WorldWideScience

Sample records for lunar seismic network

  1. Lunar seismicity, structure, and tectonics

    Science.gov (United States)

    Lammlein, D. R.; Latham, G. V.; Dorman, J.; Nakamura, Y.; Ewing, M.

    1974-01-01

    Natural seismic events have been detected by the long-period seismometers at Apollo stations 16, 14, 15, and 12 at annual rates of 3300, 1700, 800, and 700, respectively, with peak activity at 13- to 14-day intervals. The data are used to describe magnitudes, source characteristics, and periodic features of lunar seismicity. In a present model, the rigid lithosphere overlies an asthenosphere of reduced rigidity in which present-day partial melting is probable. Tidal deformation presumably leads to critical stress concentrations at the base of the lithosphere, where moonquakes are found to occur. The striking tidal periodicities in the pattern of moonquake occurrence and energy release suggest that tidal energy is the dominant source of energy released as moonquakes. Thus, tidal energy is dissipated by moonquakes in the lithosphere and probably by inelastic processes in the asthenosphere.

  2. Shallow lunar structure determined from the passive seismic experiment

    International Nuclear Information System (INIS)

    Nakamura, Y.; Dorman, J.; Duennebier, F.; Lammlein, D.; Latham, G.

    1975-01-01

    Data relevant to the shallow structure of the Moon obtained at the Apollo seismic stations are compared with previously published results of the active seismic experiments. It is concluded that the lunar surface is covered by a layer of low seismic velocity (Vsub(p) approximately equal to 100 ms -1 ), which appears to be equivalent to the lunar regolith defined previously by geological observations. This layer is underlain by a zone of distinctly higher seismic velocity at all of the Apollo landing sites. The regolith thicknesses at the Apollo 11, 12, and 15 sites are estimated from the shear-wave resonance to be 4.4, 3.7, and 4.4m, respectively. These thicknesses and those determined at the other Apollo sites by the active seismic experiments appear to be correlated with the age determinations and the abundances of extra-lunar components at the sites. (Auth.)

  3. Passive seismic experiment - A summary of current status. [Apollo-initiated lunar surface station data

    Science.gov (United States)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1978-01-01

    The data set obtained from the four-station Apollo seismic network including signals from approximately 11,800 events, is surveyed. Some refinement of the lunar model will result, but its gross features remain the same. Attention is given to the question of a small, molten lunar core, the answer to which remains dependent on analysis of signals from a far side impact. Seventy three sources of repeating, deep moonquakes have been identified, thirty nine of which have been accurately located. Concentrated at depths from 800 to 1000 km, the periodicities of these events have led to the hypothesis that they are generated by tidal stresses. Lunar seismic data has also indicated that the meteoroid population is ten times lower than originally determined from earth based observations. Lunar seismic activity is much lower and mountainous masses show no sign of sinking, in contrast to earth, as a result of the lunar crust being four times thicker. While much work remains to be done, significant correlation between terrestrial and lunar observations can be seen.

  4. Romanian seismic network

    International Nuclear Information System (INIS)

    Ionescu, Constantin; Rizescu, Mihaela; Popa, Mihaela; Grigore, Adrian

    2000-01-01

    The research in the field of seismology in Romania is mainly carried out by the National Institute for Earth Physics (NIEP). The NIEP activities are mainly concerned with the fundamental research financed by research contracts from public sources and the maintenance and operation of the Romanian seismic network. A three stage seismic network is now operating under NIEP, designed mainly to monitor the Vrancea seismic region in a magnitude range from microearthquakes to strong events: - network of 18 short-period seismometers (S13); - Teledyne Geotech Instruments (Texas); - network of 7 stations with local digital recording (PCM-5000) on magnetic tape, made up of, S13 geophone (T=2 s) on vertical component and SH1 geophone (T=5 s) on horizontal components; - network of 28 SMA-1 accelerometers and 30 digital accelerometers (Kinemetrics - K2) installed in the free field conditions in the framework of the joint German-Romanian cooperation program (CRC); the K2 instruments cover a magnitude range from 1.4 to 8.0. Since 1994, MLR (Muntele Rosu) station has become part of the GEOFON network and was provided with high performance broad band instruments. At Bucharest and Timisoara data centers, an automated and networked seismological system performs the on-line digital acquisition and processing of the telemetered data. Automatic processing includes discrimination between local and distant seismic events, earthquake location and magnitude computation, and source parameter determination for local earthquakes. The results are rapidly distributed via Internet, to several seismological services in Europe and USA, to be used in the association/confirmation procedures. Plans for new developments of the network include the upgrade from analog to digital telemetry and new stations for monitoring local seismicity. (authors)

  5. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    Science.gov (United States)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  6. Inverting travel times with a triplication. [spline fitting technique applied to lunar seismic data reduction

    Science.gov (United States)

    Jarosch, H. S.

    1982-01-01

    A method based on the use of constrained spline fits is used to overcome the difficulties arising when body-wave data in the form of T-delta are reduced to the tau-p form in the presence of cusps. In comparison with unconstrained spline fits, the method proposed here tends to produce much smoother models which lie approximately in the middle of the bounds produced by the extremal method. The method is noniterative and, therefore, computationally efficient. The method is applied to the lunar seismic data, where at least one triplication is presumed to occur in the P-wave travel-time curve. It is shown, however, that because of an insufficient number of data points for events close to the antipode of the center of the lunar network, the present analysis is not accurate enough to resolve the problem of a possible lunar core.

  7. Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative network architecture, protocols, and algorithms are proposed for both lunar surface networks and orbit access networks. Firstly, an overlaying...

  8. Cooperative New Madrid seismic network

    International Nuclear Information System (INIS)

    Herrmann, R.B.; Johnston, A.C.

    1990-01-01

    The development and installation of components of a U.S. National Seismic Network (USNSN) in the eastern United States provides the basis for long term monitoring of eastern earthquakes. While the broad geographical extent of this network provides a uniform monitoring threshold for the purpose of identifying and locating earthquakes and while it will provide excellent data for defining some seismic source parameters for larger earthquakes through the use of waveform modeling techniques, such as depth and focal mechanism, by itself it will not be able to define the scaling of high frequency ground motions since it will not focus on any of the major seismic zones in the eastern U.S. Realizing this need and making use of a one time availability of funds for studying New Madrid earthquakes, Saint Louis University and Memphis State University successfully competed for funding in a special USGS RFP for New Madrid studies. The purpose of the proposal is to upgrade the present seismic networks run by these institutions in order to focus on defining the seismotectonics and ground motion scaling in the New Madrid Seismic Zone. The proposed network is designed both to complement the U.S. National Seismic Network and to make use of the capabilities of the communication links of that network

  9. Community Seismic Network (CSN)

    Science.gov (United States)

    Clayton, R. W.; Heaton, T. H.; Kohler, M. D.; Cheng, M.; Guy, R.; Chandy, M.; Krause, A.; Bunn, J.; Olson, M.; Faulkner, M.; Liu, A.; Strand, L.

    2012-12-01

    We report on developments in sensor connectivity, architecture, and data fusion algorithms executed in Cloud computing systems in the Community Seismic Network (CSN), a network of low-cost sensors housed in homes and offices by volunteers in the Pasadena, CA area. The network has over 200 sensors continuously reporting anomalies in local acceleration through the Internet to a Cloud computing service (the Google App Engine) that continually fuses sensor data to rapidly detect shaking from earthquakes. The Cloud computing system consists of data centers geographically distributed across the continent and is likely to be resilient even during earthquakes and other local disasters. The region of Southern California is partitioned in a multi-grid style into sets of telescoping cells called geocells. Data streams from sensors within a geocell are fused to detect anomalous shaking across the geocell. Temporal spatial patterns across geocells are used to detect anomalies across regions. The challenge is to detect earthquakes rapidly with an extremely low false positive rate. We report on two data fusion algorithms, one that tessellates the surface so as to fuse data from a large region around Pasadena and the other, which uses a standard tessellation of equal-sized cells. Since September 2011, the network has successfully detected earthquakes of magnitude 2.5 or higher within 40 Km of Pasadena. In addition to the standard USB device, which connects to the host's computer, we have developed a stand-alone sensor that directly connects to the internet via Ethernet or wifi. This bypasses security concerns that some companies have with the USB-connected devices, and allows for 24/7 monitoring at sites that would otherwise shut down their computers after working hours. In buildings we use the sensors to model the behavior of the structures during weak events in order to understand how they will perform during strong events. Visualization models of instrumented buildings ranging

  10. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    Science.gov (United States)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  11. Oklahoma seismic network

    International Nuclear Information System (INIS)

    Luza, K.V.; Lawson, J.E. Jr.; Univ. of Oklahoma, Norman, OK

    1993-07-01

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent

  12. Building a Smartphone Seismic Network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.

    2013-12-01

    We are exploring to build a new type of seismic network by using the smartphones. The accelerometers in smartphones can be used to record earthquakes, the GPS unit can give an accurate location, and the built-in communication unit makes the communication easier for this network. In the future, these smartphones may work as a supplement network to the current traditional network for scientific research and real-time applications. In order to build this network, we developed an application for android phones and server to record the acceleration in real time. These records can be sent back to a server in real time, and analyzed at the server. We evaluated the performance of the smartphone as a seismic recording instrument by comparing them with high quality accelerometer while located on controlled shake tables for a variety of tests, and also the noise floor test. Based on the daily human activity data recorded by the volunteers and the shake table tests data, we also developed algorithm for the smartphones to detect earthquakes from daily human activities. These all form the basis of setting up a new prototype smartphone seismic network in the near future.

  13. Romanian Educational Seismic Network Project

    Science.gov (United States)

    Tataru, Dragos; Ionescu, Constantin; Zaharia, Bogdan; Grecu, Bogdan; Tibu, Speranta; Popa, Mihaela; Borleanu, Felix; Toma, Dragos; Brisan, Nicoleta; Georgescu, Emil-Sever; Dobre, Daniela; Dragomir, Claudiu-Sorin

    2013-04-01

    Romania is one of the most active seismic countries in Europe, with more than 500 earthquakes occurring every year. The seismic hazard of Romania is relatively high and thus understanding the earthquake phenomena and their effects at the earth surface represents an important step toward the education of population in earthquake affected regions of the country and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this direction, the first national educational project in the field of seismology has recently started in Romania: the ROmanian EDUcational SEISmic NETwork (ROEDUSEIS-NET) project. It involves four partners: the National Institute for Earth Physics as coordinator, the National Institute for Research and Development in Construction, Urban Planning and Sustainable Spatial Development " URBAN - INCERC" Bucharest, the Babeş-Bolyai University (Faculty of Environmental Sciences and Engineering) and the software firm "BETA Software". The project has many educational, scientific and social goals. The main educational objectives are: training students and teachers in the analysis and interpretation of seismological data, preparing of several comprehensive educational materials, designing and testing didactic activities using informatics and web-oriented tools. The scientific objective is to introduce into schools the use of advanced instruments and experimental methods that are usually restricted to research laboratories, with the main product being the creation of an earthquake waveform archive. Thus a large amount of such data will be used by students and teachers for educational purposes. For the social objectives, the project represents an effective instrument for informing and creating an awareness of the seismic risk, for experimentation into the efficacy of scientific communication, and for an increase in the direct involvement of schools and the general public. A network of nine seismic stations with SEP seismometers

  14. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  15. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  16. Apollo Passive Seismic Experiments: lunar data in SEED format

    Science.gov (United States)

    Nunn, C.; Nakamura, Y.; Igel, H.

    2017-12-01

    As a part of the Apollo lunar missions, five seismometers were deployed on the near side of the Moon between 1969 and 1972, and four of them operated continuously until 1977. Seismic data were collected on the Moon and telemetered to Earth. The data were recorded on digital magnetic tapes, with timestamps representing the time of signal reception on Earth. The taped data have been widely used for many applications. Data from the tapes had also been transferred to SEED (Standard for the Exchange of Earthquake Data) format and these SEED files were previously available at IRIS (Incorporated Research Institutions for Seismology). However, there were some timing-related problems with the original SEED files. We have re-imported the long period data to SEED format, and will make these data available via IRIS. There are many gaps within the data caused by loss of signal or instrument problems. The signal is reconstructed to be read in as a continuous record, with gaps within the seismic trace where necessary. We also record the ground station which received the signal from the Moon, and we preserve the timestamps within the file. The timestamps indicate that the sampling rate varies by up to 0.01 %. We investigate how much this is a change in the apparent sampling rate (due to the orbital parameters of the Moon and the rotation of the Earth) and how much is due to the instrument not maintaining a constant sampling rate. We also provide response files. The new files will be a valuable resource for analyzing the structure of the Moon.

  17. Lunar Seismic Detector to Advance the Search for Strange Quark Matter

    Science.gov (United States)

    Galitzki, Nicholas B.

    2005-01-01

    Detection of small seismic signals on the Moon are needed to study lunar internal structure and to detect possible signals from Strange Quark m&er transit events. The immediate objective is to create a prototype seismic detector using a tunnel diode oscillator with a variable capacitor attached to a proof mass. The device is designed to operate effectively on the Moon, which requires a low power consumption to operate through lunar night, while preserving sensitivity. The goal is capacitance resolution of better than 1 part in 10' and power consumption of less than 1 watt.

  18. SELENE - Self-Forming Extensible Lunar EVA Network, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar EVA network will exhibit a wide range of connectivity levels due to the challenging communications environment and mission dynamics. Disruption-Tolerant...

  19. Criteria for the PNE seismic network

    International Nuclear Information System (INIS)

    Pruvost, N.L.

    1978-01-01

    A 1976 treaty between the United States and the Soviet Union permits a local seismic network to be deployed at the site of a peaceful nuclear explosion to monitor the event. Criteria for the design and selection of the data-acquisition equipment for such a network are provided. Constraints imposed by the protocol of the treaty, the environment, and the expected properties of seismic signals (based on experiences at the Nevada Test Site) are discussed. Conclusions are drawn about the desired operating mode. Criteria for a general seismic instrumentation system are described

  20. NCSRR digital seismic network in Romania

    International Nuclear Information System (INIS)

    Aldea, A.; Albota, E.; Demetriu, S.; Poiata, N.; Kashima, T.

    2007-01-01

    Digital seismic instrumentation donated by Japan International Cooperation Agency (JICA) to the National Center for Seismic Risk Reduction (NCSRR, Romania) allowed the installation in 2003 of a new Romanian seismic network. In 2005-2006 the network was developed by investments from NCSRR within the budget ensured by Ministry of Transports, Construction and Tourism (MTCT). The NCSRR seismic network contains three types of instrumentation: (i) free-field stations - outside the capital city Bucharest (8 accelerometers), (ii) instrumented buildings - in Bucharest (5 buildings), and (iii) stations with free-field and borehole sensors - in Bucharest (8 sites with ground surface sensor and sensors in 15 boreholes with depths up to 153 m). Since its installation, the NCSRR network recorded more than 170 seismic motions from 26 earthquakes with moment magnitudes ranging from 3.2 to 6.0. The seismic instrumentation was accompanied by investigations of ground conditions and site response: PS logging tests, single-station and array microtremor measurements. The development of seismic monitoring in Romania is a major contribution of JICA Project, creating the premises for a better understanding and modelling of earthquake ground motion, site effects and building response. (authors)

  1. A New Moonquake Catalog from Apollo 17 Seismic Data II: Lunar Surface Gravimeter: Implications of Expanding the Passive Seismic Array

    Science.gov (United States)

    Phillips, D.; Dimech, J. L.; Weber, R. C.

    2017-12-01

    Apollo 17's Lunar Surface Gravimeter (LSG) was deployed on the Moon in 1972, and was originally intended to detect gravitational waves as a confirmation of Einstein's general theory of relativity. Due to a design problem, the instrument did not function as intended. However, remotely-issued reconfiguration commands permitted the instrument to act effectively as a passive seismometer. LSG recorded continuously until Sept. 1977, when all surface data recording was terminated. Because the instrument did not meet its primary science objective, little effort was made to archive the data. Most of it was eventually lost, with the exception of data spanning the period March 1976 until Sept. 1977, and a recent investigation demonstrated that LSG data do contain moonquake signals (Kawamura et al., 2015). The addition of useable seismic data at the Apollo 17 site has important implications for event location schemes, which improve with increasing data coverage. All previous seismic event location attempts were limited to the four stations deployed at the Apollo 12, 14, 15, and 16 sites. Apollo 17 extends the functional aperture of the seismic array significantly to the east, permitting more accurate moonquake locations and improved probing of the lunar interior. Using the standard location technique of linearized arrival time inversion through a known velocity model, Kawamura et al. (2015) used moonquake signals detected in the LSG data to refine location estimates for 49 deep moonquake clusters, and constrained new locations for five previously un-located clusters. Recent efforts of the Apollo Lunar Surface Experiments Package Data Recovery Focus Group have recovered some of the previously lost LSG data, spanning the time period April 2, 1975 to June 30, 1975. In this study, we expand Kawamura's analysis to the newly recovered data, which contain over 200 known seismic signals, including deep moonquakes, shallow moonquakes, and meteorite impacts. We have completed initial

  2. Scalable Lunar Surface Networks and Adaptive Orbit Access

    Science.gov (United States)

    Wang, Xudong

    2015-01-01

    Teranovi Technologies, Inc., has developed innovative network architecture, protocols, and algorithms for both lunar surface and orbit access networks. A key component of the overall architecture is a medium access control (MAC) protocol that includes a novel mechanism of overlaying time division multiple access (TDMA) and carrier sense multiple access with collision avoidance (CSMA/CA), ensuring scalable throughput and quality of service. The new MAC protocol is compatible with legacy Institute of Electrical and Electronics Engineers (IEEE) 802.11 networks. Advanced features include efficiency power management, adaptive channel width adjustment, and error control capability. A hybrid routing protocol combines the advantages of ad hoc on-demand distance vector (AODV) routing and disruption/delay-tolerant network (DTN) routing. Performance is significantly better than AODV or DTN and will be particularly effective for wireless networks with intermittent links, such as lunar and planetary surface networks and orbit access networks.

  3. The Banat seismic network: Evolution and performance

    International Nuclear Information System (INIS)

    Oros, E.

    2002-01-01

    In the Banat Seismic Region, with its important seismogenic zones (Banat and Danube), operates today the Banat Seismic Network. This network has four short period seismic stations telemetered at the Timisoara Seismological Observatory (since 1995): Siria, Banloc, Buzias and Timisoara. The stations are equipped with short-period S13 seismometers (1 second). The data recorded by the short-period stations are telemetered to Timisoara where they are digitized at 50 samples per second, with 16 bit resolution. At Timisoara works SAPS, an automated system for data acquisition and processing, which performs real-time event detection (based on Allen algorithm), discrimination between local and teleseismic events, automatic P and S waves picking, location and magnitude determination for local events and teleseisms, 'feeding' of an Automatic Data Request Manager with phases, locations and waveforms, sending of earthquake information (as phases and location), by e-mail to Bucharest. The beginning of the seismological observations in Banat is in the 1880's (Timisoara Meteorological Observatory). The first seismograph was installed in Timisoara in 1901, and its systematic observations began in 1902. The World War I interrupted its work. In 1942 Prof. I. Curea founded the Seismic Station Timisoara, and since 1967 until today this station worked into a special building. After 1972 two stations with high amplification were installed in Retezat Mts (Gura Zlata) and on Nera Valey (Susara), as a consequence of the research results. Since 1982 Buzias station began to work completing the Banat Seismic Network. Therefore, the network could detect and locate any local seismic event with M > 2.2. Moreover, up to 20 km distance from each station any seismic event could be detected over M = 0.5. The paper also presents the quality of the locations versus different local seismic sources. (author)

  4. ANZA Seismic Network- From Monitoring to Science

    Science.gov (United States)

    Vernon, F.; Eakin, J.; Martynov, V.; Newman, R.; Offield, G.; Hindley, A.; Astiz, L.

    2007-05-01

    The ANZA Seismic Network (http:eqinfo.ucsd.edu) utilizes broadband and strong motion sensors with 24-bit dataloggers combined with real-time telemetry to monitor local and regional seismicity in southernmost California. The ANZA network provides real-time data to the IRIS DMC, California Integrated Seismic Network (CISN), other regional networks, and the Advanced National Seismic System (ANSS), in addition to providing near real-time information and monitoring to the greater San Diego community. Twelve high dynamic range broadband and strong motion sensors adjacent to the San Jacinto Fault zone contribute data for earthquake source studies and continue the monitoring of the seismic activity of the San Jacinto fault initiated 24 years ago. Five additional stations are located in the San Diego region with one more station on San Clemente Island. The ANZA network uses the advance wireless networking capabilities of the NSF High Performance Wireless Research and Education Network (http:hpwren.ucsd.edu) to provide the communication infrastructure for the real-time telemetry of Anza seismic stations. The ANZA network uses the Antelope data acquisition software. The combination of high quality hardware, communications, and software allow for an annual network uptime in excess of 99.5% with a median annual station real-time data return rate of 99.3%. Approximately 90,000 events, dominantly local sources but including regional and teleseismic events, comprise the ANZA network waveform database. All waveform data and event data are managed using the Datascope relational database. The ANZA network data has been used in a variety of scientific research including detailed structure of the San Jacinto Fault Zone, earthquake source physics, spatial and temporal studies of aftershocks, array studies of teleseismic body waves, and array studies on the source of microseisms. To augment the location, detection, and high frequency observations of the seismic source spectrum from local

  5. Extremal inversion of lunar travel time data. [seismic velocity structure

    Science.gov (United States)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  6. The seismic monitoring network of Mt. Vesuvius

    Directory of Open Access Journals (Sweden)

    Massimo Orazi

    2013-11-01

    Full Text Available Mt. Vesuvius (southern Italy is one of the most hazardous volcanoes in the world. Its activity is currently characterized by moderate seismicity, with hypocenters located beneath the crater zone with depth rarely exceeding 5 km and magnitudes generally less than 3. The current configuration of the seismic monitoring network of Mt. Vesuvius consists of 18 seismic stations and 7 infrasound microphones. During the period 2006-2010 a seismic array with 48 channels was also operative. The station distribution provides appropriate coverage of the area around the volcanic edifice. The current development of the network and its geometry, under conditions of low seismic noise, allows locating seismic events with M<1. Remote instruments continuously transmit data to the main acquisition center in Naples. Data transmission is realized using different technological solutions based on UHF, Wi-Fi radio links, and TCP/IP client-server applications. Data are collected in the monitoring center of the Osservatorio Vesuviano (Italian National Institute of Geophysics and Volcanology, Naples section, which is equipped with systems for displaying and analyzing signals, using both real-time automatic and manual procedures. 24-hour surveillance allows to immediately communicate any significant anomaly to the Civil Protection authorities.

  7. Reliability of lifeline networks under seismic hazard

    International Nuclear Information System (INIS)

    Selcuk, A. Sevtap; Yuecemen, M. Semih

    1999-01-01

    Lifelines, such as pipelines, transportation, communication and power transmission systems, are networks which extend spatially over large geographical regions. The quantification of the reliability (survival probability) of a lifeline under seismic threat requires attention, as the proper functioning of these systems during or after a destructive earthquake is vital. In this study, a lifeline is idealized as an equivalent network with the capacity of its elements being random and spatially correlated and a comprehensive probabilistic model for the assessment of the reliability of lifelines under earthquake loads is developed. The seismic hazard that the network is exposed to is described by a probability distribution derived by using the past earthquake occurrence data. The seismic hazard analysis is based on the 'classical' seismic hazard analysis model with some modifications. An efficient algorithm developed by Yoo and Deo (Yoo YB, Deo N. A comparison of algorithms for terminal pair reliability. IEEE Transactions on Reliability 1988; 37: 210-215) is utilized for the evaluation of the network reliability. This algorithm eliminates the CPU time and memory capacity problems for large networks. A comprehensive computer program, called LIFEPACK is coded in Fortran language in order to carry out the numerical computations. Two detailed case studies are presented to show the implementation of the proposed model

  8. A new moonquake catalog from Apollo 17 seismic data I: Lunar Seismic Profiling Experiment: Thermal moonquakes and implications for surface processes

    Science.gov (United States)

    Weber, R. C.; Dimech, J. L.; Phillips, D.; Molaro, J.; Schmerr, N. C.

    2017-12-01

    Apollo 17's Lunar Seismic Profiling Experiment's (LSPE) primary objective was to constrain the near-surface velocity structure at the landing site using active sources detected by a 100 m-wide triangular geophone array. The experiment was later operated in "listening mode," and early studies of these data revealed the presence of thermal moonquakes - short-duration seismic events associated with terminator crossings. However, the full data set has never been systematically analyzed for natural seismic signal content. In this study, we analyze 8 months of continuous LSPE data using an automated event detection technique that has previously successfully been applied to the Apollo 16 Passive Seismic Experiment data. We detected 50,000 thermal moonquakes from three distinct event templates, representing impulsive, intermediate, and emergent onset of seismic energy, which we interpret as reflecting their relative distance from the array. Impulsive events occur largely at sunrise, possibly representing the thermal "pinging" of the nearby lunar lander, while emergent events occur at sunset, possibly representing cracking or slumping in more distant surface rocks and regolith. Preliminary application of an iterative event location algorithm to a subset of the impulsive waveforms supports this interpretation. We also perform 3D modeling of the lunar surface to explore the relative contribution of the lander, known rocks and surrounding topography to the thermal state of the regolith in the vicinity of the Apollo 17 landing site over the course of the lunar diurnal cycle. Further development of both this model and the event location algorithm may permit definitive discrimination between different types of local diurnal events e.g. lander noise, thermally-induced rock breakdown, or fault creep on the nearby Lee-Lincoln scarp. These results could place important constraints on both the contribution of seismicity to regolith production, and the age of young lobate scarps.

  9. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    Science.gov (United States)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  10. Cloud Computing Services for Seismic Networks

    Science.gov (United States)

    Olson, Michael

    This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.

  11. Management of seismic data on network

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Bu Heung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    KIGAM has managed magnetic tapes written in seismic data acquired in Korea offshore and abroad since 1979. For now, it amounts about 13,000 tapes and other documents of seismic data are reserved by KIGAM also. For handling with them, FOX-PRO database management system has been used since 1993. In case of one user, it seems useful and convenient because the program is very easy to use and many well done utility was provided. In contrast with that, it has many problems also. For example, a user who wants to query information of these magnetic tapes must go magnetic tape room where the system is installed and he must know how to use the utilities of the FOX-PRO database management system. For the reason of above, the seismic data processing team attempted to change the FOX-PRO system with other client-server system supports networking on internet. After many testing and considering, they selected like as following hardware and software( System: PC with networking, OS: Linux and Unix, Software: Just Logic/SQL). The main reasons for selecting above system, first, any kinds of personal computer are available and easy to get. Secondly, Linux and Unix OS are good for using network. Especially, Linux is free and easy to get on many internet ftp sites. Lastly Just Logic/SQL is for client-server system, supports Linux OS and the programming style is very similar to C language. The contents of this report are as follows. In chapter 2, the Just Logic/SQL system structure and existing files through the sub-directories are showed and commented. In chapter 3, the statements using in Just Logic/SQL are explained and some examples are showed. In chapter 4, shows two example programs making seismic database including rack list, optical disk table respectively. The rack list table is the database of magnetic tapes managed by KIGAM. The optical disk table is the information record about how many, what tapes are converted to optical disk. (author). 4 tabs.

  12. Operations plan for the Regional Seismic Test Network

    International Nuclear Information System (INIS)

    1981-01-01

    The Regional Seismic Test Network program was established to provide a capability for detection of extremely sensitive earth movements. Seismic signals from both natural and man-made earth motions will be analyzed with the ultimate objective of accurately locating underground nuclear explosions. The Sandia National Laboratories, Albuquerque, has designed an unattended seismic station capable of recording seismic information received at the location of the seismometers installed as part of that specific station. A network of stations is required to increase the capability of determining the source of the seismic signal and the location of the source. Current plans are to establish a five-station seismic network in the United States and Canada. The Department of Energy, Nevada Operations Office, has been assigned the responsibility for deploying, installing, and operating these remote stations. This Operation Plan provides the basic information and tasking to accomplish this assignment

  13. Alaska Seismic Network Upgrade and Expansion

    Science.gov (United States)

    Sandru, J. M.; Hansen, R. A.; Estes, S. A.; Fowler, M.

    2009-12-01

    such as ANSS, Alaska Volcano Observatory, Bradley Lake Dam, Red Dog Mine, The Plate Boundary Observatory (PBO), Alaska Tsunami Warning Center, and City and State Emergency Managers has helped link vast networks together so that the overall data transition can be varied. This lessens the likelihood of having a single point of failure for an entire network. Robust communication is key to retrieving seismic data. AEIC has gone through growing pains learning how to harden our network and encompassing the many types of telemetry that can be utilized in today's world. Redundant telemetry paths are a goal that is key to retrieving data, however at times this is not feasible with the vast size and terrain in Alaska. We will demonstrate what has worked for us and what our network consists of.

  14. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    Science.gov (United States)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  15. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  16. MyShake: Building a smartphone seismic network

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.

    2014-12-01

    We are in the process of building up a smartphone seismic network. In order to build this network, we did shake table tests to evaluate the performance of the smartphones as seismic recording instruments. We also conducted noise floor test to find the minimum earthquake signal we can record using smartphones. We added phone noises to the strong motion data from past earthquakes, and used these as an analogy dataset to test algorithms and to understand the difference of using the smartphone network and the traditional seismic network. We also built a prototype system to trigger the smartphones from our server to record signals which can be sent back to the server in near real time. The phones can also be triggered by our developed algorithm running locally on the phone, if there's an earthquake occur to trigger the phones, the signal recorded by the phones will be sent back to the server. We expect to turn the prototype system into a real smartphone seismic network to work as a supplementary network to the existing traditional seismic network.

  17. Optimal Retrofit Scheme for Highway Network under Seismic Hazards

    Directory of Open Access Journals (Sweden)

    Yongxi Huang

    2014-06-01

    Full Text Available Many older highway bridges in the United States (US are inadequate for seismic loads and could be severely damaged or collapsed in a relatively small earthquake. According to the most recent American Society of Civil Engineers’ infrastructure report card, one-third of the bridges in the US are rated as structurally deficient and many of these structurally deficient bridges are located in seismic zones. To improve this situation, at-risk bridges must be identified and evaluated and effective retrofitting programs should be in place to reduce their seismic vulnerabilities. In this study, a new retrofit strategy decision scheme for highway bridges under seismic hazards is developed and seamlessly integrate the scenario-based seismic analysis of bridges and the traffic network into the proposed optimization modeling framework. A full spectrum of bridge retrofit strategies is considered based on explicit structural assessment for each seismic damage state. As an empirical case study, the proposed retrofit strategy decision scheme is utilized to evaluate the bridge network in one of the active seismic zones in the US, Charleston, South Carolina. The developed modeling framework, on average, will help increase network throughput traffic capacity by 45% with a cost increase of only $15million for the Mw 5.5 event and increase the capacity fourfold with a cost of only $32m for the Mw 7.0 event.

  18. Processing of seismic signals from a seismometer network

    International Nuclear Information System (INIS)

    Key, F.A.; Warburton, P.J.

    1983-08-01

    A description is given of the Seismometer Network Analysis Computer (SNAC) which processes short period data from a network of seismometers (UKNET). The nine stations of the network are distributed throughout the UK and their outputs are transmitted to a control laboratory (Blacknest) where SNAC monitors the data for seismic signals. The computer gives an estimate of the source location of the detected signals and stores the waveforms. The detection logic is designed to maintain high sensitivity without excessive ''false alarms''. It is demonstrated that the system is able to detect seismic signals at an amplitude level consistent with a network of single stations and, within the limitations of signal onset time measurements made by machine, can locate the source of the seismic disturbance. (author)

  19. Detection capability of the IMS seismic network based on ambient seismic noise measurements

    Science.gov (United States)

    Gaebler, Peter J.; Ceranna, Lars

    2016-04-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection threshold can be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  20. Network similarity and statistical analysis of earthquake seismic data

    OpenAIRE

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We cal...

  1. Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on our proposed innovations and accomplished work in Phase I, we will focus on developing the new MAC protocol and hybrid routing protocol for lunar surface...

  2. Studies of infrasound propagation using the USArray seismic network (Invited)

    Science.gov (United States)

    Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.

    2010-12-01

    Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.

  3. Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications

    Science.gov (United States)

    2009-01-01

    This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.

  4. Improved Seismic Acquisition System and Data Processing for the Italian National Seismic Network

    Science.gov (United States)

    Badiali, L.; Marcocci, C.; Mele, F.; Piscini, A.

    2001-12-01

    A new system for acquiring and processing digital signals has been developed in the last few years at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system makes extensive use of the internet communication protocol standards such as TCP and UDP which are used as the transport highway inside the Italian network, and possibly in a near future outside, to share or redirect data among processes. The Italian National Seismic Network has been working for about 18 years equipped with vertical short period seismometers and transmitting through analog lines, to the computer center in Rome. We are now concentrating our efforts on speeding the migration towards a fully digital network based on about 150 stations equipped with either broad band or 5 seconds sensors connected to the data center partly through wired digital communication and partly through satellite digital communication. The overall process is layered through intranet and/or internet. Every layer gathers data in a simple format and provides data in a processed format, ready to be distributed towards the next layer. The lowest level acquires seismic data (raw waveforms) coming from the remote stations. It handshakes, checks and sends data in LAN or WAN according to a distribution list where other machines with their programs are waiting for. At the next level there are the picking procedures, or "pickers", on a per instrument basis, looking for phases. A picker spreads phases, again through the LAN or WAN and according to a distribution list, to one or more waiting locating machines tuned to generate a seismic event. The event locating procedure itself, the higher level in this stack, can exchange information with other similar procedures. Such a layered and distributed structure with nearby targets allows other seismic networks to join the processing and data collection of the same ongoing event, creating a virtual network larger than the original one. At present we plan to cooperate with other

  5. Recent Progress of Seismic Observation Networks in Japan

    Science.gov (United States)

    Okada, Y.

    2013-04-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, "Off the Pacific coast of Tohoku Earthquake" was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  6. Recent Progress of Seismic Observation Networks in Japan

    International Nuclear Information System (INIS)

    Okada, Y

    2013-01-01

    Before the occurrence of disastrous Kobe earthquake in 1995, the number of high sensitivity seismograph stations operated in Japan was nearly 550 and was concentrated in the Kanto and Tokai districts, central Japan. In the wake of the Kobe earthquake, Japanese government has newly established the Headquarters for Earthquake Research Promotion and started the reconstruction of seismic networks to evenly cover the whole Japan. The basic network is composed of three seismographs, i.e. high sensitivity seismograph (Hi-net), broadband seismograph (F-net), and strong motion seismograph (K-NET). A large majority of Hi-net stations are also equipped with a pair of strong motion sensors at the bottom of borehole and the ground surface (KiK-net). A plenty of high quality data obtained from these networks are circulated at once and is producing several new seismological findings as well as providing the basis for the Earthquake Early Warning system. In March 11, 2011, 'Off the Pacific coast of Tohoku Earthquake' was generated with magnitude 9.0, which records the largest in the history of seismic observation in Japan. The greatest disaster on record was brought by huge tsunami with nearly 20 thousand killed or missing people. We are again noticed that seismic observation system is quite poor in the oceanic region compared to the richness of it in the inland region. In 2012, NIED has started the construction of ocean bottom seismic and tsunami observation network along the Japan Trench. It is planned to layout 154 stations with an average spacing of 30km, each of which is equipped with an accelerometer for seismic observation and a water pressure gauge for tsunami observation. We are expecting that more rapid and accurate warning of earthquake and tsunami becomes possible by this observing network.

  7. Building an educational seismic network in Romanian schools

    Science.gov (United States)

    Zaharia, Bogdan; Tataru, Dragos; Grecu, Bogdan; Ionescu, Constantin; Bican-Brisan, Nicoleta; Neagoe, Cristian

    2014-05-01

    Understanding the earthquake phenomena and their effects is an important step toward the education of population and aims to raise the awareness about the earthquake risk and possible mitigation actions. In this sense, The Romanian Educational Seismic Network project represents an efficient communication tool, allowing teaching and learning about the earthquakes and seismic wave impact through experimental practices and educational activities. The seismic network consist of nine SEP seismometers installed in high-schools from the most important seismic areas (Vrancea, Banat, Făgăraş, Dobrogea), vulnerable cities (Bucharest, Iasi) or high populated places (Cluj, Sibiu, Timisoara, Zalău) and is coordinated by the National Institute of Earth Physics from Bucharest. Once installed, the seismic network is the starting point of activities for students through an e-learning platform. Some objectives are aimed: - To train students and teachers how to make analysis and interpretation of seismological data; - To make science more interesting for students; - To improve the participation rates in physical sciences for students; - To raise awareness of geoscience as a scientific discipline for pre-university students; - To promote the installation and effective use of educational seismographs and seismic data; - To reinforce and develop relationships between participating schools and research institutes; - To create an earthquake database this will be used by students and teachers for educational purposes. Different types of practical activities using educational seismometer, designed by researchers for students, are described in educational materials and in the web platform project. Also we encourage the teachers from the participating schools to share their experiences and produce new didactic tools for the classroom. This collaborative work could illustrate the conjugated efforts of researchers and teachers for a better education and awareness of the risk culture

  8. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    Science.gov (United States)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to

  9. Pennsylvania seismic monitoring network and related tectonic studies

    International Nuclear Information System (INIS)

    Alexander, S.S.

    1991-06-01

    This report summarizes the results of the operation of the Pennsylvania Seismic Monitoring Network during the interval May 1, 1983--March 31, 1985 to monitor seismic activity in Pennsylvania and surrounding areas, to characterize the earthquake activity in terms of controlling tectonic structures and related tectonic stress conditions in the crust, and to obtain improved crustal velocity models for hypocentral determinations. Most of the earthquake activity was concentrated in the Lancaster, PA area. The magnitude 4.2 mainshock that occurred there on April 23, 1984 was the largest ever recorded instrumentally and its intensity of VI places it among the largest in the historic record for that area. Other activity during the monitoring interval of this report was confined to eastern Pennsylvania. The very large number of quarry explosions that occur regularly in Pennsylvania account for most of the seismic events recorded and they provide important crustal velocity data that are needed to obtain accurate hypocenter estimates. In general the earthquakes that occurred are located in areas of past historic seismicity. Block-tectonic structures resulting from pre-Ordovician tectonic displacements appear to influence the distribution of contemporary seismicity in Pennsylvania and surrounding areas. 17 refs., 5 figs

  10. Studies Of Infrasonic Propagation Using Dense Seismic Networks

    Science.gov (United States)

    Hedlin, M. A.; deGroot-Hedlin, C. D.; Drob, D. P.

    2011-12-01

    Although there are approximately 100 infrasonic arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Relatively large infrasonic signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasonic arrays. The dense sampling of the infrasonic wavefield has allowed us to observe complete travel-time branches of infrasound and address important research problems in infrasonic propagation. We present our analysis of infrasound created by a series of rocket motor detonations that occurred at the UTTR facility in Utah in 2007. These data were well recorded by the USArray seismometers. We use the precisely located blasts to assess the utility of G2S mesoscale models and methods to synthesize infrasonic propagation. We model the travel times of the branches using a ray-based approach and the complete wavefield using a FDTD algorithm. Although results from both rays and FDTD approaches predict the travel times to within several seconds, only about 40% of signals are predicted using rays largely due to penetration of sound into shadow zones. FDTD predicts some sound penetration into the shadow zone, but the observed shadow zones, as defined by the seismic data, have considerably narrower spatial extent than either method predicts, perhaps due to un-modeled small-scale structure in the atmosphere.

  11. Connection with seismic networks and construction of real time earthquake monitoring system

    International Nuclear Information System (INIS)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S.

    2000-12-01

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system

  12. Automation of seismic network signal interpolation: an artificial intelligence approach

    International Nuclear Information System (INIS)

    Chiaruttini, C.; Roberto, V.

    1988-01-01

    After discussing the current status of the automation in signal interpretation from seismic networks, a new approach, based on artificial-intelligence tecniques, is proposed. The knowledge of the human expert analyst is examined, with emphasis on its objects, strategies and reasoning techniques. It is argued that knowledge-based systems (or expert systems) provide the most appropriate tools for designing an automatic system, modelled on the expert behaviour

  13. A national seismographic network for assessing seismic hazards

    International Nuclear Information System (INIS)

    Masse, R.P.; Murphy, A.J.

    1989-01-01

    To access the seismic hazard of a region and to establish the design and construction criteria for critical facilities such as nuclear power plants, detailed information is required on the frequency of occurrence, geographical distribution, magnitude, and energy spectra of earthquakes. Also important is information on the frequency-dependent attenuation of seismic waves. This information can all be obtained from data recorded by networks of seismograph stations. A new seismograph network for the US which takes advantage of advances in technology is currently under development. This network is the US National Seismograph Network (USNSN). The USNSN is a cooperative effort between the National Earthquake Information Center (NEIC) of the US Geological survey and the Nuclear Regulatory Commission. The USNSN will be installed and operated by the NEIC. The network will consist of approximately 150 seismograph stations distributed across the lower 48 states and across Alaska, Hawaii, Puerto Rico, and the Virgin Islands. The design goal for the network is the on-scale recording by at least five well-distributed stations of any event of magnitude 2.5 or larger in the continental US, Hawaii, and Puerto Rico, and of any event of magnitude 3.5 or larger in Alaska. The rapid access to all USNSN data will be provided by the NEIC. This will be accomplished both via a dial-up capability to the event waveform data base and by satellite transmission in a broadcast mode. All earthquake data will also be distributed on compact disk with read only memory (CD-ROM) to all institutions having an interest in the seismic data

  14. The Apollo passive seismic experiment

    Science.gov (United States)

    Latham, G. V.; Dorman, H. J.; Horvath, P.; Ibrahim, A. K.; Koyama, J.; Nakamura, Y.

    1979-01-01

    The completed data set obtained from the 4-station Apollo seismic network includes signals from approximately 11,800 events of various types. Four data sets for use by other investigators, through the NSSDC, are in preparation. Some refinement of the lunar model based on seismic data can be expected, but its gross features remain as presented two years ago. The existence of a small, molten core remains dependent upon the analysis of signals from a single, far-side impact. Analysis of secondary arrivals from other sources may eventually resolve this issue, as well as continued refinement of the magnetic field measurements. Evidence of considerable lateral heterogeneity within the moon continues to build. The mystery of the much meteoroid flux estimate derived from lunar seismic measurements, as compared with earth-based estimates, remains; although, significant correlations between terrestrial and lunar observations are beginning to emerge.

  15. OGS improvements in 2012 in running the Northeastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, Damiano; Romanelli, Marco; Barnaba, Carla; Bragato, Pier Luigi; Durì, Giorgio

    2013-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. The southwestern edge of the OGS seismic network stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML=5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on May 20, 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the Northeastern Italy Seismic Network, including details of the Ferrara VBB

  16. Improving the Detectability of the Catalan Seismic Network for Local Seismic Activity Monitoring

    Science.gov (United States)

    Jara, Jose Antonio; Frontera, Tànit; Batlló, Josep; Goula, Xavier

    2016-04-01

    The seismic survey of the territory of Catalonia is mainly performed by the regional seismic network operated by the Cartographic and Geologic Institute of Catalonia (ICGC). After successive deployments and upgrades, the current network consists of 16 permanent stations equipped with 3 component broadband seismometers (STS2, STS2.5, CMG3ESP and CMG3T), 24 bits digitizers (Nanometrics Trident) and VSAT telemetry. Data are continuously sent in real-time via Hispasat 1D satellite to the ICGC datacenter in Barcelona. Additionally, data from other 10 stations of neighboring areas (Spain, France and Andorra) are continuously received since 2011 via Internet or VSAT, contributing both to detect and to locate events affecting the region. More than 300 local events with Ml ≥ 0.7 have been yearly detected and located in the region. Nevertheless, small magnitude earthquakes, especially those located in the south and south-west of Catalonia may still go undetected by the automatic detection system (DAS), based on Earthworm (USGS). Thus, in order to improve the detection and characterization of these missed events, one or two new stations should be installed. Before making the decision about where to install these new stations, the performance of each existing station is evaluated taking into account the fraction of detected events using the station records, compared to the total number of events in the catalogue, occurred during the station operation time from January 1, 2011 to December 31, 2014. These evaluations allow us to build an Event Detection Probability Map (EDPM), a required tool to simulate EDPMs resulting from different network topology scenarios depending on where these new stations are sited, and becoming essential for the decision-making process to increase and optimize the event detection probability of the seismic network.

  17. Monitoring Instrument Performance in Regional Broadband Seismic Network Using Ambient Seismic Noise

    Science.gov (United States)

    Ye, F.; Lyu, S.; Lin, J.

    2017-12-01

    In the past ten years, the number of seismic stations has increased significantly, and regional seismic networks with advanced technology have been gradually developed all over the world. The resulting broadband data help to improve the seismological research. It is important to monitor the performance of broadband instruments in a new network in a long period of time to ensure the accuracy of seismic records. Here, we propose a method that uses ambient noise data in the period range 5-25 s to monitor instrument performance and check data quality in situ. The method is based on an analysis of amplitude and phase index parameters calculated from pairwise cross-correlations of three stations, which provides multiple references for reliable error estimates. Index parameters calculated daily during a two-year observation period are evaluated to identify stations with instrument response errors in near real time. During data processing, initial instrument responses are used in place of available instrument responses to simulate instrument response errors, which are then used to verify our results. We also examine feasibility of the tailing noise using data from stations selected from USArray in different locations and analyze the possible instrumental errors resulting in time-shifts used to verify the method. Additionally, we show an application that effects of instrument response errors that experience pole-zeros variations on monitoring temporal variations in crustal properties appear statistically significant velocity perturbation larger than the standard deviation. The results indicate that monitoring seismic instrument performance helps eliminate data pollution before analysis begins.

  18. How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions

    Science.gov (United States)

    van der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-05-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  19. How Old are Lunar Lobate Scarps? 1. Seismic Resetting of Crater Size-Frequency Distributions

    Science.gov (United States)

    Van Der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-01-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  20. The Canarian Seismic Monitoring Network: design, development and first result

    Science.gov (United States)

    D'Auria, Luca; Barrancos, José; Padilla, Germán D.; García-Hernández, Rubén; Pérez, Aaron; Pérez, Nemesio M.

    2017-04-01

    Tenerife is an active volcanic island which experienced several eruptions of moderate intensity in historical times, and few explosive eruptions in the Holocene. The increasing population density and the consistent number of tourists are constantly raising the volcanic risk. In June 2016 Instituto Volcanologico de Canarias started the deployment of a seismological volcano monitoring network consisting of 15 broadband seismic stations. The network began its full operativity in November 2016. The aim of the network are both volcano monitoring and scientific research. Currently data are continuously recorded and processed in real-time. Seismograms, hypocentral parameters, statistical informations about the seismicity and other data are published on a web page. We show the technical characteristics of the network and an estimate of its detection threshold and earthquake location performances. Furthermore we present other near-real time procedures on the data: analysis of the ambient noise for determining the shallow velocity model and temporal velocity variations, detection of earthquake multiplets through massive data mining of the seismograms and automatic relocation of events through double-difference location.

  1. xQuake: A Modern Approach to Seismic Network Analytics

    Science.gov (United States)

    Johnson, C. E.; Aikin, K. E.

    2017-12-01

    While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.

  2. Caltech/USGS Southern California Seismic Network: Recent Developments

    Science.gov (United States)

    Bhadha, R.; Chen, S.; Crummey, J.; Hauksson, E.; Solanki, K.; Thomas, V. I.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Peats, R.; Schwarz, S.

    2010-12-01

    The SCSN is the modern digital ground motion seismic network in Southern California and performs the following tasks: 1) Operates remote seismic stations and the central data processing systems in Pasadena; 2) Generates and reports real-time products including location, magnitude, ShakeMap, and others; 3) Responds to FEMA, CalEMA, media, and public inquiries about earthquakes; 4) Manages the production, archival, and distribution of waveforms, phase picks, and other data at the SCEDC; 5) Contributes to development and maintenance of the ANSS Quake Monitoring System (AQMS) software to add new features and improve robustness; 6) Supports the deployment of AQMS to other ANSS member regional seismic networks. The public regularly accesses the CISN, SCSN, and SCEDC web pages for up-to-date quake info and more than 230,000 users subscribe to the Electronic Notification System (ENS) which sends rapid notifications via email and cell phones. We distribute our products via Internet (EIDS), email, and paging, to USGS in Reston and Golden, FEMA, CalEMA, local governments, partner members, and other subscribers. We have developed CISN Display and provide ShakeCast for customers who require real-time earthquake information. The SCSN also exchanges waveform, phase pick, and amplitude data in real-time with several other partner networks, including Menlo Park, UCB, UNR, Anza network, the Tsunami Warning Centers, IRIS, and the NEIC. We operate a number of 24/7 on-call rotations to provide quick response to verify seismic events as well as addressing systems and telemetry issues. As part of our goals to improve quality, robustness, and coverage, some of our recent efforts include: 1) Converting the digital stations in the network to Q330 dataloggers; 2) Developing command and control capabilities such as automated mass re-centering; 3) Migration from serial to Ethernet communications; 4) Clustering of data acquisition servers for fail-over to improve data availability; 5) Use of

  3. MyShake - Smartphone seismic network powered by citizen scientists

    Science.gov (United States)

    Kong, Q.; Allen, R. M.; Schreier, L.; Strauss, J. A.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It is driven by the citizen scientists that run MyShake on their personal smartphones. It has two components: an android application running on the smartphones to detect earthquake-like motion, and a network detection algorithm to aggregate results from multiple smartphones to confirm when an earthquake occurs. The MyShake application was released to the public on Feb 12th 2016. Within the first year, more than 250,000 people downloaded MyShake app around the world. There are more than 500 earthquakes recorded by the smartphones in this period, including events in Chile, Argentina, Mexico, Morocco, Greece, Nepal, New Zealand, Taiwan, Japan, and across North America. Currently, we are working on earthquake early warning with MyShake network and the shaking data provided by MyShake is a unique dataset that can be used for the research community.

  4. Application of neural networks to seismic active control

    International Nuclear Information System (INIS)

    Tang, Yu.

    1995-01-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads

  5. Seismic network based detection, classification and location of volcanic tremors

    Science.gov (United States)

    Nikolai, S.; Soubestre, J.; Seydoux, L.; de Rosny, J.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    Volcanic tremors constitute an important attribute of volcanic unrest in many volcanoes, and their detection and characterization is a challenging issue of volcano monitoring. The main goal of the present work is to develop a network-based method to automatically classify volcanic tremors, to locate their sources and to estimate the associated wave speed. The method is applied to four and a half years of seismic data continuously recorded by 19 permanent seismic stations in the vicinity of the Klyuchevskoy volcanic group (KVG) in Kamchatka (Russia), where five volcanoes were erupting during the considered time period. The method is based on the analysis of eigenvalues and eigenvectors of the daily array covariance matrix. As a first step, following Seydoux et al. (2016), most coherent signals corresponding to dominating tremor sources are detected based on the width of the covariance matrix eigenvalues distribution. With this approach, the volcanic tremors of the two volcanoes known as most active during the considered period, Klyuchevskoy and Tolbachik, are efficiently detected. As a next step, we consider the array covariance matrix's first eigenvectors computed every day. The main hypothesis of our analysis is that these eigenvectors represent the principal component of the daily seismic wavefield and, for days with tremor activity, characterize the dominant tremor sources. Those first eigenvectors can therefore be used as network-based fingerprints of tremor sources. A clustering process is developed to analyze this collection of first eigenvectors, using correlation coefficient as a measure of their similarity. Then, we locate tremor sources based on cross-correlations amplitudes. We characterize seven tremor sources associated with different periods of activity of four volcanoes: Tolbachik, Klyuchevskoy, Shiveluch, and Kizimen. The developed method does not require a priori knowledge, is fully automatic and the database of network-based tremor fingerprints

  6. SELENE - Self-Forming Extensible Lunar EVA Network, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this research effort (Phase I and Phase II) by Scientific Systems Company, Inc. and BBN Technologies is to develop the SELENE network --...

  7. Modernization of the Caltech/USGS Southern California Seismic Network

    Science.gov (United States)

    Bhadha, R.; Devora, A.; Hauksson, E.; Johnson, D.; Thomas, V.; Watkins, M.; Yip, R.; Yu, E.; Given, D.; Cone, G.; Koesterer, C.

    2009-12-01

    The USGS/ANSS/ARRA program is providing Government Furnished Equipment (GFE), and two year funding for upgrading the Caltech/USGS Southern California Seismic Network (SCSN). The SCSN is the modern digital ground motion seismic network in southern California that monitors seismicity and provides real-time earthquake information products such as rapid notifications, moment tensors, and ShakeMap. The SCSN has evolved through the years and now consists of several well-integrated components such as Short-Period analog, TERRAscope, digital stations, and real-time strong motion stations, or about 300 stations. In addition, the SCSN records data from about 100 stations provided by partner networks. To strengthen the ability of SCSN to meet the ANSS performance standards, we will install GFE and carry out the following upgrades and improvements of the various components of the SCSN: 1) Upgrade of dataloggers at seven TERRAscope stations; 2) Upgrade of dataloggers at 131 digital stations and upgrade broadband sensors at 25 stations; 3) Upgrade of SCSN metadata capabilities; 4) Upgrade of telemetry capabilities for both seismic and GPS data; and 5) Upgrade balers at stations with existing Q330 dataloggers. These upgrades will enable the SCSN to meet the ANSS Performance Standards more consistently than before. The new equipment will improve station uptimes and reduce maintenance costs. The new equipment will also provide improved waveform data quality and consequently superior data products. The data gaps due to various outages will be minimized, and ‘late’ data will be readily available through retrieval from on-site storage. Compared to the outdated equipment, the new equipment will speed up data delivery by about 10 sec, which is fast enough for earthquake early warning applications. The new equipment also has about a factor of ten lower consumption of power. We will also upgrade the SCSN data acquisition and data center facilities, which will improve the SCSN

  8. The Global Detection Capability of the IMS Seismic Network in 2013 Inferred from Ambient Seismic Noise Measurements

    Science.gov (United States)

    Gaebler, P. J.; Ceranna, L.

    2016-12-01

    All nuclear explosions - on the Earth's surface, underground, underwater or in the atmosphere - are banned by the Comprehensive Nuclear-Test-Ban Treaty (CTBT). As part of this treaty, a verification regime was put into place to detect, locate and characterize nuclear explosion testings at any time, by anyone and everywhere on the Earth. The International Monitoring System (IMS) plays a key role in the verification regime of the CTBT. Out of the different monitoring techniques used in the IMS, the seismic waveform approach is the most effective technology for monitoring nuclear underground testing and to identify and characterize potential nuclear events. This study introduces a method of seismic threshold monitoring to assess an upper magnitude limit of a potential seismic event in a certain given geographical region. The method is based on ambient seismic background noise measurements at the individual IMS seismic stations as well as on global distance correction terms for body wave magnitudes, which are calculated using the seismic reflectivity method. From our investigations we conclude that a global detection threshold of around mb 4.0 can be achieved using only stations from the primary seismic network, a clear latitudinal dependence for the detection thresholdcan be observed between northern and southern hemisphere. Including the seismic stations being part of the auxiliary seismic IMS network results in a slight improvement of global detection capability. However, including wave arrivals from distances greater than 120 degrees, mainly PKP-wave arrivals, leads to a significant improvement in average global detection capability. In special this leads to an improvement of the detection threshold on the southern hemisphere. We further investigate the dependence of the detection capability on spatial (latitude and longitude) and temporal (time) parameters, as well as on parameters such as source type and percentage of operational IMS stations.

  9. OGS improvements in 2012 in running the North-eastern Italy Seismic Network: the Ferrara VBB borehole seismic station

    Science.gov (United States)

    Pesaresi, D.; Romanelli, M.; Barnaba, C.; Bragato, P. L.; Durì, G.

    2014-07-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Centre) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the North-eastern Italy Seismic Network: it currently consists of 17 very sensitive broad band and 18 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data centre in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of North-eastern Italy. The south-western edge of the OGS seismic network (Fig. 1) stands on the Po alluvial basin: earthquake localization and characterization in this area is affected by the presence of soft alluvial deposits. OGS ha already experience in running a local seismic network in high noise conditions making use of borehole installations in the case of the micro-seismicity monitoring of a local gas storage site for a private company. Following the ML = 5.9 earthquake that struck the Emilia region around Ferrara in Northern Italy on 20 May 2012 at 02:03:53 UTC, a cooperation of Istituto Nazionale di Geofisica e Vulcanologia, OGS, the Comune di Ferrara and the University of Ferrara lead to the reinstallation of a previously existing very broad band (VBB) borehole seismic station in Ferrara. The aim of the OGS intervention was on one hand to extend its real time seismic monitoring capabilities toward South-West, including Ferrara and its surroundings, and on the other hand to evaluate the seismic response at the site. We will describe improvements in running the North-eastern Italy Seismic Network, including details of

  10. Seismic Hazard Analysis on a Complex, Interconnected Fault Network

    Science.gov (United States)

    Page, M. T.; Field, E. H.; Milner, K. R.

    2017-12-01

    In California, seismic hazard models have evolved from simple, segmented prescriptive models to much more complex representations of multi-fault and multi-segment earthquakes on an interconnected fault network. During the development of the 3rd Uniform California Earthquake Rupture Forecast (UCERF3), the prevalence of multi-fault ruptures in the modeling was controversial. Yet recent earthquakes, for example, the Kaikora earthquake - as well as new research on the potential of multi-fault ruptures (e.g., Nissen et al., 2016; Sahakian et al. 2017) - have validated this approach. For large crustal earthquakes, multi-fault ruptures may be the norm rather than the exception. As datasets improve and we can view the rupture process at a finer scale, the interconnected, fractal nature of faults is revealed even by individual earthquakes. What is the proper way to model earthquakes on a fractal fault network? We show multiple lines of evidence that connectivity even in modern models such as UCERF3 may be underestimated, although clustering in UCERF3 mitigates some modeling simplifications. We need a methodology that can be applied equally well where the fault network is well-mapped and where it is not - an extendable methodology that allows us to "fill in" gaps in the fault network and in our knowledge.

  11. Detection of rainfall-induced landslides on regional seismic networks

    Science.gov (United States)

    Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo

    2017-04-01

    Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For

  12. The Community Seismic Network: Enabling Observations Through Citizen Science Participation

    Science.gov (United States)

    Kohler, M. D.; Clayton, R. W.; Heaton, T. H.; Bunn, J.; Guy, R.; Massari, A.; Chandy, K. M.

    2017-12-01

    The Community Seismic Network is a dense accelerometer array deployed in the greater Los Angeles area and represents the future of densely instrumented urban cities where localized vibration measurements are collected continuously throughout the free-field and built environment. The hardware takes advantage of developments in the semiconductor industry in the form of inexpensive MEMS accelerometers that are each coupled with a single board computer. The data processing and archival architecture borrows from developments in cloud computing and network connectedness. The ability to deploy densely in the free field and in upper stories of mid/high-rise buildings is enabled by community hosts for sensor locations. To this end, CSN has partnered with the Los Angeles Unified School District (LAUSD), the NASA-Jet Propulsion Laboratory (JPL), and commercial and civic building owners to host sensors. At these sites, site amplification estimates from RMS noise measurements illustrate the lateral variation in amplification over length scales of 100 m or less, that correlate with gradients in the local geology such as sedimentary basins that abut crystalline rock foothills. This is complemented by high-resolution, shallow seismic velocity models obtained using an H/V method. In addition, noise statistics are used to determine the reliability of sites for ShakeMap and earthquake early warning data. The LAUSD and JPL deployments are examples of how situational awareness and centralized warning products such as ShakeMap and ShakeCast are enabled by citizen science participation. Several buildings have been instrumented with at least one triaxial accelerometer per floor, providing measurements for real-time structural health monitoring through local, customized displays. For real-time and post-event evaluation, the free-field and built environment CSN data and products illustrate the feasibility of order-of-magnitude higher spatial resolution mapping compared to what is currently

  13. Lunar evolution: a combined numerical modelling and HPT experimental study

    NARCIS (Netherlands)

    de Vries, J.|info:eu-repo/dai/nl/313968519

    2012-01-01

    Recent studies, some of them using data from the Apollo seismic network from the 1960's and 1970's, others using newer data, have shown that part of the lunar core may still be fluid today. Furthermore, a possible partial melt zone has been detected in the deep mantle, just above the core-mantle

  14. Modern Adaptive Analytics Approach to Lowering Seismic Network Detection Thresholds

    Science.gov (United States)

    Johnson, C. E.

    2017-12-01

    Modern seismic networks present a number of challenges, but perhaps most notably are those related to 1) extreme variation in station density, 2) temporal variation in station availability, and 3) the need to achieve detectability for much smaller events of strategic importance. The first of these has been reasonably addressed in the development of modern seismic associators, such as GLASS 3.0 by the USGS/NEIC, though some work still remains to be done in this area. However, the latter two challenges demand special attention. Station availability is impacted by weather, equipment failure or the adding or removing of stations, and while thresholds have been pushed to increasingly smaller magnitudes, new algorithms are needed to achieve even lower thresholds. Station availability can be addressed by a modern, adaptive architecture that maintains specified performance envelopes using adaptive analytics coupled with complexity theory. Finally, detection thresholds can be lowered using a novel approach that tightly couples waveform analytics with the event detection and association processes based on a principled repicking algorithm that uses particle realignment for enhanced phase discrimination.

  15. Birth of the International Lunar Impact Astronomical Detection (ILIAD) network : first detections in Morocco

    Science.gov (United States)

    Ait Moulay Larbi, E.; Bouley, S.; Dassou, A.; Benkhaldoun, Z.; Baratoux, D.; Lazrek, M.

    2013-12-01

    We present the research environment of our network. We highlight some results of the analysis of the first Lunar Meteorides impacts detected in Morocco. We present an exemple of ground-based instrumentation to carry out a successful search for lunar flashes phenomena. We also discuss the interest to monotoring these phenomena by focusing on the interest of determining the positions of the craters on the moon. The precise determination of impact flashes is very advantageous, especially in the near future there will be several new craters identified by LROC or other robotic spacecraft cameras. The two flashes reported in this study are optimally situated on central region of the lunar disk, which reduce the mismatch between the barycenter of radiation and the actual position of the impact. Smaller-scale lunar features are easily identified after superposition of a large number of images in order to increase the signal to noise ratio and produce an optimal image of the non-illuminated fraction of the moon. The sub-pixel shift of each image relative to the first frame (base frame) was determined by fitting the correlation peak obtained in the Fourier space to a 2- dimensional gaussian following Schaum and McHugh [1996]; Baratoux et al. [2001]. To increase further the positioning, the signal of the flash is is fitted to a 2-dimensional gaussian for each frame (previously shifted to the base image) where the flash is present. The barycenter of the flash is given as the rounded to the nearest integer of the average centers of the 2-dimensional gaussian functions. Two impact flashes are detected from AGM observatory in Marrakech, respectively on the February 6, 2013, at 06:29:56.7 UT and April 14, 2013, 20:00:45.4 UT. The characteristics of each flash are given in the table below. the diameter of the crater formed on the lunar surface can be estimated using Gault's formula for craters of less than 100 m in diameter, the results show that the meteoroids are likely producing

  16. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  17. Connection with seismic networks and construction of real time earthquake monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Heon Cheol; Lee, H. I.; Shin, I. C.; Lim, I. S.; Park, J. H.; Lee, B. K.; Whee, K. H.; Cho, C. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2000-12-15

    It is natural to use the nuclear power plant seismic network which have been operated by KEPRI(Korea Electric Power Research Institute) and local seismic network by KIGAM(Korea Institute of Geology, Mining and Material). The real time earthquake monitoring system is composed with monitoring module and data base module. Data base module plays role of seismic data storage and classification and the other, monitoring module represents the status of acceleration in the nuclear power plant area. This research placed the target on the first, networking the KIN's seismic monitoring system with KIGAM and KEPRI seismic network and the second, construction the KIN's Independent earthquake monitoring system.

  18. Seismic signal auto-detecing from different features by using Convolutional Neural Network

    Science.gov (United States)

    Huang, Y.; Zhou, Y.; Yue, H.; Zhou, S.

    2017-12-01

    We try Convolutional Neural Network to detect some features of seismic data and compare their efficience. The features include whether a signal is seismic signal or noise and the arrival time of P and S phase and each feature correspond to a Convolutional Neural Network. We first use traditional STA/LTA to recongnize some events and then use templete matching to find more events as training set for the Neural Network. To make the training set more various, we add some noise to the seismic data and make some synthetic seismic data and noise. The 3-component raw signal and time-frequancy ananlyze are used as the input data for our neural network. Our Training is performed on GPUs to achieve efficient convergence. Our method improved the precision in comparison with STA/LTA and template matching. We will move to recurrent neural network to see if this kind network is better in detect P and S phase.

  19. Supports for shock, vibration and seismic isolation for tube networks

    International Nuclear Information System (INIS)

    Prisecaru, Ilie; Serban, Viorel; Sandrea Madalina

    2005-01-01

    The paper presents a solution for diminishing the shocks, vibrations and seismic movements in pipe networks, with a simultaneous reduction in the general stress conditions in piping and supports. Total removal or reduction of vibrations is a hard problem which was not yet tackled either theoretically, in the sense of an analytical procedure for the analysis of occurrence and development of shocks and vibrations in complex systems, or practically, since the current supports and dampers cannot provide enough damping within all the frequency ranges met in the technical domain. Stiffness of classical supports do not allow always satisfactory source isolation to prevent propagation from environment of shocks and vibrations, Considering the actual condition met in the nuclear power plants, power plants and thermal power plants, etc. this paper represents a major practical aid because it provides new solutions for diminishing shocks, vibrations and seismic movements. Aiming at diminishing the effects of vibrations in pipe networks, this paper presents the results obtained in the design, construction and testing of new types of supports that include sandwich type components made up of elastic blade packages with controlled distortion provided by the central and peripheral stiff parts called SERB. With the new type of supports, the control of the distortion at static and dynamic loads and the thermal displacements is achieved by the relative movement among the sandwich structure subassemblies and by the sandwich structure distortion controlled by the central and peripheral distorting parts that generate a non - linear geometric response which has an easily controllable stiffness and damping, due to their non - linear geometric behavior. The supports of the new type are adjustable to the load and distortion level without overstressing the component material, due to a non - linear geometric behavior while the contact pressure among the blades is limited to pre-set values. Due

  20. Rock property estimates using multiple seismic attributes and neural networks; Pegasus Field, West Texas

    Energy Technology Data Exchange (ETDEWEB)

    Schuelke, J.S.; Quirein, J.A.; Sarg, J.F.

    1998-12-31

    This case study shows the benefit of using multiple seismic trace attributes and the pattern recognition capabilities of neural networks to predict reservoir architecture and porosity distribution in the Pegasus Field, West Texas. The study used the power of neural networks to integrate geologic, borehole and seismic data. Illustrated are the improvements between the new neural network approach and the more traditional method of seismic trace inversion for porosity estimation. Comprehensive statistical methods and interpretational/subjective measures are used in the prediction of porosity from seismic attributes. A 3-D volume of seismic derived porosity estimates for the Devonian reservoir provide a very detailed estimate of porosity, both spatially and vertically, for the field. The additional reservoir porosity detail provided, between the well control, allows for optimal placement of horizontal wells and improved field development. 6 refs., 2 figs.

  1. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    Science.gov (United States)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  2. An Assessment of the Seismicity of the Bursa Region from a Temporary Seismic Network

    Science.gov (United States)

    Gok, Elcin; Polat, Orhan

    2012-04-01

    A temporary earthquake station network of 11 seismological recorders was operated in the Bursa region, south of the Marmara Sea in the northwest of Turkey, which is located at the southern strand of the North Anatolian Fault Zone (NAFZ). We located 384 earthquakes out of a total of 582 recorded events that span the study area between 28.50-30.00°E longitudes and 39.75-40.75°N latitudes. The depth of most events was found to be less than 29 km, and the magnitude interval ranges were between 0.3 ≤ ML ≤ 5.4, with RMS less than or equal to 0.2. Seismic activities were concentrated southeast of Uludag Mountain (UM), in the Kestel-Igdir area and along the Gemlik Fault (GF). In the study, we computed 10 focal mechanisms from temporary and permanents networks. The predominant feature of the computed focal mechanisms is the relatively widespread near horizontal northwest-southeast (NW-SE) T-axis orientation. These fault planes have been used to obtain the orientation and shape factor (R, magnitude stress ratio) of the principal stress tensors (σ1, σ2, σ3). The resulting stress tensors reveal σ1 closer to the vertical (oriented NE-SW) and σ2, σ3 horizontal with R = 0.5. These results confirm that Bursa and its vicinity could be defined by an extensional regime showing a primarily normal to oblique-slip motion character. It differs from what might be expected from the stress tensor inversion for the NAFZ. Different fault patterns related to structural heterogeneity from the north to the south in the study area caused a change in the stress regime from strike-slip to normal faulting.

  3. AN INITIATIVE FOR CONSTRUCTION OF NEW-GENERATION LUNAR GLOBAL CONTROL NETWORK USING MULTI-MISSION DATA

    Directory of Open Access Journals (Sweden)

    K. Di

    2017-07-01

    Full Text Available A lunar global control network provides geodetic datum and control points for mapping of the lunar surface. The widely used Unified Lunar Control Network 2005 (ULCN2005 was built based on a combined photogrammetric solution of Clementine images acquired in 1994 and earlier photographic data. In this research, we propose an initiative for construction of a new-generation lunar global control network using multi-mission data newly acquired in the 21st century, which have much better resolution and precision than the old data acquired in the last century. The new control network will be based on a combined photogrammetric solution of an extended global image and laser altimetry network. The five lunar laser ranging retro-reflectors, which can be identified in LROC NAC images and have cm level 3D position accuracy, will be used as absolute control points in the least squares photogrammetric adjustment. Recently, a new radio total phase ranging method has been developed and used for high-precision positioning of Chang’e-3 lander; this shall offer a new absolute control point. Systematic methods and key techniques will be developed or enhanced, including rigorous and generic geometric modeling of orbital images, multi-scale feature extraction and matching among heterogeneous multi-mission remote sensing data, optimal selection of images at areas of multiple image coverages, and large-scale adjustment computation, etc. Based on the high-resolution new datasets and developed new techniques, the new generation of global control network is expected to have much higher accuracy and point density than the ULCN2005.

  4. Operating a global seismic network - perspectives from the USGS GSN

    Science.gov (United States)

    Gee, L. S.; Derr, J. S.; Hutt, C. R.; Bolton, H.; Ford, D.; Gyure, G. S.; Storm, T.; Leith, W.

    2007-05-01

    The Global Seismographic Network (GSN) is a permanent digital network of state-of-the-art seismological and geophysical sensors connected by a global telecommunications network, serving as a multi-use scientific facility used for seismic monitoring for response applications, basic and applied research in solid earthquake geophysics, and earth science education. A joint program of the U.S. Geological Survey (USGS), the National Science Foundation, and Incorporated Research Institutions in Seismology (IRIS), the GSN provides near- uniform, worldwide monitoring of the Earth through 144 modern, globally distributed seismic stations. The USGS currently operates 90 GSN or GSN-affiliate stations. As a US government program, the USGS GSN is evaluated on several performance measures including data availability, data latency, and cost effectiveness. The USGS-component of the GSN, like the GSN as a whole, is in transition from a period of rapid growth to steady- state operations. The program faces challenges of aging equipment and increased operating costs at the same time that national and international earthquake and tsunami monitoring agencies place an increased reliance on GSN data. Data acquisition of the USGS GSN is based on the Quanterra Q680 datalogger, a workhorse system that is approaching twenty years in the field, often in harsh environments. An IRIS instrumentation committee recently selected the Quanterra Q330 HR as the "next generation" GSN data acquisition system, and the USGS will begin deploying the new equipment in the middle of 2007. These new systems will address many of the issues associated with the ageing Q680 while providing a platform for interoperability across the GSN.. In order to address the challenge of increasing operational costs, the USGS employs several tools. First, the USGS benefits from the contributions of local host institutions. The station operators are the first line of defense when a station experiences problems, changing boards

  5. SKS splitting observed at Romanian broad-band seismic network

    Science.gov (United States)

    Ivan, Marian; Popa, Mihaela; Ghica, Daniela

    2008-12-01

    Shear-wave splitting results are presented for the broad-band stations of the Romanian seismic network. For stations BUC1 and CRAR (located in Moesian Platform), IAS (in East-European Platform), TIRR and CVD (in Central Dobrudja-Black Sea microplate), TIM and DRGR (in Dacia-Tisza plate, including Apuseni Mts.), BURAR, BZS and GZR (in, or very close to the Carpathian Arc), the fast directions ( φ) are around 135°. The mean delay values ( δt) of the slow wave are slightly greater for the stations placed in platform areas ( δt ~ 1.5 s) than for the stations situated in the (proximity) of Carpathians ( δt ~ 1.2 s). For the MLR station located in the South-Western part of Vrancea area, at the Carpathian Bend, the fast direction is 48°, similar to VOIR station (located in Southern Carpathians, 70 km West of MLR). At VRI and PLOR, located in the North-Eastern part of Vrancea, the fast axis is oriented approximately on North-South direction, with a possible dependence of the splitting parameters with back azimuth. At least for some stations, the splitting results are not consistent with vertical coherent lithospheric anisotropy.

  6. Development of real time monitor system displaying seismic waveform data observed at seafloor seismic network, DONET, for disaster management information

    Science.gov (United States)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Takahashi, N.; Sonoda, A.; Miura, S.; Tsuboi, S.

    2014-12-01

    Mega-thrust earthquakes are anticipated to occur in the Nankai Trough in southwest Japan. In the source areas, we have deployed seafloor seismic network, DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis), in 2010 in order to monitor seismicity, crustal deformations, and tsunamis. DONET system consists of totally 20 stations, which is composed of six kinds of sensors, including strong-motion seismometers and quartz pressure gauges. Those stations are densely distributed with an average spatial interval of 15-20 km and cover near the trench axis to coastal areas. Observed data are transferred to a land station through a fiber-optical cable and then to JAMSTEC (Japan Agency for Marine-Earth Science and Technology) data management center through a private network in real time. After 2011 off the Pacific coast of Tohoku Earthquake, each local government close to Nankai Trough try to plan disaster prevention scheme. JAMSTEC will disseminate DONET data combined with research accomplishment so that they will be widely recognized as important earthquake information. In order to open DONET data observed for research to local government, we have developed a web application system, REIS (Real-time Earthquake Information System). REIS is providing seismic waveform data to some local governments close to Nankai Trough as a pilot study. As soon as operation of DONET is ready, REIS will start full-scale operation. REIS can display seismic waveform data of DONET in real-time, users can select strong motion and pressure data, and configure the options of trace view arrangement, time scale, and amplitude. In addition to real-time monitoring, REIS can display past seismic waveform data and show earthquake epicenters on the map. In this presentation, we briefly introduce DONET system and then show our web application system. We also discuss our future plans for further developments of REIS.

  7. Peru Subduction Zone Seismic Experiment (PeruSZE): Preliminary Results From a Seismic Network Between Mollendo and Lake Titicaca, Peru.

    Science.gov (United States)

    Guy, R.; Stubailo, I.; Skinner, S.; Phillips, K.; Foote, E.; Lukac, M.; Aguilar, V.; Tavera, H.; Audin, L.; Husker, A.; Clayton, R.; Davis, P. M.

    2008-12-01

    This work describes preliminary results from a 50 station broadband seismic network recently installed from the coast to the high Andes in Peru. UCLA's Center for Embedded Network Sensing (CENS) and Caltech's Tectonic Observatory are collaborating with the IRD (French L'Institut de Recherche pour le Developpement) and the Institute of Geophysics, in Lima Peru in a broadband seismic experiment that will study the transition from steep to shallow slab subduction. The currently installed line has stations located above the steep subduction zone at a spacing of about 6 km. In 2009 we plan to install a line of 50 stations north from this line along the crest of the Andes, crossing the transition from steep to shallow subduction. A further line from the end of that line back to the coast, completing a U shaped array, is in the planning phase. The network is wirelessly linked using multi-hop network software designed by computer scientists in CENS in which data is transmitted from station to station, and collected at Internet drops, from where it is transmitted over the Internet to CENS each night. The instrument installation in Peru is almost finished and we have been receiving data daily from 10 stations (out of total 50) since June 2008. The rest are recording on-site while the RF network is being completed. The software system provides dynamic link quality based routing, reliable data delivery, and a disruption tolerant shell interface for managing the system from UCLA without the need to travel to Peru. The near real-time data delivery also allows immediate detection of any problems at the sites. We are building a seismic data and GPS quality control toolset that would greatly minimize the station's downtime by alerting the users of any possible problems.

  8. SISMIKO: emergency network deployment and data sharing for the 2016 central Italy seismic sequence

    Directory of Open Access Journals (Sweden)

    Milena Moretti

    2016-12-01

    Full Text Available At 01:36 UTC (03:36 local time on August 24th 2016, an earthquake Mw 6.0 struck an extensive sector of the central Apennines (coordinates: latitude 42.70° N, longitude 13.23° E, 8.0 km depth. The earthquake caused about 300 casualties and severe damage to the historical buildings and economic activity in an area located near the borders of the Umbria, Lazio, Abruzzo and Marche regions. The Istituto Nazionale di Geofisica e Vulcanologia (INGV located in few minutes the hypocenter near Accumoli, a small town in the province of Rieti. In the hours after the quake, dozens of events were recorded by the National Seismic Network (Rete Sismica Nazionale, RSN of the INGV, many of which had a ML > 3.0. The density and coverage of the RSN in the epicentral area meant the epicenter and magnitude of the main event and subsequent shocks that followed it in the early hours of the seismic sequence were well constrained. However, in order to better constrain the localizations of the aftershock hypocenters, especially the depths, a denser seismic monitoring network was needed. Just after the mainshock, SISMIKO, the coordinating body of the emergency seismic network at INGV, was activated in order to install a temporary seismic network integrated with the existing permanent network in the epicentral area. From August the 24th to the 30th, SISMIKO deployed eighteen seismic stations, generally six components (equipped with both velocimeter and accelerometer, with thirteen of the seismic station transmitting in real-time to the INGV seismic monitoring room in Rome. The design and geometry of the temporary network was decided in consolation with other groups who were deploying seismic stations in the region, namely EMERSITO (a group studying site-effects, and the emergency Italian strong motion network (RAN managed by the National Civil Protection Department (DPC. Further 25 BB temporary seismic stations were deployed by colleagues of the British Geological Survey

  9. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks

    International Nuclear Information System (INIS)

    De Freitas, J M

    2011-01-01

    This review looks at recent developments in seismic seabed oil reservoir monitoring techniques using fibre-optic sensing networks. After a brief introduction covering the background and scope of the review, the following section focuses on state-of-the-art fibre-optic hydrophones and accelerometers used for seismic applications. Related metrology aspects of the sensor such as measurement of sensitivity, noise and cross-axis performance are addressed. The third section focuses on interrogation systems. Two main phase-based competing systems have emerged over the past two decades for seismic applications, with a third technique showing much promise; these have been compared in terms of general performance. (topical review)

  10. Evolution and strengthening of the Calabrian Regional Seismic Network during the Pollino sequence

    Science.gov (United States)

    D'Alessandro, Antonino; Gervasi, Anna; Guerra, Ignazio

    2013-04-01

    In the last three years the Calabria-Lucania border area is affected by an intense seismic activity generated by the activation of geological structures which be seat of clusters of microearthquakes, with energy release sufficient to be felt and to generate alarm and bother. Besides to the historical memory of the inhabitants of Mormanno (the town most affected of macroseismic effects) there are some historical documents that indicate the occurrence of a similar seismic crisis in 1888. A more recent seismic sequence, the first monitored by seismic instruments, occurred in 1973-1974. In the last case, the activity started in early 2010 and is still ongoing. The two shocks of ML = 4.3 and 5.0 and the the very long time duration differs this crisis from the previous ones. Given this background, in 1981 was installed at Mormanno a seismic station (MMN) belonging to Regional Seismic Network of the University of Calabria (RSRC), now also a station of the Italian National Seismic Network of the Istituto Nazionale di Geofisica Vulcanolgia (INSN-INGV). This seismic station made it possible to follow the evolution of seismicity in this area and in particular the progressive increase in seismic activity started in 2010. Since 2010, some 3D stand-alone, was installed by the University of Calabria. Further stations of INGV were installed in November 2011 after a sharp increase of the energy release and subsequently by the INGV and the GeoForschungsZentrum (Potsdam) after the main shock of the whole sequence. Seismic networks are powerful tools for understanding active tectonic processes in a monitored seismically active region. However, the optimal monitoring of a seismic region requires the assessment of the seismic network capabilities to identify seismogenic areas that are not adequately covered and to quantify measures that will allow the network improvement. In this paper we examine in detail the evolution and the strengthening of the RSRC in the last years analyzing the

  11. Seismic network at the Olkiluoto site and microearthquake observations in 2002-2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-05-01

    This report describes the structure and operation of Posiva's seismic network after the comprehensive upgrade performed in 2013 and presents a summary of its micro-earthquake observations in 2002 - 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. The number of seismic stations has increased gradually and communication, hardware and software have developed in over ten years. The upgrade in 2013 included data transmission, the equipment in several seismic stations, the server responsible for the data processing in Olkiluoto and software applied in operation and analysis of observations. After the upgrade Posiva's permanent seismic network consists of 17 seismic stations and 21 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semi-regional area, includes the Olkiluoto island and its surroundings. The aim is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO. An additional task of monitoring is related to safeguarding of the construction of the ONKALO.In the beginning the network monitored tectonic earthquakes in order to characterise the undisturbed baseline of seismicity in Olkiluoto. After August 2004, the network also monitored excavation induced seismicity. The first three excavation induced earthquakes were recorded in September 2005. At the moment the total number of excavation induced earthquakes is 17. During the same time about 10 000 excavation blasts were located. The

  12. Design and commissioning of the Seismicity Network of Darkhovein Nuclear Power Plant (IR360)

    International Nuclear Information System (INIS)

    Aram, M. R.

    2012-01-01

    The study of micro seismicity and monitoring the micro seismic for the purpose of surveying the existing faults treatments and recognition of blind faults and other active tectonic structures in various phases of constructing the important structures, specially nuclear power plants, is unavoidable. According to IAEA safety guides and US-NRC regulatory guides, suitable instrumentation must be provided so that the seismic response of nuclear power plant features importantly from the safety point of view. According to R.G. 1.165 seismic monitoring by a network of seismic stations in the site area should be established as soon as possible after the site selection. Also, it is necessary to shutdown the nuclear power plant if vibratory ground motion exceeds the operating basis earthquake. The current research demonstrates the field works and studies for locating the local seismograph network in Darkhovein nuclear power plant. After the official studies and the primary visit of the old seismograph stations it was found that the mentioned network doesn't cover completely the geological structures around the power plant. Therefore, new locations have been introduced through the field investigation and computational methods of optimization. In positioning the new stations, places with the least amount of noise and the best coverage for seismic sources were selected. The modeling with considering an imaginative station at the selected places shows that the thresholds of the complete records of earthquakes around Darkhovein site is under the magnitude 1 (about 0.8).

  13. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  14. Social Media as Seismic Networks for the Earthquake Damage Assessment

    Science.gov (United States)

    Meletti, C.; Cresci, S.; La Polla, M. N.; Marchetti, A.; Tesconi, M.

    2014-12-01

    The growing popularity of online platforms, based on user-generated content, is gradually creating a digital world that mirrors the physical world. In the paradigm of crowdsensing, the crowd becomes a distributed network of sensors that allows us to understand real life events at a quasi-real-time rate. The SoS-Social Sensing project [http://socialsensing.it/] exploits the opportunistic crowdsensing, involving users in the sensing process in a minimal way, for social media emergency management purposes in order to obtain a very fast, but still reliable, detection of emergency dimension to face. First of all we designed and implemented a decision support system for the detection and the damage assessment of earthquakes. Our system exploits the messages shared in real-time on Twitter. In the detection phase, data mining and natural language processing techniques are firstly adopted to select meaningful and comprehensive sets of tweets. Then we applied a burst detection algorithm in order to promptly identify outbreaking seismic events. Using georeferenced tweets and reported locality names, a rough epicentral determination is also possible. The results, compared to Italian INGV official reports, show that the system is able to detect, within seconds, events of a magnitude in the region of 3.5 with a precision of 75% and a recall of 81,82%. We then focused our attention on damage assessment phase. We investigated the possibility to exploit social media data to estimate earthquake intensity. We designed a set of predictive linear models and evaluated their ability to map the intensity of worldwide earthquakes. The models build on a dataset of almost 5 million tweets exploited to compute our earthquake features, and more than 7,000 globally distributed earthquakes data, acquired in a semi-automatic way from USGS, serving as ground truth. We extracted 45 distinct features falling into four categories: profile, tweet, time and linguistic. We run diagnostic tests and

  15. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J. [Enprima Oy, Vantaa (Finland)

    2005-09-15

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  16. Local seismic network at the Olkiluoto site. Annual report 2002-2004

    International Nuclear Information System (INIS)

    Saari, J.

    2005-09-01

    In Olkiluoto, Posiva Oy has operated a local seismic network since February 2002. In the beginning, the network consisted of six seismic stations. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the years 2002 - 2004. Also the changes in the structure and the operation procedure of the network are described. The network has operated nearly continuously. The longest interruption occurred 16.-17.6.2004, when two new seismic stations were installed in the network and the operation procedure was changed. Altogether 757 events have been located in the Olkiluoto area. The magnitudes of the observed events range from ML = -3.5 to ML = 1.2. All of them are explosions or other artificial events. So far, none of the 757 observed events can be classified as microearthquakes. Five of the events have characteristics that make the origin of the recorded signal uncertain. They are quite unlikely microearthquakes, but they are not typical examples of artificial seismic signals either. When the experience and the data set of the Olkiluoto microearthquakes increase the identification of events will be more definite. Evidence of activity that would has influence on the safety of the ONKALO, have not found. (orig.)

  17. Optimal design of water supply networks for enhancing seismic reliability

    International Nuclear Information System (INIS)

    Yoo, Do Guen; Kang, Doosun; Kim, Joong Hoon

    2016-01-01

    The goal of the present study is to construct a reliability evaluation model of a water supply system taking seismic hazards and present techniques to enhance hydraulic reliability of the design into consideration. To maximize seismic reliability with limited budgets, an optimal design model is developed using an optimization technique called harmony search (HS). The model is applied to actual water supply systems to determine pipe diameters that can maximize seismic reliability. The reliabilities between the optimal design and existing designs were compared and analyzed. The optimal design would both enhance reliability by approximately 8.9% and have a construction cost of approximately 1.3% less than current pipe construction cost. In addition, the reinforcement of the durability of individual pipes without considering the system produced ineffective results in terms of both cost and reliability. Therefore, to increase the supply ability of the entire system, optimized pipe diameter combinations should be derived. Systems in which normal status hydraulic stability and abnormal status available demand could be maximally secured if configured through the optimal design. - Highlights: • We construct a seismic reliability evaluation model of water supply system. • We present technique to enhance hydraulic reliability in the aspect of design. • Harmony search algorithm is applied in optimal designs process. • The effects of the proposed optimal design are improved reliability about by 9%. • Optimized pipe diameter combinations should be derived indispensably.

  18. Local seismic network at the Olkiluoto site. Annual report for 2013

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2014-06-01

    This report gives the results of microseismic monitoring during 2013. Excavation of the underground rock characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto, where there are currently 17 seismic stations and 21 triaxial sensors. The network has operated continuously in 2013. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas, of which the larger one, the seismic semiregional area, includes the Olkiluoto island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. All the expected excavation induced events are assumed to occur inside the smaller target area, the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding the ONKALO and includes 13 seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. Upgrade and unification of the whole seismic network was done in August 2013. The upgrade included communication, data acquisition, server equipment in Olkiluoto, network configuration and software. The bedrock models and the ONKALO design model applied in the visualisation of the seismicity remained the same in 2013. The number of located events was much smaller than during previous years due to break in the excavation. Altogether 436 events have been located in the Olkiluoto area, in the reported time period. Nearly half of the observed explosions (237) in 2013 occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (137). The magnitudes of the explosions inside the semi-regional area range from M L = -1.6 to M L = 1.5 (M L = magnitude in local Richter's scale). One small induced earthquake (ML = -1.8) was detected on 9 May 2013

  19. A dense microseismic monitoring network in Korea for uncovering relationship between seismic activity and neotectonic features

    Science.gov (United States)

    Kang, T.; Lee, J. M.; Kim, W.; Jo, B. G.; Chung, T.; Choi, S.

    2012-12-01

    A few tens of surface traces indicating movements in Quaternary were found in the southeastern part of the Korean Peninsula. Following both the geological and engineering definitions, those features are classified into "active", in geology, or "capable", in engineering, faults. On the other hand, the present-day seismicity of the region over a couple of thousand years is indistinguishable on the whole with the rest of the Korean Peninsula. It is therefore of great interest whether the present seismic activity is related to the neotectonic features or not. Either of conclusions is not intuitive in terms of the present state of seismic monitoring network in the region. Thus much interest in monitoring seismicity to provide an improved observation resolution and to lower the event-detection threshold has increased with many observations of the Quaternary faults. We installed a remote, wireless seismograph network which is composed of 20 stations with an average spacing of 10 km. Each station is equipped with a three-component Trillium Compact seismometer and Taurus digitizer. Instrumentation and analysis advancements are now offering better tools for this monitoring. This network is scheduled to be in operation over about one and a half year. In spite of the relatively short observation period, we expect that the high density of the network enables us to monitor seismic events with much lower magnitude threshold compared to the preexisting seismic network in the region. Following the Gutenberg-Richter relationship, the number of events with low magnitude is logarithmically larger than that with high magnitude. Following this rule, we can expect that many of microseismic events may reveal behavior of their causative faults, if any. We report the results of observation which has been performed over a year up to now.

  20. New strong motion network in Georgia: basis for specifying seismic hazard

    Science.gov (United States)

    Kvavadze, N.; Tsereteli, N. S.

    2017-12-01

    Risk created by hazardous natural events is closely related to sustainable development of the society. Global observations have confirmed tendency of growing losses resulting from natural disasters, one of the most dangerous and destructive if which are earthquakes. Georgia is located in seismically active region. So, it is imperative to evaluate probabilistic seismic hazard and seismic risk with proper accuracy. National network of Georgia includes 35 station all of which are seismometers. There are significant gaps in strong motion recordings, which essential for seismic hazard assessment. To gather more accelerometer recordings, we have built a strong motion network distributed on the territory of Georgia. The network includes 6 stations for now, with Basalt 4x datalogger and strong motion sensor Episensor ES-T. For each site, Vs30 and soil resonance frequencies have been measured. Since all but one station (Tabakhmelam near Tbilisi), are located far from power and internet lines special system was created for instrument operation. Solar power is used to supply the system with electricity and GSM/LTE modems for internet access. VPN tunnel was set up using Raspberry pi, for two-way communication with stations. Tabakhmela station is located on grounds of Ionosphere Observatory, TSU and is used as a hub for the network. This location also includes a broadband seismometer and VLF electromagnetic waves observation antenna, for possible earthquake precursor studies. On server, located in Tabakhmela, the continues data is collected from all the stations, for later use. The recordings later will be used in different seismological and engineering problems, namely selecting and creating GMPE model for Caucasus, for probabilistic seismic hazard and seismic risk evaluation. These stations are a start and in the future expansion of strong motion network is planned. Along with this, electromagnetic wave observations will continue and additional antennas will be implemented

  1. Seismic vulnerability assessment of chemical plants through probabilistic neural networks

    International Nuclear Information System (INIS)

    Aoki, T.; Ceravolo, R.; De Stefano, A.; Genovese, C.; Sabia, D.

    2002-01-01

    A chemical industrial plant represents a sensitive presence in a region and, in case of severe damage due to earthquake actions, its impact on social life and environment can be devastating. From the structural point of view, chemical plants count a number of recurrent elements, which are classifiable in a discrete set of typological families (towers, chimneys, cylindrical or spherical or prismatic tanks, pipes etc.). The final aim of this work is to outline a general procedure to be followed in order to assign a seismic vulnerability estimate to each element of the various typological families. In this paper, F.E. simulations allowed to create a training set, which has been used to train a probabilistic neural system. A sample application has concerned the seismic vulnerability of simple spherical tanks

  2. Design and Implementation of the National Seismic Monitoring Network in the Kingdom of Bhutan

    Science.gov (United States)

    Ohmi, S.; Inoue, H.; Chophel, J.; Pelgay, P.; Drukpa, D.

    2017-12-01

    Bhutan-Himalayan district is located along the plate collision zone between Indian and Eurasian plates, which is one of the most seismically active region in the world. Recent earthquakes such as M7.8 Gorkha Nepal earthquake in April 25, 2015 and M6.7 Imphal, India earthquake in January 3, 2016 are examples of felt earthquakes in Bhutan. However, there is no permanent seismic monitoring system ever established in Bhutan, whose territory is in the center of the Bhutan-Himalayan region. We started establishing permanent seismic monitoring network of minimum requirements and intensity meter network over the nation. The former is composed of six (6) observation stations in Bhutan with short period weak motion and strong motion seismometers as well as three (3) broad-band seismometers, and the latter is composed of twenty intensity meters located in every provincial government office. Obtained data are transmitted to the central processing system in the DGM office in Thimphu in real time. In this project, DGM will construct seismic vault with their own budget which is approved as the World Bank project, and Japan team assists the DGM for site survey of observation site, designing the observation vault, and designing the data telemetry system as well as providing instruments for the observation such as seismometers and digitizers. We already started the operation of the six (6) weak motion stations as well as twenty (20) intensity meter stations. Additionally, the RIMES (Regional Integrated Multi-hazard Early Warning System for Africa and Asia) is also providing eight (8) weak motion stations and we are keeping close communication to operate them as one single seismic monitoring network composed of fourteen (14) stations. This network will be definitely utilized for not only for seismic disaster mitigation of the country but also for studying the seismotectonics in the Bhutan-Himalayan region which is not yet precisely revealed due to the lack of observation data in the

  3. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    Science.gov (United States)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located 20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  4. Seismic cycle and seismic risk of an active faults network: the Corinth rift case (Greece)

    International Nuclear Information System (INIS)

    Boiselet, Aurelien

    2014-01-01

    The Corinth rift (Greece) is one of the regions with the highest strain rates (16 mm/y extension rate) in the Euro-Mediterranean area and as such it has long been identified as a site of major importance for earthquake studies in Europe (20 years of research by the Corinth Rift Laboratory and 4 years of in-depth studies by the ANR-SISCOR project). This enhanced knowledge, acquired in particular, in the western part of the Gulf of Corinth (CRL region), an area about 50 by 40 km 2 , between the city of Patras to the west and the city of Aigion to the east, provides an excellent opportunity to compare fault-based (FB) and classical seismo-tectonic (ST) approaches currently used in seismic hazard assessment studies. An homogeneous earthquake catalogue was thus constructed for the purpose of this study along with a comprehensive database of all relevant geological, geodetic and geophysical information available in the literature and recently collected within the ANR-SISCOR project. The homogenized Mw earthquake catalogue is composed of data from the National Observatory of Athens and from the university of Thessaloniki as well as data acquired through historical and instrumental work performed within the ANR-SISCOR group for the CRL region. A frequency magnitude analysis confirms that seismicity rates are governed by Gutenberg-Richter (GR) statistic for 1.2 =6 earthquakes were computed for the region of study. Time dependent models (Brownian Passage time and Weibull probability distributions) were also explored. The probability (normalized by area) of a M≥6.0 earthquake is found to be greater in the CRL region compared to the eastern part of the Corinth rift. Probability estimates corresponding to the 16. and 84. percentile are also provided, as a means of representing the range of uncertainties in the results. Probability estimates based on the ST-approach are then compared to those based on the FB approach approach. In general ST tends to overestimate probabilities

  5. Monitoring of geothermal fields by seismic networks. Guidelines and chances; Monitoring geothermaler Felder durch seismische Netzwerke. Vorgaben und Chancen

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Andreas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Geophysikalisches Inst.; Gaucher, Emmanuel [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Abt. Geothermie

    2012-07-01

    The monitoring of geothermal power plants requires seismic networks in order to quantify ground motions at the earth's surface in the case of a possible micro seismicity or to describe spatio-temporal seismicity distribution in the reservoir. The first case requires official needs. The second case may help to develop the reservoirs. An optimal configuration of the seismic network may adequate for both tasks. It also can be a chance for a long-term investment for the overall benefit.

  6. Local seismic network at the Olkiluoto site. Annual report for 2011

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2012-06-01

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the semi

  7. Local seismic network at the Olkiluoto site. Annual report for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Saari, J.; Malm, M. [AF-Consult Oy, Espoo (Finland)

    2012-06-15

    This report gives the results of microseismic monitoring during 2011. Excavation of the underground characterisation facility called ONKALO started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2011 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km x 2 km x 2 km cube surrounding ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the construction of ONKALO. The configuration of the seismic network as well as the software packages applied in data processing and analyses have remained during the previous year. The design model of ONKALO and the brittle fault zone model of the Olkiluoto of the seismic visualization package Jdi were upgraded in 2011. The network has operated nearly continuously. There was a 14 minutes and 30 second long operation failure in December 2011. That was the first network operation failure in five years. Altogether 1223 events have been located in the Olkiluoto area, in the reported time period. Most of them (1098) are explosions that occurred inside the seismic semiregional area and especially inside the seismic ONKALO block (1064 events). The magnitudes of the observed explosions inside the

  8. New Technology Changing The Face of Mobile Seismic Networks

    Science.gov (United States)

    Brisbourne, A.; Denton, P.; Seis-Uk

    SEIS-UK, a seismic equipment pool and data management facility run by a consortium of four UK universities (Leicester, Leeds, Cambridge and Royal Holloway, London) completed its second phase in 2001. To compliment the existing broadband equipment pool, which has been deployed to full capacity to date, the consortium undertook a tender evaluation process for low-power, lightweight sensors and recorders, for use on both controlled source and passive seismic experiments. The preferred option, selected by the consortium, was the Guralp CMG-6TD system, with 150 systems ordered. The CMG-6TD system is a new concept in temporary seismic equipment. A 30s- 100Hz force-feedback sensor, integral 24bit digitiser and 3-4Gbyte of solid-state memory are all housed in a single unit. Use of the most recent technologies has kept the power consumption to below 1W and the weight to 3.5Kg per unit. The concept of the disk-swap procedure for obtaining data from the field has been usurped by a fast data download technique using firewire technology. This allows for rapid station servicing, essential when 150 stations are in use, and also ensures the environmental integrity of the system by removing the requirement for a disk access port and envi- ronmentally exposed data disk. The system therefore meets the criteria for controlled source and passive seismic experiments: (1) the single unit concept and low-weight is designed for rapid deployment on short-term projects; (2) the low power consumption reduces the power-supply requirements facilitating deployment; (3) the low self-noise and bandwidth of the sensor make it applicable to passive experiments involving nat- ural sources. Further to this acquisition process, in collaboration with external groups, the SEIS- UK data management procedures have been streamlined with the integration of the Guralp GCF format data into the PASSCAL PDB software. This allows for rapid dissemination of field data and the production of archive-ready datasets

  9. Romanian complex data center for dense seismic network

    Directory of Open Access Journals (Sweden)

    Constantin Ionescu

    2011-04-01

    792.0pt; margin:72.0pt 72.0pt 72.0pt 72.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> In 2002, the National Institute for Earth Physics started the development of its own real-time digital seismic network. This now consists of 86 seismic stations, of which 32 are broad-band sensors, 52 stations are equipped with short-period sensors, and two seismic arrays, all of which transmit data in real time to the National Data Center (NDC and the Eforie Nord (EFOR seismic observatory. EFOR is the back-up for the NDC, and it is also a monitoring center for Black Sea tsunamis. The seismic stations are equipped with Quanterra Q330 and K2 digitizers, broad-band seismometers (STS2, CMG40T, CMG 3ESP, CMG3T and Episensor Kinemetrics acceleration sensors (±2g. SeedLink is a part of Seiscomp2.5 and Antelope, which are the software packages used for data acquisition in real time and data exchange. Communication from the digital seismic stations to the NDC in Bucharest and EFOR is assured by five providers (GPRS, VPN, satellite, radio and internet. AntelopeTM 4.11 is used for acquisition and data processing at these two data centers for the reception and processing of the data, which runs on two

  10. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, A.; Margheriti, L.; Moretti, M.; Lauciani, V.; Sensale, G.; Bucci, A.; Criscuoli, F.

    2015-12-01

    Universal Mobile Telecommunications System (UMTS) and its evolutions are nowadays the most affordable and widespread data communication infrastructure available almost world wide. Moreover the always growing cellular phone market is pushing the development of new devices with higher performances and lower power consumption. All these characteristics make UMTS really useful for the implementation of an "easy to deploy" temporary real-time seismic station. Despite these remarkable features, there are many drawbacks that must be properly taken in account to effectively transmit the seismic data: Internet security, signal and service availability, power consumption. - Internet security: exposing seismological data services and seismic stations to the Internet is dangerous, attack prone and can lead to downtimes in the services, so we setup a dedicated Virtual Private Network (VPN) service to protect all the connected devices. - Signal and service availability: while for temporary experiment a carefull planning and an accurate site selection can minimize the problem, this is not always the case with rapid response networks. Moreover, as with any other leased line, the availability of the UMTS service during a seismic crisis is basically unpredictable. Nowadays in Italy during a major national emergency a Committee of the Italian Civil Defense ensures unified management and coordination of emergency activities. Inside it the telecom companies are committed to give support to the crisis management improving the standards in their communication networks. - Power consumption: it is at least of the order of that of the seismic station and, being related to data flow and signal quality is largely unpredictable. While the most secure option consists in adding a second independent solar power supply to the seismic station, this is not always a very convenient solution since it doubles the cost and doubles the equipment on site. We found that an acceptable trade-off is to add an

  11. Optimization of Broadband Seismic Network in the Kingdom of Saudi Arabia

    KAUST Repository

    Alshuhail, Abdulrahman

    2011-05-01

    Saudi Arabia covers a large portion of the Arabian plate, a region characterized by seismic activity, along complex divergent and convergent plate boundaries. In order to understand these plate boundaries it is essential to optimize the design of the broadband seismic station network to accurately locate earthquakes. In my study, I apply an optimization method to design the broadband station distribution in Saudi Arabia. This method is based on so called D-optimal planning criterion that optimizes the station distribution for locating the hypocenters of earthquakes. Two additional adjustments were implemented: to preferentially acquire direct and refracted wave, and to account for geometric spreading of seismic waves (and thus increases the signal to noise ratio). The method developed in this study for optimizing the geographical location of broadband stations uses the probability of earthquake occurrence and a 1-D velocity model of the region, and minimizes the ellipsoid volume of the earthquake location errors. The algorithm was applied to the current seismic network, operated by the Saudi Geologic Survey (SGS). Based on the results, I am able to make recommendations on, how to expand the existing network. Furthermore, I quantify the efficiency of our method by computing the standard error of epicenter and depth before and after adding the proposed stations.

  12. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L

  13. Local seismic network at the Olkiluoto site. Annual report for 2010

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2011-11-01

    Excavation of the underground characterisation facility (the ONKALO) started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2010 Posiva's permanent seismic network consists of 15 seismic stations and 20 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2010. In March 2010, the seismic network was upgraded by a new triaxial borehole seismometer in order to improve the sensitivity and the depth resolution inside the ONKALO block. The sensor is the second one inside the ONKALO. New PC for data processing and analysis with the new version of Linux operating system was installed. Also all software packages for data processing and analysis and for visualization were upgraded. The network has operated continuously in 2010. Altogether 1089 events have been located in the Olkiluoto area, in reported time period. Most of them (943) are explosions occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (895 events). The magnitudes of the observed explosions inside the semi-regional area range from M L = -1

  14. Teaching hands-on geophysics: examples from the Rū seismic network in New Zealand

    International Nuclear Information System (INIS)

    Van Wijk, Kasper; Simpson, Jonathan; Adam, Ludmila

    2017-01-01

    Education in physics and geosciences can be effectively illustrated by the analysis of earthquakes and the subsequent propagation of seismic waves in the Earth. Educational seismology has matured to a level where both the hard- and software are robust and user friendly. This has resulted in successful implementation of educational networks around the world. Seismic data recorded by students are of such quality that these can be used in classic earthquake location exercises, for example. But even ocean waves weakly coupled into the Earth’s crust can now be recorded on educational seismometers. These signals are not just noise, but form the basis of more recent developments in seismology, such as seismic interferometry, where seismic waves generated by ocean waves—instead of earthquakes—can be used to infer information about the Earth’s interior. Here, we introduce an earthquake location exercise and an analysis of ambient seismic noise, and present examples. Data are provided, and all needed software is freely available. (review)

  15. The Central and Eastern U.S. Seismic Network: Legacy of USArray

    Science.gov (United States)

    Eakins, J. A.; Astiz, L.; Benz, H.; Busby, R. W.; Hafner, K.; Reyes, J. C.; Sharer, G.; Vernon, F.; Woodward, R.

    2014-12-01

    As the USArray Transportable Array entered the central and eastern United States, several Federal agencies (National Science Foundation, U.S. Geological Survey, U.S. Nuclear Regulatory Commission, and Department of Energy) recognized the unique opportunity to retain TA stations beyond the original timeline. The mission of the CEUSN is to produce data that enables researchers and Federal agencies alike to better understand the basic geologic questions, background earthquake rates and distribution, seismic hazard potential, and associated societal risks of this region. The selected long-term sub-array from Transportable Array (TA) stations includes nearly 200 sites, complemented by 100 broadband stations from the existing regional seismic networks to form the Central and Eastern United States Network (CEUSN). Multiple criteria for site selection were weighed by an inter-agency TA Station Selection (TASS) Working Group: seismic noise characteristics, data availability in real time, proximity to nuclear power plants, and homogeneous distribution throughout the region. The Array Network Facility (ANF) started collecting data for CEUSN network stations since late 2013, with all stations collected since May 2014. Regional seismic data streams are collected in real-time from the IRIS Data Management Center (DMC). TA stations selected to be part of CEUSN, retain the broadband sensor to which a 100 sps channel is added, the infrasound and environmental channels, and, at some stations, accelerometers are deployed. The upgraded sites become part of the N4 network for which ANF provides metadata and can issue remote commands to the station equipment. Stations still operated by TA, but planned for CEUSN, are included in the virtual network so all stations are currently available now. By the end of 2015, the remaining TA stations will be upgraded. Data quality control procedures developed for TA stations at ANF and at the DMC are currently performed on N4 data. However

  16. Mednet: the very broad-band seismic network for the Mediterranean

    International Nuclear Information System (INIS)

    Boschi, E.; Giardini, D.; Morelli, A.

    1991-01-01

    Mednet is the very broad-band seismic network installed by the Istituto Nazionale di Geofisica (ING) in countries of the mediterranean area, with a final goal of 12-15 stations and a spacing of about 1000 km between stations. The project started in 1987 and will be completed within 1992. Mednet is motivated both by research interest and by seismic hazard monitoring; it will allow to define the structure of the mediterranean region to a high detail, to study properties of the seismic source for intermediate and large events, and to apply this knowledge to procedures of civil protection. To reach its goals, the network has been designed following the highest technical standards: STS-1/VBB sensors, Quanterra 24 bits A/D converters with 140 dB dynamic range, real-time telemetry. Five sites are now operational in Italy (L'Aquila, Bardonecchia and Villasalto) and in northern african countries (Midelt, Morocco; Gafsa, Tunisia); other sites are under construction in Pakistan (Islamabad), Irak (Rutba) and Egypt (Kottamya), while locations are examined for stations in Greece, Jugoslavia and Algeria. The centre of the mednet network is the data center (MDC) in Rome; its tasks include data collection, verification, quality control, archivial and dissemination, monitoring of station performance, event detection, routine determination of source parameters. Data distribution will follow the guidelines set by FDSN, and will be coordinated with other international network projects

  17. MyShake: A smartphone seismic network for earthquake early warning and beyond.

    Science.gov (United States)

    Kong, Qingkai; Allen, Richard M; Schreier, Louis; Kwon, Young-Woo

    2016-02-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.

  18. Tectonic implications of seismic activity recorded by the northern Ontario seismograph network

    International Nuclear Information System (INIS)

    Wetmiller, R.J.; Cajka, M.G.

    1989-01-01

    The northern Ontario seismograph network, which has operated under the Canadian Nuclear Fuel Waste Management Program since 1982, has provided valuable data to supplement those recorded by the Canadian national networks on earthquake activity, rockburst activity, the distribution of regional seismic velocities, and the contemporary stress field in northern Ontario. The combined networks recorded the largest earthquake known in northwestern Ontario, M 3.9 near Sioux Lookout on February 11, 1984, and many smaller earthquakes in northeastern Ontario. Focal mechanism solutions of these and older events showed high horizontal stress and thrust faulting to be dominant features of the contemporary tectonics of northern Ontario. The zone of more intense earthquake activity in western Quebec appeared to extend northwestward into the Kapuskasing area of northeastern Ontario, where an area of persistent microearthquake activity had been identified by a seismograph station near Kapuskasing. Controlled explosions of the 1984 Kapuskasing Uplift seismic profile experiment recorded on the northern Ontario seismograph network showed the presence of anomalously high LG velocities in northeastern Ontario (3.65 km/s) that when properly taken into account reduced the mislocation errors of well-recorded seismic events by 50% on average

  19. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  20. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    Science.gov (United States)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of

  1. Local seismic network at the Olkiluoto site. Annual report for 2009

    International Nuclear Information System (INIS)

    Saari, J.; Malm, M.

    2010-06-01

    Excavation of the underground characterisation facility (the ONKALO) started in 2004. Before that, in February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. After that the number of seismic stations has increased gradually. In 2009 Posiva's seismic network consists of 14 seismic stations and 19 triaxial sensors. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The investigation area includes two target areas. The larger target area, called seismic semiregional area, covers the Olkiluoto Island and its surroundings. The purpose is to monitor explosions and tectonic earthquakes in regional scale inside that area. The smaller target area is called the seismic ONKALO block, which is a 2 km *2 km *2 km cube surrounding the ONKALO. It is assumed that all the expected excavation induced events occur within this volume. At the moment the seismic ONKALO block includes ten seismic stations. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during 2009. Also the changes in the structure and the operation procedure of the network are described. The upgrades in 2009 are limited to the processing, interpretation and reporting practices. The latest upgrades of the equipment were done in November 2008. The final technical tuning and tests related to the upgrade were done in the beginning of 2009. The network has operated continuously in 2009. Altogether 1256 events have been located in the Olkiluoto area, in reported time period. Most of them (1161) are explosions occurred inside the seismic semi-regional area and especially inside the seismic ONKALO block (1135 events). The magnitudes of the observed events inside the semi-regional area range from ML = -1.5 to ML = 1.6 (ML = magnitude in local Richter's scale). Most of them are explosions. Two

  2. Local seismic network at the Olkiluoto site. Annual Report for 2007

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2008-05-01

    In February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. In the beginning of 2006, the target area of the seismic monitoring expanded to semiregional scale. Four new seismic stations started in the beginning of February 2006 and the focus of interpretation was expanded to an area, called the seismic semi-regional area. At the end of 2006, two new borehole geophones were installed in order to improve the sensitivity and the depth resolution of the measurements inside the ONKALO block. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the year 2007. Also the changes in the structure and the operation procedure of the network are described. The true orientation of the borehole sensor OL-OS13 was calculated. The correct orientation of triaxial seismometer is essential when the fault plane solution of an earthquake is calculated. The other borehole sensor OL-OS14 was permanently disconnected in October 2007. The network has operated continuously in 2007. Altogether 2207 events have been located in the Olkiluoto area, in reported time period. Altogether 2207 events have been located in 2007. Most of them (1912) are explosions occurred inside the seismic semiregional area and especially inside the ONKALO block (1891 events). The magnitudes of the observed events inside the semi-regional area range from ML = -2.1 to ML = 1.5 (ML

  3. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  4. Lunar Global Heat Flow: Predictions and Constraints

    Science.gov (United States)

    Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.

    2017-12-01

    The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.

  5. Internet-Based Solutions for a Secure and Efficient Seismic Network

    Science.gov (United States)

    Bhadha, R.; Black, M.; Bruton, C.; Hauksson, E.; Stubailo, I.; Watkins, M.; Alvarez, M.; Thomas, V.

    2017-12-01

    The Southern California Seismic Network (SCSN), operated by Caltech and USGS, leverages modern Internet-based computing technologies to provide timely earthquake early warning for damage reduction, event notification, ShakeMap, and other data products. Here we present recent and ongoing innovations in telemetry, security, cloud computing, virtualization, and data analysis that have allowed us to develop a network that runs securely and efficiently.Earthquake early warning systems must process seismic data within seconds of being recorded, and SCSN maintains a robust and resilient network of more than 350 digital strong motion and broadband seismic stations to achieve this goal. We have continued to improve the path diversity and fault tolerance within our network, and have also developed new tools for latency monitoring and archiving.Cyberattacks are in the news almost daily, and with most of our seismic data streams running over the Internet, it is only a matter of time before SCSN is targeted. To ensure system integrity and availability across our network, we have implemented strong security, including encryption and Virtual Private Networks (VPNs).SCSN operates its own data center at Caltech, but we have also installed real-time servers on Amazon Web Services (AWS), to provide an additional level of redundancy, and eventually to allow full off-site operations continuity for our network. Our AWS systems receive data from Caltech-based import servers and directly from field locations, and are able to process the seismic data, calculate earthquake locations and magnitudes, and distribute earthquake alerts, directly from the cloud.We have also begun a virtualization project at our Caltech data center, allowing us to serve data from Virtual Machines (VMs), making efficient use of high-performance hardware and increasing flexibility and scalability of our data processing systems.Finally, we have developed new monitoring of station average noise levels at most stations

  6. Crowd-Sourcing Seismic Data for Education and Research Opportunities with the Quake-Catcher Network

    Science.gov (United States)

    Sumy, D. F.; DeGroot, R. M.; Benthien, M. L.; Cochran, E. S.; Taber, J. J.

    2016-12-01

    The Quake Catcher Network (QCN; quakecatcher.net) uses low cost micro-electro-mechanical system (MEMS) sensors hosted by volunteers to collect seismic data. Volunteers use accelerometers internal to laptop computers, phones, tablets or small (the size of a matchbox) MEMS sensors plugged into desktop computers using a USB connector to collect scientifically useful data. Data are collected and sent to a central server using the Berkeley Open Infrastructure for Network Computing (BOINC) distributed computing software. Since 2008, sensors installed in museums, schools, offices, and residences have collected thousands of earthquake records, including the 2010 M8.8 Maule, Chile, the 2010 M7.1 Darfield, New Zealand, and 2015 M7.8 Gorkha, Nepal earthquakes. In 2016, the QCN in the United States transitioned to the Incorporated Research Institutions for Seismology (IRIS) Consortium and the Southern California Earthquake Center (SCEC), which are facilities funded through the National Science Foundation and the United States Geological Survey, respectively. The transition has allowed for an influx of new ideas and new education related efforts, which include focused installations in several school districts in southern California, on Native American reservations in North Dakota, and in the most seismically active state in the contiguous U.S. - Oklahoma. We present and describe these recent educational opportunities, and highlight how QCN has engaged a wide sector of the public in scientific data collection, particularly through the QCN-EPIcenter Network and NASA Mars InSight teacher programs. QCN provides the public with information and insight into how seismic data are collected, and how researchers use these data to better understand and characterize seismic activity. Lastly, we describe how students use data recorded by QCN sensors installed in their classrooms to explore and investigate felt earthquakes, and look towards the bright future of the network.

  7. Earthquake and nuclear explosion location using the global seismic network

    International Nuclear Information System (INIS)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30 0 distances, the largest deviation being around 10 seconds at 13-18 0 . At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations

  8. Earthquake and nuclear explosion location using the global seismic network

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.M.

    1983-01-01

    The relocation of nuclear explosions, aftershock sequence and regional seismicity is addressed by using joint hypocenter determination, Lomnitz' distance domain location, and origin time and earthquake depth determination with local observations. Distance domain and joint hypocenter location are used for a stepwise relocation of nuclear explosions in the USSR. The resulting origin times are 2.5 seconds earlier than those obtained by ISC. Local travel times from the relocated explosions are compared to Jeffreys-Bullen tables. P times are found to be faster at 9-30/sup 0/ distances, the largest deviation being around 10 seconds at 13-18/sup 0/. At these distances S travel times also are faster by approximately 20 seconds. The 1977 Sumba earthquake sequence is relocated by iterative joint hypocenter determination of events with most station reports. Simultaneously determined station corrections are utilized for the relocation of smaller aftershocks. The relocated hypocenters indicate that the aftershocks were initially concentrated along the deep trench. Origin times and depths are recalculated for intermediate depth and deep earthquakes using local observations in and around the Japanese Islands. It is found that origin time and depth differ systematically from ISC values for intermediate depth events. Origin times obtained for events below the crust down to 100 km depth are earlier, whereas no general bias seem to exist for origin times of events in the 100-400 km depth range. The recalculated depths for earthquakes shallower than 100 km are shallower than ISC depths. The depth estimates for earthquakes deeper than 100 km were increased by the recalculations.

  9. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  10. Detecting earthquakes over a seismic network using single-station similarity measures

    Science.gov (United States)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  11. Earthquake Monitoring: SeisComp3 at the Swiss National Seismic Network

    Science.gov (United States)

    Clinton, J. F.; Diehl, T.; Cauzzi, C.; Kaestli, P.

    2011-12-01

    The Swiss Seismological Service (SED) has an ongoing responsibility to improve the seismicity monitoring capability for Switzerland. This is a crucial issue for a country with low background seismicity but where a large M6+ earthquake is expected in the next decades. With over 30 stations with spacing of ~25km, the SED operates one of the densest broadband networks in the world, which is complimented by ~ 50 realtime strong motion stations. The strong motion network is expected to grow with an additional ~80 stations over the next few years. Furthermore, the backbone of the network is complemented by broadband data from surrounding countries and temporary sub-networks for local monitoring of microseismicity (e.g. at geothermal sites). The variety of seismic monitoring responsibilities as well as the anticipated densifications of our network demands highly flexible processing software. We are transitioning all software to the SeisComP3 (SC3) framework. SC3 is a fully featured automated real-time earthquake monitoring software developed by GeoForschungZentrum Potsdam in collaboration with commercial partner, gempa GmbH. It is in its core open source, and becoming a community standard software for earthquake detection and waveform processing for regional and global networks across the globe. SC3 was originally developed for regional and global rapid monitoring of potentially tsunamagenic earthquakes. In order to fulfill the requirements of a local network recording moderate seismicity, SED has tuned configurations and added several modules. In this contribution, we present our SC3 implementation strategy, focusing on the detection and identification of seismicity on different scales. We operate several parallel processing "pipelines" to detect and locate local, regional and global seismicity. Additional pipelines with lower detection thresholds can be defined to monitor seismicity within dense subnets of the network. To be consistent with existing processing

  12. OGS improvements in the year 2011 in running the Northeastern Italy Seismic Network

    Science.gov (United States)

    Bragato, P. L.; Pesaresi, D.; Saraò, A.; Di Bartolomeo, P.; Durı, G.

    2012-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 15 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. Since 2002 OGS-CRS is using the Antelope software suite on several workstations plus a SUN Cluster as the main tool for collecting, analyzing, archiving and exchanging seismic data, initially in the framework of the EU Interreg IIIA project "Trans-national seismological networks in the South-Eastern Alps". SeisComP is also used as a real time data exchange server tool. In order to improve the seismological monitoring of the Northeastern Italy area, at OGS-CRS we tuned existing programs and created ad hoc ones like: a customized web server named PickServer to manually relocate earthquakes, a script for automatic moment tensor determination, scripts for web publishing of earthquake parametric data, waveforms, state of health parameters and shaking maps, noise characterization by means of automatic spectra analysis, and last but not least scripts for email/SMS/fax alerting. The OGS-CRS Real Time Seismological website (RTS, http://rts.crs.inogs.it/) operative since several years was initially developed in the framework of the Italian DPC-INGV S3 Project: the RTS website shows classic earthquake locations

  13. Seismic Observations in the Taipei Metropolitan Area Using the Downhole Network

    Directory of Open Access Journals (Sweden)

    Win-Gee Huang

    2010-01-01

    Full Text Available Underlain by soft soils, the Taipei Metropolitan Area (TMA experienced major damage due to ground-motion amplification during the Hualien earthquake of 1986, the Chi-Chi earthquake of 1999, the Hualien earthquake of 2002 and the Taitung earthquake of 2003. To study how a local site can substantially change the characteristics of seismic waves as they pass through soft deposits below the free surface, two complementary downhole seismic arrays have been operated in the TMA, since 1991 and 2008. The accelerometer downhole array is composed of eight boreholes at depths in excess of 300 meters. The downhole array velocity sensor collocated with accelerometer composed of four boreholes at depths up to 90 meters. The integrated seismic network monitors potential earthquakes originating from faults in and around the TMA and provides wide-dynamic range measurement of data ranging in amplitude from seismic background noise levels to damage levels as a result of shaking. The data sets can be used to address on the response of soft-soil deposits to ground motions. One of the major considerations is the nonlinear response of soft soil deposits at different levels of excitation. The collocated acceloerometer and velocity sensors at boreholes give the necessary data for studies of non-linearity to be acquired. Such measurements in anticipation of future large, damaging earthquakes will be of special importance for the mitigation of earthquake losses.

  14. Forecasting of Energy Expenditure of Induced Seismicity with Use of Artificial Neural Network

    Science.gov (United States)

    Cichy, Tomasz; Banka, Piotr

    2017-12-01

    Coal mining in many Polish mines in the Upper Silesian Coal Basin is accompanied by high levels of induced seismicity. In mining plants, the methods of shock monitoring are improved, allowing for more accurate localization of the occurring phenomena and determining their seismic energy. Equally important is the development of ways of forecasting seismic hazards that may occur while implementing mine design projects. These methods, depending on the length of time for which the forecasts are made, can be divided into: longterm, medium-term, short-term and so-called alarm. Long-term forecasts are particularly useful for the design of seam exploitations. The paper presents a method of predicting changes in energy expenditure of shock using a properly trained artificial neural network. This method allows to make long-term forecasts at the stage of the mine’s exploitation design, thus enabling the mining work plans to be reviewed to minimize the potential for tremors. The information given at the input of the neural network is indicative of the specific energy changes of the elastic deformation occurring in the selected, thick, resistant rock layers (tremor-prone layers). Energy changes, taking place in one or more tremor-prone layers are considered. These indicators describe only the specific energy changes of the elastic deformation accumulating in the rock as a consequence of the mining operation, but does not determine the amount of energy released during the destruction of a given volume of rock. In this process, the potential energy of elastic strain transforms into other, non-measurable energy types, including the seismic energy of recorded tremors. In this way, potential energy changes affect the observed induced seismicity. The parameters used are characterized by increases (declines) of specific energy with separation to occur before the hypothetical destruction of the rock and after it. Additional input information is an index characterizing the rate of

  15. The RING and Seismic Network: Data Acquisition of Co-located Stations

    Science.gov (United States)

    Falco, L.; Avallone, A.; Cattaneo, M.; Cecere, G.; Cogliano, R.; D'Agostino, N.; D'Ambrosio, C.; D'Anastasio, E.; Selvaggi, G.

    2007-12-01

    The plate boundary between Africa and Eurasia represents an interesting geodynamical region characterized by a complex pattern of deformation. First-order scientific problems regarding the existence of rigid blocks within the plate boundary, the present-day activity of the Calabrian subduction zone and the modes of release of seismic deformation are still awaiting for a better understanding. To address these issues, the INGV (Istituto Nazionale Geofisica e Vulcanlogia) deployed a permanent, integrated and real-time monitoring GPS network (RING) all over Italy. RING is now constituted by about 120 stations. The CGPS sites, acquiring at 1Hz and 30s sampling rate, are integrated either with broad band or very broad band seismometers and accelerometers for an improved definition of the seismically active regions. Most of the sites are connected to the acquisition centre (located in Rome and duplicated in Grottaminarda) through a satellite system (VSAT), while the remaining sites transmit data by Internet and classical phone connections. The satellite data transmission and the integration with seismic instruments makes this network one of the most innovative CGPS networks in Europe. The heterogeneity of the installed instrumentation, the transmission types and the increasing number of stations needed a central monitoring and acquisition system. A central acquisition system has been developed in Grottaminarda in southern Italy. Regarding the seismic monitoring we chose to use the open source system Earthworm, developed by USGS, with which we store waveforms and implement automatic localization of the seismic events occurring in the area. As most of the GPS sites are acquired by means of Nanometrics satellite technology, we developed a specific software (GpsView), written in Java, to monitor the state of health of those CGPS. This software receives GPS data from NaqsServer (Nanometrics acquisition system) and outputs information about the sites (i.e. approx position

  16. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    Science.gov (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  17. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  18. An automated multi-scale network-based scheme for detection and location of seismic sources

    Science.gov (United States)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  19. Incorporating Low-Cost Seismometers into the Central Weather Bureau Seismic Network for Earthquake Early Warning in Taiwan

    Directory of Open Access Journals (Sweden)

    Da-Yi Chen

    2015-01-01

    Full Text Available A dense seismic network can increase Earthquake Early Warning (EEW system capability to estimate earthquake information with higher accuracy. It is also critical for generating fast, robust earthquake alarms before strong-ground shaking hits the target area. However, building a dense seismic network via traditional seismometers is too expensive and may not be practical. Using low-cost Micro-Electro Mechanical System (MEMS accelerometers is a potential solution to quickly deploy a large number of sensors around the monitored region. An EEW system constructed using a dense seismic network with 543 MEMS sensors in Taiwan is presented. The system also incorporates the official seismic network of _ Central Weather Bureau (CWB. The real-time data streams generated by the two networks are integrated using the Earthworm software. This paper illustrates the methods used by the integrated system for estimating earthquake information and evaluates the system performance. We applied the Earthworm picker for the seismograms recorded by the MEMS sensors (Chen et al. 2015 following new picking constraints to accurately detect P-wave arrivals and use a new regression equation for estimating earthquake magnitudes. An off-line test was implemented using 46 earthquakes with magnitudes ranging from ML 4.5 - 6.5 to calibrate the system. The experimental results show that the integrated system has stable source parameter results and issues alarms much faster than the current system run by the CWB seismic network (CWBSN.

  20. First results of cross-correlation analysis of ambient seismic noise from the Hellenic Unified Seismic Network

    NARCIS (Netherlands)

    Panou, Areti; Paulssen, Hanneke; Hatzidimitriou, Panagiotis

    2015-01-01

    In this study we present phase velocity maps that were obtained from the cross-correlation analysis of ambient seismic noise recorded in the region of Greece.We used one year (2013) of ambient seismic data obtained from the vertical component of 64 broadband permanent seismological stations that are

  1. Installation of a digital, wireless, strong-motion network for monitoring seismic activity in a western Colorado coal mining region

    Energy Technology Data Exchange (ETDEWEB)

    Peter Swanson; Collin Stewart; Wendell Koontz [NIOSH, Spokane, WA (USA). Spokane Research Laboratory

    2007-01-15

    A seismic monitoring network has recently been installed in the North Fork Valley coal mining region of western Colorado as part of a NIOSH mine safety technology transfer project with two longwall coal mine operators. Data recorded with this network will be used to characterize mining related and natural seismic activity in the vicinity of the mines and examine potential hazards due to ground shaking near critical structures such as impoundment dams, reservoirs, and steep slopes. Ten triaxial strong-motion accelerometers have been installed on the surface to form the core of a network that covers approximately 250 square kilometers (100 sq. miles) of rugged canyon-mesa terrain. Spread-spectrum radio networks are used to telemeter continuous streams of seismic waveform data to a central location where they are converted to IP data streams and ported to the Internet for processing, archiving, and analysis. 4 refs.

  2. Travel time tomography of the crust and the mantle beneath Ecuador from data of the national seismic network.

    OpenAIRE

    Araujo , Sebastián

    2016-01-01

    Although there have been numerous studies on the geodynamics and the tectonics in Ecuador based on the seismic activity, there has not been to date a comprehensive tomography study using the entire database of the National Seismic Network (RENSIG). Only a preliminary limited study was performed by Prevot et al. to infer a simple P velocity model in central Ecuador, and several profiles in the South-Colombian-Ecuador margin were also investigated by using travel time inversion of wide-angle se...

  3. Exploiting IoT Technologies and Open Source Components for Smart Seismic Network Instrumentation

    Science.gov (United States)

    Germenis, N. G.; Koulamas, C. A.; Foundas, P. N.

    2017-12-01

    The data collection infrastructure of any seismic network poses a number of requirements and trade-offs related to accuracy, reliability, power autonomy and installation & operational costs. Having the right hardware design at the edge of this infrastructure, embedded software running inside the instruments is the heart of pre-processing and communication services implementation and their integration with the central storage and processing facilities of the seismic network. This work demonstrates the feasibility and benefits of exploiting software components from heterogeneous sources in order to realize a smart seismic data logger, achieving higher reliability, faster integration and less development and testing costs of critical functionality that is in turn responsible for the cost and power efficient operation of the device. The instrument's software builds on top of widely used open source components around the Linux kernel with real-time extensions, the core Debian Linux distribution, the earthworm and seiscomp tooling frameworks, as well as components from the Internet of Things (IoT) world, such as the CoAP and MQTT protocols for the signaling planes, besides the widely used de-facto standards of the application domain at the data plane, such as the SeedLink protocol. By using an innovative integration of features based on lower level GPL components of the seiscomp suite with higher level processing earthworm components, coupled with IoT protocol extensions to the latter, the instrument can implement smart functionality such as network controlled, event triggered data transmission in parallel with edge archiving and on demand, short term historical data retrieval.

  4. RAPID DETERMINATION OF FOCAL DEPTH USING A GLOBAL NETWORK OF SMALL-APERTURE SEISMIC ARRAYS

    Science.gov (United States)

    Seats, K.; Koper, K.; Benz, H.

    2009-12-01

    The National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) operates 24 hours a day, 365 days a year with the mission of locating and characterizing seismic events around the world. A key component of this task is quickly determining the focal depth of each seismic event, which has a first-order effect on estimates of ground shaking used in the impact assessment applications of emergency response activities. Current methods of depth estimation used at the NEIC include arrival time inversion both with and without depth phases, a Bayesian depth constraint based on historical seismicity (1973-present), and moment tensor inversion primarily using P- and S-wave waveforms. In this study, we explore the possibility of automated modeling of waveforms from vertical-component arrays of the International Monitoring System (IMS) to improve rapid depth estimation at NEIC. Because these arrays are small-aperture, they are effective at increasing signal to noise ratios for frequencies of 1 Hz and higher. Currently, NEIC receives continuous real-time data from 23 IMS arrays. Following work done by previous researchers, we developed a technique that acts as an array of arrays. For a given epicentral location we calculate fourth root beams for each IMS array in the distance range of 30 to 95 degrees at the expected slowness vector of the first arrival. Because the IMS arrays are small-aperture, these beams highlight energy that has slowness similar to the first arrival, such as depth phases. The beams are rectified by taking the envelope and then automatically aligned on the largest peak within 5 seconds of the expected arrival time. The station beams are then combined into network beams assuming a range of depths varying from 10 km to 700 km in increments of 1 km. The network beams are computed assuming both pP and sP propagation, and a measure of beam power is output as a function of depth for both propagation models, as well as their sum. We

  5. Regional seismic observations of the Non-Proliferation Experiment at the Livermore NTS Network

    Energy Technology Data Exchange (ETDEWEB)

    Walter, W.R.; Mayeda, K.; Patton, H.J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-12-31

    The Non-Proliferation Experiment (NPE), a 1-kiloton chemical explosion in N-tunnel at Rainier Mesa on the Nevada Test Site (NTS), was recorded by the four station, regional seismic Livermore NTS Network, (LNN). In this study we compare the NPE`s seismic yield, frequency content, and discrimination performance with other NTS events recorded at LNN. Preliminary findings include: The NPE LNN average magnitudes are 4.16 for m{sub b}(P{sub n}) and 4.59 for m{sub b}(L{sub g}). Using published magnitude-yield relations gives nuclear equivalent yields of 2.3 and 2.2 kilotons respectively, implying enhanced coupling of chemical relative to nuclear explosions. A comparison of the NPE seismograms with those with similar magnitude N-tunnel nuclear explosions shows remarkable similarity over the frequency band 0.5 to 5.0 Hz. Outside this band the explosions show more variability, with the NPE having the least relative energy below 0.5 Hz and the most energy above 5 Hz when scaled by magnitude. Considering the variability within the N-tunnel nuclear explosions, these low- and high-frequency NPE-nuclear differences may not reflect chemical-nuclear source differences. The NPE was compared to a large number of NTS nuclear explosions and earthquakes as part of an ongoing short-period discrimination study of P{sub N}/L{sub g},P{sub g}/L{sub g}, and spectral ratios in the P{sub n}, P{sub g},L{sub g}, and coda phases. For these discriminants, the NPE looks very similar to N-tunnel nuclear explosions and other NTS nuclear explosions, implying seismic identification of contained, non-ripple-fired, chemical explosions as non-nuclear may not be possible. However, such blasts might serve as surrogate nuclear explosions when calibrating seismic discriminants in regions where nuclear testing has not occurred.

  6. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    International Nuclear Information System (INIS)

    Wang, Y.

    2013-01-01

    provide the best agreement with independently observed focal mechanisms. Tests on synthetic catalogues allow qualification of the performance of the fitting method and of the various validation procedures. The ACLUD method is able to provide solutions that are close to the expected ones, especially for the BIC and focal mechanism-based techniques. The clustering method complemented by the validation step based on focal mechanisms provides good solutions even in the presence of a significant spatial background seismicity rate. As the new clustering method is able to deal with most of the information contained in modern earthquake catalogues, the geometry of the local station network may improve or alter the reconstruction of the underlying fault system. This is illustrated by using the highest-quality data selected using station network criteria which results in reconstructed fault planes of higher quality and accuracy. Using lower-quality data can lead to unstable and unreliable fault networks and may introduce artefacts, in particular in regions of a complex fault structure. The results highlight the need to carefully assess the quality and reliability of reconstructed fault networks from real data that unavoidably involve the clustering of data of heterogeneous quality. Based on realistic tests with synthetic fault network structures, the results also stress the importance of accounting for under-sampled sub-fault structures as well as for spatially-inhomogeneous location uncertainties. The fault reconstruction method is applied to two real datasets at two very different spatial scales, i.e. the 1992 Landers M7 earthquake sequence in Southern California, and the Basel (Switzerland) induced seismicity sequence. In both case studies, fault network results reasonably compare with independent structural analysis data, suggesting highly complex fault structures for both, at the scale of the Landers earthquake covering a volume of about 70,000 km 3 and in the volume of the

  7. RMT focal plane sensitivity to seismic network geometry and faulting style

    Science.gov (United States)

    Johnson, Kendra L.; Hayes, Gavin; Herrmann, Robert B.; Benz, Harley M.; McNamara, Daniel E.; Bergman, Eric A.

    2016-01-01

    Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 MW 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the ‘fit falloff’, which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained

  8. Serviceability Assessment for Cascading Failures in Water Distribution Network under Seismic Scenario

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2016-01-01

    Full Text Available The stability of water service is a hot point in industrial production, public safety, and academic research. The paper establishes a service evaluation model for the water distribution network (WDN. The serviceability is measured in three aspects: (1 the functionality of structural components under disaster environment; (2 the recognition of cascading failure process; and (3 the calculation of system reliability. The node and edge failures in WDN are interrelated under seismic excitations. The cascading failure process is provided with the balance of water supply and demand. The matrix-based system reliability (MSR method is used to represent the system events and calculate the nonfailure probability. An example is used to illustrate the proposed method. The cascading failure processes with different node failures are simulated. The serviceability is analyzed. The critical node can be identified. The result shows that the aged network has a greater influence on the system service under seismic scenario. The maintenance could improve the antidisaster ability of WDN. Priority should be given to controlling the time between the initial failure and the first secondary failure, for taking postdisaster emergency measures within this time period can largely cut down the spread of cascade effect in the whole WDN.

  9. Seismicity within the Irpinia Fault System As Monitored By Isnet (Irpinia Seismic Network) and Its Possible Relation with Fluid Storage

    Science.gov (United States)

    Festa, G.; Zollo, A.; Amoroso, O.; Ascione, A.; Colombelli, S.; Elia, L.; Emolo, A.; Martino, C.; Mazzoli, S.; Orefice, A.; Russo, G.

    2014-12-01

    ISNet (http://isnet.fisica.unina.it) is deployed in Southern Apennines along the active fault system responsible for the 1980, M 6.9 Irpinia earthquake. ISNet consists of 32 seismic stations equipped with both strong motion and velocimetric instruments (either broadband or short-period), with the aim of capture a broad set of seismic signals, from ambient noise to strong motion. Real time and near real time procedures run at ISNet with the goal of monitoring the seismicity, check possible space-time anomalies, detect seismic sequences and launch an earthquake early warning in the case of potential significant ground shaking in the area. To understand the role of fluids on the seismicity of the area, we investigated velocity and attenuation models. The former is built from accurate cross-correlation picking and S wave detection based onto polarization analysis. Joint inversion of both P and S arrival times is then based on a linearized multi-scale tomographic approach. Attenuation is instead obtained from inversion of displacement spectra, deconvolving for the source effect. High VP/VS and QS/QP >1 were found within a ~15 km wide rock volume where intense microseismicity is located. This indicates that concentration of seismicity is possibly controlled by high pore fluid pressure. This earthquake reservoir may come from a positive feedback between the seismic pumping that controls the fluid transmission through the fractured damage zone and the low permeability of cross fault barrier, increasing the fluid pore pressure within the fault bounded block. In this picture, sequences mostly occur at the base of this fluid rich layer. They show an anomalous pattern in the earthquake occurrence per magnitude classes; main events evolve with a complex source kinematics, as obtained from backprojection of apparent source time functions, indicating possible directivity effects. In this area sequences might be the key for understanding the transition between the deep

  10. Detection and localization capability of an urban seismic sinkhole monitoring network

    Science.gov (United States)

    Becker, Dirk; Dahm, Torsten; Schneider, Fabian

    2017-04-01

    Microseismic events linked to underground processes in sinkhole areas might serve as precursors to larger mass dislocation or rupture events which can cause felt ground shaking or even structural damage. To identify these weak and shallow events, a sensitive local seismic monitoring network is needed. In case of an urban environment the performance of local monitoring networks is severely compromised by the high anthropogenic noise level. We study the detection and localization capability of such a network, which is already partly installed in the urban area of the city of Hamburg, Germany, within the joint project SIMULTAN (http://www.gfz-potsdam.de/en/section/near-surface-geophysics/projects/simultan/). SIMULTAN aims to monitor a known sinkhole structure and gain a better understanding of the underlying processes. The current network consists of six surface stations installed in the basement of private houses and underground structures of a research facility (DESY - Deutsches Elektronen Synchrotron). During the started monitoring campaign since 2015, no microseismic events could be unambiguously attributed to the sinkholes. To estimate the detection and location capability of the network, we calculate synthetic waveforms based on the location and mechanism of former events in the area. These waveforms are combined with the recorded urban seismic noise at the station sites. As detection algorithms a simple STA/LTA trigger and a more sophisticated phase detector are used. While the STA/LTA detector delivers stable results and is able to detect events with a moment magnitude as low as 0.35 at a distance of 1.3km from the source even under the present high noise conditions the phase detector is more sensitive but also less stable. It should be stressed that due to the local near surface conditions of the wave propagation the detections are generally performed on S- or surface waves and not on P-waves, which have a significantly lower amplitude. Due to the often

  11. Improvements of Real Time First Motion Focal Mechanism and Noise Characteristics of New Sites at the Puerto Rico Seismic Network

    Science.gov (United States)

    Williams, D. M.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Cancel, J.

    2011-12-01

    Seismic networks need quick and efficient ways to obtain information related to seismic events for the purposes of seismic activity monitoring, risk assessment, and scientific knowledge among others. As part of an IRIS summer internship program, two projects were performed to provide a tool for quick faulting mechanism and improve seismic data at the Puerto Rico Seismic Network (PRSN). First, a simple routine to obtain a focal mechanisms, the geometry of the fault, based on first motions was developed and implemented for data analysts routine operations at PRSN. The new tool provides the analyst a quick way to assess the probable faulting mechanism that occurred while performing the interactive earthquake location procedure. The focal mechanism is generated on-the-fly when data analysts pick P wave arrivals onsets and motions. Once first motions have been identified, an in-house PRSN utility is employed to obtain the double couple representation and later plotted using GMT's psmeca utility. Second, we addressed the issue of seismic noise related to thermal fluctuations inside seismic vaults. Seismic sites can be extremely noisy due to proximity to cultural activities and unattended thermal fluctuations inside sensor housings, thus resulting in skewed readings. In the past, seismologists have used different insulation techniques to reduce the amount of unwanted noise that a seismometers experience due to these thermal changes with items such as Styrofoam, and fiber glass among others. PRSN traditionally uses Styrofoam boxes to cover their seismic sensors, however, a proper procedure to test how these method compare to other new techniques has never been approached. The deficiency of properly testing these techniques in the Caribbean and especially Puerto Rico is that these thermal fluctuations still happen because of the intense sun and humidity. We conducted a test based on the methods employed by the IRIS Transportable Array, based on insulation by sand burial of

  12. An Intelligent Network Proposed for Assessing Seismic Vulnerability Index of Sewerage Networks within a GIS Framework (A Case Study of Shahr-e-Kord

    Directory of Open Access Journals (Sweden)

    Mohamadali Rahgozar

    2016-01-01

    Full Text Available Due to their vast spread, sewerage networks are exposed to considerable damages during severe earthquakes, which may lead to catastrophic environmental contamination. Multiple repairs in the pipelines, including pipe and joint fractures, could be costly and time-consuming. In seismic risk management, it is of utmost importance to have an intelligent tool for assessing seismic vulnerability index at any given point in time for such important utilities as sewerage networks. This study uses a weight-factor methodology and proposes an online GIS-based intelligent algorithm to evaluate the seismic vulnerability index (VI for metropolitan sewerage networks. The proposed intelligent tool is capable of updating VI as the sewerage network conditions may change with time and at different locations. The city of Shahr-e-Kord located on the high risk seismic belt is selected for a case study to which the proposed methodology is applied for zoning the vulnerability index in GIS. Results show that the overall seismic vulnerability index for the selected study area ranges from low to medium but that it increases in the southern parts of the city, especially in the old town where brittle pipes have been laid

  13. Swedish National Seismic Network (SNSN). A short report on recorded earthquakes during the fourth quarter of the year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Boedvarsson, Reynir (Uppsala Univ. (Sweden), Dept. of Earth Sciences)

    2011-01-15

    According to an agreement with Swedish Nuclear Fuel and Waste Management Company (SKB) and Uppsala Univ., the Dept. of Earth Sciences has continued to carry out observations of seismic events at seismic stations within the Swedish National Seismic Network (SNSN). This short report gives brief information about the recorded seismicity during October through December 2010. The Swedish National Seismic Network consists of 62 stations. During October through December, 2,241 events were located whereof 158 are estimated as real earthquakes, 1,457 are estimated as explosions, 444 are induced earthquakes in the vicinity of the mines in Kiruna and Malmberget and 182 events are still considered as uncertain but these are most likely explosions and are mainly located outside the network. One earthquake had a magnitude above M{sub L} = 2.0 during the period. In November one earthquake was located 13 km SW of Haernoesand with a magnitude of M{sub L} = 2.1. The largest earthquake in October had a magnitude of M{sub L} = 1.7 and was located 12 km NE of Eksjoe and in December an earthquake with a magnitude of M{sub L} = 1.8 was located 19 km north of Motala

  14. Knowledge discovery from seismic data using neural networks; Descoberta de conhecimento a partir de dados sismicos utilizando redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Wesley R. de; Costa, Bruno A.D.; Gomes, Herman M. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2004-07-01

    The analysis and interpretation of seismic data is of fundamental importance to the Oil Industry, since it helps discover geologic formations that are conducive to hydrocarbon accumulation. The use of seismic data in reservoir characterization may be performed through localized data inspections and clustering based on features of common seismic responses. This clustering or classification can be performed in two basic ways: visually, with the help of graphical tools; or using automatic classification techniques, such as statistical models and artificial neural networks. Neural network based methods are generally superior to rule- or knowledge-based systems, since they have a better generalization capability and are fault tolerant. Within this context, the main objective of this work is to describe methods that employ the two main neural network based approaches (supervised and unsupervised) in knowledge discovery from seismic data. Initially, the implementation and experiments were focused on the problem of seismic facies recognition using the unsupervised approach, but in future works, the implementation of the supervised approach, an application to fault detection and a parallel implementation of the proposed methods are planned. (author)

  15. Local seismic network at the Olkiluoto site. Annual Report for 2006

    International Nuclear Information System (INIS)

    Saari, J.; Lakio, A.

    2007-05-01

    In February 2002, Posiva Oy established a local seismic network of six stations on the island of Olkiluoto. Later, in June 2004, the seismic network was expanded with two new seismic stations. At that time started the excavation of the underground characterisation facility (the ONKALO) and the basic operation procedure was changed more suitable for the demands of the new situation. The purpose of the microearthquake measurements at Olkiluoto is to improve understanding of the structure, behaviour and long term stability of the bedrock. The studies include both tectonic and excavation-induced microearthquakes. An additional task of monitoring is related to safeguarding of the ONKALO. This report gives the results of microseismic monitoring during the year 2006. Also the changes in the structure and the operation procedure of the network are described. The network has operated continuously in 2006. In the beginning of 2006, the target area of the seismic monitoring expanded to semi-regional scale. Four new seismic stations started in the beginning of February 2006. At the end of the year, two new borehole geophones were installed in order to improve the sensitivity and the depth resolution of the measurements inside the ONKALO block. This report presents also new interpretations of the excavation induced earthquakes that occurred in the ONKALO in 2005. Altogether 2041 events have been located in the Olkiluoto area, in reported time period. The magnitudes of the observed events range from ML = -1.1 to ML = 3.1 (ML magnitude in local Richter's scale). Most of them are explosions. Two of the observed events are be classified as microearthquakes. Evidence of activity that would have influence on the safety of the ONKALO, have not been found. The observed earthquakes occurred in 2006 were small, ML = -0.6 and ML= -0.9. The earthquakes relate to small movements in brittle deformation zones OL-BFZ043 and OL-BFZ034 presented in the geological model of the Olkiluoto site

  16. Computer-Aided Analysis of Flow in Water Pipe Networks after a Seismic Event

    Directory of Open Access Journals (Sweden)

    Won-Hee Kang

    2017-01-01

    Full Text Available This paper proposes a framework for a reliability-based flow analysis for a water pipe network after an earthquake. For the first part of the framework, we propose to use a modeling procedure for multiple leaks and breaks in the water pipe segments of a network that has been damaged by an earthquake. For the second part, we propose an efficient system-level probabilistic flow analysis process that integrates the matrix-based system reliability (MSR formulation and the branch-and-bound method. This process probabilistically predicts flow quantities by considering system-level damage scenarios consisting of combinations of leaks and breaks in network pipes and significantly reduces the computational cost by sequentially prioritizing the system states according to their likelihoods and by using the branch-and-bound method to select their partial sets. The proposed framework is illustrated and demonstrated by examining two example water pipe networks that have been subjected to a seismic event. These two examples consist of 11 and 20 pipe segments, respectively, and are computationally modeled considering their available topological, material, and mechanical properties. Considering different earthquake scenarios and the resulting multiple leaks and breaks in the water pipe segments, the water flows in the segments are estimated in a computationally efficient manner.

  17. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Science.gov (United States)

    Fojtíková, Lucia; Kristeková, Miriam; Málek, Jiří; Sokos, Efthimios; Csicsay, Kristián; Zahradník, Jiří

    2016-01-01

    Extension of permanent seismic networks is usually governed by a number of technical, economic, logistic, and other factors. Planned upgrade of the network can be justified by theoretical assessment of the network capability in terms of reliable estimation of the key earthquake parameters (e.g., location and focal mechanisms). It could be useful not only for scientific purposes but also as a concrete proof during the process of acquisition of the funding needed for upgrade and operation of the network. Moreover, the theoretical assessment can also identify the configuration where no improvement can be achieved with additional stations, establishing a tradeoff between the improvement and additional expenses. This paper presents suggestion of a combination of suitable methods and their application to the Little Carpathians local seismic network (Slovakia, Central Europe) monitoring epicentral zone important from the point of seismic hazard. Three configurations of the network are considered: 13 stations existing before 2011, 3 stations already added in 2011, and 7 new planned stations. Theoretical errors of the relative location are estimated by a new method, specifically developed in this paper. The resolvability of focal mechanisms determined by waveform inversion is analyzed by a recent approach based on 6D moment-tensor error ellipsoids. We consider potential seismic events situated anywhere in the studied region, thus enabling "mapping" of the expected errors. Results clearly demonstrate that the network extension remarkably decreases the errors, mainly in the planned 23-station configuration. The already made three-station extension of the network in 2011 allowed for a few real data examples. Free software made available by the authors enables similar application in any other existing or planned networks.

  18. Sources of high frequency seismic noise: insights from a dense network of ~250 stations in northern Alsace (France)

    Science.gov (United States)

    Vergne, Jerome; Blachet, Antoine; Lehujeur, Maximilien

    2015-04-01

    Monitoring local or regional seismic activity requires stations having a low level of background seismic noise at frequencies higher than few tenths of Hertz. Network operators are well aware that the seismic quality of a site depends on several aspects, among them its geological setting and the proximity of roads, railways, industries or trees. Often, the impact of each noise source is only qualitatively known which precludes estimating the quality of potential future sites before they are tested or installed. Here, we want to take advantage of a very dense temporary network deployed in Northern Alsace (France) to assess the effect of various kinds of potential sources on the level of seismic noise observed in the frequency range 0.2-50 Hz. In September 2014, more than 250 seismic stations (FairfieldNodal@ Zland nodes with 10Hz vertical geophone) have been installed every 1.5 km over a ~25km diameter disc centred on the deep geothermal sites of Soultz-sous-Forêts and Rittershoffen. This region exhibits variable degrees of human imprints from quite remote areas to sectors with high traffic roads and big villages. It also encompasses both the deep sedimentary basin of the Rhine graben and the piedmont of the Vosges massif with exposed bedrock. For each site we processed the continuous data to estimate probability density functions of the power spectral densities. At frequencies higher than 1 Hz most sites show a clear temporal modulation of seismic noise related to human activity with the well-known variations between day and night and between weekdays and weekends. Moreover we observe a clear evolution of the spatial distribution of seismic noise levels with frequency. Basically, between 0.5 and 4 Hz the geological setting modulates the level of seismic noise. At higher frequencies, the amplitude of seismic noise appears mostly related to the distance to nearby roads. Based on road maps and traffic estimation, a forward approach is performed to model the induced

  19. PG&E's Seismic Network Goes Digital With Strong Motion: Successes and Challenges

    Science.gov (United States)

    Stanton, M. A.; Cullen, J.; McLaren, M. K.

    2008-12-01

    Pacific Gas and Electric Company (PG&E) is in year 3 of a 5-year project to upgrade the Central Coast Seismic Network (CCSN) from analog to digital. Located along the south-central California coast, the CCSN began operation in 1987, with 20 analog stations; 15 vertical component and 5 dual gain 3-component S-13 sensors. The analog signals travel over FM radio telemetry links and voice channels via PG&E's microwave network to our facility in San Francisco (SF), where the A/D conversion is performed on a computer running Earthworm v7.1, which also transmits the data to the USGS in Menlo Park. At the conversion point the dynamic ranges of the vertical and dual-gain sensors are 40-50dB and 60-70dB, respectively. Dynamic range exceedance (data clipping) generally occurs for a M2.5 or greater event within about 40 km of a station. The motivations to upgrade the seismic network were the need for higher dynamic range and to retire obsolete analog transmission equipment. The upgraded digital stations consist of the existing velocity sensors, a 131A-02/3 accelerometer and a Reftek 130-01 Broadband Seismic Recorder for digital data recording and transmission to SF. Vertical only stations have one component of velocity and 3 components of acceleration. Dual gain sites have 3 components of velocity and 3 of acceleration. To date we have successfully upgraded 6 sites; 3 more will be installed by the end of 2008. Some of the advantages of going digital are 1) data is recorded at each site and in SF, 2) substantially increased dynamic range of the velocity sensors to 120dB, as observed by on scale, close-by recordings from a M3.9 San Simeon aftershock on 04/29/2008, 3) accelerometers for on scale recording of large earthquakes, and 4) ability to contribute our strong motion data to USGS ShakeMaps. A significant challenge has been consistent radio communications. To resolve this issue we are installing point-to-multipoint Motorola Canopy spread spectrum radios at the stations and

  20. Linkages of fracture network geometry and hydro-mechanical properties to spatio-temporal variations of seismicity in Koyna-Warna Seismic Zone

    Science.gov (United States)

    Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.

    2017-12-01

    Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).

  1. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    Energy Technology Data Exchange (ETDEWEB)

    Ramdhan, Mohamad [Study Program of Earth Science, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Agency for Meteorology, Climatology and Geophysics of Indonesia (BMKG) Jl. Angkasa 1 No. 2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Nugraha, Andri Dian; Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institut TeknologiBandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia); Métaxian, Jean-Philippe [Institut de Recherche pour le Développement (IRD) (France); Valencia, Ayunda Aulia, E-mail: mohamad.ramdhan@bmkg.go.id [Study Program of Geophysical Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132 (Indonesia)

    2015-04-24

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic network can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.

  2. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    Science.gov (United States)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  3. Quantifying capability of a local seismic network in terms of locations and focal mechanism solutions of weak earthquakes

    Czech Academy of Sciences Publication Activity Database

    Fojtíková, Lucia; Kristeková, M.; Málek, Jiří; Sokos, E.; Csicsay, K.; Zahradník, J.

    2016-01-01

    Roč. 20, č. 1 (2016), 93-106 ISSN 1383-4649 R&D Projects: GA ČR GAP210/12/2336 Institutional support: RVO:67985891 Keywords : Focal-mechanism uncertainty * Little Carpathians * Relative location uncertainty * Seismic network * Uncertainty mapping * Waveform inversion * Weak earthquake s Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.089, year: 2016

  4. Information system evolution at the French National Network of Seismic Survey (BCSF-RENASS)

    Science.gov (United States)

    Engels, F.; Grunberg, M.

    2013-12-01

    The aging information system of the French National Network of Seismic Survey (BCSF-RENASS), located in Strasbourg (EOST), needed to be updated to satisfy new practices from Computer science world. The latter means to evolve our system at different levels : development method, datamining solutions, system administration. The new system had to provide more agility for incoming projects. The main difficulty was to maintain old system and the new one in parallel the time to validate new solutions with a restricted team. Solutions adopted here are coming from standards used by the seismological community and inspired by the state of the art of devops community. The new system is easier to maintain and take advantage of large community to find support. This poster introduces the new system and choosen solutions like Puppet, Fabric, MongoDB and FDSN Webservices.

  5. Aspects regarding the use of the INFREP network for identifying possible seismic precursors

    Science.gov (United States)

    Dolea, Paul; Cristea, Octavian; Dascal, Paul Vladut; Moldovan, Iren-Adelina; Biagi, Pier Francesco

    In the last decades, one of the main research directions in identifying seismic precursors involved monitoring VLF (Very Low Frequency) and LF (Low Frequency) radio waves and analysing their propagation characteristics. Essentially this method consists of monitoring different available VLF and LF transmitters from long distance reception points. The received signal has two major components: the ground wave and the sky wave, where the sky wave propagates by reflection on the lower layers of the ionosphere. It is assumed that before and during major earthquakes, unusual changes may occur in the lower layers of the ionosphere, such as the modification of the charged particles number density and the altitude of the reflection zone. Therefore, these unusual changes in the ionosphere may generate unusual variations in the received signal level. The International Network for Frontier Research on Earthquake Precursors (INFREP) was developed starting with 2009 and consists of several dedicated VLF and LF radio receivers used for monitoring various radio transmitters located throughout Europe. The receivers' locations were chosen so that the propagation path from these VLF/LF stations would pass over high seismicity regions while others were chosen to obtain different control paths. The monitoring receivers are capable of continuously measuring the received signal amplitude from the VLF/LF stations of interest. The recorded data is then stored and sent to an INFREP database, which is available on the Internet for scientific researchers. By processing and analysing VLF and LF data samples, collected at different reception points and at different periods of the year, one may be able to identify some distinct patterns in the envelope of the received signal level over time. Significant deviations from these patterns may have local causes such as the electromagnetic pollution at the monitoring point, regional causes like existing electrical storms over the propagation path or

  6. Co-Seismic Effect of the 2011 Japan Earthquake on the Crustal Movement Observation Network of China

    Directory of Open Access Journals (Sweden)

    Shaomin Yang

    2013-01-01

    Full Text Available Great earthquakes introduce measurable co-seismic displacements over regions of hundreds and thousands of kilometers in width, which, if not accounted for, may significantly bias the long-term surface velocity field constrained by GPS observations performed during a period encompassing that event. Here, we first present an estimation of the far-field co-seismic off-sets associated with the 2011 Japan Mw 9.0 earthquake using GPS measurements from the Crustal Movement Observation Network of China (CMONOC in North China. The uncertainties of co-seismic off-set, either at cGPS stations or at campaign sites, are better than 5 - 6 mm on average. We compare three methods to constrain the co-seismic off-sets at the campaign sites in northeastern China 1 interpolating cGPS coseismic offsets, 2 estimating in terms of sparsely sampled time-series, and 3 predicting by using a well-constrained slip model. We show that the interpolation of cGPS co-seismic off-sets onto the campaign sites yield the best co-seismic off-set solution for these sites. The source model gives a consistent prediction based on finite dislocation in a layered spherical Earth, which agrees with the best prediction with discrepancies of 2 - 10 mm for 32 campaign sites. Thus, the co-seismic off-set model prediction is still a reasonable choice if a good coverage cGPS network is not available for a very active region like the Tibetan Plateau in which numerous campaign GPS sites were displaced by the recent large earthquakes.

  7. Smart Multifunction Antenna for Lunar/Planetary Surface Network, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is planning a series of human and robotic missions to explore the Moon and later Mars. According to NASA SBIR topic O1.10, surface networks are needed for these...

  8. North Korea nuclear test analysis results using KMA seismic and infrasound networks

    Science.gov (United States)

    Jeon, Y. S.; Park, E.; Lee, D.; Min, K.; CHO, S.

    2017-12-01

    Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Seismic and infrasound network operated by Korea Meteorological Administration(KMA) successfully detected signals took place in the DPRK's test site, Punggye-ri. First, we checked that Pg/Lg spectral amplitude ratio greater than 1 in the frequency range from 1.0 to 10.0 Hz is useful to discriminate between DPRK test signals and natural earthquakes. KMA's infrasound stations of Cheorwon(CW) and Yanggu(YG) successfully monitored the azimuth direction of the arrival of the infrasound signals generated from DPRK underground nuclear explosions, including the recent test on September 03, 2017. The azimuthal direction of 210(CW) and 130 (YG) point out Punggye-ri test site. Complete waveforms at stations MDJ, CHC2, YNCB in long period(0.05 to 0.1 HZ) are jointly inverted with local P-wave polarities to generate moment tensor inversion result of the explosive moment 1.20e+24 dyne cm(Mw 5.31) and 65% of ISO. The moment magnitude of 5th, 4th and 3rd are 4.61, 4.69 and 4.46 respectively. Source type moment tensor inversion result of DPRK nuclear tests show that the event is significantly away from the deviatoric line of the Hudson et at. (1989) source-type diagram and identifies as having a significant explosive component. Analysis results using seismic and infrasound network verify that the DPRK's explosion tests classified as nuclear test.

  9. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  10. A Dense Small-Scale Seismic Network in the Ngorongoro Conservation Area (Northern Tanzania)

    Science.gov (United States)

    Parisi, L.; Lombardo, L.; Rodriguez-Mustafa, M.; Mai, P. M.

    2017-12-01

    A temporary deployment consisting of sixteen broadband seismic stations is conducted for the first time in the Ngorongoro Conservation Area (NCA, Northern Tanzania), located at the boundary between the Tanzanian Craton and East African Rift. A deep knowledge of the faulting systems and tectonics of the area is needed to better understand the contribution of the synsedimentary faults to the deposition of the Olduvai and surrounding basins affecting the landscapes of the Homo Habilis first settlements. Complex fault systems have been mapped in the field but their connection, especially at depth, is not well known. A first batch of ten instruments was installed in June 2016. In June 2017 two stations were dismissed and a second batch of six stations was installed in new locations. The current network of fourteen stations will record until May 2018. Stations are equipped with Nanometrics Trillium Compact Posthole 120 s sensor and Centaur digitiser recording continuously at 200 Hz. The whole network covers 1400 km2 and station interspace ranges from 8 to 15 km. We analyse probabilistic power spectra densities of the seismic noise to obtain insights of its origin and test the performances of the stations. Although factories do not exist in the area and most of the stations are far from roads, ambient noise in the range 0.01 - 1 s is relatively high (between -120 dB and -100dB at 0.1 s) probably because of the abundance of livestock living in the NCA. Ambient noise in the period range 1 - 10 s (secondary microseisms) decreases from east to west. Although the main source of the microseisms is located in the Indian Ocean (east of the study area), a contribution from the low period tremors coming from the nearby active volcano Ol Doinyo Lengai (north-east of the study area) is expected. Whereas the longer period noise (10 - 100 s) is very low in the vertical component seismograms, it is higher than the high noise model in the horizontal components for most of the stations

  11. Lunar horticulture.

    Science.gov (United States)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  12. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.

    2013-07-01

    provide the best agreement with independently observed focal mechanisms. Tests on synthetic catalogues allow qualification of the performance of the fitting method and of the various validation procedures. The ACLUD method is able to provide solutions that are close to the expected ones, especially for the BIC and focal mechanism-based techniques. The clustering method complemented by the validation step based on focal mechanisms provides good solutions even in the presence of a significant spatial background seismicity rate. As the new clustering method is able to deal with most of the information contained in modern earthquake catalogues, the geometry of the local station network may improve or alter the reconstruction of the underlying fault system. This is illustrated by using the highest-quality data selected using station network criteria which results in reconstructed fault planes of higher quality and accuracy. Using lower-quality data can lead to unstable and unreliable fault networks and may introduce artefacts, in particular in regions of a complex fault structure. The results highlight the need to carefully assess the quality and reliability of reconstructed fault networks from real data that unavoidably involve the clustering of data of heterogeneous quality. Based on realistic tests with synthetic fault network structures, the results also stress the importance of accounting for under-sampled sub-fault structures as well as for spatially-inhomogeneous location uncertainties. The fault reconstruction method is applied to two real datasets at two very different spatial scales, i.e. the 1992 Landers M7 earthquake sequence in Southern California, and the Basel (Switzerland) induced seismicity sequence. In both case studies, fault network results reasonably compare with independent structural analysis data, suggesting highly complex fault structures for both, at the scale of the Landers earthquake covering a volume of about 70,000 km{sup 3} and in the volume of

  13. Seismic data classification and artificial neural networks: can software replace eyeballs?

    Science.gov (United States)

    Reusch, D. B.; Larson, A. M.

    2006-05-01

    Modern seismic datasets are providing many new opportunities for furthering our understanding of our planet, ranging from the deep earth to the sub-ice sheet interface. With many geophysical applications, the large volume of these datasets raises issues of manageability in areas such as quality control (QC) and event identification (EI). While not universally true, QC can be a labor intensive, subjective (and thus not entirely reproducible) and uninspiring task when such datasets are involved. The EI process shares many of these drawbacks but has the benefit of (usually) being closer to interesting science-based questions. Here we explore two techniques from the field of artificial neural networks (ANNs) that seek to reduce the time requirements and increase the objectivity of QC and EI on seismic datasets. In particular, we focus on QC of receiver functions from broadband seismic data collected by the 2000-2003 Transantarctic Mountains Seismic Experiment (TAMSEIS). Self-organizing maps (SOMs) enable unsupervised classification of large, complex geophysical data sets (e.g., time series of the atmospheric circulation) into a fixed number of distinct generalized patterns or modes representing the probability distribution function of the input data. These patterns are organized spatially as a two-dimensional grid such that distances represent similarity (adjacent patterns will be most similar). After training, input data are matched to their most similar generalized pattern to produce frequency maps, i.e., what fraction of the data is represented best by each individual SOM pattern. Given a priori information on data quality (from previous manual grading) or event type, a probabilistic classification can be developed that gives a likelihood for each category of interest for each SOM pattern. New data are classified by identifying the closest matching pattern (without retraining) and examining the associated probabilities. Feed-forward ANNs (FFNNs) are a supervised

  14. Absolute earthquake locations using 3-D versus 1-D velocity models below a local seismic network: example from the Pyrenees

    Science.gov (United States)

    Theunissen, T.; Chevrot, S.; Sylvander, M.; Monteiller, V.; Calvet, M.; Villaseñor, A.; Benahmed, S.; Pauchet, H.; Grimaud, F.

    2018-03-01

    Local seismic networks are usually designed so that earthquakes are located inside them (primary azimuthal gap 180° and distance to the first station higher than 15 km). Errors on velocity models and accuracy of absolute earthquake locations are assessed based on a reference data set made of active seismic, quarry blasts and passive temporary experiments. Solutions and uncertainties are estimated using the probabilistic approach of the NonLinLoc (NLLoc) software based on Equal Differential Time. Some updates have been added to NLLoc to better focus on the final solution (outlier exclusion, multiscale grid search, S-phases weighting). Errors in the probabilistic approach are defined to take into account errors on velocity models and on arrival times. The seismicity in the final 3-D catalogue is located with a horizontal uncertainty of about 2.0 ± 1.9 km and a vertical uncertainty of about 3.0 ± 2.0 km.

  15. GPS on Every Roof, GPS Sensor Network for Post-Seismic Building-Wise Damage Identification

    Directory of Open Access Journals (Sweden)

    Kenji Oguni

    2013-12-01

    Full Text Available Development of wireless sensor network equipped with GPS for post-seismic building-wise damage identification is presented in this paper. This system is called GPS on Every Roof. Sensor node equipped with GPS antenna and receiver is installed on the top of the roof of each and every building. The position of this sensor node is measured before and after earthquake. The final goal of this system is to i identify the displacement of the roof of each house and ii collect the information of displacement of the roof of the houses through wireless communication. Superposing this information on GIS, building-wise damage distribution due to earthquake can be obtained. The system overview, hardware and some of the key components of the system such as on-board GPS relative positioning algorithm to achieve the accuracy in the order of several centimeters are described in detail. Also, the results from a field experiment using a wireless sensor network with 39 sensor nodes are presented.

  16. Lunar Riometry

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  17. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  18. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  19. Evaluation and optimization of seismic networks and algorithms for earthquake early warning – the case of Istanbul (Turkey)

    OpenAIRE

    Oth, Adrien; Böse, Maren; Wenzel, Friedemann; Köhler, Nina; Erdik, Mustafa

    2010-01-01

    Earthquake early warning (EEW) systems should provide reliable warnings as quickly as possible with a minimum number of false and missed alarms. Using the example of the megacity Istanbul and based on a set of simulated scenario earthquakes, we present a novel approach for evaluating and optimizing seismic networks for EEW, in particular in regions with a scarce number of instrumentally recorded earthquakes. We show that, while the current station locations of the existing Istanbul EEW system...

  20. Could the IMS Infrasound Stations Support a Global Network of Small Aperture Seismic Arrays?

    OpenAIRE

    Kværna, Tormod; Gibbons, Steven; Mykkeltveit, Svein

    2017-01-01

    The IMS infrasound arrays have up to 15 sites with apertures up to 3 km. They are distributed remarkably uniformly over the globe, providing excellent coverage of South America, Africa, and Antarctica. Therefore, many infrasound arrays are in regions thousands of kilometers from the closest seismic array. Existing 3-component seismic stations, co-located with infrasound arrays, show how typical seismic signals look at these locations. We estimate a theoretical array response assuming a seismo...

  1. The ING Seismic Network Databank (ISND : a friendly parameters and waveform database

    Directory of Open Access Journals (Sweden)

    G. Smriglio

    1995-06-01

    Full Text Available he Istituto Nazionale di Geofisica (ING Seismic Network Database (ISND includes over 300000 arrivaI times of Italian, Mediterranean and teleseismic earthquakes from 1983 to date. This database is a useful tool for Italian and foreign seismologists ( over 1000 data requests in the first 6 months of this year. Recently (1994 the ING began storing in the ISND, the digital waveforms associated with arri,Tal times and experimen- tally allowed users to retrieve waveforms recorded by the ING acquisition system. In this paper we describe the types of data stored and the interactive and batch procedures available to obtain arrivaI times and/or asso- ciated waveforms. The ISND is reachable via telephone line, P.S.I., Internet and DecNet. Users can read and send to their E-mail address alI selected earthquakes locations, parameters, arrivaI times and associated digital waveforms (in SAC, SUDS or ASCII format. For r;aedium or large amounts of data users can ask to receive data by means of magnetic media (DAT, Video 8, floppy disk.

  2. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  3. Lunar Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — We present an open design for a first plant growth module on the Moon (LPX). The primary science goal of lunar habitat is to investigate germination and initial...

  4. Lunar Flashlight

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Flashlight (LF) is an innovative cubesat mission sponsored by NASA’s Advanced Exploration Systems (AES) division to be launched on the Space Launch System...

  5. Southern California Seismic Network: New Design and Implementation of Redundant and Reliable Real-time Data Acquisition Systems

    Science.gov (United States)

    Saleh, T.; Rico, H.; Solanki, K.; Hauksson, E.; Friberg, P.

    2005-12-01

    The Southern California Seismic Network (SCSN) handles more than 2500 high-data rate channels from more than 380 seismic stations distributed across southern California. These data are imported real-time from dataloggers, earthworm hubs, and partner networks. The SCSN also exports data to eight different partner networks. Both the imported and exported data are critical for emergency response and scientific research. Previous data acquisition systems were complex and difficult to operate, because they grew in an ad hoc fashion to meet the increasing needs for distributing real-time waveform data. To maximize reliability and redundancy, we apply best practices methods from computer science for implementing the software and hardware configurations for import, export, and acquisition of real-time seismic data. Our approach makes use of failover software designs, methods for dividing labor diligently amongst the network nodes, and state of the art networking redundancy technologies. To facilitate maintenance and daily operations we seek to provide some separation between major functions such as data import, export, acquisition, archiving, real-time processing, and alarming. As an example, we make waveform import and export functions independent by operating them on separate servers. Similarly, two independent servers provide waveform export, allowing data recipients to implement their own redundancy. The data import is handled differently by using one primary server and a live backup server. These data import servers, run fail-over software that allows automatic role switching in case of failure from primary to shadow. Similar to the classic earthworm design, all the acquired waveform data are broadcast onto a private network, which allows multiple machines to acquire and process the data. As we separate data import and export away from acquisition, we are also working on new approaches to separate real-time processing and rapid reliable archiving of real-time data

  6. Investigating subduction reversal in Papua New Guinea from automatic analysis of seismicity recorded on a temporary local network

    Science.gov (United States)

    Hicks, S. P.; Harmon, N.; Rychert, C.; Tharimena, S.; Bogiatzis, P.; Savage, B.; Shen, Y.; Baillard, C.

    2017-12-01

    The area of Papua New Guinea is one of the most seismically active regions on the planet. Seismicity in the region results from oblique convergence between the Pacific and India-Australia plates, with deformation occurring across a broad region involving several microplates. The region gives an excellent natural laboratory to test geodynamic models of subduction polarity reversal, microplate interaction, and to delineate the structure of subducting plates and relic structures at depth. However, a lack of permanent seismic stations means that routine earthquake locations for small to intermediate sized earthquakes have significant location errors. In 2014, we deployed a temporary network of eight broadband stations on islands in eastern Papua New Guinea to record ongoing seismic deformation. The network straddles a complex region where subduction of the Solomon plate occurs to the south and possible subduction of the Ontong-Java plateau occurs to the north. The stations were installed for 27 months. During the deployment period, there were 13 M>6.5 earthquakes in the area, including M7.5 doublet events in 2015, giving a rich seismic dataset. A high-quality catalogue of local events was formed by a multi-step process. Using the scanloc module of SeisComp3, we first detect P-onsets using a STA/LTA detection. Once clusters of P onsets are found, S-wave picks are incorporated based on a pre-defined window length of maximum S-P time. Groups of onsets are then associated to events, giving us a starting catalogue of 269 events (1765 P-onsets) with minimum magnitude of M 3.5. In a second step, we refine onset times using a Kurtosis picker to improve location accuracy. To form robust hypocentral locations using an appropriate structural model for the area and to constrain crust and mantle structure in the region, we derive a minimum 1-D velocity model using the VELEST program. We use a starting model from Abers et al. (1991) and we restrict our catalogue to events with an

  7. Strong Motion Network of Medellín and Aburrá Valley: technical advances, seismicity records and micro-earthquake monitoring

    Science.gov (United States)

    Posada, G.; Trujillo, J. C., Sr.; Hoyos, C.; Monsalve, G.

    2017-12-01

    The tectonics setting of Colombia is determined by the interaction of Nazca, Caribbean and South American plates, together with the Panama-Choco block collision, which makes a seismically active region. Regional seismic monitoring is carried out by the National Seismological Network of Colombia and the Accelerometer National Network of Colombia. Both networks calculate locations, magnitudes, depths and accelerations, and other seismic parameters. The Medellín - Aburra Valley is located in the Northern segment of the Central Cordillera of Colombia, and according to the Colombian technical seismic norm (NSR-10), is a region of intermediate hazard, because of the proximity to seismic sources of the Valley. Seismic monitoring in the Aburra Valley began in 1996 with an accelerometer network which consisted of 38 instruments. Currently, the network consists of 26 stations and is run by the Early Warning System of Medellin and Aburra Valley (SIATA). The technical advances have allowed the real-time communication since a year ago, currently with 10 stations; post-earthquake data is processed through operationally near-real-time, obtaining quick results in terms of location, acceleration, spectrum response and Fourier analysis; this information is displayed at the SIATA web site. The strong motion database is composed by 280 earthquakes; this information is the basis for the estimation of seismic hazards and risk for the region. A basic statistical analysis of the main information was carried out, including the total recorded events per station, natural frequency, maximum accelerations, depths and magnitudes, which allowed us to identify the main seismic sources, and some seismic site parameters. With the idea of a more complete seismic monitoring and in order to identify seismic sources beneath the Valley, we are in the process of installing 10 low-cost shake seismometers for micro-earthquake monitoring. There is no historical record of earthquakes with a magnitude

  8. Based on records of Three Gorge Telemetric Seismic Network to analyze Vibration process of micro fracture of rock landslide

    Science.gov (United States)

    WANG, Q.

    2017-12-01

    Used the finite element analysis software GeoStudio to establish vibration analysis model of Qianjiangping landslide, which locates at the Three Gorges Reservoir area. In QUAKE/W module, we chosen proper Dynamic elasticity modulus and Poisson's ratio of soil layer and rock stratum. When loading, we selected the waveform data record of Three Gorge Telemetric Seismic Network as input ground motion, which includes five rupture events recorded of Lujiashan seismic station. In dynamic simulating, we mainly focused on sliding process when the earthquake date record was applied. The simulation result shows that Qianjiangping landslide wasn't not only affected by its own static force, but also experienced the dynamic process of micro fracture-creep-slip rupture-creep-slip.it provides a new approach for the early warning feasibility of rock landslide in future research.

  9. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Quintero Oliveros, Anggi [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy); Departamento de Ciencias de La Tierra, Universidad Simon Bolivar, Caracas (Venezuela); Carniel, Roberto [Dipartimento di Georisorse e Territorio, Universita di Udine (Italy)], E-mail: roberto.carniel@uniud.it; Tarraga, Marta [Departamento de Volcanologia, Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Aspinall, Willy [Aspinall and Associates, 5 Woodside Close, Beaconsfield, Bucks (United Kingdom)

    2008-08-15

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation.

  10. On the application of Hidden Markov Model and Bayesian Belief Network to seismic noise at Las Canadas Caldera, Tenerife, Spain

    International Nuclear Information System (INIS)

    Quintero Oliveros, Anggi; Carniel, Roberto; Tarraga, Marta; Aspinall, Willy

    2008-01-01

    The Teide-Pico Viejo volcanic complex situated in Tenerife Island (Canary Islands, Spain) has recently shown signs of unrest, long after its last eruptive episode at Chinyero in 1909, and the last explosive episode which happened at Montana Blanca, 2000 years ago. In this paper we study the seismicity of the Teide-Pico Viejo complex recorded between May and December 2004, in order to show the applicability of tools such as Hidden Markov Models and Bayesian Belief Networks which can be used to build a structure for evaluating the probability of given eruptive or volcano-related scenarios. The results support the existence of a bidirectional relationship between volcano-tectonic events and the background seismic noise - in particular its frequency content. This in turn suggests that the two phenomena can be related to one unique process influencing their generation

  11. Source and path parameters determination based on data from the digital accelerometer and CALIXTO networks to assess the seismic hazard

    International Nuclear Information System (INIS)

    Radulian, M.; Anghel, M.; Ardeleanu, L.; Bazacliu, O.; Grecu, B.; Popa, M.; Popescu, E.; Rizescu, M.

    2002-01-01

    For any strategy of seismic risk mitigation, it is essential to have a realistic description of the seismic input that means of the source and structure parameters. The present project is focused on the problem of determining accurate source and structure parameters and to analyze the way these parameters influence the seismic hazard distribution. The main objectives of the project are: determination of seismic source parameters, scaling properties, database of recent earthquakes, seismic source effects on the seismic hazard distribution, seismic attenuation, site effects, realistic scenarios for Vrancea earthquakes. To this purpose, we valorize the data provided by the instruments installed recently on the Romanian territory, in the framework of multiple international cooperation programs. Thus, a new digital accelerometer network was installed between 1996 and 1999 in cooperation with the Institute of Geophysics of the University of Karlsruhe (Germany), and an ample tomography experiment deployed for a 6-month time window (May - November 1999).The results obtained up to now refer to the determination of seismic source parameters and scaling. The source parameters are constrained using the spectral ratio technique and the seismic moment tensor inversion. The spectral ratio method is efficient when pairs of co-located earthquakes recorded at common stations are available. In this case the spectral ratio depends essentially on source only, and corrections for path, local response and instrument are not required. Another advantage of the method is the possibility to determine simultaneously source parameters for both selected events of a pair, if the instrument has a broadband frequency response and the signal/noise ratio is sufficiently high in the frequency domain of interest. The spectral ratio method is applied for 37 events, occurred between 1996 and 2000, with magnitudes between 3.0 and 5.3 in the intermediate-depth range. Seismic moment, source dimension and

  12. A GIS-based multi-criteria seismic vulnerability assessment using the integration of granular computing rule extraction and artificial neural networks

    NARCIS (Netherlands)

    Sheikhian, Hossein; Delavar, Mahmoud Reza; Stein, Alfred

    2017-01-01

    This study proposes multi‐criteria group decision‐making to address seismic physical vulnerability assessment. Granular computing rule extraction is combined with a feed forward artificial neural network to form a classifier capable of training a neural network on the basis of the rules provided by

  13. Multi-parameter observations in the Ibero-Moghrebian region: the Western Mediterranean seismic network (WM) and ROA GPS geodynamic network

    Science.gov (United States)

    Pazos, Antonio; Martín Davila, José; Buforn, Elisa; Gárate Pasquín, Jorge; Catalán Morollón, Manuel; Hanka, Winfried; Udías, Agustín.; Benzzeghoud, Mourad; Harnafi, Mimoun

    2010-05-01

    The plate boundary between Eurasia and Africa plates crosses the called "Ibero-Maghrebian" region from the San Vicente Cape (SW Portugal) to Tunisia including the South of Iberia, Alboran Sea, and northern Morocco and Algeria. In this area, the convergence, with a low rate, is accommodated over a wide and diffuse deformation zone, characterized by a significant and widespread moderate seismic activity [Buforn et al., 1995], and the occurrence of large earthquakes is separated by long time intervals. Since more than hundred years ago San Fernando Naval Observatory (ROA), in collaboration with other Institutes, has deployed different geophysical and geodetic equipment in the Southern Spain - North-western Africa area in order to study this broad deformation zone. Currently a Broad Band seismic net (Western Mediterranean, WM net) is deployed, in collaboration with other institutions, around the Gulf of Cádiz and the Alboran sea, with stations in the South of Iberia and in North Africa (at Spanish places and Morocco), together with the seismic stations a permanent geodetic GPS net is co-installed at the same sites. Also, other geophysical instruments have been installed: a Satellite Laser Ranging (SLR) station at San Fernando Observatory Headquarter, a Geomagnetic Observatory in Cádiz bay area and some meteorological stations. These networks have been recently improved with the deployment of a new submarine and on-land geophysical observatory in the Alboran island (ALBO Observatory), where a permanent GPS, a meteorological station were installed on land and a permanent submarine observatory in 50 meters depth was also deploy in last October (with a broad band seismic sensor, a 3 C accelerometer and a DPG). This work shows the present status and the future plans of these networks and some results.

  14. Teacher Directed Design: Content Knowledge, Pedagogy and Assessment under the Nevada K-12 Real-Time Seismic Network

    Science.gov (United States)

    Cantrell, P.; Ewing-Taylor, J.; Crippen, K. J.; Smith, K. D.; Snelson, C. M.

    2004-12-01

    Education professionals and seismologists under the emerging SUN (Shaking Up Nevada) program are leveraging the existing infrastructure of the real-time Nevada K-12 Seismic Network to provide a unique inquiry based science experience for teachers. The concept and effort are driven by teacher needs and emphasize rigorous content knowledge acquisition coupled with the translation of that knowledge into an integrated seismology based earth sciences curriculum development process. We are developing a pedagogical framework, graduate level coursework, and materials to initiate the SUN model for teacher professional development in an effort to integrate the research benefits of real-time seismic data with science education needs in Nevada. A component of SUN is to evaluate teacher acquisition of qualified seismological and earth science information and pedagogy both in workshops and in the classroom and to assess the impact on student achievement. SUN's mission is to positively impact earth science education practices. With the upcoming EarthScope initiative, the program is timely and will incorporate EarthScope real-time seismic data (USArray) and educational materials in graduate course materials and teacher development programs. A number of schools in Nevada are contributing real-time data from both inexpensive and high-quality seismographs that are integrated with Nevada regional seismic network operations as well as the IRIS DMC. A powerful and unique component of the Nevada technology model is that schools can receive "stable" continuous live data feeds from 100's seismograph stations in Nevada, California and world (including live data from Earthworm systems and the IRIS DMC BUD - Buffer of Uniform Data). Students and teachers see their own networked seismograph station within a global context, as participants in regional and global monitoring. The robust real-time Internet communications protocols invoked in the Nevada network provide for local data acquisition

  15. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  16. Kinematics and Seismotectonics of the Montello Thrust Fault (Southeastern Alps, Italy) Revealed by Local GPS and Seismic Networks

    Science.gov (United States)

    Serpelloni, E.; Anderlini, L.; Cavaliere, A.; Danesi, S.; Pondrelli, S.; Salimbeni, S.; Danecek, P.; Massa, M.; Lovati, S.

    2014-12-01

    The southern Alps fold-and-thrust belt (FTB) in northern Italy is a tectonically active area accommodating large part of the ~N-S Adria-Eurasia plate convergence, that in the southeastern Alps ranges from 1.5 to 2.5 mm/yr, as constrained by a geodetically defined rotation pole. Because of the high seismic hazard of northeastern Italy, the area is well monitored at a regional scale by seismic and GPS networks. However, more localized seismotectonic and kinematic features, at the scale of the fault segments, are not yet resolved, limiting our knowledge about the seismic potential of the different fault segments belonging to the southeastern Alps FTB. Here we present the results obtained from the analysis of data collected during local seismic and geodetic experiments conducted installing denser geophysical networks across the Montello-Bassano-Belluno system, a segment of the FTB that is presently characterized by a lower sismicity rate with respect to the surrounding domains. The Montello anticline, which is the southernmost tectonic features of the southeastern Alps FTB (located ~15 km south of the mountain front), is a nice example of growing anticline associated with a blind thrust fault. However, how the Adria-Alps convergence is partitioned across the FTB and the seismic potential of the Montello thrust (the area has been struck by a Mw~6.5 in 1695 but the causative fault is still largely debated) remained still unresolved. The new, denser, GPS data show that this area is undergoing among the highest geodetic deformation rates of the entire south Alpine chain, with a steep velocity gradient across the Montello anticline. The earthquakes recorded during the experiment, precisely relocated with double difference methods, and the new earthquake focal mechanisms well correlate with available information about sub-surface geological structures and highlight the seismotectonic activity of the Montello thrust fault. We model the GPS velocities using elastic

  17. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    Science.gov (United States)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  18. Bridging the Gap - Networking Educators using Real-Time Seismic Data

    Science.gov (United States)

    Ortiz, A. M.; Renwald, M. D.; Baldwin, T. K.; Hall, M. K.

    2004-12-01

    After nearly a decade, the seismology community has made critical advances in identifying what is effective and what is needed for success in incorporating real-time seismic data in the classroom. Today's K-16 classroom teachers have many options and opportunities for incorporating short- and long-term inquiry activities for monitoring earthquakes and analyzing seismic data in their daily instruction. Through the SpiNet program, we are providing web-based tools that support educators working with real-time seismic data (http://www.scieds.com/spinet/). Our site includes a Recent Seismicity section, which allows users to share seismic data in real-time, and provides near real-time information about global seismicity. Our Activities section provides data and lessons to assist educators who wish to integrate seismology into their classroom. The Research section, currently under development, will allow educators to share general information about how they teach seismology in their classroom through a discussion board and by posting lesson plans. In addition, we are developing a user-friendly tool for students to post results of their research projects. Designing a website which targets a range of users requires a working knowledge of both user needs and website programming and design. User needs include providing a logical navigational structure and accounting for differences in browser functionality, internet access, and users' abilities. Using website development tools, such as PHP, MySQL, RDF feeds, and specialized geoscience applications, we are automating site maintenance; incorporating databases for information storage and retrieval; and providing accessibility for users with a range of skills and physical limitations. By incorporating these features, we have built a dynamic interface for a broad range of users interested in educational seismology.

  19. Contribution of the Surface and Down-Hole Seismic Networks to the Location of Earthquakes at the Soultz-sous-Forêts Geothermal Site (France)

    Science.gov (United States)

    Kinnaert, X.; Gaucher, E.; Kohl, T.; Achauer, U.

    2018-03-01

    Seismicity induced in geo-reservoirs can be a valuable observation to image fractured reservoirs, to characterize hydrological properties, or to mitigate seismic hazard. However, this requires accurate location of the seismicity, which is nowadays an important seismological task in reservoir engineering. The earthquake location (determination of the hypocentres) depends on the model used to represent the medium in which the seismic waves propagate and on the seismic monitoring network. In this work, location uncertainties and location inaccuracies are modeled to investigate the impact of several parameters on the determination of the hypocentres: the picking uncertainty, the numerical precision of picked arrival times, a velocity perturbation and the seismic network configuration. The method is applied to the geothermal site of Soultz-sous-Forêts, which is located in the Upper Rhine Graben (France) and which was subject to detailed scientific investigations. We focus on a massive water injection performed in the year 2000 to enhance the productivity of the well GPK2 in the granitic basement, at approximately 5 km depth, and which induced more than 7000 earthquakes recorded by down-hole and surface seismic networks. We compare the location errors obtained from the joint or the separate use of the down-hole and surface networks. Besides the quantification of location uncertainties caused by picking uncertainties, the impact of the numerical precision of the picked arrival times as provided in a reference catalogue is investigated. The velocity model is also modified to mimic possible effects of a massive water injection and to evaluate its impact on earthquake hypocentres. It is shown that the use of the down-hole network in addition to the surface network provides smaller location uncertainties but can also lead to larger inaccuracies. Hence, location uncertainties would not be well representative of the location errors and interpretation of the seismicity

  20. Sound velocity and compressibility for lunar rocks 17 and 46 and for glass spheres from the lunar soil.

    Science.gov (United States)

    Schreiber, E; Anderson, O L; Sogat, N; Warren, N; Scholz, C

    1970-01-30

    Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.

  1. Strength and compressibility of returned lunar soil.

    Science.gov (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  2. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    NARCIS (Netherlands)

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  3. Detection capability of seismic network based on noise analysis and magnitude of completeness

    Czech Academy of Sciences Publication Activity Database

    Fischer, Tomáš; Bachura, M.

    2014-01-01

    Roč. 18, č. 1 (2014), s. 137-150 ISSN 1383-4649 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : seismic monitoring * magnitude of completeness * detection capability Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Volcanology Impact factor: 1.386, year: 2014

  4. Data transmission from seismic stations via network AGNES using GSM-GPRS technology

    Czech Academy of Sciences Publication Activity Database

    Knejzlík, Jaromír

    2004-01-01

    Roč. 1, č. 1 (2004), s. 73-76 ISSN 1211-1910. [Mining and Environmental geophysics/29./. Sedmihorky, 00.06.2003] R&D Projects: GA ČR GA205/01/0480 Institutional research plan: CEZ:AV0Z3086906 Keywords : seismic data transmission * GMS * GPRS Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  5. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    Science.gov (United States)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  6. The Seismic Broad Band Western Mediterranean (wm) Network and the Obs Fomar Pool: Current state and Obs activities.

    Science.gov (United States)

    Pazos, Antonio; Davila, Jose Martin; Buforn, Elisa; Bezzeghoud, Mourad; Harnafi, Mimoun; Mattesini, Mauricio; Caldeira, Bento; Hanka, Winfried; El Moudnib, Lahcen; Strollo, Angelo; Roca, Antoni; Lopez de Mesa, Mireya; Dahm, Torsten; Cabieces, Roberto

    2016-04-01

    The Western Mediterranean (WM) seismic network started in 1996 as an initiative of the Royal Spanish Navy Observatory (ROA) and the Universidad Complutense de Madrid (UCM), with the collaboration of the GeoForschungsZentrum (GFZ) of Potsdam. A first broad band seismic station (SFUC) was installed close to Cádiz (South Spain). Since then, additional stations have been installed in the Ibero-Moghrebian region. In 2005, the "WM" code was assigned by the FDSN and new partners were jointed: Evora University (UEVO, Portugal), the Scientifique Institute of Rabat (ISRABAT, Morocco), and GFZ. Now days, the WM network is composed by 15 BB stations, all of them with Streckaisen STS-2 or STS-2.5 sensors, Quanterra or Earthdata digitizers and SeiscomP. Most them have co-installed a permanent geodetic GPS stations, and some them also have an accelerometer. There are 10 stations deployed in Spanish territory (5 in the Iberian peninsula, 1 in Balearic islands and 4 in North Africa Spanish places) with VSAT or Internet communications, 2 in Portugal (one of them without real time), and 3 in Morocco (2 VSAT and 1 ADSL). Additionally, 2 more stations (one in South Spain and one in Morocco) will be installed along this year. Additionally ROA has deployed a permanent real time VBB (CMG-3T: 360s) station at the Alboran Island. Due to the fact that part of the seismic activity is located at marine areas, and also because of the poor geographic azimuthal coverage at some zones provided by the land stations (specially in the SW of the San Vicente Cape area), ROA and UCM have acquired six broad band "LOBSTERN" OBS, manufactured by KUM (Kiel, Germany), conforming the OBS FOMAR pool. Three of them with CMG-40T sensor and the other with Trillium 120. These OBS were deployed along the Gibraltar strait since January to November 2014 to study the microseismicity in the Gibraltar strait area. In September 2015 FOMAR network has been deployed in SW of the San Vicente Cape for 8 months as a part of

  7. How prepared were the Puerto Rico Seismic Network sites for the arrival of Hurricane Maria? Lessons learned on communications, power and infrastructure.

    Science.gov (United States)

    Vanacore, E. A.; Lopez, A. M.; Huerfano, V.; Lugo, J.; Baez-Sanchez, G.

    2017-12-01

    For exactly 85 years the island of Puerto Rico in the northeastern Caribbean was spared from catastrophic category 4 hurricane winds. Then Hurricane Maria arrived on September 20, 2017 with maximum sustained winds of up to 155 mph. The eye of the hurricane crossed the island from southeast to northwest in eight hours leaving almost a meter of rainfall on its path. Sustained winds, gusts and precipitation were most certainly going to affect the seismic and geodetic equipment the Puerto Rico Seismic Network (PRSN) use for locating earthquakes in the region. PRSN relies on 35 seismic stations (velocity and strong-motion) to characterize the seismic behavior of the island and 15 geodetic (GNSS) stations to determine crustal deformation of the Puerto Rico - Virgin Islands microplate. PRSN stations have been designed to withstand earthquakes. However, the equipment suffered considerable damage due to the strong winds especially station communication towers. This coupled with catastrophic damage to the telecommunication and power grids of the island had severe effects on the network. Additionally, the level of devastation was such that it hampered the ability of PRSN staff to visit the sites for assessment and repair. Here we present the effects of category 4 hurricane had on our seismic and geodetic sites, examine the susceptibility of the PRSN stations' power and communications, and discuss future plans to recuperate and improve station resiliency for future catastrophic events. These lessons learned hopefully will help harden sites of networks, agencies and/or institutions that rely on similar infrastructure.

  8. Puerto Rico Seismic Network Operations During and After the Hurricane Maria: Response, Continuity of Operations, and Experiences

    Science.gov (United States)

    Vanacore, E. A.; Baez-Sanchez, G.; Huerfano, V.; Lopez, A. M.; Lugo, J.

    2017-12-01

    The Puerto Rico Seismic Network (PRSN) is an integral part of earthquake and tsunami monitoring in Puerto Rico and the Virgin Islands. The PRSN conducts scientific research as part of the University of Puerto Rico Mayaguez, conducts the earthquake monitoring for the region, runs extensive earthquake and tsunami education and outreach programs, and acts as a Tsunami Warning Focal Point Alternate for Puerto Rico. During and in the immediate aftermath of Hurricane Maria, the PRSN duties and responsibilities evolved from a seismic network to a major information and communications center for the western side of Puerto Rico. Hurricane Maria effectively destroyed most communications on island, critically between the eastern side of the island where Puerto Rico's Emergency Management's (PREMA) main office and the National Weather Service (NWS) is based and the western side of the island. Additionally, many local emergency management agencies on the western side of the island lost a satellite based emergency management information system called EMWIN which provides critical tsunami and weather information. PRSN's EMWIN system remained functional and consequently via this system and radio communications PRSN became the only information source for NWS warnings and bulletins, tsunami alerts, and earthquake information for western Puerto Rico. Additionally, given the functional radio and geographic location of the PRSN, the network became a critical communications relay for local emergency management. Here we will present the PRSN response in relation to Hurricane Maria including the activation of the PRSN devolution plan, adoption of duties, experiences and lessons learned for continuity of operations and adoption of responsibilities during future catastrophic events.

  9. Missile impacts as sources of seismic energy on the moon

    Science.gov (United States)

    Latham, G.V.; McDonald, W.G.; Moore, H.J.

    1970-01-01

    Seismic signals recorded from impacts of missiles at the White Sands Missile Range are radically different from the signal recorded from the Apollo 12 lunar module impact. This implies that lunar structure to depths of at least 10 to 20 kilometers is quite different from the typical structure of the earth's crust. Results obtained from this study can be used to predict seismic wave amplitudes from future man-made lunar impacts. Seismic energy and crater dimensions from impacts are compared with measurements from chemical explosions.

  10. Seismic anisotropy of the mantle lithosphere beneath the Swedish National Seismological Network (SNSN)

    Czech Academy of Sciences Publication Activity Database

    Eken, T.; Plomerová, Jaroslava; Roberts, R.; Vecsey, Luděk; Babuška, Vladislav; Shomali, H.; Bodvarsson, R.

    2010-01-01

    Roč. 480, č. 1-4 (2010), s. 241-258 ISSN 0040-1951 R&D Projects: GA AV ČR IAA300120709; GA AV ČR(CZ) KJB300120605 Institutional research plan: CEZ:AV0Z30120515 Keywords : Baltic Shield * mantle lithosphere * seismic anisotropy * domains and their boundaries in the mantle Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.509, year: 2010

  11. Southern California Seismic Network: Caltech/USGS Element of TriNet 1997-2001

    OpenAIRE

    Hauksson, Egill; Small, Patrick; Hafner, Katrin; Busby, Robert; Clayton, Robert; Goltz, James; Heaton, Tom; Hutton, Kate; Kanamori, Hiroo; Polet, Jascha

    2001-01-01

    The California Institute of Technology (Caltech), the United States Geological Survey (USGS), and the California Department of Conservation, Division of Mines and Geology (CDMG) are completing the implementation of TriNet, a modern seismic information system for southern California. TriNet consists of two elements, the Caltech-USGS element and the CDMG element (Mori et al., 1998). The Caltech-USGS element (Caltech-USGS TriNet) concentrates on rapid notification and archiving...

  12. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    Science.gov (United States)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  13. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    Science.gov (United States)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  14. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  15. Seismic testing

    International Nuclear Information System (INIS)

    Sollogoub, Pierre

    2001-01-01

    This lecture deals with: qualification methods for seismic testing; objectives of seismic testing; seismic testing standards including examples; main content of standard; testing means; and some important elements of seismic testing

  16. Recognition and detection of seismic phases by artificial neural network detector; Jinko neural network ni yoru jishinha no ninshiki to kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K; Wang, W [Tokyo Gakugei University, Tokyo (Japan)

    1997-05-27

    Initial parts of P-waves, medium or high in intensity, are detected using an artificial neural network (ANN). The ANN is the generic name given to information processing systems of the non-Neumann type configured to human brain in point of information processing function, and is packaged into computers in the form of software capable of parallel processing, self-organizing, learning, etc. In this paper, a hierarchical ANN-assisted seismic motion recognition system is constructed on the basis of an error reverse propagation algorithm. It is reported here, with a remark that this study wants much more data from tests for the evaluation of the quality of the recognition, that P-wave recognition has been achieved. When this technique is applied to the S-wave, much more real-time information will become available. For the improvement of the system, a number of problems have to be solved, including the establishment of automatic refurbishment through adaptation-and-learning and configuration that incorporates frequency-related matters. It is found that this system is effective in seismic wave phase recognition but that it is not suitable for precision measurement. 7 refs., 4 figs.

  17. Building Habitats on the Moon: Engineering Approaches to Lunar Settlements

    Science.gov (United States)

    Benaroya, H.

    This book provides an overview of various concepts for lunar habitats and structural designs and characterizes the lunar environment - the technical and the nontechnical. The designs take into consideration psychological comfort, structural strength against seismic and thermal activity, as well as internal pressurization and 1/6 g. Also discussed are micrometeoroid modelling, risk and redundancy as well as probability and reliability, with an introduction to analytical tools that can be useful in modelling uncertainties.

  18. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    Science.gov (United States)

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  19. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    Science.gov (United States)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Geothermal Heat Flux and Upper Mantle Viscosity across West Antarctica: Insights from the UKANET and POLENET Seismic Networks

    Science.gov (United States)

    O'Donnell, J. P.; Dunham, C.; Stuart, G. W.; Brisbourne, A.; Nield, G. A.; Whitehouse, P. L.; Hooper, A. J.; Nyblade, A.; Wiens, D.; Aster, R. C.; Anandakrishnan, S.; Huerta, A. D.; Wilson, T. J.; Winberry, J. P.

    2017-12-01

    Quantifying the geothermal heat flux at the base of ice sheets is necessary to understand their dynamics and evolution. The heat flux is a composite function of concentration of upper crustal radiogenic elements and flow of heat from the mantle into the crust. Radiogenic element concentration varies with tectonothermal age, while heat flow across the crust-mantle boundary depends on crustal and lithospheric thicknesses. Meanwhile, accurately monitoring current ice mass loss via satellite gravimetry or altimetry hinges on knowing the upper mantle viscosity structure needed to account for the superimposed glacial isostatic adjustment (GIA) signal in the satellite data. In early 2016 the UK Antarctic Network (UKANET) of 10 broadband seismometers was deployed for two years across the southern Antarctic Peninsula and Ellsworth Land. Using UKANET data in conjunction with seismic records from our partner US Polar Earth Observing Network (POLENET) and the Antarctic Seismographic Argentinian Italian Network (ASAIN), we have developed a 3D shear wave velocity model of the West Antarctic crust and uppermost mantle based on Rayleigh and Love wave phase velocity dispersion curves extracted from ambient noise cross-correlograms. We combine seismic receiver functions with the shear wave model to help constrain the depth to the crust-mantle boundary across West Antarctica and delineate tectonic domains. The shear wave model is subsequently converted to temperature using a database of densities and elastic properties of minerals common in crustal and mantle rocks, while the various tectonic domains are assigned upper crustal radiogenic element concentrations based on their inferred tectonothermal ages. We combine this information to map the basal geothermal heat flux variation across West Antarctica. Mantle viscosity depends on factors including temperature, grain size, the hydrogen content of olivine and the presence of melt. Using published mantle xenolith and magnetotelluric

  1. Products and Services Available from the Southern California Earthquake Data Center (SCEDC) and the Southern California Seismic Network (SCSN)

    Science.gov (United States)

    Yu, E.; Bhaskaran, A.; Chen, S.; Chowdhury, F. R.; Meisenhelter, S.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.

    2010-12-01

    Currently the SCEDC archives continuous and triggered data from nearly 5000 data channels from 425 SCSN recorded stations, processing and archiving an average of 12,000 earthquakes each year. The SCEDC provides public access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP and DHI. This poster will describe the most significant developments at the SCEDC in the past year. Updated hardware: ● The SCEDC has more than doubled its waveform file storage capacity by migrating to 2 TB disks. New data holdings: ● Waveform data: Beginning Jan 1, 2010 the SCEDC began continuously archiving all high-sample-rate strong-motion channels. All seismic channels recorded by SCSN are now continuously archived and available at SCEDC. ● Portable data from El Mayor Cucapah 7.2 sequence: Seismic waveforms from portable stations installed by researchers (contributed by Elizabeth Cochran, Jamie Steidl, and Octavio Lazaro-Mancilla) have been added to the archive and are accessible through STP either as continuous data or associated with events in the SCEDC earthquake catalog. This additional data will help SCSN analysts and researchers improve event locations from the sequence. ● Real time GPS solutions from El Mayor Cucapah 7.2 event: Three component 1Hz seismograms of California Real Time Network (CRTN) GPS stations, from the April 4, 2010, magnitude 7.2 El Mayor-Cucapah earthquake are available in SAC format at the SCEDC. These time series were created by Brendan Crowell, Yehuda Bock, the project PI, and Mindy Squibb at SOPAC using data from the CRTN. The El Mayor-Cucapah earthquake demonstrated definitively the power of real-time high-rate GPS data: they measure dynamic displacements directly, they do not clip and they are also able to detect the permanent (coseismic) surface deformation. ● Triggered data from the Quake Catcher Network (QCN) and Community Seismic Network (CSN): The SCEDC in

  2. Seismicity and seismic monitoring in the Asse salt mine

    International Nuclear Information System (INIS)

    Flach, D.; Gommlich, G.; Hente, B.

    1987-01-01

    Seismicity analyses are made in order to assess the safety of candidate sites for ultimate disposal of hazardous wastes. The report in hand reviews the seismicity history of the Asse salt mine and presents recent results of a measuring campaign made in the area. The monitoring network installed at the site supplies data and information on the regional seismicity, on seismic amplitudes under ground and above ground, and on microseismic activities. (DG) [de

  3. Lunar Flashlight and Other Lunar Cubesats

    Science.gov (United States)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  4. Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates

    NARCIS (Netherlands)

    de Vries, J.; van den Berg, A.P.; van Westrenen, W.

    2010-01-01

    In the absence of comprehensive seismic data coverage, the size, composition and physical state of the lunar core are still debated. It has been suggested that a dense ilmenite-rich layer, which originally crystallised near the top of the lunar magma ocean, may have sunk to the centre of the Moon to

  5. Data Compression of Seismic Images by Neural Networks Compression d'images sismiques par des réseaux neuronaux

    Directory of Open Access Journals (Sweden)

    Epping W. J. M.

    2006-11-01

    Full Text Available Neural networks with the multi-layered perceptron architecture were trained on an autoassociation task to compress 2D seismic data. Networks with linear transfer functions outperformed nonlinear neural nets with single or multiple hidden layers. This indicates that the correlational structure of the seismic data is predominantly linear. A compression factor of 5 to 7 can be achieved if a reconstruction error of 10% is allowed. The performance on new test data was similar to that achieved with the training data. The hidden units developed feature-detecting properties that resemble oriented line, edge and more complex feature detectors. The feature detectors of linear neural nets are near-orthogonal rotations of the principal eigenvectors of the Karhunen-Loève transformation. Des réseaux neuronaux à architecture de perceptron multicouches ont été expérimentés en auto-association pour permettre la compression de données sismiques bidimensionnelles. Les réseaux neuronaux à fonctions de transfert linéaires s'avèrent plus performants que les réseaux neuronaux non linéaires, à une ou plusieurs couches cachées. Ceci indique que la structure corrélative des données sismiques est à prédominance linéaire. Un facteur de compression de 5 à 7 peut être obtenu si une erreur de reconstruction de 10 % est admise. La performance sur les données de test est très proche de celle obtenue sur les données d'apprentissage. Les unités cachées développent des propriétés de détection de caractéristiques ressemblant à des détecteurs de lignes orientées, de bords et de figures plus complexes. Les détecteurs de caractéristique des réseaux neuronaux linéaires sont des rotations quasi orthogonales des vecteurs propres principaux de la transformation de Karhunen-Loève.

  6. Evaluation of infrasound signals from the shuttle Atlantis using a large seismic network.

    Science.gov (United States)

    de Groot-Hedlin, Catherine D; Hedlin, Michael A H; Walker, Kristoffer T; Drob, Douglas P; Zumberge, Mark A

    2008-09-01

    Inclement weather in Florida forced the space shuttle "Atlantis" to land at Edwards Air Force Base in southern California on June 22, 2007, passing near three infrasound stations and several hundred seismic stations in northern Mexico, southern California, and Nevada. The high signal-to-noise ratio, broad receiver coverage, and Atlantis' positional information allow for the testing of infrasound propagation modeling capabilities through the atmosphere to regional distances. Shadow zones and arrival times are predicted by tracing rays that are launched at right angles to the conical shock front surrounding the shuttle through a standard climatological model as well as a global ground to space model. The predictions and observations compare favorably over much of the study area for both atmospheric specifications. To the east of the shuttle trajectory, there were no detections beyond the primary acoustic carpet. Infrasound energy was detected hundreds of kilometers to the west and northwest (NW) of the shuttle trajectory, consistent with the predictions of ducting due to the westward summer-time stratospheric jet. Both atmospheric models predict alternating regions of high and low ensonifications to the NW. However, infrasound energy was detected tens of kilometers beyond the predicted zones of ensonification, possibly due to uncertainties in stratospheric wind speeds.

  7. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  8. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  9. Focal mechanisms in the southern Aegean from temporary seismic networks – implications for the regional stress field and ongoing deformation processes

    OpenAIRE

    Friederich, W.; Brüstle, A.; Küperkoch, L.; Meier, T.; Lamara, S.; Working Group, Egelados

    2014-01-01

    The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earth...

  10. ACED devices and SECAF supports for the control of structure, pipe network and equipment behaviour at seismic movements in order to enhance the safety margin

    International Nuclear Information System (INIS)

    Serban, Viorel; Prisecaru, I.; Cretu, D.; Moldoveanu, T.

    2002-01-01

    In order to enhance the safety margin of structure, pipe networks and equipment associated to the existing NPPs, the classic consolidation solutions are very expensive and many times, impossible to be implemented. Structures, pipe networks, systems and equipment have geometries imposed by the basic construction requirements, operating and safety requirements and their modifications is not always possible. In order to enhance the strength capacity of (new or old) structures, systems and equipment mechanical devices with controlled elasticity and damping (ACED) have been designed, constructed and experimented. These devices are capable to support very large static loads over which dynamic loads (shock, vibration and seismic movements) overlap (which are damped). To increase the strength capacity of (new or existing) pipe networks and equipment connecting with pipes, SECAF supports that allow displacements from thermal expansions with low reaction force have been designed, constructed and experimented. SECAF supports are capable elastically to take permanent loads over which shocks, vibrations and seismic movements (which are damp) overlap. ACED devices and SECAF supports can be used to rehabilitate the existing NPPs with law financial costs and an increase of their strength capacity up to 100% under seismic movements, shocks and vibrations. ACED devices and SECAF supports do not require maintenance, are not affected by presence of a radiation field and their estimated service-life is similar to the NPPs

  11. Design of a large remote seismic exploration data acquisition system, with the architecture of a distributed storage area network

    International Nuclear Information System (INIS)

    Cao, Ping; Song, Ke-zhu; Yang, Jun-feng; Ruan, Fu-ming

    2011-01-01

    Nowadays, seismic exploration data acquisition (DAQ) systems have been developed into remote forms with a large-scale coverage area. In this kind of application, some features must be mentioned. Firstly, there are many sensors which are placed remotely. Secondly, the total data throughput is high. Thirdly, optical fibres are not suitable everywhere because of cost control, harsh running environments, etc. Fourthly, the ability of expansibility and upgrading is a must for this kind of application. It is a challenge to design this kind of remote DAQ (rDAQ). Data transmission, clock synchronization, data storage, etc must be considered carefully. A fourth-hierarchy model of rDAQ is proposed. In this model, rDAQ is divided into four different function levels. From this model, a simple and clear architecture based on a distributed storage area network is proposed. rDAQs with this architecture have advantages of flexible configuration, expansibility and stability. This architecture can be applied to design and realize from simple single cable systems to large-scale exploration DAQs

  12. Lunar remote sensing and measurements

    Science.gov (United States)

    Moore, H.J.; Boyce, J.M.; Schaber, G.G.; Scott, D.H.

    1980-01-01

    Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites

  13. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    Science.gov (United States)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  14. A Datacenter Backstage: The Knowledge that Supports the Brazilian Seismic Network

    Science.gov (United States)

    Calhau, J.; Assumpcao, M.; Collaço, B.; Bianchi, M.; Pirchiner, M.

    2015-12-01

    Historically, Brazilian seismology never had a clear strategic vision about how its data should be acquired, evaluated, stored and shared. Without a data management plan, data (for any practical purpose) could be lost, resulting in a non-uniform coverage that will reduce any chance of local and international collaboration, i.e., data will never become scientific knowledge. Since 2009, huge efforts from four different institutions are establishing the new permanent Brazilian Seismographic Network (RSBR), mainly with resources from PETROBRAS, the Brazilian Government oil company. Four FDSN sub-networks currently compose RSBR, with a total of 80 permanent stations. BL and BR codes (from BRASIS subnet) with 47 stations maintained by University of Sao Paulo (USP) and University of Brasilia (UnB) respectively; NB code (RSISNE subnet), with 16 stations deployed by University of Rio Grande do Norte (UFRN); and ON code (RSIS subnet), with 18 stations operated by the National Observatory (ON) in Rio de Janeiro. Most stations transmit data in real-time via satellite or cell-phone links. Each node acquires its own stations locally, and data is real-time shared using SeedLink. Archived data is distributed via ArcLink and/or FDSNWS services. All nodes use the SeisComP3 system for real-time processing and as a levering back-end. Open-source solutions like Seiscomp3 require some homemade tools to be developed, to help solve the most common daily problems of a data management center: local magnitude into the real-time earthquake processor, website plugins, regional earthquake catalog, contribution with ISC catalog, quality-control tools, data request tools, etc. The main data products and community activities include: kml files, data availability plots, request charts, summer school courses, an Open Lab Day and news interviews. Finally, a good effort was made to establish BRASIS sub-network and the whole RSBR as a unified project, that serves as a communication channel between

  15. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    Science.gov (United States)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  16. Our Lunar Destiny: Creating a Lunar Economy

    Science.gov (United States)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  17. Data Delivery Latency Improvements And First Steps Towards The Distributed Computing Of The Caltech/USGS Southern California Seismic Network Earthquake Early Warning System

    Science.gov (United States)

    Stubailo, I.; Watkins, M.; Devora, A.; Bhadha, R. J.; Hauksson, E.; Thomas, V. I.

    2016-12-01

    The USGS/Caltech Southern California Seismic Network (SCSN) is a modern digital ground motion seismic network. It develops and maintains Earthquake Early Warning (EEW) data collection and delivery systems in southern California as well as real-time EEW algorithms. Recently, Behr et al., SRL, 2016 analyzed data from several regional seismic networks deployed around the globe. They showed that the SCSN was the network with the smallest data communication delays or latency. Since then, we have reduced further the telemetry delays for many of the 330 current sites. The latency has been reduced on average from 2-6 sec to 0.4 seconds by tuning the datalogger parameters and/or deploying software upgrades. Recognizing the latency data as one of the crucial parameters in EEW, we have started archiving the per-packet latencies in mseed format for all the participating sites in a similar way it is traditionally done for the seismic waveform data. The archived latency values enable us to understand and document long-term changes in performance of the telemetry links. We can also retroactively investigate how latent the waveform data were during a specific event or during a specific time period. In addition the near-real time latency values are useful for monitoring and displaying the real-time station latency, in particular to compare different telemetry technologies. A future step to reduce the latency is to deploy the algorithms on the dataloggers at the seismic stations and transmit either the final solutions or intermediate parameters to a central processing center. To implement this approach, we are developing a stand-alone version of the OnSite algorithm to run on the dataloggers in the field. This will increase the resiliency of the SCSN to potential telemetry restrictions in the immediate aftermath of a large earthquake, either by allowing local alarming by the single station, or permitting transmission of lightweight parametric information rather than continuous

  18. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  19. Impact of the 2001 Tohoku-oki earthquake to Tokyo Metropolitan area observed by the Metropolitan Seismic Observation network (MeSO-net)

    Science.gov (United States)

    Hirata, N.; Hayashi, H.; Nakagawa, S.; Sakai, S.; Honda, R.; Kasahara, K.; Obara, K.; Aketagawa, T.; Kimura, H.; Sato, H.; Okaya, D. A.

    2011-12-01

    The March 11, 2011 Tohoku-oki earthquake brought a great impact to the Tokyo metropolitan area in both seismological aspect and seismic risk management although Tokyo is located 340 km from the epicenter. The event generated very strong ground motion even in the metropolitan area and resulted severe requifaction in many places of Kanto district. National and local governments have started to discuss counter measurement for possible seismic risks in the area taking account for what they learned from the Tohoku-oki event which is much larger than ever experienced in Japan Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9). An M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that an M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. We will discuss the main results that are obtained in the respective fields which have been integrated to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area; the project has been much improved after the Tohoku event. In order to image seismic structure beneath the Metropolitan Tokyo area we have developed Metropolitan Seismic Observation network (MeSO-net; Hirata et al., 2009). We have installed 296 seismic stations every few km (Kasahara et al., 2011). We conducted seismic

  20. Three-month performance evaluation of the Nanometrics, Inc., Libra Satellite Seismograph System in the northern California Seismic Network

    Science.gov (United States)

    Oppenheimer, David H.

    2000-01-01

    In 1999 the Northern California Seismic Network (NCSN) purchased a Libra satellite seismograph system from Nanometrics, Inc to assess whether this technology was a cost-effective and robust replacement for their analog microwave system. The system was purchased subject to it meeting the requirements, criteria and tests described in Appendix A. In early 2000, Nanometrics began delivery of various components of the system, such as the hub and remote satellite dish and mounting hardware, and the NCSN installed and assembled most equipment in advance of the arrival of Nanometrics engineers to facilitate the configuration of the system. The hub was installed in its permanent location, but for logistical reasons the "remote" satellite hardware was initially configured at the NCSN for testing. During the first week of April Nanometrics engineers came to Menlo Park to configure the system and train NCSN staff. The two dishes were aligned with the satellite, and the system was fully operational in 2 days with little problem. Nanometrics engineers spent the remaining 3 days providing hands-on training to NCSN staff in hardware/software operation, configuration, and maintenance. During the second week of April 2000, NCSN staff moved the entire remote system of digitizers, dish assembly, and mounting hardware to Mammoth Lakes, California. The system was reinstalled at the Mammoth Lakes water treatment plant and communications successfully reestablished with the hub via the satellite on 14 April 2000. The system has been in continuous operation since then. This report reviews the performance of the Libra system for the three-month period 20 April 2000 through 20 July 2000. The purpose of the report is to assess whether the system passed the acceptance tests described in Appendix A. We examine all data gaps reported by NCSN "gap list" software and discuss their cause.

  1. Development of a Lunar Borehole Seismometer

    Science.gov (United States)

    Passmore, P. R.; Siegler, M.; Malin, P. E.; Passmore, K.; Zacny, K.; Avenson, B.; Weber, R. C.; Schmerr, N. C.; Nagihara, S.

    2017-12-01

    Nearly all seismic stations on Earth are buried below the ground. Burial provides controlled temperatures and greater seismic coupling at little cost. This is also true on the Moon and other planetary bodies. Burial of a seismometer under just 1 meter of lunar regolith would provide an isothermal environment and potentially reduce signal scattering noise by an order of magnitude. Here we explain how we will use an existing NASA SBIR and PIDDP funded subsurface heat flow probe deployment system to bury a miniaturized, broadband, optical seismometer 1 meter below the lunar surface. The system is sensitive, low mass and low power. We believe this system offers a compelling architecture for NASA's future seismic exploration of the solar system. We will report on a prototype 3-axis, broadband seismometer package that has been tested under low pressure conditions in lunar-regolith simulant. The deployment mechanism reaches 1m depth in less than 25 seconds. Our designed and tested system: 1) Would be deployed at least 1m below the lunar surface to achieve isothermal conditions without thermal shielding or heaters, increase seismic coupling, and decrease noise. 2) Is small (our prototype probe is a cylinder 50mm in diameter, 36cm long including electronics, potentially as small as 10 cm with sensors only). 3) Is low-mass (each sensor is 0.1 kg, so an extra redundancy 4-component seismograph plus 1.5 kg borehole sonde and recorder weighs less than 2 kg and is feasibly smaller with miniaturized electronics). 4) Is low-power (our complete 3-sensor borehole seismographic system's power consumption is about half a Watt, or 7% of Apollo's 7.1 W average and 30% of the InSight SEIS's 1.5W winter-time heating system). 5) Is broadband and highly sensitive (the "off the shelf" sensors have a wide passband: 0.005-1000 Hz - and high dynamic range of 183 dB (or about 10-9g Hz-1/2, with hopes for simple modifications to be at least an order of magnitude better). Burial also aids the

  2. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  3. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2018-01-01

    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  4. Waveform through the subducted plate under the Tokyo region in Japan observed by a ultra-dense seismic network (MeSO-net) and seismic activity around mega-thrust earthquakes area

    Science.gov (United States)

    Sakai, S.; Kasahara, K.; Nanjo, K.; Nakagawa, S.; Tsuruoka, H.; Morita, Y.; Kato, A.; Iidaka, T.; Hirata, N.; Tanada, T.; Obara, K.; Sekine, S.; Kurashimo, E.

    2009-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates the next great earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. We had started the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan area (2007-2012). Under this project, the construction of the Metropolitan Seismic Observation network (MeSO-net) that consists of about 400 observation sites was started [Kasahara et al., 2008; Nakagawa et al., 2008]. Now, we had 178 observation sites. The correlation of the wave is high because the observation point is deployed at about 2 km intervals, and the identification of the later phase is recognized easily thought artificial noise is very large. We also discuss the relation between a deformation of PSP and intra-plate M7+ earthquakes: the PSP is subducting beneath the Honshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We are going to present a high resolution tomographic image to show low velocity zone which suggests a possible internal failure of the plate; a source region of the M7+ intra-plate earthquake. Our study will contribute a new assessment of the seismic hazard at the Metropolitan area in Japan. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  5. Lunar resource base

    Science.gov (United States)

    Pulley, John; Wise, Todd K.; Roy, Claude; Richter, Phil

    A lunar base that exploits local resources to enhance the productivity of a total SEI scenario is discussed. The goals were to emphasize lunar science and to land men on Mars in 2016 using significant amounts of lunar resources. It was assumed that propulsion was chemical and the surface power was non-nuclear. Three phases of the base build-up are outlined, the robotic emplacement of the first elements is detailed and a discussion of future options is included.

  6. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  7. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  8. Ambient seismic noise levels: A survey of the permanent and temporary seismographic networks in Morocco, North Africa

    Science.gov (United States)

    El Fellah, Y.; Khairy Abd Ed-Aal, A.; El Moudnib, L.; Mimoun, H.; Villasenor, A.; Gallart, J.; Thomas, C.; Elouai, D.; Mimoun, C.; Himmi, M.

    2013-12-01

    Abstract The results, of a conducted study carried out to analyze variations in ambient seismic noise levels at sites of the installed broadband stations in Morocco, North Africa, are obtained. The permanent and the temporary seismic stations installed in Morocco of the Scientific Institute ( IS, Rabat, Morocco), institute de Ciencias de la Tierra Jaume almera (ICTJA, Barcelona, Spain) and Institut für Geophysik (Munster, Germany) were used in this study. In this work, we used 23 broadband seismic stations installed in different structural domains covering all Morocco from south to north. The main purposes of the current study are: 1) to present a catalog of seismic background noise spectra for Morocco obtained from recently installed broadband stations, 2) to assess the effects of experimental temporary seismic vault construction, 3) to determine the time needed for noise at sites to stabilize, 4) to establish characteristics and origin of seismic noise at those sites. We calculated power spectral densities of background noise for each component of each broadband seismometer deployed in the different investigated sites and then compared them with the high-noise model and low-noise Model of Peterson (1993). All segments from day and night local time windows were included in the calculation without parsing out earthquakes. The obtained results of the current study could be used forthcoming to evaluate permanent station quality. Moreover, this study could be considered as a first step to develop new seismic noise models in North Africa not included in Peterson (1993). Keywords Background noise; Power spectral density; Model of Peterson; Scientific Institute; Institute de Ciencias de la Tierra Jaume almera; Institut für Geophysik

  9. Focal mechanisms in the southern Aegean from temporary seismic networks - implications for the regional stress field and ongoing deformation processes

    Science.gov (United States)

    Friederich, W.; Brüstle, A.; Küperkoch, L.; Meier, T.; Lamara, S.; Egelados Working Group

    2014-05-01

    The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini-Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW-SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE-SSW. Intermediate-depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east-west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW-SE compression. Tensional principal stresses in the crust exhibit very good alignment with extensional strain rate principal axes derived from GPS velocities except in volcanic areas, where both

  10. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  11. Lunar-A

    Indian Academy of Sciences (India)

    penetrators will be transmitted to the earth station via the Lunar-A mother spacecraft orbiting at an altitude of about .... to save the power consumption of the Lunar-A penetrator .... and an origin-time versus tidal-phases correlation. (Toksoz et al ...

  12. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  13. Designing a low-cost effective network for monitoring large scale regional seismicity in a soft-soil region (Alsace, France)

    Science.gov (United States)

    Bès de Berc, M.; Doubre, C.; Wodling, H.; Jund, H.; Hernandez, A.; Blumentritt, H.

    2015-12-01

    The Seismological Observatory of the North-East of France (ObSNEF) is developing its monitoring network within the framework of several projects. Among these project, RESIF (Réseau sismologique et géodésique français) allows the instrumentation of broad-band seismic stations, separated by 50-100 km. With the recent and future development of geothermal industrial projects in the Alsace region, the ObSNEF is responsible for designing, building and operating a dense regional seismic network in order to detect and localize earthquakes with both a completeness magnitude of 1.5 and no clipping for M6.0. The realization of the project has to be done prior to the summer 2016Several complex technical and financial constraints constitute such a projet. First, most of the Alsace Région (150x150 km2), particularly the whole Upper Rhine Graben, is a soft-soil plain where seismic signals are dominated by a high frequency noise level. Second, all the signals have to be transmitted in near real-time. And finally, the total cost of the project must not exceed $450,000.Regarding the noise level in Alsace, in order to make a reduction of 40 dB for frequencies above 1Hz, we program to instrument into 50m deep well with post-hole sensor for 5 stations out of 8 plane new stations. The 3 remaining would be located on bedrock along the Vosges piedmont. In order to be sensitive to low-magnitude regional events, we plan to install a low-noise short-period post-hole velocimeter. In order to avoid saturation for high potentiel local events (M6.0 at 10km), this velocimeter will be coupled with a surface strong-motion sensor. Regarding the connectivity, these stations will have no wired network, which reduces linking costs and delays. We will therefore use solar panels and a 3G/GPRS network. The infrastructure will be minimal and reduced to an outdoor box on a secured parcel of land. In addition to the data-logger, we will use a 12V ruggedized computer, hosting a seed-link server for near

  14. New model for the lunar interior to 250 km

    International Nuclear Information System (INIS)

    Piwinskii, A.J.; Duba, A.G.

    1975-01-01

    A new model for the structure of the lunar interior to about a 250-km depth is proposed. It is suggested that this region is composed of plagioclase-bearing rocks, and that the 65-km seismic discontinuity represents the appearance of garnet. A variety of rock types mainly composed of plagioclase, pyroxene, olivine and garnet is envisioned, with at least half of the outer 250 km of the moon made of plagioclase, which dominates the electrical conductivity. This model agrees with recent petrological and electrical conductivity results and does not violate velocity-depth profiles obtained from elastic-wave studies of lunar and terrestrial materials. (U.S.)

  15. A new seismic station in Romania the Bucovina seismic array

    International Nuclear Information System (INIS)

    Grigore, Adrian; Grecu, Bogdan; Ionescu, Constantin; Ghica, Daniela; Popa, Mihaela; Rizescu, Mihaela

    2002-01-01

    Recently, a new seismic monitoring station, the Bucovina Seismic Array, has been established in the northern part of Romania, in a joint effort of the Air Force Technical Applications Center, USA, and the National Institute for Earth Physics, Romania. The array consists of 10 seismic sensors (9 short-period and one broad band) located in boreholes and distributed in a 5 x 5 km area. On July 24, 2002 the official Opening Ceremony of Bucovina Seismic Array took place in the area near the city of Campulung Moldovenesc in the presence of Romanian Prime Minister, Adrian Nastase. Starting with this date, the new seismic monitoring system became fully operational by continuous recording and transmitting data in real-time to the National Data Center of Romania, in Bucharest and to the National Data Center of USA, in Florida. Bucovina Seismic Array, added to the present Seismic Network, will provide much better seismic monitoring coverage of Romania's territory, on-scale recording for weak-to-strong events, and will contribute to advanced seismological studies on seismic hazard and risk, local effects and microzonation, seismic source physics, Earth structure. (authors)

  16. Design and Implementation of a Wireless Sensor Network of GPS-enabled Seismic Sensors for the Study of Glaciers and Ice Sheets

    Science.gov (United States)

    Bilen, S. G.; Anandakrishnan, S.; Urbina, J. V.

    2012-12-01

    In an effort to provide new and improved geophysical sensing capabilities for the study of ice sheets in Antarctica and Greenland, or to study mountain glaciers, we are developing a network of wirelessly interconnected seismic and GPS sensor nodes (called "geoPebbles"), with the primary objective of making such instruments more capable and cost effective. We describe our design methodology, which has enabled us to develop these state-of-the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self-contained, wirelessly connected sensor for collecting seismic measurements and position information. Each node is built around a three-component seismic recorder, which includes an amplifier, filter, and 24-bit analog-to-digital card that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available through a carrier-phase measurement of the L1 GPS signal at an absolute accuracy of better than a microsecond. Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (up to eight 10-bit channels at low sample rates). We will report on current efforts to test this new instrument and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects. Geophysical experiments in the polar region are logistically difficult. With the geoPebble system, the cost of doing today's experiments (low-resolution, 2D) will be significantly reduced, and the cost and feasibility of doing tomorrow's experiments (integrated seismic, positioning, 3D, etc.) will be reasonable. Sketch of an experiment with geoPebbles scattered on the surface of the ice sheet. The seismic

  17. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution

    Science.gov (United States)

    Khan, A.; Connolly, J. A. D.; Pommier, A.; Noir, J.

    2014-10-01

    Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of ˜1200 km (≥1600°C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of ˜4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (˜16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm3). Melt densities computed here range from 3.25 to 3.45 g/cm3 bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  18. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  19. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  20. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  1. Along-strike Variations in the Himalayas Illuminated by the Aftershock Sequence of the 2015 Mw 7.8 Gorkha Earthquake Using the NAMASTE Local Seismic Network

    Science.gov (United States)

    Mendoza, M.; Ghosh, A.; Karplus, M. S.; Nabelek, J.; Sapkota, S. N.; Adhikari, L. B.; Klemperer, S. L.; Velasco, A. A.

    2016-12-01

    As a result of the 2015 Mw 7.8 Gorkha earthquake, more than 8,000 people were killed from a combination of infrastructure failure and triggered landslides. This earthquake produced 4 m of peak co-seismic slip as the fault ruptured 130 km east under densely populated cities, such as Kathmandu. To understand earthquake dynamics in this part of the Himalayas and help mitigate similar future calamities by the next destructive event, it is imperative to study earthquake activities in detail and improve our understanding of the source and structural complexities. In response to the Gorkha event, multiple institutions developed and deployed a 10-month long dense seismic network called NAMASTE. It blanketed a 27,650 km2 area, mainly covering the rupture area of the Gorkha earthquake, in order to capture the dynamic sequence of aftershock behavior. The network consisted of a mix of 45 broadband, short-period, and strong motion sensors, with an average spacing of 20 km. From the first 6 months of data, starting approximately 1.5 after the mainshock, we develop a robust catalog containing over 3,000 precise earthquake locations, and local magnitudes that range between 0.3 and 4.9. The catalog has a magnitude of completeness of 1.5, and an overall low b-value of 0.78. Using the HypoDD algorithm, we relocate earthquake hypocenters with high precision, and thus illustrate the fault geometry down to depths of 25 km where we infer the location of the gently-dipping Main Frontal Thrust (MFT). Above the MFT, the aftershocks illuminate complex structure produced by relatively steeply dipping faults. Interestingly, we observe sharp along-strike change in the seismicity pattern. The eastern part of the aftershock area is significantly more active than the western part. The change in seismicity may reflect structural and/or frictional lateral heterogeneity in this part of the Himalayan fault system. Such along-strike variations play an important role in rupture complexities and

  2. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution (Invited)

    Science.gov (United States)

    Khan, A.; Connolly, J. A.; Pommier, A.

    2013-12-01

    Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  3. Contribution of SELENE-2 geodetic measurements to constrain the lunar internal structure

    Science.gov (United States)

    Matsumoto, K.; Kikuchi, F.; Yamada, R.; Iwata, T.; Kono, Y.; Tsuruta, S.; Hanada, H.; Goossens, S. J.; Ishihara, Y.; Kamata, S.; Sasaki, S.

    2012-12-01

    Internal structure and composition of the Moon provide important clue and constraints on theories for how the Moon formed and evolved. The Apollo seismic network has contributed to the internal structure modeling. Efforts have been made to detect the lunar core from the noisy Apollo data (e.g., [1], [2]), but there is scant information about the structure below the deepest moonquakes at about 1000 km depth. On the other hand, there have been geodetic studies to infer the deep structure of the Moon. For example, LLR (Lunar Laser Ranging) data analyses detected a displacement of the lunar pole of rotation, indicating that dissipation is acting on the rotation arising from a fluid core [3]. Bayesian inversion using geodetic data (such as mass, moments of inertia, tidal Love numbers k2 and h2, and quality factor Q) also suggests a fluid core and partial melt in the lower mantle region [4]. Further improvements in determining the second-degree gravity coefficients (which will lead to better estimates of moments of inertia) and the Love number k2 will help us to better constrain the lunar internal structure. Differential VLBI (Very Long Baseline Interferometry) technique, which was used in the Japanese lunar exploration mission SELENE (Sept. 2007 - June 2009), is expected to contribute to better determining the second-degree potential Love number k2 and low-degree gravity coefficients. SELENE will be followed by the future lunar mission SELENE-2 which will carry both a lander and an orbiter. We propose to put the SELENE-type radio sources on these spacecraft in order to accurately estimate k2 and the low-degree gravity coefficients. By using the same-beam VLBI tracking technique, these parameters will be retrieved through precision orbit determination of the orbiter with respect to the lander which serves as a reference. The VLBI mission with the radio sources is currently one of the mission candidates for SELENE-2. We have conducted a preliminary simulation study on the

  4. Seismic facies; Facies sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Paulo Roberto Schroeder [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao Corporativo. Gerencia de Reservas e Reservatorios]. E-mail: johann@petrobras.com.br

    2004-11-01

    The method presented herein describes the seismic facies as representations of curves and vertical matrixes of the lithotypes proportions. The seismic facies are greatly interested in capturing the spatial distributions (3D) of regionalized variables, as for example, lithotypes, sedimentary facies groups and/ or porosity and/or other properties of the reservoirs and integrate them into the 3D geological modeling (Johann, 1997). Thus when interpreted as curves or vertical matrixes of proportions, seismic facies allow us to build a very important tool for structural analysis of regionalized variables. The matrixes have an important application in geostatistical modeling. In addition, this approach provides results about the depth and scale of the wells profiles, that is, seismic data is integrated to the characterization of reservoirs in depth maps and in high resolution maps. The link between the different necessary technical phases involved in the classification of the segments of seismic traces is described herein in groups of predefined traces of two approaches: a) not supervised and b) supervised by the geological knowledge available on the studied reservoir. The multivariate statistical methods used to obtain the maps of the seismic facies units are interesting tools to be used to provide a lithostratigraphic and petrophysical understanding of a petroleum reservoir. In the case studied these seismic facies units are interpreted as representative of the depositional system as a part of the Namorado Turbiditic System, Namorado Field, Campos Basin.Within the scope of PRAVAP 19 (Programa Estrategico de Recuperacao Avancada de Petroleo - Strategic Program of Advanced Petroleum Recovery) some research work on algorithms is underway to select new optimized attributes to apply seismic facies. One example is the extraction of attributes based on the wavelet transformation and on the time-frequency analysis methodology. PRAVAP is also carrying out research work on an

  5. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module

    Science.gov (United States)

    1969-01-01

    Astronauts Neil A. Armstrong (in center) commander; and Edwin E. Aldrin Jr. (on right), lunar module pilot, are seen standing near their Lunar Module in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California. President Richard M. Nixon had just spoken to the two astronauts by radio and Aldrin, a colonel in the U.S. Air Force, is saluting the president.

  6. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  7. Consolidated Lunar Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  8. Seismic Ecology

    Science.gov (United States)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  9. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  10. Proterozoic structure, cambrian rifting, and younger faulting as revealed by a regional seismic reflection network in the Southern Illinois Basin

    Science.gov (United States)

    Potter, C.J.; Drahovzal, James A.; Sargent, M.L.; McBride, J.H.

    1997-01-01

    Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some

  11. Beneficiation of lunar ilmenite

    Science.gov (United States)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  12. Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  13. Building habitats on the Moon engineering approaches to lunar settlements

    CERN Document Server

    Benaroya, Haym

    2018-01-01

    Designing a habitat for the lunar surface? You will need to know more than structural engineering. There are the effects of meteoroids, radiation, and low gravity. Then there are the psychological and psychosocial aspects of living in close quarters, in a dangerous environment, far away from home. All these must be considered when the habitat is sized, materials specified, and structure designed. This book provides an overview of various concepts for lunar habitats and structural designs and characterizes the lunar environment - the technical and the nontechnical. The designs take into consideration psychological comfort, structural strength against seismic and thermal activity, as well as internal pressurization and 1/6 g. Also discussed are micrometeoroid modeling, risk and redundancy as well as probability and reliability, with an introduction to analytical tools that can be useful in modeling uncertainties.

  14. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  15. The lunar moho and the internal structure of the Moon: A geophysical perspective

    DEFF Research Database (Denmark)

    Khan, A.; Pommier, A.; Neumann, G. A.

    2013-01-01

    gravity and topography data that have and continue to be collected with a series of recent lunar orbiter missions. Many of these also carry onboard multi-spectral imaging equipment that is able to map out major-element concentration and surface mineralogy to high precision. These results coupled...... that the Earth and Moon are compositionally distinct. Continued analysis of ground-based laser ranging data and recent discovery of possible core reflected phases in the Apollo lunar seismic data strengthens the case for a small dense lunar core with a radius of

  16. Shallow moonquakes - Depth, distribution and implications as to the present state of the lunar interior

    Science.gov (United States)

    Nakamura, Y.; Latham, G. V.; Dorman, H. J.; Ibrahim, A.-B. K.; Koyama, J.; Horvath, P.

    1979-01-01

    The observed seismic amplitudes of HFT (high-frequency teleseismic) events do not vary with distance as expected for surface sources, but are consistent with sources in the upper mantle of the moon. Thus, the upper mantle of the moon is the only zone where tectonic stresses deriving from differential thermal contraction and expansion of the lunar interior are presently high enough to cause moonquakes. The distribution of shallow moonquake epicenters suggests a possible correlation with impact basins, implying a lasting tectonic influence of impact basins long after their formation. The finite depths now assigned to these shallow moonquakes necessitate further revision to the seismic structural model of the lunar interior.

  17. The MeSO-net (Metropolitan Seismic Observation network) confronts the Pacific Coast of Tohoku Earthquake, Japan (Mw 9.0)

    Science.gov (United States)

    Kasahara, K.; Nakagawa, S.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Morita, Y.; Tsuruoka, H.; Kurashimo, E.; Obara, K.; Hirata, N.; Aketagawa, T.; Kimura, H.

    2011-12-01

    On April 2007, we have launched the special project for earthquake disaster mitigation in the Tokyo Metropolitan area (Fiscal 2007-2011). As a part of this project, construction of the MeSO-net (Metropolitan Seismic Observation network) has been completed, with about 300 stations deployed at mainly elementary and junior-high schools with an interval of about 5 km in space. This results in a highly dense network that covers the metropolitan area. To achieve stable seismic observation with lower surface ground noise, relative to a measurement on the surface, sensors of all stations were installed in boreholes at a depth of about 20m. The sensors have a wide dynamic range (135dB) and a wide frequency band (DC to 80Hz). Data are digitized with 200Hz sampling and telemetered to the Earthquake Research Institute, University of Tokyo. The MeSO-net that can detect and locate most earthquakes with magnitudes above 2.5 provides a unique baseline in scientific and engineering researches on the Tokyo metropolitan area, as follows. One of the main contributions is to greatly improve the image of the Philippine Sea plate (PSP) (Nakagawa et al., 2010) and provides an accurate estimation of the plate boundaries between the PSP and the Pacific plate, allowing us to possibly discuss clear understanding of the relation between the PSP deformation and M7+ intra-slab earthquake generation. Also, the latest version of the plate model in the metropolitan area, proposed by our project, attracts various researchers, comparing with highly-accurate solutions of fault mechanism, repeating earthquakes, etc. Moreover, long-periods ground motions generated by the 2011 earthquake off the Pacific coast of Tohoku earthquake (Mw 9.0) were observed by the MeSO-net and analyzed to obtain the Array Back-Projection Imaging of this event (Honda et al., 2011). As a result, the overall pattern of the imaged asperities coincides well with the slip distribution determined based on other waveform inversion

  18. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  19. Telecast of Astronauts Armstrong and Aldrin by the Lunar Module ladder

    Science.gov (United States)

    1969-01-01

    Astronauts Neil A. Armstrong (on left), commander; and Edwin E. Aldrin Jr., lunar module pilot, are seen standing by the Lunar Module ladder in this black and white reproduction taken from a telecast by the Apollo 11 lunar surface television camera during the Apollo 11 extravehicular activity. This picture was made from a televised image received at the Deep Space Network tracking station at Goldstone, California.

  20. Lunar geophysics, geodesy, and dynamics

    Science.gov (United States)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  1. The Future Lunar Flora Colony

    Science.gov (United States)

    Goel, E. G.; Guven, U. G.

    2017-10-01

    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  2. Past, present and future improvements of the efficiency of the local seismic network of the geothermal reservoir of Casaglia, Ferrara (North Italy)

    Science.gov (United States)

    Abu Zeid, Nasser; Dall'olio, Lorella; Bignardi, Samuel; Santarato, Giovanni

    2017-04-01

    The microseismic network of Ferrara was established, in the beginning of 1990 and started its monitoring activity few months before the start of reservoir exploitation, for residential and industrial heating purposes, of the Casaglia geothermal site characterised by fluids of 100 °C: February 1990. The purpose was to monitor the natural seismicity so as to be able to discriminate it from possible induced ones due to exploitation activities which consists of a closed loop system composed of three boreholes: one for re-injection "Casaglia001" and two for pumping hot fluids. The microseismic network started, and still today, its monitoring activities with five vertical 2 Hz and one 3D seismometers model Mark products L4A/C distributed at reciprocal distances of about 5 to 7 km around the reservoir covering an area of 100 km^2. Since its beginning the monitoring activities proceeded almost continuously. However, due to technological limitations of the network HW, although sufficient to capture small magnitude earthquakes (near zero), the exponential increase of anthropogenic and electromagnetic noise degraded the monitoring capability of the network especially for small ones. To this end and as of 2007, the network control passed to the University of Ferrara, Department of Physics and Earth Sciences, the network HD for digitalisation and continuous data transmission was replaced with GURALP equipment's.. Since its establishment, few earthquakes occurred in the geothermal area with Ml 5 km. However, following the Emilia sequence of 2012, and as an example we present and discuss the local earthquake (Ml 2.5) occurred in Casaglia (Ferrara, Italy) on September 3, 2015, in the vicinity of the borehole Casaglia1 used for fluid re-injection. In this case, both INGV national network and OGS NE-Italy regional networks provided similar information, with hypocenter at about 5-6 km North of the reservoir edge and about 16 km of depth. However, the same event, relocated by using

  3. Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was

  4. Lunar and Vesta Web Portals

    Science.gov (United States)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  5. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  6. Data quality of seismic records from the Tohoku, Japan earthquake as recorded across the Albuquerque Seismological Laboratory networks

    Science.gov (United States)

    Ringler, A.T.; Gee, L.S.; Marshall, B.; Hutt, C.R.; Storm, T.

    2012-01-01

    Great earthquakes recorded across modern digital seismographic networks, such as the recent Tohoku, Japan, earthquake on 11 March 2011 (Mw = 9.0), provide unique datasets that ultimately lead to a better understanding of the Earth's structure (e.g., Pesicek et al. 2008) and earthquake sources (e.g., Ammon et al. 2011). For network operators, such events provide the opportunity to look at the performance across their entire network using a single event, as the ground motion records from the event will be well above every station's noise floor.

  7. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  8. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    Science.gov (United States)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification

  9. Lunar Riometry: Proof-of-Concept Instrument Package

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.

    2012-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  10. The Unconstrained Event Bulletin (UEB) for the IMS Seismic Network Spaning the Period May 15-28, 2010: a New Resource for Algorithm Development and Testing

    Science.gov (United States)

    Brogan, R.; Young, C. J.; Ballard, S.

    2017-12-01

    A major problem with developing new data processing algorithms for seismic event monitoring is the lack of standard, high-quality "ground-truth" data sets to test against. The unfortunate effect of this is that new algorithms are often developed and tested with new data sets, making comparison of algorithms difficult and subjective. In an effort towards resolving this problem, we have developed the Unconstrained Event Bulletin (UEB), a ground-truth data set from the International Monitoring System (IMS) primary and auxiliary seismic networks for a two-week period in May 2010. All UEB analysis was performed by the same expert, who has more than 30 years of experience analyzing seismic data for nuclear explosion monitoring. We used the most complete International Data Centre (IDC) analyst-review event bulletin (the Late Event Bulletin or LEB) as a starting point for this analysis. To make the UEB more complete, we relaxed the minimum event definite criteria to the level of a pair of P-type and an S-type phases at a single station and using azimuth/slowness as defining. To add even more events that our analyst recognized and didn't want to omit, in rare cases, events were constructed using only 1 P-phase. Perhaps most importantly, on average our analyst spent more than 60 hours per day of data, far more than was possible in the production of the LEB. The result of all this was that while the LEB had 2,101 LEB events for the 2-week time period, we ended up with 11,435 events in the UEB, an increase of over 400%. New events are located all over the world and include both earthquakes and manmade events such as mining explosions. Our intent is to make our UEB data set openly available for all researchers to use for testing detection, correlation, and location algorithms, thus making it much easier to objectively compare different research efforts. Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

  11. Remotely Triggered Earthquakes Recorded by EarthScope's Transportable Array and Regional Seismic Networks: A Case Study Of Four Large Earthquakes

    Science.gov (United States)

    Velasco, A. A.; Cerda, I.; Linville, L.; Kilb, D. L.; Pankow, K. L.

    2013-05-01

    Changes in field stress required to trigger earthquakes have been classified in two basic ways: static and dynamic triggering. Static triggering occurs when an earthquake that releases accumulated strain along a fault stress loads a nearby fault. Dynamic triggering occurs when an earthquake is induced by the passing of seismic waves from a large mainshock located at least two or more fault lengths from the epicenter of the main shock. We investigate details of dynamic triggering using data collected from EarthScope's USArray and regional seismic networks located in the United States. Triggered events are identified using an optimized automated detector based on the ratio of short term to long term average (Antelope software). Following the automated processing, the flagged waveforms are individually analyzed, in both the time and frequency domains, to determine if the increased detection rates correspond to local earthquakes (i.e., potentially remotely triggered aftershocks). Here, we show results using this automated schema applied to data from four large, but characteristically different, earthquakes -- Chile (Mw 8.8 2010), Tokoku-Oki (Mw 9.0 2011), Baja California (Mw 7.2 2010) and Wells Nevada (Mw 6.0 2008). For each of our four mainshocks, the number of detections within the 10 hour time windows span a large range (1 to over 200) and statistically >20% of the waveforms show evidence of anomalous signals following the mainshock. The results will help provide for a better understanding of the physical mechanisms involved in dynamic earthquake triggering and will help identify zones in the continental U.S. that may be more susceptible to dynamic earthquake triggering.

  12. Constraining the volatile budget of the lunar interior

    Science.gov (United States)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The

  13. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  14. The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters

    Science.gov (United States)

    Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei

    2008-07-01

    The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.

  15. The Sooner Lunar Schooner: Lunar engineering education

    Science.gov (United States)

    Miller, D. P.; Hougen, D. F.; Shirley, D.

    2003-06-01

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  16. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  17. Lunar Phases Planisphere

    Science.gov (United States)

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  18. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  19. Indigenous lunar construction materials

    Science.gov (United States)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  20. Leveraging Educational, Research and Facility Expertise to Improve Global Seismic Monitoring: Preparing a Guide on Sustainable Networks

    Science.gov (United States)

    Nybade, A.; Aster, R.; Beck, S.; Ekstrom, G.; Fischer, K.; Lerner-Lam, A.; Meltzer, A.; Sandvol, E.; Willemann, R. J.

    2008-12-01

    Building a sustainable earthquake monitoring system requires well-informed cooperation between commercial companies that manufacture components or deliver complete systems and the government or other agencies that will be responsible for operating them. Many nations or regions with significant earthquake hazard lack the financial, technical, and human resources to establish and sustain permanent observatory networks required to return the data needed for hazard mitigation. Government agencies may not be well- informed about the short-term and long-term challenges of managing technologically advanced monitoring systems, much less the details of how they are built and operated. On the relatively compressed time scale of disaster recovery efforts, it can be difficult to find a reliable, disinterested source of information, without which government agencies may be dependent on partial information. If system delivery fails to include sufficient development of indigenous expertise, the performance of local and regional networks may decline quickly, and even data collected during an early high-performance period may be degraded or lost. Drawing on unsurpassed educational capabilities of its members working in close cooperation with its facility staff, IRIS is well prepared to contribute to sustainability through a wide variety of training and service activities that further promote standards for network installation, data exchange protocols, and free and open access to data. Members of the Consortium and staff of its Core Programs together could write a guide on decisions about network design, installation and operation. The intended primary audience would be government officials seeking to understand system requirements, the acquisition and installation process, and the expertise needed operate a system. The guide would cover network design, procurement, set-up, data use and archiving. Chapters could include advice on network data processing, archiving data (including

  1. Seismic sequences in the Sombrero Seismic Zone

    Science.gov (United States)

    Pulliam, J.; Huerfano, V. A.; ten Brink, U.; von Hillebrandt, C.

    2007-05-01

    The northeastern Caribbean, in the vicinity of Puerto Rico and the Virgin Islands, has a long and well-documented history of devastating earthquakes and tsunamis, including major events in 1670, 1787, 1867, 1916, 1918, and 1943. Recently, seismicity has been concentrated to the north and west of the British Virgin Islands, in the region referred to as the Sombrero Seismic Zone by the Puerto Rico Seismic Network (PRSN). In the combined seismicity catalog maintained by the PRSN, several hundred small to moderate magnitude events can be found in this region prior to 2006. However, beginning in 2006 and continuing to the present, the rate of seismicity in the Sombrero suddenly increased, and a new locus of activity developed to the east of the previous location. Accurate estimates of seismic hazard, and the tsunamigenic potential of seismic events, depend on an accurate and comprehensive understanding of how strain is being accommodated in this corner region. Are faults locked and accumulating strain for release in a major event? Or is strain being released via slip over a diffuse system of faults? A careful analysis of seismicity patterns in the Sombrero region has the potential to both identify faults and modes of failure, provided the aggregation scheme is tuned to properly identify related events. To this end, we experimented with a scheme to identify seismic sequences based on physical and temporal proximity, under the assumptions that (a) events occur on related fault systems as stress is refocused by immediately previous events and (b) such 'stress waves' die out with time, so that two events that occur on the same system within a relatively short time window can be said to have a similar 'trigger' in ways that two nearby events that occurred years apart cannot. Patterns that emerge from the identification, temporal sequence, and refined locations of such sequences of events carry information about stress accommodation that is obscured by large clouds of

  2. The International Lunar Decade Declaration

    Science.gov (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  3. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  4. Electrical conductivity of pyroxene which contains trivalent cations: Laboratory measurements and the lunar temperature profile

    International Nuclear Information System (INIS)

    Huebner, J.S.; Duba, A.; Wiggins, L.B.

    1979-01-01

    Three natural orthopyroxene single crystals, measured in the laboratory over the temperature range 850 0 --1200 0 C, are more than 1/2 order of magnitude more electrically conducting than previously measured crystals. Small concentrations (1--2%) of Al 2 O 3 and Cr 2 O 3 present in these crystals may be responsible for their relatively high conductivity. Such pyroxenes, which contain trivalent elements, are more representative of pyroxenes expected to be present in the lunar mantle than those which have been measured by other investigators. The new conductivity values for pyroxene are responsible for a relatively large bulk conductivity calculated for (polymineralic) lunar mantle assemblages. The results permit a somewhat cooler lunar temperature profile than previously proposed. Such lower profiles, several hundred degrees Celsius below the solidus, are quite consistent with low seismic attenuation and deep moonquakes observed in the lunar mantle

  5. Seismic Studies

    Energy Technology Data Exchange (ETDEWEB)

    R. Quittmeyer

    2006-09-25

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground

  6. Seismic Studies

    International Nuclear Information System (INIS)

    R. Quittmeyer

    2006-01-01

    This technical work plan (TWP) describes the efforts to develop and confirm seismic ground motion inputs used for preclosure design and probabilistic safety 'analyses and to assess the postclosure performance of a repository at Yucca Mountain, Nevada. As part of the effort to develop seismic inputs, the TWP covers testing and analyses that provide the technical basis for inputs to the seismic ground-motion site-response model. The TWP also addresses preparation of a seismic methodology report for submission to the U.S. Nuclear Regulatory Commission (NRC). The activities discussed in this TWP are planned for fiscal years (FY) 2006 through 2008. Some of the work enhances the technical basis for previously developed seismic inputs and reduces uncertainties and conservatism used in previous analyses and modeling. These activities support the defense of a license application. Other activities provide new results that will support development of the preclosure, safety case; these results directly support and will be included in the license application. Table 1 indicates which activities support the license application and which support licensing defense. The activities are listed in Section 1.2; the methods and approaches used to implement them are discussed in more detail in Section 2.2. Technical and performance objectives of this work scope are: (1) For annual ground motion exceedance probabilities appropriate for preclosure design analyses, provide site-specific seismic design acceleration response spectra for a range of damping values; strain-compatible soil properties; peak motions, strains, and curvatures as a function of depth; and time histories (acceleration, velocity, and displacement). Provide seismic design inputs for the waste emplacement level and for surface sites. Results should be consistent with the probabilistic seismic hazard analysis (PSHA) for Yucca Mountain and reflect, as appropriate, available knowledge on the limits to extreme ground motion at

  7. Seismic protection

    International Nuclear Information System (INIS)

    Herbert, R.

    1988-01-01

    To ensure that a nuclear reactor or other damage-susceptible installation is, so far as possible, tripped and already shut down before the arrival of an earthquake shock at its location, a ring of monitoring seismic sensors is provided around it, each sensor being spaced from it by a distance (possibly several kilometres) such that (taking into account the seismic-shock propagation velocity through the intervening ground) a shock monitored by the sensor and then advancing to the installation site will arrive there later than a warning signal emitted by the sensor and received at the installation, by an interval sufficient to allow the installation to trip and shut down, or otherwise assume an optimum anti-seismic mode, in response to the warning signal. Extra sensors located in boreholes may define effectively a three-dimensional (hemispherical) sensing boundary rather than a mere two-dimensional ring. (author)

  8. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  9. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  10. Seismic Tomography in Reykjanes , SW Iceland

    NARCIS (Netherlands)

    Jousset, Philippe; Blanck, Hanna; Franke, Steven; Metz, M.; Águstsson, K.; Verdel, Arie; Ryberg, T.; Hersir, Gylfi Páll; Weemstra, C.; Bruhn, D.F.; Flovenz, Olafur G

    2016-01-01

    We present tomographic results obtained around geothermal reservoirs using seismic data recorded both on-land Reykjanes, SW-Iceland and offshore along Reykjanes Ridge. We gathered records from a network of 83 seismic stations (including 21 Ocean Bottom Seismometers) deployed between April 2014 and

  11. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  12. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  13. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  14. International Lunar Decade Status

    Science.gov (United States)

    Beldavs, VZ; Crisafulli, J.; Dunlop, D.; Foing, B.

    2017-09-01

    The International Lunar Decade is a global decadal event designed to provide a framework for strategically directed international cooperation for permanent return to the Moon. To be launched July 20, 2019, the 50th anniversary of the giant leap for mankind marked by Neil Armstrong's first step on the Moon, the ILD launch will include events around the world to celebrate space exploration, science, and the expansion of humanity into the Solar System. The ILD framework links lunar exploration and space sciences with the development of enabling technologies, infrastructure, means of financing, laws and policies aimed at lowering the costs and risks of venturing into space. Dramatically reduced costs will broaden the range of opportunities available in space and widen access to space for more states, companies and people worldwide. The ILD is intended to bring about the efflorescence of commercial business based on space resources from the Moon, asteroids, comets and other bodies in the Solar System.

  15. Lunar Core and Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  16. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  17. The Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  18. Lunar concrete for construction

    Science.gov (United States)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  19. First lunar outpost

    Science.gov (United States)

    Andino, Aureo F.; Silva, Daniel; Ortiz, Nelson; Alvarez, Omar; Colon, Julio A.; Colon, Myrelle; Diaz, Alicia; Escobar, Xochiquetzal Y.; Garcia, Alberto; Gonzalez, Isabel C.

    1992-01-01

    Design and research efforts at the University of Puerto Rico have focused on the evaluation and refinement of the Habitability Criteria for a prolonged human presence in space during the last four years. Living quarters for a Mars mission and a third generation lunar base concept were proposed. This academic year, 1991-92, work on further refinement of the habitability criteria and design of partial gravity furniture was carried on. During the first semester, design alternatives for furniture necessary in a habitat design optimized for lunar and Martian environments were developed. Designs are based on recent research data from lunar and Mars gravity simulations, and current NASA standards. Artifacts will be submitted to NASA architects to be tested in KC-135 flights. Test findings will be submitted for incorporation in future updates to NASA habitat design standards. Second semester work was aimed at integrating these findings into the First Lunar Outpost (FLO), a mission scenario currently being considered by NASA. The mission consists of a manned return to the moon by crews of four astronauts for periods of 45 days. The major hardware components of the mission are as follows: (1) a Crew Module for the delivery of the crew and their supplies, and (2) the Habitat Module, which will arrive on the Moon unmanned. Our design efforts concentrated on this Habitat Module and on application of habitability criteria. Different geometries for the pressure vessel and their impact on the interior architecture were studied. Upon the selection of a geometry, a more detailed analysis of the interior design was performed, taking into consideration the reduced gravity, and the protection against radiation, micrometeorites, and the extreme temperature variation. A proposal for a FLO was submitted by the students, consisting essentially of a 24-feet (7.3 m.) by 35-feet (10.67 m) high vertical cylinder with work areas, crew quarters, galley, wardroom, leisure facilities, health

  20. Seismic hazard analysis of Sinop province, Turkey using ...

    Indian Academy of Sciences (India)

    1997-01-11

    Jan 11, 1997 ... 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on ... Considering the development and improvement ... It is one of the most populated cities in the coun- ... done as reliably as the seismic hazard of region per- .... Seismic safety work of underground networks was.

  1. Religion and Lunar Exploration

    Science.gov (United States)

    Pop, V.

    1969: The Eagle lands on the Moon. A moment that would not only mark the highest scientific achievement of all times, but would also have significant religious impli- cations. While the island of Bali lodges a protest at the United Nations against the US for desecrating a sacred place, Hopi Indians celebrate the fulfilment of an ancient prophecy that would reveal the "truth of the Sacred Ways". The plaque fastened to the Eagle - "We Came in Peace for All Mankind" would have contained the words "under God" as directed by the US president, if not for an assistant administrator at NASA that did not want to offend any religion. In the same time, Buzz Aldrin takes the Holy Communion on the Moon, and a Bible is left there by another Apollo mission - not long after the crew of Apollo 8 reads a passage from Genesis while circling the Moon. 1998: Navajo Indians lodge a protest with NASA for placing human ashes aboard the Lunar Prospector, as the Moon is a sacred place in their religion. Past, present and fu- ture exploration of the Moon has significant religious and spiritual implications that, while not widely known, are nonetheless important. Is lunar exploration a divine duty, or a sacrilege? This article will feature and thoroughly analyse the examples quoted above, as well as other facts, as for instance the plans of establishing lunar cemeteries - welcomed by some religions, and opposed by others.

  2. Lunar sample studies

    International Nuclear Information System (INIS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility

  3. Modeling lunar volcanic eruptions

    Science.gov (United States)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  4. Earthquake Early Warning: Real-time Testing of an On-site Method Using Waveform Data from the Southern California Seismic Network

    Science.gov (United States)

    Solanki, K.; Hauksson, E.; Kanamori, H.; Wu, Y.; Heaton, T.; Boese, M.

    2007-12-01

    We have implemented an on-site early warning algorithm using the infrastructure of the Caltech/USGS Southern California Seismic Network (SCSN). We are evaluating the real-time performance of the software system and the algorithm for rapid assessment of earthquakes. In addition, we are interested in understanding what parts of the SCSN need to be improved to make early warning practical. Our EEW processing system is composed of many independent programs that process waveforms in real-time. The codes were generated by using a software framework. The Pd (maximum displacement amplitude of P wave during the first 3sec) and Tau-c (a period parameter during the first 3 sec) values determined during the EEW processing are being forwarded to the California Integrated Seismic Network (CISN) web page for independent evaluation of the results. The on-site algorithm measures the amplitude of the P-wave (Pd) and the frequency content of the P-wave during the first three seconds (Tau-c). The Pd and the Tau-c values make it possible to discriminate between a variety of events such as large distant events, nearby small events, and potentially damaging nearby events. The Pd can be used to infer the expected maximum ground shaking. The method relies on data from a single station although it will become more reliable if readings from several stations are associated. To eliminate false triggers from stations with high background noise level, we have created per station Pd threshold configuration for the Pd/Tau-c algorithm. To determine appropriate values for the Pd threshold we calculate Pd thresholds for stations based on the information from the EEW logs. We have operated our EEW test system for about a year and recorded numerous earthquakes in the magnitude range from M3 to M5. Two recent examples are a M4.5 earthquake near Chatsworth and a M4.7 earthquake near Elsinore. In both cases, the Pd and Tau-c parameters were determined successfully within 10 to 20 sec of the arrival of the

  5. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    Science.gov (United States)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  6. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  7. Seismic Symphonies

    Science.gov (United States)

    Strinna, Elisa; Ferrari, Graziano

    2015-04-01

    The project started in 2008 as a sound installation, a collaboration between an artist, a barrel organ builder and a seismologist. The work differs from other attempts of sound transposition of seismic records. In this case seismic frequencies are not converted automatically into the "sound of the earthquake." However, it has been studied a musical translation system that, based on the organ tonal scale, generates a totally unexpected sequence of sounds which is intended to evoke the emotions aroused by the earthquake. The symphonies proposed in the project have somewhat peculiar origins: they in fact come to life from the translation of graphic tracks into a sound track. The graphic tracks in question are made up by copies of seismograms recorded during some earthquakes that have taken place around the world. Seismograms are translated into music by a sculpture-instrument, half a seismograph and half a barrel organ. The organ plays through holes practiced on paper. Adapting the documents to the instrument score, holes have been drilled on the waves' peaks. The organ covers about three tonal scales, starting from heavy and deep sounds it reaches up to high and jarring notes. The translation of the seismic records is based on a criterion that does match the highest sounds to larger amplitudes with lower ones to minors. Translating the seismogram in the organ score, the larger the amplitude of recorded waves, the more the seismogram covers the full tonal scale played by the barrel organ and the notes arouse an intense emotional response in the listener. Elisa Strinna's Seismic Symphonies installation becomes an unprecedented tool for emotional involvement, through which can be revived the memory of the greatest disasters of over a century of seismic history of the Earth. A bridge between art and science. Seismic Symphonies is also a symbolic inversion: the instrument of the organ is most commonly used in churches, and its sounds are derived from the heavens and

  8. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the

  9. Post-seismic relaxation from geodetic and seismic data

    Directory of Open Access Journals (Sweden)

    Mikhail V. Rodkin

    2017-01-01

    Full Text Available We have examined the aftershock sequence and the post-seismic deformation process of the Parkfield earthquake (2004, M = 6, California, USA source area using GPS data. This event was chosen because of the possibility of joint analysis of data from the rather dense local GPS network (from SOPAC Internet archive and of the availability of the rather detailed aftershock sequence data (http://www.ncedc.org/ncedc/catalog-search.html. The relaxation process of post-seismic deformation prolongs about the same 400 days as the seismic aftershock process does. Thus, the aftershock process and the relaxation process in deformation could be the different sides of the same process. It should be noted that the ratio of the released seismic energy and of the GPS obtained deformation is quite different for the main shock and for the aftershock stage. The ratio of the released seismic energy to the deformation value decreases essentially for the post-shock process. The similar change in the seismic energy/deformation value ratio is valid in a few other strong earthquakes. Thus, this decrease seems typical of aftershock sequences testifying for decrease of ratio of elastic to inelastic deformation in the process of post-shock relaxation when the source area appears to be mostly fractured after the main shock occurs, but the healing process had no yet sufficient time to develop.

  10. Canadian seismic agreement

    International Nuclear Information System (INIS)

    Wetmiller, R.J.; Lyons, J.A.; Shannon, W.E.; Munro, P.S.; Thomas, J.T.; Andrew, M.D.; Lamontagne, M.; Wong, C.; Anglin, F.M.; Plouffe, M.; Lapointe, S.P.; Adams, J.; Drysdale, J.A.

    1990-04-01

    This is the twenty-first progress report under the agreement entitled Canadian Seismic Agreement between the US Nuclear Regulatory Commission (NRC) and the Canadian Commercial Corporation. Activities undertaken by the Geophysics Division of the Geological Survey of Canada (GD/GSC) during the period from July 01, 1988 to June 30, 1989 and supported in part by the NRC agreement are described below under four headings; Eastern Canada Telemetred Network and local network developments, Datalab developments, strong motion network developments and earthquake activity. In this time period eastern Canada experienced its largest earthquake in over 50 years. This earthquake, which has been christened the Saguenay earthquake, has provided a wealth of new data pertinent to earthquake engineering studies in eastern North America and is the subject of many continuing studies, which are presently being carried out at GD and elsewhere. 41 refs., 21 figs., 7 tabs

  11. REE Partitioning in Lunar Minerals

    Science.gov (United States)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  12. A Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh Reservoir as an Iranian Gas Field, Persian Gulf Basin

    Directory of Open Access Journals (Sweden)

    Reza Mohebian

    2017-10-01

    Full Text Available Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover an optimum relationship between well logs and seismic data. For this purpose, three intelligent systems, including probabilistic neural network (PNN,fuzzy logic (FL, and adaptive neuro-fuzzy inference systems (ANFISwere usedto predict flow zone index (FZI. Well derived FZI logs from three wells were employed to estimate intelligent models in the Arab (Surmeh reservoir. The validation of the produced models was examined by another well. Optimal seismic attributes for the estimation of FZI include acoustic impedance, integrated absolute amplitude, and average frequency. The results revealed that the ANFIS method performed better than the other systems and showed a remarkable reduction in the measured errors. In the second part of the study, the FZI 3D model was created by using the ANFIS system.The integrated approach introduced in the current survey illustrated that the extracted flow units from intelligent models compromise well with well-logs. Based on the results obtained, the intelligent systems are powerful techniques to predict flow units from seismic data (seismic attributes for distant well location. Finally, it was shown that ANFIS method was efficient in highlighting high and low-quality flow units in the Arab (Surmeh reservoir, the Iranian offshore gas field.

  13. The Ongoing Addition of Infrasound Sensors and the Flexette Wind-Noise Reducing System to Global Seismic Network Stations Operated by Project IDA

    Science.gov (United States)

    Ebeling, C. W.; Coon, C.

    2017-12-01

    Infrasound sensors are now being installed at Global Seismic Network (GSN) stations meeting certain infrastructure criteria. Manufactured by Hyperion Technology Group, Inc., these instruments (model IFS-3312) have a nominal sensitivity of 140 mV/Pa (at 1 Hz), a full-scale range of ±100 Pa, and a dynamic range of 120 dB. Low power consumption (750 mW at 12 VDC) and small size (153 mm x 178 mm) ease incorporation into the mix of existing GSN instrumentation. The accompanying flexible rosette ("Flexette") acoustic wind-noise reducing system, designed by Project IDA (International Deployment of Accelerometers-IDA), optimally includes 24 inlets, 4 secondary manifolds, and a single primary manifold. Each secondary manifold is connected to 6 inlets and to the primary manifold by 10-ft air hoses, thus eliminating stresses and the greater potential for leaks associated with the use of pipe. While the main design goal was to maximize the reduction of acoustic wind-noise over the widest range of wind speeds possible, consideration of additional criteria resulted in a Flexette base design easily tailored to meet individual station constraints and restrictions, made up of inexpensive (total cost Marshall Islands), in August 2017. During the next 6 months infrasound capability will be extended to IDA GSN stations BORG (Borganes, Iceland), EFI (Mount Kent, East Falkland Islands), and SACV (Santiago Island, Cape Verde).As with other data from GSN stations, real-time infrasound data are freely available from the Incorporated Research Institutions for Seismology-Data Management Center (IRIS-DMC).

  14. A systematic analysis of directional site effects at stations of the Italian Seismic Network to test the role of local topography

    Science.gov (United States)

    Pischiutta, Marta; Cianfarra, Paola; Salvini, Francesco; Cara, Fabrizio; Vannoli, Paola

    2018-03-01

    Directional site effects observed at seismological stations on pronounced relief are analyzed. We investigate the ground motion properties calculating horizontal-to-vertical spectral ratios and horizontal polarization of both ambient vibrations and earthquake records using broadband seismograms of the Italian Seismic Network. We find that a subset of 47 stations with pronounced relief, results in a significant (>2) directional amplification of the horizontal component, with a well defined, site-specific direction of motion. However, the horizontal spectral response of sites is not uniform, varying from an isolated (resonant) frequency peak to a broadband amplification, interesting frequency bands as large as 1-10 Hz in many cases. Using the 47 selected stations, we have tried to establish a relation between directional amplification and topography geometry in a 2D-vision, when applicable, through a morphological analysis of the Digital Elevation Model using Geographic Information Systems. The procedure computes the parameters that characterize the geometry of topographic irregularities (size and slope), in combination with a principal component analysis that automatically yields the orientation of the elongated ridges. In seeking a relation between directional amplification and the surface morphology, we have found that it is impossible to fit the variety of observations with a resonant topography model as well as to identify common features in the ground motion behavior for stations with similar topography typologies. We conclude that, rather than the shape of the topography, local structural complexities and details of the near-surface structure must play a predominant role in controlling ground motion properties at sites with pronounced relief.

  15. Baseline studies to select the most sound and sensitive sites to install continuous monitoring per sismo-geochemical networks. The case history of the Norcia-Amatrice-Spoleto seismic sequences (2016-2017)

    Science.gov (United States)

    Quattrocchi, F.; Gallo, F.

    2017-12-01

    The paper review methodologically and historically - in the frame of seismo-geochemical studies in Italy and abroad to select the most "sensitive" sites along active faults, mostly where structural geology is not able to discover "blind" faults or complex fault crossing systems, with maximum fluids-faults interaction. The paper is highlighting the "site specific" case histories and processes helping in networks design, gathered in occasion of strong-moderate earthquakes, gas-burst or groundwater evolution in geothermal-hydrocarbons field during EU projects (i.e., Geochemical Seismic Zonation, 3F-Faults-Fractures-Fluids Corinth). Some concepts are highlighted based on gather experimental data in 25 years: - if the network is in soil gas is necessary a preliminary study on groundwater too, to understand the sectors of shallow aquifers, as "buffer" bodies, more prone to be oversaturated by geogas from depth; a preliminary grid should consider both the CO2-CH4-Rn fluxes, all gas concentrations and isotopes analyses (TDIC, CH4 CO2 , rare gas) case by case described here, mostly where the regional faults are crossing each other and where a carrier gas is acting i.e., CO2. It is very un-correct to install mono-parametric stations, i.e. only Radon to understand the real WRI processes. - if the network is in groundwater is very important a preliminary study before, during and after seismic sequences, to realize where the maximum anomalies (i.e., anomalous animal behavior, temperature increasing, geochemical anomalies, new gas relase) are and will be envisaged, as found for the Umbria-Marche border (the Colfiorito 1997-1998 and the 2016-2017 Norcia-Amatrice seismic sequences), where a deep pore-pressure dominated situation could be constrained by seismo-geochemistry, along "still silent" close fault segments too. if the network is in groundwater is very important a geochemical multidisciplinary approach to constrain the segment length and relative maximum magnitude.

  16. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  17. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  18. Seismic Discrimination

    Science.gov (United States)

    1979-09-30

    were presumed nuclear explosions announced by ERDA. Of the last, 11 were at the Semipalatinsk test site , 2 at the Western Kazakh test site , 2 in Novaya...which will fulfill U.S. ob- ligations that may be incurred under a possible future Comprehensive Test Ban Treaty. This report includes 9 contributions...which could assume U.S. seismic-data-management responsibilities in the event that international agreement is reached on a Comprehensive Test Ban

  19. Martian seismicity

    International Nuclear Information System (INIS)

    Goins, N.R.; Lazarewicz, A.R.

    1979-01-01

    During the Viking mission to Mars, the seismometer on Lander II collected approximately 0.24 Earth years of observations data, excluding periods of time dominated by wind-induced Lander vibration. The ''quiet-time'' data set contains no confirmed seismic events. A proper assessment of the significance of this fact requires quantitative estimates of the expected detection rate of the Viking seismometer. The first step is to calculate the minimum magnitude event detectable at a given distance, including the effects of geometric spreading, anelastic attenuation, seismic signal duration, seismometer frequency response, and possible poor ground coupling. Assuming various numerical quantities and a Martian seismic activity comparable to that of intraplate earthquakes, the appropriate integral gives an expected annual detection rate of 10 events, nearly all of which are local. Thus only two to three events would be expected in the observational period presently on hand and the lack of observed events is not in gross contradiction to reasonable expectations. Given the same assumptions, a seismometer 20 times more sensitive than the present instrument would be expected to detect about 120 events annually

  20. NASA Lunar Impact Monitoring

    Science.gov (United States)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  1. Lunar architecture and urbanism

    Science.gov (United States)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  2. The Puerto Rico Seismic Network Broadcast System: A user friendly GUI to broadcast earthquake messages, to generate shakemaps and to update catalogues

    Science.gov (United States)

    Velez, J.; Huerfano, V.; von Hillebrandt, C.

    2007-12-01

    The Puerto Rico Seismic Network (PRSN) has historically provided locations and magnitudes for earthquakes in the Puerto Rico and Virgin Islands (PRVI) region. PRSN is the reporting authority for the region bounded by latitudes 17.0N to 20.0N, and longitudes 63.5W to 69.0W. The main objective of the PRSN is to record, process, analyze, provide information and research local, regional and teleseismic earthquakes, providing high quality data and information to be able to respond to the needs of the emergency management, academic and research communities, and the general public. The PRSN runs Earthworm software (Johnson et al, 1995) to acquire and write waveforms to disk for permanent archival. Automatic locations and alerts are generated for events in Puerto Rico, the Intra America Seas, and the Atlantic by the EarlyBird system (Whitmore and Sokolowski, 2002), which monitors PRSN stations as well as some 40 additional stations run by networks operating in North, Central and South America and other sites in the Caribbean. PRDANIS (Puerto Rico Data Analysis and Information System) software, developed by PRSN, supports manual locations and analyst review of automatic locations of events within the PRSN area of responsibility (AOR), using all the broadband, strong-motion and short-period waveforms Rapidly available information regarding the geographic distribution of ground shaking in relation to the population and infrastructure at risk can assist emergency response communities in efficient and optimized allocation of resources following a large earthquake. The ShakeMap system developed by the USGS provides near real-time maps of instrumental ground motions and shaking intensity and has proven effective in rapid assessment of the extent of shaking and potential damage after significant earthquakes (Wald, 2004). In Northern and Southern California, the Pacific Northwest, and the states of Utah and Nevada, ShakeMaps are used for emergency planning and response, loss

  3. Products and Services Available from the Southern California Earthquake Data Center (SCEDC) and the Southern California Seismic Network (SCSN)

    Science.gov (United States)

    Chen, S. E.; Yu, E.; Bhaskaran, A.; Chowdhury, F. R.; Meisenhelter, S.; Hutton, K.; Given, D.; Hauksson, E.; Clayton, R. W.

    2011-12-01

    Currently, the SCEDC archives continuous and triggered data from nearly 8400 data channels from 425 SCSN recorded stations, processing and archiving an average of 6.4 TB of continuous waveforms and 12,000 earthquakes each year. The SCEDC provides public access to these earthquake parametric and waveform data through its website www.data.scec.org and through client applications such as STP and DHI. This poster will describe the most significant developments at the SCEDC during 2011. New website design: ? The SCEDC has revamped its website. The changes make it easier for users to search the archive, discover updates and new content. These changes also improve our ability to manage and update the site. New data holdings: ? Post processing on El Mayor Cucapah 7.2 sequence continues. To date there have been 11847 events reviewed. Updates are available in the earthquake catalog immediately. ? A double difference catalog (Hauksson et. al 2011) spanning 1981 to 6/30/11 will be available for download at www.data.scec.org and available via STP. ? A focal mechanism catalog determined by Yang et al. 2011 is available for distribution at www.data.scec.org. ? Waveforms from Southern California NetQuake stations are now being stored in the SCEDC archive and available via STP as event associated waveforms. Amplitudes from these stations are also being stored in the archive and used by ShakeMap. ? As part of a NASA/AIST project in collaboration with JPL and SIO, the SCEDC will receive real time 1 sps streams of GPS displacement solutions from the California Real Time Network (http://sopac.ucsd.edu/projects/realtime; Genrich and Bock, 2006, J. Geophys. Res.). These channels will be archived at the SCEDC as miniSEED waveforms, which then can be distributed to the user community via applications such as STP. Improvements in the user tool STP: ? STP sac output now includes picks from the SCSN. New archival methods: ? The SCEDC is exploring the feasibility of archiving and distributing

  4. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  5. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  6. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    Science.gov (United States)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  7. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  8. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR INSTRUMENT

    Directory of Open Access Journals (Sweden)

    M. Garattini

    2013-12-01

    Full Text Available Since 1969 Lunar Laser Ranging (LLR to the Apollo Cube Corner Reflector (CCR arrays has supplied several significant tests of gravity: Geodetic Precession, the Strong and Weak Equivalence Principle (SEP, WEP, the Parametrized Post Newtonian (PPN parameter , the time change of the Gravitational constant (G, 1/r2 deviations and new gravitational theories beyond General Relativity (GR, like the unified braneworld theory (G. Dvali et al., 2003. Now a new generation of LLR can do better using evolved laser retroreflectors, developed from tight collaboration between my institution, INFN–LNF (Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati, and Douglas Currie (University of Maryland, USA, one of the fathers of LLR. The new lunar CCR is developing and characterizing at the “Satellite/Lunar laser ranging Characterization Facility” (SCF, in Frascati, performing our new industry standard space test procedure, the “SCF-Test”; this work contains the experimental results of the SCF-Test applied to the new lunar CCR, and all the new payload developments, including the future SCF tests. The International Lunar Network (ILN research project considers our new retroreflector as one of the possible “Core Instruments”

  9. The Kaguya Lunar Atlas The Moon in High Resolution

    CERN Document Server

    Shirao, Motomaro

    2011-01-01

    In late 2007 the Japan Aerospace Exploration Agency placed the Kaguya/Selene spacecraft in orbit around the Moon. Like previous lunar orbiters, Kaguya carried scientific instruments to probe the Moon’s surface and interior. But it also had the first high-definition television camera (HDTV) sent to the Moon. Sponsored by the Japanese NHK TV network, the HDTV has amazed both scientists and the public with its magnificent views of the lunar surface. What makes the images much more engaging than standard vertical-view lunar photographs is that they were taken looking obliquely along the flight path. Thus, they show the Moon as it would be seen by an astronaut looking through a porthole window while orbiting only 100 km above the lunar surface. This is the view we all would wish to have, but are never likely to, except vicariously through the awe-inspiring Kaguya HDTV images. The remarkable Kaguya/Selene HDTV images are used here to create a new type of lunar atlas. Because of the unique perspective of the imag...

  10. Pressurized Lunar Rover (PLR)

    Science.gov (United States)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  11. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  12. A comparative study of 3D FZI and electrofacies modeling using seismic attribute analysis and neural network technique: A case study of Cheshmeh-Khosh Oil field in Iran

    Directory of Open Access Journals (Sweden)

    Mahdi Rastegarnia

    2016-09-01

    Full Text Available Electrofacies are used to determine reservoir rock properties, especially permeability, to simulate fluid flow in porous media. These are determined based on classification of similar logs among different groups of logging data. Data classification is accomplished by different statistical analysis such as principal component analysis, cluster analysis and differential analysis. The aim of this study is to predict 3D FZI (flow zone index and Electrofacies (EFACT volumes from a large volume of 3D seismic data. This study is divided into two parts. In the first part of the study, in order to make the EFACT model, nuclear magnetic resonance (NMR log parameters were employed for developing an Electrofacies diagram based on pore size distribution and porosity variations. Then, a graph-based clustering method, known as multi resolution graph-based clustering (MRGC, was employed to classify and obtain the optimum number of Electrofacies. Seismic attribute analysis was then applied to model each relaxation group in order to build the initial 3D model which was used to reach the final model by applying Probabilistic Neural Network (PNN. In the second part of the study, the FZI 3D model was created by multi attributes technique. Then, this model was improved by three different artificial intelligence systems including PNN, multilayer feed-forward network (MLFN and radial basis function network (RBFN. Finally, models of FZI and EFACT were compared. Results obtained from this study revealed that the two models are in good agreement and PNN method is successful in modeling FZI and EFACT from 3D seismic data for which no Stoneley data or NMR log data are available. Moreover, they may be used to detect hydrocarbon-bearing zones and locate the exact place for producing wells for the future development plans. In addition, the result provides a geologically realistic spatial FZI and reservoir facies distribution which helps to understand the subsurface reservoirs

  13. Tests of the lunar hypothesis

    Science.gov (United States)

    Taylor, S. R.

    1984-01-01

    The concept that the Moon was fissioned from the Earth after core separation is the most readily testable hypothesis of lunar origin, since direct comparisons of lunar and terrestrial compositions can be made. Differences found in such comparisons introduce so many ad hoc adjustments to the fission hypothesis that it becomes untestable. Further constraints may be obtained from attempting to date the volatile-refractory element fractionation. The combination of chemical and isotopic problems suggests that the fission hypothesis is no longer viable, and separate terrestrial and lunar accretion from a population of fractionated precursor planetesimals provides a more reasonable explanation.

  14. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  15. The Current Status of the Japanese Penetrator Mission: LUNAR-A

    Science.gov (United States)

    Tanaka, S.; Shiraishi, H.; Fujimura, A.; Hayakawa, H.

    The scientific objective of the LUNAR-A, Japanese Penetrator Mission, is to explore the lunar interior by seismic and heat-flow experiments. Two penetrators containing two seismometers (horizontal and vertical components) and heat-flow probes will be deployed from a spacecraft onto the lunar surface, one on the nearside and the other on the farside of the moon. The final impact velocity of the penetrator will be about 300m/sec; it will encounter a shock of about 8000 G at impact on the lunar surface. According to numerous experimental impact tests using model penetrators and a lunar regolith analog target, each penetrator is predicted to penetrate to a depth of 1 to 3 m. The data obtained by the penetrators will be transmitted to the earth station via the LUNAR-A mother spacecraft orbiting at an altitude of about 200 km. The penetrator is a missile-shaped instrument carrier, which is about 14cm in diameter, 75cm in length, and about 14kg in weight without attitude control system. It contains a two-component seismometer and heat flow probes together with other supporting instruments such as a tilt meter and an accelerometer. The seismic observations are expected to provide key data on the size of the lunar core, as well as data on deep lunar mantle structure. The heat flow measurements at two penetrator deployment sites will also provide important data on the thermal structure and bulk concentrations of heat-generating elements in the Moon. These data will provide much stronger geophysical constraints on the origin and evolution of the Moon than has been obtained so far. The LUNAR-A spacecraft was supposed to be launched in the summer of 2004, but it was postponed due to the necessity of a replacement of the valves used in the RCS propulsion system of the spacecraft, following a recall issued by the manufacturer who found a malfunction of similar valves. Then, the technological review boards by ISAS and JAXA recommended that both the more robustness of the

  16. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  17. Focal mechanisms in the southern Aegean from temporary seismic networks – implications for the regional stress field and ongoing deformation processes

    Directory of Open Access Journals (Sweden)

    W. Friederich

    2014-05-01

    Full Text Available The lateral variation of the stress field in the southern Aegean plate and the subducting Hellenic slab is determined from recordings of seismicity obtained with the CYCNET and EGELADOS networks in the years from 2002 to 2007. First motions from 7000 well-located microearthquakes were analysed to produce 540 well-constrained focal mechanisms. They were complemented by another 140 derived by waveform matching of records from larger events. Most of these earthquakes fall into 16 distinct spatial clusters distributed over the southern Aegean region. For each cluster, a stress inversion could be carried out yielding consistent estimates of the stress field and its spatial variation. At crustal levels, the stress field is generally dominated by a steeply dipping compressional principal stress direction except in places where coupling of the subducting slab and overlying plate come into play. Tensional principal stresses are generally subhorizontal. Just behind the forearc, the crust is under arc-parallel tension whereas in the volcanic areas around Kos, Columbo and Astypalea tensional and intermediate stresses are nearly degenerate. Further west and north, in the Santorini–Amorgos graben and in the area of the islands of Mykonos, Andros and Tinos, tensional stresses are significant and point around the NW–SE direction. Very similar stress fields are observed in western Turkey with the tensional axis rotated to NNE–SSW. Intermediate-depth earthquakes below 100 km in the Nisyros region indicate that the Hellenic slab experiences slab-parallel tension at these depths. The direction of tension is close to east–west and thus deviates from the local NW-oriented slab dip presumably owing to the segmentation of the slab. Beneath the Cretan sea, at shallower levels, the slab is under NW–SE compression. Tensional principal stresses in the crust exhibit very good alignment with extensional strain rate principal axes derived from GPS velocities except

  18. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  19. Early lunar magnetism

    Science.gov (United States)

    Banerjee, S. K.; Mellema, J. P.

    1976-01-01

    A new method (Shaw, 1974) for investigating paleointensity (the ancient magnetic field) was applied to three subsamples of a single, 1-m homogeneous clast from a recrystallized boulder of lunar breccia. Several dating methods established 4 billion years as the age of boulder assembly. Results indicate that the strength of the ambient magnetic field at the Taurus-Littrow region of the moon was about 0.4 oersted at 4 billion years ago. Values as high as 1.2 oersted have been reported (Collison et al., 1973). The required fields are approximately 10,000 times greater than present interplanetary or solar flare fields. It is suggested that this large field could have arisen from a pre-main sequence T-Tauri sun.

  20. Electrochemistry of lunar rocks

    Science.gov (United States)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  1. GIS Based Study on Seismicity of Makran over 100 Years

    Directory of Open Access Journals (Sweden)

    Mubarik Ali

    2015-12-01

    Full Text Available The earthquakes in Makran have a history of 600 years (1483-2015. The new ventures of development, urbanization, mining, and exploration for hydrocarbons in Makran region demand recent studies on seismicity. The major tectonic earthquakes are although infrequent in Makran, but are responsible for generating tsunami in coastal areas of Pakistan and Iran and have a long tail of aftershocks of shallow to deep focal depths. The oceanic part of Arabian plate which is underthrusting Eurasian plate (northwards, contributes a major share in producing seismicity of low magnitude (ML 6 on Richter scale has a relation with the rotation of moon (lunar dates in Makran.

  2. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    Science.gov (United States)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  3. Google Moon Lunar Mapping Data

    Data.gov (United States)

    National Aeronautics and Space Administration — A collection of lunar maps and charts. This tool is an exciting new way to explore the story of the Apollo missions, still the only time mankind has set foot on...

  4. First oxygen from lunar basalt

    Science.gov (United States)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  5. Thermodynamics of lunar ilmenite reduction

    Science.gov (United States)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  6. The enigma of lunar magnetism

    Science.gov (United States)

    Hood, L. L.

    1981-01-01

    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  7. Lunar Health Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  8. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  9. The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle

    Science.gov (United States)

    Zhang, Nan; Dygert, Nick; Liang, Yan; Parmentier, E. M.

    2017-07-01

    Lunar cumulate mantle overturn and the subsequent upwelling of overturned mantle cumulates provide a potential framework for understanding the first-order thermochemical evolution of the Moon. Upwelling of ilmenite-bearing cumulates (IBCs) after the overturn has a dominant influence on the dynamics and long-term thermal evolution of the lunar mantle. An important parameter determining the stability and convective behavior of the IBC is its viscosity, which was recently constrained through rock deformation experiments. To examine the effect of IBC viscosity on the upwelling of overturned lunar cumulate mantle, here we conduct three-dimensional mantle convection models with an evolving core superposed by an IBC-rich layer, which resulted from mantle overturn after magma ocean solidification. Our modeling shows that a reduction of mantle viscosity by 1 order of magnitude, due to the presence of ilmenite, can dramatically change convective planform and long-term lunar mantle evolution. Our model results suggest a relatively stable partially molten IBC layer that has surrounded the lunar core to the present day.Plain Language SummaryThe Moon's mantle is locally ilmenite rich. Previous models exploring the convective evolution of the lunar mantle did not consider the effects of ilmenite viscosity. Recent rock deformation experiments demonstrate that Fe-Ti oxide (ilmenite) is a low viscosity phase compared to olivine and other silicate minerals. Our modeling shows that ilmenite changes the lunar mantle plume process. An ilmenite-rich layer around the lunar core would be highly stable throughout geologic time, consistent with a partially molten, low viscosity layer around the core inferred from seismic attenuation and tidal dissipation.

  10. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  11. Lunar Gene Bank for Endangered Species

    Science.gov (United States)

    Swain, Ramakrushna

    2016-07-01

    Introduction: Before the dawn of the 22nd century, we face the huge risk of losing our genetic heritage accumulated during aeons of evolution. The losses include hundreds of vertebrates, human gene pools, hundreds of thousands of plants and over a million insect species. As we have observed, adequate conservation of habitat is unfeasible and active breeding programs cover only a handful of the many thousand species threatened. We propose cryopreservation of germplasms by constructing a cDNA library based gene bank for endangered species in the permanently shadowed polar lunar craters that would provide immunity from both natural disadvantages and humanitarian intrusions. Rationale: Under such alarming circumstances, we turned to cryopreservation as an option but over thousands of years economic depression, sabotage, conflicts, warfare or even a brief disruption to the precise cryopreservation can hamper the storage of genetic samples.When we are considering conservation it is always preferable to go for a more secure and permanent solution. It was found out that the climatic and strategic location of the lunar polar craters are adequately hospitable, remote and free of maintenance and human observation as they provide naturally cryogenic temperature, reduced gravity and vacuum environment, non-reactive surface, safety from celestial intrusion and permanent shadow which doesn't allow the temperature to fluctuate thus providing most suitable storage facilities for the germplasms. PSRs provide steady temperature of 40- 60K and immunity to earthquakes due to low seismic activity. At these sites, burial in one meter or more of the regolith will provide protection against the solar wind, solar and galactic cosmic rays and micrometeorite impact. It provides the minimum necessary barrier from human intervention and at the same time enables easy retrieval for future usage. Genetic samples of endangered species can enable restoration even after its extinction. Preserved

  12. Seismic response of buried pipelines: a state-of-the-art review

    International Nuclear Information System (INIS)

    Datta, T.K.

    1999-01-01

    A state-of-the-art review of the seismic response of buried pipelines is presented. The review includes modeling of soil-pipe system and seismic excitation, methods of response analysis of buried pipelines, seismic behavior of buried pipelines under different parametric variations, seismic stresses at the bends and intersections of network of pipelines. pipe damage in earthquakes and seismic risk analysis of buried pipelines. Based on the review, the future scope of work on the subject is outlined. (orig.)

  13. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  14. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  15. Manifestations and possible sources of lunar transient phenomena (LTP)

    International Nuclear Information System (INIS)

    Cameron, W.S.

    1975-01-01

    Several different manifestations of lunar transient phenomena (LTP) have been reported. These include: (1) brightenings--both sudden and slow, (2) reddish--both bright and dull, (3) bluish--both bright and dull, (4) fairly abrupt dimmings or darkenings, and (5) obscurations, which may be accompanied by any of the other four manifestations. Approximately 200 lunar features exhibiting such anomalies have been reported at least once, but 80% of all observations are found in less than a dozen sites and 60% are found in about one-half dozen sites. An observing program is being conducted for the Association of Lunar and Planetary Observers which is designed to monitor the LTP sites, the seismic epicenter sites and non-LTP comparison sites. It addresses the ''brightenings'' category of observations and is designed to establish normal brightness of each observed feature for all phases of a lunation. It also seeks to establish a quantified ''seeing'' scale. About one-half dozen observers have reported albedo measures (estimated from an albedo scale set up by each observer). The most extensive new data on albedo versus age (phase of Moon) are for the crater Dawes. Several LTP effects have been discerned in Dawes. In addition, seeing estimates, based on the behavior of a star's diffraction disk, provided some unexpected results when disk behavior is compared with other subjective estimates of seeing

  16. Engineering design constraints of the lunar surface environment

    Science.gov (United States)

    Morrison, D. A.

    1992-01-01

    Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.

  17. Seismic qualification of equipment

    International Nuclear Information System (INIS)

    Heidebrecht, A.C.; Tso, W.K.

    1983-03-01

    This report describes the results of an investigation into the seismic qualification of equipment located in CANDU nuclear power plants. It is particularly concerned with the evaluation of current seismic qualification requirements, the development of a suitable methodology for the seismic qualification of safety systems, and the evaluation of seismic qualification analysis and testing procedures

  18. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  19. Conversion of 3D seismic attributes to reservoir hydraulic flow units using a neural network approach: An example from the Kangan and Dalan carbonate reservoirs, the world's largest non-associated gas reservoirs, near the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Dezfoolian

    2013-07-01

    Full Text Available This study presents an intelligent model based on probabilistic neural networks (PNN to produce a quantitative formulation between seismic attributes and hydraulic flow units (HFUs. Neural networks have been used for the last several years to estimate reservoir properties. However, their application for hydraulic flow unit estimation on a cube of seismic data is an interesting topic for research. The methodology for this application is illustrated using 3D seismic attributes and petrophysical and core data from 6 wells from the Kangan and Dalan gas reservoirs in the Persian Gulf basin. The methodology introduced in this study estimates HFUs from a large volume of 3D seismic data. This may increase exploration success rates and reduce costs through the application of more reliable output results in hydrocarbon exploration programs. 4 seismic attributes, including acoustic impedance, dominant fre- quency, amplitude weighted phase and instantaneous phase, are considered as the optimal inputs for pre- dicting HFUs from seismic data. The proposed technique is successfully tested in a carbonate sequence of Permian-Triassic rocks from the studied area. The results of this study demonstrate that there is a good agreement between the core and PNN-derived flow units. The PNN used in this study is successful in modeling flow units from 3D seismic data for which no core data or well log data are available.  Resumen Este estudio presenta un modelo inteligente basado en redes neuronales probabilísticas (PNN para pro- ducir una formulación cuantitativa entre atributos sísmicos y unidades de flujo hidráulico (HFU. Las redes neuronales han sido utilizadas durante los últimos años para estimar las propiedades de reserva. Sin embargo, su aplicación para estimación de unidades de flujo hidráulico en un cubo de datos sísmicos es un tema importante de investigación. La metodología para esta aplicación está ilustrada a partir de datos tridimensionales y

  20. MyMoon: Engaging the “Missing Link” in Lunar Science Exploration through New Media

    Science.gov (United States)

    Shaner, A.; Shupla, C.; Shipp, S. S.; Eriksson, A.

    2009-12-01

    NASA’s new scientific exploration of the Moon, coupled with the public’s interest in the Moon and innovative social networking approaches, is being leveraged to engage a fresh adult audience in lunar science and exploration. In July 2009 the Lunar and Planetary Institute (LPI) launched a lunar education new media portal, MyMoon. LPI is collaborating with lunar scientists, educators, artists - and the public - to populate the site with science content, diverse media exhibits, events, and opportunities for involvement. Through MyMoon, the general public interacts with lunar content that informs them about lunar science research and missions, and engages them in future plans for lunar exploration and eventual habitation. MyMoon’s objectives are to: 1) develop a dynamic, new media learning portal that will enable the general public, with a focus on adults ages 18-35; 2) host a growing, active audience that becomes further involved in NASA’s lunar exploration by sharing their ideas about lunar topics, creating their own materials, and participating in events and experiences; 3) build a community of enthusiasts through social networking media; 4) create a model for online engagement of audiences 18 to 35, and provide detailed evaluation data on best practices and strategies for success. Immersive new media technologies are changing the way that people interact, work, learn, and teach. These provide potentially high-impact opportunities for reaching an audience of young adults, age 18 to 35, that largely is not accessed by, or accessing, NASA (Dittmar, 2004). MyMoon strives to engage - and involve - this audience to build a community of enthusiasts for lunar scientific exploration through social networks and current and emerging new media platforms, including posting videos on YouTube, photo contests on Flickr, and sharing events and challenges on Facebook and Twitter. MyMoon features interactive exhibits that are audience driven and added on a quarterly basis

  1. Georgia-Armenia Transboarder seismicity studies

    Science.gov (United States)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed

  2. German seismic regulations

    International Nuclear Information System (INIS)

    Danisch, Ruediger

    2002-01-01

    Rules and regulations for seismic design in Germany cover the following: seismic design of conventional buildings; and seismic design of nuclear facilities. Safety criteria for NPPs, accident guidelines, and guidelines for PWRs as well as safety standards are cited. Safety standards concerned with NPPs seismic design include basic principles, soil analysis, design of building structures, design of mechanical and electrical components, seismic instrumentation, and measures to be undertaken after the earthquake

  3. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    Science.gov (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  4. Lunar Meteorites: A Global Geochemical Dataset

    Science.gov (United States)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  5. Precision Lunar Laser Ranging For Lunar and Gravitational Science

    Science.gov (United States)

    Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.

    2008-01-01

    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.

  6. Lunar Industry & Research Base Concept

    Science.gov (United States)

    Lysenko, J.; Kaliapin, M.; Osinovyy, G.

    2017-09-01

    Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.

  7. Seismic excitation by space shuttles

    Science.gov (United States)

    Kanamori, H.; Mori, J.; Sturtevant, B.; Anderson, D.L.; Heaton, T.

    1992-01-01

    Shock waves generated by the space shuttles Columbia (August 13, 1989), Atlantis (April 11, 1991) and Discovery (September 18, 1991) on their return to Edwards Air Force Base, California, were recorded by TERRAscope (Caltech's broadband seismic network), the Caltech-U.S.G.S Southern California Seismic Network (SCSN), and the University of Southern California (USC) Los Angeles Basin Seismic Network. The spatial pattern of the arrival times exhibits hyperbolic shock fronts from which the path, velocity and altitude of the space shuttle could be determined. The shock wave was acoustically coupled to the ground, converted to a seismic wave, and recorded clearly at the broadband TERRAscope stations. The acoustic coupling occurred very differently depending on the conditions of the Earth's surface surrounding the station. For a seismic station located on hard bedrock, the shock wave (N wave) was clearly recorded with little distortion. Aside from the N wave, very little acoustic coupling of the shock wave energy to the ground occurred at these sites. The observed N wave record was used to estimate the overpressure of the shock wave accurately; a pressure change of 0.5 to 2.2 mbars was obtained. For a seismic station located close to the ocean or soft sedimentary basins, a significant amount of shock wave energy was transferred to the ground through acoustic coupling of the shock wave and the oceanic Rayleigh wave. A distinct topography such as a mountain range was found effective to couple the shock wave energy to the ground. Shock wave energy was also coupled to the ground very effectively through large man made structures such as high rise buildings and offshore oil drilling platforms. For the space shuttle Columbia, in particular, a distinct pulse having a period of about 2 to 3 seconds was observed, 12.5 s before the shock wave, with a broadband seismograph in Pasadena. This pulse was probably excited by the high rise buildings in downtown Los Angeles which were

  8. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    Science.gov (United States)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  9. Sensitivity to lunar cycles prior to the 2007 eruption of Ruapehu volcano.

    Science.gov (United States)

    Girona, Társilo; Huber, Christian; Caudron, Corentin

    2018-01-24

    A long-standing question in Earth Science is the extent to which seismic and volcanic activity can be regulated by tidal stresses, a repeatable and predictable external excitation induced by the Moon-Sun gravitational force. Fortnightly tides, a ~14-day amplitude modulation of the daily tidal stresses that is associated to lunar cycles, have been suggested to affect volcano dynamics. However, previous studies found contradictory results and remain mostly inconclusive. Here we study how fortnightly tides have affected Ruapehu volcano (New Zealand) from 2004 to 2016 by analysing the rolling correlation between lunar cycles and seismic amplitude recorded close to the crater. The long-term (~1-year) correlation is found to increase significantly (up to confidence level of 5-sigma) during the ~3 months preceding the 2007 phreatic eruption of Ruapehu, thus revealing that the volcano is sensitive to fortnightly tides when it is prone to explode. We show through a mechanistic model that the real-time monitoring of seismic sensitivity to lunar cycles may help to detect the clogging of active volcanic vents, and thus to better forecast phreatic volcanic eruptions.

  10. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  11. Two lunar global asymmetries

    Science.gov (United States)

    Hartung, J. B.

    1984-01-01

    The Moon's center of mass is displaced from its center of figure about 2 km in a roughly earthward direction. Most maria are on the side of the Moon which faces the Earth. It is assumed that the Moon was initially spherically symmetric. The emplacement of mare basalts transfers mass which produces most of the observed center of mass displacement toward the Earth. The cause of the asymmetric distribution of lunar maria was examined. The Moon is in a spin orbit coupled relationship with the Earth and the effect of the Earth's gravity on the Moon is asymmetric. The earth-facing side of the Moon is a gravitational favored location for the extrusion of mare basalt magma in the same way that the topographically lower floor of a large impact basin is a gravitationally favored location. This asymmetric effect increases inversely with the fourth power of the Earth Moon distance. The history of the Earth-Moon system includes: formation of the Moon by accretion processes in a heliocentric orbit ner that of the Earth; a gravitational encounter with the Earth about 4 billion years ago resulting in capture of the Moon into a geocentric orbit and heating of the Moon through dissipation of energy related to tides raised during close approaches to the Earth(5) to produce mare basalt magma; and evolution of the Moon's orbit to its present position, slowly at first to accommodate more than 500 million years during which magmas were extruded.

  12. Apollo Missions to the Lunar Surface

    Science.gov (United States)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  13. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  14. New Age for Lunar Exploration

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  15. Lunar power systems. Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified

  16. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  17. Status and Future of Lunar Geoscience.

    Science.gov (United States)

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  18. Nanophase Fe0 in lunar soils

    Indian Academy of Sciences (India)

    globules that occur in the rinds of many soil grains and in the ... tinitic glass is a quenched product of silicate melts, also produced by micrometeorite impacts on lunar soils ..... stand impact processes and their products. ... cules at night; the earth's atmosphere by con- .... deep lunar interior from an inversion of lunar free oscil-.

  19. Lunar Cube Transfer Trajectory Options

    Science.gov (United States)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  20. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  1. Lunar heat-flow experiment

    Science.gov (United States)

    Langseth, M. G.

    1977-01-01

    The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.

  2. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  3. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Observations of the bright side of the Moon with NASA's Chandra X-ray Observatory have detected oxygen, magnesium, aluminum and silicon over a large area of the lunar surface. The abundance and distribution of those elements will help to determine how the Moon was formed. "We see X-rays from these elements directly, independent of assumptions about the mineralogy and other complications," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., at a press conference at the "Four Years with Chandra" symposium in Huntsville, Alabama. "We have Moon samples from the six widely-space Apollo landing sites, but remote sensing with Chandra can cover a much wider area," continued Drake. "It's the next best thing to being there, and it's very fast and cost-effective." The lunar X-rays are caused by fluorescence, a process similar to the way that light is produced in fluorescent lamps. Solar X-rays bombard the surface of the Moon, knock electrons out of the inner parts of the atoms, putting them in a highly unstable state. Almost immediately, other electrons rush to fill the gaps, and in the process convert their energy into the fluorescent X-rays seen by Chandra. According to the currently popular "giant impact" theory for the formation of the Moon, a body about the size of Mars collided with the Earth about 4.5 billion years ago. This impact flung molten debris from the mantle of both the Earth and the impactor into orbit around the Earth. Over the course of tens of millions of years, the debris stuck together to form the Moon. By measuring the amounts of aluminum and other elements over a wide area of the Moon and comparing them to the Earth's mantle, Drake and his colleagues plan to help test the giant impact hypothesis. "One early result," quipped Drake, "is that there is no evidence for large amounts of calcium, so cheese is not a major constituent of the Moon." Illustration of Earth's Geocorona Illustration of Earth's Geocorona The same

  4. Uses for lunar crawler transporters

    Science.gov (United States)

    Kaden, Richard A.

    This article discusses state-of-the-art crawler transporters and expresses the need for additional research and development for lunar crawlers. The thrust of the paper illustrates how the basic crawler technology has progressed to a point where extremely large modules can be shop fabricated and move to some distant location at a considerable savings. Also, extremely heavy loads may be lifted by large crawler cranes and placed in designed locations. The Transi-Lift Crawler crane with its traveling counterweight is an attractive concept for lunar construction.

  5. Building lunar roads - An overview

    Science.gov (United States)

    Rutledge, Bennett

    The problems involved in constructing lunar roads are explored. The main challenges are airlessness, low gravity, and solar effects, especially temperature extremes. Also involved are the expense of delivering equipment and material to the job site (especially for bridges and other structures), obtaining skilled labor, and providing maintenance. The lunar road will most likely be gravel, but with the size of the material closer to cobblestone to reduce scattering. They will probably be very winding, even on the flats, and feature numerous bridges and some cuts. This traffic will be mostly automatic or teleoperated cargo carriers with a handful of shirtsleeve-pressurized 'passenger cars' large enough to live in for several days.

  6. Seismic Energy Generation and Partitioning into Various Regional Phases from Different Seismic Sources in the Middle East Region

    Science.gov (United States)

    2007-09-20

    a), a 3C SP seismic station (b) and a sensor BlastMateIII, Oron quarry (c)............................... 9 Figure 7. Seismic Array MMAI (AS49) of... seismic stations of Jordan network at distance range 22-285 km (a), and at IMS array MMAI (AS49) at 350 km, BP filtered 2-8 Hz (b...sites and portable stations, inserts show detailed location of the tripartite array elements (st.6) and configuration of the explosion boreholes and

  7. Lunar phases and crisis center telephone calls.

    Science.gov (United States)

    Wilson, J E; Tobacyk, J J

    1990-02-01

    The lunar hypothesis, that is, the notion that lunar phases can directly affect human behavior, was tested by time-series analysis of 4,575 crisis center telephone calls (all calls recorded for a 6-month interval). As expected, the lunar hypothesis was not supported. The 28-day lunar cycle accounted for less than 1% of the variance of the frequency of crisis center calls. Also, as hypothesized from an attribution theory framework, crisis center workers reported significantly greater belief in lunar effects than a non-crisis-center-worker comparison group.

  8. What is a lunar standstill III?

    Directory of Open Access Journals (Sweden)

    Lionel Duke Sims

    2016-12-01

    Full Text Available Prehistoric monument alignments on lunar standstills are currently understood for horizon range, perturbation event, crossover event, eclipse prediction, solstice full Moon and the solarisation of the dark Moon. The first five models are found to fail the criteria of archaeoastronomy field methods. The final model of lunar-solar conflation draws upon all the observed components of lunar standstills – solarised reverse phased sidereal Moons culminating in solstice dark Moons in a roughly nine-year alternating cycle between major and minor standstills. This lunar-solar conflation model is a syncretic overlay upon an antecedent Palaeolithic template for lunar scheduled rituals and amenable to transformation.

  9. Dynamic characteristics of background seismic noise according to records of nuclear monitoring seismic stations in Kazakstan

    International Nuclear Information System (INIS)

    Belyashova, N.N.; Sinyova, Z.I.; Komarov, I.I.; Mikhailova, N.N.

    1998-01-01

    The seismic stations of Kazakstan, included into nuclear monitoring network (see fig.1) are equipped with broad hand seismometers; seismic data are recorded in digital format. All this allows to investigate spectral and time characteristics of seismic background noise in very large frequency diapason (more than 3-5 orders), for all three components of oscillation vector. The spectral density of background seismic noise for vertical and both horizontal components (fig.2) was calculated for all of the observation points. The regular features of structure of noise spectra, inherent for all of the studied observation points, as well as some features, specific for studied places were found. The curves of spectral noise density were compared with global noise model, determined by the data of Global Seismological Network (GSN)

  10. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  11. Seismic intrusion detector system

    Science.gov (United States)

    Hawk, Hervey L.; Hawley, James G.; Portlock, John M.; Scheibner, James E.

    1976-01-01

    A system for monitoring man-associated seismic movements within a control area including a geophone for generating an electrical signal in response to seismic movement, a bandpass amplifier and threshold detector for eliminating unwanted signals, pulse counting system for counting and storing the number of seismic movements within the area, and a monitoring system operable on command having a variable frequency oscillator generating an audio frequency signal proportional to the number of said seismic movements.

  12. National Seismic Station

    International Nuclear Information System (INIS)

    Stokes, P.A.

    1982-06-01

    The National Seismic Station was developed to meet the needs of regional or worldwide seismic monitoring of underground nuclear explosions to verify compliance with a nuclear test ban treaty. The Station acquires broadband seismic data and transmits it via satellite to a data center. It is capable of unattended operation for periods of at least a year, and will detect any tampering that could result in the transmission of unauthentic seismic data

  13. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  14. Quantitative Seismic Amplitude Analysis

    NARCIS (Netherlands)

    Dey, A.K.

    2011-01-01

    The Seismic Value Chain quantifies the cyclic interaction between seismic acquisition, imaging and reservoir characterization. Modern seismic innovation to address the global imbalance in hydrocarbon supply and demand requires such cyclic interaction of both feed-forward and feed-back processes.

  15. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  16. An assessment of seismic monitoring in the United States; requirement for an Advanced National Seismic System

    Science.gov (United States)

    ,

    1999-01-01

    This report assesses the status, needs, and associated costs of seismic monitoring in the United States. It sets down the requirement for an effective, national seismic monitoring strategy and an advanced system linking national, regional, and urban monitoring networks. Modernized seismic monitoring can provide alerts of imminent strong earthquake shaking; rapid assessment of distribution and severity of earthquake shaking (for use in emergency response); warnings of a possible tsunami from an offshore earthquake; warnings of volcanic eruptions; information for correctly characterizing earthquake hazards and for improving building codes; and data on response of buildings and structures during earthquakes, for safe, cost-effective design, engineering, and construction practices in earthquake-prone regions.

  17. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  18. Lunar and Planetary Science XXXII

    Science.gov (United States)

    2001-01-01

    This CD-ROM publication contains the extended abstracts that were accepted for presentation at the 32nd Lunar and Planetary Science Conference held at Houston, TX, March 12-16, 2001. The papers are presented in PDF format and are indexed by author, keyword, meteorite, program and samples for quick reference.

  19. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  20. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  1. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  2. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    Science.gov (United States)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community

  3. France's seismic zoning

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1997-01-01

    In order to assess the seismic hazard in France in relation to nuclear plant siting, the CEA, EDF and the BRGM (Mine and Geology Bureau) have carried out a collaboration which resulted in a seismic-tectonic map of France and a data base on seismic history (SIRENE). These studies were completed with a seismic-tectonic zoning, taking into account a very long period of time, that enabled a probabilistic evaluation of the seismic hazard in France, and that may be related to adjacent country hazard maps

  4. Seismic changes industry

    International Nuclear Information System (INIS)

    Taylor, G.

    1992-01-01

    This paper discusses the growth in the seismic industry as a result of the recent increases in the foreign market. With the decline of communism and the opening of Latin America to exploration, seismic teams have moved out into these areas in support of the oil and gas industry. The paper goes on to discuss the improved technology available for seismic resolution and the subsequent use of computers to field-proof the data while the seismic team is still on-site. It also discusses the effects of new computer technology on reducing the amount of support staff that is required to both conduct and interpret seismic information

  5. Clustering of velocities in a GPS network spanning the Sierra Nevada Block, the northern Walker Lane Belt, and the Central Nevada Seismic Belt, California-Nevada

    Science.gov (United States)

    Savage, James C.; Simpson, Robert W.

    2013-01-01

    The deformation across the Sierra Nevada Block, the Walker Lane Belt, and the Central Nevada Seismic Belt (CNSB) between 38.5°N and 40.5°N has been analyzed by clustering GPS velocities to identify coherent blocks. Cluster analysis determines the number of clusters required and assigns the GPS stations to the proper clusters. The clusters are shown on a fault map by symbols located at the positions of the GPS stations, each symbol representing the cluster to which the velocity of that GPS station belongs. Fault systems that separate the clusters are readily identified on such a map. Four significant clusters are identified. Those clusters are strips separated by (from west to east) the Mohawk Valley-Genoa fault system, the Pyramid Lake-Wassuk fault system, and the Central Nevada Seismic Belt. The strain rates within the westernmost three clusters approximate simple right-lateral shear (~13 nstrain/a) across vertical planes roughly parallel to the cluster boundaries. Clustering does not recognize the longitudinal segmentation of the Walker Lane Belt into domains dominated by either northwesterly trending, right-lateral faults or northeasterly trending, left-lateral faults.

  6. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  7. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  8. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  9. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  10. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  11. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  12. Earthquake hazard in Northeast India – A seismic microzonation ...

    Indian Academy of Sciences (India)

    microzonation approach with typical case studies from .... the other hand, Guwahati city represents a case of well-formed basin with ... earthquake prone regions towards developing its ... tonic network and the observed seismicity has been.

  13. Seismicity Characterization and Velocity Structure of Northeast Russia

    National Research Council Canada - National Science Library

    Mackey, Kevin G; Fujita, Kazuya

    2005-01-01

    A seismicity catalog and associated list of phases for many events has been compiled for northeast Russia using published and unpublished data from the regional networks operating in eastern Russia...

  14. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  15. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  16. Seismicity related to geothermal development in Dixie Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  17. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    Science.gov (United States)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  18. Seismic investigations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Barrows, L.J.

    1984-01-01

    Evaporite rocks in the Delaware Basin in southeastern New Mexico are being investigated as a possible site for nuclear waste disposal. Seismic studies have been conducted to establish seismic design criteria and to investigate relations between seismicity and geologic structures. In the initial phase of this study, historical and available seismic data were interpreted with respect to geology. Local instrumentation became available in 1974 when New Mexico Tech installed and began operating a seismic station in the area. Data and interpretation for 1974 through 1979 have been published. In 1980 seismic monitoring of the Northern Delaware Basin was extended to include a six station network of self-contained radio-telemetered seismometers. 9 references, 13 figures

  19. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    Science.gov (United States)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  20. Man-caused seismicity of Kuzbass

    Science.gov (United States)

    Emanov, Alexandr; Emanov, Alexey; Leskova, Ekaterina; Fateyev, Alexandr

    2010-05-01

    A natural seismicity of Kuznetsk Basin is confined in the main to mountain frame of Kuznetsk hollow. In this paper materials of experimental work with local station networks within sediment basin are presented. Two types of seismicity display within Kuznetsk hollow have been understood: first, man-caused seismic processes, confined to mine working and concentrated on depths up to one and a half of km; secondly, seismic activations on depths of 2-56 km, not coordinated in plan with coal mines. Every of studied seismic activations consists of large quantity of earthquakes of small powers (Ms=1-3). From one to first tens of earthquakes were recorded in a day. The earthquakes near mine working shift in space along with mine working, and seismic process become stronger at the instant a coal-plough machine is operated, and slacken at the instant the preventive works are executed. The seismic processes near three lavas in Kuznetsk Basin have been studied in detail. Uplift is the most typical focal mechanism. Activated zone near mine working reach in diameter 1-1,5 km. Seismic activations not linked with mine working testify that the subsoil of Kuznetsk hollow remain in stress state in whole. The most probable causes of man-caused action on hollow are processes, coupled with change of physical state of rocks at loss of methane from large volume or change by mine working of rock watering in large volume. In this case condensed rocks, lost gas and water, can press out upwards, realizing the reverse fault mechanism of earthquakes. A combination of stress state of hollow with man-caused action at deep mining may account for incipient activations in Kuznetsk Basin. Today earthquakes happen mainly under mine workings, though damages of workings themselves do not happen, but intensive shaking on surface calls for intent study of so dangerous phenomena. In 2009 replicates of the experiment on research of seismic activations in area of before investigated lavas have been conducted

  1. Lunar domes properties and formation processes

    CERN Document Server

    Lena, Raffaello; Phillips, Jim; Chiocchetta, Maria Teresa

    2013-01-01

    Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which the...

  2. Design and Implementation of a C++ Multithreaded Operational Tool for the Generation of Detection Time Grids in 2D for P- and S-waves taking into Consideration Seismic Network Topology and Data Latency

    Science.gov (United States)

    Sardina, V.

    2017-12-01

    The Pacific Tsunami Warning Center's round the clock operations rely on the rapid determination of the source parameters of earthquakes occurring around the world. To rapidly estimate source parameters such as earthquake location and magnitude the PTWC analyzes data streams ingested in near-real time from a global network of more than 700 seismic stations. Both the density of this network and the data latency of its member stations at any given time have a direct impact on the speed at which the PTWC scientists on duty can locate an earthquake and estimate its magnitude. In this context, it turns operationally advantageous to have the ability of assessing how quickly the PTWC operational system can reasonably detect and locate and earthquake, estimate its magnitude, and send the corresponding tsunami message whenever appropriate. For this purpose, we designed and implemented a multithreaded C++ software package to generate detection time grids for both P- and S-waves after taking into consideration the seismic network topology and the data latency of its member stations. We first encapsulate all the parameters of interest at a given geographic point, such as geographic coordinates, P- and S-waves detection time in at least a minimum number of stations, and maximum allowed azimuth gap into a DetectionTimePoint class. Then we apply composition and inheritance to define a DetectionTimeLine class that handles a vector of DetectionTimePoint objects along a given latitude. A DetectionTimesGrid class in turn handles the dynamic allocation of new TravelTimeLine objects and assigning the calculation of the corresponding P- and S-waves' detection times to new threads. Finally, we added a GUI that allows the user to interactively set all initial calculation parameters and output options. Initial testing in an eight core system shows that generation of a global 2D grid at 1 degree resolution setting detection on at least 5 stations and no azimuth gap restriction takes under 25

  3. Angola Seismicity MAP

    Science.gov (United States)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic

  4. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    Science.gov (United States)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  5. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  6. Seismic Tomography and the Development of a State Velocity Profile

    Science.gov (United States)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  7. Energy for lunar resource exploitation

    Science.gov (United States)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  8. Ground Contact Analysis for Korea’s Fictitious Lunar Orbiter Mission

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2013-12-01

    Full Text Available In this research, the ground contact opportunity for the fictitious low lunar orbiter is analyzed to prepare for a future Korean lunar orbiter mission. The ground contact opportunity is basically derived from geometrical relations between the typical ground stations at the Earth, the relative positions of the Earth and Moon, and finally, the lunar orbiter itself. Both the cut-off angle and the orbiter’s Line of Sight (LOS conditions (weather orbiter is located at near or far side of the Moon seen from the Earth are considered to determine the ground contact opportunities. Four KOMPSAT Ground Stations (KGSs are assumed to be Korea’s future Near Earth Networks (NENs to support lunar missions, and world-wide separated Deep Space Networks (DSNs are also included during the contact availability analysis. As a result, it is concluded that about 138 times of contact will be made between the orbiter and the Daejeon station during 27.3 days of prediction time span. If these contact times are converted into contact duration, the duration is found to be about 8.55 days, about 31.31% of 27.3 days. It is discovered that selected four KGSs cannot provide continuous tracking of the lunar orbiter, meaning that international collaboration is necessary to track Korea’s future lunar orbiter effectively. Possible combinations of world-wide separated DSNs are also suggested to compensate for the lack of contact availability with only four KGSs, as with primary and backup station concepts. The provided algorithm can be easily modified to support any type of orbit around the Moon, and therefore, the presented results could aid further progress in the design field of Korea’s lunar orbiter missions.

  9. Production of Synthetic Lunar Simulants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Zybek Advanced Products has proven the ability to produce industrial quantities of lunar simulant materials, including glass, agglutinate and melt breccias. These...

  10. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  11. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    Science.gov (United States)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  12. Report from ILEWG and Cape Canaveral Lunar Declaration 2008

    Science.gov (United States)

    Foing, B. H.

    2009-04-01

    We shall report on the ILEWG charter, goals and activities, on ICEUM "lunar declarations" and follow-up activities, with focus on societal questions, and the Cape Canaveral Lunar Declaration 2008. ILEWG charter: ILEWG , the International Lunar Exploration Working Group is a public forum created in 1994, sponsored by the world's space agencies to support "international cooperation towards a world strategy for the exploration and utilization of the Moon - our natural satellite". The charter of ILEWG is: - To develop an international strategy for the exploration of the Moon - To establish a forum and mechanisms for the communication and coordination of activities - To implement international coordination and cooperation - In order to facilitate communication among all interested parties ILEWG agrees to establish an electronic communication network for exchange of science, technology and programmatic information related to lunar activities ILEWG meets regularly, at least, once a year, and leads the organization of an International Conference in order to discuss the state of lunar exploration. Formal reports are given at COSPAR meetings and to space agencies. ILEWG is sponsored by the world's space agencies and is intended to serve three relevant groups: - actual members of the ILEWG, ie delegates and repre-sentatives of the participating Space Agencies and organizations - allowing them to discuss and possibly harmonize their draft concepts and plans - team members of the relevant space projects - allowing them to coordinate their internal work according to the guidelines provided by the Charter of the ILEWG - members of the general public and of the Lunar Explorer's Society who are interested and wish to be informed on the progress of the Moon projects and possibly contribute their own ideas ILEWG activities and working groups: ILEWG task groups include science, technology, human aspects, socio-economics, young explorers and outreach, programmatics, roadmaps and

  13. Geomorphology and seismic risk

    Science.gov (United States)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  14. Strong seismic wave scattering beneath Kanto region derived from dense K-NET/KiK-net strong motion network and numerical simulation

    Science.gov (United States)

    Takemura, S.; Yoshimoto, K.

    2013-12-01

    Observed seismograms, which consist of the high-frequency body waves through the low-velocity (LV) region at depth of 20-40 km beneath northwestern Chiba in Kanto, show strong peak delay and spindle shape of S waves. By analyzing dense seismic records from K-NET/KiK-net, such spindle-shape S waves are clearly observed in the frequency range of 1-8 Hz. In order to investigate a specific heterogeneous structure to generate such observations, we conduct 3-D finite-difference method (FDM) simulation using realistic heterogeneous models and compare the simulation results with dense strong motion array observations. Our 3-D simulation model is covering the zone 150 km by 64 km in horizontal directions and 75 km in vertical direction, which has been discretized with uniform grid size 0.05 km. We assume a layered background velocity structure, which includes basin structure, crust, mantle and subducting oceanic plate, base on the model proposed by Koketsu et al. (2008). In order to introduce the effect of seismic wave scattering, we assume a stochastic random velocity fluctuation in each layer. Random velocity fluctuations are characterized by exponential-type auto-correlation function (ACF) with correlation distance a = 3 km and rms value of fluctuation e = 0.05 in the upper crust, a = 3 km and e = 0.07 in the lower crust, a = 10 km and e = 0.02 in the mantle. In the subducting oceanic plate, we assume an anisotropic random velocity fluctuation characterized by exponential-type ACF with aH = 10 km in horizontal direction, aZ = 0.5 km in vertical direction and e = 0.02 (e.g., Furumura and Kennett, 2005). In addition, we assume a LV zone at northeastern part of Chiba with depth of 20-40 km (e.g., Matsubara et al., 2004). In the LV zone, random velocity fluctuation characterized by Gaussian-type ACF with a = 1 km and e = 0.07 is superposed on exponential-type ACF with a = 3 km and e = 0.07, in order to modulate the S-wave propagation in the dominant frequency range of

  15. Correlation Between Electromagnetic Signals and Seismic Events on Central Colombia Region to Establish Seismic Precursors Existence

    Science.gov (United States)

    Caneva, A.; Vargas Jiménez, C. A.; Solano Fino, J. M.

    2017-12-01

    It was already shown by several authors around the world some kinds of correlation between electric and magnetic signals and seismic events looking for precursors to the last ones emitted from the seismic source. This investigation tends to establish a correlation between electro-magnetic (EM) signals on the ground surface and seismic events on the Colombian lithospheric system. The events correlation was made with data from the Seismological Network of the Sabana de Bogotá (RSSB for its acronym in Spanish), a temporal seismological network on Chichimene (Acacías, Meta, Colombia) and the National Seismological Network of Colombia (RSNC, for its acronym in Spanish). The project involved the design, construction and preliminary tests for the necessary instruments added to the RSSB as multi-parameter stations with seismic broadband, electric polarizing and non-polarizing dipoles and Earth's magnetic field sensors. Correlations were made considering time, frequency and `natural time' domains with filtering and preprocessing algorithms. Among the main results are the almost complete lack of electric disturbances known as Seismic Electric Signals (SES) and very few of the magnetic kind. However, another kind of long period magnetic disturbances for some stations and events where found. More instruments have to be deployed in order to get a better understanding of these disturbances and develop a robust model.

  16. The Lusi seismic experiment: An initial study to understand the effect of seismic activity to Lusi

    Energy Technology Data Exchange (ETDEWEB)

    Karyono, E-mail: karyonosu@gmail.com [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia); OSLO University (Norway); Padjadjaran University (UNPAD), Bandung (Indonesia); Mazzini, Adriano; Sugiharto, Anton [OSLO University (Norway); Lupi, Matteo [ETH Zurich (Switzerland); Syafri, Ildrem [Padjadjaran University (UNPAD), Bandung (Indonesia); Masturyono,; Rudiyanto, Ariska; Pranata, Bayu; Muzli,; Widodo, Handi Sulistyo; Sudrajat, Ajat [Agency for Meteorology, Climatology and Geophysics (BMKG), Jakarta (Indonesia)

    2015-04-24

    The spectacular Lumpur Sidoarjo (Lusi) eruption started in northeast Java on the 29 of May 2006 following a M6.3 earthquake striking the island [1,2]. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system [3] and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. The Lusi seismic experiment is a project aims to begin a detailed study of seismicity around the Lusi area. In this initial phase we deploy 30 seismometers strategically distributed in the area around Lusi and along the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. The purpose of the initial monitoring is to conduct a preliminary seismic campaign aiming to identify the occurrence and the location of local seismic events in east Java particularly beneath Lusi.This network will locate small event that may not be captured by the existing BMKG network. It will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-AW region and spatial and temporal variations of vp/vs ratios. The goal of this study is to understand how the seismicity occurring along the Sunda subduction zone affects to the behavior of the Lusi eruption. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. In this study, we will extract Green’s functions from ambient seismic noise data in order to image the shallow subsurface structure beneath LUSI area. The waveform cross-correlation technique will be apply to all of recordings of ambient seismic noise at 30 seismographic stations around the LUSI area. We use the dispersive behaviour of the retrieved Rayleigh waves to infer velocity structures in the shallow subsurface.

  17. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  18. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  19. Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net

    Science.gov (United States)

    Takemura, Shunsuke; Saito, Tatsuhiko; Shiomi, Katsuhiko

    2017-03-01

    An M 6.8 ( Mw 6.5) deep-focus earthquake occurred beneath the Bonin Islands at 21:18 (JST) on June 23, 2015. Observed high-frequency (>1 Hz) seismograms across Japan, which contain several sets of P- and S-wave arrivals for the 10 min after the origin time, indicate that moderate-to-large earthquakes occurred sequentially around Japan. Snapshots of the seismic energy propagation illustrate that after one deep-focus earthquake occurred beneath the Sea of Japan, two deep-focus earthquakes occurred sequentially after the first ( Mw 6.5) event beneath the Bonin Islands in the next 4 min. The United States Geological Survey catalog includes three Bonin deep-focus earthquakes with similar hypocenter locations, but their estimated magnitudes are inconsistent with seismograms from across Japan. The maximum-amplitude patterns of the latter two earthquakes were similar to that of the first Bonin earthquake, which indicates similar locations and mechanisms. Furthermore, based on the ratios of the S-wave amplitudes to that of the first event, the magnitudes of the latter events are estimated as M 6.5 ± 0.02 and M 5.8 ± 0.02, respectively. Three magnitude-6-class earthquakes occurred sequentially within 4 min in the Pacific slab at 480 km depth, where complex heterogeneities exist within the slab.[Figure not available: see fulltext.

  20. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.