WorldWideScience

Sample records for lunar resource development

  1. Lunar resource base

    Science.gov (United States)

    Pulley, John; Wise, Todd K.; Roy, Claude; Richter, Phil

    A lunar base that exploits local resources to enhance the productivity of a total SEI scenario is discussed. The goals were to emphasize lunar science and to land men on Mars in 2016 using significant amounts of lunar resources. It was assumed that propulsion was chemical and the surface power was non-nuclear. Three phases of the base build-up are outlined, the robotic emplacement of the first elements is detailed and a discussion of future options is included.

  2. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  3. Energy for lunar resource exploitation

    Science.gov (United States)

    Glaser, Peter E.

    1992-02-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  4. Lunar Solar Power System Driven Human Development of the Moon and Resource-Rich Exploration of the Inner Solar System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    available that can build fundamentally new infrastructure from the common silicate materials of asteroids and the moons of Mars. Commercial power can be beamed from the Moon to ion-propelled rockets and to industrial facilities throughout the inner solar systems (6, 7). The LSP System can establish the Earth and the Moon as a two-planet economy. Lunar and cis-lunar industry will grow through profitable activities. Exploration of the inner solar system can stage, at marginal cost, from the Moon and cis-lunar space rather than the surface of Earth. 1. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 2. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.uk] 3. Strong, Marice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 4. Criswell, D. R. And R. D. Waldron (1993), "International lunar base and the lunar-based power system to supply Earth with electric power," Acta Astronautica, 29, No. 6: 469-480. 5. Criswell, D. R. (1998), Lunar Solar Power: Lunar unit processes, scales, and challenges, 6 p.p. (ms), ExploSpace: Workshop on Space Exploration and Resources Exploitation, European Space Agency, Cagliari, Sardinia, (October 20 - 22). 6. Criswell, D. R. (1999), Commercial lunar solar power and sustainable growth of the two-planet economy, Proc. Third International Working Group on Lunar Exploration and Exploitation, Solar System Research, Vol. 33, #5, 356-362, Moscow, (October 11-14). 7. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.

  5. Fusion power from lunar resources

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Schmitt, H.H.

    1992-01-01

    This paper reports that the moon contains an enormous energy source in 3 He deposited by the solar wind. Fusion of only 100 kg of 3 He with deuterium in thermonuclear fusion power plants can produce > 1000 MW (electric) of electrical energy, and the lunar resource base is estimated at 1 x 10 9 kg of 3 He. This fuel can supply >1000 yr of terrestrial electrical energy demand. The methods for extracting this fuel and the other solar wind volatiles are described. Alternate uses of D- 3 He fusion in direct thrust rockets will enable more ambitious deep-space missions to be conducted. The capability of extracting hydrogen, water, nitrogen, and other carbon-containing molecules will open up the moon to a much greater level of human settlement than previously thought

  6. Process Demonstration For Lunar In Situ Resource Utilization-Molten Oxide Electrolysis (MSFC Independent Research and Development Project No. 5-81)

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E. C.; Hudson, S. B.; Miller, T. Y.; Grugel, R. N.; Sen, S.; Sadoway, D. R.

    2006-01-01

    The purpose of this Focus Area Independent Research and Development project was to conduct, at Marshall Space Flight Center, an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis process to produce oxygen and metal. In essence, the vision was to develop two key technologies, the first to produce materials (oxygen, metals, and silicon) from lunar resources and the second to produce energy by photocell production on the Moon using these materials. Together, these two technologies have the potential to greatly reduce the costs and risks of NASA s human exploration program. Further, it is believed that these technologies are the key first step toward harvesting abundant materials and energy independent of Earth s resources.

  7. Polar lunar power ring: Propulsion energy resource

    Science.gov (United States)

    Galloway, Graham Scott

    1990-01-01

    A ring shaped grid of photovoltaic solar collectors encircling a lunar pole at 80 to 85 degrees latitude is proposed as the primary research, development, and construction goal for an initial lunar base. The polar Lunar Power Ring (LPR) is designed to provide continuous electrical power in ever increasing amounts as collectors are added to the ring grid. The LPR can provide electricity for any purpose indefinitely, barring a meteor strike. The associated rail infrastructure and inherently expandable power levels place the LPR as an ideal tool to power an innovative propulsion research facility or a trans-Jovian fleet. The proposed initial output range is 90 Mw to 90 Gw.

  8. Remote Assessment of Lunar Resource Potential

    Science.gov (United States)

    Taylor, G. Jeffrey

    1992-01-01

    Assessing the resource potential of the lunar surface requires a well-planned program to determine the chemical and mineralogical composition of the Moon's surface at a range of scales. The exploration program must include remote sensing measurements (from both Earth's surface and lunar orbit), robotic in situ analysis of specific places, and eventually, human field work by trained geologists. Remote sensing data is discussed. Resource assessment requires some idea of what resources will be needed. Studies thus far have concentrated on oxygen and hydrogen production for propellant and life support, He-3 for export as fuel for nuclear fusion reactors, and use of bulk regolith for shielding and construction materials. The measurement requirements for assessing these resources are given and discussed briefly.

  9. "International regime for advancing lunar development"

    Science.gov (United States)

    Beldavs, VZ

    2017-09-01

    A specific concern regarding the Moon Treaty is the provision for sharing the wealth gained from space with developing countries that have not invested and taken risks in making possible space materials utilization. Article 11, par. 7 states "The main purposes of the international regime to be established shall include: (a) The orderly and safe development of the natural resources of the moon; (b) The rational management of those resources; (c) The expansion of opportunities in the use of those resources; (d) An equitable sharing by all States Parties in the benefits derived from those resources, whereby the interests and needs of the developing countries, as well as the efforts of those countries which have contributed either directly or indirectly to the exploration of the moon, shall be given special consideration." Whether the Moon Treaty in its present form or modified to be acceptable to more parties or the Moon Treaty is ignored, the language of Article 11, paragraph 7 can be used to construct an international regime for lunar development that can meet the requirements of commercial business as well as of states that provide support for lunar development as well as developing countries that may have played a modest role in making lunar development possible. This paper will consider options for constructing an international regime for lunar development.

  10. KOREAN LUNAR LANDER – CONCEPT STUDY FOR LANDING-SITE SELECTION FOR LUNAR RESOURCE EXPLORATION

    Directory of Open Access Journals (Sweden)

    K. J. Kim

    2016-06-01

    Full Text Available As part of the national space promotion plan and presidential national agendas South Korea’s institutes and agencies under the auspices of the Ministry of Science, Information and Communication Technology and Future Planning (MSIP are currently developing a lunar mission package expected to reach Moon in 2020. While the officially approved Korean Pathfinder Lunar Orbiter (KPLO is aimed at demonstrating technologies and monitoring the lunar environment from orbit, a lander – currently in pre-phase A – is being designed to explore the local geology with a particular focus on the detection and characterization of mineral resources. In addition to scientific and potential resource potentials, the selection of the landing-site will be partly constrained by engineering constraints imposed by payload and spacecraft layout. Given today’s accumulated volume and quality of available data returned from the Moon’s surface and from orbital observations, an identification of landing sites of potential interest and assessment of potential hazards can be more readily accomplished by generating synoptic snapshots through data integration. In order to achieve such a view on potential landing sites, higher level processing and derivation of data are required, which integrates their spatial context, with detailed topographic and geologic characterizations. We are currently assessing the possibility of using fuzzy c-means clustering algorithms as a way to perform (semi- automated terrain characterizations of interest. This paper provides information and background on the national lunar lander program, reviews existing approaches – including methods and tools – for landing site analysis and hazard assessment, and discusses concepts to detect and investigate elemental abundances from orbit and the surface. This is achieved by making use of manual, semi-automated as well as fully-automated remote-sensing methods to demonstrate the applicability of

  11. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  12. Robotic Lunar Lander Development Status

    Science.gov (United States)

    Ballard, Benjamin; Cohen, Barbara A.; McGee, Timothy; Reed, Cheryl

    2012-01-01

    NASA Marshall Space Flight Center and John Hopkins University Applied Physics Laboratory have developed several mission concepts to place scientific and exploration payloads ranging from 10 kg to more than 200 kg on the surface of the moon. The mission concepts all use a small versatile lander that is capable of precision landing. The results to date of the lunar lander development risk reduction activities including high pressure propulsion system testing, structure and mechanism development and testing, and long cycle time battery testing will be addressed. The most visible elements of the risk reduction program are two fully autonomous lander flight test vehicles. The first utilized a high pressure cold gas system (Cold Gas Test Article) with limited flight durations while the subsequent test vehicle, known as the Warm Gas Test Article, utilizes hydrogen peroxide propellant resulting in significantly longer flight times and the ability to more fully exercise flight sensors and algorithms. The development of the Warm Gas Test Article is a system demonstration and was designed with similarity to an actual lunar lander including energy absorbing landing legs, pulsing thrusters, and flight-like software implementation. A set of outdoor flight tests to demonstrate the initial objectives of the WGTA program was completed in Nov. 2011, and will be discussed.

  13. Lunar Surface Systems Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  14. Use of a Lunar Outpost for Developing Space Settlement Technologies

    Science.gov (United States)

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory

  15. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  16. Beijing Lunar Declaration 2010: B) Technology and Resources; Infrastructures and Human Aspects; Moon, Space and Society

    Science.gov (United States)

    Arvidson, R.; Foing, B. H.; Plescial, J.; Cohen, B.; Blamont, J. E.

    2010-01-01

    We report on the Beijing Lunar Declaration endorsed by the delegates of the Global Lunar Conference/11th ILEWG Conference on Exploration and Utilisation of the Moon, held at Beijing on 30 May- 3 June 2010. Specifically we focus on Part B:Technologies and resources; Infrastructures and human aspects; Moon, Space, Society and Young Explorers. We recommend continued and enhanced development and implementation of sessions about lunar exploration, manned and robotic, at key scientific and engineering meetings. A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential.

  17. Electromagnetic energy applications in lunar resource mining and construction

    International Nuclear Information System (INIS)

    Lindroth, D.P.; Podnieks, E.R.

    1988-01-01

    Past work during the Apollo Program and current efforts to determine extraterrestrial mining technology requirements have led to the exploration of various methods applicable to lunar or planetary resource mining and processing. The use of electromagnetic energy sources is explored and demonstrated using laboratory methods to establish a proof of concept for application to lunar mining, construction, and resource extraction. Experimental results of using laser, microwave, and solar energy to fragment or melt terrestrial basal under atmospheric and vacuum conditions are presented. Successful thermal stress fragmentation of dense igneous rock was demonstrated by all three electromagnetic energy sources. The results show that a vacuum environment has no adverse effects on fragmentation by induced thermal stresses. The vacuum environment has a positive effect for rock disintegration by melting, cutting, or penetration applications due to release of volatiles that assist in melt ejection. Consolidation and melting of basaltic fines are also demonstrated by these methods

  18. Academic aspects of lunar water resources and their relevance to lunar protolife.

    Science.gov (United States)

    Green, Jack

    2011-01-01

    polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife.

  19. Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2011-09-01

    acids. Soluble polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife.

  20. A Lunar Surface System Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.

    2011-01-01

    This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set

  1. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  2. A cislunar transportation system fuelled by lunar resources

    Science.gov (United States)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  3. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  4. Development of near-zero water consumption cement materials via the geopolymerization of tektites and its implication for lunar construction.

    Science.gov (United States)

    Wang, Kai-Tuo; Tang, Qing; Cui, Xue-Min; He, Yan; Liu, Le-Ping

    2016-07-13

    The environment on the lunar surface poses some difficult challenges to building long-term lunar bases; therefore, scientists and engineers have proposed the creation of habitats using lunar building materials. These materials must meet the following conditions: be resistant to severe lunar temperature cycles, be stable in a vacuum environment, have minimal water requirements, and be sourced from local Moon materials. Therefore, the preparation of lunar building materials that use lunar resources is preferred. Here, we present a potential lunar cement material that was fabricated using tektite powder and a sodium hydroxide activator and is based on geopolymer technology. Geopolymer materials have the following properties: approximately zero water consumption, resistance to high- and low-temperature cycling, vacuum stability and good mechanical properties. Although the tektite powder is not equivalent to lunar soil, we speculate that the alkali activated activity of lunar soil will be higher than that of tektite because of its low Si/Al composition ratio. This assumption is based on the tektite geopolymerization research and associated references. In summary, this study provides a feasible approach for developing lunar cement materials using a possible water recycling system based on geopolymer technology.

  5. Ilmenite-rich pyroclastic deposits - An ideal lunar resource

    Science.gov (United States)

    Hawke, B. R.; Clark, B.; Coombs, C. R.

    1990-01-01

    With a view of investigating possible economic benefits that a permanent lunar settlement might provide to the near-earth space infrastructures, consideration was given to the ilmenite-rich pyroclastic deposits as sources of oxygen (for use as a propellant) and He-3 (for nuclear fusion fuel). This paper demonstrates that ilmenite-rich pyroclastic deposits would be excellent sources of a wide variety of valuable elements besides O and He-3, including Fe, Ti, H2, N, C, S, Cu, Zn, Cd, Bi, and Pb. It is shown that several ilmenite-rich pyroclastic deposits of regional extent exist on the lunar surface. The suitability of regional pyroclastic deposits for lunar mining operations, construction activities, and the establishment of permanent lunar settlements is examined.

  6. Lunar Station: The Next Logical Step in Space Development

    Science.gov (United States)

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.

    2014-01-01

    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  7. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  8. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  9. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    Science.gov (United States)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has

  10. Mass Estimate for a Lunar Resource Launcher Based on Existing Terrestrial Electromagnetic Launchers

    Directory of Open Access Journals (Sweden)

    Gordon Roesler

    2013-06-01

    Full Text Available Economic exploitation of lunar resources may be more efficient with a non-rocket approach to launch from the lunar surface. The launch system cost will depend on its design, and on the number of launches from Earth to deliver the system to the Moon. Both of these will depend on the launcher system mass. Properties of an electromagnetic resource launcher are derived from two mature terrestrial electromagnetic launchers. A mass model is derived and used to estimate launch costs for a developmental launch vehicle. A rough manufacturing cost for the system is suggested.

  11. Development of a Lunar Borehole Seismometer

    Science.gov (United States)

    Passmore, P. R.; Siegler, M.; Malin, P. E.; Passmore, K.; Zacny, K.; Avenson, B.; Weber, R. C.; Schmerr, N. C.; Nagihara, S.

    2017-12-01

    Nearly all seismic stations on Earth are buried below the ground. Burial provides controlled temperatures and greater seismic coupling at little cost. This is also true on the Moon and other planetary bodies. Burial of a seismometer under just 1 meter of lunar regolith would provide an isothermal environment and potentially reduce signal scattering noise by an order of magnitude. Here we explain how we will use an existing NASA SBIR and PIDDP funded subsurface heat flow probe deployment system to bury a miniaturized, broadband, optical seismometer 1 meter below the lunar surface. The system is sensitive, low mass and low power. We believe this system offers a compelling architecture for NASA's future seismic exploration of the solar system. We will report on a prototype 3-axis, broadband seismometer package that has been tested under low pressure conditions in lunar-regolith simulant. The deployment mechanism reaches 1m depth in less than 25 seconds. Our designed and tested system: 1) Would be deployed at least 1m below the lunar surface to achieve isothermal conditions without thermal shielding or heaters, increase seismic coupling, and decrease noise. 2) Is small (our prototype probe is a cylinder 50mm in diameter, 36cm long including electronics, potentially as small as 10 cm with sensors only). 3) Is low-mass (each sensor is 0.1 kg, so an extra redundancy 4-component seismograph plus 1.5 kg borehole sonde and recorder weighs less than 2 kg and is feasibly smaller with miniaturized electronics). 4) Is low-power (our complete 3-sensor borehole seismographic system's power consumption is about half a Watt, or 7% of Apollo's 7.1 W average and 30% of the InSight SEIS's 1.5W winter-time heating system). 5) Is broadband and highly sensitive (the "off the shelf" sensors have a wide passband: 0.005-1000 Hz - and high dynamic range of 183 dB (or about 10-9g Hz-1/2, with hopes for simple modifications to be at least an order of magnitude better). Burial also aids the

  12. Development and mechanical properties of structural materials from lunar simulants

    Science.gov (United States)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  13. Selenia: A habitability study for the development of a third generation lunar base

    Science.gov (United States)

    1991-01-01

    When Apollo astronauts landed on the Moon, the first generation of lunar bases was established. They consisted essentially of a lunar module and related hardware capable of housing two astronauts for not more than several days. Second generation lunar bases are being developed, and further infrastructure, such as space station, orbital transfer, and reusable lander vehicles will be necessary, as prolonged stay on the Moon is required for exploration, research, and construction for the establishment of a permanent human settlement there. Human life in these habitats could be sustained for months, dependent on a continual flow of life-support supplies from Earth. Third-generation lunar bases will come into being as self sufficiency of human settlements becomes feasible. Regeneration of water, oxygen production, and development of indigenous construction materials from lunar resources will be necessary. Greenhouses will grow food supplies in engineered biospheres. Assured protection from solar flares and cosmic radiation must be provided, as well as provision for survival under meteor showers, or the threat of meteorite impact. All these seem to be possible within the second decade of the next century. Thus, the builders of Selenia, the first of the third-generation lunar bases are born today. During the last two years students from the School of Architecture of the University of Puerto Rico have studied the problems that relate to habitability for prolonged stay in extraterrestrial space. An orbital personnel transport to Mars developed originally by the Aerospace Engineering Department of the University of Michigan was investigated and habitability criteria for evaluation of human space habitats were proposed. An important finding from that study was that the necessary rotational diameter of the vessel has to be on the order of two kilometers to ensure comfort for humans under the artificial gravity conditions necessary to maintain physiological well being of

  14. Providing Effective Professional Development for Teachers through the Lunar Workshops for Educators

    Science.gov (United States)

    Canipe, Marti; Buxner, Sanlyn; Jones, Andrea; Hsu, Brooke; Shaner, Andy; Bleacher, Lora

    2014-11-01

    In order to integrate current scientific discoveries in the classroom, K-12 teachers benefit from professional development and support. The Lunar Workshops for Educators is a series of weeklong workshops for grade 6-9 science teachers focused on lunar science and exploration, sponsored by the Lunar Reconnaissance Orbiter (LRO) and conducted by the LRO Education and Public Outreach (E/PO) Team. The Lunar Workshops for Educators, have provided this professional development for teachers for the last five years. Program evaluation includes pre- and post- content tests and surveys related to classroom practice, daily surveys, and follow-up surveys conducted during the academic year following the summer workshops to assess how the knowledge and skills learned at the workshop are being used in the classroom. The evaluation of the workshop shows that the participants increased their overall knowledge of lunar science and exploration. Additionally, they gained knowledge about student misconceptions related to the Moon and ways to address those misconceptions. The workshops impacted the ways teachers taught about the Moon by providing them with resources to teach about the Moon and increased confidence in teaching about these topics. Participants reported ways that the workshop impacted their teaching practices beyond teaching about the Moon, encouraging them to include more inquiry and other teaching techniques demonstrated in the workshops in their science classes. Overall, the program evaluation has shown the Lunar Workshops for Educators are effective at increasing teachers’ knowledge about the Moon and use of inquiry-based teaching into their classrooms. Additionally, the program supports participant teachers in integrating current scientific discoveries into their classrooms.

  15. Collection and Purification of Lunar Propellant Resources, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Technology Applications, Inc. (TAI) proposes to advance In-Situ Resource Utilization (ISRU) capabilities by applying advanced cryogenic technology to perform...

  16. Developing the "Lunar Vicinity" Scenario of the Global Exploration Roadmap

    Science.gov (United States)

    Schmidt, G.; Neal, C. R.; Crawford, I. A.; Ehrenfreund, P.

    2014-04-01

    The Global Exploration Roadmap (GER, [1]) has been developed by the International Space Exploration Coordination Group (ISECG - comprised of 14 space agencies) to define various pathways to getting humans beyond low Earth orbit and eventually to Mars. Such pathways include visiting asteroids or the Moon before going on to Mars. This document has been written at a very high level and many details are still to be determined. However, a number of important papers regarding international space exploration can form a basis for this document (e.g. [2,3]). In this presentation, we focus on developing the "Lunar Vicinity" scenario by adding detail via mapping a number of recent reports/documents into the GER. Precedence for this scenario is given by Szajnfarber et al. [4] who stated "We find that when international partners are considered endogenously, the argument for a "flexible path" approach is weakened substantially. This is because international contributions can make "Moon first" economically feasible". The documents highlighted here are in no way meant to be all encompassing and other documents can and should be added, (e.g., the JAXA Space Exploration Roadmap). This exercise is intended to demonstrate that existing documents can be mapped into the GER despite the major differences in granularity, and that this mapping is a way to promote broader national and international buy-in to the Lunar Vicinity scenario. The documents used here are: the Committee on Space Research (COSPAR) Panel on Exploration report on developing a global space exploration program [5], the Strategic Knowledge Gaps (SKGs) report from the Lunar Exploration Analysis Group (LEAG) [6], the Lunar Exploration Roadmap developed by LEAG [7], the National Research Council report Scientific Context for the Exploration of the Moon (SCEM) [8], the scientific rationale for resuming lunar surface exploration [9], the astrobiological benefits of human space exploration [9,10].

  17. Use of Hawaii Analog Sites for Lunar Science and In-Situ Resource Utilization

    Science.gov (United States)

    Sanders, G. B.; Larson, W. E.; Picard, M.; Hamilton, J. C.

    2011-01-01

    In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.

  18. The Moon: Resources, Future Development and Colonization

    Science.gov (United States)

    Schrunk, David; Sharpe, Burton; Cooper, Bonnie; Thangavelu, Madhu

    1999-07-01

    This unique, visionary and innovative book describes how the Moon could be colonised and developed as a platform for science, industrialization and exploration of our Solar System and beyond. Thirty years ago, the world waited with baited breath to watch history in the making, as man finally stepped onto the moon's surface. In the last few years, there has been growing interest in the idea of a return to the moon. This book describes the reasons why we should now start lunar development and settlement, and how this goal may be accomplished. The authors, all of whom are hugely experienced space scientists, consider the rationale and steps necessary for establishing permanent bases on the Moon. Their innovative and scientific-based analysis concludes that the Moon has sufficient resources for large-scale human development. Their case for development includes arguments for a solar-powered electric grid and railroad, creation of a utilities infrastructure, habitable facilities, scientific operations and the involvement of private enterprise with the public sector in the macroproject. By transferring and adapting existing technologies to the lunar environment, the authors argue that it will be possible to use lunar resources and solar power to build a global lunar infrastructure embracing power, communication, transportation, and manufacturing. This will support the migration of increasing numbers of people from Earth, and realization of the Moon's scientific potential. As an inhabited world, the Moon is an ideal site for scientific laboratories dedicated to geosciences, astronomy and life sciences, and most importantly, it would fulfil a role as a proving ground and launch pad for future Solar System exploration. The ten chapters in this book go beyond the theoretical and conceptual. With vision and foresight, the authors offer practical means for establishing permanent bases on the Moon. The book will make fascinating and stimulating reading for students in

  19. Development and mechanical properties of construction materials from lunar simulant

    Science.gov (United States)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  20. Development and mechanical properties of structural materials from lunar simulant

    Science.gov (United States)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  1. Development and mechanical properties of construction materials from lunar simulants

    Science.gov (United States)

    Desai, Chandra S.

    1990-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. Currently, this research involves two aspects: (1) liquefaction of lunar simulants with various additives in a furnace so as to produce a construction material like an intermediate ceramic; and (2) cyclic loading of simulant with different initial vacuums and densities with respect to the theoretical maximum densities (TMD). In both cases, bending, triaxial compression, extension, and hydrostatic tests will be performed to define the stress-strain strength response of the resulting materials. In the case of the intermediate ceramic, bending and available multiaxial test devices will be used, while for the compacted case, tests will be performed directly in the new device. The tests will be performed by simulating in situ confining conditions. A preliminary review of high-purity metal is also conducted.

  2. Remote sensing of potential lunar resources. I - Near-side compositional properties

    Science.gov (United States)

    Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1991-01-01

    Using telescopic CCD multispectral images of the lunar near side and the results of 330-870 nm spectroscopy of selected regions, the compositional differences relevant to the locations of potential lunar resources (such as ilmenite, FeTiO3, and solar-wind-implanted He-3 and H) are estimated. The 400/560 nm CCD ratio images were converted to weight percent TiO2, and the values were used to construct a new TiO2 abundance map which can be used to estimate the areas potentially rich in ilmenite. A 950/560 nm CCD ratio mosaic of the full moon provides estimates of relative surface maturity. Since high He-3 concentrations correlate with mature ilmenite-rich soils, a combination of relative surface maturity maps and the TiO2 abundance maps can be used to estimate distributions of He-3 (and possibly H) on local scales.

  3. Marketing Human Resource Development.

    Science.gov (United States)

    Frank, Eric, Ed.

    1994-01-01

    Describes three human resource development activities: training, education, and development. Explains marketing from the practitioners's viewpoint in terms of customer orientation; external and internal marketing; and market analysis, research, strategy, and mix. Shows how to design, develop, and implement strategic marketing plans and identify…

  4. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional

  5. Electrostatic Beneficiation of Lunar Regolith: Applications in In-Situ Resource Utilization

    Science.gov (United States)

    Trigwell, Steve; Captain, James; Weis, Kyle; Quinn, Jacqueline

    2011-01-01

    Upon returning to the moon, or further a field such as Mars, presents enormous challenges in sustaining life for extended periods of time far beyond the few days the astronauts experienced on the moon during the Apollo missions. A stay on Mars is envisioned to last several months, and it would be cost prohibitive to take all the requirements for such a stay from earth. Therefore, future exploration missions will be required to be self-sufficient and utilize the resources available at the mission site to sustain human occupation. Such an exercise is currently the focus of intense research at NASA under the In-situ Resource Utilization (ISRU) program. As well as oxygen and water necessary for human life, resources for providing building materials for habitats, radiation protection, and landing/launch pads are required. All these materials can be provided by the regolith present on the surface as it contains sufficient minerals and metals oxides to meet the requirements. However, before processing, it would be cost effective if the regolith could be enriched in the mineral(s) of interest. This can be achieved by electrostatic beneficiation in which tribocharged mineral particles are separated out and the feedstock enriched or depleted as required. The results of electrostatic beneficiation of lunar simulants and actual Apollo regolith, in lunar high vacuum are reported in which various degrees of efficient particle separation and mineral enrichment up to a few hundred percent were achieved.

  6. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  7. Review - Water resources development

    Energy Technology Data Exchange (ETDEWEB)

    Todd, David K [Civil Engineering, University of California, Berkeley (United States)

    1970-05-15

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  8. Review - Water resources development

    International Nuclear Information System (INIS)

    Todd, David K.

    1970-01-01

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  9. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  10. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  11. Development of the Tri-ATHLETE Lunar Vehicle Prototype

    Science.gov (United States)

    Heverly, Matt; Matthews, Jaret; Frost, Matt; Quin, Chris

    2010-01-01

    The Tri-ATHLETE (All Terrain Hex Limed Extra Terrestrial Explorer) vehicle is the second generation of a wheel-on-limb vehicle being developed to support the return of humans to the lunar surface. This paper describes the design, assembly, and test of the Tri-ATHLETE robotic system with a specific emphasis on the limb joint actuators. The design and implementation of the structural components is discussed, and a novel and low cost approach to approximating flight-like cabling is also presented. The paper concludes with a discussion of the "second system effect" and other lessons learned as well as results from a three week long field trial of the vehicle in the Arizona desert.

  12. Development of lightweight radiators for lunar based power systems

    International Nuclear Information System (INIS)

    Juhasz, A.J.; Bloomfield, H.S.

    1994-05-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology

  13. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  14. Development of Compact, Modular Lunar Heat Flow Probes

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2014-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey and previously the International Lunar Network. Because the lander for such a mission will be relatively small, the heat flow instrumentation must be a low-mass and low-power system. The instrument needs to measure both thermal gradient and thermal conductivity of the regolith penetrated. It also needs to be capable of excavating a deep enough hole (approx. 3 m) to avoid the effect of potential long-term changes of the surface thermal environment. The recently developed pneumatic excavation system can largely meet the low-power, low-mass, and the depth requirements. The system utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. The thermal sensors consist of resistance temperature detectors (RTDs) embedded on the stem and an insitu thermal conductivity probe attached to the cone tip. The thermal conductivity probe consists of a short 'needle' (2.4-mm diam. and 15- to 20-mm length) that contains a platinum RTD wrapped in a coil of heater wire. During a deployment, when the penetrating cone reaches a desired depth, it stops blowing gas, and the stem pushes the needle into the yet-to-be excavated, undisturbed bottom soil. Then, it begins heating and monitors the temperature. Thermal conductivity of the soil can determined from the rate of temperature increase with time. When the measurement is complete, the system resumes excavation until it reaches the next targeted depth.

  15. Technic and economic viability study on exploitation of lunar 3He resource

    International Nuclear Information System (INIS)

    Deng Baiquan

    1995-01-01

    From the energetics point of view, the technic and economic viability study on exploitation of lunar 3 He for fuelling the fusion reactor burning D- 3 He has been carried out. This study is divided into the following sections: analysis of solar wind parameters and estimation of potential quantity 3 He in the lunar regolith, the cost evaluation of mining He of lunar soil; the energy cost calculation of He extraction by vacuum heating degassing during lunar day, the cost calculation of cryogenic isotopic separation 3 He/ 4 He during the lunar night, the energy cost for earth/moon transportation of liquid 3 He, the energy payback calculation of fusion power burning 3 He based lunar source, and finally the comparison of the energy multiplication with that for 235 U production of nuclear fuel and for coal mining. The comparisons of cost of electricity between D- 3 He and D-T fuel cycle for different reactor types have been discussed

  16. Investigation of dust particles with future Russian lunar missions: achievements of further development of PmL instrument.

    Science.gov (United States)

    Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny

    2016-07-01

    , solar emission. Dust analyzer instrument PmL for future Russian lander missions intends for investigation the dynamics of dusty plasma near lunar surface. PmL consists of three parts in the case of Luna-Glob: Impact Sensor and two Electric Field Sensors (EFC). There are 9 parts of PmL instrument for Luna-Resource mission: two Impact Sensors, 5 EFC (three on the Boom and two on the lander) and 2 Solar Wind and Dust Analyzers. These days the engineering model of PmL for LG-mission is finished. We obtained first practical results from the simulating chambers with dust particles injectors and plasma inside. All the important achievements are presented in this report as well as the roadmap for further development of PmL instruments in both of Russian lunar missions.

  17. From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt

    Science.gov (United States)

    McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.

    2008-01-01

    The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to

  18. Resource Prospector (RP) - Early Prototyping and Development

    Science.gov (United States)

    Andrews, D.; Colaprete, A.; Quinn, J.; Bluethmann, B.; Trimble, J.

    2015-01-01

    The Resource Prospector (RP) is an In-Situ Resource Utilization (ISRU) technology demonstration mission under study by the NASA Human Exploration and Operations Mission Directorate's (HEOMD) Advanced Exploration Systems (AES) Division. The mission, currently planned to launch in 2020, will demonstrate extraction of oxygen from lunar regolith to validate ISRU capability. The mission will address key Strategic Knowledge Gaps (SKGs) for robotic and human exploration to the Moon, Near Earth Asteroids (NEAs), and ultimately Mars, as well as meet the strategic goals of the Global Exploration Roadmap (GER), offered by the International Space Exploration Coordination Group (ISECG). In this roadmap, the use of local resources is specifically addressed relating to human exploration. RP will provide knowledge to inform the selection of future mission destinations, support the development of exploration systems, and reduce the risk associated with human exploration. Expanding human presence beyond low-Earth orbit to asteroids and Mars will require the maximum possible use of local materials, so-called in-situ resources. The moon presents a unique destination to conduct robotic investigations that advance ISRU capabilities, as well as providing significant exploration and science value. Lunar regolith contains useful resources such as oxygen, water, silicon, and light metals, like aluminum and titanium. Oxygen can be separated from the regolith for life support (breathable air), or used to create rocket propellant (oxidizer). Regolith can be used to protect against radiation exposure, be processed into solar cells, or used to manufacture construction materials such as bricks and glass. RP will characterize the constituents and distribution of water and other volatiles at the poles of the Moon, enabling innovative uses of local resources, in addition to validating ISRU capabilities. This capability, as well as a deeper understanding of regolith, will be valuable in the

  19. Development of a Lunar-Phase Observation System Based on Augmented Reality and Mobile Learning Technologies

    OpenAIRE

    Tarng, Wernhuar; Lin, Yu-Sheng; Lin, Chiu-Pin; Ou, Kuo-Liang

    2016-01-01

    Observing the lunar phase requires long-term involvement, and it is often obstructed by bad weather or tall buildings. In this study, a lunar-phase observation system is developed using the augmented reality (AR) technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to help students observe and record lunar phases easily. By holding the mobile device towards the moon in the sky, the screen will show the virtual moon at the position of the r...

  20. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  1. Development of a Lunar-Phase Observation System Based on Augmented Reality and Mobile Learning Technologies

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2016-01-01

    Full Text Available Observing the lunar phase requires long-term involvement, and it is often obstructed by bad weather or tall buildings. In this study, a lunar-phase observation system is developed using the augmented reality (AR technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to help students observe and record lunar phases easily. By holding the mobile device towards the moon in the sky, the screen will show the virtual moon at the position of the real moon. The system allows the user to record the lunar phase, including its azimuth/elevation angles and the observation date and time. In addition, the system can shorten the learning process by setting different dates and times for observation, so it can solve the problem of being unable to observe and record lunar phases due to a bad weather or the moon appearing late in the night. Therefore, it is an effective tool for astronomy education in elementary and high schools. A teaching experiment has been conducted to analyze the learning effectiveness of the system and the results show that it is effective in learning the lunar concepts. The questionnaire results reveal that students considered the system easy to operate and it is useful in locating the moon and recording the lunar data.

  2. Model-Based Resource and Mode Management for Lunar Surface Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at developing a model based resource and mode management system for space robotics systems that will allow real time assessment of...

  3. Thermodynamics of lunar ilmenite reduction

    Science.gov (United States)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  4. Lunar Flashlight and Other Lunar Cubesats

    Science.gov (United States)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  5. Developing technologies and resources

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  6. Developing technologies and resources

    International Nuclear Information System (INIS)

    Walker, R.S.

    2015-01-01

    Our success as a nuclear nation rests on interdependent pillars involving industry, governments, regulators, and academia. In a context of coherent public policy, we must achieve: 5 Nuclear Industry Priorities: Ensure refurbishments are completed to cost and schedule; Achieve Canadian supply chain success in international nuclear business; Support a strong Canadian nuclear science, technology and innovation agenda; Enhance the supply of skilled workers; Develop a coordinated and integrated strategy for the long term management of all radioactive waste materials; Refine communication strategies informed by insights from social sciences. Canada's nuclear sector has the opportunity to adapt to the opportunities presented by having a national laboratory in Canada.

  7. Natural resources, innovation and development

    DEFF Research Database (Denmark)

    Andersen, Allan Dahl; Johnson, Bjørn Harold; Marín, Anabel

    be supported politically? The Globelics review considers a range of contemporary and historical studies and diverse theoretical positions concerning resource intensive development paths. The intention is to make it easier for analysts and policy makers to learn both from countries that in the past have......In this Globelics Thematic Review, the author team presents and discusses recent research on the relationships between natural resources, innovation and development, and suggests some implications of this body of knowledge for policy makers. The Review sets out to explore three interlinked...... questions with a particular focus on innovation and industry dynamics. First, to what extent is it currently possible for a country to develop on the basis of natural resources? Second, what are the main underlying mechanisms of resource intensive development paths? Third, how can such mechanisms...

  8. Development of the Lunar and Solar Perturbations in the Motion of an Artificial Satellite

    Science.gov (United States)

    Musen, P.; Bailie, A.; Upton, E.

    1961-01-01

    Problems relating to the influence of lunar and solar perturbations on the motion of artificial satellites are analyzed by an extension of Cayley's development of the perturbative function in the lunar theory. In addition, the results are modified for incorporation into the Hansen-type theory used by the NASA Space Computing Center. The theory is applied to the orbits of the Vanguard I and Explorer VI satellites, and the results of detailed computations for these satellites are given together with a physical description of the perturbations in terms of resonance effects.

  9. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  10. Provincial resource development research policy

    Energy Technology Data Exchange (ETDEWEB)

    Flock, D L

    1976-01-01

    In Alberta, there is an abundance of oil, natural gas, and coal. But only a small portion of the Alberta oil sands and coal resources are commercially accessible to surface-mining techniques. It is quite apparent that some in-situ technological breakthrough will be required, which will mean a concerted research effort at the provincial level. It is the purpose of this paper to present certain concepts and recommendations for a coordinated provincial resource development research policy for the Province of Alberta. Research as discussed in this paper covers basic and applied research and development. (MCW)

  11. Students developing resources for students.

    Science.gov (United States)

    Pearce, Michael; Evans, Darrell

    2012-06-01

    The development of new technologies has provided medical education with the ability to enhance the student learning experience and meet the needs of changing curricula. Students quickly adapt to using multimedia learning resources, but these need to be well designed, learner-centred and interactive for students to become significantly engaged. One way to ensure that students become committed users and that resources become distinct elements of the learning cycle is to involve students in resource design and production. Such an approach enables resources to accommodate student needs and preferences, but also provides opportunities for them to develop their own teaching and training skills. The aim of the medical student research project was to design and produce an electronic resource that was focused on a particular anatomical region. The views of other medical students were used to decide what features were suitable for inclusion and the resulting package contained basic principles and clinical relevance, and used a variety of approaches such as images of cadaveric material, living anatomy movies and quizzes. The completed package was assessed using a survey matrix and found to compare well with commercially available products. Given the ever-diversifying arena of multimedia instruction and the ability of students to be fully conversant with technology, this project demonstrates that students are ideal participants and creators of multimedia resources. It is hoped that such an approach will help to further develop the skill base of students, but will also provide an avenue of developing packages that are student user friendly, and that are focused towards particular curricula requirements. © Blackwell Publishing Ltd 2012.

  12. Evaluation of Private Sector Roles in Space Resource Development

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Blair, Brad R.; Diaz, Javier; Oderman, Mark; Duke, Michael B.; Vaucher, Marc; Manvi, Ramachandra; Easter, Robert W.

    2003-01-01

    An integrated engineering and financial modeling approach has been developed and used to evaluate the potential for private sector investment in space resource development, and to assess possible roles of the public sector in fostering private interest. This paper presents the modeling approach and its results for a transportation service using propellant extracted from lunar regolith. The analysis starts with careful case study definition, including an analysis of the customer base and market requirements, which are the basis for design of a modular, scalable space architecture. The derived non-recurring, recurring and operations costs become inputs for a `standard' financial model, as used in any commercial business plan. This model generates pro forma financial statements, calculates the amount of capitalization required, and generates return on equity calculations using two valuation metrics of direct interest to private investors: market enterprise value and multiples of key financial measures. Use of this model on an architecture to sell transportation services in Earth orbit based on lunar propellants shows how to rapidly test various assumptions and identify interesting architectural options, key areas for investment in exploration and technology, or innovative business approaches that could produce an economically viable industry. The same approach can be used to evaluate any other possible private ventures in space, and conclude on the respective roles of NASA and the private sector in space resource development and solar system exploration.

  13. Lunar e-Library: A Research Tool Focused on the Lunar Environment

    Science.gov (United States)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale

    2007-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  14. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  15. The effects of human resource flexibility on human resources development

    Directory of Open Access Journals (Sweden)

    SeidMehdi Veise

    2014-08-01

    Full Text Available Human resources are the primary factor for development of competitiveness and innovation and reaching competitive advantage and they try to improve corporate capabilities through various characteristics such as value creation, scarcity and difficulty of imitation. This paper investigates the effect of human resource flexibility and its dimensions on human resource development and its dimensions. The survey was conducted using descriptive-correlation method that intended to describe how human resource flexibility was effective on human resource development. Questionnaire was tool of data collection. The statistical population included one hundred employees of the Electric Company in Ilam province, thus census method was used. Reliability of the questionnaire was measured via Cronbach's alpha equal to 0.96. The findings revealed that flexibility and its dimensions were effective on human resource development and dimensions of it. As a result, human resource flexibility should be considered for development of human resources and employees with the highest flexibility should be selected.

  16. Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    Science.gov (United States)

    Werkheiser, Niki J.; Fiske, Michael R.; Edmunson, Jennifer E.; Khoshnevis, Berokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As human presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for the self-sufficiency and sustainability necessary for long-duration habitation. Previously, under the auspices of the MSFC In-Situ Fabrication and Repair (ISFR) project and more recently, under the jointly-managed MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in-situ resources. One such additive construction technology is known as Contour Crafting. This paper presents the results to date of these efforts, including development of novel nozzle concepts for advanced layer deposition using this process. Conceived initially for rapid development of cementitious structures on Earth, it also lends itself exceptionally well to the automated fabrication of planetary surface structures using minimally processed regolith as aggregate, and binders developed from in situ materials as well. This process has been used successfully in the fabrication of

  17. International Lunar Decade Status

    Science.gov (United States)

    Beldavs, VZ; Crisafulli, J.; Dunlop, D.; Foing, B.

    2017-09-01

    The International Lunar Decade is a global decadal event designed to provide a framework for strategically directed international cooperation for permanent return to the Moon. To be launched July 20, 2019, the 50th anniversary of the giant leap for mankind marked by Neil Armstrong's first step on the Moon, the ILD launch will include events around the world to celebrate space exploration, science, and the expansion of humanity into the Solar System. The ILD framework links lunar exploration and space sciences with the development of enabling technologies, infrastructure, means of financing, laws and policies aimed at lowering the costs and risks of venturing into space. Dramatically reduced costs will broaden the range of opportunities available in space and widen access to space for more states, companies and people worldwide. The ILD is intended to bring about the efflorescence of commercial business based on space resources from the Moon, asteroids, comets and other bodies in the Solar System.

  18. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    Science.gov (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    exhibits are planned. One proposal is to develop a teacher-training program to acquaint teachers with the Lunar Quest program and to provide resources.

  19. Resource utilization during software development

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1988-01-01

    This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.

  20. Maximizing benefits from resource development

    International Nuclear Information System (INIS)

    Skjelbred, B.

    2002-01-01

    The main objectives of Norwegian petroleum policy are to maximize the value creation for the country, develop a national oil and gas industry, and to be at the environmental forefront of long term resource management and coexistence with other industries. The paper presents a graph depicting production and net export of crude oil for countries around the world for 2002. Norway produced 3.41 mill b/d and exported 3.22 mill b/d. Norwegian petroleum policy measures include effective regulation and government ownership, research and technology development, and internationalisation. Research and development has been in five priority areas, including enhanced recovery, environmental protection, deep water recovery, small fields, and the gas value chain. The benefits of internationalisation includes capitalizing on Norwegian competency, exploiting emerging markets and the assurance of long-term value creation and employment. 5 figs

  1. Towards Improved Human Resource Development In Nigeria ...

    African Journals Online (AJOL)

    Towards Improved Human Resource Development In Nigeria: Challenges And Prospects. ... Journal of Research in National Development ... Consequently, the paper recommended; improved investment in education, implementable policies on human resource development, involvement of private organization in human ...

  2. Planning for energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    Magai, B S [Dept. of Mech. Eng., IIT Bombay, India

    1975-01-01

    A general review is provided of the national energy resources of India. They include wind power, tidal power, geothermal energy, and nuclear fission and fusion. Their present (1975) contribution to India's total energy requirements and the possibility of their accelerated development and impact on the national economy are discussed. Due to the serious proportions which the energy situation is assuming, it is suggested that a national energy council be set up within the Ministry of Energy to review all matters pertaining to energy, and to assume planning and evaluation responsibilities. It is also recommended that a Department of Energy Research, Development, and Demonstration be established as an autonomous agency which would carry out programs in utilization, conservation, environment, economics, and education. Present efforts by various ministries are fragmented and diverge in policy, leadership, and planning. It is believed that the proposed organizations would coordinate energy programs with national objectives.

  3. Human resource development for decommissioning

    International Nuclear Information System (INIS)

    Yanagihara, Satoshi

    2016-01-01

    This paper summarized the features of decommissioning work and the methods how to develop human resources. The general flow of decommissioning includes the following steps: (1) evaluation of facility characteristics, (2) planning, (3) decontamination and disassembly of equipment and structures contaminated with radioactivity, (4) radioactivity measurement, (5) treatment and disposal of radioactive waste, and (6) release from legal restrictions (termination of decommissioning). For this purpose, techniques in various fields are required. In the evaluation of facility characteristics, radiation measurement and calculation of activation amount in the core part are required. In decontamination and dismantling, cutting technology (mechanical cutting, thermal cutting, etc.), decontamination technology, and remote control technology are required. In the nuclear power education in the past, the fields related to design, construction, operation, and maintenance among the plant life cycle were the main parts. Much attention was not payed to decommissioning and the treatment/disposal of radioactive waste in the second half of life cycle. As university education, Hokkaido University and Fukui University have lectures on decommissioning. Furthermore, the education and research for students are proceeding at seven universities, with a focus on common reactors including those of Fukushima Daiichi Power Station. It is a key for promoting decommissioning, to incorporate project management, risk analysis, cost evaluation, and decision making into education, and to foster human resources heading toward challenging problems including social problems. (A.O.)

  4. Development of a Compact, Deep-Penetrating Heat Flow Instrument for Lunar Landers: In-Situ Thermal Conductivity System

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.

  5. Economic Development and Development of Human Resources

    Directory of Open Access Journals (Sweden)

    Metod Černetič

    1998-12-01

    Full Text Available Černetič deals with certain dilemmas and problems related to employee training within companies, and discusses the complexity of the relationship between technological development and education, developmental gap between the developed and underdevdoped economies, and the goals of social development in Slovenia. Cernetič stresses that training programmes should above all provide flexibility of employment; the competitive edge of an entire state actually depends on effective use of human resources. Slovenia cannot exert any substantial influence on the global economy, it can only follow the main market trends. Knowledge is therefore of great importance, as the wealth of smaller nations is primarily based on the education level of their inhabitants.

  6. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    , students are asked a series of questions which help reinforce the lunar science concepts they should take away from the readings. Students then use their new knowledge of the Moon in the final section of Moon 101 where they are asked to characterize the geology of the region surrounding the Apollo 11 landing site. To do this, they conduct a survey of available lunar data, examining imagery from lunar missions as recent as the Lunar Reconnaissance Orbiter and as old as the Ranger missions of the 1960s. This allows students to explore the available datasets and identify the advantages and disadvantages of each. Pre/post test questions have also been developed to assess changes in student understanding of the formation and evolution of the Moon, and lunar exploration. Moon 101 is a framework for introducing students to lunar science, and can be followed up with student-driven research. Moon 101 can be easily modified to suit the needs of the students and the instructor. Because lunar science is an evolving field of study, the use of resources such as the PSRD allows Moon 101 to be flexible and to change as the lunar community re-discovers our celestial neighbor.

  7. Resource linkages and sustainable development

    Science.gov (United States)

    Anouti, Yahya

    Historically, fossil fuel consumers in most developing hydrocarbon-rich countries have enjoyed retail prices at a discount from international benchmarks. Governments of these countries consider the subsidy transfer to be a means for sharing the wealth from their resource endowment. These subsidies create negative economic, environmental, and social distortions, which can only increase over time with a fast growing, young, and rich population. The pressure to phase out these subsidies has been mounting over the last years. At the same time, policy makers in resource-rich developing countries are keen to obtain the greatest benefits for their economies from the extraction of their exhaustible resources. To this end, they are deploying local content policies with the aim of increasing the economic linkages from extracting their resources. Against this background, this dissertation's three essays evaluate (1) the global impact of rationalizing transport fuel prices, (2) how resource-rich countries can achieve the objectives behind fuel subsidies more efficiently through direct cash transfers, and (3) the economic tradeoffs from deploying local content policies and the presence of an optimal path. We begin by reviewing the literature and building the case for rationalizing transport fuel prices to reflect their direct costs (production), indirect costs (road maintenance) and negative externalities (climate change, local pollutants, traffic accidents and congestion). To do so, we increase the scope of the economic literature by presenting an algorithm to evaluate the rationalized prices in different countries. Then, we apply this algorithm to quantify the rationalized prices across 123 countries in a partial equilibrium setting. Finally, we present the first comprehensive measure of the impact of rationalizing fuel prices on the global demand for gasoline and diesel, environmental emissions, government revenues, and consumers' welfare. By rationalizing transport fuel

  8. Space Resources Roundtable 2

    Science.gov (United States)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based

  9. Human Resource Management and Human Resource Development: Evolution and Contributions

    Science.gov (United States)

    Richman, Nicole

    2015-01-01

    Research agrees that a high performance organization (HPO) cannot exist without an elevated value placed on human resource management (HRM) and human resource development (HRD). However, a complementary pairing of HRM and HRD has not always existed. The evolution of HRD from its roots in human knowledge transference to HRM and present day HRD…

  10. Financing resource development after Campbell

    Energy Technology Data Exchange (ETDEWEB)

    Gloster, G A

    1982-05-01

    The paper deals briefly with the basic nature of financial activity and markets and of the intermediaries, including banks, within these markets. It is argued that efforts by the authorities to affect monetary policy through controls on bank lending (quantitative and interest rates) are inefficient and only lead to circumvention. To the degree that prices (interest rates) are kept down in one area, they will be higher in another, and supply of credit reduced from one source will encourage a greater supply from another. The Campbell Committee's recommendations, if implemented, are likely to result in freer financial markets and to improve the resource development sector's access to finance. Clear examples would be the removal of foreign exchange restrictions and the setting up of a market-oriented exchange rate system. However, in one sense this access may be narrowed as the extension of bank-type prudential controls to bank subsidiaries and to all 'deposit-taking institutions' may impede the free functioning of financial markets as well as further entrenching the 'safeguarded deposit' concept over the community's savings.

  11. The Open Gateway: Lunar Exploration in 2050

    Science.gov (United States)

    Lawrence, S.; Neal, C.

    2017-01-01

    The Moon, with its fundamental science questions and abundant, potentially useful re-sources, is the most viable destination for near-term future human and robotic exploration. Given what we have learned since Apollo, the lunar frontier now presents an entirely new paradigm for planetary exploration. The Lunar Exploration Roadmap [1], which was jointly developed by engineers, planetary scientists, commercial entities, and policymakers, is the cohesive strategic plan for using the Moon and its resources to enable the exploration of all other destinations within the Solar system by leveraging incremental, affordable investments in cislunar infrastructure. Here, we summarize the Lunar Exploration Roadmap, and describe the immense benefits that will arise from its successful implementation.

  12. Development of a Lunar Scintillometer as part of the national large optical telescope site survey

    Science.gov (United States)

    Surendran, Avinash; Parihar, Padmakar S.; Banyal, Ravinder K.; Kalyaan, Anusha

    2018-03-01

    Ground layer turbulence is a very important site characterization parameter used to assess the quality of an astronomical site. The Lunar Scintillometer is a simple and effective site-testing device for measuring the ground layer turbulence. It consists of a linear array of photodiodes which are sensitive to the slight variations in the moon's brightness due to scintillation by the lower layers of the Earth's atmosphere. The covariance of intensity values between the non-redundant photodiode baselines can be used to measure the turbulence profile from the ground up to a height determined by the furthest pair of detectors. The six channel lunar scintillometer that has been developed at the Indian Institute of Astrophysics is based closely on an instrument built by the team led by Andrei Tokovinin of Cerro Tololo Inter-American Observatory (CTIO), Chile (Tokovinin et al., Mon. Not. R. Astron. Soc. 404(3), 1186-1196 2010). We have fabricated the instrument based on the existing electronic design, and have worked on the noise analysis, an EMI (Electromagnetic Induction) resistant PCB design and the software pipeline for analyzing the data from the same. The results from the instrument's multi-year campaign at Mount Saraswati, Hanle is also presented.

  13. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  14. Our Lunar Destiny: Creating a Lunar Economy

    Science.gov (United States)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  15. Philippines Wind Energy Resource Atlas Development

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  16. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  17. Human Resources Development in Tajikistan

    International Nuclear Information System (INIS)

    Mirsaidov, U.

    2014-01-01

    The availability of nuclear knowledge is the result of the past and present conditions of organizations of knowledge in the field of atomic and nuclear physics in Tajikistan. It is shown, that despite today's weak material resources, with the support of IAEA and other intergovernmental contracts and the international funds, and also presence of rich intellectual fund of the republic, it is possible to reserve Nuclear Knowledge in Tajikistan. (author)

  18. An Evidence-based Approach to Developing a Management Strategy for Medical Contingencies on the Lunar Surface: The NASA/Haughton-Mars Project (HMP) 2006 Lunar Medical Contingency Simulation at Devon Island

    Science.gov (United States)

    Scheuring, R. A.; Jones, J. A.; Lee, P.; Comtois, J. M.; Chappell, S.; Rafiq, A.; Braham, S.; Hodgson, E.; Sullivan, P.; Wilkinson, N.; hide

    2007-01-01

    The lunar architecture for future sortie and outpost missions will require humans to serve on the lunar surface considerably longer than the Apollo moon missions. Although the Apollo crewmembers sustained few injuries during their brief lunar surface activity, injuries did occur and are a concern for the longer lunar stays. Interestingly, lunar medical contingency plans were not developed during Apollo. In order to develop an evidence-base for handling a medical contingency on the lunar surface, a simulation using the moon-Mars analog environment at Devon Island, Nunavut, high Canadian Arctic was conducted. Objectives of this study included developing an effective management strategy for dealing with an incapacitated crewmember on the lunar surface, establishing audio/visual and biomedical data connectivity to multiple centers, testing rescue/extraction hardware and procedures, and evaluating in suit increased oxygen consumption. Methods: A review of the Apollo lunar surface activities and personal communications with Apollo lunar crewmembers provided the knowledge base of plausible scenarios that could potentially injure an astronaut during a lunar extravehicular activity (EVA). Objectives were established to demonstrate stabilization and transfer of an injured crewmember and communication with ground controllers at multiple mission control centers. Results: The project objectives were successfully achieved during the simulation. Among these objectives were extraction from a sloped terrain by a two-member crew in a 1 g analog environment, establishing real-time communication to multiple centers, providing biomedical data to flight controllers and crewmembers, and establishing a medical diagnosis and treatment plan from a remote site. Discussion: The simulation provided evidence for the types of equipment and methods for performing extraction of an injured crewmember from a sloped terrain. Additionally, the necessary communications infrastructure to connect

  19. Kickstarting a New Era of Lunar Industrialization via Campaign of Lunar COTS Missions

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar

    2016-01-01

    To support the goals of expanding our human presence and current economic sphere beyond LEO, a new plan was constructed for NASA to enter into partnerships with industry to foster and incentivize a new era of lunar industrialization. For NASA to finally be successful in achieving sustainable human exploration missions beyond LEO, lessons learned from our space history have shown that it is essential for current program planning to include affordable and economic development goals as well as address top national priorities to obtain much needed public support. In the last 58 years of NASA's existence, only Apollo's human exploration missions beyond LEO were successful since it was proclaimed to be a top national priority during the 1960's. However, the missions were not sustainable and ended abruptly in 1972 due to lack of funding and insufficient economic gain. Ever since Apollo, there have not been any human missions beyond LEO because none of the proposed program plans were economical or proclaimed a top national priority. The proposed plan outlines a new campaign of low-cost, commercial-enabled lunar COTS (Commercial Orbital Transfer Services) missions which is an update to the Lunar COTS plan previously described. The objectives of this new campaign of missions are to prospect for resources, determine the economic viability of extracting those resources and assess the value proposition of using these resources in future exploration architectures such as Mars. These missions would be accomplished in partnership with commercial industry using the wellproven COTS Program acquisition model. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs, as much as tenfold, while industry partners successfully expanded their market share and demonstrated substantial economic gain. Similar to COTS, the goals for this new initiative are 1) to develop and demonstrate cost-effective, cis-lunar

  20. Conceptual Design of Simulation Models in an Early Development Phase of Lunar Spacecraft Simulator Using SMP2 Standard

    Science.gov (United States)

    Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok

    2013-08-01

    The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.

  1. Development of construction materials like concrete from lunar soils without water

    Science.gov (United States)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  2. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H.

    2000-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the Climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future Trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  3. Sustainable development and energy resources

    International Nuclear Information System (INIS)

    Steeg, H

    2002-01-01

    (a) The paper describes the substance and content of sustainability as well as the elements, which determine the objective. Sustainability is high on national and international political agendas. The objective is of a long term nature. The focus of the paper is on hydrocarbon emissions (CO 2 ); (b) International approaches and policies are addressed such as the climate change convention and the Kyoto protocol. The burden for change on the energy sector to achieve sustainability is very large in particular for OECD countries and those of central and Eastern Europe. Scepticism is expresses whether the goals of the protocol and be reached within the foreseen timeframe although governments and industry are active in improving sustainability; (c) Future trends of demand and supply examines briefly the growth in primary energy demand as well as the reserve situation for oil, gas and coal. Renewable energy resources are also assessed in regard to their future potential, which is not sufficient to replace hydrocarbons soon. Nuclear power although not emitting CO 2 is faced with grave acceptability reactions. Nevertheless sustainability is not threatened by lack of resources; (d) Energy efficiency and new technologies are examined vis-a-vis their contribution to sustainability as well as a warning to overestimate soon results for market penetration; (e) The impact of liberalization of energy sectors play an important role. The message is not to revert back to command and control economies but rather use the driving force of competition. It does not mean to renounce government energy policies but to change their radius to more market oriented approaches; (f) Conclusions centre on the plea that all options should be available without emotional and politicized prejudices. (author)

  4. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  5. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  6. Resources that promote positive youth development

    Directory of Open Access Journals (Sweden)

    Martha Frías Armenta

    2016-12-01

    Full Text Available Adolescence is a crucial developmental phase that shapes people´s futures. Positive psychology investigates the variables that promote the optimal development of human beings. It recognizes that all children and adolescents have strengths that will develop once these strengths match the resources needed to achieve this in the various settings in which they live. The aim of this study was to analyze from a multidisciplinary perspective (e.g. psychological, sociological, and economic the effect of resources that promote positive youth development. The sample consisted of 200 middle school students (15 to 19 years. EQS statistical software was used to analyse a structural equation model in which the study variables comprised 4 factors: one for each resource (economic, psychological, sociological, and one for positive youth development. The results showed a direct association between psychological and social resources and positive development, and between social resources and psychological assets. However, no association was found between economic resources and positive youth development. These results suggest that the main influences on positive youth development are psychological and social resources.

  7. Optimization of space system development resources

    Science.gov (United States)

    Kosmann, William J.; Sarkani, Shahram; Mazzuchi, Thomas

    2013-06-01

    NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level cost growths ranging from 23% to 77%. A new study of 26 historical NASA Science instrument set developments using expert judgment to reallocate key development resources has an average cost growth of 73.77%. Twice in history, a barter-based mechanism has been used to reallocate key development resources during instrument development. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to reallocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource reallocation simulation was used to perform 300 instrument development simulations, using barter to reallocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource reallocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource reallocation should work on spacecraft development as well as it has worked on instrument development. A new study of 28 historical NASA science spacecraft developments has an average cost growth of 46.04%. As barter-based key

  8. Robotic Subsurface Analyzer and Sample Handler for Resource Reconnaissance and Preliminary Site Assessment for ISRU Activities at the Lunar Cold Traps

    Science.gov (United States)

    Gorevan, S. P.; Wilson, J.; Bartlett, P.; Powderly, J.; Lawrence, D.; Elphic, R.; Mungas, G.; McCullough, E.; Stoker, C.; Cannon, H.

    2004-01-01

    Since the 1960s, claims have been made that water ice deposits should exist in permanently shadowed craters near both lunar poles. Recent interpretations of data from the Lunar Prospector-Neutron Spectrometer (LP- NS) confirm that significant concentrations of hydrogen exist, probably in the form of water ice, in the permanently shadowed polar cold traps. Yet, due to the large spatial resolution (45-60 Ian) of the LP-NS measurements relative to these shadowed craters (approx.5-25 km), these data offer little certainty regarding the precise location, form or distribution of these deposits. Even less is known about how such deposits of water ice might effect lunar regolith physical properties relevant to mining, excavation, water extraction and construction. These uncertainties will need to be addressed in order to validate fundamental lunar In Situ Resource Utilization (ISRU) precepts by 2011. Given the importance of the in situ utilization of water and other resources to the future of space exploration a need arises for the advanced deployment of a robotic and reconfigurable system for physical properties and resource reconnaissance. Based on a collection of high-TRL. designs, the Subsurface Analyzer and Sample Handler (SASH) addresses these needs, particularly determining the location and form of water ice and the physical properties of regolith. SASH would be capable of: (1) subsurface access via drilling, on the order of 3-10 meters into both competent targets (ice, rock) and regolith, (2) down-hole analysis through drill string embedded instrumentation and sensors (Neutron Spectrometer and Microscopic Imager), enabling water ice identification and physical properties measurements; (3) core and unconsolidated sample acquisition from rock and regolith; (4) sample handling and processing, with minimized contamination, sample containerization and delivery to a modular instrument payload. This system would be designed with three mission enabling goals, including: (1

  9. RESOURCE MATERIALS DEVELOPMENT IN ENVIRONMENTAL ...

    African Journals Online (AJOL)

    the importance of linking environmental issues with educational ... the teacher's role and status, gender discrimination, ... school teachers are dedicated to their work and are ... been developed and shaped through critical reflection .... Ongoing literature reviews and deepening theoretical ... orientations to research stress the.

  10. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    Science.gov (United States)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  11. Uranium - resources development and availability

    International Nuclear Information System (INIS)

    1983-01-01

    Australia possesses a major portion of the world's low cost uranium and it is confidently expected that further exploration will delineate yet more reserves. The level of such exploration and the rate of development of new production will remain critically dependent on world market developments. For the foreseeable future all development will be dedicated to supplying the export market. Australian government policies for uranium take account of both domestic and international concerns. With Australia, the policies act to protect the interests of the Aboriginal people affected by uranium production. In response to national interests and concerns, foreign investment in uranium production ventures is regulated in a manner which requires Australian control but allows a measure of foreign equity. Environmental concerns are recognized and projects may only be approved after comprehensive environmental protection procedures have been complied with. Without these policies public acceptability, which provides the foundations for long-term stability of the industry, would be prejudiced. On the world scene, Australia's safeguards policy serves to support international nuclear safeguards and, in particular, to honour its obligations under the Nuclear Non-Proliferation Treaty. Export policy requires that reasonable sales contract conditions apply and that fair negotiated market prices are obtained for Australia's uranium. Australia's recent re-emergence as a major producer and exporter of uranium is convincing testimony to the success of these policies. (author)

  12. Natural resources and environmentally sound sustainable development

    International Nuclear Information System (INIS)

    Pastizzi-Ferencic, D.

    1992-01-01

    This article summarizes the activities of the United Nations Department of Technical Co-operation for Development (UNDTCD), which has been active for over 40 years in assisting developing countries to make the fullest possible use of their natural resources. Energy, water and mineral resources must be developed, and the impacts of the development on the environment must be mitigated. The importance of protecting supplies of fresh water, the central part occupied by the mining industry in developing countries, and the proper role of energy sources for sustainable development are all discussed

  13. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  14. Human Resources Development Programmes in Nigerian Academic ...

    African Journals Online (AJOL)

    Samaru Journal of Information Studies ... The purpose of this study was to assess Human Resources Development (HRD) programmes of librarians ... It was suggested that for effective HRD, each university library should have a written staff

  15. Human Resources Development in the 70s

    Science.gov (United States)

    Ludeman, Bart L.

    1977-01-01

    Discusses five major objectives (put forth by the behavioral scientist, Dr. Gordon Lippitt) for human resource development which focus on the need for teamwork among future leaders, company management, and top educators. (LAS)

  16. Natural Resources Accounting and Sustainable Development: The ...

    African Journals Online (AJOL)

    Natural Resources Accounting and Sustainable Development: The Challenge to Economics and Accounting Profession. ... African Research Review ... The approach used in achieving this objective is by identifying the present position, limitations and the challenges for the economics and accounting professions.

  17. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of .... approach of water resources development the most attractive and benefitial .... project plus a share of the "joint cost" which are the ... Pricing and Repayments American Water Re- sources ...

  18. Strategy community development based on local resources

    Science.gov (United States)

    Meirinawati; Prabawati, I.; Pradana, G. W.

    2018-01-01

    The problem of progressing regions is not far from economic problems and is often caused by the inability of the regions in response to changes in economic conditions that occur, so the need for community development programs implemented to solve various problems. Improved community effort required with the real conditions and needs of each region. Community development based on local resources process is very important, because it is an increase in human resource capability in the optimal utilization of local resource potential. In this case a strategy is needed in community development based on local resources. The community development strategy are as follows:(1) “Eight Line Equalization Plus” which explains the urgency of rural industrialization, (2) the construction of the village will be more successful when combining strategies are tailored to regional conditions, (3) the escort are positioning themselves as the Planner, supervisor, information giver, motivator, facilitator, connecting at once evaluators.

  19. Development of a Lunar Surface Architecture Using the Deep Space Gateway

    Science.gov (United States)

    Corrigan, A. M.; Kitmanyen, V. A.; Prakash, A.

    2018-02-01

    Prior to sending crews to Mars, the ability to perform activities intended for martian missions must first be thoroughly tested and successfully demonstrated in a similar environment. This paper outlines a lunar surface architecture to meet this goal.

  20. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  1. Resource development and the Mackenzie Valley Resource Management Act

    International Nuclear Information System (INIS)

    Donihee, J.

    1999-01-01

    Changes to the resource management regime of the Northwest Territories based on land claim agreements with native peoples which result from the Mackenzie Valley Resource Management Act are the result of commitments made by Canada during the negotiation of these land claims. This statute effects important changes to the legislative framework for environmental impact assessment and land and water management. It also establishes land use planning processes for the Gwich'in and Sahtu settlement areas and will result in an environmental and cumulative effects monitoring program for the Mackenzie Valley. The Act also establishes new institutions of public government responsible for environmental impact assessment, land and water management, and land use planning. These boards will play an internal and continuing role in resource development and management in the Mackenzie Valley. A brief overview is included of some features of the new legislative scheme, specifically focussing on environmental impact assessment and water management. An understanding of the new regime will be important for oil and gas companies that are looking north with renewed interest as a result of improved oil and gas prices and also for mining companies given the continuing interest in diamond exploration and development in the Northwest Territories. 29 refs

  2. Determination of lunar ilmenite abundances from remotely sensed data

    Science.gov (United States)

    Larson, Stephen M.; Johnson, Jeffrey R.; Singer, Robert B.

    1991-01-01

    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized.

  3. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  4. Lunar horticulture.

    Science.gov (United States)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  5. Resource efficiency in agricultural development: human capital ...

    African Journals Online (AJOL)

    Resource efficiency in agricultural development: human capital development perspective and poverty challenges in developing countries. ... in Nigeria and contributed about 23.9% of the Gross National Domestic product in 2016. ... Equally, the new focus on agriculture involves training on new technologies and evolving ...

  6. NASA In-Situ Resource Utilization (ISRU) Technology and Development Project Overview

    Science.gov (United States)

    Sanders, Gerald B.; Lason, William E.; Sacksteder, Kurt R.; Mclemore, Carole; Johnson, Kenneth

    2008-01-01

    Since the Vision for Space Exploration (VSE) was released in 2004, NASA, in conjunction with international space agencies, industry, and academia, has continued to define and refine plans for sustained and affordable robotic and human exploration of the Moon and beyond. With the goal of establishing a lunar Outpost on the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, a change in how space exploration is performed is required. One area that opens up the possibility for the first time of breaking our reliance on Earth supplied consumables and learn to live off the land is In-Situ Resource Utilization (ISRU). ISRU, which involves the extraction and processing of space resources into useful products, can have a substantial impact on mission and architecture concepts. In particular, the ability to make propellants, life support consumables, and fuel cell reagents can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. However, ISRU is an unproven capability for human lunar exploration and can not be put in the critical path of lunar Outpost success until it has been proven. Therefore, ISRU development and deployment needs to take incremental steps toward the desired end state. To ensure ISRU capabilities are available for pre-Outpost and Outpost deployment by 2020, and mission and architecture planners are confident that ISRU can meet initial and long term mission requirements, the ISRU Project is developing technologies and systems in three critical areas: (1) Regolith Excavation, Handling and Material Transportation; (2) Oxygen Extraction from Regolith; and (3) Volatile Extraction and Resource Prospecting, and in four development stages: (I) Demonstrate feasibility; (II) Evolve system w/ improved technologies; (III) Develop one or more systems to TRL 6 before start of flight development; and (IV) Flight development for

  7. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    Science.gov (United States)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  8. The Lure of Extractive Natural Resource Development

    DEFF Research Database (Denmark)

    Buur, Lars; Kjær, Anne Mette; Therkildsen, Ole

    Natural resource-driven development in Africa has emerged as a hot topic. The hope is that extractive industries will generate foreign revenues, create jobs and boost economic growth – but how can the possibilities best be exploited for industrial development purposes?......Natural resource-driven development in Africa has emerged as a hot topic. The hope is that extractive industries will generate foreign revenues, create jobs and boost economic growth – but how can the possibilities best be exploited for industrial development purposes?...

  9. An Accelerated Development, Reduced Cost Approach to Lunar/Mars Exploration Using a Modular NTR-Based Space Transportation System

    Science.gov (United States)

    Borowski, S.; Clark, J.; Sefcik, R.; Corban, R.; Alexander, S.

    1995-01-01

    The results of integrated systems and mission studies are presented which quantify the benefits and rationale for developing a common, modular lunar/Mars space transportation system (STS) based on nuclear thermal rocket (NTR) technology. At present NASA's Exploration Program Office (ExPO) is considering chemical propulsion for an 'early return to the Moon' and NTR propulsion for the more demanding Mars missions to follow. The time and cost to develop these multiple systems are expected to be significant. The Nuclear Propulsion Office (NPO) has examined a variety of lunar and Mars missions and heavy lift launch vehicle (HLLV) options in an effort to determine a 'standardized' set of engine and stage components capable of satisfying a wide range of Space Exploration Initiative (SEI) missions. By using these components in a 'building block' fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured. For NASA's 'First Lunar Outpost' (FLO) mission, an expendable NTR stage powered by two 50 klbf engines can deliver approximately 96 metric tons (t) to translunar injection (TLI) conditions for an initial mass in low earth orbit (IMLEO) of approximately 198 t compared to 250 t for a cryogenic chemical TLI stage. The NTR stage liquid hydrogen (LH2) tank has a 10 m diameter, 14.5 m length, and 66 t LH2 capacity. The NTR utilizes a UC-ZrC-graphite 'composite' fuel with a specific impulse (Isp) capability of approximately 900 s and an engine thrust-to-weight ratio of approximately 4.3. By extending the size and LH2 capacity of the lunar NTR stage to approximately 20 m and 96 t, respectively, a single launch Mars cargo vehicle capable of delivering approximately 50 t of surface payload is possible. Three 50 klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle applications would be used to configure the Mars piloted vehicle for a mission as early as 2010. The paper describes the features of the 'common

  10. The International Lunar Decade Declaration

    Science.gov (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  11. State financial resources of social development

    OpenAIRE

    Grinevskaya, Svetlana

    2015-01-01

    Problems of financial social resources management are considered. A model of interconnections of processes of financial provision of people's life sufficient level is proposed. It is identified that state budget is one of the main instruments of state regulation of economic processes of people's living quality provision.Improving of state regulation by financial resources of social development conditions the following budgeting principals: optimization of budget with the aim of human's develo...

  12. Human Resource Development in Hybrid Libraries

    OpenAIRE

    Prakasan, E. R.; Swarna, T.; Vijai Kumar, *

    2000-01-01

    This paper explores the human resources and development implications in hybrid libraries. Due to technological changes in libraries, which is a result of the proliferation of electronic resources, there has been a shift in workloads and workflow, requiring staff with different skills and educational backgrounds. Training of staff at all levels in information technology is the key to manage change, alleviate anxiety in the workplace and assure quality service in the libraries. Staff developmen...

  13. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  14. Lunar Riometry

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  15. Developing Human Resources through Actualizing Human Potential

    Science.gov (United States)

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  16. Gender Differences among Contributing Leadership Development Resources

    Science.gov (United States)

    Thompson, Michael D.

    2012-01-01

    Gender differences among contributing student leadership development resources were examined within the context of theory-based perspectives of leadership-related attributes. The findings suggest that students' increased engagement with institutional constituencies cultivates an environment conducive to students' cognitive development toward…

  17. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  18. Possible Mafic Patches in Scott Crater Highlight the Need for Resource Exploration on the Lunar South Polar Region

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Possible areas of mafic material on the rim and floor of Scott crater (82.1 deg S, 48.5 deg E) are suggested by analysis of shadow-masked Clementine false-color-ratio images. Mafic materials common in mare and pyroclastic materials can produce more oxygen than can highlands materials, and mafic materials close to the south pole may be important for propellant production for a future lunar mission. If the dark patches are confirmed as mafic materials, this finding would suggest that other mafic patches may exist, even closer to the poles, which were originally mapped as purely anorthositic.

  19. LLR data analysis and impact on lunar dynamics from recent developments at OCA LLR Station

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Courde, Clement; Torre, Jean-Marie; Exertier, Pierre; Samain, Etienne; Feraudy, Dominique; Albanese, Dominique; Aimar, Mourad; Mariey, Hervé; Viot, Hervé; Martinot-Lagarde, Gregoire

    2016-04-01

    Since late 2014, OCA LLR station has been able to range with infrared wavelength (1064nm). IR ranging provides both temporal and spatial improvement in the LLR observations. IR detection also permits in densification of normal points, including the L1 and L2 retroreflectors due to better signal to noise ratio. This contributes to a better modelisation of the lunar libration. The hypothesis of lunar dust and environmental effects due to the chromatic behavior noticed on returns from L2 retroreflector is discussed. In addition, data analysis shows that the effect of retroreflector tilt and the use of calibration profile for the normal point deduction algorithm, contributes to improving the precision of normal points, thereby impacting lunar dynamical models and inner physics.

  20. DEVELOPMENT OFINDICATORSFOR EFFECTIVE USE OF INTERIMMATERIAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Klimuk V. V.

    2014-03-01

    Full Text Available The article provides the developed methodology of the midterm evaluation of the efficiency of use of material resources. Proposed system of indicators for tracking and monitoring of the efficiency of the production process. The author analyzes literary sources on the problem of the estimation of efficiency of use of material resources, we study the opinions of economists. The author summarizes the observational information and provides conclusions expressed in the reflection of the urgency of forming the system of the midterm evaluation of the efficiency of use of material resources. the traditional system assessment, the method of using of which is presented in the works of scientists, does not contain indicators reflecting the interim targets with the aim of forming a preliminary picture of the future condition of efficiency of use of material resources, on the basis of the quarterly rate of change of the level of material consumption, comparing them to the beginning and end of the time period, the balance of the stock of material resources, mapping the rate of change of the volume of production and the rate of change of material costs, matching the pace of change of volume of purchases of material resources and the pace of changes in the value of material resources, the Author proposes indicators: the rate of change of material capacity for 4 quarter, comparison of the rates of change in material consumption in the 1st and 4th quarters, the balance of the stock of material resources, the rate of change of the volume of production and material costs by quarter, the comparison of the rate of change of volume of purchases of material resources with the pace of changes in the value of material resources by quarter. The theoretical significance of the test is to use the author of the material as an additional reading course of lectures on economic subjects, practical significance - the inclusion of a set of indicators developed as a tool

  1. Integrated sustainable development and energy resource planning

    OpenAIRE

    Virgiliu NICULA

    2011-01-01

    Integrated sustainable development of a country cannot be conceived and begun without considering in an intricate tandem environmental protection and economic development. No one can exist without a natural material support of the life he or she enjoys. All economic development plans must include environmental and human civilization’s protection implicitly. Integrated resource planning must be done in an absolutely judicious manner, so we can all leave as a legacy for future generations both ...

  2. Beneficiation of lunar ilmenite

    Science.gov (United States)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  3. Cultural Implications of Human Resource Development.

    Science.gov (United States)

    Hiranpruk, Chaiskran

    A discussion of the cultural effects of economic and, by extension, human resource development in Southeast Asia looks at short- and long-term implications. It is suggested that in the short term, increased competition will affect distribution of wealth, which can promote materialism and corruption. The introduction of labor-saving technology may…

  4. Human Resource Development in Changing Organizations.

    Science.gov (United States)

    London, Manuel; Wueste, Richard A.

    This book is intended to help managers and human resource professionals understand organizational change and manage its effects on their own development and that of their subordinates. The following topics are covered in 11 chapters: organizational change, employee motivation, new managerial roles, human performance systems, upward and peer…

  5. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of the multiple-purpose development and calls for giving ... An appraisal of water resource must consider surface as well as ground water supplies in terms of location, .... as such a very satisfactory method of cost allocation that would be equally applicable to all projects and.

  6. Communal Resources in Open Source Software Development

    Science.gov (United States)

    Spaeth, Sebastian; Haefliger, Stefan; von Krogh, Georg; Renzl, Birgit

    2008-01-01

    Introduction: Virtual communities play an important role in innovation. The paper focuses on the particular form of collective action in virtual communities underlying as Open Source software development projects. Method: Building on resource mobilization theory and private-collective innovation, we propose a theory of collective action in…

  7. Managing resource revenues in developing economies

    NARCIS (Netherlands)

    Collier, Paul; Van Der Ploeg, Rick; Spence, Michael; Venables, Anthony J.

    2010-01-01

    This paper addresses the efficient management of natural resource revenues in capital-scarce developing economies. It departs from usual prescriptions based on the permanent income hypothesis and argues that capital-scarce countries should prioritize domestic investment. Because revenue streams are

  8. Career Planning: Developing the Nation's Primary Resource.

    Science.gov (United States)

    Jarvis, Phillip S.

    Career planning is the most critical ingredient in developing a nation's primary resource, its workers. A 1988 Gallup Poll showed that 62 percent of U.S. workers had no career goal when they began their first job, and more than 50 percent felt they were in the wrong job. The same results probably could be applied to Canada. Career planning skills…

  9. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  10. Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

    Directory of Open Access Journals (Sweden)

    Eunji Lee

    2017-09-01

    Full Text Available The deep space orbit determination software (DSODS is a part of a flight dynamic subsystem (FDS for the Korean Pathfinder Lunar Orbiter (KPLO, a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

  11. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  12. Ecological investigation of Alaskan resource development

    International Nuclear Information System (INIS)

    Hanson, W.C.

    1982-01-01

    The objective of this research is to provide an integrated program for the definition of ecological consequences of resource developments in northern Alaska. The qualitative and quantitative results obtained describe the environmental costs incurred by petroleum resource extraction and transportation, and the interaction of wildlife populations with industrial activities. Information is presented on: affected populations of arctic foxes, small mammals, and tundra-nesting birds along the Trans-Alaska pipeline and haul road; field studies on the nitrogen fixation patterns of lichens; and on amounts of radionuclides from worldwide fallout in the lichen-caribou-Eskimo food chain

  13. Natural Resources, Multinational Enterprises and Sustainable Development

    DEFF Research Database (Denmark)

    Shapiro, Daniel; Hobdari, Bersant; Oh, Chang Hoon

    2018-01-01

    The natural resources sectors have not been prominent in the recent international business (IB) or management literature. We argue that the natural resources sectors, if not unique, are certainly characterized by a set of features that make them different, and raise issues that are central...... to international business. We identify two broad areas: the theory of FDI and the MNE, and the link between MNEs and sustainable development. We survey the relevant literature, much of it from outside IB, and identify a rich menu of research opportunities for IB scholars, many of which are addressed in the papers...

  14. Human resource development for management of decommissioning

    International Nuclear Information System (INIS)

    Tanaka, Kenichi

    2017-01-01

    This paper described the contents of 'Human resource development for the planning and implementation of safe and reasonable nuclear power plant decommissioning' as the nuclear human resource development project by the Ministry of Education, Culture, Sports, Science and Technology. The decommissioning of a nuclear power plant takes 30 to 40 years for its implementation, costing tens of billions of yen. As the period of decommissioning is almost the same as the operation period, it is necessary to provide a systematic and continuous supply of engineers who understand the essence of the decommissioning project. The engineers required here should have project management ability to take charge of preparation, implementation, and termination of decommissioning, and have the ability to perform not only technology, but also factor management, cost management, and the like. As the preconditions of these abilities, it is important to develop human resources who possess qualities that can oversee decommissioning in the future. The contents of human resource education are as follows; (1) desk training (teaching materials: facilities of nuclear power plants, management of nuclear fuels, related laws, decommissioning work, decontamination, dismantling, disposal of waste, etc.), (2) field training (simulators, inspection of power station under decommissioning, etc.), (3) practical training (radiation inventory evaluation, and safety assessment), and (4) inspection of overseas decommissioning, etc. (A.O.)

  15. Lunar polar rover science operations: Lessons learned and mission architecture implications derived from the Mojave Volatiles Prospector (MVP) terrestrial field campaign

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Lim, Darlene; Deans, Matthew; Cook, Amanda; Roush, Ted; Skok, J. R.; Button, Nicole E.; Karunatillake, S.; Stoker, Carol; Marquez, Jessica J.; Shirley, Mark; Kobayashi, Linda; Lees, David; Bresina, John; Hunt, Rusty

    2016-08-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal of producing critical knowledge for conducting robotic exploration of the Moon. Specifically, MVP focuses on studying a lunar mission analog to characterize the form and distribution of lunar volatiles. Although lunar volatiles are known to be present near the poles of the Moon, the three dimensional distribution and physical characteristics of lunar polar volatiles are largely unknown. A landed mission with the ability to traverse the lunar surface is thus required to characterize the spatial distribution of lunar polar volatiles. NASA's Resource Prospector (RP) mission is a lunar polar rover mission that will operate primarily in sunlit regions near a lunar pole with near-real time operations to characterize the vertical and horizontal distribution of volatiles. The MVP project was conducted as a field campaign relevant to the RP lunar mission to provide science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. To achieve these goals, the MVP project conducted a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural environment with an unknown volatile distribution within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon.

  16. Isotope techniques in water resources development 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Water resources are scarce in many parts of the world. Often, the only water resource is groundwater. Overuse usually invites a rapid decline in groundwater resources which are recharged insufficiently, or not at all, by prevailing climatic conditions. These and other problems currently encountered in hydrology and associated environmental fields have prompted an increasing demand for the utilization of isotope methods. Such methods have been recognized as being indispensable for solving problems such as the identification of pollution sources, characterization of palaeowater resources, evaluation of recharge and evaporative discharge under arid and semi-arid conditions, reconstruction of past climates, study of the interrelationships between surface and groundwater, dating of groundwater and validation of contaminant transport models. Moreover, in combination with other hydrogeological and geochemical methods, isotope techniques can provide useful hydrological information, such as data on the origin, replenishment and dynamics of groundwater. It was against this background that the International Atomic Energy Agency, in co-operation with the United Nations Educational, Scientific and Cultural Organization and the International Association of Hydrological Sciences, organized this symposium on the Use of Isotope Techniques in Water Resources Development, which took place in Vienna from 11 to 15 March 1991. The main themes of the symposium were the use of isotope techniques in solving practical problems of water resources assessment and development, particularly with respect to groundwater protection, and in studying environmental problems related to water, including palaeohydrological and palaeoclimatological problems. A substantial part of the oral presentations was concerned with the present state and trends in groundwater dating, and with some methodological aspects. These proceedings contain the papers of 37 oral and the extended synopses of 47 poster

  17. Research Resources Survey: Radiology Junior Faculty Development.

    Science.gov (United States)

    Krupinski, Elizabeth A; Votaw, John R

    2015-07-01

    To assess resources available to junior faculty in US academic radiology departments for research mentorship and funding opportunities and to determine if certain resources are more common in successful programs. An anonymous survey covering scientific environment and research mentorship and was sent to vice-chairs of research of radiology departments. Results were evaluated to identify practices of research programs with respect to mentorship, resources, and opportunities. Academy of Radiology Research's 2012 National Institutes of Health (NIH) grants and awards list was used to determine if environment and practices correlate with funding. There was a 51% response rate. A greater fraction of clinical faculty gets promoted from assistant to associate professor than research faculty. Research faculty overall submits more funding applications. Most programs support start-up costs and K-awards. Over half of the departments have a vice-chair for faculty development, and most have formal mentorship programs. Faculty members are expected to teach, engage in service, publish, and apply for and get research funding within 3 years of hire. Top-tier programs as judged by NIH awards have a combination of MDs who devote >50% effort to research and PhD faculty. Key factors holding back both clinical and research junior faculty development were motivation, resources, and time, although programs reported high availability of resources and support at the department level. Better marketing of resources for junior faculty, effort devoted to mentoring clinical faculty in research, and explicit milestones/expectations for achievement could enhance junior faculty success, promote interest in the clinician–scientist career path for radiologists, and lead to greater research success.

  18. Lunar Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — We present an open design for a first plant growth module on the Moon (LPX). The primary science goal of lunar habitat is to investigate germination and initial...

  19. Lunar Flashlight

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Flashlight (LF) is an innovative cubesat mission sponsored by NASA’s Advanced Exploration Systems (AES) division to be launched on the Space Launch System...

  20. Lunar Wormbot: Design and Development of a Ground Base Robotic Tunneling Worm for Operation in Harsh Environments

    Science.gov (United States)

    Boyles, Charles; Eledui, Emory; Gasser, Ben; Johnson, Josh; Long, Jay " Ben" Toy, Nathan; Murphy, Gloria

    2011-01-01

    From 1969 to 1972, the National Aeronautics and Space Administration (NASA) sent Apollo missions to the moon to conduct various exploration experiment. A few of the missions were directed to the study and sampling of moon soil, otherwise known as lunar regolith. The extent of the sample acquisition was limited due to the astronauts' limited ability to penetrate the moon's surface to a depth greater than three meters. However. the samples obtained were sufficient enough to provide key information pertaining to lunar regolith material properties that would further assist in future exploration endeavors. Analysis of the collected samples showed that the properties of lunar regolith may lead to knowledge of processed materials that will be beneficial for future human exploration or colonization. However, almost 40 years after the last Apollo mission, limited infonnation is known about regions underneath the moon's surface. Future lunar missions will require hardware that possesses the ability to burrow to greater depths in order to collect samples for subsequent analysis. During the summer of 2010, a team (Dr. Jessica Gaskin, Michael Kuhlman. Blaze Sanders, and Lafe Zabowski) from the NASA Robotics Academy at Marshall Space Flight Center (MSFC) was given the task of designing a robot to function as a soil collection and analysis device. Working with the National Space Science and Technology Center (NSSTC), the team was able to propose an initial design, build a prototype, and test the various subsystems of the prototype to be known as the "Lunar Wormbot" (LW). The NASA/NSSTC team then transferred the project to a University of Alabama in Huntsville (UAH) Mechanical and Aerospace Engineering (MAE) senior design class for further development. The UAH team was to utilize the NASA Systems Engineering Engine Design Process in the continuance of the Lunar Wormbot project. This process was implemented in order to coordinate the efforts of the team and guide the design of the

  1. IAEA Nuclear Security Human Resource Development Program

    International Nuclear Information System (INIS)

    Braunegger-Guelich, A.

    2009-01-01

    The IAEA is at the forefront of international efforts to strengthen the world's nuclear security framework. The current Nuclear Security Plan for 2006-2009 was approved by the IAEA Board of Governors in September 2005. This Plan has three main points of focus: needs assessment, prevention, detection and response. Its overall objective is to achieve improved worldwide security of nuclear and other radioactive material in use, storage and transport, and of their associated facilities. This will be achieved, in particular, through the provision of guidelines and recommendations, human resource development, nuclear security advisory services and assistance for the implementation of the framework in States, upon request. The presentation provides an overview of the IAEA nuclear security human resource development program that is divided into two parts: training and education. Whereas the training program focuses on filling gaps between the actual performance of personnel working in the area of nuclear security and the required competencies and skills needed to meet the international requirements and recommendations described in UN and IAEA documents relating to nuclear security, the Educational Program in Nuclear Security aims at developing nuclear security experts and specialists, at fostering a nuclear security culture and at establishing in this way sustainable knowledge in this field within a State. The presentation also elaborates on the nuclear security computer based learning component and provides insights into the use of human resource development as a tool in achieving the IAEA's long term goal of improving sustainable nuclear security in States. (author)

  2. Remote sensing of potential lunar resources. 2: High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content`

    Science.gov (United States)

    Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1994-01-01

    High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.

  3. Towards the Next International Lunar Decade

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    The idea of an International Lunar Decade (ILD) germinated in work underway in the International Lunar Working Group (ILEWG) coordinated by ESA starting before 2000. Envisioned was an International Geophysical Year (IGY) inspired global collaborative undertaking to better understand the Moon, its origins and resources as a step towards lunar development and possible human settlement. By 2006 the ILD idea had evolved sufficiently that the ILEWG endorsed it and endorsement was also received from COSPAR [1] The Planetary Society under the leadership of Louis Friedman championed the ILD idea, received a grant from the Secure World Foundation to promote it at various conferences as well as to the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS). Friedman made a presentation about ILD to COPUOS in February, 2007 [2]. Despite positive interest in the idea no member state of COPUOS chose to promote it. The ILD agenda was adopted by ILEWG and largely fulfilled by the member space agencies in the decade from 2007-2014, but without UN endorsement as a global initiative. In 2013 an idea for an International Lunar Decade took hold among a group of space activists that included ideas for an International Lunar Research Park [3], an International Lunar Geophysical Year and other elements including an article published by V. Beldavs in the Space Review on January 14, 2014 [4]. These various thought streams were brought to focus at the conference "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space", November 9-13, 2014 in Hawaii that resulted in the International Lunar Decade Declaration [3] and the formation of the working group (ILDWG) to promote implementation of ILD. In 2015 numerous organizations and influential persons were approached and informed about the idea of a framework for international collaboration sustained over a decade to gain an understanding of the Moon and its resources and to develop the technologies and

  4. Developing an Optical Lunar Occultation Measurement Reduction System for Observations at Kaau Observatory

    Science.gov (United States)

    Malawi, Abdulrahman A.

    2013-06-01

    We present here a detailed explanation of the reduction method that we use to determine the angular diameters of the stars occulted by the dark limb of the moon. This is a main part of the lunar occultation observation program running at King Abdul Aziz University observatory since late 1993. The process is based on the least square model fitting method of analyzing occultation data, first introduced by Nather et al. (Astron. J. 75:963, 1970).

  5. On The Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using In-Situ Materials

    Science.gov (United States)

    Werkheiser, Niki; Fiske, Michael; Edmunson, Jennifer; Khoshnevis, Behrokh

    2015-01-01

    For long-duration missions on other planetary bodies, the use of in-situ materials will become increasingly critical. As man's presence on these bodies expands, so must the breadth of the structures required to accommodate them including habitats, laboratories, berms, radiation shielding for natural radiation and surface reactors, garages, solar storm shelters, greenhouses, etc. Planetary surface structure manufacturing and assembly technologies that incorporate in-situ resources provide options for autonomous, affordable, pre-positioned environments with radiation shielding features and protection from micrometeorites, exhaust plume debris, and other hazards. This is important because gamma and particle radiation constitute a serious but reducible threat to long-term survival of human beings, electronics, and other materials in space environments. Also, it is anticipated that surface structures will constitute the primary mass element of lunar or Martian launch requirements. The ability to use in-situ materials to construct these structures will provide a benefit in the reduction of up-mass that would otherwise make long-term Moon or Mars structures cost prohibitive. The ability to fabricate structures in situ brings with it the ability to repair these structures, which allows for self-sufficiency necessary for long-duration habitation. Previously, under the auspices of the MSFC In Situ Fabrication and Repair (ISFR) project and more recently, under the joint MSFC/KSC Additive Construction with Mobile Emplacement (ACME) project, the MSFC Surface Structures Group has been developing materials and construction technologies to support future planetary habitats with in situ resources. One such technology, known as Contour Crafting (additive construction), is shown in Figure 1, along with a typical structure fabricated using this technology. This paper will present the results to date of these efforts, including development of novel nozzle concepts for advanced layer

  6. Development of a leadership resource pack

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The pack contains notes and presentation material for OSD inspectors to help them prepare for health and safety discussions with senior managers. The successful application of the leadership resource pack depends on an inspector gaining familiarity with the contents of the pack. Flexibility and adaptability were considered crucial factors in developing the contents. The pack is not considered a substitute for an inspector's own experience, knowledge or substitute for prior research. The leadership resource pack is intended as a source of knowledge and good practice that demonstrates how positive leadership can drive a health and safety agenda alongside business considerations. The benefits of the leadership resource pack include: the creation of a flexible tool that inspectors can use to highlight key leadership messages in health and safety; the development of a seven-stage model for characterising senior management commitment; practical examples of how leadership in health and safety management was felt throughout nine organisations; ideas for devising an aide memoire for specific discussions with senior managers. (author)

  7. Ecological investigation of Alaskan resource development

    International Nuclear Information System (INIS)

    Hanson, W.C.; Eberhardt, L.E.

    1980-01-01

    The objective is to provide an integrated program for the definition of ecological consequences of resource developments in northern Alaska. The qualitative and quantitative results obtained describe the environmental costs incurred by petroleum resource extraction and transportation, including interaction of wildlife populations with industrial activities. This section of the Annual Report presents information on impacted populations of arctic foxes, small mammals, and tundra-nesting birds in the Prudhoe Bay oil field and along the Trans-Alaska Pipeline and haul road; findings from similar studies from the Colville River Delta and other unimpacted habitats; field experiments to determine the sensitivity of lichen communities of the Brooks Range to sulfur dioxide concentrations likely to be encountered near pipeline pumping stations; and amounts of worldwide-fallout radionuclides in the lichen-caribou-Eskimo food chain

  8. Myanmar strategy for forest resource development

    Energy Technology Data Exchange (ETDEWEB)

    Wint, Sein Maung

    1993-10-01

    Myanmar strategy for forest resource development is presented under sub-headings of (1) Myanmar experience; (2) control against over-exploitation; (3) impact of population pressure; (4) forest plantation system on commercial plantation, industrial plantation, firewood plantation and watershed plantation; (5) people`s participation; (6) shifting cultivation. The forest resources of Myanmar have been changed for the past 136 years (1856-1992) successfully on sustained yield basis. Through proclamation of Forest Law (1992), active forestry and forest products research, upgrading of forestry educational institutions, modernization of forest inventory system and encouragement of downstream processing wood-based industries for value-added products, it was expected by the author that the forestry sector would be able to contribute more for the well-being of the people of Myanmar

  9. Myanmar strategy for forest resource development

    International Nuclear Information System (INIS)

    Sein Maung Wint

    1993-01-01

    Myanmar strategy for forest resource development is presented under sub-headings of (1) Myanmar experience; (2) control against over-exploitation; (3) impact of population pressure; (4) forest plantation system on commercial plantation, industrial plantation, firewood plantation and watershed plantation; (5) people's participation; (6) shifting cultivation. The forest resources of Myanmar have been changed for the past 136 years (1856-1992) successfully on sustained yield basis. Through proclamation of Forest Law (1992), active forestry and forest products research, upgrading of forestry educational institutions, modernization of forest inventory system and encouragement of downstream processing wood-based industries for value-added products, it was expected by the author that the forestry sector would be able to contribute more for the well-being of the people of Myanmar

  10. Developing Entrepreneurial Resilience: Implications for Human Resource Development

    Science.gov (United States)

    Lee, Jin; Wang, Jia

    2017-01-01

    Purpose: Leadership development has attracted much research attention within the human resource development (HRD) community. However, little scholarly effort has been made to study a special group of leaders--entrepreneurs. This paper aims to fill in this knowledge gap by taking a close look at entrepreneurial resilience, a key ability of…

  11. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  12. Production and use of metals and oxygen for lunar propulsion

    Science.gov (United States)

    Hepp, Aloysius F.; Linne, Diane L.; Groth, Mary F.; Landis, Geoffrey A.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  13. Drilling Automation Tests At A Lunar/Mars Analog Site

    Science.gov (United States)

    Glass, B.; Cannon, H.; Hanagud, S.; Lee, P.; Paulsen, G.

    2006-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. The limited mass, energy and manpower in planetary drilling situations makes application of terrestrial drilling techniques problematic. The Drilling Automation for Mars Exploration (DAME) project is developing drilling automation and robotics for projected use in missions to the Moon and Mars in the 2011-15 period. This has been tested recently, drilling in permafrost at a lunar/martian analog site (Haughton Crater, Devon Island, Canada).

  14. Sustainable Biomass Resource Development and Use | Energy Analysis | NREL

    Science.gov (United States)

    Sustainable Biomass Resource Development and Use Sustainable Biomass Resource Development and Use A sustainability analysis includes biomass resource use and impact assessment. This analysis examines how we can biomass resource development. They look at whether there is available land to support bioenergy. They also

  15. Ecological investigation of Alaskan resource development

    International Nuclear Information System (INIS)

    Hanson, W.C.; Eberhardt, L.E.

    1981-01-01

    The objective of this research is to provide an integrated program for the definition of ecological consequences of resource developments in northern Alaska. Information is presented on affected populations of arctic foxes, small mammals, and tundra-nesting birds in the Prudhoe Bay oil field and along the Trans-Alaska Pipeline and haul road; findings from similar studies from the Colville River Delta and other affected habitats; field experiments to determine the sensitivity of lichen communities of the Brooks Range to sulfur dioxide concentrations likely to be encountered near pipeline pumping stations; and amounts of radionuclides from worldwide fallout in the lichen-caribou-Eskimo food chain

  16. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems.

    Science.gov (United States)

    Shepherd, John A; Fan, Bo; Lu, Ying; Wu, Xiao P; Wacker, Wynn K; Ergun, David L; Levine, Michael A

    2012-10-01

    Dual-energy x-ray absorptiometry (DXA) is used to assess bone mineral density (BMD) and body composition, but measurements vary among instruments from different manufacturers. We sought to develop cross-calibration equations for whole-body bone density and composition derived using GE Healthcare Lunar and Hologic DXA systems. This multinational study recruited 199 adult and pediatric participants from a site in the US (n = 40, ages 6 through 16 years) and one in China (n = 159, ages 5 through 81 years). The mean age of the participants was 44.2 years. Each participant was scanned on both GE Healthcare Lunar and Hologic Discovery or Delphi DXA systems on the same day (US) or within 1 week (China) and all scans were centrally analyzed by a single technologist using GE Healthcare Lunar Encore version 14.0 and Hologic Apex version 3.0. Paired t-tests were used to test the results differences between the systems. Multiple regression and Deming regressions were used to derive the cross-conversion equations between the GE Healthcare Lunar and Hologic whole-body scans. Bone and soft tissue measures were highly correlated between the GE Healthcare Lunar and Hologic and systems, with r ranging from 0.96 percent fat [PFAT] to 0.98 (BMC). Significant differences were found between the two systems, with average absolute differences for PFAT, BMC, and BMD of 1.4%, 176.8 g and 0.013 g/cm(2) , respectively. After cross-calibration, no significant differences remained between GE Healthcare Lunar measured results and the results converted from Hologic. The equations we derived reduce differences between BMD and body composition as determined by GE Healthcare Lunar and Hologic systems and will facilitate combining study results in clinical or epidemiological studies. Copyright © 2012 American Society for Bone and Mineral Research.

  17. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  18. Knowledge as a resource in regional development

    Directory of Open Access Journals (Sweden)

    Roland Scherer

    2009-03-01

    Full Text Available The economic and social development of regions is facing new challenges nowadays. European integration and extension, as well as the globalised climate/structure with regard to economics and decision-making, and globalised economic and decisionrelated coherencies are bringing about major changes. Regions as business locations are competing more and more for mobile and immobile resources. Regions need to understand and utilise their “knowledge” as a development resource in order to be able to develop themselves. The resource of “knowledge” is also becoming increasingly significant in regional politics. The “new regional policy” in Switzerland is treading new ground with the establishment of a “regional development knowledge management system” and considerable amounts of public funding are being invested in this scheme.Le développement économique et social des régions doit désormais faire face à de nouveaux défis. L’intégration et l’élargissement de l’Union européenne, ainsi que la mondialisation du climat/de la structure économique et décisionnelle et des cohésions correspondantes sont à l’origine de grands bouleversements. Les régions rivalisent de plus en plus afin de réunir des ressources mobiles et immobiles susceptibles d’attirer les entreprises. Les régions doivent appréhender et exploiter leurs « connaissances » comme des ressources pour pouvoir se développer. Les « connaissances » sont également de plus en plus importantes en politique régionale. La « nouvelle politique régionale » de la Suisse se veut innovante en instaurant un « système de gestion des connaissances pour le développement régional », dans lequel des sommes d’argent public considérables sont investies.

  19. Indigenous lunar construction materials

    Science.gov (United States)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  20. Resources | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Through IDRC's resource library, we share our results, provide support to ... Our Research Support team provides the resources and tools researchers need to ... It also includes information on how to structure and design your policy brief to ...

  1. European Community's program in marine resources development

    International Nuclear Information System (INIS)

    Lenoble, J.P.; Jarmache, E.

    1995-01-01

    The European Community launched already several research program in the different fields of social and industrial activities. The Fourth Framework Programme is divided into 4 main activities comporting a total of 18 programs. These programs are dealing with general topics as information and communication, industrial technologies, environment, life sciences and technologies, energy, transport and socioeconomic research. One line is devoted to marine sciences and technology, but offshore activities could also be included in the other topics as offshore oil and gas in energy, ship building and harbor in transport, aquaculture and fisheries in life sciences and technology, etc. In order to maintain a coherent approach toward offshore activities, the European maritime industries met intensively front 1991 to 1994 and recommended a series of proposal for Research and Development of marine resources. The methodology and content of these proposals is exposed

  2. Lunar Health Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  3. Activities of nuclear human resource development in nuclear industry

    International Nuclear Information System (INIS)

    Tsujikura, Yonezo

    2010-01-01

    Since 2007, the JAIF (Japan Atomic Industrial Forum) had established the nuclear energy human resource development council to make analysis of the issue on nuclear human resource development. The author mainly contributed to develop its road map as a chairman of working group. Questionnaire survey to relevant parties on issues of nuclear human resource development had been conducted and the council identified the six relevant issues and ten recommendations. Both aspects for career design and skill-up program are necessary to develop nuclear human resource at each developing step and four respective central coordinating hubs should be linked to each sector participating in human resource development. (T. Tanaka)

  4. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  5. Secondary resources and recycling in developing economies.

    Science.gov (United States)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Secondary resources and recycling in developing economies

    International Nuclear Information System (INIS)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-01-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH and S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for “green economy”

  7. Task force on resource development and the economy

    International Nuclear Information System (INIS)

    Mansell, R.L.; Staples, L.B.

    2011-02-01

    In Alberta, the development and growth of the economy relies heavily on the resource sectors, which drive half of all employment. In 2009, the Alberta Chamber of Resources commissioned a task force, comprising groups from the 9 resource sectors in Alberta, to examine resource development and the economy. The aim of this team was to present the impact that the resource sectors had on Alberta's economy in the past, the impact it could have in the future, and to make recommendations on how to meet the full potential of resource development in the province. This reports states that considerable resources of bitumen and coal are present in Alberta and that forestry and diamonds could also play important roles in future resource development. The task force believes that the resource sectors will continue lead gross domestic product growth in Alberta and 16 recommendations for meeting the province's full potential are provided.

  8. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  9. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  10. Lunar Soil Particle Separator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS improves ISRU oxygen...

  11. Lunar Soil Particle Separator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  12. Production of Lunar Oxygen Through Vacuum Pyrolysis

    National Research Council Canada - National Science Library

    Matchett, John

    2006-01-01

    .... The vacuum pyrolysis method of oxygen production from lunar regolith presents a viable option for in situ propellant production because of its simple operation involving limited resources from earth...

  13. Conceptual design and analysis of roads and road construction machinery for initial lunar base operations

    Science.gov (United States)

    Sines, Jeffrey L.; Banks, Joel; Efatpenah, Keyanoush

    1990-01-01

    Recent developments have made it possible for scientists and engineers to consider returning to the Moon to build a manned lunar base. The base can be used to conduct scientific research, develop new space technology, and utilize the natural resources of the Moon. Areas of the base will be separated, connected by a system of roads that reduce the power requirements of vehicles traveling on them. Feasible road types for the lunar surface were analyzed and a road construction system was designed for initial lunar base operations. A model was also constructed to show the system configuration and key operating features. The alternate designs for the lunar road construction system were developed in four stages: analyze and select a road type; determine operations and machinery needed to produce the road; develop machinery configurations; and develop alternates for several machine components. A compacted lunar soil road was selected for initial lunar base operations. The only machinery required to produce this road were a grader and a compactor. The road construction system consists of a main drive unit which is used for propulsion, a detachable grader assembly, and a towed compactor.

  14. Influence Of Globalization On Human Resource Development In ...

    African Journals Online (AJOL)

    The paper addressed the influence of Globalization on human resource development in Nigeria. It traced the origin of human resource development in Nigeria to the coming of the missionaries who spiritually colonized Africa and also educated their adherents. The human resource produced from the education offered were ...

  15. Developing ICT Services in a Low-Resource Development Context

    Directory of Open Access Journals (Sweden)

    Anna Bon

    2016-12-01

    Full Text Available Despite an urgent need for social and technological innovation to improve wellbeing of people and communities in poor regions of the world, information and communications technology (ICT service delivery has not yet been very successful in regions with low levels of literacy, poor infrastructures, and limited purchasing power. High rates of failure, reported in various studies, point at a frequent mismatch between deployed technologies and local needs and contexts. Still, no practical field-validated methodologies for ICT service innovation in low-resource development contexts have been proposed that offer adequate ways to meet local needs and contexts and assess sustainability before deployment. This article outlines a framework for development of ICT services in low-resource development contexts, covering the full lifecycle of ICT service innovation. This framework is based on extensive field research, and shows how a collaborative, adaptive, and iterative methodology can address a set of key sociotechnical concerns and issues widely encountered in developing and emerging countries.

  16. Resources Management Officer | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Resources Management Officer (RMO) contributes intellectual, technical and ... by initiating, coordinating, and monitoring key processes, activities and issues. ... managing the publication site and overseeing the final quality control by the ...

  17. Human Resources Coordinator | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Human Resources Coordinator supports the HR Business Partner in the delivery of ... of various reports for HR Business Partners and HR management. ... services and information to candidates applying on job openings in IDRC, ...

  18. Developing speech resources from parliamentary data for South African english

    CSIR Research Space (South Africa)

    De Wet, Febe

    2016-05-01

    Full Text Available Workshop on Spoken Language Technology for Under-resourced Languages, SLTU 2016, 9-12 May 2016, Yogyakarta, Indonesia Developing Speech Resources from Parliamentary Data for South African English Febe de Wet*, Jaco Badenhorst, Thipe Modipa Human...

  19. Pronunciation dictionary development in resource-scarce environments

    CSIR Research Space (South Africa)

    Davel, M

    2009-09-01

    Full Text Available The deployment of speech technology systems in the developing world is often hampered by the lack of appropriate linguistic resources. A suitable pronunciation dictionary is one such resource that can be difficult to obtain for lesser...

  20. Capital Flight and Transfer from Resource-Rich Developing Countries

    OpenAIRE

    Demachi, Kazue

    2013-01-01

    This paper analyzes the influence of international resource price movements on capital outflows from resource-rich developing countries (RRDCs) by distinguishing capital flight and capital transfers. The volume of capital flight and transfers are calculated and their determinants are analyzed using macro-panel data constituting 21 resource-rich developing countries from 1990 to 2011. Through the regression analysis, the linkage between capital flight and resource revenue as well as that betwe...

  1. Automation and robotics considerations for a lunar base

    Science.gov (United States)

    Sliwa, Nancy E.; Harrison, F. Wallace, Jr.; Soloway, Donald I.; Mckinney, William S., Jr.; Cornils, Karin; Doggett, William R.; Cooper, Eric G.; Alberts, Thomas E.

    1992-01-01

    An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment.

  2. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  3. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  4. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  5. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  6. Human resource development for uranium production cycle

    International Nuclear Information System (INIS)

    Ganguly, C.

    2014-01-01

    Nuclear fission energy is a viable option for meeting the ever increasing demand for electricity and high quality process heat in a safe, secured and sustainable manner with minimum carbon foot print and degradation of the environment. The growth of nuclear power has shifted from North America and Europe to Asia, mostly in China and India. Bangladesh, Vietnam, Indonesia, Malaysia and the United Arab Emirates are also in the process of launching nuclear power program. Natural uranium is the basic raw material for U-235 and Pu-239, the fuels for all operating and upcoming nuclear power reactors. The present generation of nuclear power reactors are mostly light water cooled and moderated reactor (LWR) and to a limited extent pressurized heavy water reactor (PHWR). The LWRs and PHWRs use low enriched uranium (LEU with around 5% U-235) and natural uranium as fuel in the form of high density UO_2 pellets. The uranium production cycle starts with uranium exploration and is followed by mining and milling to produce uranium ore concentrate, commonly known as yellow cake, and ends with mine and mill reclamation and remediation. Natural uranium and its daughter products, radium and radon, are radioactive and health hazardous to varying degrees. Hence, radiological safety is of paramount importance to uranium production cycle and there is a need to review and share best practices in this area. Human Resource Development (HRD) is yet another challenge as most of the experts in this area have retired and have not been replaced by younger generation because of the continuing lull in the uranium market. Besides, uranium geology, exploration, mining and milling do not form a part of the undergraduate or post graduate curriculum in most countries. Hence, the Technical Co-operation activities of the IAEA are required to be augmented and more country specific and regional training and workshop should be conducted at different universities with the involvement of international experts

  7. Developing Financial Resources for School Arts Programs.

    Science.gov (United States)

    Green, Alan C.; Ambler, Nancy Morison

    This document provides a sampling of financial resources for fine arts programs in the schools and lists methods for submitting proposals and dealing with sponsors of funds. Financial sources for arts programs include school districts, organizations and institutions, special events, direct mail, individuals, associations and clubs, businesses and…

  8. 2008 Human Resources Development Programmes in Nigerian ...

    African Journals Online (AJOL)

    Gbaje E.S

    Personnel management in libraries is an aspect of library administration that involves planning for human resource needs ... and organisation (of staff) in order to achieve the organizational goals. When the right personnel are recruited, the management puts the staff through with the operations of the library through a staff ...

  9. Lunar All-Terrain Utility Vehicle for EVA, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("Lunar ATV") to assist extra-vehicular activities...

  10. NASA Lunar and Planetary Mapping and Modeling

    Science.gov (United States)

    Day, B. H.; Law, E.

    2016-12-01

    NASA's Lunar and Planetary Mapping and Modeling Portals provide web-based suites of interactive visualization and analysis tools to enable mission planners, planetary scientists, students, and the general public to access mapped lunar data products from past and current missions for the Moon, Mars, and Vesta. New portals for additional planetary bodies are being planned. This presentation will recap significant enhancements to these toolsets during the past year and look forward to the results of the exciting work currently being undertaken. Additional data products and tools continue to be added to the Lunar Mapping and Modeling Portal (LMMP). These include both generalized products as well as polar data products specifically targeting potential sites for the Resource Prospector mission. Current development work on LMMP also includes facilitating mission planning and data management for lunar CubeSat missions, and working with the NASA Astromaterials Acquisition and Curation Office's Lunar Apollo Sample database in order to help better visualize the geographic contexts from which samples were retrieved. A new user interface provides, among other improvements, significantly enhanced 3D visualizations and navigation. Mars Trek, the project's Mars portal, has now been assigned by NASA's Planetary Science Division to support site selection and analysis for the Mars 2020 Rover mission as well as for the Mars Human Landing Exploration Zone Sites. This effort is concentrating on enhancing Mars Trek with data products and analysis tools specifically requested by the proposing teams for the various sites. Also being given very high priority by NASA Headquarters is Mars Trek's use as a means to directly involve the public in these upcoming missions, letting them explore the areas the agency is focusing upon, understand what makes these sites so fascinating, follow the selection process, and get caught up in the excitement of exploring Mars. The portals also serve as

  11. Lunar Advanced Volatile Analysis Subsystem: Pressure Transducer Trade Study

    Science.gov (United States)

    Kang, Edward Shinuk

    2017-01-01

    In Situ Resource Utilization (ISRU) is a key factor in paving the way for the future of human space exploration. The ability to harvest resources on foreign astronomical objects to produce consumables and propellant offers potential reduction in mission cost and risk. Through previous missions, the existence of water ice at the poles of the moon has been identified, however the feasibility of water extraction for resources remains unanswered. The Resource Prospector (RP) mission is currently in development to provide ground truth, and will enable us to characterize the distribution of water at one of the lunar poles. Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is the primary payload on RP that will be used in conjunction with a rover. RESOLVE contains multiple instruments for systematically identifying the presence of water. The main process involves the use of two systems within RESOLVE: the Oxygen Volatile Extraction Node (OVEN) and Lunar Advanced Volatile Analysis (LAVA). Within the LAVA subsystem, there are multiple calculations that depend on accurate pressure readings. One of the most important instances where pressure transducers (PT) are used is for calculating the number of moles in a gas transfer from the OVEN subsystem. As a critical component of the main process, a mixture of custom and commercial off the shelf (COTS) PTs are currently being tested in the expected operating environment to eventually down select an option for integrated testing in the LAVA engineering test unit (ETU).

  12. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  13. Water Resources Development in Minnesota 1991

    Science.gov (United States)

    1991-01-01

    Mississippi River Comprehensive Elk River, Mississippi River ..................... 43 Master Plan .............................. 20 Epr Roau, Mississippi...Mississippi River has in- water resource projects, and receiving more than 600 million creased steadily since the advent of the 9-foot channel in 1935 ...and increased from about Minneapolis, Completed Project - 11 0,(XX) tons in 1935 to a peak of 3,177,355 tons in 1975. Traffic Commercial Navigation

  14. Lunar Industry & Research Base Concept

    Science.gov (United States)

    Lysenko, J.; Kaliapin, M.; Osinovyy, G.

    2017-09-01

    Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.

  15. RESOLVE: Regolith and Environment Science and Oxygen and Lunar Volatile Extraction

    Science.gov (United States)

    Quinn, Jacqueline; Baird, Scott; Colaprete, Anthony; Larson, William; Sanders, Gerald; Picard, Martin

    2011-01-01

    Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is an internationally developed payload that is intended to prospect for resources on other planetary bodies. RESOLVE is a miniature drilling and chemistry plant packaged onto a medium-sized rover to collect and analyze soil for volatile components such as water or hydrogen that could be used in human exploration efforts.

  16. Extract from IAEA's Resources Manual in Nuclear Medicine - Part 2. - Human Resources Development

    International Nuclear Information System (INIS)

    2003-01-01

    The Nuclear Medicine Section of the International Atomic Energy Agency is now engaged in finalizing a reference manual in nuclear medicine, entitled, 'Resources Manual in Nuclear Medicine'. Several renowned professionals from all over the world, from virtually all fields of nuclear medicine have contributed to this manual. The World Journal of Nuclear Medicine will publish a series of extracts from this manual as previews. This is the second extract from the Resources Manual, Part-2 of the chapter on Human Resources Development. (author)

  17. First lunar outpost

    Science.gov (United States)

    Andino, Aureo F.; Silva, Daniel; Ortiz, Nelson; Alvarez, Omar; Colon, Julio A.; Colon, Myrelle; Diaz, Alicia; Escobar, Xochiquetzal Y.; Garcia, Alberto; Gonzalez, Isabel C.

    1992-01-01

    Design and research efforts at the University of Puerto Rico have focused on the evaluation and refinement of the Habitability Criteria for a prolonged human presence in space during the last four years. Living quarters for a Mars mission and a third generation lunar base concept were proposed. This academic year, 1991-92, work on further refinement of the habitability criteria and design of partial gravity furniture was carried on. During the first semester, design alternatives for furniture necessary in a habitat design optimized for lunar and Martian environments were developed. Designs are based on recent research data from lunar and Mars gravity simulations, and current NASA standards. Artifacts will be submitted to NASA architects to be tested in KC-135 flights. Test findings will be submitted for incorporation in future updates to NASA habitat design standards. Second semester work was aimed at integrating these findings into the First Lunar Outpost (FLO), a mission scenario currently being considered by NASA. The mission consists of a manned return to the moon by crews of four astronauts for periods of 45 days. The major hardware components of the mission are as follows: (1) a Crew Module for the delivery of the crew and their supplies, and (2) the Habitat Module, which will arrive on the Moon unmanned. Our design efforts concentrated on this Habitat Module and on application of habitability criteria. Different geometries for the pressure vessel and their impact on the interior architecture were studied. Upon the selection of a geometry, a more detailed analysis of the interior design was performed, taking into consideration the reduced gravity, and the protection against radiation, micrometeorites, and the extreme temperature variation. A proposal for a FLO was submitted by the students, consisting essentially of a 24-feet (7.3 m.) by 35-feet (10.67 m) high vertical cylinder with work areas, crew quarters, galley, wardroom, leisure facilities, health

  18. Adult Education & Human Resource Development: Overlapping and Disparate Fields

    Science.gov (United States)

    Watkins, Karen E.; Marsick, Victoria J.

    2014-01-01

    Adult education and human resource development as fields of practice and study share some roots in common but have grown in different directions in their histories. Adult education's roots focused initially on citizenship for a democratic society, whereas human resource development's roots are in performance at work. While they have…

  19. Increasing Organizational Effectiveness through Better Human Resource Planning and Development

    Science.gov (United States)

    Schein, Edgar H.

    1977-01-01

    Discusses the increasing importance of human resource planning and development for organizational effectiveness, and examines how the major components of a human resource planning and development system should be coordinated for maximum effectiveness. Available from Alfred P. Sloan School of Management, Massachusetts Institute of Technology,…

  20. The Challenges of Developing Research Resources for Leading Vietnamese Universities

    Science.gov (United States)

    Nguyen, Thi Lan Huong

    2013-01-01

    This paper examines the challenges of developing research resources for leading Vietnamese universities. The first part of the paper presents the background to the study, including literature review on the challenges to research resources development, and describes the research questions and research methods. The next part provides empirical…

  1. Lunar In-Situ Volatile Extraction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A method of extracting volatile resources from the Lunar regolith is proposed to reduce the launch mass and cost of bringing such resources from the Earth to enable...

  2. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Science.gov (United States)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  3. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    1970-01-01

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  4. Applications for special-purpose minerals at a lunar base

    Science.gov (United States)

    Ming, Douglas W.

    1992-01-01

    Maintaining a colony on the Moon will require the use of lunar resources to reduce the number of launches necessary to transport goods from the Earth. It may be possible to alter lunar materials to produce minerals or other materials that can be used for applications in life support systems at a lunar base. For example, mild hydrothermal alteration of lunar basaltic glasses can produce special-purpose minerals (e.g., zeolites, smectites, and tobermorites) that in turn may be used in life support, construction, waste renovation, and chemical processes. Zeolites, smectites, and tobermorites have a number of potential applications at a lunar base. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations that possess infinite, three-dimensional crystal structures. They are further characterized by an ability to hydrate and dehydrate reversibly and to exchange some of their constituent cations, both without major change of structure. Based on their unique absorption, cation exchange, molecular sieving, and catalytic properties, zeolites may be used as a solid support medium for the growth of plants, as an adsorption medium for separation of various gases (e.g., N2 from O2), as catalysts, as molecular sieves, and as a cation exchanger in sewage-effluent treatment, in radioactive waste disposal, and in pollution control. Smectites are crystalline, hydrated 2:1 layered aluminosilicates that also have the ability to exchange some of their constituent cations. Like zeolites, smectites may be used as an adsorption medium for waste renovation, as adsorption sites for important essential plant growth cations in solid support plant growth mediums (i.e., 'soils'), as cation exchangers, and in other important application. Tobermorites are cystalline, hydrated single-chained layered silicates that have cation-exchange and selectivity properties between those of smectites and most zeolites. Tobermorites may be used as a cement in building lunar base structures, as

  5. Developing a strategic human resources plan for the Urban Angel.

    Science.gov (United States)

    Owen, Susan M

    2011-01-01

    In healthcare a significant portion of the budget is related to human resources. However, many healthcare organizations have yet to develop and implement a focused organizational strategy that ensures all human resources are managed in a way that best supports the successful achievement of corporate strategies. St. Michael's Hospital, in Toronto, Ontario, recognized the benefits of a strategic human resources management plan. During an eight-month planning process, St. Michael's Hospital undertook the planning for and development of a strategic human resources management plan. Key learnings are outlined in this paper.

  6. Human Resource Development in the Knowledge Economy

    DEFF Research Database (Denmark)

    Jørgensen, Sanne Lehmann

    . In this line of thinking, the aim is to propose a model for analysing the progress of knowledge improvements in developing countries as an outcome of the management of human, social and organisational capital. In this regard, the paper considers relevant practices and strategies in the context of developing...

  7. Importance of Knowledge Management in Human Resource Development

    International Nuclear Information System (INIS)

    Pleslic, Sanda

    2014-01-01

    Human resource management and knowledge management: • In human resource management - important to identify crucial knowledge base on which competitiveness of company depends → according this ensure appropriate development of human resources. • Era of so-called knowledge economy - only individual and organizational knowledge could give competitive advantage. • From operational perspective, knowledge management - systematic processes by which an organization identifies, creates, captures, acquires, shares and increase knowledge

  8. Online Resources Microsatellites development, cross-amplification ...

    Indian Academy of Sciences (India)

    unknown

    1Guangdong Provincial Key Laboratory of Applied Botany, South China ... In south China, urban development is another threat to A. sinensis. ..... Chen G., Liu C. and Sun W. 2016 Pollination and seed dispersal of Aquilaria sinensis (Lour.) ...

  9. Reliability benefits of dispersed wind resource development

    International Nuclear Information System (INIS)

    Milligan, M.; Artig, R.

    1998-05-01

    Generating capacity that is available during the utility peak period is worth more than off-peak capacity. Wind power from a single location might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility's peak load than a single site. There are other issues that arise when considering disperse wind plant development. Singular development can result in economies of scale and might reduce the costs of obtaining multiple permits and multiple interconnections. However, disperse development can result in cost efficiencies if interconnection can be accomplished at lower voltages or at locations closer to load centers. Several wind plants are in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming, Iowa and Texas. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically disperse sites on the reliability of the overall wind plant.This paper uses a production-cost/reliability model to analyze the reliability of several wind sites in the state of Minnesota. The analysis finds that the use of a model with traditional reliability measures does not produce consistent, robust results. An approach based on fuzzy set theory is applied in this paper, with improved results. Using such a model, the authors find that system reliability can be optimized with a mix of disperse wind sites

  10. Human resource development in nuclear medicine in developing countries

    International Nuclear Information System (INIS)

    Gopinathan Nair, P.G.

    1998-01-01

    An organization, an enterprise or a movement is only as good as the people in it and these cannot be conceived without considering the people that make it, in other words its human resources (HR). The definition of HR includes the total knowledge, skills, creative abilities, talents and aptitudes of the work-force. Equally important it includes the values, attitudes and benefits of each of the individuals concerned. No development is possible without proper planning. HR planning is therefore a prerequisite for HRD in NM and no planning can be made without defining the objectives of Nuclear Medicine (NM) in developing countries (DC). It is also essential to forecast the future needs of NM in DC keeping in mind the stated objectives before laying out the strategies of the HRD. HRD in NM is best achieved when all the partners in the game play their part with commitment and sincerity of purpose. At the national level the partners are the government (ministries of health and education), professional bodies (national societies of NM) and academic bodies (colleges of NM physicians, physicists and technologists etc.). In the implementation of the HRD systems and processes, involvement of all the partners is essential for success. Creation of task forces to implement, monitor and evaluate HRD tools ensures the quality of these tools. The operation of some of these tools may have to be centralized, and others decentralized depending upon the exigencies of need, propriety and practicality. In summary, the aim of HRD should be to ensure the right people at the right time for the right job and in doing so nuclear medicine achieves its objectives and the individuals in the workforce realize their full potentials, and benefits in full

  11. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  12. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  13. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  14. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  15. Development of water resources management in Iraq and its obstacles

    International Nuclear Information System (INIS)

    Jawad, A. M.

    2011-01-01

    Iraq witnessed recently a considerable development in the field of water resources management to go along with developed countries. Latest technology has been introduced in hydrology monitoring. Many stations for water measuring and monitoring have been constructed beside many irrigation and drainage canals in order to reach an optimum irrigation system. A special emphasis has been put on the role of nuclear techniques in enhancing the water resources management development. These techniques will provide the perfect opportunity for investing water and drained quantities and determining pollution resources to insure the sustainability of the agricultural sector without threatening the development processes. This development encounters the lack of knowledge of technology applied in the field of the use of peaceful atomic energy and nuclear technologies, which are essential in sustaining the momentum in the management of water resources, despite the entry of the latest developed devices and technologies in measurements and monitoring. (author)

  16. Development and validation of a learning progression for change of seasons, solar and lunar eclipses, and moon phases

    Science.gov (United States)

    Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella

    2015-12-01

    In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons, solar and lunar eclipses, and Moon phases; then, a two-tier multiple choice questionnaire was designed to validate and improve them. The questionnaire was submitted to about 300 secondary students of different school levels (14 to 18 years old). Item response analysis and curve integral method were used to revise the hypothesized learning progressions. Findings support that spatial reasoning is a key cognitive factor for building an explanatory framework for the Celestial Motion big idea, but also suggest that causal reasoning based on physics mechanisms underlying the phenomena, as light flux laws or energy transfers, may significantly impact a students' understanding. As an implication of the study, we propose that the teaching of the three discussed astronomy phenomena should follow a single teaching-learning path along the following sequence: (i) emphasize from the beginning the geometrical aspects of the Sun-Moon-Earth system motion; (ii) clarify consequences of the motion of the Sun-Moon-Earth system, as the changing solar radiation flow on the surface of Earth during the revolution around the Sun; (iii) help students moving between different reference systems (Earth and space observer's perspective) to understand how Earth's rotation and revolution can change the appearance of the Sun and Moon. Instructional and methodological implications are also briefly discussed.

  17. Human Resources Development Challenges for Nuclear Newcomers

    International Nuclear Information System (INIS)

    Perrette, Xavier

    2014-01-01

    Conclusion and take away messages: • HRD solution is dependent upon country’s economical, societal, industrial situation and development strategy. • HRD to be integrated in the global HCB approach (education and training, KM, knowledge networks). • Maximum local benefit with national development. • International collaboration and partnership with competent and experienced partners is recommended (lever effect). • Anticipation is key. → HRD for a nuclear program is challenging but achievable. Countries already did it and are ready to build long term partnerships

  18. Capability Development at Imperial Oil Resources Ltd.

    Science.gov (United States)

    Ellerington, David; And Others

    1992-01-01

    Striving to be learning organization, Imperial Oil of Canada focused on organizational, divisional, and individual capability development. Lessons learned include the following: (1) all levels of employees are potential professionals; (2) learning must be continuous; (3) intrinsic motivation and commitment are essential; and (4) organizational…

  19. Genome resource utilization during prokaryotic development

    Czech Academy of Sciences Publication Activity Database

    Vohradský, Jiří; Ramsden, J. J.

    2001-01-01

    Roč. 15, - (2001), s. 2054-2056 ISSN 0892-6638 R&D Projects: GA ČR GA204/00/1253 Institutional research plan: CEZ:AV0Z5020903 Keywords : prokaryotic development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.817, year: 2001

  20. Resources for IDRC grantees | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Our Research Support team develops tools and provides assistance to grantees. You must be an IDRC-funded researcher or IDRC staff member to use these services. Document delivery requests: Find out how to request journal articles that are not available in full text. Document delivery service: Order scholarly articles that ...

  1. Developing an Actuarial Track Utilizing Existing Resources

    Science.gov (United States)

    Rodgers, Kathy V.; Sarol, Yalçin

    2014-01-01

    Students earning a degree in mathematics often seek information on how to apply their mathematical knowledge. One option is to follow a curriculum with an actuarial emphasis designed to prepare students as an applied mathematician in the actuarial field. By developing only two new courses and utilizing existing courses for Validation by…

  2. Natural Resources Accounting and Sustainable Development: The ...

    African Journals Online (AJOL)

    gold

    2012-07-26

    Jul 26, 2012 ... Development: The Challenge to Economics and Accounting ... The United Nations Statistical Office published a system of national account .... environment in national accounts provides information on the use of natural .... environmental impact and aspects of an organization, including implications for cash ...

  3. How Solar Resource Data supports Research and Development

    OpenAIRE

    Kern, Jürgen

    2013-01-01

    The presentation describes the methods of renewable resource data, how the research and development will benefits from Renewable Resource Atlas and how institutions will leverage the solar monitoring station data to support renewable energy project deployment in other locations throughout the Kingdom.

  4. AFRA-NEST: A Tool for Human Resource Development

    International Nuclear Information System (INIS)

    Amanor, Edison; Akaho, E.H.K.; Serfor-Armah, Y.

    2014-01-01

    Conclusion: • Regional Networks could serve as a common platform to meet the needs for human resource development. • With AFRA-NEST, International cooperation would be strengthened. • Systematic integration and sharing of available nuclear training resources. • Cost of training future nuclear experts could drastically be reduced

  5. Emotional Intelligence Research within Human Resource Development Scholarship

    Science.gov (United States)

    Farnia, Forouzan; Nafukho, Fredrick Muyia

    2016-01-01

    Purpose: The purpose of this study is to review and synthesize pertinent emotional intelligence (EI) research within the human resource development (HRD) scholarship. Design/methodology/approach: An integrative review of literature was conducted and multiple electronic databases were searched to find the relevant resources. Using the content…

  6. Mind Mapping on Development of Human Resource of Education

    Science.gov (United States)

    Fauzi, Anis

    2016-01-01

    Human resources in the field of education consists of students, teachers, administrative staff, university students, lecturers, structural employees, educational bureaucrats, stakeholders, parents, the society around the school, and the society around the campus. The existence of human resources need to be cultivated and developed towards the…

  7. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  8. Human Resource Development's Contribution to Continuous Improvement

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Hyland, Paul

    2007-01-01

    Continuous Improvement (CI) is an approach to organizational change that requires active involvement of skilled and motivated employees, which implies an important role for HRD practitioners. The findings from a literature review and a survey of 168 Danish manufacturing companies indicate however...... that HRD is rarely integrated with CI. The paper contributes by offering a model that depicts how HR and HRD functions could be exploited to support successful CI development and implementation....

  9. Lunar power systems. Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified

  10. Renewable resources: development at the crossroads

    Energy Technology Data Exchange (ETDEWEB)

    Baker, B.; Cummings, J.

    1981-12-01

    The era of fossil fuel alternatives began with no clear definition or consensus on which energy supplies are alternatives or renewables. It also brought a technological search for diverse solutions, with solar getting the most adherents. Debate centered on how much solar and other renewables can realistically contribute to the total energy demand, what that contribution means in terms of barrels of oil and tons of coal, and how to attract the political and financial support necessary to develop new energy industries. The current status of renewable energy technologies underscores the critical juncture facing research because of inflation, budget cuts, the dismantlement of DOE, and a philosophical opposition to government participation. Some solar technologies can continue commercial development, but fusion is unique in its classification as a high-risk venture justifying government support. If research on renewable and synthetic energy sources is to progress, American industry must regroup and organize in support of technical, institutional, and social innovation. A timetable of development and commercialization for those technologies expected to be making a significant contribution by 2030 follows the article. (DCK)

  11. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  12. A Sun-Earth-Moon Activity to Develop Student Understanding of Lunar Phases and Frames of Reference

    Science.gov (United States)

    Ashmann, Scott

    2012-01-01

    The Moon is an ever-present subject of observation, and it is a recurring topic in the science curriculum from kindergarten's basic observations through graduate courses' mathematical analyses of its orbit. How do students come to comprehend Earth's nearest neighbor? What is needed for them to understand the lunar phases and other phenomena and…

  13. Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission

    Science.gov (United States)

    Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; hide

    2014-01-01

    Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field

  14. Present status of uranium resource development in foreign countries, 1984

    International Nuclear Information System (INIS)

    1984-12-01

    The book of the same title as this one was published in 1983. Since then, the situation requiring the correction of the contents, such as the correction of uranium resource policy in various countries accompanying the change of uranium market condition and the change of uranium policy in Australia due to the political situation, has occurred, consequently, the revision has been made adding these new information. The confirmed resources of uranium and the resources of uranium to be added by estimation in the free world are tabulated. About each country, the organization and policy, the policy of exporting uranium and the present status of the export, the quantity of uranium resources, the production of uranium, the state of exploration and development and so on are reported. Japan has taken part in the development of uranium resources in Australia, Canada, Gabon, Zambia, Morocco, Guinea, Mali and so on. (Kako, I.)

  15. Development and conservation of natural resources

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, H E.L.E.

    1978-12-01

    The author views ecological problems from the perspective of both the pollution of industrialized countries and the ecological damage to underdeveloped countries and concludes that the environmental deterioration must be seen as inseparable. Present production methods, in shifting the burden of environmental damage to dependent societies, have retarded economic development in many areas. Urbanization in the Third World is intensifying, but, given the destruction that accompanies industrialization, he sees poverty in these countries as an inevitable outcome. The idea that economic growth is humanity's first priority is a conceit that accepts environmental destruction as a necessary sacrifice. As an alternative, the author recommends a conscientious community of free men be nurtured--one that can reconstruct a new social and economic order based on solidarity and the substitution of permanent for expedient policies.

  16. Participation of Aboriginal peoples in resource development

    International Nuclear Information System (INIS)

    Welsh, J.; Snow, J.D.

    1998-01-01

    The means by which the petroleum industry can establish a successful relationship with Aboriginal people and their community are described. It was emphasized that industry and Aboriginals must define training, employment and business objectives jointly for the longer term. Suncor's Oil Sands Group operates in an area considered to be traditional lands by the First Nation and Metis people of Fort McKay. Suncor recognizes its responsibilities to Fort McKay and has taken the approach to support Aboriginal community development through written agreements and protocols which identify the social, economic, environmental and political issues that are important to them. The Memorandum of Understanding between Suncor Energy Oil Sands, Fort McKay First Nation, and Fort McKay Metis Local 122 is used as an example of one major company's initiatives to establish a mutually supportive and interdependent relationship

  17. Control of Resources for Economic Development in Food Networks

    DEFF Research Database (Denmark)

    Brink, Tove

    2010-01-01

    The challenge of economic development in the 21st century is linked to innovation. Enabling innovation contains a wide span from the new idea to learning how to provide value through the new idea and continuing to how to control resources to perform at prime. The focus in this paper is set on how...... to control resources for innovation to add value and economic development. This paper reveals how crossing dynamic composite underlying boundaries can have an impact on control of resources for economic development in food networking SMEs .The analyses in this paper shows the broad and significant impact....... Connections are revealed to have no significant influence on the internal control of resources but a significant direct influence on economic development through value chain activities. Through the analyses in this paper the notion of ‘boundary utility’ is elaborated as the crossing and transformation...

  18. From Defence to Development: Redirecting Military Resources in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Book cover From Defence to Development: Redirecting Military Resources in ... of the IDRC-funded project "Militarization and the Ecology of Southern Africa." ... Congratulations to the first cohort of Women in Climate Change Science Fellows!

  19. Revitalizing Society: Practicing Human Resource Development through the Lifespan.

    Science.gov (United States)

    Carter, Phillip Dean

    1988-01-01

    It is time to practice sound principles of human resources development in learning environments and to promote a cooperative, creative, collaboative, and participative leadership style in education as well as in industry, business, and government. (JOW)

  20. Geopressured-geothermal resource development on public free school lands

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The study's findings and recommendations are based upon analysis of the following: financial and economic feasibility of geopressured-geothermal resource development; possible ecological, social, and economic impacts of resource development on PFSL; and legal issues associated with resource development. The results of the analysis are summarized and are discussed in detail in a series of four technical papers which accompany this volume. Existing rules of the General Land Office (GLO), the School Land Board (SLB), and the Railroad Commission of Texas (RRC) were reviewed in light of the above analysis and were discussed with the agencies. The study's recommendations resulted from this analytical and review process; they are discussed. The preliminary draft rules and regulations to govern resource development on PFSL are presented in Appendix A; the accompanying forms and model lease are found in Appendix B.

  1. Lunar architecture and urbanism

    Science.gov (United States)

    Sherwood, Brent

    1992-01-01

    Human civilization and architecture have defined each other for over 5000 years on Earth. Even in the novel environment of space, persistent issues of human urbanism will eclipse, within a historically short time, the technical challenges of space settlement that dominate our current view. By adding modern topics in space engineering, planetology, life support, human factors, material invention, and conservation to their already renaissance array of expertise, urban designers can responsibly apply ancient, proven standards to the exciting new opportunities afforded by space. Inescapable facts about the Moon set real boundaries within which tenable lunar urbanism and its component architecture must eventually develop.

  2. Resources of Mongolian beef industry development

    Directory of Open Access Journals (Sweden)

    Damdinsuren L.

    2011-12-01

    Full Text Available This paper reviews the historical aspect of grazing in Mongolia. The data on changes in the structure of animal species in the general population is presented. The level of main types of foods security of the population of Mongolia based on the findings of the actual meat and meat products consumption ratio to the recommended standard in accordance with national standards is analyzed. In absolute terms, the number of livestock is growing steadily, so by the conditions for ensuring full meat and meat products security for the population. Estimation of the technological level of the country's meat industry and export performance of meat products, including the Russian Federation, is given. A model of technological strategy of meat processing is suggested. It is noted that the main directions of development of meat industry in the country are increased production and safety of meat in agriculture and waste-free deep treatment of cattle in the meat industry, as well as improvement of the export potential of different kinds of meat.

  3. Education Factor and Human Resources Development - Albania Case

    OpenAIRE

    Sonila Berdo

    2010-01-01

    The article gives a general view of the actual situation and the potential importance that the education factor plays in the formation and development of human resources in Albania, based on the Albanian education system applied as well as the strategies undertaken regarding the development of human resources by transforming it in an important asset and an unstoppable source of values for all the society. In particular, the article is focused in analyzing and evaluating the link between the l...

  4. Corruption, development and the curse of natural resources

    International Nuclear Information System (INIS)

    Pendergast, S.M.; Clarke, J.A.; Van Kooten, G.C.

    2008-01-01

    This paper presented a model that was designed to evaluate the benefits of natural resources in the economic development and well-being of nations. Studies have demonstrated a negative relationship between the share of primary exports in gross domestic product (GDP) and economic growth. Negative associations have also been demonstrated between the liquidation of forest resources and economic growth rates. Negative impacts were attributed to 6 potential explanations, notably (1) a rise in the value of natural resource exports causing real exchange rates to appreciate; (2) increases in export commodity prices; (3) reduced attention to secondary or manufacturing sectors; (4) a decreased emphasis on exchange rate movements; (5) growth of the primary sector at the expense of more advanced sectors; and (6) the volatility of commodity prices. Countries with abundant natural resources may also have reduced incentives to invest in human capital. Resource rents have also been used to provide income for corrupt governments and to finance rebellions. A 2-equation model was developed using regression equations and a systems generalized method of moments (GMM) estimator. The model included data on latitudes, ethnicity, and languages as well as pooled estimation, fixed effects and random effects. The study showed that while fuel resources negatively impact economic development, institutional factors can be used to mitigate the negative impacts of fuel resource development. 51 refs., 7 tabs., 5 figs.

  5. Uses for lunar crawler transporters

    Science.gov (United States)

    Kaden, Richard A.

    This article discusses state-of-the-art crawler transporters and expresses the need for additional research and development for lunar crawlers. The thrust of the paper illustrates how the basic crawler technology has progressed to a point where extremely large modules can be shop fabricated and move to some distant location at a considerable savings. Also, extremely heavy loads may be lifted by large crawler cranes and placed in designed locations. The Transi-Lift Crawler crane with its traveling counterweight is an attractive concept for lunar construction.

  6. Development and validation of resource flexibility measures for manufacturing industry

    Directory of Open Access Journals (Sweden)

    Gulshan Chauhan

    2014-01-01

    Full Text Available Purpose: Global competition and ever changing customers demand have made manufacturing organizations to rapidly adjust to complexities, uncertainties, and changes. Therefore, flexibility in manufacturing resources is necessary to respond cost effectively and rapidly to changing production needs and requirements.  Ability of manufacturing resources to dynamically reallocate from one stage of a production process to another in response to shifting bottlenecks is recognized as resource flexibility. This paper aims to develop and validate resource flexibility measures for manufacturing industry that could be used by managers/ practitioners in assessing and improving the status of resource flexibility for the optimum utilization of resources. Design/methodology/approach: The study involves survey carried out in Indian manufacturing industry using a questionnaire to assess the status of various aspects of resource flexibility and their relationships. A questionnaire was specially designed covering various parameters of resource flexibility. Its reliability was checked by finding the value of Cronback alpha (0.8417. Relative weightage of various measures was found out by using Analytical Hierarchy Process (AHP. Pearson’s coefficient of correlation analysis was carried out to find out relationships between various parameters. Findings: From detailed review of literature on resource flexibility, 17 measures of resource flexibility and 47 variables were identified. The questionnaire included questions on all these measures and parameters. ‘Ability of machines to perform diverse set of operations’ and ability of workers to work on different machines’ emerged to be important measures with contributing weightage of 20.19% and 17.58% respectively.  All the measures were found to be significantly correlated with overall resource flexibility except ‘training of workers’, as shown by Pearson’s coefficient of correlation. This indicates that

  7. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  8. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    -like lava flow geology adds to Mauna Kea / Moon similarities. Operating amidst the extinct volcano's fine grain lava and dust particles offers experience for major challenges posed by silicon-edged, powdery, deep and abundant lunar regolith. Power stations for lunar observatories, both robotic and low cost at first, are an immediate enabling necessity and will serve as a commercial-industrial driver for a wide range of lunar base technologies. Both microwave rectenna-transmitters and radio-optical telescopes, maybe 1-meter diameter, can be designed using the same, new ultra-lightweight materials. Five of the world's six major spacefaring powers - America, Russia, Japan, China and India, are located around Hawaii in the Pacific / Asia area. With Europe, which has many resources in the Pacific hemisphere including Arianespace offices in Tokyo and Singapore, they have 55-60% of the global population. New international business partnerships such as Sea Launch in the mid-Pacific, and national ventures like China's Hainan spaceport, Japan's Kiribati shuttle landing site, Australia and Indonesia's emerging launch sites, and Russia's Ekranoplane sea launcher / lander - all combine with still more and advancing technologies to provide the central Pacific a globally representative, state-of-the-art and profitable access to space in this new century. The astronomer / engineers tasked with operation of the lunar observatory / power station will be the first to voyage from Hawaii to the Moon, before this decade is out. Their scientific and technical training at the world's leading astronomical complex on the lunar-like landscape of Mauna Kea may be enhanced with the learning and transmission of local cultures. Following the astronomer / engineers, tourism and travel in the commercially and technologically dynamic Pacific hemisphere will open the new ocean of space to public access in the 21st century like they opened the old ocean of sea and air to Hawaii in the 20th - with Hawaii

  9. European Institutional and Organisational Tools for Maritime Human Resources Development

    OpenAIRE

    Dragomir Cristina

    2012-01-01

    Seafarers need to continuously develop their career, at all stages of their professional life. This paper presents some tools of institutional and organisational career development. At insitutional level there are presented vocational education and training tools provided by the European Union institutions while at organisational level are exemplified some tools used by private crewing companies for maritime human resources assessment and development.

  10. Valuing and timing R and D using a real options pricing framework; including an application to the development of Lunar Helium-3 fusion

    International Nuclear Information System (INIS)

    Ott, S.H.

    1992-01-01

    This dissertation uses the real options framework to study the valuation and optimal investment policies for R and D projects. The models developed integrate and extend the literature by taking into account the unique characteristics of such projects including uncertain investment in R and D, time-to-build, and multiple investment opportunities. The models were developed to examine the optimal R and D investment policy for the Lunar Helium-3 fusion project but have general applicability. Models are development which model R and D investment as an information gathering process where R and D investment remaining changes as investment is expended. The value of the project increased as the variance of required investment increases. An extension of this model combines a stochastic benefit with stochastic investment. Both the value of the R and D project and the region prescribing continued investment increased. The policy implications are significant: When uncertainty of R and D investment is ignored, the value of the project is underestimated and a tendency toward underinvestment in R and D will result; the existence of uncertainty in R and D investment will cause R and D projects to experience larger declines in value before discontinuation of investment. The model combining stochastic investment with the stochastic benefit is applied to the Lunar Helium-3 fusion project. Investment in fusion should continue at the maximum level of $1 billion annually given current levels of costs of alternative fuels and the perceived uncertainty of R and D investment in the project. A model is developed to examine the valuation and optimal split of funding between R and D projects when there are two competing new technologies. Without interaction between research expenditures and benefits across technologies, the optimal investment strategy is to invest in one or the other technology or neither. The multiple technology model is applied to analyze competing R and D projects, namely

  11. Delay/Disruption Tolerant Networks (DTN): Testing and Demonstration for Lunar Surface Applications

    Science.gov (United States)

    2009-01-01

    This slide presentation reviews the testing of the Delay/Disruption Tolerant Network (DTN) designed for use with Lunar Surface applications. This is being done through the DTN experimental Network (DEN), that permit access and testing by other NASA centers, DTN team members and protocol developers. The objective of this work is to demonstrate DTN for high return applications in lunar scenarios, provide DEN connectivity with analogs of Constellation elements, emulators, and other resources from DTN Team Members, serve as a wireless communications staging ground for remote analog excursions and enable testing of detailed communication scenarios and evaluation of network performance. Three scenarios for DTN on the Lunar surface are reviewed: Motion imagery, Voice and sensor telemetry, and Navigation telemetry.

  12. Present status of development of uranium resources in foreign countries

    International Nuclear Information System (INIS)

    1983-10-01

    The book with the same title as this was published in 1981. Thereafter, the necessity to correct the contents arose, such as the remarkable change in uranium market condition and the change of uranium resource policy in Australia accompanying the change of regime, accordingly, the revision was carried out by adding more new information. As the main sources of the information collected in this book, 25 materials are shown. The confirmed resources of uranium in the free world as of the beginning of 1981 amounted to 2,293,000 t U, and the estimated additional resources were 2,720,000 t U. The political system and uranium policy, the present status of uranium export, the quantity of resources and the estimated amount of deposits, the uranium production and the status of uranium exploration and development of 25 foreign countries are reported. Japan has carried out uranium development activities in Australia, Canada, Niger, Gabon, Zambia and so on. (Kako, I.)

  13. Development Strategies for Tourism Destinations: Tourism Sophistication vs. Resource Investments

    OpenAIRE

    Rainer Andergassen; Guido Candela

    2010-01-01

    This paper investigates the effectiveness of development strategies for tourism destinations. We argue that resource investments unambiguously increase tourism revenues and that increasing the degree of tourism sophistication, that is increasing the variety of tourism related goods and services, increases tourism activity and decreases the perceived quality of the destination's resource endowment, leading to an ambiguous effect on tourism revenues. We disentangle these two effects and charact...

  14. Sustainable Development in the Engineering Curriculum: Teaching and Learning Resources

    OpenAIRE

    Penlington, Roger; Steiner, Simon

    2014-01-01

    This repository of teaching and learning resources is a companion to the 2nd edition of “An Introduction to Sustainable Development in the Engineering Curriculum”, by Roger Penlington and Simon Steiner, originally created by The Higher Education Academy Engineering Subject Centre, Loughborough University. \\ud The purpose of this collection of teaching and learning re-sources is to provide access, with a brief resumé, to materials in curricula reform, recognition awards, and university movemen...

  15. Scenario Development for Water Resources Planning and Management

    Science.gov (United States)

    Stewart, S.; Mahmoud, M.; Liu, Y.; Hartman, H.; Wagener, T.; Gupta, H.

    2006-12-01

    The main objective of scenario development for water resources is to inform policy-makers about the implications of various policies to inform decision-making. Although there have been a number of studies conducted in the relatively-new and recent field of scenario analysis and development, very few of those have been explicitly applied to water resource issues. More evident is the absence of an established formal approach to develop and apply scenarios. Scenario development is a process that evaluates possible future states of the world by examining several feasible scenarios. A scenario is a projection of various physical and socioeconomic conditions that describe change from the current state to a future state. In this paper, a general framework for scenario development with special emphasis on applications to water resources is considered. The process comprises several progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. Several characteristics of scenarios that are important in describing scenarios are also taken into account; these include scenario types, scenario themes, scenario likelihoods and scenario categories. A hindrance to the adoption of a unified framework for scenario development is inconsistency in the terminology used by scenario developers. To address this problem, we propose a consistent terminology of basic and frequent terms. Outreach for this formal approach is partially maintained through an interactive community website that seeks to educate potential scenario developers about the scenario development process, share and exchange information and resources on scenarios to foster a multidisciplinary community of scenario developers, and establish a unified framework for scenario development with regards to terminology and guidelines. The website provides information on scenario development, current scenario-related activities, key water resources scenario

  16. Resource Limitation, Controphic Ostracod Density and Larval Mosquito Development.

    Directory of Open Access Journals (Sweden)

    Raylea Rowbottom

    Full Text Available Aquatic environments can be restricted with the amount of available food resources especially with changes to both abiotic and biotic conditions. Mosquito larvae, in particular, are sensitive to changes in food resources. Resource limitation through inter-, and intra-specific competition among mosquitoes are known to affect both their development and survival. However, much less is understood about the effects of non-culicid controphic competitors (species that share the same trophic level. To address this knowledge gap, we investigated and compared mosquito larval development, survival and adult size in two experiments, one with different densities of non-culicid controphic conditions and the other with altered resource conditions. We used Aedes camptorhynchus, a salt marsh breeding mosquito and a prominent vector for Ross River virus in Australia. Aedes camptorhynchus usually has few competitors due to its halo-tolerance and distribution in salt marshes. However, sympatric ostracod micro-crustaceans often co-occur within these salt marshes and can be found in dense populations, with field evidence suggesting exploitative competition for resources. Our experiments demonstrate resource limiting conditions caused significant increases in mosquito developmental times, decreased adult survival and decreased adult size. Overall, non-culicid exploitation experiments showed little effect on larval development and survival, but similar effects on adult size. We suggest that the alterations of adult traits owing to non-culicid controphic competition has potential to extend to vector-borne disease transmission.

  17. Development of human resources for Indian nuclear power programme

    International Nuclear Information System (INIS)

    Grover, R.B.; Puri, R.R.

    2013-01-01

    The continuing research and development on nuclear technology by research establishments in the country and maturing of Indian industry have brought the nuclear energy programme in India to a stage where it is poised to take a quantum leap forward. The vision of expansion of nuclear power also requires a well-structured specialized human resource development programme. This paper discusses the requirements of the human resource development programme for nuclear energy, the challenges in the way of its realization, its national and international status and traces the history of nuclear education in the country. It brings out the linkage of human resource development programme with the nuclear energy programme in the country. It also describes the initiatives by the university system in the area of nuclear education and support provided by the Department of Atomic Energy to the university system by way of extra-mural funding and by providing access to research facilities. (author)

  18. Developing a Theory-Based Simulation Educator Resource.

    Science.gov (United States)

    Thomas, Christine M; Sievers, Lisa D; Kellgren, Molly; Manning, Sara J; Rojas, Deborah E; Gamblian, Vivian C

    2015-01-01

    The NLN Leadership Development Program for Simulation Educators 2014 faculty development group identified a lack of a common language/terminology to outline the progression of expertise of simulation educators. The group analyzed Benner's novice-to-expert model and applied its levels of experience to simulation educator growth. It established common operational categories of faculty development and used them to organize resources that support progression toward expertise. The resulting theory-based Simulator Educator Toolkit outlines levels of ability and provides quality resources to meet the diverse needs of simulation educators and team members.

  19. Mature Basin Development Portfolio Management in a Resource Constrained Environment

    International Nuclear Information System (INIS)

    Mandhane, J. M.; Udo, S. D.

    2002-01-01

    Nigerian Petroleum industry is constantly faced with management of resource constraints stemming from capital and operating budget, availability of skilled manpower, capacity of an existing surface facility, size of well assets, amount of soft and hard information, etceteras. Constrained capital forces the industry to rank subsurface resource and potential before proceeding with preparation of development scenarios. Availability of skilled manpower limits scope of integrated reservoir studies. Level of information forces technical and management to find low-risk development alternative in a limited time. Volume of either oil or natural gas or water or combination of them may be constrained due to design limits of the existing facility, or an external OPEC quota, requires high portfolio management skills.The first part of the paper statistically analyses development portfolio of a mature basin for (a) subsurface resources volume, (b) developed and undeveloped and undeveloped volumes, (c) sweating of wells, and (d) facility assets. The analysis presented conclusively demonstrates that the 80/20 is active in the statistical sample. The 80/20 refers to 80% of the effect coming from the 20% of the cause. The second part of the paper deals with how 80/20 could be applied to manage portfolio for a given set of constraints. Three application examples are discussed. Feedback on implementation of them resulting in focussed resource management with handsome rewards is documented.The statistical analysis and application examples from a mature basin form a way forward for a development portfolio management in an resource constrained environment

  20. Accounting of forest resources in the framework of sustainable development

    Directory of Open Access Journals (Sweden)

    I.V. Zamula

    2015-09-01

    Full Text Available Nowadays, deforestation of territories and degradation of forest resources is a global problem as it leads to a climate change, soil degradation, the decline in natural reproduction of forest resources and to the disappearance of many valuable species of forest cultures. Due to the importance of the preservation of forest resources for environment it is necessary to revise the conceptual approach to the reflection of such resources both at the micro- and at the macroeconomic level. Preservation, rational use and reproduction of forest resources is one of the priorities of forestry development inUkraine. Accounting is a tool which allows to form the information about the condition and availability of forest resources. In this regard, we consider that the accounting information is an important tool for the preservation of forest assets and the reduction of anthropogenic impacts on these slowly recovering natural resources. The reflection of forest resources in accounting should be implemented on the basis of the rules defined in the P(S BU 30 called «Biological Assets» and IAS 41 called «Agriculture». In addition, we consider that while reflecting of forest resources in accounting it’s necessary to take into account the life cycle of the tree stand which consists of several stages where each one should be taken into account in the recognition of expenses on their reproduction. For the formation of analytical cuts of the costs of care for the forest resources and their protection is proposed to open the following 3 sub-accounts to the account 155 called «Expenses on the formation of forest resources»: the first is «Expenses on the landing of forest cultures», the second is «Expenses on care for forest resources» and the third one is «Expenses on the protection of forest resources». Sustainable forest management involves the reproduction of forest resources. One of the main criteria for evaluating the effectiveness of forest management

  1. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  2. ECONOMIC EFFECTS OF MINERAL RESOURCE DEVELOPMENT IN NORTHEAST MINNESOTA

    OpenAIRE

    Maki, Wilbur R.

    1980-01-01

    The economic effects of mineral resource development addressed in this paper are the changes in employment, population and income in the State of Minnesota and in Northeast Minnesota. These include the present mining, processing and shipping of natural ores and taconite pellets and the potential copper-nickel development.

  3. Human Resource Development, Ethics, and the Social Good

    Science.gov (United States)

    Quinn, Floyd F.

    2018-01-01

    Businesses can achieve competitive advantage and better productivity and performance by attracting and developing exceptional employees, by caring for and listening to stakeholders, and by avoiding financial and reputational damage due to unethical and illegal behaviors. As a profession, human resource development (HRD) engages in practices that…

  4. Demographic Development and the Exhaustion of Natural Resources

    NARCIS (Netherlands)

    J. Tinbergen (Jan)

    1975-01-01

    textabstractThe problems created by the population explosion, pollution, and resource scarcity, although not yet well understood, are likely to require curbs on future rates of economic and population growth. Targets for population and income in developed and developing countries for the year 2012

  5. agenda and outlook: human resource development for ict in nigeria

    African Journals Online (AJOL)

    NESG PUBLICATIONS

    resources required to apply Information and Communications Technology. (ICT) for development? ... programmes) and work experience opportunities. ... leadership because of the critical role. ICT plays in ... The Barrier called Access. Whichever .... women? Fewer women are developing the ability to access and utilise ICT.

  6. Global Information Resources on Rice for Research and Development

    Directory of Open Access Journals (Sweden)

    Shri RAM

    2012-12-01

    Full Text Available Various issues concerning the progress of rice research are related to ambiguous germplasm identification, difficulty in tracing pedigree information, and lack of integration between genetic resources, characterization, breeding, evaluation and utilization data. These issues are the constraints in developing knowledge-intensive crop improvement programs. The rapid growth, development and the global spread of modern information and communication technology allow quick adoption in fundamental research. Thus, there is a need to provide an opportunity for the establishment of services which describe the rice information for better accessibility to information resources used by researchers to enhance the competitiveness. This work reviews some of available resources on rice bioinformatics and their roles in elucidating and propagating biological and genomic information in rice research. These reviews will also enable stakeholders to understand and adopt the change in research and development and share knowledge with the global community of agricultural scientists. The establishment like International Rice Information System, Rice Genome Research Project and Integrated Rice Genome Explorer are major initiatives for the improvement of rice. Creation of databases for comparative studies of rice and other cereals are major steps in further improvement of genetic compositions. This paper will also highlight some of the initiatives and organizations working in the field of rice improvement and explore the availability of the various web resources for the purpose of research and development of rice. We are developing a meta web server for integration of online resources such as databases, web servers and journals in the area of bioinformatics. This integrated platform, with acronym iBIRA, is available online at ibiranet.in. The resources reviewed here are the excerpts from the resources integrated in iBIRA.

  7. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  8. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  9. [Possibility of exacerbation of allergy by lunar regolith].

    Science.gov (United States)

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2012-09-01

    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  10. Modeling resource basis for social and economic development strategies: Water resource case

    Science.gov (United States)

    Kosolapova, Natalia A.; Matveeva, Ludmila G.; Nikitaeva, Anastasia Y.; Molapisi, Lesego

    2017-10-01

    The article substantiates that the effectiveness of implementing socio-economic development strategies is to a large extent determined by the adequate provision of basic resources. The key role of water resources in economic strategic development is empirically illustrated. The article demonstrates the practicability of strategic management of water resources based on the principle of a combination of river basin management approaches and the consideration of regional development strategies. The Game Theory technique was used to develop economic and mathematical tools for supporting decision-making in meeting the needs of regional consumers under water balance deficit conditions. The choice of methods was determined from two positions: the methods should allow for the possibility of multi-variant solutions for the selection of optimal options for the distribution of limited water resources between different consumers; the methods should be orientated on the maximum possible harmonization of multidirectional and multi-scale interests of the subjects in the water management system of the different regions (including the state) in order to achieve a balance. The approbation of developing a toolkit for the example of the regions located in the Don and Kuban river basins resulted in the appropriate selection of priority regions for the allocation of water resources in terms of strategic management as well as the determination of measures of ensuring the sustainable use of the river basins under consideration. The proposed tools can be used for coordinating decisions on the water supply of regional economic systems with actual and projected indicators of socio-economic development of the respective regions for a strategic perspective.

  11. Curriculum/Resource Development: The "C.A.R.E for St. Lucia" Resource Pack.

    Science.gov (United States)

    Strong, Michelle

    1993-01-01

    Describes a resource packet that utilizes a four-point approach to make environmental action concerning land use more accessible to teachers. The points are construct a map of the area under consideration; assess the impact of historical development, natural cycles, mining, and eco-tourism on the problem; research land use options; and encourage…

  12. Report of the NASA lunar energy enterprise case study task force

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The Lunar Energy Enterprise Cast Study Task Force was formed to determine the economic viability and commercial business potential of mining and extracting He-3 from the lunar soil for use in earth-based fusion reactors. In addition, the Solar Power Satellite (SPS) and the Lunar Power Station (LPS) were also evaluated because they involve the use of lunar materials and could provide energy for lunar-based activities. The Task Force considered: (1) the legal and liability aspects of the space energy projects; (2) the long-range terrestrial energy needs and options; (3) the technical maturity of the three space energy projects; and (4) their commercial potential. The use of electricity is expected to increase, but emerging environmental concerns and resource availability suggest changes for the national energy policy. All three options have the potential to provide a nearly inexhaustible, clean source of electricity for the U.S. and worldwide, without major adverse impacts on the Earth's environment. Assumption by industry of the total responsibility for these energy projects is not yet possible. Pursuit of these energy concepts requires the combined efforts of government and industry. The report identifies key steps necessary for the development of these concepts and an evolving industrial role

  13. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  14. COMPASS Final Report: Lunar Communications Terminal (LCT)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2010-01-01

    The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.

  15. Human Resource Development Issues in the Implementation of the Western China Development Strategy

    Science.gov (United States)

    Xiao, Mingzheng

    2007-01-01

    This paper systematically illustrates the value and role of human resource development in the implementation of the Western China development strategy. It analyzes in details some current human resource issues constraining the implementation of the Western China development strategy and those on the sustainable development process of economic…

  16. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  17. The sustainable utilization of human resources in global product development

    DEFF Research Database (Denmark)

    Hansen, Zaza Nadja Lee; Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2010-01-01

    This empirical paper investigates the challenges global product development faces in regard to a sustainable utilization of resources through case studies and interviews in six Danish multinational corporations. Findings revealed 3 key challenges, which relates to increased rework in product...... development and production, overlapping work and a lack of utilization of knowledge and information at the supplier or subsidiary. The authors suggest the use of strategic simulation in order to gain greater transparency in the global network and thus utilize resources better. Strategic simulation...

  18. The development and utilization of biomass energy resources in China

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Lin [Energy Research Institute of the State Planning Commission, Beijing (China)

    1995-12-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author) 4 refs, 2 figs, 4 tabs

  19. Professional development and human resources management in networks

    Directory of Open Access Journals (Sweden)

    Evgeniy Rudnev

    2016-05-01

    Full Text Available Social networks occupy more places in development of people and organizations. Confidence in institutions and social networking are different and based on referentiality in Internet. For communication in network persons choose a different strategies and behavior in LinkedIn, resources of whom may be in different degree are interesting in Human Resources Management for organizations. Members of different social groups and cultures demonstrate some differences in interaction with Russian identity native. There are gender differences behavior in networks. Participating in groups need ethical behavior and norms in social networking for professional development and communication in future.

  20. Toshiba's activity concerning technology succession and human resource development

    International Nuclear Information System (INIS)

    Ogura, Kenji; Hoshide, Akehiko

    2008-01-01

    Recently, from the viewpoint of the reduction of carbon-dioxide emission that cause global warming and the energy security, the importance of nuclear power generation is recognized again as an effective approach for solving the problems, and many nuclear power plants are planed to be constructed worldwide. On the other hand, the experienced engineers will face the time of the retirement in the near future and technology succession and human resource development has become important problems. In this paper, Toshiba's Nuclear Energy Systems and Services Division's activity concerning technology succession and human resource development will be introduced. (author)

  1. The development and utilization of biomass energy resources in China

    International Nuclear Information System (INIS)

    Lin Dai

    1995-01-01

    Biomass energy resources are abundant in China and have reached 730 million tonnes of coal equivalent, representing about 70% of the energy consumed by households. China has attached great importance to the development and utilization of its biomass energy resources and has implemented programmes for biogas unit manufacture, more efficient stoves, fuelwood development and thermal gasification to meet new demands for energy as the economy grows. The conclusion is that the increased use of low-carbon and non-carbon energy sources instead of fossil fuels is an important option for energy and environment strategy and has bright prospects in China. (author)

  2. THE DEVELOPMENT OF BIOLOGY MATERIAL RESOURCES BY METACOGNITIVE STRATEGY

    Directory of Open Access Journals (Sweden)

    Endang Susantini

    2016-02-01

    Full Text Available The Development of Biology Material Resources by Metacognitive Strategy The study was aimed at finding out the suitability of Biology Materials using the metacognitive strategy. The materials were textbooks, self-understanding Evaluation Sheet and the key, lesson plan, and tests including the answer key. The criteria of appropriateness included the relevance of the resources with the content validity, face va­lidity and the language. This research and development study was carried out employing a 3D model, namely define, design and develop. At the define stage, three topics were selected for analysis, they were virus, Endocrine System, and Genetic material. During the design phase, the physical appearance of the materials was suited with the Metacognitive Strategy. At the develop phase, the material resources were examined and validated by two Biology experts and senior teachers of Biology. The results showed that the Biology material Resources using Metacognitive Strategy developed in the study has fell into the category of very good ( score > 3.31 and was therefore considered suitable.

  3. Ruminant production systems in developing countries: Resource utilization

    International Nuclear Information System (INIS)

    Devendra, C.

    1989-01-01

    Ruminant production systems are discussed with specific reference to the resource utilization required to support them. Particular focus is placed on the main production resources (animals and feeds) and their underutilization. The ruminant animals include buffaloes, cattle, goats, sheep and camels. With the exception of cattle and sheep, their numbers in developing countries account for between 94 and 100% of total world population. Their biological attributes, including inherent characteristics, feeding behaviour and metabolism, are summarized. The extent and availability of feed resources are considered; resources include permanent pastures, crop residues, agroindustrial by-products and non-conventional feeds. The prevailing ruminant production systems are classified into three main categories: extensive systems, systems incorporating arable cropping (roadside, communal and arable grazing systems; tethering and cut-and-carry feeding), and systems integrated with tree cropping. Their genesis and endurance with patterns of crop production and farming systems are discussed. Integrated systems, involving animals and tree crops, are potentially important. Prevailing ruminant production systems are unlikely to change in the foreseeable future, unless there are major shifts in resource use and the proposed new systems are demonstrably superior. Factors likely to influence future ruminant production systems are market requirements, available feed resources and growth in human populations. Two associated strategies for improvement are proposed: increased priority to buffaloes, goats, sheep and camels, consistent with their potential contribution to meat, milk and fibre supplies and draught power; and more complete utilization of the available feed ingredients and increased feed supplies

  4. Potential for Development of Solar and Wind Resource in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Cowlin, S.; Heimiller, D.

    2009-09-01

    With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

  5. Pressurized Lunar Rover (PLR)

    Science.gov (United States)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  6. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  7. Human Resources Development and Career Development: Where Are We, and Where Do We Need to Go

    Science.gov (United States)

    Shuck, Brad; McDonald, Kim; Rocco, Tonette S.; Byrd, Marilyn; Dawes, Elliott

    2018-01-01

    At the 2017 meeting of the Academy of Human Resource Development Annual Town Hall, four scholars discussed their diverse outlooks on the research and practice of career development in the Human Resource Development field. What follows in this curated collection of voices is a look into the perspective of each person who spoke at the 2017 Town Hall…

  8. A Development Dilemma for Secondary Vocational Education: Instrumentalist Tendencies in Human Resource Development

    Science.gov (United States)

    Wang, Dong

    2013-01-01

    Human resource development is one of the theories guiding China's development of secondary vocational education. Secondary vocational education has always played a role in human resource training and development from the nation's founding to the present. In Chinese society today, however, there is a clear instrumentalist tendency in secondary…

  9. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  10. Research into Open Educational Resources for Development | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Among them is the growing demand for postsecondary education when most ... thanks in part to greater access to the Internet and new flexible intellectual property licenses. ... While OERs are receiving considerable attention in universities, education ... develop researchers' capacity to analyze open educational resources; ...

  11. Human Resource Development in Mauritius: Context, Challenges and Opportunities

    Science.gov (United States)

    Garavan, Thomas N.; Neeliah, Harris; Auckloo, Raj; Ragaven, Raj

    2016-01-01

    Purpose: The purpose of this paper is to explore human resource development (HRD) in Mauritius and the challenges and opportunities faced by organisations in different sectors in adopting HRD practices. Findings: This special issue presents four papers that explore dimensions of HRD in public sector, small- and medium-sized enterprises (SMEs) and…

  12. Reflections and Future Prospects for Evaluation in Human Resource Development

    Science.gov (United States)

    Han, Heeyoung; Boulay, David

    2013-01-01

    Human resource development (HRD) evaluation has often been criticized for its limited function in organizational decision making. This article reviews evaluation studies to uncover the current status of HRD evaluation literature. The authors further discuss general evaluation theories in terms of value, use, and evaluator role to extend the…

  13. Teachers' social capital as a resource for curriculum development ...

    African Journals Online (AJOL)

    This paper reports on lessons learnt in the use of teachers' social capital as a resource for curriculum development, in the implementation of the Child-Friendly Schools (CFS) programme in South Africa. The researchers in this study were amongst the trainers. The study followed a qualitative research approach, where a ...

  14. Organizational Ethics Development and the Human Resource Professional.

    Science.gov (United States)

    Petrick, Joseph A.

    1992-01-01

    Surveys literature on organizational moral development and describes research methodology employed, summarizes research findings, and examines career implications for human resource professionals. Contends that institutionalizing an ethics program can impact favorably on both the organization and the career of the implementing human resource…

  15. An integrated approach to national marine resources development

    OpenAIRE

    Levy, Jean-Pierre

    1984-01-01

    A review is presented of the various marine resources and their potential, concerning fishing, aquaculture, transportation, pollution, hydrocarbons and solid minerals, renewable energy and ocean thermal energy conversion. Administrative problems confronting their rational management in Sri Lanka are examined, considering coastal area management and development, management issues, and alternatives.

  16. New Technology and Human Resource Development in the Automobile Industry.

    Science.gov (United States)

    Organisation for Economic Cooperation and Development, Paris (France). Centre for Educational Research and Innovation.

    This document contains five case studies of plants within large enterprises in the automobile industry (Ford, Toyota, Volkswagen, Renault, and Volvo), plus reports of each company's views on human resource development, new technology, and changes in work organization and skill formation. The document is composed of five narrative sections,…

  17. Recent development of computational resources for new antibiotics discovery

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Blin, Kai; Lee, Sang Yup

    2017-01-01

    Understanding a complex working mechanism of biosynthetic gene clusters (BGCs) encoding secondary metabolites is a key to discovery of new antibiotics. Computational resources continue to be developed in order to better process increasing volumes of genome and chemistry data, and thereby better...

  18. Bauxite deposits in Suriname : Geological context and resource development

    NARCIS (Netherlands)

    Monsels, D. A.

    2016-01-01

    Bauxite, the raw material of aluminum, has been one of the economically vital natural resources for Suriname. Mining operations started about a century ago, and subsequent development of a refinery industry and hydro-electric power made Suriname one of the foremost bauxite and alumina producers

  19. Intrahousehold bargaining and resource allocation in developing countries

    OpenAIRE

    Doss, Cheryl

    2013-01-01

    Many key development outcomes depend on women's ability to negotiate favorable intrahousehold allocations of resources. Yet it has been difficult to clearly identify which policies can increase women's bargaining power and result in better outcomes. This paper reviews both the analytical frameworks and the empirical evidence on the importance of women's bargaining power. It argues that the...

  20. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Science and Space Commerce

    Science.gov (United States)

    Zuniga, Allison; Turner, Mark; Rasky, Dan

    2017-01-01

    A new concept study was initiated to examine the framework needed to gradually develop an economical and sustainable lunar infrastructure using a public private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop cis-lunar and surface capabilities for mutual benefit while sharing cost and risk in the development phase and then allowing for transfer of operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, energy storage devices, communication relay satellites, local communication towers, and surface mobility operations.

  1. Recovered Alcoholics and Career Development: Implications for Human Resource Development

    Science.gov (United States)

    Gedro, Julie; Mercer, Frances; Iodice, Jody D.

    2012-01-01

    This article presents three issues regarding alcoholism, recovery, and career development. First, alcoholism is a disease that creates health and wellness problems for those it afflicts. It also impacts individual and workplace productivity. Second, alcoholism has a persistent stigmatization. As a result, those alcoholics who are in recovery face…

  2. Regulation of water resources for sustaining global future socioeconomic development

    Science.gov (United States)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  3. Developing Distributed System With Service Resource Oriented Architecture

    Directory of Open Access Journals (Sweden)

    Hermawan Hermawan

    2012-06-01

    Full Text Available Service Oriented Architecture is a design paradigm in software engineering with which a distributed system is built for an enterprise. This paradigm aims at providing the system as a service through a protocol in web service technology, namely Simple Object Access Protocol (SOAP. However, SOA is service level agreements of webservice. For this reason, this reasearch aims at combining SOA with Resource Oriented Architecture in order to expand scalability of services. This combination creates Sevice Resource Oriented Architecture (SROA with which a distributed system is developed that integrates services within project management software. Following this design, the software is developed according to a framework of Agile Model Driven Development which can reduce complexities of the whole process of software development.

  4. Legal, regulatory & institutional issues facing distributed resources development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes legal, regulatory, and institutional considerations likely to shape the development and deployment of distributed resources. It is based on research co-sponsored by the National Renewable Energy Laboratory (NREL) and four investor-owned utilities (Central & South West Services, Cinergy Corp., Florida Power Corporation, and San Diego Gas & Electric Company). The research was performed between August 1995 and March 1996 by a team of four consulting firms experienced in energy and utility law, regulation, and economics. It is the survey phase of a project known as the Distributed Resources Institutional Analysis Project.

  5. Natural Resources Management on Corps of Engineers Water Resources Development Projects: Practices, Challenges, and Perspectives on the Future

    National Research Council Canada - National Science Library

    Kasual, Richard

    1998-01-01

    Natural resources management on U.S. Army Corps of Engineers water resources development projects was documented from the responses of management personnel to a detailed questionnaire mailed to a stratified random sample of projects...

  6. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    OpenAIRE

    A. B. Alkhasov; D. A. Alkhasova

    2013-01-01

    Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital invest...

  7. Human resource training and development. The outdoor management method.

    OpenAIRE

    THANOS KRIEMADIS; ANNA KOURTESOPOULOU

    2008-01-01

    In the age of international competition in today’s economy, companies must train their employees and prepare them for jobs in the future. There are many different types and educational approaches in human resource training, but the present study will focus on the Outdoor Management Development (OMD). For better understanding, the particular training method and the core stages of the training process will be examined and the definitions of OMD as an educational tool for management development ...

  8. Isotope techniques in water resources development and management. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The 10th International Symposium on Isotope Techniques in Water Resources Development and Management was organized by the International Atomic Energy Agency in co-operation with UNESCO, WMO and International Association of Hydrological Sciences and was held at IAEA Headquarters, Vienna, during 10-14 May 1999. The symposium provided an international forum for assessing the status and recent advances in isotope applications to water resources and an exchange of information on the following main themes: processes at the interface between the atmosphere and hydrosphere; investigations in surface waters and groundwaters: their origin, dynamics, interrelations; problems and techniques for investigating sedimentation; water resources issues: pollution, source and transport of contaminants, salinization, water-rock interaction and processes in geothermal systems; isotope data interpretation and evaluation methodologies: modelling approaches. The proceedings contain the 46 papers presented and extended synopses of poster presentations; each of them was indexed individually

  9. An open repositories network development for medical teaching resources.

    Science.gov (United States)

    Soula, Gérard; Darmoni, Stefan; Le Beux, Pierre; Renard, Jean-Marie; Dahamna, Badisse; Fieschi, Marius

    2010-01-01

    The lack of interoperability between repositories of heterogeneous and geographically widespread data is an obstacle to the diffusion, sharing and reutilization of those data. We present the development of an open repositories network taking into account both the syntactic and semantic interoperability of the different repositories and based on international standards in this field. The network is used by the medical community in France for the diffusion and sharing of digital teaching resources. The syntactic interoperability of the repositories is managed using the OAI-PMH protocol for the exchange of metadata describing the resources. Semantic interoperability is based, on one hand, on the LOM standard for the description of resources and on MESH for the indexing of the latter and, on the other hand, on semantic interoperability management designed to optimize compliance with standards and the quality of the metadata.

  10. Lunar-A

    Indian Academy of Sciences (India)

    penetrators will be transmitted to the earth station via the Lunar-A mother spacecraft orbiting at an altitude of about .... to save the power consumption of the Lunar-A penetrator .... and an origin-time versus tidal-phases correlation. (Toksoz et al ...

  11. Construction material processed using lunar simulant in various environments

    Science.gov (United States)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  12. Developing integrated methods to address complex resource and environmental issues

    Science.gov (United States)

    Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.

    2016-02-08

    IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some

  13. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  14. Geothermal resources in Oregon: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D.L.

    1979-04-01

    An inventory of resources based on available information is presented. Potential for utilization and the legal and institutional environment in which development is likely to occur were also considered. Sites selected for this investigation include the 13 identified KGRA's, one PGRA which was chosen because of substantial local interest expressed in favor of development, and one major geologic fault zone which shows indications of high potential. Each chapter represents a planning region and is introduced by a regional overview of the physical setting followed by a narrative summary statement of the specific resource location and characteristics, existing utilization and potential end-uses for future development. Detailed site information in the form of data sheets follows each narrative. (MHR)

  15. World resources and the development of the earth's surface

    International Nuclear Information System (INIS)

    Sasaki, A.; Ishihara, S.; Seki, Y.

    1985-01-01

    This text is an examination of economic (or ore) geology, and engineering geology. Using case studies of Japan and continental North America, this work presents a geological and geochemical summary of ore-forming processes along with discussions of basic principles and approaches to modern engineering geology. Emphasizes the relationship between fossil fuel resources and the evolution of the Earth's crust. Contents - WORLD RESOURCES. The Geochemistry of Metallogenesis. The Geochemistry of Fossil Fuel Deposit. Global Evolution and the Formation of Mineral Deposits. The Development of Continents and Island Arcs and the Formation of Mineral Deposits. DEVELOPMENT OF THE EARTH'S SURFACE. Development of the Earth's Surface and Engineering Geology. Engineering Geology Methods. Features of the Ground and Bedrock in Japan. Engineering Geology - A Case Study. Geology and the Environment - Case Studies. INDEX. Principal World-Wide Metal Deposits (inside front cover). Principal World-Wide Coal, Petroleum and Uranium Deposits (inside back cover)

  16. Lunar and Planetary Science XXXV: Moon and Mercury

    Science.gov (United States)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  17. Impact of Human Resources Management on Entrepreneurship Development

    Directory of Open Access Journals (Sweden)

    Obasan Kehinde A.

    2014-02-01

    Full Text Available The decisive role played by Human Resources Management (HRM in the emergence and sustenance of entrepreneurship development in an organisation cannot be misplaced as it ensures optimum deployment and development of personnel towards the actualization of set organisational objectives. Using a primary data sourced through a well-structured and self- administered questionnaires served to sixty HR managers and supervisors, and analyzed with descriptive statistics and Pearson product moment correlation coefficient, this study investigates the role of (HRM in entrepreneurship development. The tested hypotheses revealed a correlation coefficient of 0.44 which indicate the existence of a moderate positive relationship between Human Resources Management (HRM and entrepreneurship development. This indicates that HRM can facilitate entrepreneurship development in an organization. Hence HR managers must seek as much as possible measures that will ensure that their human resource are adequately compensated, rewarded and motivated to enhance their performance which will translate to improved performance that will influence the overall performance of the organisation.

  18. On geothermal resources of India. Geotectonic aspects and recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M L [National Geophysical Research Inst., Hyderabad (India)

    1988-11-10

    Research programs launched for exploration and development of the geothermal energy in India, since the 1973-1974 oil embargo, have led to the identification of many potential areas for geothermal resources. Resources comprise high/intermediate/low temperature hydrothermal convection and hot water aquifer systems, geopressured geothermal system and conduction-dominated regimes. Location and properties of these geothermal systems are controlled by the geodynamic and tectonic characteristics of the Indian continental lithosphere Main sectors for the utilization of India's proved and identified geothermal resources are the power generation, space heating, green house cultivation, aquaculture, poultry, sheep breeding, mineral processing, mushroom raising, processing of farm and forest produce, refrigeration, tourism, health-resorts and mineral water bottling. The R and D efforts have given some encouraging results. Geothermal resources of India, although primarily are of medium to low grade, could supplement, to a great extent, direct heat energy needs and may also provide electricity to some of the remote hilly areas. Development of geothermal energy sources in India is likely to get some more attention, with the setting up of separate departments and agencies, by various Provincial Governments, for R and D backing toward the alternate sources of energy.

  19. Report from ILEWG and Cape Canaveral Lunar Declaration 2008

    Science.gov (United States)

    Foing, B. H.

    2009-04-01

    We shall report on the ILEWG charter, goals and activities, on ICEUM "lunar declarations" and follow-up activities, with focus on societal questions, and the Cape Canaveral Lunar Declaration 2008. ILEWG charter: ILEWG , the International Lunar Exploration Working Group is a public forum created in 1994, sponsored by the world's space agencies to support "international cooperation towards a world strategy for the exploration and utilization of the Moon - our natural satellite". The charter of ILEWG is: - To develop an international strategy for the exploration of the Moon - To establish a forum and mechanisms for the communication and coordination of activities - To implement international coordination and cooperation - In order to facilitate communication among all interested parties ILEWG agrees to establish an electronic communication network for exchange of science, technology and programmatic information related to lunar activities ILEWG meets regularly, at least, once a year, and leads the organization of an International Conference in order to discuss the state of lunar exploration. Formal reports are given at COSPAR meetings and to space agencies. ILEWG is sponsored by the world's space agencies and is intended to serve three relevant groups: - actual members of the ILEWG, ie delegates and repre-sentatives of the participating Space Agencies and organizations - allowing them to discuss and possibly harmonize their draft concepts and plans - team members of the relevant space projects - allowing them to coordinate their internal work according to the guidelines provided by the Charter of the ILEWG - members of the general public and of the Lunar Explorer's Society who are interested and wish to be informed on the progress of the Moon projects and possibly contribute their own ideas ILEWG activities and working groups: ILEWG task groups include science, technology, human aspects, socio-economics, young explorers and outreach, programmatics, roadmaps and

  20. Resource rent taxes and sustainable development: A Mongolian case study

    International Nuclear Information System (INIS)

    Thampapillai, Dodo J.; Hansen, Jan; Bolat, Aigerim

    2014-01-01

    Economies rich in mineral resources, need to evaluate the merits of investing rents earned from resource extraction in other income generating activities to sustain the flow of income. It is hence important to estimate and assess the potential uses of the resource rent tax (RRT). This paper illustrates how the reinvestment of the RRT and other government revenue from mining can reduce the depreciation of the mine. This illustration is made with reference to a coal deposit in the Tavan-Tolgoi region of Mongolia. The paper also illustrates impact of mining on the macroeconomic performance of Mongolia. Standard macroeconomic frameworks that ignore the depreciation of mineral assets overstate economic performance. The paper also reviews the political issues and constraints that surround the implementation of the RRT. One option canvassed here is the granting of qualified custodial rights of the RRT to the mining firm. Such qualified rights are pertinent given that the RRT is legally the income owed to the State and investments in ventures such as human capital development can yield returns as high as 10% per annum. This study illustrates that even an investment option yielding an annual 3% return can make a significant difference. - Highlights: • We estimate resource rents owed to the state from energy resource extraction. • We show that mining revenues are over-stated when the depreciation of mineral assets are ignored. • We show that the investment of resource rents offers avenues for sustaining the flow of income. • We argue that the state can grant custody of the rents to mining firms for the management of investments

  1. Human Resource Development for Nuclear Power Programme in Uganda

    International Nuclear Information System (INIS)

    Henry, Ovona

    2014-01-01

    Conclusions: Despite the effort by the Government to ensure reliable and available access to electricity which is crucial to the socio – economic development, the use of hydro power, biomass and oil, geothermal and peat alone would not meet the target of the vision 2040. There is need to identifies nuclear energy as a potential option for meeting the energy deficit. Development of nuclear energy for power generation needs decision making, preparation and preparatory work which involve human resource development process, strengthening the legislation and regulatory framework, stakeholders’ involvement and public acceptance campaign

  2. Legal impediments to the development of the geopressured resource

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, T.A.; Meriwether, J.

    1977-11-16

    A brief description is given of the physical characteristics of geopressured reservoirs and the methods of their exploitation upon which this analysis was based. Brief mention is made of some technological problems facing the developer. A summary description of the ownership of the resource in Louisiana and of the devices available for its development are set forth. The legal problems which result from the interplay of these factors are discussed, and a brief suggestion is made as to the kinds of action which might be taken to resolve these problems and expedite development. (MHR)

  3. Development of synthetic analysis program concerning on the safety of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. H.; Choi, S. S.; Cheong, Y. H.; Ahn, S. H.; Chang, W. J. [Atomic Creative Technology, Daejeon (Korea, Republic of)

    2007-03-15

    Methodology development of synthetic analysis of energy resources: build system methodology of synthetic analysis of energy resources. Development of web-based enquete program, develop web-based enquete program to support synthetic analysis of energy resources. Aggregation Software development, develop AHP algorithm and aggregation software for the synthetic analysis of energy resources.

  4. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  5. Vision-based coaching: optimizing resources for leader development

    Science.gov (United States)

    Passarelli, Angela M.

    2015-01-01

    Leaders develop in the direction of their dreams, not in the direction of their deficits. Yet many coaching interactions intended to promote a leader’s development fail to leverage the benefits of the individual’s personal vision. Drawing on intentional change theory, this article postulates that coaching interactions that emphasize a leader’s personal vision (future aspirations and core identity) evoke a psychophysiological state characterized by positive emotions, cognitive openness, and optimal neurobiological functioning for complex goal pursuit. Vision-based coaching, via this psychophysiological state, generates a host of relational and motivational resources critical to the developmental process. These resources include: formation of a positive coaching relationship, expansion of the leader’s identity, increased vitality, activation of learning goals, and a promotion–orientation. Organizational outcomes as well as limitations to vision-based coaching are discussed. PMID:25926803

  6. Appraisal process as an element of historical resource development

    Directory of Open Access Journals (Sweden)

    Artur Górak

    2011-12-01

    Full Text Available The authors assume that the effects of the mechanism that is currently used to develop the archival resources in Poland are not able to meet the needs of historical sciences. They point out the reasons for this situation and come to conclusion that archival activity in Poland has become a thoughtless office chore, sometimes even a commercial service, and is not a public service any more - that is, a service for the benefit of the national culture. When it comes to development of the archival resources, the solution is not to introduce new types of sources, but to continue implementing the old standards of the mission to collect and preserve archival materials.

  7. Neuroeconomics and Human Resource Development

    DEFF Research Database (Denmark)

    Larsen, Torben

    2009-01-01

      Neuroeconomics and Human Resource Development Objective Neuroeconomic game trials have detected a present-bias in human decision making which represents a serious shortcoming facing the long termed nature of complex problems in a globalized economy i.e. regional residual poverty, ecological...... threats and personal stress. So far, the evidence-based findings on human resource development (HRD) seem not to match these huge challenges. The aim of this study is to identify cost-effective means of mental training to recover sufficiently from the present bias to enable more sustainable decisions...... Pragmatic de-stressing by medical meditation adds extra years to a normal life and saves health care expenses for a moderate meditation course fee. So, medical meditation prevails as a dominant de-stressing intervention serving a wider goal of more long termed decision making. An international monitoring...

  8. Vision-based coaching: Optimizing resources for leader development

    Directory of Open Access Journals (Sweden)

    Angela M. Passarelli

    2015-04-01

    Full Text Available Leaders develop in the direction of their dreams, not in the direction of their deficits. Yet many coaching interactions intended to promote a leader’s development fail to leverage the developmental benefits of the individual’s personal vision. Drawing on Intentional Change Theory, this article postulates that coaching interactions that emphasize a leader’s personal vision (future aspirations and core identity evoke a psychophysiological state characterized by positive emotions, cognitive openness, and optimal neurobiological functioning for complex goal pursuit. Vision-based coaching, via this psychophysiological state, generates a host of relational and motivational resources critical to the developmental process. These resources include: formation of a positive coaching relationship, expansion of the leader’s identity, increased vitality, activation of learning goals, and a promotion-orientation. Organizational outcomes as well as limitations to vision-based coaching are discussed.

  9. A Study on Human Resources Development in Nuclear Field

    International Nuclear Information System (INIS)

    Moon, Keehwan; Lee, M. K.; Kim, S. S.; Nam, J. H.; Won, B. C.; Lee, D. S; Hwang, I. A.; Seo, M. W.

    2011-11-01

    The study encompasses 4 major parts, each results being described here under: Various policy alternatives through supply-demand analysis of domestic nuclear skilled manpower are suggested. Human resources development programs of main educational organizations in domestic and overseas are comprehensively reviewed. Establishment of 'Integrated Management Organization' which can combine and manage domestic educational organizations' educational functions is necessary to efficiently deal with the increased educational demand and the shift of educational paradigm from supply-driven to needs-driven education and to make nuclear energy export sustainable. And road map on human resource development to efficiently accomplish 'Integrated Management Organization's mission is suggested. It is provided that an overall strategies for the reasonable educational program reflecting the good practices with their implications in overseas nuclear education programs

  10. Current status and issues of nuclear human resource development/General activities of Japan nuclear human resource development network

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Hino, Sadami; Tsuru, Hisanori

    2013-01-01

    The Japan Nuclear Human Resource Development Network (JN-HRD Net) was established in November 2010 with the aim of developing a framework for mutual cooperation and information sharing among nuclear-related organizations. Although the tasks and goals of developing human resources in the nuclear field have been shifted since the accident at the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant, the necessity of fostering capable personnel in this field stays unchanged and the importance of our network activities has further emphasized. The meeting of JN-HRD Net was held on the 5th of February 2013, where its activities by each field were reported and views and opinions were actively exchanged between more than 90 participants. This paper briefly describes current status and issues of JN-HRD Net and its general activities conducted by the JN-HRD Net secretariat. (J.P.N.)

  11. Problems of hydrocarbon resources development in new bedding zones

    International Nuclear Information System (INIS)

    Egorov, O.I.; Koszhanov, A.K.

    1997-01-01

    Intensive exploring geological surveying works were carried out for revealing of fuel resources in South Kazakhstan. Number of complex gas deposits - Ajrakty, Amangel'dy, Kumyrly and others as well as Northern Usharly and Usharal-Kemirtobe deposits of nitrogen-helium gas are recovered. Introduction its into operation has significant importance in consequence of urgent fuel deficit in region. Basic way of guaranteed gas supply to industry and population of South Kazakhstan is connected with own hydrocarbon fields development

  12. Petroleum as a raw material resource for sustainable development

    International Nuclear Information System (INIS)

    Egorov, O.I.

    1996-01-01

    Author notes that for economic and social region development it is necessary has been created large petroleum chemical plants near by Atyrau city (initial raw material - Tengiz, Korolev and other petroleum deposits of this region) and Aktau (Mangistau and Bazuchin petroleum). Realization of projects for structure changes of petroleum and gas region demands a great investments. It is noted that growing scales of petroleum and gas resources mastering calls already a considerable environmental complications because of Caspian Sea's level marking rise

  13. Lunar Navigator - A Miniature, Fully Autonomous, Lunar Navigation, Surveyor, and Range Finder System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm proposes to design and develop a fully autonomous Lunar Navigator based on our MicroMak miniature star sensor and a gravity gradiometer similar to one on a...

  14. Formation and development of theoretical principles for mineral resources logistics

    Directory of Open Access Journals (Sweden)

    Б. К. Плоткин

    2017-03-01

    Full Text Available Market transformations in Russia became foundations for formation and development of a new scientific and practical field in economics – logistics. Out of more than 30 existing definitions of logistics the authors according to their opinion have chosen the most appropriate. Logistics of mineral resources should be attributed to production (industrial logistics. It is a proven fact that processes of supply chain management in mining industry and its infrastructure in the framework of mineral resources chain have some fundamental distinctions. Importance of material resources recycling in theory and practice of mineral resources logistics has been highlighted. Special features of merchandise assortment and classifications in the mining industry have been examined in conjunction with substantial contents of material flow. Special consideration has been given to relevant issues in the field of price formation for mining produce, in the view of specific relations between its costs and logistic procurement of the industry. Moreover, questions of inventory control in the mining industry, activity of commodity exchanges, management of mining logistics system have been addressed.

  15. [Development of human resources and the Plan of Action].

    Science.gov (United States)

    Vidal, C

    1984-01-01

    This article (whose first part was published in the previous issue of Educación Médica y Salud) concludes an exhaustive review of manpower development in the Americas. This part considers the specific measures in this field enunciated in the Plan of Action; these measures pertain to four main areas: planning and programming of human resources, training in priority areas, utilization of human resources, and educational technology. The author discusses the present and future possibilities and obstacles of each of these activities and the steps to be taken to bring needs into line with real situations. It is of paramount importance that the national health authorities clearly spell out their policies for the development of human resources in the health field within the framework of general development policies. Another point to be insisted upon is the multiprofessional and multidisciplinary training of the health team and the importance of the education-service-supervision function, which usually results in permanent and continuing education, which in turn optimizes the utilization of personnel. However, none of this will be possible without an appropriate education technology with which to innovate, analyze and refine the entire education process and so meet the needs of both society and the health services.

  16. Energy needs, uses, and resources in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Palmedo, P.F.; Nathans, R.; Beardsworth, E.; Hale, S. Jr.

    1978-03-01

    The report identifies the energy needs, uses, and resources in the developing countries of the world and examines the energy options available to them for their continued social and economic growth. If traditional patterns of development are to continue, oil consumption in the non-OPEC LDCs will grow steadily to become comparable with current U.S. consumption between 2000 and 2020. Attempts to exploit indigenous hydrocarbon resources even in those LDCs with untapped reserves will be limited by shortages of capital and technical manpower. In the absence of major actions to replace noncommercial fuels or to increase the effectiveness with which they are used, a large fraction of the 3 to 4 billion LDC rural population in the year 2000 will not be able to raise their energy usage above subsistence levels. There is a wide variety of solutions to these problems, many of them emerging directly from the changed economics of energy. For example, most LDCs have not adequately explored and developed their own indigenous resources; in virtually all energy conversion and utilization processes there are opportunities for improvements in efficiency and substitution of renewable energy forms. In virtually all these areas there are opportunities for effective assistance activities.

  17. Closed-Loop Pure Oxygen Static Feed Fuel Cell for Lunar Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In order to address the NASA lunar mission, DESC proposes to develop a proton exchange membrane (PEM) closed-loop pure oxygen fuel cell for application to lunar...

  18. Electrostatic Separation of Lunar Regolith for Size Beneficiation Using Same-Material Tribocharging

    Data.gov (United States)

    National Aeronautics and Space Administration — The success of future long-term manned lunar missions depends on the development of certain key technologies. One such technology, the utilization of lunar regolith...

  19. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  20. RESOLVE: Bridge between early lunar ISRU and science objectives

    Science.gov (United States)

    Taylor, G.; Sanders, G.; Larson, W.; Johnson, K.

    2007-08-01

    THE NEED FOR RESOURCES: When mankind returns to the moon, there will be an aspect of the architecture that will totally change how we explore the solar system. We will take the first steps towards breaking our reliance on Earth supplied consumables by extracting resources from planetary bodies. Our first efforts in this area, known as In-Situ Resource Utilization (ISRU), will be to extract the abundant oxygen found in the lunar regolith. But the "holy grail" of lunar ISRU will be finding an exploitable source of lunar hydrogen. If we can find a source of extractable hydrogen, it would provide a foundation for true independence from Earth. With in-situ hydrogen (or water) and oxygen we can produce many of the major consumables needed to operate a lunar outpost. We would have water to drink, oxygen to breath, as well as rocket propellants and fuel cell reagents to enable extended access and operations on the moon. These items make up a huge percentage of the mass launched from the Earth. Producing them in-situ would significantly reduce the cost of operating a lunar outpost while increasing payload availability for science. PROSPECTING: The Lunar Prospector found evidence of elevated hydrogen at the lunar poles, and measurements made at these locations from the Clementine mission bistatic radar have been interpreted as correlating to water/ice concentrations. At the South Pole, there is reasonably strong correlation between the elevated areas of hydrogen and permanently shadowed craters. However, there is considerable debate on the form and concentration of this hydrogen since the orbiting satellites had limited resolution and their data can be interpreted in different ways. The varying interpretations are based on differing opinions and theories of lunar environment, evolution, and cometary bombardment within the lunar Science community. The only way to truly answer this question from both a Science and resource availability perspective is to go to the lunar poles

  1. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  2. NASA Lunar Mining and Construction Activities and Plans

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Sacksteder, Kurt R.

    2009-01-01

    the need to implement efforts that are sustainable and affordable. One area NASA is developing that can significantly change how systems required for sustained human presence are designed and integrated, as well as potentially break our reliance on Earth supplied logistics, is In-Situ Resource Utilization (ISRU). ISRU, also known living off the land, involves the extraction and processing of local resources into useful products. In particular, the ability to make propellants, life support consumables, fuel cell reagents, and radiation shielding can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. Also, the ability to modify the lunar landscape for safer landing, transfer of payloads from the lander an outpost, dust generation mitigation, and infrastructure placement and buildup are also extremely important for long-term lunar operations. While extra-terrestrial excavation, material handling and processing, and site preparation and construction may be new to NASA and other space agencies, there is extensive terrestrial hardware and commercial experience that can be leveraged. This paper will provide an overview of current NASA activities in lunar ISRU mining and construction and how terrestrial experience in these areas are important to achieving the goal of affordable and sustainable human exploration.

  3. Lunar Limb Observatory: An Incremental Plan for the Utilization, Exploration, and Settlement of the Moon

    Science.gov (United States)

    Lowman, Paul. D., Jr.

    1996-01-01

    This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration

  4. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  5. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  6. Human resource training and development. The outdoor management method.

    Directory of Open Access Journals (Sweden)

    THANOS KRIEMADIS

    2008-01-01

    Full Text Available In the age of international competition in today’s economy, companies must train their employees and prepare them for jobs in the future. There are many different types and educational approaches in human resource training, but the present study will focus on the Outdoor Management Development (OMD. For better understanding, the particular training method and the core stages of the training process will be examined and the definitions of OMD as an educational tool for management development will be presented. Basic theories and models will be analysed as well as the benefits earned and evaluation concerns about the effectiveness of such training programs.

  7. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Science.gov (United States)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  8. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    Science.gov (United States)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  9. In-situ rock melting applied to lunar base construction and for exploration drilling and coring on the moon

    International Nuclear Information System (INIS)

    Rowley, J.C.; Neudecker, J.W.

    1984-01-01

    An excavation technology based upon melting of rock and soil has been extensively developed at the prototype hardware and conceptual design levels for terrestrial conditions. Laboratory and field tests of rock-melting penetration have conclusively indicated that this excavation method is insensitive to rock, soil types, and conditions. Especially significant is the ability to form in-place glass linings or casings on the walls of boreholes, tunnels, and shafts. These factors indicate the unique potential for in situ construction of primary lunar base facilities. Drilling and coring equipment for resource exploration on the moon can also be devised that are largely automated and remotely operated. It is also very likely that lunar melt-glasses will have changed mechanical properties when formed in anhydrous and hard vacuum conditions. Rock melting experiments and prototype hardware designs for lunar rock-melting excavation applications are suggested

  10. Protein resources and aquafeed development in the Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Stephen Goddard

    2015-01-01

    Full Text Available The continued growth of intensive aquaculture is dependent on the development of sustainable protein sources to replace conventional fish meals in aquafeeds. Practical alternatives are plant-derived protein, protein from micro-organisms and protein from under-utilized marine resources. The challenges are to find alternative ingredients with high protein, suitable amino acid content, high palatability and absence of anti-nutritional factors. There is considerable biotechnology-based research in this area, including genetic modification of plant-based proteins, use of probiotics to enhance digestibility and the renewed application of fermentation technologies to produce single cell proteins. Research in Oman is focused on the utilization of marine protein resources. Fisheries by-catch and processing waste have been evaluated as liquid hydrolysates and as meals for inclusion in aquafeeds and new research is planned on the utilization of meso-pelagic fish (myctophids, which occur in abundance in the Arabian Sea and the Sea of Oman. Initial studies have been conducted on the biochemical composition of the lantern fish, Benthosema pterotum, which revealed favorable protein, amino acid and long-chain PUFA content. Potential limiting factors were high levels of saturated lipids and the heavy metals arsenic and cadmium. These results will be discussed within a general review of marine resources and aquafeed development in Oman.

  11. Nuclear Human Resources Development Program using Educational Core Simulator

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Hong, Soon Kwan

    2015-01-01

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides

  12. Development of human resource capacity building assistance for nuclear security

    International Nuclear Information System (INIS)

    Nakamura, Yo; Noro, Naoko

    2014-01-01

    The Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency (JAEA) has been providing nuclear security human resource development projects targeting at nuclear emerging countries in Asia in cooperation with the authorities concerned including the Sandia National Laboratory (SNL) and the International Atomic Energy Agency (IAEA). In the aftermath of the attacks of Sept. 11, the threat of terrorism was internationally recognized and thus the human resource capacity building is underway as an urgent task. In order to responding to emerging threats, the human resource capacity building that ISCN has implemented thus far needs to be multilaterally analyzed in order to develop more effective training programs. This paper studies ISCN's future direction by analyzing its achievements, as well as introduces the collaborative relationships with SNL that contributes to the reflection and maintenance of international trends for the contents of nuclear security training, the nuclear security enhancement support with which Japan is to provide nuclear emerging countries in Asia, and the achievements of the nuclear security training program that ISCN implemented. (author)

  13. STATE RESOURCES AS AN AXIS OF MUNICIPAL DEVELOPMENT IN MISIONES

    Directory of Open Access Journals (Sweden)

    José, Garzón Maceda

    2010-01-01

    Full Text Available This article aims to present a proposal from which one seeks to promote economic and human development in the municipalities of Misiones by means of the creation of a municipal internet by implementing more efficient application criteria for the resources.The paper provides a short outline of the theoretical framework where the proposal is set out, which has three pillars: the theory of decentralization, the municipal and the association theory.Having established this, one examines the legal framework of the municipalities in the National Constitution, the Misiones Constitution and specific laws which regulate the municipal performance, and then move towards the study of the current situation of the municipalities, focusing on financial resources of 17 municipalities in the province of Misiones.After this brief diagnosis we enter fully into the proposal to be developed in depth: detailing the players involved, their funding sources, their objectives, the executive body through which they will implement the program and the assignation criteria of allocation of resources recommended so that the implementation of the proposal be efficient.

  14. Examining human resources' efforts to develop a culturally competent workforce.

    Science.gov (United States)

    Whitman, Marilyn V; Valpuesta, Domingo

    2010-01-01

    The increasing diversification of the nation's population poses significant challenges in providing care that meets the needs of culturally diverse patients. Human resource management plays a vital role in developing a more culturally competent workforce. This exploratory study examines current efforts by human resource directors (HRDs) in Alabama's general hospitals to recruit more diverse candidates, train staff, and make language access resources available. A questionnaire was developed based on the Office of Minority Health's Culturally and Linguistically Appropriate Services standards. The HRDs of the 101 Alabama general hospitals served as the study's target population. A sample of 61 responses, or 60.4% of the population, was obtained. The findings indicate that most HRDs are focusing their efforts on recruiting racially/ethnically diverse candidates and training clerical and nursing staff to care for culturally and linguistically diverse patients. Less effort is being focused on recruiting candidates who speak a different language, and only 44.3% have a trained interpreter on the staff. The HRDs who indicated that they work closely with organizations that provide support to diverse groups were more likely to recruit diverse employees and have racially/ethnically and linguistically diverse individuals in leadership positions. It is crucial that health care organizations take the necessary steps to diversify their workforce to broaden access, improve the quality and equity of care, and capture a greater market share.

  15. Nuclear Human Resources Development Program using Educational Core Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Hong, Soon Kwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides.

  16. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  17. Evaluation of offshore wind resources by scale of development

    DEFF Research Database (Denmark)

    Möller, Bernd; Hong, Lixuan; Lonsing, Reinhard

    2012-01-01

    -economic model operating in a geographical information systems (GIS) environment, which describes resources, costs and area constraints in a spatially explicit way, the relation between project size, location, costs and ownership is analysed. Two scenarios are presented, which describe a state......Offshore wind energy has developed rapidly in terms of turbine and project size, and currently undergoes a significant up-scaling to turbines and parks at greater distance to shore and deeper waters. Expectations to the positive effect of economies of scale on power production costs, however, have...... can be explained by deeper water, higher distance to shore, bottlenecks in supply or higher raw material costs. The present paper addresses the scale of offshore wind parks for Denmark and invites to reconsider the technological and institutional choices made. Based on a continuous resource...

  18. Resources and development: trying to close the gap responsibly

    Energy Technology Data Exchange (ETDEWEB)

    Hotz, M C.B.

    1981-01-01

    While many countries struggle to industrialize, developed countries face economic and social problems which could preclude continued economic growth and may result in structural changes toward new economic systems as well as radically different lifestyles. The widening gap between rich and poor countries suggests that developing nations could take a different path in the way resources are owned and used. Resource management is complicated in developing countries if a large manpower pool is displaced by technology. This complexity also affects matters of health and man's relationship to the biological world. Industrial countries have resolved the problem of pollution control through technology, which adds another layer of economic and social impacts. The need is for new industrial processes that are supportive of the environment and for approaches that will identify linkages between human activity and environmental quality. Such harmony must be based on public knowledge and an understanding of policies. The focus should be on urban areas and the concept transferred in conjunction with technology to developing areas. (DCK)

  19. THE DEVELOPMENT OF REGIONAL EXPANSION APPARATUS RESOURCE PLACEMENT IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Suraji

    2018-02-01

    Full Text Available This study aimed to describe, analyze and deeply assess the implementation of regional apparatus resource development into new areas of regional expansion in Indonesia. The research was conducted by using qualitative approach, specifically, case study by analyzing descriptive data in the form of interviews, as well as analyzing valid data documentation to support the research problem. This research was conducted in the new area of Pangandaran Regency of West Java, Indonesia. The results of the research could map that there were still very few development programs of regional and apparatus expansion and it had not become the priority program after the expansion; the target of improving the quality of the apparatus resource appeared not to be the main measure, but rather, the main measure was the structuring of the apparatus and the issue of the regional office infrastructure; the instruments used in the development and training process were also less supportive, it caused many stagnant employees did not understand about new issues in the dynamics of work; apparatus development through training activities and scientific forums (seminars, scientific discussions, workshops and improvements was obstructed due to budget constraints.

  20. Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bench, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buchholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Enright, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kulp, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCartt, A. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Malfatti, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ognibene, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Loots, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-08

    The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integrated HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory

  1. Resource for the Development of Biomedical Accelerator Mass Spectrometry (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Tuerteltaub, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bench, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buchholz, B. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Enright, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kulp, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Loots, G. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCartt, A. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Malfatti, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ognibene, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, B. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-21

    The NIH Research Resource for Biomedical AMS was originally funded at Lawrence Livermore National Laboratory in 1999 to develop and apply the technology of accelerator mass spectrometry (AMS) in broad- based biomedical research. The Resource’s niche is to fill needs for ultra high sensitivity quantitation when isotope-labeled agents are used. The Research Resource’s Technology Research and Development (TR&D) efforts will focus on the needs of the biomedical research community in the context of seven Driving Biomedical Projects (DBPs) that will drive the Center’s technical capabilities through three core TR&Ds. We will expand our present capabilities by developing a fully integrated HPLC AMS to increase our capabilities for metabolic measurements, we will develop methods to understand cellular processes and we will develop and validate methods for the application of AMS in human studies, which is a growing area of demand by collaborators and service users. In addition, we will continue to support new and ongoing collaborative and service projects that require the capabilities of the Resource. The Center will continue to train researchers in the use of the AMS capabilities being developed, and the results of all efforts will be widely disseminated to advance progress in biomedical research. Towards these goals, our specific aims are to:1.) Increase the value and information content of AMS measurements by combining molecular speciation with quantitation of defined macromolecular isolates. Specifically, develop and validate methods for macromolecule labeling, characterization and quantitation.2.) Develop and validate methods and strategies to enable AMS to become more broadly used in human studies. Specifically, demonstrate robust methods for conducting pharmacokinetic/pharmacodynamics studies in humans and model systems.3.) Increase the accessibility of AMS to the Biomedical research community and the throughput of AMS through direct coupling to separatory

  2. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  3. Consolidated Lunar Atlas

    Data.gov (United States)

    National Aeronautics and Space Administration — The Consolidated Lunar Atlas is a collection of the best photographic images of the moon, including low-oblique photography, full-moon photography, and tabular and...

  4. 2007 Lunar Regolith Simulant Workshop Overview

    Science.gov (United States)

    McLemore, Carole A.; Fikes, John C.; Howell, Joe T.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1 M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the

  5. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  6. Low-rank coal study : national needs for resource development. Volume 2. Resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    Comprehensive data are presented on the quantity, quality, and distribution of low-rank coal (subbituminous and lignite) deposits in the United States. The major lignite-bearing areas are the Fort Union Region and the Gulf Lignite Region, with the predominant strippable reserves being in the states of North Dakota, Montana, and Texas. The largest subbituminous coal deposits are in the Powder River Region of Montana and Wyoming, The San Juan Basin of New Mexico, and in Northern Alaska. For each of the low-rank coal-bearing regions, descriptions are provided of the geology; strippable reserves; active and planned mines; classification of identified resources by depth, seam thickness, sulfur content, and ash content; overburden characteristics; aquifers; and coal properties and characteristics. Low-rank coals are distinguished from bituminous coals by unique chemical and physical properties that affect their behavior in extraction, utilization, or conversion processes. The most characteristic properties of the organic fraction of low-rank coals are the high inherent moisture and oxygen contents, and the correspondingly low heating value. Mineral matter (ash) contents and compositions of all coals are highly variable; however, low-rank coals tend to have a higher proportion of the alkali components CaO, MgO, and Na/sub 2/O. About 90% of the reserve base of US low-rank coal has less than one percent sulfur. Water resources in the major low-rank coal-bearing regions tend to have highly seasonal availabilities. Some areas appear to have ample water resources to support major new coal projects; in other areas such as Texas, water supplies may be constraining factor on development.

  7. Lunar dust transport and potential interactions with power system components

    International Nuclear Information System (INIS)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers

  8. Lunar dust transport and potential interactions with power system components

    Energy Technology Data Exchange (ETDEWEB)

    Katzan, C.M.; Edwards, J.L.

    1991-11-01

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers.

  9. Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  10. A Software Planning and Development Methodology with Resource Allocation Capability

    Science.gov (United States)

    1986-01-01

    vll ACKNOWLEDGEMENTS There are many people who must be acknowledged for the support they provided during my graduate program at Texas A&M Dr. Lee ...acquisition, research/development, and operations/ maintenance sources. The concept of a resource mm >^"^*»T’i»"<Wt"> i PH D« mm^ ivi i t-il^’lfn" i^ I...James, Unpublished ICAM Industry Days address. New Orleans, Louisiana, May 1982. IllllHUIIIIVf 127 46. Ledbetter , William N., et al., "Education

  11. Understanding trade-offs between development and resources

    CSIR Research Space (South Africa)

    Ngwadla, Xolisa

    2017-01-01

    Full Text Available stream_source_info Ngwadla_CSIR2017.pdf.txt stream_content_type text/plain stream_size 4104 Content-Encoding UTF-8 stream_name Ngwadla_CSIR2017.pdf.txt Content-Type text/plain; charset=UTF-8 UNDERSTANDING TRADE... feedstock + production aspects • Are there limits to growth? WHY UNDERSTAND RESOURCE TRADE-OFFS WITH INDUSTRIAL DEVELOPMENT? UNEMPLOYMENT - 24% in 2011 - 27% in 2016 INEQUALITY - Gini Coefficient: - 0,69 in 2011 - 0,68 in 2015...

  12. New developments in uranium exploration, resources, production and demand

    International Nuclear Information System (INIS)

    1992-06-01

    In view of the economic importance, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD have had a long standing interest in uranium exploration, resources, production and demand. It was the objective of this Technical Committee Meeting to bring together specialists in the field and to collect information on new developments, especially from countries which in the past considered uranium a strategic commodity and the related information as confidential or even secret. Separate abstracts were prepared for each of the 29 papers in this volume. Refs, figs, tabs, charts and maps

  13. Legislative framework affecting First Nations and resource development

    International Nuclear Information System (INIS)

    Maclean, M.

    1998-01-01

    In its Delgamuukw decision (released December 1997), the Supreme Court of Canada has given a clear direction to the Crown and First Nations to negotiate rather than litigate outstanding claims within the province of British Columbia. This paper describes the practical implications which the Delgamuukw decision will have for resource development on lands located within the traditional territories of Aboriginal people, reviews constitutional and jurisdictional issues, and discusses issues such as reserve lands in British Columbia, including the nature of reserve interest, tax considerations, the surrender of reserve lands, and provincial regulation on reserve lands

  14. SHRIMP MARICULTURE DEVELOPMENT IN ECUADOR: SOME RESOURCE POLICY ISSUES

    OpenAIRE

    Southgate, Douglas

    1992-01-01

    During the past 15 years, Ecuador has become the Western Hemisphere's leading producer and exporter of shrimp. Growth has come about largely through mariculture development. About 8,000 metric tons (MT) of shrimp have been captured off the Ecuadorian coast each year since the late 1970s. Meanwhile, pond output has increased several-fold, from less than 5,000 MT in 1979 to over 100,000 MT 12 years later (Table 1). Mariculture has expanded largely at the expense of renewable natural resources. ...

  15. Safety activities and human resource development at NCA

    International Nuclear Information System (INIS)

    Kumanomido, Hironori; Sakurada, Koichi; Yanagisawa, Shigeru; Masuyama, Tadaharu

    2015-01-01

    Toshiba Nuclear Critical Assembly (NCA) has been safely operated since the first criticality in December 1963. The topics covered in this Yayoi Meeting Report are: (1) the outline of NCA, (2) the safety control situation mainly after the Great East Japan Earthquake in 2011, (3) educational training incorporates the lessons learned in this earthquake, and (4) human resource development during 2008-2015. Regarding safety control, facility maintenance has been conducted systematically according to the maintenance plan from the viewpoint of preventive maintenance. Regarding educational training, two disaster handling training based on the safety regulation and one nuclear emergency drill based on the emergency drill plan for licensee of nuclear energy activity based on the Act of Special Measures Concerning Nuclear Emergency Preparedness every year. Regarding human resource development, development training was given to 358 people including students. This year, training that does not require NCA operation was conducted including gamma-ray spectrum measurement of NCA fuel rod and neutron deceleration property measurement using 252 Cf neutron source. (S.K.)

  16. Native Americans and resource development: Third World brought home

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, N.

    1978-03-01

    Indian reservations that are rich in uranium, oil, and coal deposits provide a development problem that is similar to that of Third World countries. The tribes have been cheated by government leasing of their lands for energy development without adequate payment, employment opportunities, environmental constraints, or prior consultation. Examples of this treatment illustrate the exploitation of Indian lands and tribes, but recent lawsuits indicate a growing awareness on the part of Native Americans of the impact that resource development has on their lives and a willingness to assert themselves. Government and industry opposition to this assertiveness is demonstrated by the bills in Congress that would revoke treaties with Indian tribes and would, under the guise of equal opportunity, strip them of their sovereignty over aboriginal lands.

  17. Report from International Lunar Exploration Working Group (ILEWG) to COSPAR

    Science.gov (United States)

    Foing, Bernard H.

    We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18]. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap. We present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities, with focus on: “1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole-Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide

  18. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  19. Lunar surface exploration using mobile robots

    Science.gov (United States)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  20. Resource Requirements and Costs of Developing and Delivering MOOCs

    Directory of Open Access Journals (Sweden)

    Fiona M. Hollands

    2014-11-01

    Full Text Available Given the ongoing alarm regarding uncontrollable costs of higher education, it would be reasonable to expect not only concern about the impact of MOOCs on educational outcomes, but also systematic efforts to document the resources expended on their development and delivery. However, there is little publicly available information on MOOC costs that is based on rigorous analysis. In this article, we first address what institutional resources are required for the development and delivery of MOOCs, based on interviews conducted with 83 administrators, faculty members, researchers, and other actors in the MOOCspace. Subsequently, we use the ingredients method to present cost analyses of MOOC production and delivery at four institutions. We find costs ranging from $38,980 to $325,330 per MOOC, and costs per completer of $74-$272, substantially lower than costs per completer of regular online courses, by merit of scalability. Based on this metric, MOOCs appear more cost-effective than online courses, but we recommend judging MOOCs by impact on learning and caution that they may only be cost-effective for the most self-motivated learners. By demonstrating the methods of cost analysis as applied to MOOCs, we hope that future assessments of the value of MOOCs will combine both cost information and effectiveness data to yield cost-effectiveness ratios that can be compared with the cost-effectiveness of alternative modes of education delivery. Such information will help decision-makers in higher education make rational decisions regarding the most productive use of limited educational resources, to the benefit of both learners and taxpayers.

  1. Marketing resources management in conditions of domestic enterprises’ innovative development

    OpenAIRE

    E.A. Belovodskaya; Ya.A. Kovalenko

    2013-01-01

    The aim of the article. In the article the urgency of differentiation of concepts marketing potential and marketing resource is examined. The appropriateness of marketing resources allocation into a separate part of the resource base of innovation-directed enterprises is defined. Theoretical bases of marketing resources management for innovation-oriented enterprise are investigated. The author's approach to classification of marketing resources and formation of principles of their management ...

  2. Moonraker and Tetris: Japanese Microrovers for Lunar Cave Exploration

    Science.gov (United States)

    Yoshida, K.; Britton, N.; Walker, J.; Shimizu, T.; Tanaka, T.; Hakamada, T.

    2015-10-01

    A Japanese team HAKUTO is developing a robotic system for exploration of Lunar lava tubes. Motivated by Google Lunar XPRIZE that requires 500 m travel on any surface of Moon, but the team plans to go down into a skylight in Lacus Mortis.

  3. Coal resources available for development; a methodology and pilot study

    Science.gov (United States)

    Eggleston, Jane R.; Carter, M. Devereux; Cobb, James C.

    1990-01-01

    Coal accounts for a major portion of our Nation's energy supply in projections for the future. A demonstrated reserve base of more than 475 billion short tons, as the Department of Energy currently estimates, indicates that, on the basis of today's rate of consumption, the United States has enough coal to meet projected energy needs for almost 200 years. However, the traditional procedures used for estimating the demonstrated reserve base do not account for many environmental and technological restrictions placed on coal mining. A new methodology has been developed to determine the quantity of coal that might actually be available for mining under current and foreseeable conditions. This methodology is unique in its approach, because it applies restrictions to the coal resource before it is mined. Previous methodologies incorporated restrictions into the recovery factor (a percentage), which was then globally applied to the reserve (minable coal) tonnage to derive a recoverable coal tonnage. None of the previous methodologies define the restrictions and their area and amount of impact specifically. Because these restrictions and their impacts are defined in this new methodology, it is possible to achieve more accurate and specific assessments of available resources. This methodology has been tested in a cooperative project between the U.S. Geological Survey and the Kentucky Geological Survey on the Matewan 7.5-minute quadrangle in eastern Kentucky. Pertinent geologic, mining, land-use, and technological data were collected, assimilated, and plotted. The National Coal Resources Data System was used as the repository for data, and its geographic information system software was applied to these data to eliminate restricted coal and quantify that which is available for mining. This methodology does not consider recovery factors or the economic factors that would be considered by a company before mining. Results of the pilot study indicate that, of the estimated

  4. International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon

    Science.gov (United States)

    Durst, Steve

    2015-08-01

    Long considered a prime location to conduct astronomical observations, the Moon is beginning to prove its value in 21st Century astronomy through the Lunar Ultraviolet Telescope aboard China’s Chang’e-3 Moon lander and through the developing missions of the International Lunar Observatory Association (ILOA). With 24 hours / Earth day of potential operability facilitating long-duration observations, the stable platform of the lunar surface and extremely thin exosphere guaranteeing superior observation conditions, zones of radio-quiet for radio astronomy, and the resources and thermal stability at the lunar South Pole, the Moon provides several pioneering advantages for astronomy. ILOA, through MOUs with NAOC and CNSA, has been collaborating with China to make historic Galaxy observations with the Chang’e-3 LUT, including imaging Galaxy M101 in December 2014. LUT has an aperture of 150mm, covers a wavelength range of 245 to 340 nanometers and is capable of detecting objects at a brightness down to 14 mag. The success of China’s mission has provided support and momentum for ILOA’s mission to place a 2-meter dish, multifunctional observatory at the South Pole of the Moon NET 2017. ILOA also has plans to send a precursor observatory instrument (ILO-X) on the inaugural mission of GLXP contestant Moon Express. Advancing astronomy and astrophysics from the Moon through public-private and International partnerships will provide many valuable research opportunities while also helping to secure humanity’s position as multi world species.

  5. Development of Chloroplast Genomic Resources in Chinese Yam (Dioscorea polystachya

    Directory of Open Access Journals (Sweden)

    Junling Cao

    2018-01-01

    Full Text Available Chinese yam has been used both as a food and in traditional herbal medicine. Developing more effective genetic markers in this species is necessary to assess its genetic diversity and perform cultivar identification. In this study, new chloroplast genomic resources were developed using whole chloroplast genomes from six genotypes originating from different geographical locations. The Dioscorea polystachya chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of six D. polystachya chloroplast genomes revealed 141 single nucleotide polymorphisms (SNPs. Seventy simple sequence repeats (SSRs were found in the six genotypes, including 24 polymorphic SSRs. Forty-three common indels and five small inversions were detected. Phylogenetic analysis based on the complete chloroplast genome provided the best resolution among the genotypes. Our evaluation of chloroplast genome resources among these genotypes led us to consider the complete chloroplast genome sequence of D. polystachya as a source of reliable and valuable molecular markers for revealing biogeographical structure and the extent of genetic variation in wild populations and for identifying different cultivars.

  6. Monocausalism Versus Systems Approach To Development? The Possibility Of Natural Resource-Based Development

    DEFF Research Database (Denmark)

    Andersen, Allan Dahl; Johnson, Björn

    2011-01-01

    Development economics have over the years produced several one-factor explanations by one-sidedly focusing on specific development factors or mechanisms as for example saving and investment, human capital, free markets, technology, institutions and production structure. In this paper we term...... such narrow monocausal explanations as ‘fundamentalisms’. We identify and discuss several types of fundamentalism. We then argue that these diverse explanations of development in reality are interdependent and complement each other, and hence that the process of economic development must be understood...... as systemic. Throughout the paper there is a focus on natural resource-based development. It has been argued that abundant natural resources are detrimental to economic development – an argument known as the resource curse, which is one type of ‘production structure fundamentalism’. We argue that abundant...

  7. On the Cutting Edge: Workshops, Online Resources, and Community Development

    Science.gov (United States)

    Mogk, D. W.; Macdonald, H.; Manduca, C. A.; Tewksbury, B. J.; Fox, S.; Iverson, E. A. R.; Beane, R. J.; Mcconnell, D. A.; Wiese, K.; Wysession, M. E.

    2014-12-01

    On the Cutting Edge, funded by NSF since 2002, offers a comprehensive professional development program for geoscience faculty. The program includes an annual integrated in-person and virtual workshop series, has developed an extensive collection of peer-reviewed instructional activities and related online resources, and supports continuing community development through sponsorship of webinars, listservs, opportunities for community contributions, and dissemination of resources to keep faculty current in their science and pedagogic practices. On the Cutting Edge (CE) has offered more than 100 face-to-face and virtual workshops, webinars, journal clubs, and other events to more than 3000 participants. The award-winning website has more than 5000 pages including 47 modules on career management, pedagogy, and geoscience topics. It has more than 1800 instructional activities contributed by the community, the majority of which have been peer-reviewed. The website had more than one million visitors last year. We have worked to support a community in which faculty improve their teaching by designing courses using research-based methods to foster higher-order thinking, incorporate geoscience data, and address cognitive and affective aspects of learning as well as a community in which faculty are comfortable and successful in managing their careers. The program addresses the needs of faculty in all career stages at the full spectrum of institutions and covering the breadth of the geoscience curriculum. We select timely and compelling topics that attract different groups of participants. CE workshops are interactive, model best pedagogical practices, emphasize participant learning, provide opportunities for participants to share their knowledge and experience, provide high-quality resources, give participants time to reflect and to develop action plans, and help transform their ideas about teaching. On the Cutting Edge has had an impact on teaching based on data from national

  8. Analysis of development achievement of overseas resources and study of plans of system improvement (bituminous coal, general mineral resources)

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J N [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1998-05-01

    Development policy of overseas resources of Korea should be carried out as a part of long-term resources security policy that can prepare for the stable supply and demand of needed resources under the proper economic size and industrial structure. This study tried to search for the ways to promote overseas development of bituminous coal and, general mineral resources, and support them more effectively per field. For this, development achievements so far, domestic and foreign pending issues, and operation status of the support system are studied, analyzed, and the improvement plans are drafted per field. Financial support for overseas resources development should be more expanded than the present in the future. For this, the current collateral system centered on real right should be improved and financial support centered on the credit of enterprise should be reinforced. Besides, in the related tax support system, related tax laws and systems should be improved in order to alleviate the tax burden of business operators so that they can carry out the overseas resources development business with more advantageous conditions through the additive introduction of current deduction system of indirect payment tax. Since payback period of overseas resources development business tends to become long-term, it should be continuously carried out based on future-oriented development investment plan and will of more than twenty (20) years rather than on temporary development support plan based on short-term market trend. 25 refs., 73 tabs.

  9. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  10. Sustainable Development Strategy for Russian Mineral Resources Extracting Economy

    Science.gov (United States)

    Dotsenko, Elena; Ezdina, Natalya; Prilepskaya, Angelina; Pivnyk, Kirill

    2017-11-01

    The immaturity of strategic and conceptual documents in the sphere of sustainable development of the Russian economy had a negative impact on long-term strategic forecasting of its neo-industrialization. At the present stage, the problems of overcoming the mineral and raw material dependence, the negative structural shift of the Russian economy, the acceleration of the rates of economic growth, the reduction of technological gap from the developed countries become strategically in demand. The modern structure of the Russian economy, developed within the framework of the proposed market model, does not generate a sustainable type of development. It became obvious that in conditions of the market processes' entropy, without neo-industrial changes, the reconstruction of industry on a new convergence-technological basis and without increasing the share of high technology production the instability of macroeconomic system, the risks of environmental and economic security of Russia are growing. Therefore, today we need a transition from forming one industry development strategy to the national one that will take into account both the social and economic and environmental challenges facing Russia as a mineral resources extracting country.

  11. Lunar geophysics, geodesy, and dynamics

    Science.gov (United States)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  12. The Future Lunar Flora Colony

    Science.gov (United States)

    Goel, E. G.; Guven, U. G.

    2017-10-01

    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  13. Energy resources technical training and development programs for American Indians

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R E; White, W S

    1978-08-01

    Because of the energy resources located on Native American owned lands, it is pertinent that the tribes on these reservations receive information, training, and technical assistance concerning energy and the environment and the decisions that must be made about energy-resource development. In the past, attempts to enlist Indians in technical-assistance programs met with little success because teaching methods seldom incorporated program planning by both tribal leaders and the technical training staff. Several technical-assistance programs given on reservations in the central and western parts of the country were conducted by Argonne National Lab.--programs that stressed practical, on-the-job experience through lecture, laboratory, and field studies. Each program was designed by ANL and tribal leaders to fit the needs and concerns of a particular tribe for its environment. The individual programs met with an impressive degree of success; they also prompted several Indians to pursue this type of education further at ANL and local Indian community colleges and to obtain funds for energy projects. Despite the positive feedback, several difficulties were encountered. Among them are the necessity to continually modify the programs to fit diverse tribal needs, to diminish politically motivated interference, and to increase portions of the funding to involve more Native Americans.

  14. Prospects for development of hydrocarbon raw materials resources reproduction

    Science.gov (United States)

    Vertakova, Y. V.; Babich, T. N.; Polozhentseva, Y. S.; Zvyagintsev, G. L.

    2017-10-01

    The article presents data on the influence of factors in the field of innovative technology of thermocatalytic depolymerization of solid household wastes (SHW) on the efficiency and prospects for the development of technogenic hydrocarbon raw materials resource reproduction. Process thermodynamics, reactions kinetics, the mechanism of thermolysis of secondary polymers in organic solvents have been studied by means of laboratory experiments. It is shown that different morphological groups of wastes dissolve practically at the same rate at temperatures of 250-310°C. A homogeneous product is formed in the liquid phase; the spread of values for the elements lies in the interval of 1.5-4.5 %; technological requirements of the stages of formation of boiler fuels are satisfied. Using the principles of patent analysis, new techniques of processing household waste components are proposed. The basics of energy-efficient and energy-saving processes of technogenic hydrocarbon raw materials resource reproduction have been laid. The possibility of increasing the production payback and intensification is shown. Ecological and demographic safety for population and technical and economic benefits from SHW processing are achieved.

  15. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  16. International Academy of Astronautics 5th cosmic study--preparing for a 21st century program of integrated, Lunar and Martian exploration and development (executive summary).

    Science.gov (United States)

    Koelle, H H; Stephenson, D G

    2003-04-01

    This report is an initial review of plans for a extensive program to survey and develop the Moon and to explore the planet Mars during the 21st century. It presents current typical plans for separate, associated and fully integrated programs of Lunar and Martian research, exploration and development, and concludes that detailed integrated plans must be prepared and be subject to formal criticism. Before responsible politicians approve a new thrust into space they will demand attractive, defensible, and detailed proposals that explain the WHEN, HOW and WHY of each stage of an expanded program of 21st century space research, development and exploration. In particular, the claims of daring, innovative, but untried systems must be compared with the known performance of existing technologies. The time has come to supersede the present haphazard approach to strategic space studies with a formal international structure to plan for future advanced space missions under the aegis of the world's national space agencies, and supported by governments and the corporate sector. c2002 Elsevier Science Ltd. All rights reserved.

  17. PROSPECTS OF GEOTHERMAL RESOURCES DEVELOPMENT FOR EAST CISCAUCASIA

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2013-01-01

    Full Text Available Abstract. Work subject. Aim. The Northern Caucasus is one of the prospective regions for development of geothermal energy.The hydrogeothermal resources of the only East Ciscaucasian Artesian basin are estimated up to 10000 MW of heat and 1000 MW of electric power. For their large-scale development it is necessary to built wells of big diameter and high flow rate involving huge capital investments. Reconstruction of idle wells for production of thermal water will allow to reduce capital investments for building of geothermal power installations. In the East Ciscaucasian Artesian basin there are a lot of promising areas with idle wells which can be converted for production of thermal water. The purpose of work is substantiation possibility of efficient development of geothermal resources of the Northern Caucasus region using idle oil and gas wells.Methods. The schematic diagram is submitted for binary geothermal power plant (GPP with use of idle gas-oil wells where the primary heat carrier in a loop of geothermal circulation system is used for heating and evaporation of the low-boiling working agent circulating in a secondary contour of steam-power unit. Calculations are carried out for selection of the optimum parameters of geothermal circulation system for obtaining the maximum useful power of GPP. The thermodynamic analysis of low-boiling working agents is made. Development of medial enthalpy thermal waters in the combined geothermal-steam-gas power installations is offered where exhaust gases of gas-turbine installation are used for evaporation and overheat of the working agent circulating in a contour of GPP. Heating of the working agent in GPP up to the temperature of evaporation is carried out by thermal water.Results. The possibility of efficient development of geothermal resources of the Northern Caucasus region by construction of binary geothermal power plants using idle oil and gas wells is substantiated. The capacities and the basic

  18. Corruption, Development and the Curse of Natural Resources

    NARCIS (Netherlands)

    Pendergast, S.M.; Clarke, J.A.; Kooten, van G.C.

    2011-01-01

    In 1995, Jeffrey Sachs and Andrew Warner found a negative relationship between natural resources and economic growth, and claimed that natural resources are a curse. Their work has been widely cited, with many economists now accepting the curse of natural resources as a welldocumented explanation of

  19. The Thai-Canadian nuclear human resources development linkage project

    International Nuclear Information System (INIS)

    Sumitra, Tatchai; Chankow, Nares; Bradley, K.; Bereznai, G.

    1998-01-01

    The Thai-Canadian Nuclear Human Resources Development Linkage Project (the P roject ) was initiated in 1994 in order to develop the engineering and scientific expertise needed for Thailand to decide whether and how the country can best benefit from the establishment of a nuclear power program. The Project was designed to upgrade current academics and people in industry, and to develop an adequate supply of new technical personnel for academic, industry, utility, regulatory and other government institutions. The key Project objectives included the establishment of a Chair in Nuclear Engineering at Chulalongkorn University, the upgrading of the current Masters level curriculum, the establishment of undergraduate and doctorate level curricula, development and delivery of an industrial training program for people in industry and government, exchanges of Thai and Canadian academics and industry experts to establish common research programs and teaching interests, and a public education program that was to test in Thailand some of the techniques that have been successfully used in Canada. (author)

  20. OPPORTUNITIES FOR HUMAN RESOURCES DEVELOPMENT BY PROFESSIONAL INTEGRATION / REINTEGRATION

    Directory of Open Access Journals (Sweden)

    LAVINIA ELISABETA POPP

    2012-01-01

    Full Text Available The present paper presents some opportunities for the development of human resources by means of professional insertion / reinsertion. It is about an intervention project, more precisely the establishment of a Centre for Career Counselling and Professional Requalification (CORP within the University “Eftimie Murgu” of Reşita. The objective was the promotion of an inclusive society able to facilitate the access and integration on the labour market of the young unemployed. By its activities, the project forwards an inclusive model of social inclusion of the professionally inactive young people through individualised programmes of qualification - requalification, support and professional counselling. By its results the project contributed to the stimulation of the participation of young unemployed persons to the social, economic and educational life, the consideration of the importance of the role played by education and professional training among the youth.

  1. Pedagogical use of mobile phones: research and development resources

    Directory of Open Access Journals (Sweden)

    Alex Botelho Mamari

    2011-12-01

    Full Text Available Mobile learning (m-learning is the field of research that investigates how the use of mobile devices can contribute to learning. This study considers that mobile phones, due to their popularization and related technological advances, may contribute to educational practices. Therefore, this article presents and examines tools for developing educational resources for mobile phones. Thus, after presenting different aspects related to m-learning, the paper describes and analyzes some tools found in MLE-Moodle. This is a plugin that extends the functionality of the virtual environment Moodle for mobile phones. In addition, the study presents MyMLE and Mobile Study, programs that enable the preparation of materials for mobile phones.

  2. Water resources and the development of human civilization

    International Nuclear Information System (INIS)

    Radic, Z.M.

    1997-01-01

    This paper presents available water resources in the world and the relation between socio-economic and natural systems throughout history of mankind. Some of the monuments of culture from the Iron Gate (hydro power constructions) region of the Danube river are described which illustrate old bond between man and water. The Danube river waters are of prime importance for Danubian counties and a change in people's treatment and relation to water is necessary at both national and international level. This implies application of long-term environmentally compatible economic strategies in accordance with bio-culture, which, at the bottom line, should lead to the concept of sustainable development. There is an interest in Yugoslavia for international co-operation with Danubian countries and vice versa, as well as the concern for environmental in the Yugoslavian part of the Danube basin, problems and means for management of pollution sources in the area. (author)

  3. Development of useful genetic resources by proton-beam irradiation

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Park, Hyi Gook; Jung, Il Lae; Seo, Yong Won; Chang, Chul Seong; Kim, Jae Yoon; Ham, Jae Woong

    2005-08-01

    The aim of this study is to develop new, useful and high-valuable genetic resources through the overproduction of biodegradable plastics and the propagation of wheat using proton-beam irradiation. Useful host strain was isolated through the mutagenization of the Escherichia coli K-12 strain, followed by characterizing the genetic and physiological properties of the E. coli mutant strains. The selected E. coli mutant strain produced above 85g/L of PHB, showed above 99% of PHB intracellular content and spontaneously liberated intracellular PHB granules. Based on the results, the production cost of PHB has been estimated to approximately 2$/kg, leading effective cost-down. Investigated the propagation of wheat and its variation, a selectable criterion of wet pro of was established and genetic analysis of useful mutant was carried out

  4. Lunar and Vesta Web Portals

    Science.gov (United States)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  5. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    Science.gov (United States)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  6. Hydraulic modeling development and application in water resources engineering

    Science.gov (United States)

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

    2015-01-01

    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  7. Overview of lunar-based astronomy.

    Science.gov (United States)

    Smith, H. J.

    The Moon offers both significant advantages and drawbacks for astronomy. Recognition of these characteristics can clarify the objectives toward which developments should be directed and can help to inhibit premature or excessive selling of lunar developments on the basis of astronomy.

  8. Perspectives on Adult Education, Human Resource Development, and the Emergence of Workforce Development

    Science.gov (United States)

    Jacobs, Ronald L.

    2014-01-01

    This article presents a perspective on the relationship between adult education and human resource development of the past two decades and the subsequent emergence of workforce development. The lesson taken from the article should be more than simply a recounting of events related to these fields of study. Instead, the more general lesson may be…

  9. Toward A Multilevel Theory of Career Development: Advancing Human Resource Development Theory Building

    Science.gov (United States)

    Upton, Matthew G.; Egan, Toby Marshall

    2007-01-01

    The established limitations of career development (CD) theory and human resource development (HRD) theory building are addressed by expanding the framing of these issues to multilevel contexts. Multilevel theory building is an approach most effectively aligned with HRD literature and CD and HRD practice realities. An innovative approach multilevel…

  10. Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    and Resource Utilisation; Infrastructure and Human aspects; Moon, Space and Society. The latest technical achievements and results of recent missions (SMART-1, Kaguya, Chang'E1, Chandrayaan-1, LCROSS and LRO) were discussed at a plenary panel and technical sessions, with the Lunar Reconnaissance Orbiter (LRO) still in operation. Chang'E1 has generated many useful results for the community. Four plenary panel sessions were conducted: 1. What are the plans? 2. New mission results; 3. From space stations and robotic precursors to lunar bases; 4. Moon, Space, Society The participants summarised their findings, discussions and recommend o continue efforts by agencies and the community on previous ICEUM recommendations, and the continuation of the ILEWG forum, technical groups activities and pilot projects. 1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole- Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International

  11. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  12. Sustainable development through natural resource development in Dir Kohistan North West Frontier Province Pakistan

    International Nuclear Information System (INIS)

    Khan, S. E.mail: erp@brain.net.pk

    2005-01-01

    Up to the middle of the past century it was possible to prevent the depletion of natural resources though good governance and the effective enforcement of the prevailing land tenure by legal and social control. This is no longer so, far several reasons. Both governance and social control have greatly deteriorated. Land tenure has not kept pace with rapid increase in population and the incidence of poverty and landlessness. Not finding redress in the established legal and social orders the landless and the poor have taken resource to illicit use for subsistence and eking out a living. Thus sustainable management of natural resources has become a daunting challenge in an era of declining resources, increasing demand, deteriorating governance and eroding social control. Recent experimental endeavors are attempting to develop flexible model of collaborative management, which could be applied successfully in the immensely variable socio-economic milieus of the countryside. Issues of resource degradation and regeneration is intimately linked to questions of power, poverty, institutions, livelihoods and culture. Natural Resource Management must become integral part of overall development strategies. (author)

  13. The Study of Human Resource Competency Development Policy in Tourism Sector of Bureaucracy Reformation Era

    OpenAIRE

    Wiryanto, Wisber

    2018-01-01

    The development of the tourism sector ought to be supported by the competent Human Resources (SDM). Human resources of tourism that include human resources apparatus, industrial human resources, and the tourism community until now still facing difficulties of competency gaps and capability certification. Concerning this issue, there will be conducted a research of human resource competency development policy in tourism sector of bureaucratic reformation era. The goal of this research is to ex...

  14. A Synthesis of VIIRS Solar and Lunar Calibrations

    Science.gov (United States)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  15. Deployable structures for a human lunar base

    Science.gov (United States)

    Gruber, Petra; Häuplik, Sandra; Imhof, Barbara; Özdemir, Kürsad; Waclavicek, Rene; Perino, Maria Antoinetta

    2007-06-01

    The study Lunar exploration architecture—deployable structures for a lunar base was performed within the Alcatel Alenia Space “Lunar Exploration Architecture” study for the European Space Agency. The purpose of the study was to investigate bionic concepts applicable to deployable structures and to interpret the findings for possible implementation concepts. The study aimed at finding innovative solutions for deployment possibilities. Translating folding/unfolding principles from nature, candidate geometries were developed and researched using models, drawings and visualisations. The use of materials, joints between structural elements and construction details were investigated for these conceptual approaches. Reference scenarios were used to identify the technical and environmental conditions, which served as design drivers. Mechanical issues and the investigation of deployment processes narrowed the selection down to six chosen concepts. Their applicability was evaluated at a conceptual stage in relation to the timescale of the mission.

  16. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Science.gov (United States)

    Clegg, Ryan; Metzger, Philip; Roberson, Luke; Stephen, Huff

    2010-03-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor III spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon. The low ejection angle and high velocity are concerns for the lunar outpost. As a first step in investigating this concern, we have performed a series of low-velocity impact experiments in a modified sandblasting hood using lunar soil simulant impacted upon various materials that are commonly used in spaceflight hardware. It was seen that considerable damage is inevitable and protective barriers need to be designed.

  17. Investigations needed to stimulate the development of Jordan's mineral resources

    Science.gov (United States)

    McKelvey, V.E.

    1979-01-01

    The level of living that any society can attain is a direct function of the use it makes of all kinds of raw materials (soil, water, metals, nonmetals, etc.), all kinds of energy (both animate and inanimate), and all kinds of human ingenuity; and is an inverse function of the size of the population that must share the collective product. The relation between raw materials, energy and ingenuity is such that use of a large amount of one may offset the need for large amounts of others. The most vital raw materials are water, soil, and construction materials, for these are needed in large quantities and are hard to import. Metals, chemicals, and inanimate energy are necessary for industrialization. The more of these minerals a nation possess, the better, but not nation can hope to be self-sufficient in all of the m and therefore must trade for some essential materials. Jordan’s natural resources have been little explored. The grantitc-metamorphic terrane in the southeastern part of the Kingdom could contain deposits of tungsten, rare earths, feldspar, mica, fluorite etc. and the sedimentary terrane over much of the rest of the county is favorable for the occurrence of oil. Even if none of these minerals is found, however, Jordan’s other mineral resource, if fully explored and developed in the light of modern technology, will support a far higher level of living than her people now enjoy. Very likely she can increase her rainfall by about 10 percent by cloud seeding, and she undeveloped supplies in both surface and ground water that are sufficient to nearly double her usable water supply. Even if she does not have oil or have it in large quantities, she can buy it cheaply from neighboring counties, and in addition has undeveloped sources of hydroelectric power, large reserves of bituminous limestone, large reserves of nuclear power as uranium in phosphate rock, and can use solar and wind power for special purposes. Her large supplies of construction, fertilizer, and

  18. Water Resources of Israel: Trackrecord of the Development

    Directory of Open Access Journals (Sweden)

    Nicolai S. Orlovsky

    2018-01-01

    Full Text Available Israel is a country in the Near East consisting for 95% of the arid regions in which 60% of the territory are covered by the Negev Desert. Therefore, the water resources are scant here and formed mostly by atmospheric precipitations. In the period from 1989 to 2005 the average precipitations were 6 billion cu. m, of which 60–70% were evaporated soon after rainfalls, at least 5% run down by rivers into the sea (mostly in winter and the remaining 25% of precipitations infiltrated into soil from where the greater part of water got into the sea with ground waters. In Israel there are two groups of water resources: surface and underground. Israel is not rich in surface waters. The natural reservoir of surface fresh water is the Kinneret Lake in the northeast of the country. It gets water from the Jordan River and its tributaries. The average annual amount of available water of this lake is around 370 million cu. m, which accounts for one-third of the country’s water needs and still higher share of the drinking water needs. The greater part of fresh waters (37% of water supply of Israel as of 2011 in this country is supplied from ground water sources. Owing to insufficiency of available natural resources, unevenness of precipitations by years and seasons and with the growth of the population and economic development the issues of provision with the quality drinking water of the population as well as agriculture and industry, rehabilitation of natural environment cause permanently growing concern. In view of the water shortage untiring efforts have been taken to improve the irrigation efficiency and to reduce water use by improving the efficacy of irrigation techniques and application of advanced system management approaches. Among the water saving technologies applied in Israel there are: drop irrigation, advanced filtration, up to date methods of water leak detection from networks, rainwater collection and processing systems. At the same time

  19. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    Science.gov (United States)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  20. Medicinal Plants: A Public Resource for Metabolomics and Hypothesis Development

    Directory of Open Access Journals (Sweden)

    Eve Syrkin Wurtele

    2012-11-01

    Full Text Available Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less

  1. Costs and benefits of lunar oxygen: Engineering, operations, and economics

    Science.gov (United States)

    Sherwood, Brent; Woodcock, Gordon R.

    1991-01-01

    Oxygen is the most commonly discussed lunar resource. It will certainly not be the easiest to retrieve, but oxygen's fundamental place in propulsion and life support guarantees it continued attention as a prime candidate for early in situ resource utilization (ISRU). The findings are reviewed of recent investigation, sponsored by NASA-Ames, into the kinds of technologies, equipment, and scenarios (the engineering and operations costs) that will be required even to initiate lunar oxygen production. The infrastructure necessary to surround and support a viable oxygen-processing operation is explained. Selected details are used to illustrate the depth of technology challenges, extent of operations burdens, and complexity of decision linkages. Basic assumptions, and resulting timelines and mass manifests, are listed. These findings are combined with state-of-the-art knowledge of lunar and Mars propulsion options in simple economic input/output and internal-rate-of-return models, to compare production costs with performance benefits. Implications for three realistic scales of exploration architecture - expeditionary, aggressive science, and industrialization/settlement - are discussed. Conclusions are reached regarding the contextual conditions within which production of lunar oxygen (LLOX) is a reasonable activity. LLOX appears less useful for Mars missions than previously hoped. Its economical use in low Earth orbit hinges on production of lunar hydrogen as well. LLOX shows promise for lunar ascent/descent use, but that depends strongly on the plant mass required.

  2. 76 FR 60933 - Proposal Review Panel for Human Resource Development; Notice of Meeting

    Science.gov (United States)

    2011-09-30

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Human Resource Development; Notice of..., Proposal Review Panel Human Resource Development ( 1199). Date/Time: October 17, 2011; 5 p.m. to 10 p.m... Meeting: Part-Open. Contact Person: Kelly Mack, Division of Human Resource Development, Room 815, National...

  3. 76 FR 60934 - Proposal Review Panel for Human Resource Development; Notice of Meeting

    Science.gov (United States)

    2011-09-30

    ... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Human Resource Development; Notice of...; Proposal Review Panel Human Resource Development ( 1199). Date/Time: November 1, 2011; 5 p.m. to 10 p.m...: Part-Open. Contact Person: Kelly Mack, Division of Human Resource Development, Room 815, National...

  4. 31 CFR 537.302 - Economic development of resources located in Burma.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Economic development of resources... REGULATIONS General Definitions § 537.302 Economic development of resources located in Burma. (a) The term economic development of resources located in Burma means activities pursuant to a contract the subject of...

  5. 31 CFR 560.209 - Prohibited transactions with respect to the development of Iranian petroleum resources.

    Science.gov (United States)

    2010-07-01

    ... to the development of Iranian petroleum resources. 560.209 Section 560.209 Money and Finance... respect to the development of Iranian petroleum resources. Except as otherwise authorized, and... development of petroleum resources located in Iran, or (2) A guaranty of another person's performance under...

  6. Privileged Electrophile Sensors: A Resource for Covalent Drug Development.

    Science.gov (United States)

    Long, Marcus John Curtis; Aye, Yimon

    2017-07-20

    This Perspective delineates how redox signaling affects the activity of specific enzyme isoforms and how this property may be harnessed for rational drug design. Covalent drugs have resurged in recent years and several reports have extolled the general virtues of developing irreversible inhibitors. Indeed, many modern pharmaceuticals contain electrophilic appendages. Several invoke a warhead that hijacks active-site nucleophiles whereas others take advantage of spectator nucleophilic side chains that do not participate in enzymatic chemistry, but are poised to bind/react with electrophiles. The latest data suggest that innate electrophile sensing-which enables rapid reaction with an endogenous signaling electrophile-is a quintessential resource for the development of covalent drugs. For instance, based on recent work documenting isoform-specific electrophile sensing, isozyme non-specific drugs may be converted to isozyme-specific analogs by hijacking privileged first-responder electrophile-sensing cysteines. Because this approach targets functionally relevant cysteines, we can simultaneously harness previously untapped moonlighting roles of enzymes linked to redox sensing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Promotion of Bilateral Cooperative Programs in Nuclear Human Resources Development

    International Nuclear Information System (INIS)

    Lee, E. J.; Han, K. W.; Nam, Y. M.

    2009-08-01

    The purpose of this project is strengthening of bilateral cooperation with those countries for sharing Korea's technology, and providing of education and training on Korean experience regarding national nuclear policy, technology self reliance, and technology itself, in the field of nuclear power generation and the application of radioisotopes and radiation. This project covers an analysis on the need of nuclear human resource development in countries having interest in the introduction of nuclear power and/or promotion of the use of nuclear energy, and provision of courses on 'nuclear power policy, planning and management' and 'design and operation of nuclear research reactor, and application of radiation technology' along with the country specific needs. Education and training of key members in nuclear energy development from Egypt: It was implemented through bilateral cooperation and support by KOICA program. The first part, which targeted staff members from Egypt Nuclear Commission, was held for 2 months providing a KOICA course on policy, planning and management for nuclear power project, and second part was on the job training in Korea Hydro and Nuclear Power and Korea Institute of Nuclear Safety, KAERI respectively. On the job training of 1 scientist from Vietnam was implemented on the basis of bilateral cooperation in a research laboratory on radioactive waste treatment technology, at KAERI. Education and training for scientists from South East RCA countries were carried out for 11 participants from Vietnam, Thailand, Indonesia, China, Pakistan, Malaysia, Philippines, and Bangladesh. The course dealt with nuclear research reactor and radiation application technology. Development of nuclear education and training programs for key persons involved in nuclear power projects from countries of Middle East: The developed program consists of 15 courses addressing 3 technical levels, i.e. high level policy makers, middle level project implementers, and beginners

  8. Promotion of Bilateral Cooperative Programs in Nuclear Human Resources Development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. J.; Han, K. W.; Nam, Y. M. (and others)

    2009-08-15

    The purpose of this project is strengthening of bilateral cooperation with those countries for sharing Korea's technology, and providing of education and training on Korean experience regarding national nuclear policy, technology self reliance, and technology itself, in the field of nuclear power generation and the application of radioisotopes and radiation. This project covers an analysis on the need of nuclear human resource development in countries having interest in the introduction of nuclear power and/or promotion of the use of nuclear energy, and provision of courses on 'nuclear power policy, planning and management' and 'design and operation of nuclear research reactor, and application of radiation technology' along with the country specific needs. Education and training of key members in nuclear energy development from Egypt: It was implemented through bilateral cooperation and support by KOICA program. The first part, which targeted staff members from Egypt Nuclear Commission, was held for 2 months providing a KOICA course on policy, planning and management for nuclear power project, and second part was on the job training in Korea Hydro and Nuclear Power and Korea Institute of Nuclear Safety, KAERI respectively. On the job training of 1 scientist from Vietnam was implemented on the basis of bilateral cooperation in a research laboratory on radioactive waste treatment technology, at KAERI. Education and training for scientists from South East RCA countries were carried out for 11 participants from Vietnam, Thailand, Indonesia, China, Pakistan, Malaysia, Philippines, and Bangladesh. The course dealt with nuclear research reactor and radiation application technology. Development of nuclear education and training programs for key persons involved in nuclear power projects from countries of Middle East: The developed program consists of 15 courses addressing 3 technical levels, i.e. high level policy makers, middle level project

  9. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  10. Human resources development in nuclear field in Japan

    International Nuclear Information System (INIS)

    Seki, Y.

    2007-01-01

    In this report, the recent topics in the nuclear field, some investigated data on human resources development (HRD) in nuclear field in Japan and the status of HRD and strategy are presented. We have investigated the basic data on HRD in nuclear field in some Asian countries so that the data could be used to develop HRD strategy. The basic data have been investigated for Japan in the following area. (1) Numbers of graduate and undergraduate students and faculty members for each of the nuclear related departments in the universities have been investigated; (2) The information on the academic associations and societies related to nuclear field has been collected; (3) In addition to the basic data directly related to human resources, the data related to the strategy for nuclear utilization such as the data on research reactors, the data on the level of the application of RI and radiation in medicine, agriculture, industry and environment and the future plan to construct NPPs, the number of NPPs being constructed and NPPs under operation have been collected and tabulated for each country. In Japan, many of the experienced nuclear engineers and scientists who have constructed nuclear power plants and developed the application methodology of RI and radiation, are aging and retiring. Also with the decrease in the construction of nuclear power plants and decrease in the nuclear energy research expenditures, it is becoming more difficult to maintain the present level of capability in designing and manufacturing of nuclear facilities. On the other hand, the educational infrastructures in the universities such as nuclear research reactors and the facilities where handling of radioactive materials is permitted, are deteriorating due to the difficulties to meet the more strict regulatory requirements. With the decrease in the popularity of nuclear energy and maturing of nuclear technology it is becoming more difficult to attract sufficient number of promising young individuals

  11. The Sooner Lunar Schooner: Lunar engineering education

    Science.gov (United States)

    Miller, D. P.; Hougen, D. F.; Shirley, D.

    2003-06-01

    The Sooner Lunar Schooner is a multi-disciplinary ongoing project at the University of Oklahoma to plan, design, prototype, cost and (when funds become available) build/contract and fly a robotic mission to the Moon. The goal of the flight will be to explore a small section of the Moon; conduct a materials analysis of the materials left there by an Apollo mission thirty years earlier; and to perform a selenographic survey of areas that were too distant or considered too dangerous to be done by the Apollo crew. The goal of the Sooner Lunar Schooner Project is to improve the science and engineering educations of the hundreds of undergraduate and graduate students working on the project. The participants, while primarily from engineering and physics, will also include representatives from business, art, journalism, law and education. This project ties together numerous existing research programs at the University, and provides a framework for the creation of many new research proposals. The authors were excited and motivated by the Apollo missions to the Moon. When we asked what we could do to similarly motivate students we realized that nothing is as exciting as going to the Moon. The students seem to agree.

  12. Options for Staging Orbits in Cis-Lunar Space

    Science.gov (United States)

    Martinez, Roland; Whitley, Ryan

    2016-01-01

    NASA has been studying options to conduct missions beyond Low Earth Orbit, but within the Earth-Moon system, in preparation for deep space exploration including human missions to Mars. Referred to as the Proving Ground, this arena of exploration activities will enable the development of human spaceflight systems and operations to satisfy future exploration objectives beyond the cis-lunar environment. One option being considered includes the deployment of a habitable element or elements, which could be used as a central location for aggregation of supplies and resources for human missions in cis-lunar space and beyond. Characterizing candidate orbit locations for this asset and the impacts on system design and mission operations is important in the overall assessment of the options being considered. The orbits described in this paper were initially selected by taking advantage of previous studies conducted by NASA and the work of other authors. In this paper orbits are assessed for their relative attractiveness based on various factors. A set of constraints related to the capability of the combined Orion and SLS system to deliver humans and cargo to and from the orbit are evaluated. Deployed assets intended to spend multiple years in the Proving Ground would ideally require minimal station keeping costs to reduce the mass budget allocated to this function. Additional mission design drivers include eclipse frequency, potential for uninterrupted communication with deployed assets, thermal, attitude control, communications, and other operational implications. Also the ability to support potential lunar surface activities and excursion missions beyond Earth-Moon space is considered. The results of the characterization and evaluation of the selected orbits indicate a Near Rectilinear Orbit (NRO) is an attractive candidate as an aggregation point or staging location for operations. In this paper, the NRO is further described in terms which balance a number of key

  13. Benefit of Lunar Regolith on Reflector Mass Savings

    International Nuclear Information System (INIS)

    Hatton, Steven A.; El-Genk, Mohamed S.

    2007-01-01

    The 2004 NASA Vision for Space Exploration calls for the return of mankind to the moon by no later than 2020, in preparation for an adventure to Mars and beyond. An envisioned lunar outpost will provide living quarters for initially 5- 10 astronauts for up to 2 weeks, and latter for science experiments, and recovery of mineral and indigenous resources for the day-to-day operation and production of propellant. These activities would require electrical and thermal powers in the order of 10's - 100's of kilowatts 24/7. Potential power options include photovoltaic, requiring massive batteries or fuel cells for energy storage during the long nights on the moon, and nuclear reactor power systems, which are much more compact and operate independent of the sun. This paper examines the benefit of using the lunar regolith as a supplemental neutron reflector on decreasing the launch mass of the Sectored Compact Reactor (SCoRe-S), developed at the Institute for Space and Nuclear Power Studies. In addition to providing at least $2.00 of hot-clean excess reactivity at the beginning of life, various SCoRe-S concepts investigated in this paper are at least $1.00 sub-critical when shutdown, and when the bare reactor cores are submerged in wet sand and flooded with seawater, following a launch abort accident. Design calculations performed using MCNP5 confirmed that using lunar regolith as supplementary reflector reduces the launch mass of the SCoRe-S cores by ∼ 34% - 35%, or 150 - 200 kg, while satisfying the above reactivity requirements

  14. Toxicity of lunar dust

    NARCIS (Netherlands)

    Linnarsson, D.; Carpenter, J.; Fubini, B.; Gerde, P.; Loftus, D.; Prisk, K.; Staufer, U.; Tranfield, E.; van Westrenen, W.

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of

  15. Lunar Phases Planisphere

    Science.gov (United States)

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  16. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  17. The Development of Pyro Human Resource Information System

    International Nuclear Information System (INIS)

    Jung, M. S.; Kim, S. K.; Ko, W. I.

    2012-01-01

    This paper aims to provide the current status of the development of a human resource information system. Establishing an expert information system helps readily provide the personal information of international and local pyroprocess experts who are currently conducting research at institutes. The information system offers a data processing environment in which users can easily access the necessary information online for a prompt search. Setting up this online networking enables us to easily obtain the personal information of pyro-experts, if necessary, and to provide the basic materials to seek an efficient system of technical cooperation. As pyro-technology presently falls under a high-tech field in the area of back-end fuel cycle, the research is under way at some advanced nuclear nations such as the United States, Korea, and Japan: therefore, the cooperation of experts from home and abroad is critical, helping gain maximum achievements through minimum investments and personnel. Since many efforts should be preceded to secure original technology in the field of fair technology and pyrosystem engineering, we can attain the research goal efficiently if other advanced nuclear nations have already obtained advanced technology, by efficiently realizing the goal through the benchmarking of the necessary technology. To form a cooperative system for such experts, we should know, above all, what research experts are conducting in certain fields at certain laboratories of certain countries

  18. Evaluation and Countermeasures on sustainable development of nickel resources in China

    Science.gov (United States)

    Lin, Zhifeng

    2017-08-01

    Nickel is an important strategic resource in China. With the gradual reduction of nickel re-sources and the increasing competition of the global mineral resources market, the safety of nickel resources in China has been seriously threatened. Therefore, it is very important to evaluate the sustainable develop-ment of nickel resources in China and put forward the corresponding countermeasures. In this paper, the concept and research situation of sustainable development are analyzed. Based on the specific development of nickel resources in China, this paper uses AHP to evaluate the safety of nickel resources in china. Finally, it puts forward the concrete measures to implement the sustainable development strategy of nickel resources in China.

  19. Institutional Problems and Development Perspectives Innovative Entrepreneurship in Resource Economics

    Directory of Open Access Journals (Sweden)

    Rutskiy Vladislav, N.

    2015-12-01

    Full Text Available The paper justifies the necessity to transit towards the mobilization model "triple helix" (strategic partnership of science and education organizations, business and government, the public. Innovation as a product of entrepreneurship permeate the system of relations from top to bottom – from more efficient ways of doing home Ho households, and to design mechanisms of state regulation of the economy. However, at the theoretical level, the relationship remains poorly studied in-novations as a function of entrepreneurship and entrepreneurship as social phenomenon in the system of institutional relations "business-authorities-society". Modern Russian economy has features of "dual enclave economy" with isolated more productive export-oriented resource sector. Innovative entrepreneurs do not become actors of change because of weak protection of property rights, manipulated state, weak sanctions for rent-seeking. The transition from innovative system "technology push" (fundamental knowledge on demand of state towards innovation system "market pull" (innovations on demand of business is complicated within Y-matrix of competitive institutional environment. It could turn out to be more effective to transit to the mobilization model "triple helix" (strategic partnership of science and education organizations, business and government, the public in compliance with X-matrix of cooperative institutional environment of redistribution. This will allow to create the necessary mechanisms for the exchange of missing codified knowledge (for those who imitate innovations and tacit knowledge (for pure innovators in the cross-sectoral technological chains. The design of institutional change in compliance with real needs of participants of innovative processes requires formal analysis of the region economic development type through assessing its key spheres, revealing and modeling prevailing type of entrepreneurship as well as identifying the relationship between

  20. Human resource development – A key factor for the sustainable development of Albania

    Directory of Open Access Journals (Sweden)

    Perlat Lame

    2004-01-01

    Full Text Available This article deals with the current situation of labor resources in Albania and its trends from the viewpoint of their contributions to the overall country progress. A real partnership between business and public institutions, the efforts to formalize the economy, to promote discipline and better application of international standards are considered key issues for the future country developments. The effective management of human resources and coordination could not be reached without profound structural and economic reforms, without free entrepreneurship initiative encouragement, and without mutual confidence between the employers and the employees.

  1. A study on coupling and coordinating development mechanism of China's low-carbon development and environmental resources system

    NARCIS (Netherlands)

    Cong, H.; Zou, D.; Wu, F.; Zhang, Qiufang

    2015-01-01

    With the rapid development of China’s modern industry, human beings have consumed enormous amounts of high-carbon energy resources. This has caused huge destruction to the systems of environmental resources. Low-carbon development is the best solution to the irrational demand for natural resources,

  2. The challenges and benefits of lunar exploration

    Science.gov (United States)

    Cohen, Aaron

    1992-01-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  3. Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"

    Science.gov (United States)

    Foing, Bernard

    2017-04-01

    The EGU PS2.2 session "Lunar Science and Exploration" Towards Moon Village" will address: - Recent lunar results: geochemistry, geophysics in the context of open planetary science and exploration - Synthesis of results from SMART-1, Kaguya, Chang'e 1, 2 and 3, Chandrayaan-1, LCROSS, LADEE, Lunar Reconnaissance Orbiter and, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs polar lander, SLIM, Chandrayaan2, Chang'E 4 & 5, Lunar Resource Prospector, Future landers, Lunar sample return missions - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar surface sorties - Preparation for International Lunar Decade: databases, instruments, missions, terrestrial field campaigns, support studies - ILEWG and Global Exploration roadmaps towards a global robotic/human Moon village - Strategic Knowledge Gaps, and key science Goals relevant to Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with new stakeholders. The Moon Village is an open concept proposed by ESA DG with the goal of a sustainable human and robotic presence on the lunar surface as an ensemble where multiple users can carry out multiple activities. Multiple goals of the Moon Village include planetary science, life sciences, astronomy, fundamental research, resources utilisation, human spaceflight, peaceful cooperation, economical development, inspiration, training and capacity building. ESA director general has revitalized and enhanced the original concept of MoonVillage discussed in the last decade. Space exploration builds on international collaboration. COSPAR and its ILEWG International Lunar Exploration Working Group (created in 1994) have fostered collaboration between lunar missions [4-8]. A flotilla of lunar orbiters has

  4. Development and uptake of scenarios to support water resources planning, development and management: examples from South Africa

    CSIR Research Space (South Africa)

    Funke, Nicola S

    2013-05-01

    Full Text Available The international agenda on water resources development reflects societal needs, political agendas, economic realities and the state of resources. The industrial revolution, which started in the 18th century, brought social and economic prosperity...

  5. Developing a planning tool for South African prosecution resources ...

    African Journals Online (AJOL)

    Strategic planning, forecasting, simulation, resource planning, prosecution ... whether a case should and can be prosecuted, what charges to prosecute .... various activities in the court environment, were the recently built discrete-event simula-.

  6. Development of manganese nodule resources in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    Resources evalution on grade and abundance of nodules using statistical methods for grab samples and photography data, combined with bathymetric and structural mapping, were carried out for delineation of the potential area of Central Indian Ocean...

  7. Tool development to understand rural resource users' land use and ...

    African Journals Online (AJOL)

    -) ..... is a proxy for soil fertility and water availability. The resource users .... in Montpellier (France), two sessions with conservationists in Ant- ananarivo and .... hood activities within the wetlands of the Alaotra, (ii) living close to Lake Alaotra ...

  8. Creating Methane from Plastics: Recycling at a Lunar Outpost

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Wheeler, Ray; Strayer, RIchard; Garland, Jay; Parrish, Clyde

    2010-01-01

    The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste, into fuel. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. The goal of this project is to determine the feasibility of recycling waste into methane on the lunar outpost by performing engineering assessments and lab demonstrations of the technology. The first goal of the project was to determine how recycling could influence lunar exploration. Table I shows an estimation of the typical dried waste stream generated each day for a crew of four. Packaging waste accounts for nearly 86% of the dry waste stream and is a significant source of carbon on the lunar surface. This is important because methane (CH4) can be used as fuel and no other source of carbon is available on the lunar surface. With the initial assessment indicating there is sufficient resources in the waste stream to provide refueling capabilities, the project was designed to examine the conversion of plastics into methane.

  9. Development and psychometric evaluation of the Core Nurse Resource Scale.

    Science.gov (United States)

    Simpson, Michelle R

    2010-11-01

    To examine the factor structure, internal consistency reliability and concurrent-related validity of the Core Nurse Resource Scale. A cross-sectional survey study design was used to obtain a sample of 149 nurses and nursing staff [Registered Nurse (RNs), Licensed Practical Nurse (LPNs) and Certified Nursing Assistant (CNAs)] working in long-term care facilities. Exploratory factor analysis, Cronbach's alpha and bivariate correlations were used to evaluate validity and reliability. Exploratory factor analysis yielded a scale with 18 items on three factors, accounting for 52% of the variance in scores. Internal consistency reliability for the composite and Core Nurse Resource Scale factors ranged from 0.79 to 0.91. The Core Nurse Resource Scale composite scale and subscales correlated positively with a measure of work engagement (r=0.247-0.572). The initial psychometric evaluation of the Core Nurse Resource Scale demonstrates it is a sound measure. Further validity and reliability assessment will need to be explored and assessed among nurses and other nursing staff working in other practice settings. The intent of the Core Nurse Resource Scale is to evaluate the presence of physical, psychological and social resources of the nursing work environment, to identify workplaces at risk for disengaged (low work engagement) nursing staff and to provide useful diagnostic information to healthcare administrators interested in interventions to improve the nursing work environment. © 2010 The Author. Journal compilation © 2010 Blackwell Publishing Ltd.

  10. Pakistan's water resources development and the global perspective

    International Nuclear Information System (INIS)

    Mushtaq, M.; Sufi, A.B.

    2005-01-01

    Pakistan's economy is dependent on irrigated agriculture. About 80% of agriculture is irrigated. It contributes 30% of GDP. Agriculture provides 55% job opportunities. This sector provides 60% of country's exports. The development of agriculture will prosper and up-lift 70% of the total population that is annually growing by 3%. The total area of Pakistan is 197.7 MA (79.6 Mha). Out of which about 103.2 MA (41.77 Mha) comprises of rugged mountains, narrow valleys and foot hills, the remaining area of 93.5 MA (37.83 Mha) consists about 54.6 MA (22.1 Mha) is currently cultivated. Remaining 22.5 MA (9.1 Mha) is lying barren lacking water for irrigation. The total surface water availability is 154.5 MAF. Population density is the highest in the canal irrigated areas in the north east of Indus Plains. The increasing population and the associated social, technical and economic activities all depend, directly or indirectly, on the exploitation of water-as a resource. The total surface water availability is 154.5 MAF. Presently water diverted at canal heads is 106 MAF. In Vision 2025 Programme WAPDA has identified to build water sector and hydropower projects such as: i) Water Sector Projects (Gomal Zam, Mirani, Raised Mangla, Satpara. Kurram Tangi Dams and Greater Thai, Kachhi and Rainee Canals) and ii) Hydropower Projects (Jinnah Barrage, Allai Khwar, Khan Khwar, Duber Khwar, Golen Gole, Neelum Jhelum and Low Head Hydropower Project). Besides the above some more projects are under various stages of planning i.e.; (i) Basha Diamer Dam Project - Feasibility Detailed Design and Tenders, (ii) Akhori Dam Project - Feasibility, (iii) Sehwan Barrage - Feasibility. (iv) Chashma Right Bank Canal Lift Scheme Feasibility and Design, (v) Bunji Hydropower Project Pre-feasibility, (vi) Dasu Hydropower Project - Pre-feasibility and Skardu Dam - Prefeasibility. While, keeping in view the planning and development activities regarding water sector and hydropower projects, the country will

  11. Lunar Prospecting With Chandra

    Science.gov (United States)

    2003-09-01

    Chandra data have also solved a long-running mystery about X-rays from the dark side of the Moon, as reported by Brad Wargelin of the Harvard-Smithsonian Center for Astrophysics. Wargelin discussed how data from the German Roentgen satellite (ROSAT) obtained in 1990 showed a clear X-ray signal from the dark side. These puzzling "dark-Moon X-rays" were tentatively ascribed to energetic electrons streaming away from the Sun and striking the lunar surface. However, Chandra's observations of the energies of individual X-rays, combined with simultaneous measurements of the number of particles flowing away from the Sun in the solar wind, indicate that the X-rays only appear to come from the Moon. In reality they come from much closer to home. "Our results strongly indicate that the so-called dark Moon X-rays do not come from the dark side of the Moon," said Wargelin. "The observed X-ray spectrum, the intensity of the X-rays, and the variation of the X-ray intensity with time, can all be explained by emission from Earth's extended outer atmosphere, through which Chandra is moving." In the model cited by Wargelin and colleagues, collisions of heavy ions of carbon, oxygen and neon in the solar wind with atmospheric hydrogen atoms located tens of thousands of miles above the surface of the Earth give rise to these X-rays. In the collisions, the solar ions capture electrons from hydrogen atoms. The solar ions then kick out X-rays as the captured electrons drop to lower energy states. "This idea has been kicking around among a small circle of believers for several years supported by theory and a few pieces of evidence," said Wargelin. "These new results should really clinch it." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory

  12. Caring Decisions: The Development of a Written Resource for Parents Facing End-of-Life Decisions

    OpenAIRE

    Xafis, Vicki; Gillam, Lynn; Hynson, Jenny; Sullivan, Jane; Cossich, Mary; Wilkinson, Dominic

    2015-01-01

    Background: Written resources in adult intensive care have been shown to benefit families facing end of life (EoL) decisions. There are few resources for parents making EoL decisions for their child and no existing resources addressing ethical issues. TheCaring Decisionshandbook and website were developed to fill these gaps. Aim: We discuss the development of the resources, modification after reviewer feedback and findings from initial pilot implementation. Design: A targeted...

  13. Coordinating and Negotiating Blue Nile Water Resource Development

    Science.gov (United States)

    Geressu, R. T.; Harou, J. J.

    2016-12-01

    Many countries are proposing new reservoirs in transboundary river basins world-wide that impact downstream regions. Failure to consider and incorporate multiple stakeholder interests in system design and decision making could contribute to regional disputes. Negotiated introduction of new assets and associated coordination strategies (e.g. cost and power sharing arrangements) could reduce conflict and help achieve consensus. In multi-stakeholders problems, parties are likely to prioritize performance targets differently and hence will often prefer different water system designs, stalling negotiations. An ideal solution is where individual and group benefits are maximized by allocating (exchanging) resources according to the relative preferences of stakeholders. Hence, a negotiation support mechanism should be able to incorporate stakeholder preference information. In this paper, we propose a three-step search & deliberate, elicit preferences, and search & negotiate approach for supporting negotiations in complex infrastructure-environmental systems. The approach seeks to find designs and coordination mechanisms that are more beneficial than non-cooperative actions. The proposed approach is applied to a stylized Blue Nile reservoir design problem in Ethiopia seeking to set reservoir capacity and operating rules. We consider cost and energy performance metrics for Ethiopia and energy and irrigation water supply in Sudan. We use example stakeholder (i.e., Ethiopian and Sudanese) priorities for demonstration purpose. The result is an agreed system design and coordination schemes (co-financing and power trade). The application results demonstrate that incorporating coordination strategies, such as energy trade, cost sharing, and financing in assessing transboundary reservoir development options could help find compromise designs that different parties can support.

  14. Development of Water Resources Drought Early Warning System

    Science.gov (United States)

    Chen, B. P. T.; Chen, C. H.

    2017-12-01

    Signs of impending drought are often vague and result from hydrologic uncertainty. Because of this, determining the appropriate time to enforce water supply restrictions is difficult. This study proposes a drought early warning index (DEWI) that can help water resource managers to anticipate droughts so that preparations can be made to mitigate the impact of water shortages. This study employs the expected-deficit-rate of normal water supply conditions as the drought early warning index. An annual-use-reservoir-based water supply system in southern Taiwan was selected as the case study. The water supply simulation was based on reservoir storage at the evaluation time and the reservoir inflow series to cope with the actual water supply process until the end of the hydrologic year. A variety of deficits could be realized during different hydrologic years of records and assumptions of initial reservoir storage. These deficits are illustrated using the Average Shortage Rate (ASR) and the value of the ASR, namely the DEWI. The ASR is divided into 5 levels according to 5 deficit-tolerance combinations of each kind of annual demand. A linear regression model and a Neuro-Fuzzy Computing Technique model were employed to estimate the DEWI using selected factors deduced from supply-demand traits and available information, including: rainfall, reservoir inflow and storage data. The chosen methods mentioned above are used to explain a significant index is useful for both model development and decision making. Tests in the Tsengwen-Wushantou reservoir system showed this DEWI to perform very well in adopting the proper mitigation policy at the end of the wet season.

  15. Autonomous Utility Connector for Lunar Surface Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar dust has been identified as a significant and present challenge in future exploration missions. Significant development is called for in the area of devices...

  16. Gear Bearing Transmission for the Lunar Environment, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Honeybee Robotics proposes to build upon technology we have previously developed with Goddard Space Flight Center and redesign specifically for the lunar environment...

  17. Scalable Lunar Surface Networks and Adaptive Orbit Access, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on our proposed innovations and accomplished work in Phase I, we will focus on developing the new MAC protocol and hybrid routing protocol for lunar surface...

  18. Electrodynamic Dust Shield for Lunar/ISS Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the...

  19. LunarCube for Deep Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co., Inc. and Morehead State University propose to develop a 6U CubeSat capable of reaching a lunar orbit from GEO. The primary objective is to demonstrate...

  20. High-Fidelity Lunar Dust Simulant, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  1. High-Fidelity Lunar Dust Simulant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  2. Mass Production of Mature Lunar Regolith Simulant, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA prepares for future exploration activities on the Moon, there is a growing need to develop higher fidelity lunar soil simulants that can accurately reproduce...

  3. Impact-Actuated Digging Tool for Lunar Excavation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Honeybee Robotics proposes to develop a vacuum compatible, impact-actuated digging tool for the excavation of frozen and compacted regolith on the lunar surface and...

  4. Lunar All-Terrain Utility Vehicle for EVA, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("LATUV") to assist extra-vehicular activities in...

  5. Human Lunar Destiny: Past, Present, and Future

    Science.gov (United States)

    Fletcher, David

    2002-01-01

    This paper offers conceptual strategy and rationale for returning astronauts to the moon. NASA's historic Apollo program enabled humans to make the first expeditionary voyages to the moon and to gather and return samples back to the earth for further study. To continue exploration of the moon within the next ten to fifteen years, one possible mission concept for returning astronauts using existing launch vehicle infrastructure is presented. During these early lunar missions, expeditionary trips are made to geographical destinations and permanent outposts are established at the lunar south pole. As these missions continue, mining operations begin in an effort to learn how to live off the land. Over time, a burgeoning economy based on mining and scientific activity emerges with the formation of more accommodating settlements and surface infrastructure assets. As lunar activity advances, surface infrastructure assets grow and become more complex, lunar settlements and outposts are established across the globe, travel to and from the moon becomes common place, and commerce between earth and the moon develops and flourishes. Colonization and development of the moon is completed with the construction of underground cities and the establishment of a full range of political, religious, educational, and recreational institutions with a diverse population from all nations of the world. Finally, rationale for diversifying concentrations of humanity throughout earth's neighborhood and the greater solar system is presented.

  6. Lunar base thermoelectric power station study

    Science.gov (United States)

    Determan, William; Frye, Patrick; Mondt, Jack; Fleurial, Jean-Pierre; Johnson, Ken; Stapfer, G.; Brooks, Michael D.; Heshmatpour, Ben

    2006-01-01

    Under NASA's Project Prometheus, the Nuclear Systems Program, the Jet Propulsion Laboratory, Pratt & Whitney Rocketdyne, and Teledyne Energy Systems have teamed with a number of universities, under the Segmented Thermoelectric Multicouple Converter (STMC) program, to develop the next generation of advanced thermoelectric converters for space reactor power systems. Work on the STMC converter assembly has progressed to the point where the lower temperature stage of the segmented multicouple converter assembly is ready for laboratory testing and the upper stage materials have been identified and their properties are being characterized. One aspect of the program involves mission application studies to help define the potential benefits from the use of these STMC technologies for designated NASA missions such as the lunar base power station where kilowatts of power are required to maintain a permanent manned presence on the surface of the moon. A modular 50 kWe thermoelectric power station concept was developed to address a specific set of requirements developed for this mission. Previous lunar lander concepts had proposed the use of lunar regolith as in-situ radiation shielding material for a reactor power station with a one kilometer exclusion zone radius to minimize astronaut radiation dose rate levels. In the present concept, we will examine the benefits and requirements for a hermetically-sealed reactor thermoelectric power station module suspended within a man-made lunar surface cavity. The concept appears to maximize the shielding capabilities of the lunar regolith while minimizing its handling requirements. Both thermal and nuclear radiation levels from operation of the station, at its 100-m exclusion zone radius, were evaluated and found to be acceptable. Site preparation activities are reviewed and well as transport issues for this concept. The goal of the study was to review the entire life cycle of the unit to assess its technical problems and technology

  7. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  8. Development and Validation of a Learning Progression for Change of Seasons, Solar and Lunar Eclipses, and Moon Phases

    Science.gov (United States)

    Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella

    2015-01-01

    In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons,…

  9. CE-4 Mission and Future Journey to Lunar

    Science.gov (United States)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  10. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  11. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  12. DEVELOPING ETHICAL BEHAVIOURS AT BPK THROUGH HUMAN RESOURCE MANAGEMENT PRACTICES

    Directory of Open Access Journals (Sweden)

    Yusuf Setiawan Syukur

    2015-12-01

    Full Text Available According to the 1945 Constitution, the Audit Board of the Republic of Indonesia (BPK has an important role in fostering good governance and combating corruption in Indonesia’s public sector through its audit works. To be successful, BPK must implement and enforce ethical behaviours within the organisation. There are laws and regulations (e.g., civil servants’ code of ethics and employee discipline and systems, policies, and practices set up by authorities at BPK (e.g., BPK’s code of ethics, whistle-blowing procedure, the Honourary Council of BPK’s Code of Ethics (MKKE, and ethics training that regulate and influence behaviours of employees and members of the board. When reviewing literature, this paper attempts to understand the antecedents of ethical/unethical behaviours in organisations and look for best practices (including human resource management practices in developing ethical behaviours in organisations. It turns out that the ethical frameworks within BPK have a strong theoretical support. Despite the strong theoretical support from the literature, this study attempts to identify gaps between the best practices and ethical frameworks within BPK. In response to the gaps, this study attempts to offer recommendations so as to close the gaps and improve the ethical frameworks within BPK. In the end, this study produces seventeen recommendations. KEYWORDS code of ethics, ethical behaviours, human resource management, ethics audit, and ethical climate survey. ABSTRAK Berdasarkan Undang-undang Dasar 1945, Badan Pemeriksa Keuangan Republik Indonesia (BPK mempunyai peran penting dalam meningkatkan tata kelola pemerintahan yang baik dan memberantas korupsi di sektor publik di Indonesia melalui kegiatan pemeriksaannya. Agar sukses dalam mencapai tujuan tersebut, BPK harus menerapkan dan menegakkan perilaku etis di dalam organisasi. Ada undang-undang dan peraturan peraturan (contoh: kode etik Pegawai Negeri Sipil (PNS dan peraturan disiplin

  13. Lunar UV-visible-IR mapping interferometric spectrometer

    Science.gov (United States)

    Smith, W. Hayden; Haskin, L.; Korotev, R.; Arvidson, R.; Mckinnon, W.; Hapke, B.; Larson, S.; Lucey, P.

    1992-01-01

    Ultraviolet-visible-infrared mapping digital array scanned interferometers for lunar compositional surveys was developed. The research has defined a no-moving-parts, low-weight and low-power, high-throughput, and electronically adaptable digital array scanned interferometer that achieves measurement objectives encompassing and improving upon all the requirements defined by the LEXSWIG for lunar mineralogical investigation. In addition, LUMIS provides a new, important, ultraviolet spectral mapping, high-spatial-resolution line scan camera, and multispectral camera capabilities. An instrument configuration optimized for spectral mapping and imaging of the lunar surface and provide spectral results in support of the instrument design are described.

  14. Perspectives on the Present State and Future of Higher Education Faculty Development in Kazakhstan: Implications for National Human Resource Development

    Science.gov (United States)

    Seitova, Dinara

    2016-01-01

    The article aims at examining the present state of higher education faculty development in Kazakhstan in the context of multidimensional nationwide development reforms and exploring implications for the National Human Resource Development of the country. For the purpose of this research, theoretical human resource development (HRD) and…

  15. Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    Science.gov (United States)

    Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.

    2011-01-01

    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.

  16. Hazard Detection Software for Lunar Landing

    Science.gov (United States)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  17. Lunar Core and Tides

    Science.gov (United States)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  18. The Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2009-01-01

    The Lunar Sample Compendium is a succinct summary of the data obtained from 40 years of study of Apollo and Luna samples of the Moon. Basic petrographic, chemical and age information is compiled, sample-by-sample, in the form of an advanced catalog in order to provide a basic description of each sample. The LSC can be found online using Google. The initial allocation of lunar samples was done sparingly, because it was realized that scientific techniques would improve over the years and new questions would be formulated. The LSC is important because it enables scientists to select samples within the context of the work that has already been done and facilitates better review of proposed allocations. It also provides back up material for public displays, captures information found only in abstracts, grey literature and curatorial databases and serves as a ready access to the now-vast scientific literature.

  19. Lunar South Pole Illumination: Review, Reassessment, and Power System Implications

    Science.gov (United States)

    Fincannon, James

    2007-01-01

    This paper reviews past analyses and research related to lunar south pole illumination and presents results of independent illumination analyses using an analytical tool and a radar digital elevation model. The analysis tool enables assessment at most locations near the lunar poles for any time and any year. Average illumination fraction, energy storage duration, solar/horizon terrain elevation profiles and illumination fraction profiles are presented for various highly illuminated sites which have been identified for manned or unmanned operations. The format of the data can be used by power system designers to develop mass optimized solar and energy storage systems. Data are presented for the worse case lunar day (a critical power planning bottleneck) as well as three lunar days during lunar south pole winter. The main site under consideration by present lunar mission planners (on the Crater Shackleton rim) is shown to have, for the worse case lunar day, a 0.71 average illumination fraction and 73 to 117 hours required for energy storage (depending on power system type). Linking other sites and including towers at either site are shown to not completely eliminate the need for energy storage.

  20. Synthesis and Stability of Iron Nanoparticles for Lunar Environment Studies

    Science.gov (United States)

    Hung, Ching-cheh; McNatt, Jeremiah

    2009-01-01

    Simulant of lunar dust is needed when researching the lunar environment. However, unlike the true lunar dust, today s simulants do not contain nanophase iron. Two different processes have been developed to fabricate nanophase iron to be used as part of the lunar dust simulant: (1) Sequentially treating a mixture of ferric chloride, fluorinated carbon, and soda lime glass beads at about 300 C in nitrogen, at room temperature in air, and then at 1050 C in nitrogen. The product includes glass beads that are grey in color, can be attracted by a magnet, and contain alpha-iron nanoparticles (which seem to slowly lose their lattice structure in ambient air during a period of 12 months). This product may have some similarity to the lunar glassy regolith that contains Fe(sup 0). (2) Heating a mixture of carbon black and a lunar simulant (a mixed metal oxide that includes iron oxide) at 1050 C in nitrogen. This process simulates lunar dust reaction to the carbon in a micrometeorite at the time of impact. The product contains a chemically modified simulant that can be attracted by a magnet and has a surface layer whose iron concentration increased during the reaction. The iron was found to be alpha-iron and Fe3O4 nanoparticles, which appear to grow after the fabrication process, but stabilizes after 6 months of ambient air storage.