fusion of 23 Na-MRI images with 1 H-MRI, CT and FDG-PET-CT was feasible in all patients and showed differences in solid and necrotic tumor areas. The mean tumor SI and the tumor/CSF SI ratio were 13.3 ± 1.8 x 103 and 0.83 ± 0.14, respectively. In necrotic tumors, as suggested by central non-FDG-avid areas, the mean tumor SI and the tumor/CSF ratio were 19.4 x 103 and 1.10, respectively. 23 Na-MRI is feasible in patients with lung cancer and could provide valuable functional molecular information regarding tumor viability, and potentiall