WorldWideScience

Sample records for lunar planet sci

  1. The Moon is a Planet Too: Lunar Science and Robotic Exploration

    Science.gov (United States)

    Cohen, Barbara A.

    2009-01-01

    This slide presentation reviews some of what is known about the moon, and draws parallels between the moon and any other terrestrial planet. The Moon is a cornerstone for all rocky planets The Moon is a terrestrial body, formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core) The Moon is a cratered body, preserving a record of bombardment history in the inner solar system The Moon is an active body, experiencing moonquakes, releasing primordial heat, conducting electricity, sustaining bombardment, and trapping volatile molecules Lunar robotic missions provide early science return to obtain important science and engineering objectives, rebuild a lunar science community, and keep our eyes on the Moon. These lunar missions, both past and future are reviewed.

  2. SMART-1 highlights and relevant studies on early bombardment and geological processes on rocky planets

    International Nuclear Information System (INIS)

    Foing, B H; Koschny, D; Frew, D; Almeida, M; Zender, J; Heather, D; Peters, S; Racca, G D; Marini, A; Stagnaro, L; Josset, J L; Beauvivre, S; Grande, M; Kellett, B; Huovelin, J; Nathues, A; Mall, U; Ehrenfreund, P; McCannon, P

    2008-01-01

    We present results from SMART-1 science and technology payload, in the context of the Nobel symposium on 'Physics of Planetary Systems'. SMART-1 is Europe' first lunar mission (Foing et al 2000 LPSC XXXI Abstract 1677 (CDROM); Foing et al 2001 Earth, Moon Planets 85-86 523-31; Marini et al 2002 Adv. Space Res. 30 1895-900; Racca et al 2001 Earth Moon Planets 85-86 379-95, Racca et al 2002 Planet Space Sci. 50 1323-37) demonstrating technologies for future science and exploration missions, and providing advances in our understanding of lunar origin and evolution, and general planetary questions. The mission also contributes a step in developing an international program of lunar exploration. The spacecraft, launched on 27 September 2003 as an Ariane 5 Auxiliary passenger to geostationary transfer orbit (GTO), performed a 14-month long cruise using a tiny thrust of electric propulsion alone, reached lunar capture in November 2004, and lunar science orbit in March 2005. SMART-1 carried 7 hardware experiments (Foing et al 2003 Adv. Space Res. 31 2323, Foing et al 2005 LPI/LPSC XXXVI 2404 (CDROM)) performing 10 investigations, including 3 remote-sensing instruments, used during the cruise, the mission' nominal six-months and one-year extension in lunar science orbit. Three remote sensing instruments, D-CIXS, SIR and AMIE, have returned data that are relevant to a broad range of lunar studies. The mission provided regional and global x-ray measurements of the Moon, global high-spectral resolution NIR spectrometry, high spatial resolution colour imaging of selected regions. The South Pole-Aitken Basin (SPA) and other impact basins have been prime targets for studies using the SMART-1 suite of instruments. Combined, these should aid a large number of science studies, from bulk crustal composition and theories of lunar origin/evolution, the global and local crustal composition, to the search for cold traps at the lunar poles and the mapping of potential lunar resources. We

  3. Using Lunar Impact Basin Relaxation to Test Impact Flux Models

    Science.gov (United States)

    Nimmo, F.; Conrad, J. W.; Neumann, G. A.; Kamata, S.; Fassett, C.

    2017-12-01

    Gravity data obtained by the GRAIL mission [1] has constrained the number and distribution of lunar impact basins [2]. We analyzed crater densities for newly-proposed basins to assign relative ages. The extent to which a basin is relaxed is calculated using GRAIL-derived crustal thickness models [3] by comparing the mantle uplift under basins to the surrounding region. With our catalog we can investigate the distribution of basin properties through relative time. We identify a relaxation state transition (RT) around the pre-Nectarian 4 relative age group for basins with diameters > 450 km, similar to previous results using a pre-GRAIL basin catalog [4]. This RT likely signals a change in the global thermal state of the crust, representing the time at which the lunar moho temperature fell below 1400 K [4]. This transition happens 50-100 million years (Myr) after the lunar magma ocean (LMO) solidifies [4]. Based on models and inferences of LMO solidification [5, 6] the RT is expected to occur at 4.25-4.50 Ga, depending on the rate of cooling once a crustal lid has formed [5] and the amount of tidal heating in the early crust [6]. Monotonically declining impact flux models, such as [7] and [8] predict a younger RT; 4.07-4.08 and 4.24-4.27 Ga respectively. A scaled-down version of [8] can fit the RT but fails to match the observed number of younger, unrelaxed basins. Models that invoke a later transient increase in impact flux can reproduce the inferred RT time; for instance, the model of [9] gives a RT age of 4.43-4.46 Ga. This model matches the number of younger basins and implies that basin preservation started at 4.49 Ga, likely before the LMO completely solidified. [1] Zuber M.T. et al. (2013) Science, 339, 668-671. [2] Neumann G.A. et al. (2015) Science Advances, 1, e1500852. [3] Wieczorek M.A. (2013) Science, 339, 671-675. [4] Kamata S. et al. (2015) Icarus, 250, 492-504. [5] Elkins-Tanton L.T. et al. (2011) Earth Planet. Sci. Lett., 304, 326-336. [6] Meyer, J

  4. Lunar and terrestrial planet formation in the Grand Tack scenario

    Science.gov (United States)

    Jacobson, S. A.; Morbidelli, A.

    2014-01-01

    We present conclusions from a large number of N-body simulations of the giant impact phase of terrestrial planet formation. We focus on new results obtained from the recently proposed Grand Tack model, which couples the gas-driven migration of giant planets to the accretion of the terrestrial planets. The giant impact phase follows the oligarchic growth phase, which builds a bi-modal mass distribution within the disc of embryos and planetesimals. By varying the ratio of the total mass in the embryo population to the total mass in the planetesimal population and the mass of the individual embryos, we explore how different disc conditions control the final planets. The total mass ratio of embryos to planetesimals controls the timing of the last giant (Moon-forming) impact and its violence. The initial embryo mass sets the size of the lunar impactor and the growth rate of Mars. After comparing our simulated outcomes with the actual orbits of the terrestrial planets (angular momentum deficit, mass concentration) and taking into account independent geochemical constraints on the mass accreted by the Earth after the Moon-forming event and on the time scale for the growth of Mars, we conclude that the protoplanetary disc at the beginning of the giant impact phase must have had most of its mass in Mars-sized embryos and only a small fraction of the total disc mass in the planetesimal population. From this, we infer that the Moon-forming event occurred between approximately 60 and approximately 130 Myr after the formation of the first solids and was caused most likely by an object with a mass similar to that of Mars. PMID:25114304

  5. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  6. The Fulldome Curriculum for the Spitz SciDome Digital Planetarium: Volume 2

    Science.gov (United States)

    Bradstreet, David H.; Sanders, S. J.; Huggins, S.

    2014-01-01

    The Spitz Fulldome Curriculum (FDC) for the SciDome digital planetarium ushered in a new and innovative way to present astronomical pedagogy via its use of the unique teaching attributes of the digital planetarium. In the case of the FDC, which uses the ubiquitous Starry Night planetarium software as its driving engine, these engaging and novel teaching techniques have also been made usable to desktop computers and flat-screen video projectors for classroom use. Volume 2 of the FDC introduces exciting new classes and mini-lessons to further enlighten and invigorate students as they struggle with often difficult three dimensional astronomical concepts. Additionally, other topics with related astronomical ties have been created to integrate history into planetarium presentations. One of the strongest advantages of the SciDome is its use of Starry Night as its astronomical engine. With it students can create their own astronomical configurations in the computer lab or at home, using the PC or Mac version. They can then simply load their creations onto the SciDome planetarium system and display them for their classmates on the dome. This poster will discuss and illustrate some of the new content that has been developed for Volume 2. Topics covered in Volume 2 include eclipses, plotting planet locations on a curtate orbit chart by observing their positions in the sky, time and timekeeping (including sidereal day, hour angles, sidereal time, LAST, LMST, time zones and the International Date Line), teaching to the Boy Scout Merit Badge requirements, plotting scale analemmas on the surface of planets and interpreting them, precession, astronomical events in revolutionary Boston, the Lincoln Almanac Trial, eclipsing binaries, lunar librations, a trip through the universe, watching the speed of light move in real time, stellar sizes and the Milky Way.

  7. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Science.gov (United States)

    García Muñoz, A.

    2013-04-01

    The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  8. Lunar eclipses: Probing the atmosphere of an inhabited planet

    Directory of Open Access Journals (Sweden)

    Muñoz A. García

    2013-04-01

    Full Text Available The Moon's brightness during a lunar eclipse is indicative of the composition, cloudiness and aerosol loading of the Earth's atmosphere. The idea of using lunar eclipse observations to characterize the Earth's atmosphere is not new, but the interest raised by the prospects of discovering Earth-like exoplanets transiting their host stars has brought renewed attention to the method. We review some recent efforts made in the prediction and interpretation of lunar eclipses. We also comment on the contribution of the lunar eclipse theory to the refractive theory of planetary transits.

  9. OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P.

    2012-01-01

    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion of lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.

  10. Solar System Exploration Augmented by Lunar and Outer Planet Resource Utilization: Historical Perspectives and Future Possibilities

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional

  11. When did the lunar core dynamo cease?

    Science.gov (United States)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    hour) likely precludes impact fields as a source of thermoremanent magnetization. Our paleointensity experiments and Ar/Ar thermochronometry, currently in progress, should permit us to determine whether this remanence was acquired from a late lunar core dynamo. (1) Tikoo et al. (2012) Proc. Lunar Planet Sci. Conf. 43rd, #2691. (2) Gose et al. (1973) The Moon (7), p. 196-201.

  12. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    Science.gov (United States)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  13. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  14. The timeline of the lunar bombardment: Revisited

    Science.gov (United States)

    Morbidelli, A.; Nesvorny, D.; Laurenz, V.; Marchi, S.; Rubie, D. C.; Elkins-Tanton, L.; Wieczorek, M.; Jacobson, S.

    2018-05-01

    The timeline of the lunar bombardment in the first Gy of Solar System history remains unclear. Basin-forming impacts (e.g. Imbrium, Orientale), occurred 3.9-3.7 Gy ago, i.e. 600-800 My after the formation of the Moon itself. Many other basins formed before Imbrium, but their exact ages are not precisely known. There is an intense debate between two possible interpretations of the data: in the cataclysm scenario there was a surge in the impact rate approximately at the time of Imbrium formation, while in the accretion tail scenario the lunar bombardment declined since the era of planet formation and the latest basins formed in its tail-end. Here, we revisit the work of Morbidelli et al. (2012) that examined which scenario could be compatible with both the lunar crater record in the 3-4 Gy period and the abundance of highly siderophile elements (HSE) in the lunar mantle. We use updated numerical simulations of the fluxes of asteroids, comets and planetesimals leftover from the planet-formation process. Under the traditional assumption that the HSEs track the total amount of material accreted by the Moon since its formation, we conclude that only the cataclysm scenario can explain the data. The cataclysm should have started ∼ 3.95 Gy ago. However we also consider the possibility that HSEs are sequestered from the mantle of a planet during magma ocean crystallization, due to iron sulfide exsolution (O'Neil, 1991; Rubie et al., 2016). We show that this is likely true also for the Moon, if mantle overturn is taken into account. Based on the hypothesis that the lunar magma ocean crystallized about 100-150 My after Moon formation (Elkins-Tanton et al., 2011), and therefore that HSEs accumulated in the lunar mantle only after this timespan, we show that the bombardment in the 3-4 Gy period can be explained in the accretion tail scenario. This hypothesis would also explain why the Moon appears so depleted in HSEs relative to the Earth. We also extend our analysis of the

  15. Walking Wheel Design for Lunar Rove-Rand and Its Application Simulation Based on Virtual Lunar Environment

    Directory of Open Access Journals (Sweden)

    Zhao Yibing

    2014-05-01

    Full Text Available The lunar rover design is the key problem of planet exploration. It is extraordinarily important for researchers to fully understand the lunar terrain and propose the reasonable lunar rover. In this paper, one new type of walking wheel modeled on impeller is presented based on vehicle terramechanics. The passive earth pressure of soil mechanics put forward by C. A. Coulomb is employed to obtain the wheel traction force. Some kinematics simulations are conducted for lunar rover model. Besides, this paper presents how to model lunar landing terrain containing typical statistic characteristic including craters and boulders; then, the second step is to construct basal lunar surface by using Brown Fractal Motion and the next is to add craters and boulders by means of known diameter algorithm and Random-create Diameter Algorithm. By means of importing 2D plain of lunar surface into UG, 3D parasolid is modeled and finally imported to ADAMS, which is available for lunar rover kinematics and dynamics simulation. Lastly, based on power spectrum curve of lunar terrain, the spectral characteristic of three different lunar terrain roughness is educed by using reverse engineering algorithm. Simulation results demonstrated the frequency of vibration mechanics properties of different roughness surfaces.

  16. Report from International Lunar Exploration Working Group (ILEWG) to COSPAR

    Science.gov (United States)

    Foing, Bernard H.

    inputs to future missions, including a gap analysis of needed measurements. Highly resolved global data sets are required. Autonomous landing and hazard avoidance will depend on the best topographic map of the Moon, achievable by combining shared data. - New topics such as life sciences, partial gravity processes on the Moon should be followed in relation to future exploration needs.” http://sci.esa.int/ilewg/ http://sci.esa.int/ilewg/47170-gluc-iceum11-beijing-2010lunar-declaration/ References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth Sys-tem Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6

  17. Distributed SCI-based data acquisition systems constructed from SCI bridges and SCI switches

    International Nuclear Information System (INIS)

    Wu Bin; Kristiansen, E.; Skaali, B.; Bogaerts, A.; Divia, R.; ); Perea, E.

    1994-01-01

    The IEEE standard 1596-1992, Scalable Coherent Interface (SCI) provides novel possibilities to build data acquisition systems for large and very high rate experiments in high energy physics. The RD24 project at CERN started two years ago to investigate applications of SCI to data acquisition at the Large Hadron Collider (LHC). As part of the RD24 project, simulation of large SCI-based data acquisition systems is performed by a simulator written in the object-oriented language MODSIM II. The goal of this paper is to investigate the difference between SCI switch- and SCI-based systems, and to study some of the design criteria for the SCI switch element to form the interconnection of large scale SCI-based data acquisition systems. 15 refs., 14 figs., 2 tabs

  18. Lunar and Planetary Science XXXV: Moon and Mercury

    Science.gov (United States)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  19. SCI-FI

    DEFF Research Database (Denmark)

    Troiano, Giovanni Maria; Tiab, John; Lim, Youn Kyung

    2016-01-01

    Shape-changing interfaces (SCI) are rapidly evolving and creating new interaction paradigms in human-computer interaction (HCI). However, empirical research in SCI is still bound to present technological limitations and existing prototypes can only show a limited number of potential applications...... for shape change. In this paper we attempt to broaden the pool of examples of what shape change may be good for by investigating SCI using Science Fiction (Sci-Fi) movies. We look at 340 Sci-Fi movies to identify instances of SCI and analyze their behavioral patterns and the context in which they are used....... The result of our analysis presents four emerging behavioral patterns of shape change: (1) Reconfiguration, (2) Transformation, (3) Adaptation, and (4) Physicalization. We report a selection of SCI instances from Sci-Fi movies, which show how these behavioral patterns model functionalities of shape change...

  20. Lunar occultation observation of μ Sgr: A progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jatmiko, A. T. P. [Bosscha Observatory, Institut Teknologi Bandung (Indonesia); Puannandra, G. P.; Hapsari, R. D.; Putri, R. A.; Arifin, Z. M.; Haans, G. K.; Hadiputrawan, I. P. W. [Bosscha Observatory, Institut Teknologi Bandung, Indonesia and Astronomy Study Program, Institut Teknologi Bandung (Indonesia)

    2014-03-24

    Lunar Occultation (LO) is an event where limb of the Moon passing over a particular heavenly bodies such as stars, asteroids, or planets. In other words, during the event, stars, asteroids and planets are occulted by the Moon. When occulted objects contact the lunar limb, there will be a diffraction fringe(s) which can be measured photometrically, until the signal vanishes into noise. This event will give us a valuable information about binarities (of stars) and/or angular diameters estimation (of stars, planets, asteroids) in milliarcsecond resolution, by fitting with theoretical LO pattern. CCDs are common for LO observation because of its fast read out, and recently are developed for sub-meter class telescope. In this paper, our LO observation attempt of μ Sgr and its progress report are presented. The observation was conducted on July 30{sup th}, 2012 at Bosscha Observatory, Indonesia, using 45cm f/12 GOTO telescope combined with ST-9 XE CCD camera and Bessel B filter. We used drift-scan method to obtain light curve of the star as it was disappearing behind Moon's dark limb. Our goal is to detect binarity (or multiplicity) of this particular object.

  1. SEP-Kr and SEP-Xe in Lunar Ilmenite and the Ar/Kr/Xe Ratio in the Solar Wind

    Science.gov (United States)

    Wieler, R.; Baur, H.; Signer, P.

    1992-07-01

    the steps releasing nearly pure SEP gases, indicating element fractionation between SW-He/Ne, but essentially unfractionated SEP-He/Ne/Ar in lunar ilmenite. In contrast, Kr/Xe stays virtually constant (^84Kr/^132Xe = 8.4+-0.5), except in the first few steps. If the light three noble gases indeed are not fractionated in the SEP dominated steps, we would also expect no fractionation for Kr/Xe. The measured ^84Kr/^132Xe ratio is, however, about 2.4 times lower than the most recent "solar system" ratio (Anders and Grevesse, 1989), albeit only ~30% lower than the "solar" value preferred by Marti and Suess (1988). Kr/Xe ratios similar to those in ilmenites have been found earlier, e.g. in Peysanoe (Marti, 1969). They are often taken to indicate fractionated loss of solar noble gases. Based on the new CSSE results, we propose, instead, that lunar ilmenites retain a faithful record of ^84Kr/^132Xe in SW and SEP (and also ^36Ar/^84Kr(sub)SW = 1750+- 300). If so, this may indicate noble gas fractionation in the solar corpuscular radiation, perhaps depending on first ionization potential or a related parameter. Work supported by the Swiss National Science Foundation. References: Anders, E. and Grevesse, N. (1989) Geochim. Cosmochim. Acta. 53, 197-214. Benkert, J.-P. et al. (1988) Lunar Planet. Sci. (abstract) 19, 59-60. Geiss, J. (1973) Proc. 13th Int. Cosmic Ray Conf. 3375-3398. Geiss, J. and Bochsler, P. (1991) In The Sun in Time (eds. C. P. Sonett, M. S. Giampapa and M.S. Matthews), pp. 98-117. Univ. Arizona Press, Tucson, Arizona. Marti, K. (1969) Science. 166. 1263-1265. Marti, K. and Suess, H. E. (1988) Astrophys. Space Sci. 144. 507-517. Wieler, R. et al. (1986) Geochim. Cosmochim. Acta. 50. 1997-2017. Wieler, R. et al. (1992) Lunar Planet. Sci. (abstract) 23.

  2. Earth's transmission spectrum from lunar eclipse observations.

    Science.gov (United States)

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  3. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  4. Isotopes as tracers of the sources of the lunar material and processes of lunar origin.

    Science.gov (United States)

    Pahlevan, Kaveh

    2014-09-13

    Ever since the Apollo programme, isotopic abundances have been used as tracers to study lunar formation, in particular to study the sources of the lunar material. In the past decade, increasingly precise isotopic data have been reported that give strong indications that the Moon and the Earth's mantle have a common heritage. To reconcile these observations with the origin of the Moon via the collision of two distinct planetary bodies, it has been proposed (i) that the Earth-Moon system underwent convective mixing into a single isotopic reservoir during the approximately 10(3) year molten disc epoch after the giant impact but before lunar accretion, or (ii) that a high angular momentum impact injected a silicate disc into orbit sourced directly from the mantle of the proto-Earth and the impacting planet in the right proportions to match the isotopic observations. Recently, it has also become recognized that liquid-vapour fractionation in the energetic aftermath of the giant impact is capable of generating measurable mass-dependent isotopic offsets between the silicate Earth and Moon, rendering isotopic measurements sensitive not only to the sources of the lunar material, but also to the processes accompanying lunar origin. Here, we review the isotopic evidence that the silicate-Earth-Moon system represents a single planetary reservoir. We then discuss the development of new isotopic tracers sensitive to processes in the melt-vapour lunar disc and how theoretical calculations of their behaviour and sample observations can constrain scenarios of post-impact evolution in the earliest history of the Earth-Moon system. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  6. Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"

    Science.gov (United States)

    Foing, Bernard

    2017-04-01

    ://www.iafastro.org/events/iac/iac2016/globalnetworking-forum/making-the-moon-village-and-marsjourney-accessible-and-affordable-for-all/ (IAC 2016) ; [3] B. Foing et al , Highlights from Moon Village Workshop, held at ESTEC in December 2015, http://www.hou.usra.edu/meetings/lpsc2016/pdf/2719.pdf, http://www.hou.usra.edu/meetings/lpsc2016/pdf/2798.pdf [4] P. Ehrenfreund et al. "Toward a Global Space Exploration Program: A Stepping Stone Approach" (Advances in Space Research, 49, n°1, January 2012), prepared by COSPAR Panel on Exploration (PEX) [5] http://www.lpi.usra.edu/leag/GER_2011.pdf; [6] http://sci.esa.int/ilewg/47170-gluc-iceum11- beijing-2010lunar-declaration/; [7] http://www.lpi.usra.edu/meetings/leagilewg2008/ [8] http://sci.esa.int/ilewg/41506-iceum9-sorrento- 2007-lunar-declaration/ [9] National Research Council (2007), The Scientific Context for Exploration of the Moon [10] P. Ehrenfreund , B.H. Foing, A. Cellino Editors, The Moon and Near Earth Objects), Advances in Space Research, Volume 37, Issue 1, pp 1-192, 2006 [11] http://sci.esa.int/ilewg/38863-iceum8-beijing- 2006declaration/ [12] W. Huntress, D. Stetson, R. Farquhar, J. Zimmerman, B. Clark, W. O'Neil, R. Bourke& B. Foing,'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377 [13]http://sci.esa.int/ilewg/38178-iceum7-toronto-2005-declaration/ [14] H. Balsiger et al. Eds, International Lunar Workshop, 1994 May 31-June 3, Beatenberg, Switzerland. Proceedings. Ed. European Space Agency, 1994. ESA-SP-1170 [15] R.M. Bonnet et al, 'Mission to the Moon, Europe's Priorities for Scientific Exploration and Utilisation of the Moon', European Space Agency, ESA SP-1150, June 1992 [16] http://www.iafastro.org/events/iaf-spring-meetings/spring-meetings-2016/ [17] https://www.spacesymposium.org/ [18] http://www.egu2016.eu/ http://meetingorganizer.copernicus.org/EGU2016/session/20378 [19] https://els2016.arc.nasa.gov/ [20] https://nesf2016.arc.nasa.gov/ [21] https

  7. Radioactivity of the moon, planets, and meteorites

    Science.gov (United States)

    Surkou, Y. A.; Fedoseyev, G. A.

    1977-01-01

    Analytical data is summarized for the content of natural radioactive elements in meteorites, eruptive terrestrial rocks, and also in lunar samples returned by Apollo missions and the Luna series of automatic stations. The K-U systematics of samples analyzed in the laboratory are combined with data for orbital gamma-ray measurements for Mars (Mars 5) and with the results of direct gamma-ray measurements of the surface of Venus by the Venera 8 lander. Using information about the radioactivity of solar system bodies and evaluations of the content of K, U, and Th in the terrestrial planets, we examine certain aspects of the evolution of material in the protoplanetary gas-dust cloud and then in the planets of the solar system.

  8. Cataclysm No More: New Views on the Timing and Delivery of Lunar Impactors.

    Science.gov (United States)

    Zellner, Nicolle E B

    2017-09-01

    If properly interpreted, the impact record of the Moon, Earth's nearest neighbour, can be used to gain insights into how the Earth has been influenced by impacting events since its formation ~4.5 billion years (Ga) ago. However, the nature and timing of the lunar impactors - and indeed the lunar impact record itself - are not well understood. Of particular interest are the ages of lunar impact basins and what they tell us about the proposed "lunar cataclysm" and/or the late heavy bombardment (LHB), and how this impact episode may have affected early life on Earth or other planets. Investigations of the lunar impactor population over time have been undertaken and include analyses of orbital data and images; lunar, terrestrial, and other planetary sample data; and dynamical modelling. Here, the existing information regarding the nature of the lunar impact record is reviewed and new interpretations are presented. Importantly, it is demonstrated that most evidence supports a prolonged lunar (and thus, terrestrial) bombardment from ~4.2 to 3.4 Ga and not a cataclysmic spike at ~3.9 Ga. Implications for the conditions required for the origin of life are addressed.

  9. Fruits of exploration of moon and neighbouring planets of the solar system

    International Nuclear Information System (INIS)

    Lal, D.

    1976-01-01

    It has been demonstrated that a lot of quantitative information about the palaeontology of the Solar system can be derived from the results of the recent explorations of the Moon and other planets. Based on the study of the lunar samples, the geological, chemical and age aspects of the Moon are discussed. Comparisons are made with the geology of the Earth. The importance of the study of meteorites in understanding the evolution of the planets and the solar system is also pointed out. (A.K.)

  10. Interior design of the lunar outpost

    Science.gov (United States)

    Kennedy, Kriss J.

    1990-01-01

    This paper is part of an ongoing study on the interior design of a lunar outpost habitat facility. The concept presented represents the work done up to and including August 1989. This concept is part of NASA's ongoing effort to explore alternative options for planet surface systems habitation. Results of a volume analog study to determine the required pressurized volume are presented along with an internal layout of the habitat facility. The concept presented in this paper is a constructible lunar habitat that provides a living and working environment for a crew of 12. It is a 16-m diameter spherical pneumatic structure which contains 2145 cubic meters of volume. Five levels of living and working areas make up the 742 sq m of floor space. A 2-m vertical circulation shaft at the center allows for transfer of crew and equipment.

  11. Collisionless encounters and the origin of the lunar inclination.

    Science.gov (United States)

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  12. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ...

  13. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ...

  14. GLANCING VIEWS OF THE EARTH: FROM A LUNAR ECLIPSE TO AN EXOPLANETARY TRANSIT

    International Nuclear Information System (INIS)

    García Muñoz, A.; Barrena, R.; Montañés-Rodríguez, P.; Pallé, E.; Zapatero Osorio, M. R.; Martín, E. L.

    2012-01-01

    It has been posited that lunar eclipse observations may help predict the in-transit signature of Earth-like extrasolar planets. However, a comparative analysis of the two phenomena addressing in detail the transport of stellar light through the planet's atmosphere has not yet been presented. Here, we proceed with the investigation of both phenomena by making use of a common formulation. Our starting point is a set of previously unpublished near-infrared spectra collected at various phases during the 2008 August lunar eclipse. We then take the formulation to the limit of an infinitely distant observer in order to investigate the in-transit signature of the Earth-Sun system as being observed from outside our solar system. The refraction bending of sunlight rays that pass through Earth's atmosphere is a critical factor in the illumination of the eclipsed Moon. Likewise, refraction will have an impact on the in-transit transmission spectrum for specific planet-star systems depending on the refractive properties of the planet's atmosphere, the stellar size, and the planet's orbital distance. For the Earth-Sun system, at mid-transit, refraction prevents the remote observer's access to the lower ∼12-14 km of the atmosphere and, thus, also to the bulk of the spectroscopically active atmospheric gases. We demonstrate that the effective optical radius of the Earth in-transit is modulated by refraction and varies by ∼12 km from mid-transit to internal contact. The refractive nature of atmospheres, a property which is rarely accounted for in published investigations, will pose additional challenges to the characterization of Earth-like extrasolar planets. Refraction may have a lesser impact for Earth-like extrasolar planets within the habitable zone of some M-type stars.

  15. GLANCING VIEWS OF THE EARTH: FROM A LUNAR ECLIPSE TO AN EXOPLANETARY TRANSIT

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Munoz, A.; Barrena, R.; Montanes-Rodriguez, P.; Palle, E. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, E-38205 La Laguna, Tenerife (Spain); Zapatero Osorio, M. R.; Martin, E. L., E-mail: tonhingm@gmail.com [Centro de Astrobiologia, CSIC-INTA, Ctra. de Torrejon a Ajalvir, km 4, E-28550 Madrid (Spain)

    2012-08-20

    It has been posited that lunar eclipse observations may help predict the in-transit signature of Earth-like extrasolar planets. However, a comparative analysis of the two phenomena addressing in detail the transport of stellar light through the planet's atmosphere has not yet been presented. Here, we proceed with the investigation of both phenomena by making use of a common formulation. Our starting point is a set of previously unpublished near-infrared spectra collected at various phases during the 2008 August lunar eclipse. We then take the formulation to the limit of an infinitely distant observer in order to investigate the in-transit signature of the Earth-Sun system as being observed from outside our solar system. The refraction bending of sunlight rays that pass through Earth's atmosphere is a critical factor in the illumination of the eclipsed Moon. Likewise, refraction will have an impact on the in-transit transmission spectrum for specific planet-star systems depending on the refractive properties of the planet's atmosphere, the stellar size, and the planet's orbital distance. For the Earth-Sun system, at mid-transit, refraction prevents the remote observer's access to the lower {approx}12-14 km of the atmosphere and, thus, also to the bulk of the spectroscopically active atmospheric gases. We demonstrate that the effective optical radius of the Earth in-transit is modulated by refraction and varies by {approx}12 km from mid-transit to internal contact. The refractive nature of atmospheres, a property which is rarely accounted for in published investigations, will pose additional challenges to the characterization of Earth-like extrasolar planets. Refraction may have a lesser impact for Earth-like extrasolar planets within the habitable zone of some M-type stars.

  16. Infrared Lunar Laser Ranging at Calern : Impact on Lunar Dynamics

    Science.gov (United States)

    Viswanathan, Vishnu; Fienga, Agnes; Manche, Herve; Gastineau, Mickael; Courde, Clement; Torre, Jean Marie; Exertier, Pierre; Laskar, Jacques

    2017-04-01

    Introduction: Since 2015, in addition to the traditional green (532nm), infrared (1064nm) has been the preferred wavelength for lunar laser ranging at the Calern lunar laser ranging (LLR) site in France. Due to the better atmospheric transmission of IR with respect to Green, nearly 3 times the number of normal points have been obtained in IR than in Green [1]. Dataset: In our study, in addition to the historical data obtained from various other LLR sites, we include the recent IR normal points obtained from Calern over the 1 year time span (2015-2016), constituting about 4.2% of data spread over 46 years of LLR. Near even distribution of data provided by IR on both the spatial and temporal domain, helps us to improve constraints on the internal structure of the Moon modeled within the planetary ephemeris : INPOP [2]. Data reduction: IERS recommended models have been used in the data reduction software GINS (GRGS,CNES) [3]. Constraints provided by GRAIL [4], on the Lunar gravitational potential and Love numbers have been taken into account in the least-square fit procedure. Earth orientation parameters from KEOF series have been used as per a recent study [5]. Results: New estimates on the dynamical parameters of the lunar core will be presented. Acknowledgements: We thank the lunar laser ranging observers at Observatoire de la Côte d'Azur, France, McDonald Observatory, Texas, Haleakala Observatory, Hawaii, and Apache Point Observatory in New Mexico for providing LLR observations that made this study possible. The research described in this abstract was carried out at Geoazur-CNRS, France, as a part of a PhD thesis funded by Observatoire de Paris and French Ministry of Education and Research. References: [1] Clement C. et al. (2016) submitted to A&A [2] Fienga A. et al. (2015) Celest Mech Dyn Astr, 123: 325. doi:10.1007/s10569-015-9639-y [3] Viswanathan V. et al. (2015) EGU, Abstract 18, 13995 [4] Konopliv A. S. et al. (2013) J. Geophys. Res. Planets, 118, 1415

  17. Blue Marble: Remote Characterization of Habitable Planets

    Science.gov (United States)

    Woolf, Neville; Lewis, Brian; Chartres, James; Genova, Anthony

    2009-01-01

    The study of the nature and distribution of habitable environments beyond the Solar System is a key area for Astrobiology research. At the present time, our Earth is the only habitable planet that can be characterized in the same way that we might characterize planets beyond the Solar System. Due to limitations in our current and near-future technology, it is likely that extra-solar planets will be observed as single-pixel objects. To understand this data, we must develop skills in analyzing and interpreting the radiation obtained from a single pixel. These skills must include the study of the time variation of the radiation, and the range of its photometric, spectroscopic and polarimetric properties. In addition, to understand whether we are properly analyzing the single pixel data, we need to compare it with a ground truth of modest resolution images in key spectral bands. This paper discusses the concept for a mission called Blue Marble that would obtain data of the Earth using a combination of spectropolarimetry, spectrophotometry, and selected band imaging. To obtain imagery of the proper resolution, it is desirable to place the Blue Marble spacecraft no closer than the outer region of cis-lunar space. This paper explores a conceptual mission design that takes advantage of low-cost launchers, bus designs and mission elements to provide a cost effective observing platform located at one of the stable Earth-moon Lagrangian points (L4, L5). The mission design allows for the development and use of novel technologies, such as a spinning moon sensor for attitude control, and leverages lessons-learned from previous low-cost spacecraft such as Lunar Prospector to yield a low-risk mission concept.

  18. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    Science.gov (United States)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  19. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences ...

  20. Lunar Global Heat Flow: Predictions and Constraints

    Science.gov (United States)

    Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.

    2017-12-01

    The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.

  1. A low-frequency radio survey of the planets with RAE 2

    Science.gov (United States)

    Kaiser, M. L.

    1977-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer 2 (RAE 2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025-13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE 2.

  2. A low-frequency radio survey of the planets with RAE-2

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1976-08-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2

  3. A low-frequency radio survey of the planets with RAE-2

    Science.gov (United States)

    Kaiser, M. L.

    1976-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025 to 13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE-2.

  4. A low-frequency radio survey of the planets with RAE 2

    International Nuclear Information System (INIS)

    Kaiser, M.L.

    1977-01-01

    Over one thousand occultations of each planet in the solar system have occurred during the period from mid-1973 through mid-1976 as seen from the lunar orbiting Radio Astronomy Explorer 2 (RAE 29) spacecraft. These occultations have been examined for evidence of planetary radio emissions in the 0.025--13.1 MHz band. Only Jupiter and the earth have given positive results. Lack of detection of emission from the other planets can mean that either they do not emit radio noise in this band or the flux level of their emissions and/or its occurrence rate are too low to be detected by RAE 2

  5. Accretion of Planetesimals and the Formation of Rocky Planets

    Science.gov (United States)

    Chambers, John E.; O'Brien, David P.; Davis, Andrew M.

    2010-02-01

    Here we describe the formation of rocky planets and asteroids in the context of the planetesimal hypothesis. Small dust grains in protoplanetary disks readily stick together forming mm-to-cm-sized aggregates, many of which experience brief heating episodes causing melting. Growth to km-sized planetesimals might proceed via continued pairwise sticking, turbulent concentration, or gravitational instability of a thin particle layer. Gravitational interactions between planetesimals lead to rapid runaway and oligarchic growth forming lunar-to-Mars-sized protoplanets in 10^5 to 10^6 years. Giant impacts between protoplanets form Earth-mass planets in 10^7 to 10^8 years, and occasionally lead to the formation of large satellites. Protoplanets may migrate far from their formation locations due to tidal interactions with the surrounding disk. Radioactive decay and impact heating cause melting and differentiation of planetesimals and protoplanets, forming iron-rich cores and silicate mantles, and leading to some loss of volatiles. Dynamical perturbations from giant planets eject most planetesimals and protoplanets from regions near orbital resonances, leading to asteroid-belt formation. Some of this scattered material will collide with growing terrestrial planets, altering their composition as a result. Numerical simulations and radioisotope dating indicate that the terrestrial planets of the Solar System were essentially fully formed in 100-200 million years.

  6. Myxoid stroma and delicate vasculature of a superficial angiomyxoma give rise to the red planet sign.

    Science.gov (United States)

    Green, Margaret; Logemann, Nichola; Sulit, Daryl J

    2014-09-16

    Superficial angiomyxomas are uncommon benign mesenchymal tumors. They often recur locally if partially removed. This case report demonstrates not only the characteristic pathological findings of a superficial angiomyxoma in a 33- year-old man, but also shows a unique dermatoscopic image, which in our estimation resembles a celestial red planet such as the blood moon seen during a lunar eclipse. We propose to call this the "red planet" sign for a superficial angiomyxoma on dermoscopic examination.

  7. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ... Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal ...

  8. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ... Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences by Topic Resources ...

  9. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    Oxidation State of Vanadium in Spinel-Melt Pairs; 44) Testing the Magma Ocean Hypothesis Using Metal-Silicate Partitioning of Te, Se and S; 45) Solubility of Oxygen in Liquid Iron at High Pressure and Consequences for the Early Differentiation of Earth and Mars Metallic Liquid Segregation in Planetesimals; 46) Oxygen Fugacity of Lunar Basalts and the Lunar Mantle. Range of fo2 and the Effectiveness of Oxybarometers; 47) Thermodynamic Study of Dissociation Processes of Molecular Oxygen in Vapor over Oxide Compounds; 48) Oxygen Profile of a Thermo-Haliophilic Community in the Badwater Salt Flat; 49) Oxygen Barometry Using Synchrotron MicroXANES of Vanadium; 50) Mass-Independent Isotopic Fractionation of Sulfur from Sulfides in the Huronian Supergroup, Canada; 51) Mass Independent Isotopes and Applications to Planetary Atmospheres; 52) Electrical Conductivity, Oxygen Fugacity, and Mantle Materials; 53) Crustal Evolution and Maturation on Earth: Oxygen Isotope Evidence; 54) The Oxygen Isotope Composition of the Moon: Implications for Planet Formation; 55) Oxygen Isotope Composition of Eucrites and Implications for the Formation of Crust on the HED Parent Body; and 56) The Role of Water in Determining the Oxygen Isotopic Composition of Planets.

  10. Cosmic-ray production of tungsten isotopes in lunar samples and meteorites and its implications for Hf-W cosmochemistry

    Science.gov (United States)

    Leya, Ingo; Wieler, Rainer; Halliday, Alex N.

    2000-01-01

    Excesses and deficiencies in 182W in meteorites and lunar samples relative to the terrestrial 182W atomic abundance have been assigned to the decay of 182Hf (t1/2=9 Ma) and have been used to date metal-silicate fractionation events in the early solar system. Because the effects are very small, production and burn-out of tungsten isotopes by cosmic ray interactions are a concern in such studies. Masarik [J. Masarik, Contribution of neutron-capture reactions to observed tungsten isotopic ratios, Earth Planet. Sci. Lett. 152 (1997) 181-185] showed that neutron-capture reactions on tungsten isotopes can account at best for a minor part of the observed deficit of 182W in Toluca and other iron meteorites. On the other hand, in lunar samples and stony meteorites the production of 182W from 181Ta may become crucial. Here, we calculate this contribution as well as production and consumption of 182-186W by other neutron-induced reactions. The neutron fluence of each sample is estimated by its nominal cosmic-ray exposure age deduced from noble gas data. This approach overestimates the true cosmogenic W isotopic shifts for samples that might have been irradiated very close to the regolith surface. A quantitative estimate is often also hampered by a lack of Ta data. Despite these reservations, it appears that in many lunar samples neutron-capture on Ta has caused a large part of the observed 182W excess. On the other hand, in some samples, especially those with very low exposure ages, clearly only a minor or even negligible fraction of the 182W excess can be cosmogenic. Therefore, the conclusion, based on Hf-W model ages, that the Moon formed 50 Myr after the start of the solar system remains valid. Martian meteorites have lower Ta/W ratios and cosmic ray exposure ages than most lunar samples. Therefore, cosmogenic production has not significantly altered the W isotopic composition in Martian meteorites. Observed 182W excesses in Martian meteorites as well as the very large

  11. Reports and recommendations from COSPAR Planetary Exploration Committee (PEX) & International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Ehrenfreund, Pascale; Foing, Bernard

    2014-05-01

    In response to the growing importance of space exploration, the objectives of the COSPAR Panel on Exploration (PEX) are to provide high quality, independent science input to support the development of a global space exploration program while working to safeguard the scientific assets of solar system bodies. PEX engages with COSPAR Commissions and Panels, science foundations, IAA, IAF, UN bodies, and IISL to support in particular national and international space exploration working groups and the new era of planetary exploration. COSPAR's input, as gathered by PEX, is intended to express the consensus view of the international scientific community and should ultimately provide a series of guidelines to support future space exploration activities and cooperative efforts, leading to outstanding scientific discoveries, opportunities for innovation, strategic partnerships, technology progression, and inspiration for people of all ages and cultures worldwide. We shall focus on the lunar exploration aspects, where the COSPAR PEX is building on previous COSPAR, ILEWG and community conferences. An updated COSPAR PEX report is published and available online (Ehrenfreund P. et al, COSPAR planetary exploration panel report, http://www.gwu.edu/~spi/assets/COSPAR_PEX2012.pdf). We celebrate 20 years after the 1st International Conference on Exploration and Utilisation of the Moon at Beatenberg in June 1994. The International Lunar Exploration Working Group (ILEWG) was established the year after in April 1995 at an EGS meeting in Hamburg, Germany. As established in its charter, this working group reports to COSPAR and is charged with developing an international strategy for the exploration of the Moon (http://sci.esa.int/ilewg/ ). It discusses coordination between missions, and a road map for future international lunar exploration and utilisation. It fosters information exchange or potential and real future lunar robotic and human missions, as well as for new scientific and

  12. The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems

    Science.gov (United States)

    Adams, Fred C.

    2018-04-01

    Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.

  13. www.elearnSCI.org

    DEFF Research Database (Denmark)

    Chhabra, H S; Harvey, Lee; Muldoon, S

    2013-01-01

    OBJECTIVE: To develop a web-based educational resource for health professionals responsible for the management of spinal cord injury (SCI). The resource:www.elearnSCI.org is comprised of seven learning modules, each subdivided into various submodules. Six of the seven modules address the educatio......OBJECTIVE: To develop a web-based educational resource for health professionals responsible for the management of spinal cord injury (SCI). The resource:www.elearnSCI.org is comprised of seven learning modules, each subdivided into various submodules. Six of the seven modules address...... the educational needs of all disciplines involved in comprehensive SCI management. The seventh module addresses prevention of SCI. Each submodule includes an overview, activities, self-assessment questions and references. DEVELOPMENT OF THE RESOURCE: Three hundred and thirty-two experts from The International...... Spinal Cord Society (ISCoS) and various affiliated societies from 36 countries were involved in developing the resource through 28 subcommittees. The content of each submodule was reviewed and approved by the Education and Scientific Committees of ISCoS and finally by an Editorial Committee of 23 experts...

  14. Relativistic tests with lunar laser ranging

    Science.gov (United States)

    Hofmann, F.; Müller, J.

    2018-02-01

    This paper presents the recent version of the lunar laser ranging (LLR) analysis model at the Institut für Erdmessung (IfE), Leibniz Universität Hannover and highlights a few tests of Einstein’s theory of gravitation using LLR data. Investigations related to a possible temporal variation of the gravitational constant, the equivalence principle, the PPN parameters β and γ as well as the geodetic precession were carried out. The LLR analysis model was updated by gravitational effects of the Sun and planets with the Moon as extended body. The higher-order gravitational interaction between Earth and Moon as well as effects of the solid Earth tides on the lunar motion were refined. The basis for the modeled lunar rotation is now a 2-layer core/mantle model according to the DE430 ephemeris. The validity of Einstein’s theory was studied using this updated analysis model and an LLR data set from 1970 to January 2015. Within the estimated accuracies, no deviations from Einstein’s theory are detected. A relative temporal variation of the gravitational constant is estimated as \\dot{G}/G_0=(7.1+/-7.6)×10-14~yr-1 , the test of the equivalence principle gives Δ(m_g/m_i)EM=(-3+/-5)×10-14 and the Nordtvedt parameter \

  15. A Multi-Wavelength Grain-by-Grain Survey of Lunar Soils in Search of Rare Materials

    Science.gov (United States)

    Crites, S.; Lucey, P. G.; Viti, T.

    2014-12-01

    The Moon is unique among terrestrial planets for its lack of an atmosphere and global tectonic or volcanic processes. These factors and its position in the inner solar system mean that it is a potential repository of meteoritic material from all of the terrestrial planets. The National Research Council's 2007 report on the Scientific Context for the Exploration of the Moon highlighted this unique possibility and defined the search for rare materials including those from the early Earth as a key goal for future lunar exploration. Armstrong et al. (2002) estimated that Earth material could be present at the 7 ppm level in surface lunar regolith and emphasized that since a single gram of lunar fines contains over 10 million particles, the search for terran material in lunar soils should begin with the current stock of lunar samples. Joy et al. (2012) demonstrated that mineral and lithologic relics of impactors can survive and be recognized in lunar samples, and recent work by Burchell et al. (2014) suggests that fossil fragments from Earth could survive the extreme shocks associated with transport to the Moon. Following the concept laid out by Armstrong et al. (2002), we are conducting a survey of lunar soil samples using microscopic hyperspectral imaging spectroscopy across visible, near-infrared, and thermal infrared wavelengths to conduct a search for rare particles, including those that could be sourced from the early Earth. Our system currently consists of three microscopic imaging spectrometers with ~30 micron spatial resolution, permitting resolved imaging of individual grains. Fields of view of at least 1 cm and scan rates near 1 mm/sec permit rapid processing of relatively large quantities of sample. Existing spectrometers cover the 0.5 to 2.5 micron region, permitting detection and characterization of the common iron-bearing lunar minerals olivine and pyroxene, and the 8-14 micron region, which permits detection of other, rarer minerals of interest such as

  16. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal Cord Injuries Video Library SCI Medical Experts People Living with SCI Personal Experiences ...

  17. Radar studies of the planets. [radar measurements of lunar surface, Mars, Mercury, and Venus

    Science.gov (United States)

    Ingalls, R. P.; Pettengill, G. H.; Rogers, A. E. E.; Sebring, P. B. (Editor); Shapiro, I. I.

    1974-01-01

    The radar measurements phase of the lunar studies involving reflectivity and topographic mapping of the visible lunar surface was ended in December 1972, but studies of the data and production of maps have continued. This work was supported by Manned Spacecraft Center, Houston. Topographic mapping of the equatorial regions of Mars has been carried out during the period of each opposition since that of 1967. The method comprised extended precise traveling time measurements to a small area centered on the subradar point. As measurements continued, planetary motions caused this point to sweep out extensive areas in both latitude and longitude permitting the development of a fairly extensive topographical map in the equatorial region. Radar observations of Mercury and Venus have also been made over the past few years. Refinements of planetary motions, reflectivity maps and determinations of rotation rates have resulted.

  18. On the chronology of lunar origin and evolution. Implications for Earth, Mars and the Solar System as a whole

    Science.gov (United States)

    Geiss, Johannes; Rossi, Angelo Pio

    2013-11-01

    An origin of the Moon by a Giant Impact is presently the most widely accepted theory of lunar origin. It is consistent with the major lunar observations: its exceptionally large size relative to the host planet, the high angular momentum of the Earth-Moon system, the extreme depletion of volatile elements, and the delayed accretion, quickly followed by the formation of a global crust and mantle. According to this theory, an impact on Earth of a Mars-sized body set the initial conditions for the formation and evolution of the Moon. The impact produced a protolunar cloud. Fast accretion of the Moon from the dense cloud ensured an effective transformation of gravitational energy into heat and widespread melting. A "Magma Ocean" of global dimensions formed, and upon cooling, an anorthositic crust and a mafic mantle were created by gravitational separation. Several 100 million years after lunar accretion, long-lived isotopes of K, U and Th had produced enough additional heat for inducing partial melting in the mantle; lava extruded into large basins and solidified as titanium-rich mare basalt. This delayed era of extrusive rock formation began about 3.9 Ga ago and may have lasted nearly 3 Ga. A relative crater count timescale was established and calibrated by radiometric dating (i.e., dating by use of radioactive decay) of rocks returned from six Apollo landing regions and three Luna landing spots. Fairly well calibrated are the periods ≈4 Ga to ≈3 Ga BP (before present) and ≈0.8 Ga BP to the present. Crater counting and orbital chemistry (derived from remote sensing in spectral domains ranging from γ- and x-rays to the infrared) have identified mare basalt surfaces in the Oceanus Procellarum that appear to be nearly as young as 1 Ga. Samples returned from this area are needed for narrowing the gap of 2 Ga in the calibrated timescale. The lunar timescale is not only used for reconstructing lunar evolution, but it serves also as a standard for chronologies of the

  19. Early Critical Care Decisions and Outcomes after SCI: Track-SCI

    Science.gov (United States)

    2017-09-01

    injury represented grade 3 injury with super- imposed discrete foci of intramedullary T2 hypointensity attributed to the presence of macroscopic...Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci 2016;374: 20150202 CrossRef Medline 33. Linting M...recommendations for acute SCI.15 Earlier in the course of this patient population, high-dose methylprednisolone was used at the discretion of the treating spine

  20. Origins of the Lunar and Planetary Laboratory, University of Arizona

    Science.gov (United States)

    Cruikshank, Dale P.; Hartmann, William K.

    2014-11-01

    The roots of the Lunar and Planetary Laboratory (LPL) extend deep into the rich fabric of G. P. Kuiper’s view of the Earth as a planet and planetary systems as expected companions to most stars, as well as the post-war emergent technology of infrared detectors suitable for astronomy. These concepts and events began with Kuiper’s theoretical work at Yerkes Observatory on the origin of the Solar System, his discovery of two planetary satellites and observational work with his near-infrared spectrometer on the then-new McDonald 82-inch telescope in the mid- to late-1940s. A grant for the production of a photographic atlas of the Moon in the mid-1950s enabled him to assemble the best existing images of the Moon and acquire new photographs. This brought E. A. Whitaker and D. W. G. Arthur to Yerkes. Others who joined in the lunar work were geologist Carl S. Huzzen and grad student E. P. Moore, as well as undergrad summer students A. B. Binder and D. P. Cruikshank (both in 1958). The Atlas was published in 1959, and work began on an orthographic lunar atlas. Kuiper’s view of planetary science as an interdisciplinary enterprise encompassing astronomy, geology, and atmospheric physics inspired his vision of a research institution and an academic curriculum tuned to the combination of all the scientific disciplines embraced in a comprehensive study of the planets. Arrangements were made with the University of Arizona (UA) to establish LPL in affiliation with the widely recognized Inst. of Atmospheric Physics. Kuiper moved to the UA in late 1960, taking the lunar experts, graduate student T. C. Owen (planetary atmospheres), and associate B. M. Middlehurst along. G. van Biesbroeck also joined the migration to Tucson; Binder and Cruikshank followed along as new grad students. Astronomy grad student W. K. Hartmann came into the academic program at UA and the research group at LPL in 1961. Senior faculty affiliating with LPL in the earliest years were T. Gehrels, A. B

  1. Report from ILEWG and Cape Canaveral Lunar Declaration 2008

    Science.gov (United States)

    Foing, B. H.

    2009-04-01

    , Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [14] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [15] Hunt-ress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [16] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999.

  2. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics The Basics of ... injury? What is a Spinal Cord Injury? SCI Medical Experts People Living With SCI Personal Experiences By ...

  3. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury ...

  4. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  5. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  6. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical ...

  7. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  8. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Experts People Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close ... Experts People Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal ...

  9. Preface: SciDAC 2009

    Science.gov (United States)

    Simon, Horst

    2009-07-01

    By almost any measure, the SciDAC community has come a long way since DOE launched the SciDAC program back in 2001. At the time, we were grappling with how to efficiently run applications on terascale systems (the November 2001 TOP500 list was led by DOE's ASCI White IBM system at Lawrence Livermore achieving 7.2 teraflop/s). And the results stemming from the first round of SciDAC projects were summed up in two-page reports. The scientific results were presented at annual meetings, which were by invitation only and typically were attended by about 75 researchers. Fast forward to 2009 and we now have SciDAC Review, a quarterly magazine showcasing the scientific computing contributions of SciDAC projects and related programs, all focused on presenting a comprehensive look at Scientific Discovery through Advanced Computing. That is also the motivation behind the annual SciDAC conference that in 2009 was held from June 14-18 in San Diego. The annual conference, which can also be described as a celebration of all things SciDAC, grew out those meetings organized in the early days of the program. In 2005, the meeting was held in San Francisco and attendance was opened up to all members of the SciDAC community. The schedule was also expanded to include a keynote address, plenary speakers and other features found in a conference format. This year marks the fifth such SciDAC conference, which now comprises four days of computational science presentations, multiple poster sessions and, since last year, an evening event showcasing simulations and modeling runs resulting from SciDAC projects. The fifth annual SciDAC conference was remarkable on several levels. The primary purpose, of course, is to showcase the research accomplishments resulting from SciDAC programs in particular and computational science in general. It is these accomplishments, represented in 38 papers and 52 posters, that comprise this set of conference proceedings. These proceedings can stand alone as

  10. Proceedings of the 40th Lunar and Planetary Science Conference

    Science.gov (United States)

    2009-01-01

    The 40th Lunar and Planetary Science Conference included sessions on: Phoenix: Exploration of the Martian Arctic; Origin and Early Evolution of the Moon; Comet Wild 2: Mineralogy and More; Astrobiology: Meteorites, Microbes, Hydrous Habitats, and Irradiated Ices; Phoenix: Soil, Chemistry, and Habitability; Planetary Differentiation; Presolar Grains: Structures and Origins; SPECIAL SESSION: Venus Atmosphere: Venus Express and Future Missions; Mars Polar Caps: Past and Present; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part I; 5 Early Nebula Processes and Models; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Cosmic Gymnasts; Mars: Ground Ice and Climate Change; SPECIAL SESSION: Lunar Missions: Results from Kaguya, Chang'e-1, and Chandrayaan-1, Part II; Chondrite Parent-Body Processes; SPECIAL SESSION: Icy Satellites of Jupiter and Saturn: Salubrious Surfaces; SNC Meteorites; Ancient Martian Crust: Primary Mineralogy and Aqueous Alteration; SPECIAL SESSION: Messenger at Mercury: A Global Perspective on the Innermost Planet; CAIs and Chondrules: Records of Early Solar System Processes; Small Bodies: Shapes of Things to Come; Sulfur on Mars: Rocks, Soils, and Cycling Processes; Mercury: Evolution and Tectonics; Venus Geology, Volcanism, Tectonics, and Resurfacing; Asteroid-Meteorite Connections; Impacts I: Models and Experiments; Solar Wind and Genesis: Measurements and Interpretation; Mars: Aqueous Processes; Magmatic Volatiles and Eruptive Conditions of Lunar Basalts; Comparative Planetology; Interstellar Matter: Origins and Relationships; Impacts II: Craters and Ejecta Mars: Tectonics and Dynamics; Mars Analogs I: Geological; Exploring the Diversity of Lunar Lithologies with Sample Analyses and Remote Sensing; Chondrite Accretion and Early History; Science Instruments for the Mars Science Lander; . Martian Gullies: Morphology and Origins; Mars: Dunes, Dust, and Wind; Mars: Volcanism; Early Solar System Chronology

  11. Lunar exploration: opening a window into the history and evolution of the inner Solar System.

    Science.gov (United States)

    Crawford, Ian A; Joy, Katherine H

    2014-09-13

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. A SEARCH FOR SHORT-PERIOD ROCKY PLANETS AROUND WDs WITH THE COSMIC ORIGINS SPECTROGRAPH (COS)

    Energy Technology Data Exchange (ETDEWEB)

    Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin; Hines, Dean C.; Bourque, Matthew [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States)

    2016-05-20

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates.

  13. The inducible CAM plants in putative lunar lander experiments

    Science.gov (United States)

    Burlak, Olexii; Zaetz, Iryna; Soldatkin, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; de Vera, Jean-Pierre; Vidmachenko, Anatolii; Foing, Bernard H.; Kozyrovska, Natalia

    Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Cras-sulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3-to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009). References 1. Winter K., Garcia M., Holtum J. (2008) J. Exp. Bot. 59(7):1829-1840 2. Bourlak O., Lar O., Rogutskyy I., Mikheev A., Zaets I., Chervatyuk N., de Vera J.-P., Danilchenko A.B. Foing B.H., zyrovska N. (2010) Space Sci. Technol. 3. Kozyrovska N.O., Vidmachenko A.P., Foing B.H. et al. Exploration/call/estec/ESA. 2009.

  14. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    International Nuclear Information System (INIS)

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-01-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  15. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... spinal cord injury? play_arrow Why are adaptive sports so helpful after a spinal cord injury? play_arrow What’s your best advice for patients and families after a spinal cord injury? What is a Spinal Cord Injury? SCI Medical Experts People Living With SCI Personal Experiences By Topic ...

  16. Geologic Exploration of the Planets: A Personal Retrospective of the First 50 years

    Science.gov (United States)

    Carr, M. H.

    2013-12-01

    The modern era of exploration of planets and satellites beyond the Earth-Moon system began on 14 December 1962 when the Mariner 2 spacecraft flew by Venus. Since that time roughly 80 spacecraft have successfully visited other planets and their satellites. In 1962 we knew nothing of the geology of the non-terrestrial planets and satellites; they were just variously shaded discs and dots. Most of us entering the new field of planetary geology at the time did so in anticipation of the Apollo lunar landings. I was hired by Gene Shoemaker to work on lunar issues and to participate in the lunar geologic mapping program that he had initiated at the USGS. Lunar studies led naturally to planetary studies but none of us could have anticipated the geologic variety that exists within the Solar System as exemplified by the coronae of Venus, the canyons of Mars, the volcanoes of Io, the ice tectonics of Europa and Ganymede, the geysers of Enceladus and the methane-carved valleys of Titan. Although Mars appeared lunar-like in the first close-up images from the Mariner 4 (1965) and Mariners 6 and 7 (1969) fly-bys, the Mariner 9 (1971) orbiter soon revealed Mars' geologic variety. Planning imaging for Mariner 9 was challenging; aids were primitive and we essentially had a blank sheet to fill. By 1971, the Viking Project with its main objective to land on Mars and search for signs of life was well underway. In 1969 I was appointed leader of the Viking Orbiter imaging team. The main function of the cameras was to ensure that the landing sites were safe before landing. In 1976 when we acquired the first close-up images of the pre-chosen landing sites they were greeted with elation and horror, elation because of their quality, horror because of the roughness of the terrain that had seemed so smooth in the Mariner 9 images. There followed an intense period of searching for safer sites and ultimately the two landers did land safely. The search for life then followed with hopes soaring as

  17. Lunar Flashlight and Other Lunar Cubesats

    Science.gov (United States)

    Cohen, Barbara

    2017-01-01

    Water is a human-exploitable resource. Lunar Flashlight is a Cubesat mission to detect and map lunar surface ice in permanently-shadowed regions of the lunar south pole. EM-1 will carry 13 Cubesat-class missions to further smallsat science and exploration capabilities; much room to infuse LEO cubesat methodology, models, and technology. Exploring the value of concurrent measurements to measure dynamical processes of water sources and sinks.

  18. Our Lunar Destiny: Creating a Lunar Economy

    Science.gov (United States)

    Rohwer, Christopher J.

    2000-01-01

    "Our Lunar Destiny: Creating a Lunar Economy" supports a vision of people moving freely and economically between the earth and the Moon in an expansive space and lunar economy. It makes the economic case for the creation of a lunar space economy and projects the business plan that will make the venture an economic success. In addition, this paper argues that this vision can be created and sustained only by private enterprise and the legal right of private property in space and on the Moon. Finally, this paper advocates the use of lunar land grants as the key to unleashing the needed capital and the economic power of private enterprise in the creation of a 21st century lunar space economy. It is clear that the history of our United States economic system proves the value of private property rights in the creation of any new economy. It also teaches us that the successful development of new frontiers-those that provide economic opportunity for freedom-loving people-are frontiers that encourage, respect and protect the possession of private property and the fruits of labor and industry. Any new 21st century space and lunar economy should therefore be founded on this same principle.

  19. 75 FR 24747 - SCI, LLC/Zener-Rectifier Operations Division A Wholly Owned Subsidiary of SCI, LLC/ON...

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,235] SCI, LLC/Zener-Rectifier... Adjustment Assistance on October 19, 2009, applicable to workers of SCI LLC/Zener-Rectifier, Operations... Technical Resources were employed on-site at the Phoenix Arizona location of SCI LLC/Zener-Rectifier...

  20. SCI based data acquisition architectures

    International Nuclear Information System (INIS)

    Bogaerts, J.A.C.; Divia, R.; Renardy, J.F.

    1992-01-01

    This paper discusses the Scalable Coherent Interface (SCI), an IEEE proposed standard (P1596) for interconnecting multiprocessor systems. The standard defines point to point connections between nodes, which can be processors, memories or I/O devices. Networks containing a maximum of 64K nodes with a bandwidth of one Gbyte/s between nodes, may be constructed. SCI is an attractive candidate to serve as a backbone for high speed, large volume data acquisition systems such as required by future experiments at the proposed Large Hadron Collider (LHC) at CERN. Work has started to simulate SCI based architectures for data acquisition systems. The simulation program proved to be a useful tool to study SCI systems. First results are reported on a model of a large LHC experiment containing over 1000 nodes

  1. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  2. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-01-01

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M tot ∼> 1 M J the final eccentricity distribution remains broad, whereas for M tot ∼ J a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a ≅ 5-10 AU.

  3. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  4. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Sex and Fertility ... injury? What is a Spinal Cord Injury? SCI Medical Experts People Living With SCI Personal Experiences By ...

  5. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding ... Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury ...

  6. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  7. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ... Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation ...

  8. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close search Understanding Spinal ... with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical ...

  9. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  10. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Experts People Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate close ... Experts People Living with SCI Personal Experiences by Topic Resources Peer Counseling Blog About Media Donate Spinal ...

  11. SCI Hazard Report Methodology

    Science.gov (United States)

    Mitchell, Michael S.

    2010-01-01

    This slide presentation reviews the methodology in creating a Source Control Item (SCI) Hazard Report (HR). The SCI HR provides a system safety risk assessment for the following Ares I Upper Stage Production Contract (USPC) components (1) Pyro Separation Systems (2) Main Propulsion System (3) Reaction and Roll Control Systems (4) Thrust Vector Control System and (5) Ullage Settling Motor System components.

  12. Survival of extrasolar giant planet moons in planet-planet scattering

    Science.gov (United States)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  13. Lunar geodesy and cartography: a new era

    Science.gov (United States)

    Duxbury, Thomas; Smith, David; Robinson, Mark; Zuber, Maria T.; Neumann, Gregory; Danton, Jacob; Oberst, Juergen; Archinal, Brent; Glaeser, Philipp

    altimetry to NAC images is aided by the 5 spots showing regional and local slopes, along and cross-track, that are easily correlated visually to features within the images. Once can precisely register each of the 5 LOLA spots to specific pixels in LROC images of distinct features such as craters and boulders. This can be performed routinely for features at the 100 m level and larger. However, even features at the several m level can also be registered if a single LOLA spots probes the depth of a small crater while the other 4 spots are on the surrounding surface or one spot returns from the top of a small boulder seen by NAC. The automatic registration of LOLA tracks with NAC stereo digital terrain models should provide for even higher accuracy. Also the LOLA pulse spread of the returned signal, which is sensitive to slopes and roughness, is an additional source of information to help match the LOLA tracks to the images As the global coverage builds, LOLA will provide absolute coordinates in latitude, longitude and radius of surface features with accuracy at the meter level or better. The NAC images will then be reg-istered to the LOLA reference surface in the production of precision, controlled photomosaics, having spatial resolutions as good as 0.5 m/pixel. For hundreds of strategic sites viewed in stereo, even higher precision and more complete surface coverage is possible for the produc-tion of digital terrain models and mosaics. LRO, with LOLA and LROC, will improve the relative and absolute accuracy of geodesy and cartography by orders of magnitude, ushering in a new era for lunar geodesy and cartography. Robinson, M., et al., Space Sci. Rev., DOI 10.1007/s11214-010-9634-2, Date: 2010-02-23, in press. Smith, D., et al., Space Sci. Rev., DOI 10.1007/s11214-009-9512-y, published online 16 May 2009.

  14. Preface: SciDAC 2007

    Science.gov (United States)

    Keyes, David E.

    2007-09-01

    It takes a village to perform a petascale computation—domain scientists, applied mathematicians, computer scientists, computer system vendors, program managers, and support staff—and the village was assembled during 24-28 June 2007 in Boston's Westin Copley Place for the third annual Scientific Discovery through Advanced Computing (SciDAC) 2007 Conference. Over 300 registered participants networked around 76 posters, focused on achievements and challenges in 36 plenary talks, and brainstormed in two panels. In addition, with an eye to spreading the vision for simulation at the petascale and to growing the workforce, 115 participants—mostly doctoral students and post-docs complementary to the conferees—were gathered on 29 June 2007 in classrooms of the Massachusetts Institute of Technology for a full day of tutorials on the use of SciDAC software. Eleven SciDAC-sponsored research groups presented their software at an introductory level, in both lecture and hands-on formats that included live runs on a local BlueGene/L. Computation has always been about garnering insight into the behavior of systems too complex to explore satisfactorily by theoretical means alone. Today, however, computation is about much more: scientists and decision makers expect quantitatively reliable predictions from simulations ranging in scale from that of the Earth's climate, down to quarks, and out to colliding black holes. Predictive simulation lies at the heart of policy choices in energy and environment affecting billions of lives and expenditures of trillions of dollars. It is also at the heart of scientific debates on the nature of matter and the origin of the universe. The petascale is barely adequate for such demands and we are barely established at the levels of resolution and throughput that this new scale of computation affords. However, no scientific agenda worldwide is pushing the petascale frontier on all its fronts as vigorously as SciDAC. The breadth of this conference

  15. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution: Introduction. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The relative ages of various geologic units and structures place tight constraints on the origin of the Moon and the planet Mercury, and thus provide a better understanding of the geologic histories of these bodies. Crater statistics, a reexamination of lunar geologic maps, and the compilation of a geologic map of a quarter of Mercury's surface based on plains units dated relative to crater degradation classes were used to determine relative ages. This provided the basis for deducing the origin of intercrater plains and their role in terrestrial planet evolution.

  16. Preface: SciDAC 2006

    Science.gov (United States)

    Tang, William M., Dr.

    2006-01-01

    The second annual Scientific Discovery through Advanced Computing (SciDAC) Conference was held from June 25-29, 2006 at the new Hyatt Regency Hotel in Denver, Colorado. This conference showcased outstanding SciDAC-sponsored computational science results achieved during the past year across many scientific domains, with an emphasis on science at scale. Exciting computational science that has been accomplished outside of the SciDAC program both nationally and internationally was also featured to help foster communication between SciDAC computational scientists and those funded by other agencies. This was illustrated by many compelling examples of how domain scientists collaborated productively with applied mathematicians and computer scientists to effectively take advantage of terascale computers (capable of performing trillions of calculations per second) not only to accelerate progress in scientific discovery in a variety of fields but also to show great promise for being able to utilize the exciting petascale capabilities in the near future. The SciDAC program was originally conceived as an interdisciplinary computational science program based on the guiding principle that strong collaborative alliances between domain scientists, applied mathematicians, and computer scientists are vital to accelerated progress and associated discovery on the world's most challenging scientific problems. Associated verification and validation are essential in this successful program, which was funded by the US Department of Energy Office of Science (DOE OS) five years ago. As is made clear in many of the papers in these proceedings, SciDAC has fundamentally changed the way that computational science is now carried out in response to the exciting challenge of making the best use of the rapid progress in the emergence of more and more powerful computational platforms. In this regard, Dr. Raymond Orbach, Energy Undersecretary for Science at the DOE and Director of the OS has stated

  17. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement.

    Science.gov (United States)

    Inoue, Tomoo; Lin, Amity; Ma, Xiaokui; McKenna, Stephen L; Creasey, Graham H; Manley, Geoffrey T; Ferguson, Adam R; Bresnahan, Jacqueline C; Beattie, Michael S

    2013-10-01

    A significant proportion (estimates range from 16 to 74%) of patients with spinal cord injury (SCI) have concomitant traumatic brain injury (TBI), and the combination often produces difficulties in planning and implementing rehabilitation strategies and drug therapies. For example, many of the drugs used to treat SCI may interfere with cognitive rehabilitation, and conversely drugs that are used to control seizures in TBI patients may undermine locomotor recovery after SCI. The current paper presents an experimental animal model for combined SCI and TBI to help drive mechanistic studies of dual diagnosis. Rats received a unilateral SCI (75 kdyn) at C5 vertebral level, a unilateral TBI (2.0 mm depth, 4.0 m/s velocity impact on the forelimb sensori-motor cortex), or both SCI+TBI. TBI was placed either contralateral or ipsilateral to the SCI. Behavioral recovery was examined using paw placement in a cylinder, grooming, open field locomotion, and the IBB cereal eating test. Over 6weeks, in the paw placement test, SCI+contralateral TBI produced a profound deficit that failed to recover, but SCI+ipsilateral TBI increased the relative use of the paw on the SCI side. In the grooming test, SCI+contralateral TBI produced worse recovery than either lesion alone even though contralateral TBI alone produced no observable deficit. In the IBB forelimb test, SCI+contralateral TBI revealed a severe deficit that recovered in 3 weeks. For open field locomotion, SCI alone or in combination with TBI resulted in an initial deficit that recovered in 2 weeks. Thus, TBI and SCI affected forelimb function differently depending upon the test, reflecting different neural substrates underlying, for example, exploratory paw placement and stereotyped grooming. Concurrent SCI and TBI had significantly different effects on outcomes and recovery, depending upon laterality of the two lesions. Recovery of function after cervical SCI was retarded by the addition of a moderate TBI in the contralateral

  18. Lunar Riometry

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  19. Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    Governance Forum We, the participants of the GLUC-ICEUM11 conference, commit to an enhanced global cooperation towards international lunar exploration for the benefit of humankind. Endorsed by the delegates of GLUC-ICEUM11" References: [1] 1st International Lunar Workshop, Balsiger H. et al., Editors, European Space Agency, 1994. ESA-SP-1170. [2] 2nd International Lunar Workshop, Kyoto, H. Mizutani, editor, Japan Space Forum Publisher, 1997. [3] 3rd International Lunar Workshop, Moscow 1998, E. Galimov, editor. [4] ICEUM4, ESTEC, 2000, ESA SP-462, B.H. Foing & M. Perry, editors. [5] ICEUM5, Hawaii Nov 2003, Durst S.M. et al, Editors, Vol 108, 1-576 pp, Science and Technology Series, American Astronautical Society, 2004. [6] ICEUM6, Udaipur 2004, Bhandari N., Editor, Journal Earth System Science, India, 114, No6, Dec 2005, pp. 573-841. [7] ICEUM7, Toronto Sept 2005, sci.esa.int/ilewg. [8] ICEUM8, Beijing July 2006, Journal of Chinese Society of Astronautics, Vol. 28 Sup., 2007, Ji W., Editor. [9] ICEUM9, Sorrento, Italy, Foing B., Espinasse S., Kosters G., Editors. http://sci.esa.int/iceum9, Dec. 2007), [11] Ehrenfreund, P., Foing, B.H., Cellino, A. Editors, The Moon and Near Earth Objects, ASR Vol 37, 1, 2006. [12] Foing, B.H. et al editors, 'Astronomy and Space Science from the Moon', ASR 14, 6, 1994. [13] Ip W.-H., Foing, B.H., Masson Ph.L., editors, The Moon and Mars, ASR Vol 23, 11, 1999. [14] Foing, B.H. et al, editor, Lunar Exploration, Planetary and Space Science, Vol 50, 14-15, 2002. [15] Foing, B.H., Heather, D. editors, 'Lunar Exploration 2000', ASR Vol 30, Nr 8, 2002. [16] Huntress, W. et al 'The next steps in exploring deep space - A cosmic study by the IAA', Acta Astronautica, Vol 58, Issues 6-7, 2006, p302-377. [17] http://sci.esa.int/ilewg/43654-declaration-iceum10-leag-srr-florida-2008/ [18] Ehrenfreund P. et al (COSPAR planetary exploration panel report) 2012, ASR Vol 49, Nr 1, pp. 2-48.

  20. Effect of sun and planet-bound dark matter on planet and satellite dynamics in the solar system

    International Nuclear Information System (INIS)

    Iorio, L.

    2010-01-01

    We apply our recent results on orbital dynamics around a mass-varying central body to the phenomenon of accretion of Dark Matter-assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. We inspect its consequences on the orbits of the planets and their satellites over timescales of the order of the age of the solar system. It turns out that a solar Dark Matter accretion rate of ≈ 10 −12 yr −1 , inferred from the upper limit ΔM/M = 0.02−0.05 on the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr, would have displaced the planets faraway by about 10 −2 −10 1 au 4.5 Gyr ago. Another consequence is that the semimajor axis of the Earth's orbit, approximately equal to the Astronomical Unit, would undergo a secular increase of 0.02-0.05 m yr −1 , in agreement with the latest observational determinations of the Astronomical Unit secular increase of 0.07±0.02 m yr −1 and 0.05 m yr −1 . By assuming that the Sun will continue to accrete Dark Matter in the next billions year at the same rate as putatively done in the past, the orbits of its planets will shrink by about 10 −1 −10 1 au ( ≈ 0.2−0.5 au for the Earth), with consequences for their fate, especially of the inner planets. On the other hand, lunar and planetary ephemerides set upper bounds on the secular variation of the Sun's gravitational parameter GM which are one one order of magnitude smaller than ≈ 10 −12 yr −1 . Dark Matter accretion on planets has, instead, less relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits would have been just 10 −2 −10 1 km wider than now. Dark Matter accretion is not able to explain the observed accelerations of the orbits of some of the Galilean satellites of Jupiter, the secular decrease of the semimajor axis of the Earth's artificial satellite LAGEOS and the secular increase of the Moon's orbit eccentricity

  1. Lunar Meteoroid Impacts and How to Observe Them

    CERN Document Server

    Cudnik, Brian

    2009-01-01

    We all know that the pock marked face of the Moon looks the way it does because it was hit by meteors. But not many people know that this is still happening today. While the era of major impacts is over, lunar meteorites still cause flashes and puffs of gas, vaporized rock, and dust that we can observe. The Moon itself has a fascinating history. It is now thought to have been formed after a Mars-sized object collided with Earth and stripped off a portion of its mass. This debris took shape within a few hundred years and was originally much closer to our planet. The craters on its surface were largely formed by intense meteorite and asteroid bombardment between 4.6 billion and 3.8 billion years ago. In this comprehensive book, Brian Cudnik, one of the first people to observe a meteorite impact on the Moon in real time, shows how both amateur and practical astronomers can look for these ‘lunar transient phenomena,’ or LTPs. He explains in detail the processes that formed the craters and impact marks we see ...

  2. Lunar recession encoded in tidal rhythmites: a selective overview with examples from Argentina

    Science.gov (United States)

    de Azarevich, Vanina L. López; Azarevich, Miguel B.

    2017-08-01

    The study of tides from the sedimentary record of tidal rhythmites, applying fast Fourier transform analysis, contributes to the understanding of the surficial evolution of our highly dynamic planet, and of the astronomical cycles that influenced the ancient tidal systems. This overview of lunar retreat rates, which includes examples from Argentina, displays a generalized pattern of nonlinear, progressively extended lunar cycles up to the present day. The lunar retreat calculated at different stages of the Earth's history identifies three time spans of extremely high recession rates, amounting to almost twice that of the present day: Archean-Paleoproterozoic (6.93 cm/year), Neoproterozoic I-Ediacaran (7.01 cm/year) and Ediacaran-early Cambrian (6.48 cm/year). Older comparable recession rates are difficult to recognize because of the lack of tidal rhythmic sequences. The maximum lunar retreat rate is registered after the Copernican meteor bombardment event on the Moon at 900 Ma, and the time span coincides with the continental dispersal of Rodinia. Every acceleration of the lunar retreat rate coincides with two main processes: (1) meteorite impacts on the Earth or Moon, and (2) reconfiguration of landmasses accompanied by earthquakes that generated changes in the rotational axis of the Earth, inundation surfaces, and glaciation/deglaciation processes. The simultaneous occurrence of such processes makes it difficult to distinguish the causes and effects of each individual process, but its conjunction would have promoted the destabilization of the Earth-Moon system in terms of moment of inertia that was transferred to the Moon rotation.

  3. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    being developed in a collaborative effort between Langley Research Center and Kennedy Space Center. The screens typically consist of spiral shaped conductive traces patterned on high dielectric substrates (i.e. glass, quartz, polyimide film, etc.). Two broad categories of substrate materials are being investigated for the screens. One category consists of transparent substrates (i.e. glass, quartz, sapphire, etc.), and the other non-transparent sub-strates (Kapton, polyimide films, metals, etc.). The transparent screens utilize patterns made from indium tin oxide (ITO), a transparent conductive material, on clear substrates while the non-transparent screens use copper patterns on a transluscent or opaque substrates. Further, the screen is coated with a high dielectric polyimide cover layer to protect the screen pattern. One promising cover layer material that is currently being investigated is Langley Research Center-Soluble Imide (LaRC-SI), a NASA LaRC developed polyimide. Lastly, a top-coat of hard, inorganic material is evaporated onto the cover layer for protection from scratches due to abrasive nature of the dust. Of note, several top-coat materials are under investigation and include: aluminum oxide, silicon dioxide, titanium oxide, yttrium oxide, zirconium oxide, and zinc sulfide. The electrostatic dust mitigation screens function when a high voltage (700V or greater) is applied to the screen electrodes, thus creating an electromagnetic wave across the surface of the screen that repels the dust. Lunar dust typically contains a high positive charge; therefore, the screens are charged with a higher positive charge that effectively repels dust from the surface (i.e. like charges repel, unlike charges attract). It is anticipated that full development and maturation of this technology will enable humans to sustain a long term presence on the moon, and other planets where dust may have negative implications.

  4. Lunar and Planetary Geology

    Science.gov (United States)

    Basilevsky, Alexander T.

    2018-05-01

    Lunar and planetary geology can be described using examples such as the geology of Earth (as the reference case) and geologies of the Earth's satellite the Moon; the planets Mercury, Mars and Venus; the satellite of Saturn Enceladus; the small stony asteroid Eros; and the nucleus of the comet 67P Churyumov-Gerasimenko. Each body considered is illustrated by its global view, with information given as to its position in the solar system, size, surface, environment including gravity acceleration and properties of its atmosphere if it is present, typical landforms and processes forming them, materials composing these landforms, information on internal structure of the body, stages of its geologic evolution in the form of stratigraphic scale, and estimates of the absolute ages of the stratigraphic units. Information about one body may be applied to another body and this, in particular, has led to the discovery of the existence of heavy "meteoritic" bombardment in the early history of the solar system, which should also significantly affect Earth. It has been shown that volcanism and large-scale tectonics may have not only been an internal source of energy in the form of radiogenic decay of potassium, uranium and thorium, but also an external source in the form of gravity tugging caused by attractions of the neighboring bodies. The knowledge gained by lunar and planetary geology is important for planning and managing space missions and for the practical exploration of other bodies of the solar system and establishing manned outposts on them.

  5. Lunar Reconnaissance Orbiter Lunar Workshops for Educators

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Hessen, K.; Bleacher, L.

    2012-12-01

    The Lunar Workshops for Educators (LWEs) are a series of weeklong professional development workshops, accompanied by quarterly follow-up sessions, designed to educate and inspire grade 6-12 science teachers, sponsored by the Lunar Reconnaissance Orbiter (LRO). Participants learn about lunar science and exploration, gain tools to help address common student misconceptions about the Moon, find out about the latest research results from LRO scientists, work with data from LRO and other lunar missions, and learn how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks and through authentic research experiences. LWEs are held around the country, primarily in locations underserved with respect to NASA workshops. Where possible, workshops also include tours of science facilities or field trips intended to help participants better understand mission operations or geologic processes relevant to the Moon. Scientist and engineer involvement is a central tenant of the LWEs. LRO scientists and engineers, as well as scientists working on other lunar missions, present their research or activities to the workshop participants and answer questions about lunar science and exploration. This interaction with the scientists and engineers is consistently ranked by the LWE participants as one of the most interesting and inspiring components of the workshops. Evaluation results from the 2010 and 2011 workshops, as well as preliminary analysis of survey responses from 2012 participants, demonstrated an improved understanding of lunar science concepts among LWE participants in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and effectively share LRO data with students. Teachers reported increased confidence in helping students conduct research using lunar data, and learned about programs that would allow their students to make authentic

  6. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  7. Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was

  8. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    Science.gov (United States)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  9. Photometric Lunar Surface Reconstruction

    Science.gov (United States)

    Nefian, Ara V.; Alexandrov, Oleg; Morattlo, Zachary; Kim, Taemin; Beyer, Ross A.

    2013-01-01

    Accurate photometric reconstruction of the Lunar surface is important in the context of upcoming NASA robotic missions to the Moon and in giving a more accurate understanding of the Lunar soil composition. This paper describes a novel approach for joint estimation of Lunar albedo, camera exposure time, and photometric parameters that utilizes an accurate Lunar-Lambertian reflectance model and previously derived Lunar topography of the area visualized during the Apollo missions. The method introduced here is used in creating the largest Lunar albedo map (16% of the Lunar surface) at the resolution of 10 meters/pixel.

  10. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Industrialization

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Loucks, Mike; Carrico, John; Policastri, Daniel

    2017-01-01

    A new concept study was initiated to examine the architecture needed to gradually develop an economical, evolvable and sustainable lunar infrastructure using a public/private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop a lunar infrastructure system that would be mutually beneficial. This approach would also require NASA and its industry partners to share costs in the development phase and then transfer operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, communication towers and satellites, autonomous rover operations, landing pads and resource extraction operations. The public/private partnerships approach used in this study leveraged best practices from NASA's Commercial Orbital Transportation Services (COTS) program which introduced an innovative and economical approach for partnering with industry to develop commercial cargo services to the International Space Station. This program was planned together with the ISS Commercial Resupply Services (CRS) contracts which was responsible for initiating commercial cargo delivery services to the ISS for the first time. The public/private partnerships approach undertaken in the COTS program proved to be very successful in dramatically reducing development costs for these ISS cargo delivery services as well as substantially reducing operational costs. To continue on this successful path towards installing economical infrastructure services for LEO and beyond, this new study, named Lunar COTS (Commercial Operations and Transport Services), was conducted to examine extending the NASA COTS model to cis-lunar space and the lunar surface. The goals of the Lunar COTS concept are to: 1) develop and demonstrate affordable and commercial cis-lunar and surface capabilities, such as lunar cargo

  11. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Science.gov (United States)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  12. Lunar horticulture.

    Science.gov (United States)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  13. Emblem of the Apollo 17 lunar landing mission

    Science.gov (United States)

    1972-01-01

    This is the Official emblem of the Apollo 17 lunar landing mission which will be flown by Astronauts Eugene A. Cernan, Ronald E. Evans and Harrison H. Schmitt. The insignia is dominated by the image of Apollo, the Greek sun god. Suspended in space behind the head of Apollo is an American eagle of contemporary design, the red bars of the eagle's wing represent the bars in the U.S. flag; the three white stars symbolize the three astronaut crewmen. The background is deep blue space and within it are the Moon, the planet Saturn and a spiral galaxy or nebula. The Moon is partially overlaid by the eagle's wing suggesting that this is a celestial body that man has visited and in that sense conquered. The thrust of the eagle and the gaze of Apollo to the right and toward Saturn and the galaxy is meant to imply that man's goals in space will someday include the planets and perhaps the stars. The colors of the emblem are red, white and blue, the colors of our flag; with the addition of gold, to

  14. Lunar transportation system

    Science.gov (United States)

    1993-07-01

    The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.

  15. Petrology of lunar rocks and implication to lunar evolution

    Science.gov (United States)

    Ridley, W. I.

    1976-01-01

    Recent advances in lunar petrology, based on studies of lunar rock samples available through the Apollo program, are reviewed. Samples of bedrock from both maria and terra have been collected where micrometeorite impact penetrated the regolith and brought bedrock to the surface, but no in situ cores have been taken. Lunar petrogenesis and lunar thermal history supported by studies of the rock sample are discussed and a tentative evolutionary scenario is constructed. Mare basalts, terra assemblages of breccias, soils, rocks, and regolith are subjected to elemental analysis, mineralogical analysis, trace content analysis, with studies of texture, ages and isotopic composition. Probable sources of mare basalts are indicated.

  16. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroid Space Weathering Studies

    Science.gov (United States)

    Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David; hide

    2011-01-01

    Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3

  17. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  18. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  19. Lunar e-Library: A Research Tool Focused on the Lunar Environment

    Science.gov (United States)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale

    2007-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  20. Myxoid stroma and delicate vasculature of a superficial angiomyxoma give rise to the red planet sign

    OpenAIRE

    Green, Margaret; Logemann, Nichola; Sulit, Daryl J

    2014-01-01

    Superficial angiomyxomas are uncommon benign mesenchymal tumors. They often recur locally if partially removed. This case report demonstrates not only the characteristic pathological findings of a superficial angiomyxoma in a 33- year-old man, but also shows a unique dermatoscopic image, which in our estimation resembles a celestial red planet such as the blood moon seen during a lunar eclipse. We propose to call this the “red planet” sign for a superficial angiomyxoma on dermoscopic examinat...

  1. Magmatic intrusions in the lunar crust

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  2. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  3. SCI-NutriNord - a Nordic Initiative on Patient Education on Nutrition for People with Spinal Cord Injury (SCI)

    DEFF Research Database (Denmark)

    Steensgaard, Randi

    2017-01-01

    People with SCI are at high risk of developing secondary conditions of which several are linked to nutrition: overweight/obesity, chronic constipation and/or diarrhea and pressure sores are some examples. Proper nutrition is imperative to prevent and treat these conditions. However, there is a lack...... of evidence-based information materials about healthy eating for people with SCI at least in the Nordic languages. The aim of this multidisciplinary workshop is to: A. Inform about SCI-NutriNord and the first steps that have been taken in developing materials on nutrition as educational teaching aids...... to malnutrition Target group for this workshop is persons who have an interest in problem areas linked to nutrition and SCI, and who want to take part in the development of relevant patient education materials....

  4. Psychometric evaluation of the Spanish version of the MPI-SCI.

    Science.gov (United States)

    Soler, M D; Cruz-Almeida, Y; Saurí, J; Widerström-Noga, E G

    2013-07-01

    Postal surveys. To confirm the factor structure of the Spanish version of the MPI-SCI (MPI-SCI-S, Multidimensional Pain Inventory in the SCI population) and to test its internal consistency and construct validity in a Spanish population. Guttmann Institute, Barcelona, Spain. The MPI-SCI-S along with Spanish measures of pain intensity (Numerical Rating Scale), pain interference (Brief Pain Inventory), functional independence (Functional Independence Measure), depression (Beck Depression Inventory), locus of control (Multidimensional health Locus of Control), support (Functional Social Support Questionnaire (Duke-UNC)), psychological well-being (Psychological Global Well-Being Index) and demographic/injury characteristics were assessed in persons with spinal cord injury (SCI) and chronic pain (n=126). Confirmatory factor analysis suggested an adequate factor structure for the MPI-SCI-S. The internal consistency of the MPI-SCI-S subscales ranged from acceptable (r=0.66, Life Control) to excellent (r=0.94, Life Interference). All MPI-SCI-S subscales showed adequate construct validity, with the exception of the Negative and Solicitous Responses subscales. The Spanish version of the MPI-SCI is adequate for evaluating chronic pain impact following SCI in a Spanish-speaking population. Future studies should include additional measures of pain-related support in the Spanish-speaking SCI population.

  5. [SciELO: method for electronic publishing].

    Science.gov (United States)

    Laerte Packer, A; Rocha Biojone, M; Antonio, I; Mayumi Takemaka, R; Pedroso García, A; Costa da Silva, A; Toshiyuki Murasaki, R; Mylek, C; Carvalho Reisl, O; Rocha F Delbucio, H C

    2001-01-01

    It describes the SciELO Methodology Scientific Electronic Library Online for electronic publishing of scientific periodicals, examining issues such as the transition from traditional printed publication to electronic publishing, the scientific communication process, the principles which founded the methodology development, its application in the building of the SciELO site, its modules and components, the tools use for its construction etc. The article also discusses the potentialities and trends for the area in Brazil and Latin America, pointing out questions and proposals which should be investigated and solved by the methodology. It concludes that the SciELO Methodology is an efficient, flexible and wide solution for the scientific electronic publishing.

  6. SCI implementation study for LHCb data acquisition

    CERN Document Server

    Müller, H

    1998-01-01

    This paper proposes the use of SCI 1 as a scalable standard to implement the eventbuilder network between the Readout-Units and the Subfarm Controllers of LHCb. SCI [Ref 1] allows for a memory bus-like interconnection between the data sources and the CPU farm, this implies that sources can directly write data to event-buffers in the farm. This data-driven eventbuilding is enhanced by DMA engines as part of the SCI adapters at the source buffers. In general, data may be either written from the sources (event driven DMA for the full readout) or pulled from the destination (demand-driven DMA for the phased readout). A mixture of both readout architectures is possible, a second level push and a third level pull scheme could simultaneously coexist across the same physical network. Sources and destinations are interconnected via very high bandwidth SCI rings ( 4-8 Gbit/s). By using SCI switches, bandwidth scaling up to any required throughput is possible. The functionalities of a Readout Unit (RU) and a Subfarm Con...

  7. Lunar Limb Observatory: An Incremental Plan for the Utilization, Exploration, and Settlement of the Moon

    Science.gov (United States)

    Lowman, Paul. D., Jr.

    1996-01-01

    This paper proposes a comprehensive incremental program, Lunar Limb Observatory (LLO), for a return to the Moon, beginning with robotic missions and ending with a permanent lunar settlement. Several recent technological developments make such a program both affordable and scientifically valuable: robotic telescopes, the Internet, light-weight telescopes, shared- autonomy/predictive graphics telerobotic devices, and optical interferometry systems. Reasons for focussing new NASA programs on the Moon include public interest, Moon-based astronomy, renewed lunar exploration, lunar resources (especially helium-3), technological stimulus, accessibility of the Moon (compared to any planet), and dispersal of the human species to counter predictable natural catastrophes, asteroidal or cometary impacts in particular. The proposed Lunar Limb Observatory would be located in the crater Riccioli, with auxiliary robotic telescopes in M. Smythii and at the North and South Poles. The first phase of the program, after site certification, would be a series of 5 Delta-launched telerobotic missions to Riccioli (or Grimaldi if Riccioli proves unsuitable), emplacing robotic telescopes and carrying out surface exploration. The next phase would be 7 Delta-launched telerobotic missions to M. Smythii (2 missions), the South Pole (3 missions), and the North Pole (2 missions), emplacing robotic telescopes to provide continuous all-sky coverage. Lunar base establishment would begin with two unmanned Shuttle/Fitan-Centaur missions to Riccioli, for shelter emplacement, followed by the first manned return, also using the Shuttle/Fitan-Centaur mode. The main LLO at Riccioli would then be permanently or periodically inhabited, for surface exploration, telerobotic rover and telescope operation and maintenance, and support of Earth-based student projects. The LLO would evolve into a permanent human settlement, serving, among other functions, as a test area and staging base for the exploration

  8. What Are the Treatments for Spinal Cord Injury (SCI)?

    Science.gov (United States)

    ... What are the treatments for spinal cord injury (SCI)? Unfortunately, there are at present no known ways ... function of the nerves that remain after an SCI. SCI treatment currently focuses on preventing further injury ...

  9. Performance of the SciBar cosmic ray telescope (SciCRT) toward the detection of high-energy solar neutrons in solar cycle 24

    Science.gov (United States)

    Sasai, Yoshinori; Nagai, Yuya; Itow, Yoshitaka; Matsubara, Yutaka; Sako, Takashi; Lopez, Diego; Itow, Tsukasa; Munakata, Kazuoki; Kato, Chihiro; Kozai, Masayoshi; Miyazaki, Takahiro; Shibata, Shoichi; Oshima, Akitoshi; Kojima, Hiroshi; Tsuchiya, Harufumi; Watanabe, Kyoko; Koi, Tatsumi; Valdés-Galicia, Jose Francisco; González, Luis Xavier; Ortiz, Ernesto; Musalem, Octavio; Hurtado, Alejandro; Garcia, Rocio; Anzorena, Marcos

    2014-12-01

    We plan to observe solar neutrons at Mt. Sierra Negra (4,600 m above sea level) in Mexico using the SciBar detector. This project is named the SciBar Cosmic Ray Telescope (SciCRT). The main aims of the SciCRT project are to observe solar neutrons to study the mechanism of ion acceleration on the surface of the sun and to monitor the anisotropy of galactic cosmic-ray muons. The SciBar detector, a fully active tracker, is composed of 14,848 scintillator bars, whose dimension is 300 cm × 2.5 cm × 1.3 cm. The structure of the detector enables us to obtain the particle trajectory and its total deposited energy. This information is useful for the energy reconstruction of primary neutrons and particle identification. The total volume of the detector is 3.0 m × 3.0 m × 1.7 m. Since this volume is much larger than the solar neutron telescope (SNT) in Mexico, the detection efficiency of the SciCRT for neutrons is highly enhanced. We performed the calibration of the SciCRT at Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) located at 2,150 m above sea level in Mexico in 2012. We installed the SciCRT at Mt. Sierra Negra in April 2013 and calibrated this detector in May and August 2013. We started continuous observation in March 2014. In this paper, we report the detector performance as a solar neutron telescope and the current status of the SciCRT.

  10. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  11. Experiences using SciPy for computer vision research

    Energy Technology Data Exchange (ETDEWEB)

    Eads, Damian R [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory

    2008-01-01

    SciPy is an effective tool suite for prototyping new algorithms. We share some of our experiences using it for the first time to support our research in object detection. SciPy makes it easy to integrate C code, which is essential when algorithms operating on large data sets cannot be vectorized. The universality of Python, the language in which SciPy was written, gives the researcher access to a broader set of non-numerical libraries to support GUI development, interface with databases, manipulate graph structures. render 3D graphics, unpack binary files, etc. Python's extensive support for operator overloading makes SciPy's syntax as succinct as its competitors, MATLAB, Octave, and R. More profoundly, we found it easy to rework research code written with SciPy into a production application, deployable on numerous platforms.

  12. The Lunar Transit Telescope (LTT) - An early lunar-based science and engineering mission

    Science.gov (United States)

    Mcgraw, John T.

    1992-01-01

    The Sentinel, the soft-landed lunar telescope of the LTT project, is described. The Sentinel is a two-meter telescope with virtually no moving parts which accomplishes an imaging survey of the sky over almost five octaves of the electromagnetic spectrum from the ultraviolet into the infrared, with an angular resolution better than 0.1 arsec/pixel. The Sentinel will incorporate innovative techniques of interest for future lunar-based telescopes and will return significant engineering data which can be incorporated into future lunar missions. The discussion covers thermal mapping of the Sentinel, measurement of the cosmic ray flux, lunar dust, micrometeoroid flux, the lunar atmosphere, and lunar regolith stability and seismic activity.

  13. Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter

    Science.gov (United States)

    Bae, Jonghee; Song, Young-Joo; Kim, Young-Rok; Kim, Bangyeop

    2017-12-01

    The first Korea lunar orbiter, Korea Pathfinder Lunar Orbiter (KPLO), has been in development since 2016. After launch, the KPLO will execute several maneuvers to enter into the lunar mission orbit, and will then perform lunar science missions for one year. Among these maneuvers, the lunar orbit insertion (LOI) is the most critical maneuver because the KPLO will experience an extreme velocity change in the presence of the Moon’s gravitational pull. However, the lunar orbiter may have a delayed LOI burn during operation due to hardware limitations and telemetry delays. This delayed burn could occur in different captured lunar orbits; in the worst case, the KPLO could fly away from the Moon. Therefore, in this study, the burn delay for the first LOI maneuver is analyzed to successfully enter the desired lunar orbit. Numerical simulations are performed to evaluate the difference between the desired and delayed lunar orbits due to a burn delay in the LOI maneuver. Based on this analysis, critical factors in the LOI maneuver, the periselene altitude and orbit period, are significantly changed and an additional delta-V in the second LOI maneuver is required as the delay burn interval increases to 10 min from the planned maneuver epoch.

  14. A millennium approach to data acquisition: SCI and PCI

    International Nuclear Information System (INIS)

    Mueller, Hans; Bogaerts, A.; Lindenstruth, V.

    1996-01-01

    The international SCI standard IEEE/ANSI 1596 a is on its way to become the computer interconnect of the year 2000 since for a first time, low latency desktop multiprocessing and cluster computing can be implemented at low cost. The PCI bus is todays's dominating local bus extension for all major computer platforms as well as buses like VMEbus. PCI is a self configuring memory and I/O system for peripheral components with a hierarchical architecture. SCI is a scalable, bus-like interconnect for distributed processors and memories. It allows for optionally coherent data caching and assures error free data delivery. First measurement with commercial SCI products (SBUS-SCI) confirm simulations that SCI can handle even the highest data rates of LHC experiments. The event builder layer for a millennium very high rate DAQ system can therefore be viewed as a SCI network (bridges, cables and switches) interfaced between PCI buses on the front end (VME b ) side and on the processor farm Multi-CPU) side. Such a combination of SCI and PCI enables PCI-PCI memory access, transparently across SCI. It also allows for a novel, low level trigger technique: the trigger algorithm can access VME data buffers with bus-like latencies like local memory, full data transfers become redundant. The first prototype of a PCI-SCI bridge for DAQ is presented as starting point for a test system with built-in scalability. (author)

  15. Development and initial evaluation of the SCI-FI/AT.

    Science.gov (United States)

    Jette, Alan M; Slavin, Mary D; Ni, Pengsheng; Kisala, Pamela A; Tulsky, David S; Heinemann, Allen W; Charlifue, Susie; Tate, Denise G; Fyffe, Denise; Morse, Leslie; Marino, Ralph; Smith, Ian; Williams, Steve

    2015-05-01

    To describe the domain structure and calibration of the Spinal Cord Injury Functional Index for samples using Assistive Technology (SCI-FI/AT) and report the initial psychometric properties of each domain. Cross sectional survey followed by computerized adaptive test (CAT) simulations. Inpatient and community settings. A sample of 460 adults with traumatic spinal cord injury (SCI) stratified by level of injury, completeness of injury, and time since injury. None SCI-FI/AT RESULTS: Confirmatory factor analysis (CFA) and Item response theory (IRT) analyses identified 4 unidimensional SCI-FI/AT domains: Basic Mobility (41 items) Self-care (71 items), Fine Motor Function (35 items), and Ambulation (29 items). High correlations of full item banks with 10-item simulated CATs indicated high accuracy of each CAT in estimating a person's function, and there was high measurement reliability for the simulated CAT scales compared with the full item bank. SCI-FI/AT item difficulties in the domains of Self-care, Fine Motor Function, and Ambulation were less difficult than the same items in the original SCI-FI item banks. With the development of the SCI-FI/AT, clinicians and investigators have available multidimensional assessment scales that evaluate function for users of AT to complement the scales available in the original SCI-FI.

  16. Protecting the Moon for research: ILEWG report

    Science.gov (United States)

    Foing, Bernard H.

    We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: http://sci.esa.int/ilewg -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at http://sci.esa.int/ilewg/ -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at http://sci.esa.int/ilewg/ -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at http://sci.esa.int/ilewg/ -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A

  17. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Heiken, G.; Taylor, G.J.

    1984-01-01

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  18. Opening Comments: SciDAC 2008

    Science.gov (United States)

    Strayer, Michael

    2008-07-01

    Welcome to Seattle and the 2008 SciDAC Conference. This conference, the fourth in the series, is a continuation of the PI meetings we first began under SciDAC-1. I would like to start by thanking the organizing committee, and Rick Stevens in particular, for organizing this year's meeting. This morning I would like to look briefly at SciDAC, to give you a brief history of SciDAC and also look ahead to see where we plan to go over the next few years. I think the best description of SciDAC, at least the simulation part, comes from a quote from Dr Ray Orbach, DOE's Under Secretary for Science and Director of the Office of Science. In an interview that appeared in the SciDAC Review magazine, Dr Orbach said, `SciDAC is unique in the world. There isn't any other program like it anywhere else, and it has the remarkable ability to do science by bringing together physical scientists, mathematicians, applied mathematicians, and computer scientists who recognize that computation is not something you do at the end, but rather it needs to be built into the solution of the very problem that one is addressing'. Of course, that is extended not just to physical scientists, but also to biological scientists. This is a theme of computational science, this partnership among disciplines, which goes all the way back to the early 1980s and Ken Wilson. It's a unique thread within the Department of Energy. SciDAC-1, launched around the turn of the millennium, created a new generation of scientific simulation codes. It advocated building out mathematical and computing system software in support of science and a new collaboratory software environment for data. The original concept for SciDAC-1 had topical centers for the execution of the various science codes, but several corrections and adjustments were needed. The ASCR scientific computing infrastructure was also upgraded, providing the hardware facilities for the program. The computing facility that we had at that time was the big 3

  19. View of the Lunar Module 'Orion' and Lunar Roving Vehicle during first EVA

    Science.gov (United States)

    1972-01-01

    A view of the Lunar Module (LM) 'Orion' and Lunar Roving Vehicle (LRV), as photographed by Astronaut Charles M. Duke Jr., lunar module pilot, during the first Apollo 16 extravehicular activity (EVA-1) at the Descates landing site. Astronaut John W. Young, commander, can be seen directly behind the LRV. The lunar surface feature in the left background is Stone Mountain.

  20. Fee-based services in sci-tech libraries

    CERN Document Server

    Mount, Ellis

    2013-01-01

    This timely and important book explores how fee-based services have developed in various types of sci-tech libraries. The authoritative contributors focus on the current changing financial aspects of the sci-tech library operation and clarify for the reader how these changes have brought about conditions in which traditional methods of funding are no longer adequate. What new options are open and how they are best being applied in today's sci-tech libraries is fully and clearly explained and illustrated. Topics explored include cost allocation and cost recovery, fees for computer searching, an

  1. Lunar Reconnaissance Orbiter Lunar Workshops for Educators, Year 1 Report

    Science.gov (United States)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.; Dalton, H.

    2011-12-01

    This past summer, the Lunar Reconnaissance Orbiter (LRO) sponsored a series of weeklong professional development workshops designed to educate and inspire grade 6-12 science teachers: the Lunar Workshops for Educators. Participants learned about lunar science and exploration, gained tools to help address common student misconceptions about the Moon, heard some of the latest research results from LRO scientists, worked with LRO data, and learned how to bring these data to their students using hands-on activities aligned with grade 6-12 National Science Education Standards and Benchmarks. Where possible, the workshops also included tours of science facilities or field trips intended to help the teachers better understand mission operations or geologic processes relevant to the Moon. The workshops were very successful. Participants demonstrated an improved understanding of lunar science concepts in post-workshop assessments (as compared to identical pre-assessments) and a greater understanding of how to access and productively share data from LRO with their students and provide them with authentic research experiences. Participant feedback on workshop surveys was also enthusiastically positive. 5 additional Lunar Workshops for Educators will be held around the country in the summer of 2012. For more information and to register, visit http://lunar.gsfc.nasa.gov/lwe/index.html.

  2. Lunar-A

    Indian Academy of Sciences (India)

    penetrators will be transmitted to the earth station via the Lunar-A mother spacecraft orbiting at an altitude of about .... to save the power consumption of the Lunar-A penetrator .... and an origin-time versus tidal-phases correlation. (Toksoz et al ...

  3. Lunar Sample Compendium

    Science.gov (United States)

    Meyer, Charles

    2005-01-01

    The purpose of the Lunar Sample Compendium will be to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon. This Compendium will be organized rock by rock in the manor of a catalog, but will not be as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium will not duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays. This Compendium will allow easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. In general, discussion and interpretation of the results is left to the formal reviews found in the scientific literature. An advantage of this Compendium will be that it can be updated, expanded and corrected as need be.

  4. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    International Nuclear Information System (INIS)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Cochran, William D.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.

    2012-01-01

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  5. Lunar Circular Structure Classification from Chang 'e 2 High Resolution Lunar Images with Convolutional Neural Network

    Science.gov (United States)

    Zeng, X. G.; Liu, J. J.; Zuo, W.; Chen, W. L.; Liu, Y. X.

    2018-04-01

    Circular structures are widely distributed around the lunar surface. The most typical of them could be lunar impact crater, lunar dome, et.al. In this approach, we are trying to use the Convolutional Neural Network to classify the lunar circular structures from the lunar images.

  6. Lunar neutron source function

    International Nuclear Information System (INIS)

    Kornblum, J.J.

    1974-01-01

    The search for a quantitative neutron source function for the lunar surface region is justified because it contributes to our understanding of the history of the lunar surface and of nuclear process occurring on the moon since its formation. A knowledge of the neutron source function and neutron flux distribution is important for the interpretation of many experimental measurements. This dissertation uses the available pertinent experimental measurements together with theoretical calculations to obtain an estimate of the lunar neutron source function below 15 MeV. Based upon reasonable assumptions a lunar neutron source function having adjustable parameters is assumed for neutrons below 15 MeV. The lunar neutron source function is composed of several components resulting from the action of cosmic rays with lunar material. A comparison with previous neutron calculations is made and significant differences are discussed. Application of the results to the problem of lunar soil histories is examined using the statistical model for soil development proposed by Fireman. The conclusion is drawn that the moon is losing mass

  7. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    Science.gov (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  8. Laser-powered lunar base

    International Nuclear Information System (INIS)

    Costen, R.; Humes, D.H.; Walker, G.H.; Williams, M.D.; Deyoung, R.J.

    1989-01-01

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  9. Lunar Solar Power System Driven Human Development of the Moon and Resource-Rich Exploration of the Inner Solar System

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    available that can build fundamentally new infrastructure from the common silicate materials of asteroids and the moons of Mars. Commercial power can be beamed from the Moon to ion-propelled rockets and to industrial facilities throughout the inner solar systems (6, 7). The LSP System can establish the Earth and the Moon as a two-planet economy. Lunar and cis-lunar industry will grow through profitable activities. Exploration of the inner solar system can stage, at marginal cost, from the Moon and cis-lunar space rather than the surface of Earth. 1. World Energy Council (2000) Energy for Tomorrow's World - Acting Now!, 175pp., Atalink Projects Ltd, London. 2. Criswell, David R. (2001) Lunar Solar Power System: Industrial Research, Development, and Demonstration, Session 1.2.2: Hydroelectricity, Nuclear Energy and New Renewables, 18th World Energy Congress. [http://www.wec.co.uk] 3. Strong, Marice (2001) Where on Earth are We Going?, (See p. 351-352), 419pp., Random House (forward by Kofi Annan) 4. Criswell, D. R. And R. D. Waldron (1993), "International lunar base and the lunar-based power system to supply Earth with electric power," Acta Astronautica, 29, No. 6: 469-480. 5. Criswell, D. R. (1998), Lunar Solar Power: Lunar unit processes, scales, and challenges, 6 p.p. (ms), ExploSpace: Workshop on Space Exploration and Resources Exploitation, European Space Agency, Cagliari, Sardinia, (October 20 - 22). 6. Criswell, D. R. (1999), Commercial lunar solar power and sustainable growth of the two-planet economy, Proc. Third International Working Group on Lunar Exploration and Exploitation, Solar System Research, Vol. 33, #5, 356-362, Moscow, (October 11-14). 7. Criswell, D.R. 2000 (October) Commercial power for Earth and lunar industrial development, 7pp., 51st Congress of the International Astronautical Federation (IAF). (Rio de Janeiro, Brazil). Paper #IAA-00-IAA.13.2.06.

  10. Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes

    Science.gov (United States)

    Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe

    2011-01-01

    Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang

  11. Lunar Meteorites: A Global Geochemical Dataset

    Science.gov (United States)

    Zeigler, R. A.; Joy, K. H.; Arai, T.; Gross, J.; Korotev, R. L.; McCubbin, F. M.

    2017-01-01

    To date, the world's meteorite collections contain over 260 lunar meteorite stones representing at least 120 different lunar meteorites. Additionally, there are 20-30 as yet unnamed stones currently in the process of being classified. Collectively these lunar meteorites likely represent 40-50 distinct sampling locations from random locations on the Moon. Although the exact provenance of each individual lunar meteorite is unknown, collectively the lunar meteorites represent the best global average of the lunar crust. The Apollo sites are all within or near the Procellarum KREEP Terrane (PKT), thus lithologies from the PKT are overrepresented in the Apollo sample suite. Nearly all of the lithologies present in the Apollo sample suite are found within the lunar meteorites (high-Ti basalts are a notable exception), and the lunar meteorites contain several lithologies not present in the Apollo sample suite (e.g., magnesian anorthosite). This chapter will not be a sample-by-sample summary of each individual lunar meteorite. Rather, the chapter will summarize the different types of lunar meteorites and their relative abundances, comparing and contrasting the lunar meteorite sample suite with the Apollo sample suite. This chapter will act as one of the introductory chapters to the volume, introducing lunar samples in general and setting the stage for more detailed discussions in later more specialized chapters. The chapter will begin with a description of how lunar meteorites are ejected from the Moon, how deep samples are being excavated from, what the likely pairing relationships are among the lunar meteorite samples, and how the lunar meteorites can help to constrain the impactor flux in the inner solar system. There will be a discussion of the biases inherent to the lunar meteorite sample suite in terms of underrepresented lithologies or regions of the Moon, and an examination of the contamination and limitations of lunar meteorites due to terrestrial weathering. The

  12. MathSci

    OpenAIRE

    De Robbio, Antonella

    1997-01-01

    This paper shows the prestigious mathematics database MathSci, produced by American Mathematical Society (AMS). It is an indexing resource that deals with the whole literature about mathematics. The subject involved in referred to mathematical sciences and others relating such as Statistics, Information science, Operative research and Mathematics Physics. Moreover it indexes sciences related to applied mathematics such as Astronomy, Astrophysics, Biology, Compartmental Sciences, Thermodyn...

  13. Constraints on planet formation from Kepler’s multiple planet systems

    Science.gov (United States)

    Quintana, Elisa V.

    2015-01-01

    The recent haul of hundreds of multiple planet systems discovered by Kepler provides a treasure trove of new clues for planet formation theories. The substantial amount of protoplanetary disk mass needed to form the most commonly observed multi-planet systems - small (Earth-sized to mini-Neptune-sized) planets close to their stars - argues against pure in situ formation and suggests that the planets in these systems must have undergone some form of migration. I will present results from numerical simulations of terrestrial planet formation that aim to reproduce the sizes and architecture of Kepler's multi-planet systems, and will discuss the observed resonances and giant planets (or the lack thereof) associated with these systems.

  14. Lunar and Planetary Webcam User's Guide

    CERN Document Server

    Mobberley, Martin

    2006-01-01

    Inexpensive webcams are revolutionizing imaging in amateur astronomy by providing an affordable alternative to cooled-chip astronomical CCD cameras, for photographing the brighter astronomical objects. Webcams – costing only a few tens of dollars – are capable of more advanced high resolution work than "normal" digital cameras because their rapid image download speed can freeze fine planetary details, even through the Earth's turbulent atmosphere. Also, their simple construction makes it easy to remove the lens, allowing them to be used at high power at the projected focus of an astronomical telescope. Webcams also connect direct to a PC, so that software can be used to "stack" multiple images, providing a stunning increase in image quality. In the Lunar and Planetary Webcam User’s Guide Martin Mobberley de-mystifies the jargon of webcams and computer processing, and provides detailed hints and tips for imaging the Sun, Moon and planets with a webcam. He looks at each observing target separately, descri...

  15. Precision Lunar Laser Ranging For Lunar and Gravitational Science

    Science.gov (United States)

    Merkowitz, S. M.; Arnold, D.; Dabney, P. W.; Livas, J. C.; McGarry, J. F.; Neumann, G. A.; Zagwodzki, T. W.

    2008-01-01

    Laser ranging to retroreflector arrays placed on the lunar surface by the Apollo astronauts and the Soviet Lunar missions over the past 39 years have dramatically increased our understanding of gravitational physics along with Earth and Moon geophysics, geodesy, and dynamics. Significant advances in these areas will require placing modern retroreflectors and/or active laser ranging systems at new locations on the lunar surface. Ranging to new locations will enable better measurements of the lunar librations, aiding in our understanding of the interior structure of the moon. More precise range measurements will allow us to study effects that are too small to be observed by the current capabilities as well as enabling more stringent tests of Einstein's theory of General Relativity. Setting up retroreflectors was a key part of the Apollo missions so it is natural to ask if future lunar missions should include them as well. The Apollo retroreflectors are still being used today, and nearly 40 years of ranging data has been invaluable for scientific as well as other studies such as orbital dynamics. However, the available retroreflectors all lie within 26 degrees latitude of the equator, and the most useful ones within 24 degrees longitude of the sub-earth meridian. This clustering weakens their geometrical strength.

  16. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    Sun, Yongwei; Yuan, Qingyun; Xiong, Jiuliang

    2013-01-01

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  17. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer ... Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  18. The Lunar Orbiter Laser Altimeter (LOLA) on NASA's Lunar Reconnaissance Orbiter (LRO) mission

    Science.gov (United States)

    Riris, H.; Cavanaugh, J.; Sun, X.; Liiva, P.; Rodriguez, M.; Neuman, G.

    2017-11-01

    The Lunar Orbiter Laser Altimeter (LOLA) instrument [1-3] on NASA's Lunar Reconnaissance Orbiter (LRO) mission, launched on June 18th, 2009, from Kennedy Space Center, Florida, will provide a precise global lunar topographic map using laser altimetry. LOLA will assist in the selection of landing sites on the Moon for future robotic and human exploration missions and will attempt to detect the presence of water ice on or near the surface, which is one of the objectives of NASA's Exploration Program. Our present knowledge of the topography of the Moon is inadequate for determining safe landing areas for NASA's future lunar exploration missions. Only those locations, surveyed by the Apollo missions, are known with enough detail. Knowledge of the position and characteristics of the topographic features on the scale of a lunar lander are crucial for selecting safe landing sites. Our present knowledge of the rest of the lunar surface is at approximately 1 km kilometer level and in many areas, such as the lunar far side, is on the order of many kilometers. LOLA aims to rectify that and provide a precise map of the lunar surface on both the far and near side of the moon. LOLA uses short (6 ns) pulses from a single laser through a Diffractive Optical Element (DOE) to produce a five-beam pattern that illuminates the lunar surface. For each beam, LOLA measures the time of flight (range), pulse spreading (surface roughness), and transmit/return energy (surface reflectance). LOLA will produce a high-resolution global topographic model and global geodetic framework that enables precise targeting, safe landing, and surface mobility to carry out exploratory activities. In addition, it will characterize the polar illumination environment, and image permanently shadowed regions of the lunar surface to identify possible locations of surface ice crystals in shadowed polar craters.

  19. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    Science.gov (United States)

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    Science.gov (United States)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2004-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2, 7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil similar JSC-1 in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. Characterization of the precursor molecules and efforts to further concentrate and hydrolyze the products to obtain gel materials will be presented for evaluation as ceramic precursors.

  1. Synthesis of Sol-Gel Precursors for Ceramics from Lunar and Martian Soil Simulars

    Science.gov (United States)

    Sibille, L.; Gavira-Gallardo, J. A.; Hourlier-Bahloul, D.

    2003-01-01

    Recent NASA mission plans for the human exploration of our Solar System has set new priorities for research and development of technologies necessary to enable a long-term human presence on the Moon and Mars. The recovery and processing of metals and oxides from mineral sources on other planets is under study to enable use of ceramics, glasses and metals by explorer outposts. We report initial results on the production of sol-gel precursors for ceramic products using mineral resources available in martian or lunar soil. The presence of SiO2, TiO2, and Al2O3 in both martian (44 wt.% SiO2, 1 wt.% TiO2,7 wt.% Al2O3) and lunar (48 wt.% SiO2, 1.5 wt.% TiO2, 16 wt.% Al2O3) soils and the recent developments in chemical processes to solubilize silicates using organic reagents and relatively little energy indicate that such an endeavor is possible. In order to eliminate the risks involved in the use of hydrofluoric acid to dissolve silicates, two distinct chemical routes are investigated to obtain soluble silicon oxide precursors from lunar and martian soil simulars. Clear solutions of sol-gel precursors have been obtained by dissolution of silica from lunar soil simular in basic ethylene glycol (C2H4(OH)2) solutions to form silicon glycolates. Similarly, sol-gel solutions produced from martian soil simulars reveal higher contents of iron oxides. The elemental composition and structure of the precursor molecules were characterized. Further concentration and hydrolysis of the products was performed to obtain gel materials for evaluation as ceramic precursors.

  2. REE Partitioning in Lunar Minerals

    Science.gov (United States)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  3. Lunar resource base

    Science.gov (United States)

    Pulley, John; Wise, Todd K.; Roy, Claude; Richter, Phil

    A lunar base that exploits local resources to enhance the productivity of a total SEI scenario is discussed. The goals were to emphasize lunar science and to land men on Mars in 2016 using significant amounts of lunar resources. It was assumed that propulsion was chemical and the surface power was non-nuclear. Three phases of the base build-up are outlined, the robotic emplacement of the first elements is detailed and a discussion of future options is included.

  4. Orgasm and SCI: what do we know?

    Science.gov (United States)

    Alexander, Marcalee; Marson, Lesley

    2018-06-01

    narrative review OBJECTIVES: To determine the percentage of persons with SCI able to achieve orgasm and ejaculation, the associations between ejaculation and orgasm and the subjective and autonomic findings during these events, and the potential benefits with regards to spasticity. Two American medical centers METHODS: Data bases were searched for the terms orgasm and SCI and ejaculation and SCI. Search criteria were human studies published in English from 1990 to 12/2/2016. Approximately 50% of sexually active men and women report orgasmic ability after SCI. There is a relative inability of persons with complete lower motor neuron injuries affecting the sacral segments to achieve orgasm. Time to orgasm is longer in persons with SCIs than able-bodied (AB) persons. With orgasm, elevated blood pressure (BP) occurs after SCI in a similar fashion to AB persons. With penile vibratory stimulation and electroejaculation, BP elevation is common and prophylaxis is recommended in persons with injuries at T6 and above. Dry orgasm occurs approximately 13% of times in males. Midodrine, vibratory stimulation, clitoral vacuum suction, and 4-aminopyridine may improve orgasmic potential. Depending on level and severity of injury, persons with SCIs can achieve orgasm. Sympathetically mediated changes occur during sexual response with culmination at orgasm. Future research should address benefits of orgasm. Additionally, inherent biases associated with studying orgasm must be considered.

  5. The International Lunar Decade Declaration

    Science.gov (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  6. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children ...

  7. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Medical Experts People Living with SCI Personal Experiences by Topic Resources Peer ... Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  8. An Examination of the Change in the Earth's Rotation Rate From Ancient Chinese Observations of Lunar Occultations of the Planets

    National Research Council Canada - National Science Library

    Hilton, James L; Seidelmann, P. Kenneth; Ciyuan, Liu

    1992-01-01

    ...., a period with no other known observations useful for Earth rotation studies. The observations are compared to topocentric ephemerides computed using Bretagnon's planetary theories VSOP82 and the Chapront-Touze lunar theory ELP2000-85...

  9. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  10. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    Science.gov (United States)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  11. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  12. Preface: SciDAC 2005

    Science.gov (United States)

    Mezzacappa, Anthony

    2005-01-01

    On 26-30 June 2005 at the Grand Hyatt on Union Square in San Francisco several hundred computational scientists from around the world came together for what can certainly be described as a celebration of computational science. Scientists from the SciDAC Program and scientists from other agencies and nations were joined by applied mathematicians and computer scientists to highlight the many successes in the past year where computation has led to scientific discovery in a variety of fields: lattice quantum chromodynamics, accelerator modeling, chemistry, biology, materials science, Earth and climate science, astrophysics, and combustion and fusion energy science. Also highlighted were the advances in numerical methods and computer science, and the multidisciplinary collaboration cutting across science, mathematics, and computer science that enabled these discoveries. The SciDAC Program was conceived and funded by the US Department of Energy Office of Science. It is the Office of Science's premier computational science program founded on what is arguably the perfect formula: the priority and focus is science and scientific discovery, with the understanding that the full arsenal of `enabling technologies' in applied mathematics and computer science must be brought to bear if we are to have any hope of attacking and ultimately solving today's computational Grand Challenge problems. The SciDAC Program has been in existence for four years, and many of the computational scientists funded by this program will tell you that the program has given them the hope of addressing their scientific problems in full realism for the very first time. Many of these scientists will also tell you that SciDAC has also fundamentally changed the way they do computational science. We begin this volume with one of DOE's great traditions, and core missions: energy research. As we will see, computation has been seminal to the critical advances that have been made in this arena. Of course, to

  13. Lunar imaging and ionospheric calibration for the Lunar Cherenkov technique

    NARCIS (Netherlands)

    McFadden, R.; Scholten, O.; Mevius, M.

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the

  14. Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project

    Science.gov (United States)

    Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework

  15. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    International Nuclear Information System (INIS)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-01-01

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to ∼0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of ∼30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  16. A prototype DAQ system for the ALICE experiment based on SCI

    International Nuclear Information System (INIS)

    Skaali, B.; Ingebrigtsen, L.; Wormald, D.; Polovnikov, S.; Roehrig, H.

    1998-01-01

    A prototype DAQ system for the ALICE/PHOS beam test an commissioning program is presented. The system has been taking data since August 1997, and represents one of the first applications of the Scalable Coherent Interface (SCI) as interconnect technology for an operational DAQ system. The front-end VMEbus address space is mapped directly from the DAQ computer memory space through SCI via PCI-SCI bridges. The DAQ computer is a commodity PC running the Linux operating system. The results of measurements of data transfer rate and latency for the PCI-SCI bridges in a PC-VMEbus SCI-configuration are presented. An optical SCI link based on the Motorola Optobus I data link is described

  17. Kickstarting a New Era of Lunar Industrialization via Campaign of Lunar COTS Missions

    Science.gov (United States)

    Zuniga, Allison F.; Turner, Mark; Rasky, Daniel; Pittman, Robert B.; Zapata, Edgar

    2016-01-01

    To support the goals of expanding our human presence and current economic sphere beyond LEO, a new plan was constructed for NASA to enter into partnerships with industry to foster and incentivize a new era of lunar industrialization. For NASA to finally be successful in achieving sustainable human exploration missions beyond LEO, lessons learned from our space history have shown that it is essential for current program planning to include affordable and economic development goals as well as address top national priorities to obtain much needed public support. In the last 58 years of NASA's existence, only Apollo's human exploration missions beyond LEO were successful since it was proclaimed to be a top national priority during the 1960's. However, the missions were not sustainable and ended abruptly in 1972 due to lack of funding and insufficient economic gain. Ever since Apollo, there have not been any human missions beyond LEO because none of the proposed program plans were economical or proclaimed a top national priority. The proposed plan outlines a new campaign of low-cost, commercial-enabled lunar COTS (Commercial Orbital Transfer Services) missions which is an update to the Lunar COTS plan previously described. The objectives of this new campaign of missions are to prospect for resources, determine the economic viability of extracting those resources and assess the value proposition of using these resources in future exploration architectures such as Mars. These missions would be accomplished in partnership with commercial industry using the wellproven COTS Program acquisition model. This model proved to be very beneficial to both NASA and its industry partners as NASA saved significantly in development and operational costs, as much as tenfold, while industry partners successfully expanded their market share and demonstrated substantial economic gain. Similar to COTS, the goals for this new initiative are 1) to develop and demonstrate cost-effective, cis-lunar

  18. Technicians work with Apollo 14 lunar sample material in Lunar Receiving Lab.

    Science.gov (United States)

    1971-01-01

    Glove handlers work with freshly opened Apollo 14 lunar sample material in modularized cabinets in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The glove operator on the right starts to pour fine lunar material which he has just taken from a tote bag. This powdery sample was among the last to be revealed of the 90-odd pounds of material brought back to Earth by the Apollo 14 crewmen.

  19. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  20. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW ...

  1. PLANET HUNTERS: ASSESSING THE KEPLER INVENTORY OF SHORT-PERIOD PLANETS

    International Nuclear Information System (INIS)

    Schwamb, Megan E.; Lintott, Chris J.; Lynn, Stuart; Smith, Arfon M.; Simpson, Robert J.; Fischer, Debra A.; Giguere, Matthew J.; Brewer, John M.; Parrish, Michael; Schawinski, Kevin

    2012-01-01

    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of ≥2 R ⊕ planets on short-period ( ⊕ Planet Hunters ≥85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler ≥4 R ⊕ planets suggests that the Kepler inventory of ≥4 R ⊕ short-period planets is nearly complete.

  2. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  3. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD Understanding SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ...

  4. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  5. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation ... Rogers, PT Recreational Therapy after Spinal Cord Injury Jennifer Piatt, PhD Kristine Cichowski, MS Read Bio Founding ...

  6. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Adult Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from ... Rosenberg, PsyD Understanding SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa ...

  7. Lunar ash flows - Isothermal approximation.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  8. An experimental and petrologic investigation of the source regions of lunar magmatism in the context of the primordial differentiation of the moon

    Science.gov (United States)

    Elardo, Stephen M.

    The primordial differentiation of the Moon via a global magma ocean has become the paradigm under which all lunar data are interpreted. The success of this model in explaining multiple geochemical, petrologic, and isotopic characteristics lunar geology has led to magma oceans becoming the preferred model for the differentiation of Earth, Mars, Mercury, Vesta, and other large terrestrial bodies. The goal of this work is to combine petrologic analyses of lunar samples with high pressure, high temperature petrologic experiments to place new and detailed constraints the petrogenetic processes that operated during different stages of lunar magmatism, the processes that have acted upon these magmas to obscure their relationship to their mantle source regions, and how those source regions fit into the context of the lunar magma ocean model. This work focuses on two important phases of lunar magmatism: the ancient crust-building plutonic lithologies of the Mg-suite dating to ~4.3 Ga, and the most recent known mare basaltic magmas dating to ~3 Ga. These samples provide insight into the petrogenesis of magmas and interior thermal state when the Moon was a hot, juvenile planet, and also during the last gasps of magmatism from a cooling planet. Chapter 1, focusing on Mg-suite troctolite 76535, presents data on chromite symplectites, olivine-hosted melt inclusions, intercumulus mineral assemblages, and cumulus mineral chemistry to argue that the 76535 was altered by metasomatism by a migrating basaltic melt. This process could effectively raise radioisotope systems above their mineral-specific blocking temperatures and help explain some of the Mg-suite-FAN age overlap. Chapter 2 focuses on lunar meteorites NWA 4734, 032, and LAP 02205, which are 3 of the 5 youngest igneous samples from the Moon. Using geochemical and isotopic data combined with partial melting models, it is shown that these basalts do not have a link to the KREEP reservoir, and a model is presented for low

  9. Basics of SCI Rehabilitation

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  10. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    Science.gov (United States)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  11. Length of stay and medical stability for spinal cord-injured patients on admission to an inpatient rehabilitation hospital: a comparison between a model SCI trauma center and non-SCI trauma center.

    Science.gov (United States)

    Ploumis, A; Kolli, S; Patrick, M; Owens, M; Beris, A; Marino, R J

    2011-03-01

    Retrospective database review. To compare lengths of stay (LOS), pressure ulcers and readmissions to the acute care hospital of patients admitted to the inpatient rehabilitation facility (IRF) from a model spinal cord injury (SCI) trauma center or from a non-SCI acute hospital. Only sparse data exist comparing the status of patients admitted to IRF from a model SCI trauma center or from a non-SCI acute hospital. Acute care, IRF and total LOS were compared between patients transferred to IRF from the SCI center (n=78) and from non-SCI centers (n=131). The percentages of pressure ulcers on admission to IRF and transfer back to acute care were also compared. Patients admitted to IRF from the SCI trauma center (SCI TC) had significantly shorter (P=0.01) acute care LOS and total LOS compared with patients admitted from non-SCI TCs. By neurological category, acute-care LOS was less for all groups admitted from the SCI center, but statistically significant only for tetraplegia. There was no significant difference in the incidence of readmissions to acute care from IRF. More patients from non-SCI centers (34%) than SCI centers (12%) had pressure ulcers (PSCI TCs before transfer to IRF can significantly lower acute-care LOS or total LOS and incidence of pressure ulcers compared with non-SCI TCs. Patients admitted to IRF from SCI TCs are no more likely to be sent back to an acute hospital than those from non-SCI TCs.

  12. Amphibian and reptile communities in eleven Sites of Community Importance (SCI: relations between SCI area, heterogeneity and richness

    Directory of Open Access Journals (Sweden)

    Luca Canova

    2007-11-01

    Full Text Available Seven species of amphibians and reptiles were observed in eleven Sites of Community Importance (SCI of the Lodi Province (NW Italy. Distribution and relative abundance of amphibians appeared more variable than reptiles. Some species of conservation concern as R. latastei were influenced by habitat physiognomy, i.e. the surface of wooded areas are important in predict presence and relative abundance of this species. SCI with wider surfaces and higher habitat heterogeneity included higher number of species. Species richness, here considered as a raw index of biodiversity value and community quality, was significantly related to SCI area and habitat heterogeneity; since this significant positive relation is confirmed both for amphibians and reptiles we suggest that, in planning of natural areas, priority must be retained for biotopes able to host the higher number of species.

  13. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Marcy, Geoffrey W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen (Denmark); Ciardi, David R. [Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Cochran, William D. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Ford, Eric B.; Morehead, Robert C. [University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Gilliland, Ronald L., E-mail: Jack.Lissauer@nasa.gov [Space Telescope Science Institute, Baltimore, MD 21218 (United States); and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  14. The Fulldome Curriculum for the Spitz SciDome Digital Planetarium: A New Age for Planetarium Education

    Science.gov (United States)

    Bradstreet, David H.; Huggins, S. L.

    2010-01-01

    Astronomy education received a huge boost from the Space Program in the 1960's and early 1970's as evidenced by a large increase in school planetariums built nationwide at that time. But with the waning of manned explorations so also went the push for astronomy in the schools, and many school planetariums are underutilized or not used at all. This poster will discuss and illustrate some of the new Fulldome Curriculum that has been developed specifically for the Spitz SciDome digital planetarium powered by Starry Night. It is now possible to teach astronomical concepts in new and exciting ways and present topics that were extremely difficult to convey to lay audiences in the past. One of the strongest advantages of the SciDome is that, since it uses Starry Night as its astronomical engine, students can create their own astronomical configurations in the computer lab or at home using the PC or Mac version and then simply load them onto the SciDome planetarium system and display them for the class on the dome. Additionally, the instructor can create artificial bodies to pose "What if” scenarios, for example, "What would the Moon look like if it didn't rotate synchronously?", or "What would the analemma look like if the Earth's orbit were circular and not an ellipse?" Topics covered in the series include The Moon, Seasons, Coordinate Systems, Roemer's Method of Measuring the Speed of Light, Analemmas in the Solar System, Precession, Mimas and the Cassini Division, Halley's Comet in 1910, Dog Days, Galactic Distributions of Celestial Bodies, Retrograde Paths of Mars, Mercury's Orbit and the Length of the Mercurian Day, Altitude of the North Celestial Pole, Why Polaris Appears Mostly Stationary, Circumpolar Contellations, Planet Definition, Scale of the Solar System, Stonehenge, The Changing Aspect of Saturn's Appearance and Scorpio's Claws.

  15. LEW 88516: A Meteorite Compositionally Close to the "Martian Mantle"

    Science.gov (United States)

    Dreibus, G.; Jochum, K. H.; Palme, H.; Spettel, B.; Wlotzka, F.; Wanke, H.

    1992-07-01

    bulk Ni/S-ratio is 0.25 as compared to 0.05 in sulfides. References: Boynton W.V., Hill D.H. and Kring D.A. (1992) Lunar Planet. Sci. (abstract) 23, 147. Lindstrom M.M., Mittlefehldt D.W., Treiman A.H., Wentworth S.J., Gooding J.L., Morris R.V., Keller L.P. and McKay G.A. (1992) Lunar Planet. Sci. (abstract) 23, 783. Wanke H., Dreibus G., Jagoutz E., Palme H., Spettel B. and Weckwerth G. (1986) Lunar Planet. Sci. (abstract) 17, 919. Table 1, which in the hard copy appears here, shows the chemical composition of Shergottite LEW 55816 and comparison with ALHA 77005.

  16. Observsational Planet Formation

    Science.gov (United States)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2017-06-01

    Planets form in gaseous protoplanetary disks surrounding newborn stars. As such, the most direct way to learn how they form from observations, is to directly watch them forming in disks. In the past, this was very difficult due to a lack of observational capabilities; as such, planet formation was largely a subject of pure theoretical astrophysics. Now, thanks to a fleet of new instruments with unprecedented resolving power that have come online recently, we have just started to unveil features in resolve images of protoplanetary disks, such as gaps and spiral arms, that are most likely associated with embedded (unseen) planets. By comparing observations with theoretical models of planet-disk interactions, the masses and orbits of these still forming planets may be constrained. Such planets may help us to directly test various planet formation models. This marks the onset of a new field — observational planet formation. I will introduce the current status of this field.

  17. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 − 5 M⊙, any planets within about 1 − 5 AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ∼ 2 AU for a 1  M⊙ progenitor and ∼ 10 AU for a 5 M⊙ progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  18. Lunar and Vesta Web Portals

    Science.gov (United States)

    Law, E.; JPL Luna Mapping; Modeling Project Team

    2015-06-01

    The Lunar Mapping and Modeling Project offers Lunar Mapping and Modeling Portal (http://lmmp.nasa.gov) and Vesta Trek Portal (http://vestatrek.jpl.nasa.gov) providing interactive visualization and analysis tools to enable users to access mapped Lunar and Vesta data products.

  19. Opening Remarks: SciDAC 2007

    Science.gov (United States)

    Strayer, Michael

    2007-09-01

    Good morning. Welcome to Boston, the home of the Red Sox, Celtics and Bruins, baked beans, tea parties, Robert Parker, and SciDAC 2007. A year ago I stood before you to share the legacy of the first SciDAC program and identify the challenges that we must address on the road to petascale computing—a road E E Cummins described as `. . . never traveled, gladly beyond any experience.' Today, I want to explore the preparations for the rapidly approaching extreme scale (X-scale) generation. These preparations are the first step propelling us along the road of burgeoning scientific discovery enabled by the application of X- scale computing. We look to petascale computing and beyond to open up a world of discovery that cuts across scientific fields and leads us to a greater understanding of not only our world, but our universe. As part of the President's America Competitiveness Initiative, the ASCR Office has been preparing a ten year vision for computing. As part of this planning the LBNL together with ORNL and ANL hosted three town hall meetings on Simulation and Modeling at the Exascale for Energy, Ecological Sustainability and Global Security (E3). The proposed E3 initiative is organized around four programmatic themes: Engaging our top scientists, engineers, computer scientists and applied mathematicians; investing in pioneering large-scale science; developing scalable analysis algorithms, and storage architectures to accelerate discovery; and accelerating the build-out and future development of the DOE open computing facilities. It is clear that we have only just started down the path to extreme scale computing. Plan to attend Thursday's session on the out-briefing and discussion of these meetings. The road to the petascale has been at best rocky. In FY07, the continuing resolution provided 12% less money for Advanced Scientific Computing than either the President, the Senate, or the House. As a consequence, many of you had to absorb a no cost extension for your

  20. Lunar archive panoramas: modern image processing and access to the historic data based on spatial context

    Science.gov (United States)

    Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Karachevtseva, Irina; Garov, Andrey; Matveev, Evgeniy

    The objectives of our work are to fully exploit the historic Soviet Lunokhod data and use the results for scientific and public purposes. Unfortunately, many of the relevant operational parameters of the Lunokhods missions are lost. Modern photogrammetry is a key to solving these issues, providing analysis techniques, not available at the time of the early lunar missions. For this purpose we use special developed software, GIS tools and high-resolution LRO data [1]. Results of new image processing of historic data are part of PRoViDE project (Planetary Robotics Vision Data Exploitation) which aims to assemble a major portion of the imaging data gathered from different vehicles and probes on planetary surfaces into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products (http://www.provide-space.eu/). Our technology of archive panorama processing allows us to recover lost information of Soviet lunar missions and study lunar landing site imagery by state-of-the-art photogrammetric techniques. Our main task is to perform lunar panoramas in measurement form based on photogrammetry and geoanalyses methods, and then involve them in more detailed morphometric analyses [2] and 3D-modeling of lunar surface based on LROC NAC image processing [3]. The results of our work are various types of new products: panoramas in different projections, updated metadata with recovering parameters, and ortho-panoramas, which can be used for quantitative geomorphology assessment based on spatial tools [4]. All data products obtained as a result of the study are to be placed into Planetary data storage which is developing as Geodesy and Cartography Node [5]. Access to archive lunar data will be organized via Geo-portal (http://cartsrv.mexlab.ru/geoportal/) using authorization service, which provided data security and user control. Planetary spatial information system can integrate various types of data for planets and their

  1. THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION

    International Nuclear Information System (INIS)

    Johnson, Jarrett L.; Li Hui

    2012-01-01

    A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H] crit ≅ –1.5 + log (r/1 AU), where an astronomical unit (AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z ∼> 0.1 Z ☉ . If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.

  2. Limits On Undetected Planets in the Six Transiting Planets Kepler-11 System

    Science.gov (United States)

    Lissauer, Jack

    2017-01-01

    The Kepler-11 has five inner planets ranging from approx. 2 - 1 times as massive Earth in a tightly-packed configuration, with orbital periods between 10 and 47 days. A sixth planet, Kepler-11 g, with a period of118 days, is also observed. The spacing between planets Kepler-11 f and Kepler-11 g is wide enough to allow room for a planet to orbit stably between them. We compare six and seven planet fits to measured transit timing variations (TTVs) of the six known planets. We find that in most cases an additional planet between Kepler-11 f and Kepler-11 g degrades rather than enhances the fit to the TTV data, and where the fit is improved, the improvement provides no significant evidence of a planet between Kepler-11 f and Kepler-11 g. This implies that any planet in this region must be low in mass. We also provide constraints on undiscovered planets orbiting exterior to Kepler-11 g. representations will be described.

  3. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  4. The Lunar Magma Ocean (LMO) Paradigm Versus the Realities of Lunar Anorthosites

    Science.gov (United States)

    Treiman, A. H.; Gross, J.

    2018-05-01

    The paradigm of the Lunar Magma Ocean (LMO) is inconsistent with much chemical and compositional data on lunar anorthosites. The paradigm of serial anorthosite diapirism is more consistent, though not a panacea.

  5. The Scattering Outcomes of Kepler Circumbinary Planets: Planet Mass Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yan-Xiang; Ji, Jianghui, E-mail: yxgong@pmo.ac.cn, E-mail: jijh@pmo.ac.cn [CAS Key Laboratory of Planetary Sciences, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-11-01

    Recent studies reveal that the free eccentricities of Kepler-34b and Kepler-413b are much larger than their forced eccentricities, implying that scattering events may take place in their formation. The observed orbital configuration of Kepler-34b cannot be well reproduced in disk-driven migration models, whereas a two-planet scattering scenario can play a significant role of shaping the planetary configuration. These studies indicate that circumbinary planets discovered by Kepler may have experienced scattering process. In this work, we extensively investigate the scattering outcomes of circumbinary planets focusing on the effects of planet mass ratio . We find that the planetary mass ratio and the the initial relative locations of planets act as two important parameters that affect the eccentricity distribution of the surviving planets. As an application of our model, we discuss the observed orbital configurations of Kepler-34b and Kepler-413b. We first adopt the results from the disk-driven models as the initial conditions, then simulate the scattering process that occurs in the late evolution stage of circumbinary planets. We show that the present orbital configurations of Kepler-34b and Kepler-413b can be well reproduced when considering a two unequal-mass planet ejection model. Our work further suggests that some of the currently discovered circumbinary single-planet systems may be survivors of original multiple-planet systems. The disk-driven migration and scattering events occurring in the late stage both play an irreplaceable role in sculpting the final systems.

  6. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  7. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  8. Extrasolar planets: constraints for planet formation models.

    Science.gov (United States)

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  9. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    Science.gov (United States)

    Dai, Shun; Su, Yan; Xiao, Yuan; Feng, Jian-Qing; Xing, Shu-Guo; Ding, Chun-Yu

    2014-12-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed.

  10. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Dai Shun; Su Yan; Xiao Yuan; Feng Jian-Qing; Xing Shu-Guo; Ding Chun-Yu

    2014-01-01

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  11. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  12. Beneficiation of lunar ilmenite

    Science.gov (United States)

    Ruiz, Joaquin

    1991-01-01

    One of the most important commodities lacking in the moon is free oxygen which is required for life and used extensively for propellent. Free oxygen, however, can be obtained by liberating it from the oxides and silicates that form the lunar rocks and regolith. Ilmenite (FeTiO3) is considered one of the leading candidates for production of oxygen because it can be reduced with a reasonable amount of energy and it is an abundant mineral in the lunar regolith and many mare basalts. In order to obtain oxygen from ilmenite, a method must be developed to beneficiate ilmenite from lunar material. Two possible techniques are electrostatic or magnetic methods. Both methods have complications because lunar ilmenite completely lacks Fe(3+). Magnetic methods were tested on eucrite meteorites, which are a good chemical simulant for low Ti mare basalts. The ilmenite yields in the experiments were always very low and the eucrite had to be crushed to xxxx. These data suggest that magnetic separation of ilmenite from fine grain lunar basalts would not be cost effective. Presently, experiments are being performed with electrostatic separators, and lunar regolith is being waited for so that simulants do not have to be employed.

  13. Visibility of lunar surface features - Apollo 14 orbital observations and lunar landing.

    Science.gov (United States)

    Ziedman, K.

    1972-01-01

    Description of an in-flight visibility test conducted during the Apollo 14 mission for the purpose of validating and extending the mathematical visibility models used previously in the course of the Apollo program to examine the constraints on descent operations imposed by lunar visibility limitations. Following a background review of the effects on mission planning of the visibility limitations due to downsun lunar surface detail 'washout' and a discussion of the visibility prediction techniques previously used for studying lunar visibility problems, the visibility test rationale and procedures are defined and the test results presented. The results appear to confirm the validity of the visibility prediction techniques employed in lunar visibility problem studies. These results provide also a basis for improving the accuracy of the prediction techniques by appropriate modifications.

  14. GeoSciML and EarthResourceML Update, 2012

    Science.gov (United States)

    Richard, S. M.; Commissionthe Management; Application Inte, I.

    2012-12-01

    CGI Interoperability Working Group activities during 2012 include deployment of services using the GeoSciML-Portrayal schema, addition of new vocabularies to support properties added in version 3.0, improvements to server software for deploying services, introduction of EarthResourceML v.2 for mineral resources, and collaboration with the IUSS on a markup language for soils information. GeoSciML and EarthResourceML have been used as the basis for the INSPIRE Geology and Mineral Resources specifications respectively. GeoSciML-Portrayal is an OGC GML simple-feature application schema for presentation of geologic map unit, contact, and shear displacement structure (fault and ductile shear zone) descriptions in web map services. Use of standard vocabularies for geologic age and lithology enables map services using shared legends to achieve visual harmonization of maps provided by different services. New vocabularies have been added to the collection of CGI vocabularies provided to support interoperable GeoSciML services, and can be accessed through http://resource.geosciml.org. Concept URIs can be dereferenced to obtain SKOS rdf or html representations using the SISSVoc vocabulary service. New releases of the FOSS GeoServer application greatly improve support for complex XML feature schemas like GeoSciML, and the ArcGIS for INSPIRE extension implements similar complex feature support for ArcGIS Server. These improved server implementations greatly facilitate deploying GeoSciML services. EarthResourceML v2 adds features for information related to mining activities. SoilML provides an interchange format for soil material, soil profile, and terrain information. Work is underway to add GeoSciML to the portfolio of Open Geospatial Consortium (OGC) specifications.

  15. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  16. ComSciCon: The Communicating Science Workshop for Graduate Students

    Science.gov (United States)

    Sanders, Nathan; Drout, Maria; Kohler, Susanna; Cook, Ben; ComSciCon Leadership Team

    2018-01-01

    ComSciCon (comscicon.com) is a national workshop series organized by graduate students, for graduate students, focused on leadership and training in science communication. Our goal is to empower young scientists to become leaders in their field, propagating appreciation and understanding of research results to broad and diverse audiences. ComSciCon attendees meet and interact with professional communicators, build lasting networks with graduate students in all fields of science and engineering from around the country, and write and publish original works. ComSciCon consists of both a flagship national conference series run annually for future leaders in science communication, and a series of regional and specialized workshops organized by ComSciCon alumni nationwide. We routinely receive over 1000 applications for 50 spots in our national workshop. Since its founding in 2012, over 300 STEM graduate students have participated in the national workshop, and 23 local spin-off workshops have been organized in 10 different locations throughout the country. This year, ComSciCon is working to grow as a self-sustaining organization by launching as an independent 501(c)(3) non-profit. In this poster we will discuss the ComSciCon program and methods, our results to date, potential future collaborations between ComSciCon and AAS, and how you can become involved.

  17. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  18. Origins and Destinations: Tracking Planet Composition through Planet Formation Simulations

    Science.gov (United States)

    Chance, Quadry; Ballard, Sarah

    2018-01-01

    There are now several thousand confirmed exoplanets, a number which far exceeds our resources to study them all in detail. In particular, planets around M dwarfs provide the best opportunity for in-depth study of their atmospheres by telescopes in the near future. The question of which M dwarf planets most merit follow-up resources is a pressing one, given that NASA’s TESS mission will soon find hundreds of such planets orbiting stars bright enough for both ground and spaced-based follow-up.Our work aims to predict the approximate composition of planets around these stars through n-body simulations of the last stage of planet formation. With a variety of initial disk conditions, we investigate how the relative abundances of both refractory and volatile compounds in the primordial planetesimals are mapped to the final planet outcomes. These predictions can serve to provide a basis for making an educated guess about (a) which planets to observe with precious resources like JWST and (b) how to identify them based on dynamical clues.

  19. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    Science.gov (United States)

    Khan, A. H.

    2011-10-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  20. Lunar Regolith Particle Shape Analysis

    Science.gov (United States)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  1. LADEE LUNAR DUST EXPERIMENT

    Data.gov (United States)

    National Aeronautics and Space Administration — This archive bundle includes data taken by the Lunar Dust Experiment (LDEX) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft....

  2. DOI in scientific journals of SciELO portal

    Directory of Open Access Journals (Sweden)

    Sandra Gisela Martín

    2013-10-01

    Full Text Available The research provides a description of the SciELO journals portal and the DOI identifier through its range, year of creation, history, management, policy, structure, ISBN-A and reference sources. It provides information on the implementation of the DOI in citations styles APA and Vancouver, and standards ISO 690-2010 and ABNT6023-2002. The work aimed to explore the degree of implementation of the DOI in scientific journals in SciELO, identify where DOI display, knowing the amount of publishers as DOI prefix, determine the number of journals titles including the ISSN suffix code and identify the degree of implementation of the DOI in the styles and standards of citations available in SciELO. Descriptive methodology was applied where data were collected through direct observation of the websites of the 898 current journals available between the months of December 2012 and January 2013 in SciELO portal. It concludes that less than 50% of the countries in SciELO are currently using the DOI in its publications, primarily displayed code in HTML files, only 30 of the 929 publishers implemented it and most include the ISSN identifier within the suffix. While using the DOI in all citations of the articles, not does so strict as the provisions of the rules and styles.

  3. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  4. Influence of the Choice of Lunar Gravity Model on Orbit Determination for Lunar Orbiters

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2018-01-01

    Full Text Available We examine the influence of the lunar gravity model on the orbit determination (OD of a lunar orbiter operating in a 100 km high, lunar polar orbit. Doppler and sequential range measurements by three Deep Space Network antennas and one Korea Deep Space Antenna were used. For measurement simulation and OD analysis, STK11 and ODTK6 were utilized. GLGM2, LP100K, LP150Q, GRAIL420A, and GRAIL660B were used for investigation of lunar gravity model selection effect. OD results were assessed by position and velocity uncertainties with error covariance and an external orbit comparison using simulated true orbit. The effect of the lunar gravity models on the long-term OD, degree and order level, measurement-acquisition condition, and lunar altitude was investigated. For efficiency verification, computational times for the five lunar gravity models were compared. Results showed that significant improvements to OD accuracy are observed by applying a GRAIL-based model; however, applying a full order and degree gravity modeling is not always the best strategy, owing to the computational burden. Consequently, we consider that OD using GRAIL660B with 70 × 70 degree and order is the most efficient strategy for mission preanalysis. This study provides useful guideline for KPLO OD analysis during nominal mission operation.

  5. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer ... Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  6. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  7. The Lunar Source Disk: Old Lunar Datasets on a New CD-ROM

    Science.gov (United States)

    Hiesinger, H.

    1998-01-01

    A compilation of previously published datasets on CD-ROM is presented. This Lunar Source Disk is intended to be a first step in the improvement/expansion of the Lunar Consortium Disk, in order to create an "image-cube"-like data pool that can be easily accessed and might be useful for a variety of future lunar investigations. All datasets were transformed to a standard map projection that allows direct comparison of different types of information on a pixel-by pixel basis. Lunar observations have a long history and have been important to mankind for centuries, notably since the work of Plutarch and Galileo. As a consequence of centuries of lunar investigations, knowledge of the characteristics and properties of the Moon has accumulated over time. However, a side effect of this accumulation is that it has become more and more complicated for scientists to review all the datasets obtained through different techniques, to interpret them properly, to recognize their weaknesses and strengths in detail, and to combine them synoptically in geologic interpretations. Such synoptic geologic interpretations are crucial for the study of planetary bodies through remote-sensing data in order to avoid misinterpretation. In addition, many of the modem datasets, derived from Earth-based telescopes as well as from spacecraft missions, are acquired at different geometric and radiometric conditions. These differences make it challenging to compare or combine datasets directly or to extract information from different datasets on a pixel-by-pixel basis. Also, as there is no convention for the presentation of lunar datasets, different authors choose different map projections, depending on the location of the investigated areas and their personal interests. Insufficient or incomplete information on the map parameters used by different authors further complicates the reprojection of these datasets to a standard geometry. The goal of our efforts was to transfer previously published lunar

  8. Mechanical properties of lunar regolith and lunar soil simulant

    Science.gov (United States)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  9. Mineralogical and chemical properties of the lunar regolith

    Science.gov (United States)

    Mckay, David S.; Ming, Douglas W.

    1989-01-01

    The composition of lunar regolith and its attendant properties are discussed. Tables are provided listing lunar minerals, the abundance of plagioclase feldspar, pyroxene, olivine, and ilmenite in lunar materials, typical compositions of common lunar minerals, and cumulative grain-size distribution for a large number of lunar soils. Also provided are charts on the chemistry of breccias, the chemistry of lunar glass, and the comparative chemistry of surface soils for the Apollo sites. Lunar agglutinates, constructional particles made of lithic, mineral, and glass fragments welded together by a glassy matrix containing extremely fine-grained metallic iron and formed by micrometeoric impacts at the lunar surface, are discussed. Crystalline, igneous rock fragments, breccias, and lunar glass are examined. Volatiles implanted in lunar materials and regolith maturity are also addressed.

  10. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter.

    Science.gov (United States)

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-04-16

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h 2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise.

  11. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; Torrence, Mark H.; Barker, Michael K.; Oberst, Juergen; Duxbury, Thomas C.; Mao, Dandan; Barnouin, Olivier S.; Jha, Kopal; Rowlands, David D.; Goossens, Sander; Baker, David; Bauer, Sven; Gläser, Philipp; Lemelin, Myriam; Rosenburg, Margaret; Sori, Michael M.; Whitten, Jennifer; Mcclanahan, Timothy

    2017-02-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  12. Summary of the Results from the Lunar Orbiter Laser Altimeter after Seven Years in Lunar Orbit

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Lemoine, Frank G.; Head, James W., III; Lucey, Paul G.; Aharonson, Oded; Robinson, Mark S.; Sun, Xiaoli; hide

    2016-01-01

    In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, following a 3-month commissioning phase. On completion of its exploration objectives, the LRO mission transitioned to a science mission. After 7 years in lunar orbit, the LOLA instrument continues to map the lunar surface. The LOLA dataset is one of the foundational datasets acquired by the various LRO instruments. LOLA provided a high-accuracy global geodetic reference frame to which past, present and future lunar observations can be referenced. It also obtained high-resolution and accurate global topography that were used to determine regions in permanent shadow at the lunar poles. LOLA further contributed to the study of polar volatiles through its unique measurement of surface brightness at zero phase, which revealed anomalies in several polar craters that may indicate the presence of water ice. In this paper, we describe the many LOLA accomplishments to date and its contribution to lunar and planetary science.

  13. Man-Made Debris In and From Lunar Orbit

    Science.gov (United States)

    Johnson, Nicholas L.; McKay, Gordon A. (Technical Monitor)

    1999-01-01

    During 1966-1976, as part of the first phase of lunar exploration, 29 manned and robotic missions placed more than 40 objects into lunar orbit. Whereas several vehicles later successfully landed on the Moon and/or returned to Earth, others were either abandoned in orbit or intentionally sent to their destruction on the lunar surface. The former now constitute a small population of lunar orbital debris; the latter, including four Lunar Orbiters and four Lunar Module ascent stages, have contributed to nearly 50 lunar sites of man's refuse. Other lunar satellites are known or suspected of having fallen from orbit. Unlike Earth satellite orbital decays and deorbits, lunar satellites impact the lunar surface unscathed by atmospheric burning or melting. Fragmentations of lunar satellites, which would produce clouds of numerous orbital debris, have not yet been detected. The return to lunar orbit in the 1990's by the Hagoromo, Hiten, Clementine, and Lunar Prospector spacecraft and plans for increased lunar exploration early in the 21st century, raise questions of how best to minimize and to dispose of lunar orbital debris. Some of the lessons learned from more than 40 years of Earth orbit exploitation can be applied to the lunar orbital environment. For the near-term, perhaps the most important of these is postmission passivation. Unique solutions, e.g., lunar equatorial dumps, may also prove attractive. However, as with Earth satellites, debris mitigation measures are most effectively adopted early in the concept and design phase, and prevention is less costly than remediation.

  14. Overview of the Spinal Cord Injury--Quality of Life (SCI-QOL) measurement system.

    Science.gov (United States)

    Tulsky, David S; Kisala, Pamela A; Victorson, David; Tate, Denise G; Heinemann, Allen W; Charlifue, Susan; Kirshblum, Steve C; Fyffe, Denise; Gershon, Richard; Spungen, Ann M; Bombardier, Charles H; Dyson-Hudson, Trevor A; Amtmann, Dagmar; Kalpakjian, Claire Z; Choi, Seung W; Jette, Alan M; Forchheimer, Martin; Cella, David

    2015-05-01

    The Spinal Cord Injury--Quality of Life (SCI-QOL) measurement system was developed to address the shortage of relevant and psychometrically sound patient reported outcome (PRO) measures available for clinical care and research in spinal cord injury (SCI) rehabilitation. Using a computer adaptive testing (CAT) approach, the SCI-QOL builds on the Patient Reported Outcomes Measurement Information System (PROMIS) and the Quality of Life in Neurological Disorders (Neuro-QOL) initiative. This initial manuscript introduces the background and development of the SCI-QOL measurement system. Greater detail is presented in the additional manuscripts of this special issue. Classical and contemporary test development methodologies were employed. Qualitative input was obtained from individuals with SCI and clinicians through interviews, focus groups, and cognitive debriefing. Item pools were field tested in a multi-site sample (n=877) and calibrated using item response theory methods. Initial reliability and validity testing was performed in a new sample of individuals with traumatic SCI (n=245). Five Model SCI System centers and one Department of Veterans Affairs Medical Center across the United States. Adults with traumatic SCI. n/a n/a The SCI-QOL consists of 19 item banks, including the SCI-Functional Index banks, and 3 fixed-length scales measuring physical, emotional, and social aspects of health-related QOL (HRQOL). The SCI-QOL measurement system consists of psychometrically sound measures for individuals with SCI. The manuscripts in this special issue provide evidence of the reliability and initial validity of this measurement system. The SCI-QOL also links to other measures designed for a general medical population.

  15. Sci-Hub provides access to nearly all scholarly literature.

    Science.gov (United States)

    Himmelstein, Daniel S; Romero, Ariel Rodriguez; Levernier, Jacob G; Munro, Thomas Anthony; McLaughlin, Stephen Reid; Greshake Tzovaras, Bastian; Greene, Casey S

    2018-03-01

    The website Sci-Hub enables users to download PDF versions of scholarly articles, including many articles that are paywalled at their journal's site. Sci-Hub has grown rapidly since its creation in 2011, but the extent of its coverage has been unclear. Here we report that, as of March 2017, Sci-Hub's database contains 68.9% of the 81.6 million scholarly articles registered with Crossref and 85.1% of articles published in toll access journals. We find that coverage varies by discipline and publisher, and that Sci-Hub preferentially covers popular, paywalled content. For toll access articles, we find that Sci-Hub provides greater coverage than the University of Pennsylvania, a major research university in the United States. Green open access to toll access articles via licit services, on the other hand, remains quite limited. Our interactive browser at https://greenelab.github.io/scihub allows users to explore these findings in more detail. For the first time, nearly all scholarly literature is available gratis to anyone with an Internet connection, suggesting the toll access business model may become unsustainable. © 2018, Himmelstein et al.

  16. Sensitivity of the SCI-FI/AT in Individuals With Traumatic Spinal Cord Injury.

    Science.gov (United States)

    Keeney, Tamra; Slavin, Mary; Kisala, Pamela; Ni, Pengsheng; Heinemann, Allen W; Charlifue, Susan; Fyffe, Denise C; Marino, Ralph J; Morse, Leslie R; Worobey, Lynn A; Tate, Denise; Rosenblum, David; Zafonte, Ross; Tulsky, David; Jette, Alan M

    2018-03-31

    To examine the ability of the Spinal Cord Injury-Functional Index/Assistive Technology (SCI-FI/AT) measure to detect change in persons with spinal cord injury (SCI). Multisite longitudinal (12-mo follow-up) study. Nine SCI Model Systems programs. Adults (N=165) with SCI enrolled in the SCI Model Systems database. Not applicable. SCI-FI/AT computerized adaptive test (CAT) (Basic Mobility, Self-Care, Fine Motor Function, Wheelchair Mobility, and/or Ambulation domains) completed at discharge from rehabilitation and 12 months after SCI. For each domain, effect size estimates and 95% confidence intervals were calculated for subgroups with paraplegia and tetraplegia. The demographic characteristics of the sample were as follows: 46% (n=76) individuals with paraplegia, 76% (n=125) male participants, 57% (n=94) used a manual wheelchair, 38% (n=63) used a power wheelchair, 30% (n=50) were ambulatory. For individuals with paraplegia, the Basic Mobility, Self-Care, and Ambulation domains of the SCI-FI/AT detected a significantly large amount of change; in contrast, the Fine Motor Function and Wheelchair Mobility domains detected only a small amount of change. For those with tetraplegia, the Basic Mobility, Fine Motor Function, and Self-Care domains detected a small amount of change whereas the Ambulation item domain detected a medium amount of change. The Wheelchair Mobility domain for people with tetraplegia was the only SCI-FI/AT domain that did not detect significant change. SCI-FI/AT CAT item banks detected an increase in function from discharge to 12 months after SCI. The effect size estimates for the SCI-FI/AT CAT vary by domain and level of lesion. Findings support the use of the SCI-FI/AT CAT in the population with SCI and highlight the importance of multidimensional functional measures. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Methodology for the development and calibration of the SCI-QOL item banks.

    Science.gov (United States)

    Tulsky, David S; Kisala, Pamela A; Victorson, David; Choi, Seung W; Gershon, Richard; Heinemann, Allen W; Cella, David

    2015-05-01

    To develop a comprehensive, psychometrically sound, and conceptually grounded patient reported outcomes (PRO) measurement system for individuals with spinal cord injury (SCI). Individual interviews (n=44) and focus groups (n=65 individuals with SCI and n=42 SCI clinicians) were used to select key domains for inclusion and to develop PRO items. Verbatim items from other cutting-edge measurement systems (i.e. PROMIS, Neuro-QOL) were included to facilitate linkage and cross-population comparison. Items were field tested in a large sample of individuals with traumatic SCI (n=877). Dimensionality was assessed with confirmatory factor analysis. Local item dependence and differential item functioning were assessed, and items were calibrated using the item response theory (IRT) graded response model. Finally, computer adaptive tests (CATs) and short forms were administered in a new sample (n=245) to assess test-retest reliability and stability. A calibration sample of 877 individuals with traumatic SCI across five SCI Model Systems sites and one Department of Veterans Affairs medical center completed SCI-QOL items in interview format. We developed 14 unidimensional calibrated item banks and 3 calibrated scales across physical, emotional, and social health domains. When combined with the five Spinal Cord Injury--Functional Index physical function banks, the final SCI-QOL system consists of 22 IRT-calibrated item banks/scales. Item banks may be administered as CATs or short forms. Scales may be administered in a fixed-length format only. The SCI-QOL measurement system provides SCI researchers and clinicians with a comprehensive, relevant and psychometrically robust system for measurement of physical-medical, physical-functional, emotional, and social outcomes. All SCI-QOL instruments are freely available on Assessment CenterSM.

  18. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-01-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M + from 10 to 20 AU. For large planet masses (M ∼> M Sat ), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a ∼ -1 and periods in excess of 10 years will provide constraints on this regime. Finally, we present an analysis of the predicted separation of planets in two-planet systems, and of the population of planets in mean-motion resonances (MMRs). We show that, if there are systems with ∼ Jupiter-mass planets that avoid close encounters, the planetesimal disk acts as a damping mechanism and populates MMRs at a very high rate (50%-80%). In many cases, resonant chains (in particular the 4:2:1 Laplace resonance) are set up among all three planets. We expect such resonant chains to be common among massive

  19. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  20. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    sessions served to build connections between planetary, solar, astrophysics, and Earth climate scientists. These presentations and discussions allowed broadening of the author teams and tuning of the material in each chapter. Comparative Climatology of Terrestrial Planets is the 38th book in the University of Arizona Press Space Sciences Series. The support and guidance from General Editor Richard Binzel has been critical in timely production of a quality volume. Renée Dotson of the Lunar and Planetary Institute, with support from Elizabeth Cunningham and Katy Buckaloo, provided outstanding help in the management of the book project and especially in the preparation of the chapters for publication. Her quiet reminders and attention to detail are critical in making the Space Science Series such an asset for the planetary science community. As for so many other books in this series, William Hartmann used his artistic skills to masterfully capture the book's theme. Much gratitude is owed to Adriana Ocampo of NASA Headquarters for her support of both the conference and book projects and her shepherding of the NASA contributions from the diverse groups within the Science Mission Directorate. Equally, James Green and Jonathan Rall of NASA Headquarters provided the financial resources and corporate oversight that helped make this book project such a success.

  1. Hydrated Minerals in Circumpolar Terrains: Geographic Distribution, Mineralogical Composition and Possible Origins

    Science.gov (United States)

    Langevin, Y.; Poulet, F.; Fishbaugh, K. E.; Roach, L.; Vincendon, M.; Gondet, B.; Bibring, J.; Murchie, S.

    2007-12-01

    evidence for induration (Schatz et al., 2006). Weaker occurrences of the 1.93 µm OH stretch band have been observed in other northern and southern circumpolar locations. Sulfates and hydrated oxides provide much better matches for these signatures than phyllosilicates. The formation of large amounts of hydrated sulfates in the relatively young northern circumpolar terrains requires a source of sulfur (already present in soils? volcanic activity?) as well as water, which most likely is provided by outflows from the nearby polar cap (Fishbaugh et al., 2007). This process for generating hydrated minerals is distinct from that which was active during the first few hundred million years of the history of the planet. Bibring et al., Science 307, p. 1576-1581 (2005); Bibring et al., Science 312, p. 400-404 (2006); Feldman et al., Lunar Planet. Sci. 38 #2311 (2007); Fishbaugh et al., J. Geophys. Res. 112, E07002 (2007); Herkenhoff and Vasavada, J. Geophys. Res. 104, 16484. Horgan et al., 7th Int. Conf. on Mars #3241 (2007); Langevin et al., Science 307, p. 1581-1583 ; Langevin et al., Lunar Planet. Sci. 36 #1652 (2005) ; Roach et al., Lunar Planet. Sci. 38 #1970 (2007) ; Schatz et al., J. Geophys. Res. 111, E04006 (2006).

  2. Consequences of the low density of the lunar primary crust on its magmatic history (Invited)

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2013-12-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick. This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Here, we provide evidence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Furthermore, at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by impact. The pressure release due to material removal by impact is significant over a depth equivalent to the crater radius. Because many of these floor-fractured craters are relatively small, i.e. less than 20 to 30 km in radius, this observation suggests that the magma at the origin of the intrusion was already stored within or just below the crust, in deeper intrusions. Thus, a large fraction of the mantle melt might have stored at depth below or within the light primary crust before reaching shallower layers. And hence, magma intrusions must have had a large influence on the thermal and geological evolution of the

  3. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... How Peer Counseling Works Julie Gassaway, MS, RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children ...

  4. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Medical Experts People Living with SCI Personal Experiences by Topic Resources Peer ... Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  5. Measurements of Neutrino Charged Current Interactions at SciBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)], E-mail: nakajima@scphys.kyoto-u.ac.jp

    2009-08-15

    The SciBooNE experiment (FNAL-E954) is designed to measure neutrino-nucleous cross sections in the one GeV region. Additionally, SciBooNE serves as a near detector for MiniBooNE by measuring the neutrino flux. In this paper, we describe two analyses using neutrino charged current interactions at SciBooNE: a neutrino spectrum measurement and a search for charged current coherent pion production.

  6. Lunar regolith stratigraphy analysis based on the simulation of lunar penetrating radar signals

    Science.gov (United States)

    Lai, Jialong; Xu, Yi; Zhang, Xiaoping; Tang, Zesheng

    2017-11-01

    The thickness of lunar regolith is an important index of evaluating the quantity of lunar resources such as 3He and relative geologic ages. Lunar penetrating radar (LPR) experiment of Chang'E-3 mission provided an opportunity of in situ lunar subsurface structure measurement in the northern mare imbrium area. However, prior work on analyzing LPR data obtained quite different conclusions of lunar regolith structure mainly because of the missing of clear interface reflectors in radar image. In this paper, we utilized finite-difference time-domain (FDTD) method and three models of regolith structures with different rock density, number of layers, shapes of interfaces, and etc. to simulate the LPR signals for the interpretation of radar image. The simulation results demonstrate that the scattering signals caused by numerous buried rocks in the regolith can mask the horizontal reflectors, and the die-out of radar echo does not indicate the bottom of lunar regolith layer and data processing such as migration method could recover some of the subsurface information but also result in fake signals. Based on analysis of simulation results, we conclude that LPR results uncover the subsurface layered structure containing the rework zone with multiple ejecta blankets of small crater, the ejecta blanket of Chang'E-3 crater, and the transition zone and estimate the thickness of the detected layer is about 3.25 m.

  7. SCI Longitudinal Aging Study: 40 Years of Research.

    Science.gov (United States)

    Krause, James S; Clark, Jillian M R; Saunders, Lee L

    2015-01-01

    The Spinal Cord Injury (SCI) Longitudinal Aging Study was initiated in 1973 and has conducted 8 assessments over the past 40 years. It was designed to help rehabilitation professionals understand the life situation of people with SCI, but it has developed into the most long-standing study of aging and SCI and has resulted in over 50 publications. Our purpose was to provide a detailed history of the study, response patterns, utilization of measures, and a summary of key findings reported in the literature. Five participant samples have been incorporated over the 40 years, with enrollment in 1973, 1984, 1993 (2 samples), and 2003. A total of 2,208 participants have completed 6,001 assessments, with a particularly large number of assessments among those who are more than 40 years post injury (n = 349). The overall results have indicated changing patterns of outcomes over time as persons with SCI age, with some notable declines in participation and health. There has been a survivor effect whereby persons who are more active, well-adjusted, and healthier live longer. This study has several important features that are required for longitudinal research including (a) consistency of follow-up, (b) consistency of measures over time, (c) addition of new participant samples to counteract attrition, and (d) inclusion of a large number of individuals who have reached aging milestones unparalleled in the literature. Data from this study can inform the literature on the natural course of aging with SCI.

  8. Multi-state autonomous drilling for lunar exploration

    Directory of Open Access Journals (Sweden)

    Chen Chongbin

    2016-10-01

    Full Text Available Due to the lack of information of subsurface lunar regolith stratification which varies along depth, the drilling device may encounter lunar soil and lunar rock randomly in the drilling process. To meet the load safety requirements of unmanned sampling mission under limited orbital resources, the control strategy of autonomous drilling should adapt to the indeterminable lunar environments. Based on the analysis of two types of typical drilling media (i.e., lunar soil and lunar rock, this paper proposes a multi-state control strategy for autonomous lunar drilling. To represent the working circumstances in the lunar subsurface and reduce the complexity of the control algorithm, lunar drilling process was categorized into three drilling states: the interface detection, initiation of drilling parameters for recognition and drilling medium recognition. Support vector machine (SVM and continuous wavelet transform were employed for the online recognition of drilling media and interface, respectively. Finite state machine was utilized to control the transition among different drilling states. To verify the effectiveness of the multi-state control strategy, drilling experiments were implemented with multi-layered drilling media constructed by lunar soil simulant and lunar rock simulant. The results reveal that the multi-state control method is capable of detecting drilling state variation and adjusting drilling parameters timely under vibration interferences. The multi-state control method provides a feasible reference for the control of extraterrestrial autonomous drilling.

  9. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  10. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  11. Planet traps and first planets: The critical metallicity for gas giant formation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki, E-mail: yasu@asiaa.sinica.edu.tw, E-mail: hirashita@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2014-06-10

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R{sub rapid}〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R{sub rapid}〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  12. Planet traps and first planets: The critical metallicity for gas giant formation

    International Nuclear Information System (INIS)

    Hasegawa, Yasuhiro; Hirashita, Hiroyuki

    2014-01-01

    The ubiquity of planets poses an interesting question: when are first planets formed in galaxies? We investigate this by adopting a theoretical model where planet traps are combined with the standard core accretion scenario in which the efficiency of forming planetary cores directly relates to the metallicity ([Fe/H]) in disks. Three characteristic exoplanetary populations are examined: hot Jupiters, exo-Jupiters around 1 AU, and low-mass planets in tight orbits, such as super-Earths. We statistically compute planet formation frequencies (PFFs), as well as the orbital radius (〈R rapid 〉) within which gas accretion becomes efficient enough to form Jovian planets, as a function of metallicity (–2 ≤ [Fe/H] ≤–0.6). We show that the total PFFs for these three populations increase steadily with metallicity. This is the direct outcome of the core accretion picture. For the metallicity range considered here, the population of low-mass planets dominates Jovian planets. The Jovian planets contribute to the PFFs above [Fe/H] ≅ –1. We find that the hot Jupiters form more efficiently than the exo-Jupiters at [Fe/H] ≲ –0.7. This arises from the slower growth of planetary cores and their more efficient radial inward transport by the host traps in lower metallicity disks. We show that the critical metallicity for forming Jovian planets is [Fe/H] ≅ –1.2 by comparing 〈R rapid 〉 of hot Jupiters and low-mass planets. The comparison intrinsically links to the different gas accretion efficiency between these two types of planets. Therefore, this study implies that important physical processes in planet formation may be tested by exoplanet observations around metal-poor stars.

  13. Apollo Missions to the Lunar Surface

    Science.gov (United States)

    Graff, Paige V.

    2018-01-01

    Six Apollo missions to the Moon, from 1969-1972, enabled astronauts to collect and bring lunar rocks and materials from the lunar surface to Earth. Apollo lunar samples are curated by NASA Astromaterials at the NASA Johnson Space Center in Houston, TX. Samples continue to be studied and provide clues about our early Solar System. Learn more and view collected samples at: https://curator.jsc.nasa.gov/lunar.

  14. Optimal Lunar Landing Trajectory Design for Hybrid Engine

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Cho

    2015-01-01

    Full Text Available The lunar landing stage is usually divided into two parts: deorbit burn and powered descent phases. The optimal lunar landing problem is likely to be transformed to the trajectory design problem on the powered descent phase by using continuous thrusters. The optimal lunar landing trajectories in general have variety in shape, and the lunar lander frequently increases its altitude at the initial time to obtain enough time to reduce the horizontal velocity. Due to the increment in the altitude, the lunar lander requires more fuel for lunar landing missions. In this work, a hybrid engine for the lunar landing mission is introduced, and an optimal lunar landing strategy for the hybrid engine is suggested. For this approach, it is assumed that the lunar lander retrofired the impulsive thruster to reduce the horizontal velocity rapidly at the initiated time on the powered descent phase. Then, the lunar lander reduced the total velocity and altitude for the lunar landing by using the continuous thruster. In contradistinction to other formal optimal lunar landing problems, the initial horizontal velocity and mass are not fixed at the start time. The initial free optimal control theory is applied, and the optimal initial value and lunar landing trajectory are obtained by simulation studies.

  15. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  16. SciServer Compute brings Analysis to Big Data in the Cloud

    Science.gov (United States)

    Raddick, Jordan; Medvedev, Dmitry; Lemson, Gerard; Souter, Barbara

    2016-06-01

    SciServer Compute uses Jupyter Notebooks running within server-side Docker containers attached to big data collections to bring advanced analysis to big data "in the cloud." SciServer Compute is a component in the SciServer Big-Data ecosystem under development at JHU, which will provide a stable, reproducible, sharable virtual research environment.SciServer builds on the popular CasJobs and SkyServer systems that made the Sloan Digital Sky Survey (SDSS) archive one of the most-used astronomical instruments. SciServer extends those systems with server-side computational capabilities and very large scratch storage space, and further extends their functions to a range of other scientific disciplines.Although big datasets like SDSS have revolutionized astronomy research, for further analysis, users are still restricted to downloading the selected data sets locally - but increasing data sizes make this local approach impractical. Instead, researchers need online tools that are co-located with data in a virtual research environment, enabling them to bring their analysis to the data.SciServer supports this using the popular Jupyter notebooks, which allow users to write their own Python and R scripts and execute them on the server with the data (extensions to Matlab and other languages are planned). We have written special-purpose libraries that enable querying the databases and other persistent datasets. Intermediate results can be stored in large scratch space (hundreds of TBs) and analyzed directly from within Python or R with state-of-the-art visualization and machine learning libraries. Users can store science-ready results in their permanent allocation on SciDrive, a Dropbox-like system for sharing and publishing files. Communication between the various components of the SciServer system is managed through SciServer‘s new Single Sign-on Portal.We have created a number of demos to illustrate the capabilities of SciServer Compute, including Python and R scripts

  17. PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Raymond, Sean N.; Barnes, Rory; Veras, Dimitri; Armitage, Philip J.; Gorelick, Noel; Greenberg, Richard

    2009-01-01

    The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masses, the mass-inclination degeneracy does not significantly affect our results. We consider a wide range of initial planetary mass distributions and find that some are poor fits to the observed systems. In fact, many of our scattering experiments overproduce systems very close to the stability boundary. The distribution of dynamical configurations of two-planet systems may provide better discrimination between scattering models than the distribution of eccentricity. Our results imply that, at least in their inner regions which are weakly affected by gas or planetesimal disks, planetary systems should be 'packed', with no large gaps between planets.

  18. SciDAC advances and applications in computational beam dynamics

    International Nuclear Information System (INIS)

    Ryne, R; Abell, D; Adelmann, A; Amundson, J; Bohn, C; Cary, J; Colella, P; Dechow, D; Decyk, V; Dragt, A; Gerber, R; Habib, S; Higdon, D; Katsouleas, T; Ma, K-L; McCorquodale, P; Mihalcea, D; Mitchell, C; Mori, W; Mottershead, C T; Neri, F; Pogorelov, I; Qiang, J; Samulyak, R; Serafini, D; Shalf, J; Siegerist, C; Spentzouris, P; Stoltz, P; Terzic, B; Venturini, M; Walstrom, P

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators-which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook-are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this paper we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications

  19. SciDAC Advances and Applications in Computational Beam Dynamics

    International Nuclear Information System (INIS)

    Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.

    2005-01-01

    SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications

  20. Planet-planet scattering leads to tightly packed planetary systems

    OpenAIRE

    Raymond, Sean N.; Barnes, Rory; Veras, Dimitri; Armitage, Philip J.; Gorelick, Noel; Greenberg, Richard

    2009-01-01

    The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masse...

  1. Experimental Study of Lunar and SNC Magmas

    Science.gov (United States)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  2. Influence of stellar multiplicity on planet formation. I. Evidence of suppressed planet formation due to stellar companions within 20 au and validation of four planets from the Kepler multiple planet candidates

    International Nuclear Information System (INIS)

    Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei; Barclay, Thomas

    2014-01-01

    The planet occurrence rate for multiple stars is important in two aspects. First, almost half of stellar systems in the solar neighborhood are multiple systems. Second, the comparison of the planet occurrence rate for multiple stars to that for single stars sheds light on the influence of stellar multiplicity on planet formation and evolution. We developed a method of distinguishing planet occurrence rates for single and multiple stars. From a sample of 138 bright (K P < 13.5) Kepler multi-planet candidate systems, we compared the stellar multiplicity rate of these planet host stars to that of field stars. Using dynamical stability analyses and archival Doppler measurements, we find that the stellar multiplicity rate of planet host stars is significantly lower than field stars for semimajor axes less than 20 AU, suggesting that planet formation and evolution are suppressed by the presence of a close-in companion star at these separations. The influence of stellar multiplicity at larger separations is uncertain because of search incompleteness due to a limited Doppler observation time baseline and a lack of high-resolution imaging observation. We calculated the planet confidence for the sample of multi-planet candidates and find that the planet confidences for KOI 82.01, KOI 115.01, KOI 282.01, and KOI 1781.02 are higher than 99.7% and thus validate the planetary nature of these four planet candidates. This sample of bright Kepler multi-planet candidates with refined stellar and orbital parameters, planet confidence estimation, and nearby stellar companion identification offers a well-characterized sample for future theoretical and observational study.

  3. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  4. BlockSci: Design and applications of a blockchain analysis platform

    OpenAIRE

    Kalodner, Harry; Goldfeder, Steven; Chator, Alishah; Möser, Malte; Narayanan, Arvind

    2017-01-01

    Analysis of blockchain data is useful for both scientific research and commercial applications. We present BlockSci, an open-source software platform for blockchain analysis. BlockSci is versatile in its support for different blockchains and analysis tasks. It incorporates an in-memory, analytical (rather than transactional) database, making it several hundred times faster than existing tools. We describe BlockSci's design and present four analyses that illustrate its capabilities. This is a ...

  5. What is a lunar standstill III?

    Directory of Open Access Journals (Sweden)

    Lionel Duke Sims

    2016-12-01

    Full Text Available Prehistoric monument alignments on lunar standstills are currently understood for horizon range, perturbation event, crossover event, eclipse prediction, solstice full Moon and the solarisation of the dark Moon. The first five models are found to fail the criteria of archaeoastronomy field methods. The final model of lunar-solar conflation draws upon all the observed components of lunar standstills – solarised reverse phased sidereal Moons culminating in solstice dark Moons in a roughly nine-year alternating cycle between major and minor standstills. This lunar-solar conflation model is a syncretic overlay upon an antecedent Palaeolithic template for lunar scheduled rituals and amenable to transformation.

  6. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  7. NASA Lunar Base Wireless System Propagation Analysis

    Science.gov (United States)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The

  8. Analysis of Sci-Hub downloads of computer science papers

    Directory of Open Access Journals (Sweden)

    Andročec Darko

    2017-07-01

    Full Text Available The scientific knowledge is disseminated by research papers. Most of the research literature is copyrighted by publishers and avail- able only through paywalls. Recently, some websites offer most of the recent content for free. One of them is the controversial website Sci-Hub that enables access to more than 47 million pirated research papers. In April 2016, Science Magazine published an article on Sci-Hub activity over the period of six months and publicly released the Sci-Hub’s server log data. The mentioned paper aggregates the view that relies on all downloads and for all fields of study, but these findings might be hiding interesting patterns within computer science. The mentioned Sci-Hub log data was used in this paper to analyse downloads of computer science papers based on DBLP’s list of computer science publications. The top downloads of computer science papers were analysed, together with the geographical location of Sci-Hub users, the most downloaded publishers, types of papers downloaded, and downloads of computer science papers per publication year. The results of this research can be used to improve legal access to the most relevant scientific repositories or journals for the computer science field.

  9. Natural radioactivity of the rocks from the Moon and planets

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu.A. (AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient continent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts.

  10. Natural radioactivity of the rocks from the Moon and planets

    International Nuclear Information System (INIS)

    Surkov, Yu.A.

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient contineent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts

  11. Academic aspects of lunar water resources and their relevance to lunar protolife.

    Science.gov (United States)

    Green, Jack

    2011-01-01

    Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 10(9) metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble

  12. Treatment of Nueropathic Pain after SCI with a Catalytic Oxidoreductant

    Science.gov (United States)

    2016-10-01

    include under the details per task section below. Although we did not find an effect of BuOE2 in reducing functional deficits following ischemic SCI, we...SCI. Epidermal growth factor (EGF) is a protein that supports cell proliferation. An upregulation following injury was observed in the epicenter...Figure 25: Effect of BuOE2 on expression of leptin in the rat spinal cord at 24 hours post-SCI. Leptin is a hormone which regulates energy homeostasis

  13. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family ... play_arrow How is the delivery of a child affected by the mother's spinal cord injury? play_ ...

  14. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ... OT Anne Bryden, OT The Role of the Social Worker after Spinal Cord Injury Patti Rogers, SW ...

  15. Lunar domes properties and formation processes

    CERN Document Server

    Lena, Raffaello; Phillips, Jim; Chiocchetta, Maria Teresa

    2013-01-01

    Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which the...

  16. Women's Sexual Health and Reproductive Function After SCI.

    Science.gov (United States)

    Courtois, Frédérique; Alexander, Marcalee; McLain, Amie B Jackson

    2017-01-01

    Sexual function and to a lesser extent reproduction are often disrupted in women with spinal cord injuries (SCI), who must be educated to better understand their sexual and reproductive health. Women with SCI are sexually active; they can use psychogenic or reflexogenic stimulation to obtain sexual pleasure and orgasm. Treatment should consider a holistic approach using autonomic standards to describe remaining sexual function and to assess both genital function and psychosocial factors. Assessment of genital function should include thoracolumbar dermatomes, vulvar sensitivity (touch, pressure, vibration), and sacral reflexes. Self-exploration should include not only clitoral stimulation, but also stimulation of the vagina (G spot), cervix, and nipples conveyed by different innervation sources. Treatments may consider PDE5 inhibitors and flibanserin on an individual basis, and secondary consequences of SCI should address concerns with spasticity, pain, incontinence, and side effects of medications. Psychosocial issues must be addressed as possible contributors to sexual dysfunctions (eg, lower self-esteem, past sexual history, depression, dating habits). Pregnancy is possible for women with SCI; younger age at the time of injury and at the time of pregnancy being significant predictors of successful pregnancy, along with marital status, motor score, mobility, and occupational scores. Pregnancy may decrease the level of functioning (eg, self-care, ambulation, upper-extremity tasks), may involve complications (eg, decubitus ulcers, weight gain, urological complications), and must be monitored for postural hypotension and autonomic dysreflexia. Taking into consideration the physical and psychosocial determinants of sexuality and childbearing allows women with SCI to achieve positive sexual and reproductive health.

  17. Discontinuous ventilator weaning of patients with acute SCI.

    Science.gov (United States)

    Füssenich, Wout; Hirschfeld Araujo, Sven; Kowald, Birgitt; Hosman, Allard; Auerswald, Marc; Thietje, Roland

    2018-05-01

    Retrospective, single centre cohort study. To determine factors associated with ventilator weaning success and failure in patients with acute spinal cord injury (SCI); determine length of time and attempts required to wean from the ventilator successfully and determine the incidence of pneumonia. BG Klinikum Hamburg, Level 1 trauma centre, SCI Department, Germany. From 2010 until 2017, 165 consecutive patients with cervical SCI, initially dependent on a ventilator, were included and weaned discontinuously via tracheal cannula. Data related to anthropometric details, neurological injury, respiratory outcomes, and weaning parameters were prospectively recorded in a database and retrospectively analysed. Seventy-nine percent of all patients were successfully weaned from ventilation. Average duration of the complete weaning process was 37 days. Ninety-one percent of the successfully weaned patients completed this on first attempt. Age (>56 years), level of injury (C4 and/or above), vital capacity (25 kg/m 2 ), and chronic obstructive pulmonary disease (COPD) significantly decreased the chance of successful weaning. These factors also correlated with a higher number of weaning attempts. High level of injury, older age, and reduced vital capacity also increased the duration of the weaning process. Patients with low vital capacity and concurrent therapy with Baclofen and Dantrolene showed higher rates of pneumonia. We conclude that mentioned factors are associated with weaning outcome and useful for clinical recommendations and patient counselling. These data further support the complexity of ventilator weaning in the SCI population due to associated complications, therefore we recommend conducting weaning of patients with SCI on intensive or intermediate care units (ICU/IMCU) in specialised centres.

  18. ScienceDirect through SciVerse: a new way to approach Elsevier.

    Science.gov (United States)

    Bengtson, Jason

    2011-01-01

    SciVerse is the new combined portal from Elsevier that services their ScienceDirect collection, SciTopics, and their Scopus database. Using SciVerse to access ScienceDirect is the specific focus of this review. Along with advanced keyword searching and citation searching options, SciVerse also incorporates a very useful image search feature. The aim seems to be not only to create an interface that provides broad functionality on par with other database search tools that many searchers use regularly but also to create an open platform that could be changed to respond effectively to the needs of customers.

  19. Searching for Lunar Horizon Glow With the Lunar Orbiter Laser Altimeter (LOLA)

    Science.gov (United States)

    Barker, M. K.; Mazarico, E. M.; McClanahan, T. P.; Sun, X.; Smith, D. E.; Neumann, G. A.; Zuber, M. T.; Head, J. W., III

    2017-12-01

    The dust environment of the Moon is sensitive to the interplanetary meteoroid population and dust transport processes near the lunar surface, and this affects many aspects of lunar surface science and planetary exploration. The interplanetary meteoroid population poses a significant risk to spacecraft, yet it remains one of the more uncertain constituents of the space environment. Observed and hypothesized lunar dust transport mechanisms have included impact-generated dust plumes, electrostatic levitation, and dynamic lofting. Many details of the impactor flux and impact ejection process are poorly understood, a fact highlighted by recent discrepant estimates of the regolith mixing rate. Apollo-era observations of lunar horizon glow (LHG) were interpreted as sunlight forward-scattered by exospheric dust grains levitating in the top meter above the surface or lofted to tens of kilometers in altitude. However, recent studies have placed limits on the dust density orders of magnitude less than what was originally inferred, raising new questions on the time variability of the dust environment. Motivated by the need to better understand dust transport processes and the meteoroid population, the Lunar Orbiter Laser Altimeter (LOLA) aboard the Lunar Reconnaissance Orbiter (LRO) is conducting a campaign to search for LHG with the LOLA Laser Ranging (LR) system. Advantages of this LOLA LHG search include: (1) the LOLA-LR telescope can observe arbitrarily close to the Sun at any time during the year without damaging itself or the other instruments, (2) a long temporal baseline with observations both during and outside of meteor streams, which will improve the chances of detecting LHG, and (3) a focus on altitudes methodology, and preliminary results.

  20. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Diane M. Rowles, MS, NP How Family Life Changes After Spinal Cord Injury Nancy Rosenberg, PsyD Understanding SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa Rosen, MS Spasticity, ...

  1. Sex and Fertility After SCI

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  2. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... RN Pediatric Injuries Pediatric Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation ... Rogers, PT Recreational Therapy after Spinal Cord Injury Jennifer Piatt, PhD Diane M. Rowles, MS, NP Read ...

  3. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Adult Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from ... Rosenberg, PsyD Understanding SCI Rehabilitation Donald Peck Leslie, MD Adjusting to Social Life in a Wheelchair Lisa ...

  4. Lunar surface engineering properties experiment definition

    Science.gov (United States)

    Mitchell, J. K.; Goodman, R. E.; Hurlbut, F. C.; Houston, W. N.; Willis, D. R.; Witherspoon, P. A.; Hovland, H. J.

    1971-01-01

    Research on the mechanics of lunar soils and on developing probes to determine the properties of lunar surface materials is summarized. The areas of investigation include the following: soil simulation, soil property determination using an impact penetrometer, soil stabilization using urethane foam or phenolic resin, effects of rolling boulders down lunar slopes, design of borehole jack and its use in determining failure mechanisms and properties of rocks, and development of a permeability probe for measuring fluid flow through porous lunar surface materials.

  5. Sex and Fertility After SCI

    Medline Plus

    Full Text Available ... Spinal Cord Injury 101 Lawrence Vogel, MD The Basics of Pediatric SCI Rehabilitation Sara Klaas, MSW Transitions for Children with Spinal Cord Injury Patricia Mucia, RN Family Life After Pediatric Spinal Injury Dawn Sheaffer, MSW Rehabilitation ...

  6. Preface: SciDAC 2008

    Science.gov (United States)

    Stevens, Rick

    2008-07-01

    The fourth annual Scientific Discovery through Advanced Computing (SciDAC) Conference was held June 13-18, 2008, in Seattle, Washington. The SciDAC conference series is the premier communitywide venue for presentation of results from the DOE Office of Science's interdisciplinary computational science program. Started in 2001 and renewed in 2006, the DOE SciDAC program is the country's - and arguably the world's - most significant interdisciplinary research program supporting the development of advanced scientific computing methods and their application to fundamental and applied areas of science. SciDAC supports computational science across many disciplines, including astrophysics, biology, chemistry, fusion sciences, and nuclear physics. Moreover, the program actively encourages the creation of long-term partnerships among scientists focused on challenging problems and computer scientists and applied mathematicians developing the technology and tools needed to address those problems. The SciDAC program has played an increasingly important role in scientific research by allowing scientists to create more accurate models of complex processes, simulate problems once thought to be impossible, and analyze the growing amount of data generated by experiments. To help further the research community's ability to tap into the capabilities of current and future supercomputers, Under Secretary for Science, Raymond Orbach, launched the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program in 2003. The INCITE program was conceived specifically to seek out computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. The program encourages proposals from universities, other research institutions, and industry. During the first two years of the INCITE program, 10 percent of the resources at NERSC were allocated to INCITE awardees. However, demand for supercomputing resources

  7. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction.

    Science.gov (United States)

    Troy, Karen L; Morse, Leslie R

    2015-01-01

    Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.

  8. Endogenous Lunar Volatiles

    Science.gov (United States)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions

  9. Hydrogen Distribution in the Lunar Polar Regions

    Science.gov (United States)

    Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Bakhtin, B. N.; Bodnarik, J. G.; Boynton, W. V.; Chin, G.; Evans, L. G.; Harshmann, K.; Fedosov, F.; hide

    2016-01-01

    We present a method of conversion of the lunar neutron counting rate measured by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument collimated neutron detectors, to water equivalent hydrogen (WEH) in the top approximately 1 m layer of lunar regolith. Polar maps of the Moon’s inferred hydrogen abundance are presented and discussed.

  10. Circulating sclerostin is elevated in short-term and reduced in long-term SCI.

    Science.gov (United States)

    Battaglino, Ricardo A; Sudhakar, Supreetha; Lazzari, Antonio A; Garshick, Eric; Zafonte, Ross; Morse, Leslie R

    2012-09-01

    Spinal cord injury (SCI) causes profound bone loss due to muscle paralysis resulting in the inability to walk. Sclerostin, a Wnt signaling pathway antagonist produced by osteocytes, is a potent inhibitor of bone formation. Short-term studies in rodent models have demonstrated increased sclerostin in response to mechanical unloading that is reversed with reloading. Although sclerostin inhibition has been proposed as a potential therapy for bone loss, it is not known if sclerostin levels vary with duration of SCI in humans. We analyzed circulating sclerostin in 155 men with varying degrees of SCI who were 1 year or more post-injury. We report that sclerostin levels are greatest in subjects with short-term SCI (≤5 years post-injury) and decrease significantly over the first 5 years post-injury. There was no association between sclerostin and injury duration in subjects with long-term SCI (>5 years post-injury). In subjects with long-term SCI, sclerostin levels were positively associated with lower extremity bone density and bone mineral content. These data suggest that sclerostin levels are initially increased after SCI in response to mechanical unloading. This response is time-limited and as bone loss progresses, circulating sclerostin is lowest in subjects with severe osteoporosis. These findings support a dual role for sclerostin after SCI: a therapeutic target in acute SCI, and a biomarker of osteoporosis severity in chronic SCI. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Erosive Wear Characterization of Materials for Lunar Construction

    Science.gov (United States)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2012-01-01

    NASA s Apollo missions revealed that exhaust from the retrorockets of landing spacecraft may act to significantly accelerate lunar dust on the surface of the Moon. A recent study by Immer et al. (C. Immer, P.T. Metzger, P.E. Hintze, A. Nick, and R. Horan, Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III, Icarus, Vol. 211, pp. 1089-1102, 2011) investigated coupons returned to Earth from the Surveyor III lunar probe which were subjected to lunar dust impingement by the Apollo 12 Lunar Module landing. Their study revealed that even with indirect impingement, the spacecraft sustained erosive damage from the fast-moving lunar dust particles. In this work, results are presented from a series of erosive wear experiments performed on 6061 Aluminum using the JSC-1AF lunar dust simulant. Optical profilometry was used to investigate the surface after the erosion process. It was found that even short durations of lunar dust simulant impacting at low velocities produced substantial changes in the surface.

  12. Respiratory Toxicity of Lunar Highland Dust

    Science.gov (United States)

    James, John T.; Lam, Chiu-wing; Wallace, William T.

    2009-01-01

    Lunar dust exposures occurred during the Apollo missions while the crew was on the lunar surface and especially when microgravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes and in some cases respiratory symptoms were elicited. NASA s vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust need to be assessed. NASA has performed this assessment with a series of in vitro and in vivo tests on authentic lunar dust. Our approach is to "calibrate" the intrinsic toxicity of lunar dust by comparison to a nontoxic dust (TiO2) and a highly toxic dust (quartz) using intratrachael instillation of the dusts in mice. A battery of indices of toxicity is assessed at various time points after the instillations. Cultures of selected cells are exposed to test dusts to assess the adverse effects on the cells. Finally, chemical systems are used to assess the nature of the reactivity of various dusts and to determine the persistence of reactivity under various environmental conditions that are relevant to a space habitat. Similar systems are used to assess the dissolution of the dust. From these studies we will be able to set a defensible inhalation exposure standard for aged dust and predict whether we need a separate standard for reactive dust. Presently-available data suggest that aged lunar highland dust is slightly toxic, that it can adversely affect cultured cells, and that the surface reactivity induced by grinding the dust persists for a few hours after activation.

  13. The hottest planet.

    Science.gov (United States)

    Harrington, Joseph; Luszcz, Statia; Seager, Sara; Deming, Drake; Richardson, L Jeremy

    2007-06-07

    Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties. Previous reports of planetary thermal emission give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets' received radiation, assuming a Bond albedo of approximately 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 +/- 200 K at 8 microm. The planet's predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 microm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.

  14. [Possibility of exacerbation of allergy by lunar regolith].

    Science.gov (United States)

    Horie, Masanori; Kambara, Tatsunori; Kuroda, Etsushi; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2012-09-01

    Japan, U.S.A. and other foreign space agencies have plans for the construction of a lunar base and long-term stay of astronauts on the moon. The surface of the moon is covered by a thick layer of soil that includes fine particles called "lunar regolith", which is formed by meteorite impact and space weathering. Risk assessment of particulate matter on the moon is important for astronauts working in microgravity on the moon. However, there are few investigations about the biological influences of lunar regolith. Especially, there is no investigation about allergic activity to lunar regolith. The main chemical components of lunar regolith are SiO2, Al2O3, CaO, FeO, etc. Of particular interest, approximately 50% of lunar regolith consists of SiO2. There is a report that the astronauts felt hay fever-like symptoms from the inhalation of the lunar regolith. Yellow sand, whose chemical components are similar to lunar regolith, enhances allergenic reactions, suggesting the possibility that lunar regolith has an adjuvant-like activity. Although intraperitoneal administration of lunar regolith with ovalbumin to mouse did not show enhancement of allergenic reactions, further evaluation of lunar regolith's potential to exacerbate the effects of allergies is essential for development of the moon.

  15. Lunar phases and crisis center telephone calls.

    Science.gov (United States)

    Wilson, J E; Tobacyk, J J

    1990-02-01

    The lunar hypothesis, that is, the notion that lunar phases can directly affect human behavior, was tested by time-series analysis of 4,575 crisis center telephone calls (all calls recorded for a 6-month interval). As expected, the lunar hypothesis was not supported. The 28-day lunar cycle accounted for less than 1% of the variance of the frequency of crisis center calls. Also, as hypothesized from an attribution theory framework, crisis center workers reported significantly greater belief in lunar effects than a non-crisis-center-worker comparison group.

  16. Development of user interface and of the data base "Earth, Moon and Planets" in the VBA environment for teaching students in the Kazan state universities

    Science.gov (United States)

    Petrova, N.; Tatarinov, P.; Akutina, M.

    2009-04-01

    In the frame of bachelor and master's degree diploma work the students accumulate and do structure distribution of necessary information about the spin-orbital, dynamical and geophysical characteristics of a planet. The information about the every planet is written into Excel WorkBook, the spreadsheets of which are the data base. The names of sheets reflect their content: "General Data", "Dynamics", "Geophysics", "Engineering", "References", Slides" etc. These data are taken from the last scientific articles dedicated to the modern problems of the planetary investigations. Especial interest is connected to the Lunar sciences - last data about surface mineral distribution, crust thickness and gravity field, slides with photographies received by Video Camera and various instruments situated on the board of Lunar SELENE mission (Japan, 2007-2009 yrs). The work with the data base is executed, using elements of the object-oriented programming. The students study to include into the UserForms standard means of Windows - Dialog Windows, TextBox, CommandButton, ComboBox, ScrollBar etc., and to support these elements by the macros written in programming language VBA. The main attention in the software support of the data base is done onto opportunity to investigate the two-three layer structure of a planet via modeling of its free nutation periods - Chandler-like Wobbles, Free Core Nutation, Inner Core Wobbles and Free Inner Core Nitation and their engineering estimation for space mission observations. The results are presented in the form of tables in Sheets and of diagrams constructed by special buttons of the UserForms on the basis of the calculated tables. The research was supported by the Russian-Japanese grant RFFI-JSPS N 07-02-91212, (2007 - 2009).

  17. Overview of the Spinal Cord Injury – Quality of Life (SCI-QOL) measurement system

    Science.gov (United States)

    Tulsky, David S.; Kisala, Pamela A.; Victorson, David; Tate, Denise G.; Heinemann, Allen W.; Charlifue, Susan; Kirshblum, Steve C.; Fyffe, Denise; Gershon, Richard; Spungen, Ann M.; Bombardier, Charles H.; Dyson-Hudson, Trevor A.; Amtmann, Dagmar; Z. Kalpakjian, Claire; W. Choi, Seung; Jette, Alan M.; Forchheimer, Martin; Cella, David

    2015-01-01

    Context/Objective The Spinal Cord Injury – Quality of Life (SCI-QOL) measurement system was developed to address the shortage of relevant and psychometrically sound patient reported outcome (PRO) measures available for clinical care and research in spinal cord injury (SCI) rehabilitation. Using a computer adaptive testing (CAT) approach, the SCI-QOL builds on the Patient Reported Outcomes Measurement Information System (PROMIS) and the Quality of Life in Neurological Disorders (Neuro-QOL) initiative. This initial manuscript introduces the background and development of the SCI-QOL measurement system. Greater detail is presented in the additional manuscripts of this special issue. Design Classical and contemporary test development methodologies were employed. Qualitative input was obtained from individuals with SCI and clinicians through interviews, focus groups, and cognitive debriefing. Item pools were field tested in a multi-site sample (n = 877) and calibrated using item response theory methods. Initial reliability and validity testing was performed in a new sample of individuals with traumatic SCI (n = 245). Setting Five Model SCI System centers and one Department of Veterans Affairs Medical Center across the United States. Participants Adults with traumatic SCI. Interventions n/a Outcome Measures n/a Results The SCI-QOL consists of 19 item banks, including the SCI-Functional Index banks, and 3 fixed-length scales measuring physical, emotional, and social aspects of health-related QOL (HRQOL). Conclusion The SCI-QOL measurement system consists of psychometrically sound measures for individuals with SCI. The manuscripts in this special issue provide evidence of the reliability and initial validity of this measurement system. The SCI-QOL also links to other measures designed for a general medical population. PMID:26010962

  18. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  19. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    Science.gov (United States)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  20. Cis-Lunar Base Camp

    Science.gov (United States)

    Merrill, Raymond G.; Goodliff, Kandyce E.; Mazanek, Daniel D.; Reeves, John D., Jr.

    2012-01-01

    Historically, when mounting expeditions into uncharted territories, explorers have established strategically positioned base camps to pre-position required equipment and consumables. These base camps are secure, safe positions from which expeditions can depart when conditions are favorable, at which technology and operations can be tested and validated, and facilitate timely access to more robust facilities in the event of an emergency. For human exploration missions into deep space, cis-lunar space is well suited to serve as such a base camp. The outer regions of cis-lunar space, such as the Earth-Moon Lagrange points, lie near the edge of Earth s gravity well, allowing equipment and consumables to be aggregated with easy access to deep space and to the lunar surface, as well as more distant destinations, such as near-Earth Asteroids (NEAs) and Mars and its moons. Several approaches to utilizing a cis-lunar base camp for sustainable human exploration, as well as some possible future applications are identified. The primary objective of the analysis presented in this paper is to identify options, show the macro trends, and provide information that can be used as a basis for more detailed mission development. Compared within are the high-level performance and cost of 15 preliminary cis-lunar exploration campaigns that establish the capability to conduct crewed missions of up to one year in duration, and then aggregate mass in cis-lunar space to facilitate an expedition from Cis-Lunar Base Camp. Launch vehicles, chemical propulsion stages, and electric propulsion stages are discussed and parametric sizing values are used to create architectures of in-space transportation elements that extend the existing in-space supply chain to cis-lunar space. The transportation options to cis-lunar space assessed vary in efficiency by almost 50%; from 0.16 to 0.68 kg of cargo in cis-lunar space for every kilogram of mass in Low Earth Orbit (LEO). For the 15 cases, 5-year campaign

  1. Overturn of magma ocean ilmenite cumulate layer: Implications for lunar magmatic evolution and formation of a lunar core

    Science.gov (United States)

    Hess, P. C.; Parmentier, E. M.

    1993-01-01

    We explore a model for the chemical evolution of the lunar interior that explains the origin and evolution of lunar magmatism and possibly the existence of a lunar core. A magma ocean formed during accretion differentiates into the anorthositic crust and chemically stratified cumulate mantle. The cumulative mantle is gravitationally unstable with dense ilmenite cumulate layers overlying olivine-orthopyroxene cumulates with Fe/Mg that decreases with depth. The dense ilmenite layer sinks to the center of the moon forming the core. The remainder of the gravitationally unstable cumulate pile also overturns. Any remaining primitive lunar mantle rises to its level of neutral buoyancy in the cumulate pile. Perhaps melting of primitive lunar mantle due to this decompression results in early lunar Mg-rich magmatism. Because of its high concentration of incompatible heat producing elements, the ilmenite core heats the overlying orthopyroxene-bearing cumulates. As a conductively thickening thermal boundary layer becomes unstable, the resulting mantle plumes rise, decompress, and partially melt to generate the mare basalts. This model explains both the timing and chemical characteristics of lunar magmatism.

  2. Magic Planet

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    2009-01-01

    Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november......Med den digitale globe som omdrejningspunkt bestemmer publikum, hvilken planet, der er i fokus. Vores solsystem udforskes interaktivt. Udgivelsesdato: november...

  3. Understanding the Lunar System Architecture Design Space

    Science.gov (United States)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  4. Dance of the Planets

    Science.gov (United States)

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  5. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  6. Status and Future of Lunar Geoscience.

    Science.gov (United States)

    1986

    A review of the status, progress, and future direction of lunar research is presented in this report from the lunar geoscience working group of the National Aeronautics and Space Administration. Information is synthesized and presented in four major sections. These include: (1) an introduction (stating the reasons for lunar study and identifying…

  7. Lunar landing and launch facilities and operations

    Science.gov (United States)

    1988-01-01

    A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.

  8. Can FES-rowing mediate bone mineral density in SCI: a pilot study.

    Science.gov (United States)

    Gibbons, R S; McCarthy, I D; Gall, A; Stock, C G; Shippen, J; Andrews, B J

    2014-11-01

    A single case study. To compare proximal tibia trabecular bone mineral density (BMD) of a participant with complete spinal cord injury (SCI), long-termed functional electrical stimulation-rowing (FES-R) trained, with previously reported SCI and non-SCI group norms. To estimate lower limb joint contact forces (JCFs) in the FES-R trained participant. UK University and orthopaedic hospital research centre. Bilateral proximal tibial trabecular BMD of the FES-R trained participant was measured using peripheral quantitative computerised tomography, and the data were compared with SCI and non-SCI groups. An instrumented four-channel FES-R system was used to measure the lower limb JCFs in the FES-R trained participant. Structurally, proximal tibial trabecular BMD was higher in the FES-R trained participant compared with the SCI group, but was less than the non-SCI group. Furthermore, left (184.7 mg cm(-3)) and right (160.7 mg cm(-3)) BMD were well above the threshold associated with non-traumatic fracture. The knee JCFs were above the threshold known to mediate BMD in SCI, but below threshold at the hip and ankle. As pathological fractures predominate in the distal femur and proximal tibia in chronic SCI patients, the fact that the FES-R trained participant's knee JCFs were above those known to partially prevent bone loss, suggests that FES-R training may provide therapeutic benefit. Although the elevated bilateral proximal tibial BMD of the FES-R participant provides circumstantial evidence of osteogenesis, this single case precludes any statement on the clinical significance. Further investigations are required involving larger numbers and additional channels of FES to increase loading at the hip and ankle.

  9. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  10. Planets a very short introduction

    CERN Document Server

    Rothery, David A

    2010-01-01

    Planets: A Very Short Introduction demonstrates the excitement, uncertainties, and challenges faced by planetary scientists, and provides an overview of our Solar System and its origins, nature, and evolution. Terrestrial planets, giant planets, dwarf planets and various other objects such as satellites (moons), asteroids, trans-Neptunian objects, and exoplanets are discussed. Our knowledge about planets has advanced over the centuries, and has expanded at a rapidly growing rate in recent years. Controversial issues are outlined, such as What qualifies as a planet? What conditions are required for a planetary body to be potentially inhabited by life? Why does Pluto no longer have planet status? And Is there life on other planets?

  11. Charged-Current Neutral Pion production at SciBooNE

    International Nuclear Information System (INIS)

    Catala-Perez, J.

    2009-01-01

    SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of the π 0 decay photons, with an additional muon in the final state for CC processes. In this poster, I will present how we reconstruct and select charged-current muon neutrino interactions producing π 0 's in SciBooNE.

  12. Nanophase Fe0 in lunar soils

    Indian Academy of Sciences (India)

    globules that occur in the rinds of many soil grains and in the ... tinitic glass is a quenched product of silicate melts, also produced by micrometeorite impacts on lunar soils ..... stand impact processes and their products. ... cules at night; the earth's atmosphere by con- .... deep lunar interior from an inversion of lunar free oscil-.

  13. Lunar power systems. Final report

    International Nuclear Information System (INIS)

    1986-12-01

    The findings of a study on the feasibility of several methods of providing electrical power for a permanently manned lunar base are provided. Two fundamentally different methods for lunar electrical power generation are considered. One is the use of a small nuclear reactor and the other is the conversion of solar energy to electricity. The baseline goal was to initially provide 300 kW of power with growth capability to one megawatt and eventually to 10 megawatts. A detailed, day by day scenario for the establishment, build-up, and operational activity of the lunar base is presented. Also presented is a conceptual approach to a supporting transportation system which identifies the number, type, and deployment of transportation vehicles required to support the base. An approach to the use of solar cells in the lunar environment was developed. There are a number of heat engines which are applicable to solar/electric conversions, and these are examined. Several approaches to energy storage which were used by the electric power utilities were examined and those which could be used at a lunar base were identified

  14. Extraction of Water from Lunar Permafrost

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.

  15. The Trojan minor planets

    Science.gov (United States)

    Spratt, Christopher E.

    1988-08-01

    There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets, which occur in two distinct groups, one preceding Jupiter and one following, have received the names of the heroes of the Trojan war. This paper concerns the 49 numbered minor planets of this group.

  16. Inside-out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales

    Science.gov (United States)

    Hu, Xiao; Tan, Jonathan C.; Zhu, Zhaohuan; Chatterjee, Sourav; Birnstiel, Tilman; Youdin, Andrew N.; Mohanty, Subhanjoy

    2018-04-01

    Systems with tightly packed inner planets (STIPs) are very common. Chatterjee & Tan proposed Inside-out Planet Formation (IOPF), an in situ formation theory, to explain these planets. IOPF involves sequential planet formation from pebble-rich rings that are fed from the outer disk and trapped at the pressure maximum associated with the dead zone inner boundary (DZIB). Planet masses are set by their ability to open a gap and cause the DZIB to retreat outwards. We present models for the disk density and temperature structures that are relevant to the conditions of IOPF. For a wide range of DZIB conditions, we evaluate the gap-opening masses of planets in these disks that are expected to lead to the truncation of pebble accretion onto the forming planet. We then consider the evolution of dust and pebbles in the disk, estimating that pebbles typically grow to sizes of a few centimeters during their radial drift from several tens of astronomical units to the inner, ≲1 au scale disk. A large fraction of the accretion flux of solids is expected to be in such pebbles. This allows us to estimate the timescales for individual planet formation and the entire planetary system formation in the IOPF scenario. We find that to produce realistic STIPs within reasonable timescales similar to disk lifetimes requires disk accretion rates of ∼10‑9 M ⊙ yr‑1 and relatively low viscosity conditions in the DZIB region, i.e., a Shakura–Sunyaev parameter of α ∼ 10‑4.

  17. Lunar Industry & Research Base Concept

    Science.gov (United States)

    Lysenko, J.; Kaliapin, M.; Osinovyy, G.

    2017-09-01

    Currently, all main space industry players, such as Europe, USA, Russia, China, etc., are looking back again at the idea of Moon exploration building there a manned lunar base. Alongside with other world spacefaring nations, Yuzhnoye State Design Office with its long-time development experience, technological and intellectual potential, organized its own conceptual work on development of the Lunar Industry & Research Base. In the frames of conceptual project "Lunar Industrial & Research Base" were formed its appearance, preliminary configuration and infrastructure at different stages of operation, trajectory and flight scheme to the Moon, as well as terms of the project's realization, and main technical characteristics of the systems under development, such as space transportation system for crew and cargo delivery to lunar surface and return to Earth, standardized designs of lunar modules, lunar surface vehicles, etc. The "Lunar Industrial & Research Base" project's preliminary risk assessment has shown a high value of its overall risk due to the lack of reliable information about the Moon, technical risks, long-term development of its elements, very high financial costs and dependence on state support. This points to the fact that it is reasonable to create such a global project in cooperation with other countries. International cooperation will expand the capabilities of any nation, reduce risks and increase the success probability of automated or manned space missions. It is necessary to create and bring into operation practical mechanisms for long-term space exploration on a global scale. One of the ways to do this is to create a multinational agency which would include both state enterprises and private companies.

  18. GEMINI PLANET IMAGER SPECTROSCOPY OF THE HR 8799 PLANETS c AND d

    International Nuclear Information System (INIS)

    Ingraham, Patrick; Macintosh, Bruce; Marley, Mark S.; Saumon, Didier; Marois, Christian; Dunn, Jennifer; Erikson, Darren; Barman, Travis; Bauman, Brian; Burrows, Adam; Chilcote, Jeffrey K.; Fitzgerald, Michael P.; De Rosa, Robert J.; Dillon, Daren; Gavel, Donald; Doyon, René; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Graham, James R.

    2014-01-01

    During the first-light run of the Gemini Planet Imager we obtained K-band spectra of exoplanets HR 8799 c and d. Analysis of the spectra indicates that planet d may be warmer than planet c. Comparisons to recent patchy cloud models and previously obtained observations over multiple wavelengths confirm that thick clouds combined with horizontal variation in the cloud cover generally reproduce the planets' spectral energy distributions. When combined with the 3 to 4 μm photometric data points, the observations provide strong constraints on the atmospheric methane content for both planets. The data also provide further evidence that future modeling efforts must include cloud opacity, possibly including cloud holes, disequilibrium chemistry, and super-solar metallicity

  19. Inside-out planet formation

    International Nuclear Information System (INIS)

    Chatterjee, Sourav; Tan, Jonathan C.

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors ≳ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (∼cm-m size) 'pebbles', drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ('dead zone') region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ∼1 M ⊕ planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  20. Scintillating fibre (SciFi) tracker

    CERN Multimedia

    Caraban Gonzalez, Noemi

    2017-01-01

    128 modules – containing 11 000 km of scintillating fibres – will make up the new SciFi tracker, which will replace the outer and inner trackers of the LHCb detector as part of the experiment’s major upgrade during Long Shutdown 2 (LS2)

  1. Lunar phase-dependent expression of cryptochrome and a photoperiodic mechanism for lunar phase-recognition in a reef fish, goldlined spinefoot.

    Science.gov (United States)

    Fukushiro, Masato; Takeuchi, Takahiro; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Takemura, Akihiro; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2011-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Recent study has revealed that mRNA levels of Cryptochrome (Cry), one of the circadian clock genes, were significantly higher on a full moon night than on a new moon night in coral, implying the involvement of a photoreception system in the lunar-synchronized spawning. To better establish the generalities surrounding such a mechanism and explore the underlying molecular mechanism, we focused on the relationship between lunar phase, Cry gene expression, and the spawning behavior in a lunar-synchronized spawner, the goldlined spinefoot (Siganus guttatus), and we identified two kinds of Cry genes in this animal. Their mRNA levels showed lunar cycle-dependent expression in the medial part of the brain (mesencephalon and diencephalon) peaking at the first quarter moon. Since this lunar phase coincided with the reproductive phase of the goldlined spinefoot, Cry gene expression was considered a state variable in the lunar phase recognition system. Based on the expression profiles of SgCrys together with the moonlight's pattern of timing and duration during its nightly lunar cycle, we have further speculated on a model of lunar phase recognition for reproductive control in the goldlined spinefoot, which integrates both moonlight and circadian signals in a manner similar to photoperiodic response.

  2. Lunar geophysics, geodesy, and dynamics

    Science.gov (United States)

    Williams, J. G.; Dickey, J. O.

    2002-01-01

    Experience with the dynamics and data analyses for earth and moon reveals both similarities and differences. Analysis of Lunar Laser Ranging (LLR) data provides information on the lunar orbit, rotation, solid-body tides, and retroreflector locations.

  3. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    Science.gov (United States)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  4. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  5. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  6. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    International Nuclear Information System (INIS)

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-01-01

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ∼ 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  7. Petrologic Characteristics of the Lunar Surface.

    Science.gov (United States)

    Wang, Xianmin; Pedrycz, Witold

    2015-11-27

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface.

  8. Results of the PERI survey of SciDAC applications

    International Nuclear Information System (INIS)

    Supinski, Bronis R de; Hollingworth, Jeffrey K; Moore, Shirley; Worley, Patrick H

    2007-01-01

    The Performance Engineering Research Institute (PERI) project focuses on achieving superior performance for Scientific Discovery through Advanced Computing (SciDAC) applications on leadership class machines through cutting-edge research in performance modeling and automated performance tuning. This focus requires coordinated activities to engage SciDAC application teams. The initial application engagement activity was a survey of these teams to determine their performance goals, the criticality of those goals, current performance of their applications, application characteristics relevant to performance and their plans for future optimization. Using a web-based questionnaire, PERI researchers have worked with application developers to provide this information for over twenty-five applications. This paper describes the initial analysis of the application characteristics and performance goals, as well as current and future application engagement activities driven by these results. While the survey was conducted primarily to meet PERI needs, the results represent a snapshot of the state of SciDAC code development and may be of use to the DOE community at large. Overall, the results show that SciDAC application teams are engaged in significant new code development, which will require flexible performance optimization techniques that can improve performance as the applications evolve

  9. DoD Information Security Program and Protection of Sensitive Compartmented Information (SCI)

    Science.gov (United States)

    2016-04-21

    Sensitive Compartmented Information ( SCI ) References: See Enclosure 1 1. PURPOSE. In accordance with the authority in DoD Directive (DoDD...collateral, special access program, SCI , and controlled unclassified information (CUI) within an overarching DoD Information Security Program...use, and dissemination of SCI within the DoD pursuant to References (a), (c), and (e) and Executive Order 12333 (Reference (h)). 2

  10. The Future Lunar Flora Colony

    Science.gov (United States)

    Goel, E. G.; Guven, U. G.

    2017-10-01

    A constructional design for the primary establishment for a lunar colony using the micrometeorite rich soil is proposed. It highlights the potential of lunar regolith combined with Earth technology for water and oxygen for human outposts on the Moon.

  11. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  12. Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife

    Directory of Open Access Journals (Sweden)

    Jack Green

    2011-09-01

    Full Text Available Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My. Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino

  13. Sci-Hub: What Librarians Should Know and Do about Article Piracy.

    Science.gov (United States)

    Hoy, Matthew B

    2017-01-01

    The high cost of journal articles has driven many researchers to turn to a new way of getting access: "pirate" article sites. Sci-Hub, the largest and best known of these sites, currently offers instant access to more than 58 million journal articles. Users attracted by the ease of use and breadth of the collection may not realize that these articles are often obtained using stolen credentials and downloading them may be illegal. This article will briefly describe Sci-Hub and how it works, the legal and ethical issues it raises, and the problems it may cause for librarians. Librarians should be aware of Sci-Hub and the ways it may change their patrons' expectations. They should also understand the risks Sci-Hub can pose to their patrons and their institutions.

  14. Taxonomy of the extrasolar planet.

    Science.gov (United States)

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  15. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Marinus Jan; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  16. Holy sci-fi! where science fiction and religion intersect

    CERN Document Server

    Nahin, Paul J

    2014-01-01

    Can a computer have a soul? Are religion and science mutually exclusive? Is there really such a thing as free will? If you could time travel to visit Jesus, would you (and should you)? For hundreds of years, philosophers, scientists, and science fiction writers have pondered these questions and many more. In Holy Sci-Fi!, popular writer Paul Nahin explores the fertile and sometimes uneasy relationship between science fiction and religion. With a scope spanning the history of religion, philosophy, and literature, Nahin follows religious themes in science fiction from Feynman to Foucault, and from Asimov to Aristotle. An intriguing journey through popular and well-loved books and stories, Holy Sci-Fi! shows how sci-fi has informed humanity's attitudes towards our faiths, our future, and ourselves.

  17. Educating the Next Generation of Lunar Scientists

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of

  18. The simulation of lunar gravity field recovery from D-VLBI of Chang’E-1 and SELENE lunar orbiters

    Science.gov (United States)

    Yan, Jianguo; Ping, Jingsong; Matsumoto, K.; Li, Fei

    2008-07-01

    The lunar gravity field is a foundation to study the lunar interior structure, and to recover the evolution history of the Moon. It is still an open and key topic for lunar science. For above mentioned reasons, it becomes one of the important scientific objectives of recent lunar missions, such as KAGUYA (SELENE) the Japanese lunar mission and Chang’E-1, the Chinese lunar mission. The Chang’E-1 and the SELENE were successfully launched in 2007. It is estimated that these two missions can fly around the Moon longer than 6 months simultaneously. In these two missions, the Chinese new VLBI (Very Long Baseline Interferometry) network will be applied for precise orbit determination (POD) by using a differential VLBI (D-VLBI) method during the mission period. The same-beam D-VLBI technique will contribute to recover the lunar gravity field together with other conventional observables, i.e. R&RR (Range and Range Rate) and multi-way Doppler. Taking VLBI tracking conditions into consideration and using the GEODYNII/SOVLE software of GSFC/NASA/USA [Rowlands, D.D., Marshall, J.A., Mccarthy, J., et al. GEODYN II System Description, vols. 1 5. Contractor Report, Hughes STX Corp. Greenbelt, MD, 1997; Ullman, R.E. SOLVE program: mathematical formulation and guide to user input, Hughes/STX Contractor Report, Contract NAS5-31760. NASA Goddard Space Flight Center, Greenbelt, Maryland, 1994], we simulated the lunar gravity field recovering ability with and without D-VLBI between the Chang’E-1 and SELENE main satellite. The cases of overlapped flying and tracking period of 30 days, 60 days and 90 days have been analyzed, respectively. The results show that D-VLBI tracking between two lunar satellites can improve the gravity field recovery remarkably. The results and methods introduced in this paper will benefit the actual missions.

  19. Lunar surface exploration using mobile robots

    Science.gov (United States)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  20. Lunar nitrogen: Secular variation or mixing?

    International Nuclear Information System (INIS)

    Norris, S.J.; Wright, I.P.; Pillinger, C.T.

    1986-01-01

    The two current models to explain the nearly 40% variation of the lunar nitrogen isotopic composition are: (1) secular variation of solar wind nitrogen; and (2) a two component mixing model having a constant, heavy solar wind admixed with varying amounts of indigenous light lunar N (LLN). Both models are needed to explain the step pyrolysis extraction profile. The secular variation model proposes that the low temperature release is modern day solar wind implanted into grain surfaces, the 900 C to 1100 C release is from grain surfaces which were once exposed to the ancient solar wind but which are now trapped inside agglutinates, and the >1100 C release as spallogenic N produced by cosmic rays. The mixing model ascribes the components to solar wind, indigenous lunar N and spallogenic N respectively. An extension of either interpretation is that the light N seen in lunar breccias or deep drill cores represent conditions when more N-14 was available to the lunar surface

  1. Physics Motivations of SciBooNE

    International Nuclear Information System (INIS)

    Hiraide, K.

    2007-01-01

    SciBooNE is a new experiment for measuring neutrino-nucleus cross sections around one GeV region, which is important for the interpretaion of neutrino oscillation experiments. Physics motivations of the experiment are described here

  2. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  3. A lunar polar expedition

    Science.gov (United States)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-09-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  4. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution

    Science.gov (United States)

    Khan, A.; Connolly, J. A. D.; Pommier, A.; Noir, J.

    2014-10-01

    Analysis of lunar laser ranging and seismic data has yielded evidence that has been interpreted to indicate a molten zone in the lowermost mantle overlying a fluid core. Such a zone provides strong constraints on models of lunar thermal evolution. Here we determine thermochemical and physical structure of the deep Moon by inverting lunar geophysical data (mean mass and moment of inertia, tidal Love number, and electromagnetic sounding data) in combination with phase-equilibrium computations. Specifically, we assess whether a molten layer is required by the geophysical data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is required to explain the geophysical data. This region is located within the mantle where the solidus is crossed at a depth of ˜1200 km (≥1600°C). Inverted compositions for the partially molten layer (150-200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. The melt phase is neutrally buoyant at pressures of ˜4.5-4.6 GPa but contains less TiO2 (<15 wt %) than the Ti-rich (˜16 wt %) melts that produced a set of high-density primitive lunar magmas (density of 3.4 g/cm3). Melt densities computed here range from 3.25 to 3.45 g/cm3 bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  5. Observed properties of extrasolar planets.

    Science.gov (United States)

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  6. First oxygen from lunar basalt

    Science.gov (United States)

    Gibson, M. A.; Knudsen, C. W.; Brueneman, D. J.; Kanamori, H.; Ness, R. O.; Sharp, L. L.; Brekke, D. W.; Allen, C. C.; Morris, R. V.; Keller, L. P.

    1993-01-01

    The Carbotek/Shimizu process to produce oxygen from lunar soils has been successfully demonstrated on actual lunar samples in laboratory facilities at Carbotek with Shimizu funding and support. Apollo sample 70035 containing approximately 25 percent ilmenite (FeTiO3) was used in seven separate reactions with hydrogen varying temperature and pressure: FeTiO3 + H2 yields Fe + TiO2 + H2O. The experiments gave extremely encouraging results as all ilmenite was reduced in every experiment. The lunar ilmenite was found to be about twice as reactive as terrestrial ilmenite samples. Analytical techniques of the lunar and terrestrial ilmenite experiments performed by NASA Johnson Space Center include iron Mossbauer spectroscopy (FeMS), optical microscopy, SEM, TEM, and XRD. The Energy and Environmental Research Center at the University of North Dakota performed three SEM techniques (point count method, morphology determination, elemental mapping), XRD, and optical microscopy.

  7. Thermodynamics of lunar ilmenite reduction

    Science.gov (United States)

    Altenberg, B. H.; Franklin, H. A.; Jones, C. H.

    1993-01-01

    With the prospect of returning to the moon, the development of a lunar occupation would fulfill one of the goals of the Space Exploration Initiative (SEI) of the late 1980's. Processing lunar resources into useful products, such as liquid oxygen for fuel and life support, would be one of many aspects of an active lunar base. ilmenite (FeTiO3) is found on the lunar surface and can be used as a feed stock to produce oxygen. Understanding the various ilmenite-reduction reactions elucidates many processing options. Defining the thermodynamic chemical behavior at equilibrium under various conditions of temperature and pressures can be helpful in specifying optimal operating conditions. Differences between a previous theoretical analysis and experimentally determined results has sparked interest in trying to understand the effect of operating pressure on the hydrogen-reduction-of-ilmenite reaction. Various aspects of this reduction reaction are discussed.

  8. The enigma of lunar magnetism

    Science.gov (United States)

    Hood, L. L.

    1981-01-01

    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  9. Ablated tektite from the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Glass, B.P.; Chapman, D.R.; ShyamPrasad, M.

    stream_size 100 stream_content_type text/plain stream_name Meteor_Planet_Sci_31_365.pdf.txt stream_source_info Meteor_Planet_Sci_31_365.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 1996...

  10. New occurrences of Australasian microtektites in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.

    stream_size 4 stream_content_type text/plain stream_name Meteor_Planet_Sci_29_66.pdf.txt stream_source_info Meteor_Planet_Sci_29_66.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  11. Lunar Riometry: Proof-of-Concept Instrument Package

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.

    2012-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  12. Histories of terrestrial planets

    International Nuclear Information System (INIS)

    Benes, K.

    1981-01-01

    The uneven historical development of terrestrial planets - Mercury, Venus, Earth, Moon and Mars - is probably due to the differences in their size, weight and rotational dynamics in association with the internal planet structure, their distance from the Sun, etc. A systematic study of extraterrestrial planets showed that the time span of internal activity was not the same for all bodies. It is assumed that the initial history of all terrestrial planets was marked with catastrophic events connected with the overall dynamic development of the solar system. In view of the fact that the cores of small terrestrial bodies cooled quicker, their geological development almost stagnated after two or three thousand million years. This is what probably happened to the Mercury and the Moon as well as the Mars. Therefore, traces of previous catastrophic events were preserved on the surface of the planets. On the other hand, the Earth is the most metamorphosed terrestrial planet and compared to the other planets appears to be atypical. Its biosphere is significantly developed as well as the other shell components, its hydrosphere and atmosphere, and its crust is considerably differentiated. (J.P.)

  13. SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Timpe, Miles; Barnes, Rory [Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195 (United States); Kopparapu, Ravikumar; Raymond, Sean N. [Virtual Planetary Laboratory, Seattle, WA 98195 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Gorelick, Noel, E-mail: apskier@astro.washington.edu [Google, Inc., 1600 Amphitheater Parkway, Mountain View, CA 94043 (United States)

    2013-09-15

    If mutual gravitational scattering among exoplanets occurs, then it may produce unique orbital properties. For example, two-planet systems that lie near the boundary between circulation and libration of their periapses could result if planet-planet scattering ejected a former third planet quickly, leaving one planet on an eccentric orbit and the other on a circular orbit. We first improve upon previous work that examined the apsidal behavior of known multiplanet systems by doubling the sample size and including observational uncertainties. This analysis recovers previous results that demonstrated that many systems lay on the apsidal boundary between libration and circulation. We then performed over 12,000 three-dimensional N-body simulations of hypothetical three-body systems that are unstable, but stabilize to two-body systems after an ejection. Using these synthetic two-planet systems, we test the planet-planet scattering hypothesis by comparing their apsidal behavior, over a range of viewing angles, to that of the observed systems and find that they are statistically consistent regardless of the multiplicity of the observed systems. Finally, we combine our results with previous studies to show that, from the sampled cases, the most likely planetary mass function prior to planet-planet scattering follows a power law with index -1.1. We find that this pre-scattering mass function predicts a mutual inclination frequency distribution that follows an exponential function with an index between -0.06 and -0.1.

  14. Building an Economical and Sustainable Lunar Infrastructure to Enable Lunar Science and Space Commerce

    Science.gov (United States)

    Zuniga, Allison; Turner, Mark; Rasky, Dan

    2017-01-01

    A new concept study was initiated to examine the framework needed to gradually develop an economical and sustainable lunar infrastructure using a public private partnerships approach. This approach would establish partnership agreements between NASA and industry teams to develop cis-lunar and surface capabilities for mutual benefit while sharing cost and risk in the development phase and then allowing for transfer of operation of these infrastructure services back to its industry owners in the execution phase. These infrastructure services may include but are not limited to the following: lunar cargo transportation, power stations, energy storage devices, communication relay satellites, local communication towers, and surface mobility operations.

  15. A SciCode web site: building bridges between owners and users

    Energy Technology Data Exchange (ETDEWEB)

    Gaver, C. [Atomic Energy of Canada Ltd., Mississauga, Ontario (Canada)

    2000-07-01

    Web technology is a tool that is gaining in popularity. Properly used, it is a powerful tool that has tremendous potential for providing better communication. It can also be effective as a training tool, an information-sharing tool, and as a means of simplifying work load, and facilitating compliance with Company procedures. The issue is one of communication. The challenge facing many large or geographically-distributed companies is how to communicate information to their staff and to their customers. Procedures overseeing quality-assurance programs and commitment to ensuring the quality of products need to be communicated to customers. Equally important is customer feedback. This information from users becomes the kernel for future product development. The issue is even more important when speaking of scientific analysis computer programs (SciCodes). Regular ongoing communication between Primary Holders and End Users is essential in the development and use of SciCodes. Without this communication, quality assurance is at risk. Quality assurance processes are an integral part in developing any SciCode. End Users also have a role to play. Primary Holders keep End Users informed of improvements or new releases. End Users must ensure they act on this information. Equally important, End Users must communicate problems or suggestions to the Primary Holder to remedy or incorporate in new releases. In other words, quality assurance processes become most effective when both Primary Holder and End Users are involved. This requires communication. Web technology offers AECL a means of providing regular, ongoing communication between its scientific-code (SciCode) Primary Holders-Owner Branches and the End Users of these codes within and outside the Company. Using the experience we have gained by developing the Y2K SciCode Web sites, setting up online documentation systems, and incorporating lessons learned from the Y2K project we have developed a model that is geared to

  16. A SciCode web site: building bridges between owners and users

    International Nuclear Information System (INIS)

    Gaver, C.

    2000-01-01

    Web technology is a tool that is gaining in popularity. Properly used, it is a powerful tool that has tremendous potential for providing better communication. It can also be effective as a training tool, an information-sharing tool, and as a means of simplifying work load, and facilitating compliance with Company procedures. The issue is one of communication. The challenge facing many large or geographically-distributed companies is how to communicate information to their staff and to their customers. Procedures overseeing quality-assurance programs and commitment to ensuring the quality of products need to be communicated to customers. Equally important is customer feedback. This information from users becomes the kernel for future product development. The issue is even more important when speaking of scientific analysis computer programs (SciCodes). Regular ongoing communication between Primary Holders and End Users is essential in the development and use of SciCodes. Without this communication, quality assurance is at risk. Quality assurance processes are an integral part in developing any SciCode. End Users also have a role to play. Primary Holders keep End Users informed of improvements or new releases. End Users must ensure they act on this information. Equally important, End Users must communicate problems or suggestions to the Primary Holder to remedy or incorporate in new releases. In other words, quality assurance processes become most effective when both Primary Holder and End Users are involved. This requires communication. Web technology offers AECL a means of providing regular, ongoing communication between its scientific-code (SciCode) Primary Holders-Owner Branches and the End Users of these codes within and outside the Company. Using the experience we have gained by developing the Y2K SciCode Web sites, setting up online documentation systems, and incorporating lessons learned from the Y2K project we have developed a model that is geared to

  17. Science and Development Network (SciDev.net) - Phase IV | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    SciDev.net was set up in 2001 as an organization dedicated to providing reliable and authoritative information about science and technology (S&T) for the developing world. SciDev.Net does this primarily through a free-access website, but also by organizing training workshops and other activities in the developing world.

  18. www.elearnSCI.org: a global educational initiative of ISCoS.

    Science.gov (United States)

    Chhabra, H S; Harvey, L A; Muldoon, S; Chaudhary, S; Arora, M; Brown, D J; Biering-Sorensen, F; Wyndaele, J J; Charlifue, S; Horsewell, J; Ducharme, S; Green, D; Simpson, D; Glinsky, J; Weerts, E; Upadhyay, N; Aito, S; Wing, P; Katoh, S; Kovindha, A; Krassioukov, A; Weeks, C; Srikumar, V; Reeves, R; Siriwardane, C; Hasnan, N; Kalke, Y B; Lanig, I

    2013-03-01

    To develop a web-based educational resource for health professionals responsible for the management of spinal cord injury (SCI). The resource:www.elearnSCI.org is comprised of seven learning modules, each subdivided into various submodules. Six of the seven modules address the educational needs of all disciplines involved in comprehensive SCI management. The seventh module addresses prevention of SCI. Each submodule includes an overview, activities, self-assessment questions and references. Three hundred and thirty-two experts from The International Spinal Cord Society (ISCoS) and various affiliated societies from 36 countries were involved in developing the resource through 28 subcommittees. The content of each submodule was reviewed and approved by the Education and Scientific Committees of ISCoS and finally by an Editorial Committee of 23 experts. The content of the learning modules is relevant to students and to new as well as experienced SCI healthcare professionals. The content is applicable globally, has received consumer input and is available at no cost. The material is presented on a website underpinned by a sophisticated content-management system, which allows easy maintenance and ready update of all the content. The resource conforms to key principles of e-learning, including appropriateness of curriculum, engagement of learners, innovative approaches, effective learning, ease of use, inclusion, assessment, coherence, consistency, transparency, cost effectiveness and feedback. www.elearnSCI.org provides a cost effective way of training healthcare professionals that goes beyond the textbook and traditional face-to-face teaching.

  19. Planets in Binary Star Systems

    CERN Document Server

    Haghighipour, Nader

    2010-01-01

    The discovery of extrasolar planets over the past decade has had major impacts on our understanding of the formation and dynamical evolution of planetary systems. There are features and characteristics unseen in our solar system and unexplainable by the current theories of planet formation and dynamics. Among these new surprises is the discovery of planets in binary and multiple-star systems. The discovery of such "binary-planetary" systems has confronted astrodynamicists with many new challenges, and has led them to re-examine the theories of planet formation and dynamics. Among these challenges are: How are planets formed in binary star systems? What would be the notion of habitability in such systems? Under what conditions can binary star systems have habitable planets? How will volatiles necessary for life appear on such planets? This volume seeks to gather the current research in the area of planets in binary and multistar systems and to familiarize readers with its associated theoretical and observation...

  20. Habitable zone limits for dry planets.

    Science.gov (United States)

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  1. The search for Ar in the lunar atmosphere using the Lunar Reconnaissance Orbiter's LAMP instrument.

    Science.gov (United States)

    Cook, J. C.; Stern, S. A.; Feldman, P. D.; Gladstone, R.; Retherford, K. D.; Greathouse, T. K.; Grava, C.

    2014-12-01

    The Apollo 17 mass spectrometer, LACE, first measured mass 40 particles in the lunar atmosphere, and over a nine-month period, detected variations correlated with the lunar day (Hoffman et al., 1973, LPSC, 4, 2865). LACE detected a high particle density at dusk (0.6-1.0x104 cm-3), decreasing through the lunar night to a few hundred cm-3, then increasing rapidly before dawn to levels 2-4 times greater than at dusk. No daytime measurements were made due to instrument saturation. Given the LACE measurements' periodic nature, and the Ar abundance in lunar regolith samples (Kaiser, 1972, EPSL, 13, 387), it was concluded that mass 40 was likely due to Ar. Benna et al. (2014, LPSC, 45, 1535) recently reported that the Neutral Mass Spectrometer (NMS) aboard LADEE also detected Ar (mass 40) with similar diurnal profiles. We report on UV spectra of the lunar atmosphere as obtained by the Lunar Reconnaissance Orbiter (LRO). Aboard LRO is the UV-spectrograph, LAMP (Lyman Alpha Mapping Project), spanning the spectral range 575 to 1965 Å. LAMP is typically oriented toward the surface and has been mapping the Moon since September 2009. LAMP also observes the tenuous lunar atmosphere when the surface is in darkness, but the atmospheric column below LRO is illuminated. We have previously used nadir oriented twilight observations to examine the sparse lunar atmosphere (Feldman et al., 2012, Icarus, 221, 854; Cook et al., 2013, Icarus, 225, 681; Stern et al., 2013, Icarus, 226, 1210; Cook & Stern 2014, Icarus, 236, 48). In Cook et al., 2013, we reported an upper limit for Ar of 2.3x104 cm-3. Since then, we have collected additional data and refined our search method by focusing on the regions (near equator) and local times (dawn and dusk) where Ar has been reported previously. We have carefully considered effective area calibration and g-factor accuracies and find these to be unlikely explanations for the order of magnitude differences. We will report new results, which provide much

  2. Lunar and Planetary Robotic Exploration Missions in the 20th Century

    Science.gov (United States)

    Huntress, W. T., Jr.; Moroz, V. I.; Shevalev, I. L.

    2003-07-01

    The prospect of traveling to the planets was science fiction at the beginning of the 20th Century and science fact at its end. The space age was born of the Cold War in the 1950s and throughout most of the remainder of the century it provided not just an adventure in the exploration of space but a suspenseful drama as the US and USSR competed to be first and best. It is a tale of patience to overcome obstacles, courage to try the previously impossible and persistence to overcome failure, a tale of both fantastic accomplishment and debilitating loss. We briefly describe the history of robotic lunar and planetary exploration in the 20th Century, the missions attempted, their goals and their fate. We describe how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation.

  3. Tests of the lunar hypothesis

    Science.gov (United States)

    Taylor, S. R.

    1984-01-01

    The concept that the Moon was fissioned from the Earth after core separation is the most readily testable hypothesis of lunar origin, since direct comparisons of lunar and terrestrial compositions can be made. Differences found in such comparisons introduce so many ad hoc adjustments to the fission hypothesis that it becomes untestable. Further constraints may be obtained from attempting to date the volatile-refractory element fractionation. The combination of chemical and isotopic problems suggests that the fission hypothesis is no longer viable, and separate terrestrial and lunar accretion from a population of fractionated precursor planetesimals provides a more reasonable explanation.

  4. Development of a lunar infrastructure

    Science.gov (United States)

    Burke, J. D.

    1988-01-01

    The problem of building an infrastructure on the moon is discussed, assuming that earth-to-moon and moon-to-earth transport will be available. The sequence of events which would occur in the process of building an infrastructure is examined. The human needs which must be met on a lunar base are discussed, including minimal life support, quality of life, and growth stages. The technology available to meet these needs is reviewed and further research in fields related to a lunar base, such as the study of the moon's polar regions and the limits of lunar agriculture, is recommended.

  5. New Age for Lunar Exploration

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  6. The lunar tide in sporadic E

    Directory of Open Access Journals (Sweden)

    R. J. Stening

    1999-10-01

    Full Text Available It seems that the wind shear theory is accepted for the explanation of sporadic E at mid and low latitudes. Some examples from Arecibo are displayed to show this. The effect of lunar tides should then modify the wind-shear theory in a manner that yields the observed features of the lunar tide in the critical frequency foEs and the height h'Es of the sporadic E. This is shown to imply that the phase of the lunar tide in h'Es should be the same as the phase of the lunar tide in the eastward wind and that the phase of the lunar tide in foEs is three hours later. Hourly values of foEs, f bEs (the blanketing critical frequency and h'Es from several observatories are analysed for the lunar semidiurnal tide. It is found that the phase of the tide in foEs is often about 3 hours later than for h'Es in agreement with the theory. Seasonal variations in the tide are also examined with the statistically most significant results (largest amplitudes usually occurring in summer. After reviewing the many difficulties associated with determining the lunar tide in Es, both experimentally and theoretically, the analysed phase results are compared with what might be expected from Hagan's global scale wave model. Agreement is only fair (a success rate of 69% among the cases examined but probably as good as might be expected.Key words. Ionosphere (ionosphere – atmosphere interactions – ionospheric irregularities, Meteorology and atmosphere dynamics (waves and tides

  7. A novel lunar bed rest analogue.

    Science.gov (United States)

    Cavanagh, Peter R; Rice, Andrea J; Licata, Angelo A; Kuklis, Matthew M; Novotny, Sara C; Genc, Kerim O; Englehaupt, Ricki K; Hanson, Andrea M

    2013-11-01

    Humans will eventually return to the Moon and thus there is a need for a ground-based analogue to enable the study of physiological adaptations to lunar gravity. An important unanswered question is whether or not living on the lunar surface will provide adequate loading of the musculoskeletal system to prevent or attenuate the bone loss that is seen in microgravity. Previous simulations have involved tilting subjects to an approximately 9.5 degrees angle to achieve a lunar gravity component parallel to the long-axis of the body. However, subjects in these earlier simulations were not weight-bearing, and thus these protocols did not provide an analogue for load on the musculoskeletal system. We present a novel analogue which includes the capability to simulate standing and sitting in a lunar loading environment. A bed oriented at a 9.5 degrees angle was mounted on six linear bearings and was free to travel with one degree of freedom along rails. This allowed approximately 1/6 body weight loading of the feet during standing. "Lunar" sitting was also successfully simulated. A feasibility study demonstrated that the analogue was tolerated by subjects for 6 d of continuous bed rest and that the reaction forces at the feet during periods of standing were a reasonable simulation of lunar standing. During the 6 d, mean change in the volume of the quadriceps muscles was -1.6% +/- 1.7%. The proposed analogue would appear to be an acceptable simulation of lunar gravity and deserves further exploration in studies of longer duration.

  8. The challenges and benefits of lunar exploration

    Science.gov (United States)

    Cohen, Aaron

    1992-01-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  9. Lunar planetary exploration of Japan; Nippon no tsuki wakusei tansa

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, J. [Research Development Corporation of Japan, Tokyo (Japan)

    1996-05-01

    This paper describes lunar planetary exploration of Japan as a result of success in launching the H-II rocket. Under the cooperation between the Space Chemistry Research Institute (ISAS) of the Ministry of Education and the National Aerospace Development Association (NASDA), discussions have begun on launching an orbital satellite for lunar planetary exploration early in the 2000`s. The objective includes a study on origin and evolution of the moon, feasibility study on moon utilization, and learning the moon surface soft landing technology. Explorations on objects other than moon may be conceived by using such a large rocket as H-II. Exploration on living organisms on Mars may be one of them. Light emitting monitors that operate on the living organism dying identification method could be used on places where living organisms are likely to exist on Mars. Then, samples may be brought back, and it might be possible to pursue the mystery of life origin. A comet has no internal melting by heat as in planets, and keeps composing substances as they have been generated. In other words, it could be said a fossil in the solar system that retains initial substances in the solar system. Samples, if they can be brought back, could be keys to solve the mystery of the solar system formation. The Halley comet is said covered with organic substances. There is a theory that life originating substances on the earth were made on a comet, which were supplied to the earth as a result of collision.

  10. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  11. Modeling Respiratory Toxicity of Authentic Lunar Dust

    Science.gov (United States)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  12. CisLunar Habitat Internal Architecture Design Criteria

    Science.gov (United States)

    Jones, R.; Kennedy, K.; Howard, R.; Whitmore, M.; Martin, C.; Garate, J.

    2017-01-01

    BACKGROUND: In preparation for human exploration to Mars, there is a need to define the development and test program that will validate deep space operations and systems. In that context, a Proving Grounds CisLunar habitat spacecraft is being defined as the next step towards this goal. This spacecraft will operate differently from the ISS or other spacecraft in human history. The performance envelope of this spacecraft (mass, volume, power, specifications, etc.) is being defined by the Future Capabilities Study Team. This team has recognized the need for a human-centered approach for the internal architecture of this spacecraft and has commissioned a CisLunar Phase-1 Habitat Internal Architecture Study Team to develop a NASA reference configuration, providing the Agency with a "smart buyer" approach for future acquisition. THE CISLUNAR HABITAT INTERNAL ARCHITECTURE STUDY: Overall, the CisLunar Habitat Internal Architecture study will address the most significant questions and risks in the current CisLunar architecture, habitation, and operations concept development. This effort is achieved through definition of design criteria, evaluation criteria and process, design of the CisLunar Habitat Phase-1 internal architecture, and the development and fabrication of internal architecture concepts combined with rigorous and methodical Human-in-the-Loop (HITL) evaluations and testing of the conceptual innovations in a controlled test environment. The vision of the CisLunar Habitat Internal Architecture Study is to design, build, and test a CisLunar Phase-1 Habitat Internal Architecture that will be used for habitation (e.g. habitability and human factors) evaluations. The evaluations will mature CisLunar habitat evaluation tools, guidelines, and standards, and will interface with other projects such as the Advanced Exploration Systems (AES) Program integrated Power, Avionics, Software (iPAS), and Logistics for integrated human-in-the-loop testing. The mission of the CisLunar

  13. APOLLO 10 ASTRONAUT ENTERS LUNAR MODULE SIMULATOR

    Science.gov (United States)

    1969-01-01

    Apollo 10 lunar module pilot Eugene A. Cernan prepares to enter the lunar module simulator at the Flight Crew Training Building at the NASA Spaceport. Cernan, Apollo 10 commander Thomas P. Stafford and John W. Young, command module pilot, are to be launched May 18 on the Apollo 10 mission, a dress rehearsal for a lunar landing later this summer. Cernan and Stafford are to detach the lunar module and drop to within 10 miles of the moon's surface before rejoining Young in the command/service module. Looking on as Cernan puts on his soft helmet is Snoopy, the lovable cartoon mutt whose name will be the lunar module code name during the Apollo 10 flight. The command/service module is to bear the code name Charlie Brown.

  14. Lunar Wireless Power Transfer Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Freid, Sheldon [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Popovic, Zoya [Univ. of Colorado, Boulder, CO (United States); Beckett, David R. [Independent Consultant; Anderson, Scott R. [Independent Consultant; Mann, Diana [Independent Consultant; Walker, Stuart [Independent Consultant

    2008-03-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  15. Kepler planet-detection mission

    DEFF Research Database (Denmark)

    Borucki...[], William J.; Koch, David; Buchhave, Lars C. Astrup

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler...... is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets....

  16. Alpha Elements' Effects on Planet Formation and the Hunt for Extragalactic Planets

    Science.gov (United States)

    Penny, Matthew; Rodriguez, Joseph E.; Beatty, Thomas; Zhou, George

    2018-01-01

    A star's likelihood of hosting a giant planet is well known to be strongly dependent on metallicity. However, little is known about what elements cause this correlation (e.g. bulk metals, iron, or alpha elements such as silicon and oxygen). This is likely because most planet searches target stars in the Galactic disk, and due to Galactic chemical evolution, alpha element abundances are themselves correlated with metallicity within a population. We investigate the feasibility of simultaneous transiting planet search towards the alpha-poor Sagittarius dwarf galaxy and alpha-rich Galactic bulge in a single field of view of DECam, that would enable a comparative study of planet frequency over an [alpha/Fe] baseline of ~0.4 dex. We show that a modestly sized survey could detect planet candidates in both populations, but that false positive rejection in Sgr Dwarf may be prohibitively expensive. Conversely, two-filter survey observations alone would be sufficient to rule out a large fraction of bulge false positives, enabling statistical validation of candidates with a modest follow-up investment. Although over a shorter [alpha/Fe] baseline, this survey would provide a test of whether it is alpha or iron that causes the planet metallicity correlation.

  17. The SCI Exercise Self-Efficacy Scale (ESES: development and psychometric properties

    Directory of Open Access Journals (Sweden)

    Ho Pei-Shu

    2007-08-01

    Full Text Available Abstract Background Rising prevalence of secondary conditions among persons with spinal cord injury (SCI has focused recent attention to potential health promotion programs designed to reduce such adverse health conditions. A healthy lifestyle for people with SCI, including and specifically, the adoption of a vigorous exercise routine, has been shown to produce an array of health benefits, prompting many providers to recommend the implementation of such activity to those with SCI. Successfully adopting such an exercise regimen however, requires confidence in one's ability to engage in exercise or exercise self-efficacy. Exercise self-efficacy has not been assessed adequately for people with SCI due to a lack of validated and reliable scales, despite self efficacy's status as one of the most widely researched concepts and despite its broad application in health promotion studies. Exercise self efficacy supporting interventions for people with SCI are only meaningful if appropriate measurement tools exist. The objective of our study was to develop a psychometrically sound exercise self-efficacy self-report measure for people with SCI. Methods Based on literature reviews, expert comments and cognitive testing, 10 items were included and made up the 4-point Likert SCI Exercise Self-Efficacy Scale (ESES in its current form. The ESES was administered as part of the first wave of a nationwide survey (n = 368 on exercise behavior and was also tested separately for validity in four groups of individuals with SCI. Reliability and validity testing was performed using SPSS 12.0. Results Cronbach's alpha was .9269 for the ESES. High internal consistency was confirmed in split-half (EQ Length Spearman Brown = .8836. Construct validity was determined using principal component factor analysis by correlating the aggregated ESES items with the Generalised Self Efficacy Scale (GSE. We found that all items loaded on one factor only and that there was a

  18. Laboratory simulations of lunar darkening processes

    Science.gov (United States)

    Hapke, B.

    1993-01-01

    It was clear long before the Apollo missions that a darkening process occurs on the moon. However, its nature remains controversial and elusive. Current evidence implies that the darkening is associated with, and is probably caused by, submicroscopic metallic iron in the regolith. Questions discussed at the workshop include: (1) under what conditions will impact vitrification produce a dark glass; (2) what is the role of the submicroscopic metallic Fe (SMFe) in the lunar darkening process; (3) how is the SMFe produced; (4) is there a significant component of the regolith that has been deposited from a vapor, if so, what form is it in, and how can it be recognized, what are its effects on the chemistry of the regolith; (5) how do the processes of impact vitrification, vaporization, sputtering, and SMFe production vary as a function of distance from the sun and location in planetary magnetospheres; and (6) what other processes might affect optical properties. Ices have lower melting and boiling temperatures and sputtering yields several orders of magnitude larger than silicates. Hence, analogous processes will occur to an even greater extent on satellites of the outer planets, and these questions are relevant to those bodies as well.

  19. Spinel-rich lithologies in the lunar highland crust: Linking lunar samples, crystallization experiments and remote sensing

    Science.gov (United States)

    Gross, J.; Treiman, A. H.

    2012-12-01

    The discovery of areas rich in (Mg,Fe)-Al spinel on the rims and central peaks of lunar impact basins (by the M3 mapping spectrometer on Chandrayaan-1) has revived the old puzzle of the origin of lunar spinel. (Mg,Fe)-Al spinel is rare but widespread in lunar highlands rocks, and thus might be an important component of the lunar crust [1-3]. However, the origin of this spinel is not clear. Lunar (Mg,Fe)-Al spinel could have formed (1) during 'normal' basalt petrogenesis at high pressure; (2) during low-pressure crystallization of melts rich in olivine and plagioclase components, e.g. impact-melted lunar troctolite; or (3) formed at low pressure during assimilation of anorthosite into picritic magma; thus, lunar spinel-rich areas represent old (pre-impact) intrusions of magma. In the absence of spinel-rich samples from the Moon, however, these ideas have been highly speculative. Here we describe a rock fragment from lunar meteorite ALHA 81005 that we recently reported [4] that not only contains spinel, but is the first spinel-rich lunar sample described. This fragment contains ~30% (Mg,Fe)Al spinel and is so fine grained that it reasonably could represent a larger rock body. However, the fragment is so rich in spinel that it could not have formed by melting a peridotitic mantle or a basaltic lunar crust. The clast's small grain size and its apparent disequilibrium between spinel and pyroxene suggest fairly rapid crystallization at low pressure. It could have formed as a spinel cumulate from an impact melt of troctolitic composition; or from a picritic magma that assimilated crustal anorthosite on its margins. The latter mechanism is preferred because it explains the petrographic and chemical features of our clast, and is consistent with the regional setting of the Moscoviense spinel deposit [4]. To better understand the origin and formation history(s) of spinel-rich rocks, we also performed liquidus/crystallization experiments at low-pressure as analogues for impact

  20. Sound velocity and compressibility for lunar rocks 17 and 46 and for glass spheres from the lunar soil.

    Science.gov (United States)

    Schreiber, E; Anderson, O L; Sogat, N; Warren, N; Scholz, C

    1970-01-30

    Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.

  1. 76 FR 10395 - BreconRidge Manufacturing Solutions, Now Known as Sanmina-SCI Corporation, Division...

    Science.gov (United States)

    2011-02-24

    ... Solutions, Now Known as Sanmina-SCI Corporation, Division Optoelectronic and Microelectronic Design and Manufacturing, a Subsidiary of Sanmina-SCI Corporation, Including On- Site Leased Workers From Kelly Services... Manufacturing Solutions, now known as Sanmina-SCI Corporation, Division Optoelectronic and Microelectronic...

  2. Structural Analysis of Lunar Subsurface with Chang'E 3 Lunar Penetrating Radar

    Science.gov (United States)

    Xu, Yi; Lai, Jialong; Tang, Zesheng

    2015-04-01

    Geological structure of the subsurface of the Moon provides valuable information for our understanding of lunar evolution. Recently, Chang'E 3 has utilized lunar penetrating radar (LPR), which is equipped on the lunar rover named as Yutu, to detect the lunar geological structure in Northern Imbrium (44.1260N, 19.5014W) for the first time. As an in-situ detector, Chang'E 3 LPR has higher horizontal and vertical resolution and less clutter impact compared to spaceborne radars such as Chandrayaan-1 and Kaguya. In this work, we analyze the LPR data at 500 MHz transmission frequency to obtain the shallow subsurface structure of the landing area of Chang'E 3 in Mare Imbrium. First, filter method and amplitude recover algorithms are introduced for data processing to alleviate the adverse effects of environment and system noises and compensate the amplitude losses during signal propagation. Next, based on the processed LPR data, we present the methods to determine the interfaces between layers. A three-layered structure of the shallow surface of the Moon has been observed. The corresponding real part of relative dielectric constant is inverted with deconvolution method. The average dielectric constants of the surface, second and third layer is 2.8, 3.2 and 3.6, respectively. The phenomenon that the average dielectric constant increases with the depth is consistent with prior art. With the obtained dielectric constants, the thickness of each layer can be calculated. One possible geological picture of the observed three-layered structure is presented as follows. The top layer is lunar regolith with its thickness ranging from 0.59 m to 0.9 m. The second layer is the ejecta blanket of the nearby impact crater, and the corresponding thickness is between 3.6m to 3.9m, which is in good agreement with the model of ejecta blanket thickness (height) as a function of distance from the crater center proposed by Melosh in 1989. The third layer is regarded as early lunar regolith with 4

  3. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    Science.gov (United States)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of

  4. SCI peer health coach influence on self-management with peers: a qualitative analysis.

    Science.gov (United States)

    Skeels, S E; Pernigotti, D; Houlihan, B V; Belliveau, T; Brody, M; Zazula, J; Hasiotis, S; Seetharama, S; Rosenblum, D; Jette, A

    2017-11-01

    A process evaluation of a clinical trial. To describe the roles fulfilled by peer health coaches (PHCs) with spinal cord injury (SCI) during a randomized controlled trial research study called 'My Care My Call', a novel telephone-based, peer-led self-management intervention for adults with chronic SCI 1+ years after injury. Connecticut and Greater Boston Area, MA, USA. Directed content analysis was used to qualitatively examine information from 504 tele-coaching calls, conducted with 42 participants with SCI, by two trained SCI PHCs. Self-management was the focus of each 6-month PHC-peer relationship. PHCs documented how and when they used the communication tools (CTs) and information delivery strategies (IDSs) they developed for the intervention. Interaction data were coded and analyzed to determine PHC roles in relation to CT and IDS utilization and application. PHCs performed three principal roles: Role Model, Supporter, and Advisor. Role Model interactions included CTs and IDSs that allowed PHCs to share personal experiences of managing and living with an SCI, including sharing their opinions and advice when appropriate. As Supporters, PHCs used CTs and IDSs to build credible relationships based on dependability and reassuring encouragement. PHCs fulfilled the unique role of Advisor using CTs and IDSs to teach and strategize with peers about SCI self-management. The SCI PHC performs a powerful, flexible role in promoting SCI self-management among peers. Analysis of PHC roles can inform the design of peer-led interventions and highlights the importance for the provision of peer mentor training.

  5. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  6. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1984-01-01

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables

  7. A Synthesis of VIIRS Solar and Lunar Calibrations

    Science.gov (United States)

    Eplee, Robert E.; Turpie, Kevin R.; Meister, Gerhard; Patt, Frederick S.; Fireman, Gwyn F.; Franz, Bryan A.; McClain, Charles R.

    2013-01-01

    The NASA VIIRS Ocean Science Team (VOST) has developed two independent calibrations of the SNPP VIIRS moderate resolution reflective solar bands using solar diffuser and lunar observations through June 2013. Fits to the solar calibration time series show mean residuals per band of 0.078-0.10%. There are apparent residual lunar libration correlations in the lunar calibration time series that are not accounted for by the ROLO photometric model of the Moon. Fits to the lunar time series that account for residual librations show mean residuals per band of 0.071-0.17%. Comparison of the solar and lunar time series shows that the relative differences in the two calibrations are 0.12-0.31%. Relative uncertainties in the VIIRS solar and lunar calibration time series are comparable to those achieved for SeaWiFS, Aqua MODIS, and Terra MODIS. Intercomparison of the VIIRS lunar time series with those from SeaWiFS, Aqua MODIS, and Terra MODIS shows that the scatter in the VIIRS lunar observations is consistent with that observed for the heritage instruments. Based on these analyses, the VOST has derived a calibration lookup table for VIIRS ocean color data based on fits to the solar calibration time series.

  8. Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution (Invited)

    Science.gov (United States)

    Khan, A.; Connolly, J. A.; Pommier, A.

    2013-12-01

    Analysis of lunar seismic and lunar laser ranging data has yielded evidence that has been interpreted to indicate a molten zone in the lower-most mantle and/or the outer core of the Moon. Such a zone would provide strong constraints on models of the thermal evolution of the Moon. Here we invert lunar geophysical data in combination with phase-equilibrium modeling to derive information about the thermo-chemical and physical structure of the deep lunar interior. Specifically, we assess whether a molten layer is required by the geophysical data and, if so, its likely composition and physical properties (e.g., density and seismic wave speeds). The data considered are mean mass and moment of inertia, second-degree tidal Love number, and frequency-dependent electromagnetic sounding data. The main conclusion drawn from this study is that a region with high dissipation located deep within the Moon is indeed required to explain the geophysical data. If this dissipative region is located within the mantle, then the solidus is crossed at a depth of ~1200 km (>1600 deg C). The apparent absence of far-side deep moonquakes (DMQs) is supporting evidence for a highly dissipative layer. Inverted compositions for the partially molten layer (typically 100--200 km thick) are enriched in FeO and TiO2 relative to the surrounding mantle. While the melt phase in >95 % of inverted models is neutrally buoyant at pressures of ~4.5--4.6 GPa, the melt contains less TiO2 (>~4 wt %) than the Ti-rich (~16 wt % TiO2) melts that produced a set of high-density primitive lunar magmas (~3.4 g/ccm). Melt densities computed here range from 3.3 to 3.4 g/ccm bracketing the density of lunar magmas with moderate-to-high TiO2 contents. Our results are consistent with a model of lunar evolution in which the cumulate pile formed from crystallization of the magma ocean as it overturned, trapping heat-producing elements in the lower mantle.

  9. Uranium in the rock fragments from Lunar soil

    International Nuclear Information System (INIS)

    Komarov, A.N.; Sergeev, S.A.

    1983-01-01

    Uranium content and distribution in Lunar rock fragments 0.4-0.9 mm in size from ''Lunar-16+ -20, -24'' stations were studied by the method of autoradiography. Uranium is almost absent in rock-forming minerals and is concentrated in some accessory mineral. Uranium content in microgabro fragments from ''Lunar-20 and -24'' equals (0.0n - n.0)16 -6 g/g. Variations are not related to fragment representation. Radiogra-- phies of fragments from Lunar soil showed the uranium distribution from uniform (in glasses) to extremely nonuniform in some holocrystalline rocks. It was pointed out, that uranium micro distributions in Lunar and Earth (effusive and magmatic) rocks have common features. In both cases rock-forming minerals don't contain appreciable uranium amount in the form of isomorphic admixture; uranium is highly concentrated in some accessory minerais. The difference lies in tne absence of hydroxyl -containing secondary minerals, which are enriched with uranium on Earth, in Lunar rocks. ''Film'' uranium micromineralization, which occurs in rocks of the Earth along the boundaries of mineral grains is absent in Lunar rocks as well

  10. Opening Comments: SciDAC 2009

    Science.gov (United States)

    Strayer, Michael

    2009-07-01

    Welcome to San Diego and the 2009 SciDAC conference. Over the next four days, I would like to present an assessment of the SciDAC program. We will look at where we've been, how we got to where we are and where we are going in the future. Our vision is to be first in computational science, to be best in class in modeling and simulation. When Ray Orbach asked me what I would do, in my job interview for the SciDAC Director position, I said we would achieve that vision. And with our collective dedicated efforts, we have managed to achieve this vision. In the last year, we have now the most powerful supercomputer for open science, Jaguar, the Cray XT system at the Oak Ridge Leadership Computing Facility (OLCF). We also have NERSC, probably the best-in-the-world program for productivity in science that the Office of Science so depends on. And the Argonne Leadership Computing Facility offers architectural diversity with its IBM Blue Gene/P system as a counterbalance to Oak Ridge. There is also ESnet, which is often understated—the 40 gigabit per second dual backbone ring that connects all the labs and many DOE sites. In the President's Recovery Act funding, there is exciting news that ESnet is going to build out to a 100 gigabit per second network using new optical technologies. This is very exciting news for simulations and large-scale scientific facilities. But as one noted SciDAC luminary said, it's not all about the computers—it's also about the science—and we are also achieving our vision in this area. Together with having the fastest supercomputer for science, at the SC08 conference, SciDAC researchers won two ACM Gordon Bell Prizes for the outstanding performance of their applications. The DCA++ code, which solves some very interesting problems in materials, achieved a sustained performance of 1.3 petaflops, an astounding result and a mark I suspect will last for some time. The LS3DF application for studying nanomaterials also required the development of a

  11. Understanding Quality of Life in Adults with Spinal Cord Injury Via SCI-Related Needs and Secondary Complications.

    Science.gov (United States)

    Sweet, Shane N; Noreau, Luc; Leblond, Jean; Dumont, Frédéric S

    2014-01-01

    Understanding the factors that can predict greater quality of life (QoL) is important for adults with spinal cord injury (SCI), given that they report lower levels of QoL than the general population. To build a conceptual model linking SCI-related needs, secondary complications, and QoL in adults with SCI. Prior to testing the conceptual model, we aimed to develop and evaluate the factor structure for both SCI-related needs and secondary complications. Individuals with a traumatic SCI (N = 1,137) responded to an online survey measuring 13 SCI-related needs, 13 secondary complications, and the Life Satisfaction Questionnaire to assess QoL. The SCI-related needs and secondary complications were conceptualized into factors, tested with a confirmatory factor analysis, and subsequently evaluated in a structural equation model to predict QoL. The confirmatory factor analysis supported a 2-factor model for SCI related needs, χ(2)(61, N = 1,137) = 250.40, P SCI-related needs (β = -.22 and -.20, P SCI-related needs of individuals with SCI and preventing or managing secondary complications are essential to their QoL.

  12. Scientific Data Processing Using SciQL

    NARCIS (Netherlands)

    Y. Zhang (Ying); M.L. Kersten (Martin)

    2012-01-01

    htmlabstractScientific discoveries increasingly rely on the ability to efficiently grind massive amounts of experimental data using database technologies. To bridge the gap between the needs of the Data-Intensive Research fields and the current DBMS technologies, we are developing SciQL (pronounced

  13. Differential Impact and Use of a Telehealth Intervention by Persons with MS or SCI.

    Science.gov (United States)

    Mercier, Hannah W; Ni, Pensheng; Houlihan, Bethlyn V; Jette, Alan M

    2015-11-01

    The objective of this study was to compare outcomes and patterns of engaging with a telehealth intervention (CareCall) by adult wheelchair users with severe mobility limitations with a diagnosis of multiple sclerosis (MS) or spinal cord injury (SCI). The design of this study is a secondary analysis from a pilot randomized controlled trial with 106 participants with SCI and 36 participants with MS. General linear model results showed that an interaction between baseline depression score and study group significantly predicted reduced depression at 6 mos for subjects with both diagnoses (P = 0.01). For those with MS, CareCall increased participants' physical independence (P SCI (P = 0.005). Those with SCI missed more calls (P SCI, and in increasing health care access and physical independence for those with a diagnosis of MS. Future research should aim to enhance the efficacy of such an intervention for participants with SCI.

  14. Experimental Fractional Crystallization of the Lunar Magma Ocean

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2012-01-01

    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  15. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  16. Experimental reduction of simulated lunar glass by carbon and hydrogen and implications for lunar base oxygen production

    International Nuclear Information System (INIS)

    Mckay, D.S.; Morris, R.V.; Jurewicz, A.J.

    1991-01-01

    The most abundant element in lunar rocks and soils is oxygen which makes up approximately 45 percent by weight of the typical lunar samples returned during the Apollo missions. This oxygen is not present as a gas but is tightly bound to other elements in mineral or glass. When people return to the Moon to explore and live, the extraction of this oxygen at a lunar outpost may be a major goal during the early years of operation. Among the most studied processes for oxygen extraction is the reduction of ilmenite by hydrogen gas to form metallic iron, titanium oxide, and oxygen. A related process is proposed which overcomes some of the disadvantages of ilmenite reduction. It is proposed that oxygen can be extracted by direct reduction of native lunar pyroclactic glass using either carbon, carbon monoxide, or hydrogen. In order to evaluate the feasibility of this proposed process a series of experiments on synthetic lunar glass are presented. The results and a discussion of the experiments are presented

  17. Lunar sample studies

    International Nuclear Information System (INIS)

    1977-01-01

    Lunar samples discussed and the nature of their analyses are: (1) an Apollo 15 breccia which is thoroughly analyzed as to the nature of the mature regolith from which it derived and the time and nature of the lithification process, (2) two Apollo 11 and one Apollo 12 basalts analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography, (3) eight Apollo 17 mare basalts, also analyzed in terms of chemistry, Cross-Iddings-Pirsson-Washington norms, mineralogy, and petrography. The first seven are shown to be chemically similar although of two main textural groups; the eighth is seen to be distinct in both chemistry and mineralogy, (4) a troctolitic clast from a Fra Mauro breccia, analyzed and contrasted with other high-temperature lunar mineral assemblages. Two basaltic clasts from the same breccia are shown to have affinities with rock 14053, and (5) the uranium-thorium-lead systematics of three Apollo 16 samples are determined; serious terrestrial-lead contamination of the first two samples is attributed to bandsaw cutting in the lunar curatorial facility

  18. SciELO: un proyecto cooperativo para la difusión de la ciencia SciELO: A cooperative project for the dissemination of science

    Directory of Open Access Journals (Sweden)

    C. Bojo Canales

    2009-10-01

    Full Text Available Se describe el modelo SciELO (Scientific Electronic Library Online para la publicación y difusión electrónica de revistas científicas, su origen y evolución, su metodología, componentes, servicios y potencialidades, así como su implantación en España. Con 13 países participantes que suponen 8 portales certificados y 5 portales en desarrollo, más dos portales temáticos, en febrero de 2009 SciELO.org recogía 611 revistas y 195.789 artículos, de los cuales el 46% eran de Ciencias de la Salud, lo que lo convierte en una de las iniciativas de acceso abierto más importantes de cuantas existen. España se une al proyecto en 1999 y lanzó su portal "SciELO España" en 2001, con 4 revistas. En la actualidad incluye 39 títulos del área de Ciencias de la Salud, entre ellos la Revista Española de Sanidad Penitenciaria que se ha incorporado a la colección en 2007 y tiene accesibles 6 números correspondientes a los años 2007 y 2008. Se concluye afirmando que el modelo SciELO contribuye al desarrollo de la investigación y la ciencia, ofreciendo una solución eficiente y eficaz para impulsar y aumentar la difusión de las publicaciones científicas del área iberoamericana.The article describes the SciELO (Scientific Electronic Library Online model for the electronic publication and dissemination of scientific journals, its origin and evolution, methodology, components, services and potential, and its implantation in Spain. It consists of thirteen participant countries with eight certified web portals, with another 5 under development and another two thematic ones. In February 2009 Scielo.org had 611 magazines and 195,789 articles of which 46% were about health sciences. Spain became a project member in 1999 and launched the SciELO web portal in 2001, as well as 4 magazines. It currently has 39 titles in the field of Health Sciences; one of which is the Revista Española de Sanidad Penitenciaria, which joined the project in 2007 and which

  19. Lunar plant biology--a review of the Apollo era.

    Science.gov (United States)

    Ferl, Robert J; Paul, Anna-Lisa

    2010-04-01

    Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.

  20. Development and psychometric characteristics of the SCI-QOL Bladder Management Difficulties and Bowel Management Difficulties item banks and short forms and the SCI-QOL Bladder Complications scale.

    Science.gov (United States)

    Tulsky, David S; Kisala, Pamela A; Tate, Denise G; Spungen, Ann M; Kirshblum, Steven C

    2015-05-01

    To describe the development and psychometric properties of the Spinal Cord Injury--Quality of Life (SCI-QOL) Bladder Management Difficulties and Bowel Management Difficulties item banks and Bladder Complications scale. Using a mixed-methods design, a pool of items assessing bladder and bowel-related concerns were developed using focus groups with individuals with spinal cord injury (SCI) and SCI clinicians, cognitive interviews, and item response theory (IRT) analytic approaches, including tests of model fit and differential item functioning. Thirty-eight bladder items and 52 bowel items were tested at the University of Michigan, Kessler Foundation Research Center, the Rehabilitation Institute of Chicago, the University of Washington, Craig Hospital, and the James J. Peters VA Medical Center, Bronx, NY. Seven hundred fifty-seven adults with traumatic SCI. The final item banks demonstrated unidimensionality (Bladder Management Difficulties CFI=0.965; RMSEA=0.093; Bowel Management Difficulties CFI=0.955; RMSEA=0.078) and acceptable fit to a graded response IRT model. The final calibrated Bladder Management Difficulties bank includes 15 items, and the final Bowel Management Difficulties item bank consists of 26 items. Additionally, 5 items related to urinary tract infections (UTI) did not fit with the larger Bladder Management Difficulties item bank but performed relatively well independently (CFI=0.992, RMSEA=0.050) and were thus retained as a separate scale. The SCI-QOL Bladder Management Difficulties and Bowel Management Difficulties item banks are psychometrically robust and are available as computer adaptive tests or short forms. The SCI-QOL Bladder Complications scale is a brief, fixed-length outcomes instrument for individuals with a UTI.

  1. Global silicate mineralogy of the Moon from the Diviner lunar radiometer.

    Science.gov (United States)

    Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A

    2010-09-17

    We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.

  2. Lunar heat-flow experiment

    Science.gov (United States)

    Langseth, M. G.

    1977-01-01

    The principal components of the experiment were probes, each with twelve thermometers of exceptional accuracy and stability, that recorded temperature variations at the surface and in the regolith down to 2.5 m. The Apollo 15 experiment and the Apollo 17 probes recorded lunar surface and subsurface temperatures. These data provided a unique and valuable history of the interaction of solar energy with lunar surface and the effects of heat flowing from the deep interior out through the surface of the moon. The interpretation of these data resulted in a clearer definition of the thermal and mechanical properties of the upper two meters of lunar regolith, direct measurements of the gradient in mean temperature due to heat flow from the interior and a determination of the heat flow at the Apollo 15 and Apollo 17 sites.

  3. Homes for extraterrestrial life: extrasolar planets.

    Science.gov (United States)

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  4. Planet traps and planetary cores: origins of the planet-metallicity correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Yasuhiro [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), P.O. Box 23-141, Taipei 10641, Taiwan (China); Pudritz, Ralph E., E-mail: yasu@asiaa.sinica.edu.tw, E-mail: pudritz@physics.mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2014-10-10

    Massive exoplanets are observed preferentially around high metallicity ([Fe/H]) stars while low-mass exoplanets do not show such an effect. This so-called planet-metallicity correlation generally favors the idea that most observed gas giants at r < 10 AU are formed via a core accretion process. We investigate the origin of this phenomenon using a semi-analytical model, wherein the standard core accretion takes place at planet traps in protostellar disks where rapid type I migrators are halted. We focus on the three major exoplanetary populations—hot Jupiters, exo-Jupiters located at r ≅ 1 AU, and the low-mass planets. We show using a statistical approach that the planet-metallicity correlations are well reproduced in these models. We find that there are specific transition metallicities with values [Fe/H] = –0.2 to –0.4, below which the low-mass population dominates, and above which the Jovian populations take over. The exo-Jupiters significantly exceed the hot Jupiter population at all observed metallicities. The low-mass planets formed via the core accretion are insensitive to metallicity, which may account for a large fraction of the observed super-Earths and hot-Neptunes. Finally, a controlling factor in building massive planets is the critical mass of planetary cores (M {sub c,} {sub crit}) that regulates the onset of rapid gas accretion. Assuming the current data is roughly complete at [Fe/H] > –0.6, our models predict that the most likely value of the 'mean' critical core mass of Jovian planets is (M {sub c,} {sub crit}) ≅ 5 M {sub ⊕} rather than 10 M {sub ⊕}. This implies that grain opacities in accreting envelopes should be reduced in order to lower M {sub c,} {sub crit}.

  5. Lunar Flashlight

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Flashlight (LF) is an innovative cubesat mission sponsored by NASA’s Advanced Exploration Systems (AES) division to be launched on the Space Launch System...

  6. Optimal Lunar Landing Trajectory Design for Hybrid Engine

    OpenAIRE

    Cho, Dong-Hyun; Kim, Donghoon; Leeghim, Henzeh

    2015-01-01

    The lunar landing stage is usually divided into two parts: deorbit burn and powered descent phases. The optimal lunar landing problem is likely to be transformed to the trajectory design problem on the powered descent phase by using continuous thrusters. The optimal lunar landing trajectories in general have variety in shape, and the lunar lander frequently increases its altitude at the initial time to obtain enough time to reduce the horizontal velocity. Due to the increment in the altitude,...

  7. The fate of scattered planets

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  8. Search for a planet

    International Nuclear Information System (INIS)

    Tokovinin, A.A.

    1986-01-01

    The problem of search for star planets is discussed in a popular form. Two methods of search for planets are considered: astrometric and spectral. Both methods complement one another. An assumption is made that potential possessors of planets are in the first place yellow and red dwarfs with slow axial rotation. These stars are the most numerous representatives of Galaxy population

  9. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    Science.gov (United States)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These

  10. Looking Into Pandora's Box: The Content Of Sci-Hub And Its Usage

    OpenAIRE

    Greshake, Bastian

    2017-01-01

    Despite the growth of Open Access, potentially illegally circumventing paywalls to access scholarly publications is becoming a more mainstream phenomenon. The web service Sci-Hub is amongst the biggest facilitators of this, offering free access to around 62 million publications. So far it is not well studied how and why its users are accessing publications through Sci-Hub. By utilizing the recently released corpus of Sci-Hub and comparing it to the data of  ~28 million downloads done through ...

  11. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    Science.gov (United States)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  12. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  13. Line Profile Measurements of the Lunar Exospheric Sodium

    Science.gov (United States)

    Oliversen, Ronald J.; Mierkiewicz, Edwin J.; Line, Michael R.; Roesler, Fred L.; Lupie, Olivia L.

    2012-01-01

    We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.

  14. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  15. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  16. Direct Imaging of Warm Extrasolar Planets

    International Nuclear Information System (INIS)

    Macintosh, B

    2005-01-01

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  17. The Fate of Unstable Circumbinary Planets

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  18. SciLab Based Remote Control of Thermo-Optical Plant

    Directory of Open Access Journals (Sweden)

    Miroslav Jano

    2011-11-01

    Full Text Available The paper deals with the web-based implementation of the control system of a thermo-optical plant. The control of the plant is based on the SciLab software which originally is not designed for web-based applications. The paper shows a possible way to circumvent this limitation. The ultimate goal is to enable remote controlled experiment using SciLab. The paper also describes possible tools for communication and control of the real plant and visualization of results.

  19. 2007 Lunar Regolith Simulant Workshop Overview

    Science.gov (United States)

    McLemore, Carole A.; Fikes, John C.; Howell, Joe T.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1 M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the

  20. Indigenous lunar construction materials

    Science.gov (United States)

    Rogers, Wayne P.; Sture, Stein

    1991-01-01

    The utilization of local resources for the construction and operation of a lunar base can significantly reduce the cost of transporting materials and supplies from Earth. The feasibility of processing lunar regolith to form construction materials and structural components is investigated. A preliminary review of potential processing methods such as sintering, hot-pressing, liquification, and cast basalt techniques, was completed. The processing method proposed is a variation on the cast basalt technique. It involves liquification of the regolith at 1200-1300 C, casting the liquid into a form, and controlled cooling. While the process temperature is higher than that for sintering or hot-pressing (1000-1100 C), this method is expected to yield a true engineering material with low variability in properties, high strength, and the potential to form large structural components. A scenario for this processing method was integrated with a design for a representative lunar base structure and potential construction techniques. The lunar shelter design is for a modular, segmented, pressurized, hemispherical dome which could serve as habitation and laboratory space. Based on this design, estimates of requirements for power, processing equipment, and construction equipment were made. This proposed combination of material processing method, structural design, and support requirements will help to establish the feasibility of lunar base construction using indigenous materials. Future work will refine the steps of the processing method. Specific areas where more information is needed are: furnace characteristics in vacuum; heat transfer during liquification; viscosity, pouring and forming behavior of molten regolith; design of high temperature forms; heat transfer during cooling; recrystallization of basalt; and refinement of estimates of elastic moduli, compressive and tensile strength, thermal expansion coefficient, thermal conductivity, and heat capacity. The preliminary

  1. Implication of altered autonomic control for orthostatic tolerance in SCI.

    Science.gov (United States)

    Wecht, Jill Maria; Bauman, William A

    2018-01-01

    Neural output from the sympathetic and parasympathetic branches of the autonomic nervous system (ANS) are integrated to appropriately control cardiovascular responses during routine activities of daily living including orthostatic positioning. Sympathetic control of the upper extremity vasculature and the heart arises from the thoracic cord between T1 and T5, whereas splanchnic bed and lower extremity vasculature receive sympathetic neural input from the lower cord between segments T5 and L2. Although the vasculature is not directly innervated by the parasympathetic nervous system, the SA node is innervated by post-ganglionic vagal nerve fibers via cranial nerve X. Segmental differences in sympathetic cardiovascular innervation highlight the effect of lesion level on orthostatic cardiovascular control following spinal cord injury (SCI). Due to impaired sympathetic cardiovascular control, many individuals with SCI, particularly those with lesions above T6, are prone to orthostatic hypotension (OH) and orthostatic intolerance (OI). Symptomatic OH, which may result in OI, is a consequence of episodic reductions in cerebral perfusion pressure and the symptoms may include: dizziness, lightheadedness, nausea, blurred vision, ringing in the ears, headache and syncope. However, many, if not most, individuals with SCI who experience persistent and episodic hypotension and OH do not report symptoms of cerebral hypoperfusion and therefore do not raise clinical concern. This review will discuss the mechanism underlying OH and OI following SCI, and will review our knowledge to date regarding the prevalence, consequences and possible treatment options for these conditions in the SCI population. Published by Elsevier B.V.

  2. Lunar dusty plasma: A result of interaction of the solar wind flux and ultraviolet radiation with the lunar surface

    International Nuclear Information System (INIS)

    Lisin, E A; Tarakanov, V P; Petrov, O F; Popel, S I

    2015-01-01

    One of the main problems of future missions to the Moon is associated with lunar dust. Solar wind flux and ultraviolet radiation interact with the lunar surface. As a result, there is a substantial surface change and a near-surface plasma sheath. Dust particles from the lunar regolith, which turned in this plasma because of any mechanical processes, can levitate above the surface, forming dust clouds. In preparing of the space experiments “Luna-Glob” and “Luna-Resource” particle-in-cell calculations of the near-surface plasma sheath parameters are carried out. Here we present some new results of particle-in-cell simulation of the plasma sheath formed near the surface of the moon as a result of interaction of the solar wind and ultraviolet radiation with the lunar surface. The conditions of charging and stable levitation of dust particles in plasma above the lunar surface are also considered. (paper)

  3. SCI- databasen - En klinisk rygmarvsskade database

    DEFF Research Database (Denmark)

    Vibjerg, Jørgen; Østergaard, Niels; Hagen, Ellen Merete

    2015-01-01

    SCI- databasen - En klinisk rygmarvsskade database Målet med databasen er at indsamle vigtige data for rygmarvskadede patienter med henblik på at sikrer information der kan bruges til fremtidig forskning. Målet er desuden at kunne bruge databasen i et fremtidig klinisk arbejde, der som et...

  4. The origin of high eccentricity planets: The dispersed planet formation regime for weakly magnetized disks

    Directory of Open Access Journals (Sweden)

    Yusuke Imaeda

    2017-03-01

    Full Text Available In the tandem planet formation regime, planets form at two distinct sites where solid particles are densely accumulated due to the on/off state of the magnetorotational instability (MRI. We found that tandem planet formation can reproduce the solid component distribution of the Solar System and tends to produce a smaller number of large planets through continuous pebble flow into the planet formation sites. In the present paper, we investigate the dependence of tandem planet formation on the vertical magnetic field of the protoplanetary disk. We calculated two cases of Bz=3.4×10−3 G and Bz=3.4×10−5 G at 100 AU as well as the canonical case of Bz=3.4×10−4 G. We found that tandem planet formation holds up well in the case of the strong magnetic field (Bz=3.4×10−3 G. On the other hand, in the case of a weak magnetic field (Bz=3.4×10−5 G at 100 AU, a new regime of planetary growth is realized: the planets grow independently at different places in the dispersed area of the MRI-suppressed region of r=8−30 AU at a lower accretion rate of M˙<10−7.4 M⊙yr−1. We call this the “dispersed planet formation” regime. This may lead to a system with a larger number of smaller planets that gain high eccentricity through mutual collisions.

  5. Chemistry and structure of lunar and synthetic armalcolite

    International Nuclear Information System (INIS)

    Wechsler, B.A.; Prewitt, C.T.; Papike, J.J.

    1976-01-01

    A study of the chemical trends displayed by lunar armalcolites has been made in conjunction with single-crystal X-ray structure refinements of lunar and synthetic armalcolite in order to assess the possible importance of Ti 3+ in lunar armalcolite and to characterize the effects of cation substitutions on the structure. The apparent cation deficiences found in lunar armalcolites analyzed with the electron microprobe most likely reflect the presence of Ti 3+ , although the existence of vacancies cannot be ruled out. Structure refinements of an Apollo 17 armalcolite are consistent with either interpretation. These results support experimental evidence suggesting the presence of Ti 3+ in armalcolite and indicate that virtually all lunar armalcolites probably contain approximately 4-11 mol.% Ti 2 3+ Ti 4+ 0 5 component in solid solution. The cation distribution in lunar armalcolite is essentially completely ordered. However, synthetic crystals quenched from near 1200 0 C have been found to retain significant cation disorder. (Auth.)

  6. Zinnia Germination and Lunar Soil Amendment

    Science.gov (United States)

    Reese, Laura

    2017-01-01

    Germination testing was performed to determine the best method for germinating zinnias. This method will be used to attempt to germinate the zinnia seeds produced in space. It was found that seed shape may be critically important in determining whether a seed will germinate or not. The ability of compost and worm castings to remediate lunar regolith simulant for plant growth was tested. It was found that neither treatment effectively improves plant growth in lunar regolith simulant. A potential method of improving lunar regolith simulant by mixing it with arcillite was discovered.

  7. Adsorption of Hg on lunar samples

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1985-01-01

    Understanding the presence, migration mechanisms and trapping of indigneous gases and volatiles on the moon is the objective of this study. The rare gases Ar and Xe and highly volatile Hg 0 and Br 0 (and/or their compounds) have been determined to be present in the lunar regolith. Evidence for these elements in the moon was recently reviewed. Studies of the sorption behavior of Xe on lunar material have been carried out. We report here preliminary results of a study designed to rationalize the behavior of Hg in lunar material

  8. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  9. Towards the Next International Lunar Decade

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    The idea of an International Lunar Decade (ILD) germinated in work underway in the International Lunar Working Group (ILEWG) coordinated by ESA starting before 2000. Envisioned was an International Geophysical Year (IGY) inspired global collaborative undertaking to better understand the Moon, its origins and resources as a step towards lunar development and possible human settlement. By 2006 the ILD idea had evolved sufficiently that the ILEWG endorsed it and endorsement was also received from COSPAR [1] The Planetary Society under the leadership of Louis Friedman championed the ILD idea, received a grant from the Secure World Foundation to promote it at various conferences as well as to the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS). Friedman made a presentation about ILD to COPUOS in February, 2007 [2]. Despite positive interest in the idea no member state of COPUOS chose to promote it. The ILD agenda was adopted by ILEWG and largely fulfilled by the member space agencies in the decade from 2007-2014, but without UN endorsement as a global initiative. In 2013 an idea for an International Lunar Decade took hold among a group of space activists that included ideas for an International Lunar Research Park [3], an International Lunar Geophysical Year and other elements including an article published by V. Beldavs in the Space Review on January 14, 2014 [4]. These various thought streams were brought to focus at the conference "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space", November 9-13, 2014 in Hawaii that resulted in the International Lunar Decade Declaration [3] and the formation of the working group (ILDWG) to promote implementation of ILD. In 2015 numerous organizations and influential persons were approached and informed about the idea of a framework for international collaboration sustained over a decade to gain an understanding of the Moon and its resources and to develop the technologies and

  10. Endogenous Lunar Volatiles: Insights into the Abundances of Volatiles in the Moon from Lunar Apatite

    Science.gov (United States)

    McCubbin, Francis

    2016-01-01

    At the time of publication of New Views of the Moon, it was thought that the Moon was bone dry with less than about 1 ppb H2O. However in 2007, initial reports at the 38th Lunar and Planetary Science Conference speculated that H-species were present in both apatites and pyroclastic volcanic lunar glasses. These early reports were later confirmed through peer-review, which motivated many subsequent studies on magmatic volatiles in and on the Moon within the last decade. Some of these studies have cast into question the post-Apollo view of lunar formation, the distribution and sources of volatiles in the Earth-Moon system, and the thermal and magmatic evolution of the Moon. The mineral apatite has been one of the pillars of this new field of study, and it will be the primary focus of this abstract. Although apatite has been used both to understand the abundances of volatiles in lunar systems as well as the isotopic compositions of those volatiles, the focus here will be on the abundances of F, Cl, and H2O. This work demonstrates the utility of apatite in advancing our understanding of lunar volatiles, hence apatite should be among the topics covered in the endogenous lunar volatile chapter in NVM II. Truncated ternary plot of apatite X-site occupancy (mol%) from highlands apatite and mare basalt apatite plotted on the relative volatile abundance diagram from. The solid black lines delineate fields of relative abundances of F, Cl, and H2O (on a weight basis) in the melt from which the apatite crystallized. The diagram was constructed using available apatite/melt partitioning data for fluorine, chlorine, and hydroxyl.

  11. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  12. Lunar Plants

    Data.gov (United States)

    National Aeronautics and Space Administration — We present an open design for a first plant growth module on the Moon (LPX). The primary science goal of lunar habitat is to investigate germination and initial...

  13. THREE PLANETS ORBITING WOLF 1061

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D. J.; Wittenmyer, R. A.; Tinney, C. G.; Bentley, J. S.; Zhao, Jinglin, E-mail: duncan.wright@unsw.edu.au [Department of Astronomy and Australian Centre for Astrobiology, School of Physics, University of New South Wales, NSW 2052 (Australia)

    2016-02-01

    We use archival HARPS spectra to detect three planets orbiting the M3 dwarf Wolf 1061 (GJ 628). We detect a 1.36 M{sub ⊕} minimum-mass planet with an orbital period P = 4.888 days (Wolf 1061b), a 4.25 M{sub ⊕} minimum-mass planet with orbital period P = 17.867 days (Wolf 1061c), and a likely 5.21 M{sub ⊕} minimum-mass planet with orbital period P = 67.274 days (Wolf 1061d). All of the planets are of sufficiently low mass that they may be rocky in nature. The 17.867 day planet falls within the habitable zone for Wolf 1061 and the 67.274 day planet falls just outside the outer boundary of the habitable zone. There are no signs of activity observed in the bisector spans, cross-correlation FWHMs, calcium H and K indices, NaD indices, or Hα indices near the planetary periods. We use custom methods to generate a cross-correlation template tailored to the star. The resulting velocities do not suffer the strong annual variation observed in the HARPS DRS velocities. This differential technique should deliver better exploitation of the archival HARPS data for the detection of planets at extremely low amplitudes.

  14. Migration of accreting giant planets

    Science.gov (United States)

    Crida, A.; Bitsch, B.; Raibaldi, A.

    2016-12-01

    We present the results of 2D hydro simulations of giant planets in proto-planetary discs, which accrete gas at a more or less high rate. First, starting from a solid core of 20 Earth masses, we show that as soon as the runaway accretion of gas turns on, the planet is saved from type I migration : the gap opening mass is reached before the planet is lost into its host star. Furthermore, gas accretion helps opening the gap in low mass discs. Consequently, if the accretion rate is limited to the disc supply, then the planet is already inside a gap and in type II migration. We further show that the type II migration of a Jupiter mass planet actually depends on its accretion rate. Only when the accretion is high do we retrieve the classical picture where no gas crosses the gap and the planet follows the disc spreading. These results impact our understanding of planet migration and planet population synthesis models. The e-poster presenting these results in French can be found here: L'e-poster présentant ces résultats en français est disponible à cette adresse: http://sf2a.eu/semaine-sf2a/2016/posterpdfs/156_179_49.pdf.

  15. Lunar soil as shielding against space radiation

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. [Lawrence Berkeley National Laboratory, MS 83R0101, 1 Cyclotron Road, Berkeley, CA 94720 (United States)], E-mail: miller@lbl.gov; Taylor, L. [Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996 (United States); Zeitlin, C. [Southwest Research Institute, Boulder, CO 80302 (United States); Heilbronn, L. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Guetersloh, S. [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); DiGiuseppe, M. [Northrop Grumman Corporation, Bethpage, NY 11714 (United States); Iwata, Y.; Murakami, T. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2009-02-15

    We have measured the radiation transport and dose reduction properties of lunar soil with respect to selected heavy ion beams with charges and energies comparable to some components of the galactic cosmic radiation (GCR), using soil samples returned by the Apollo missions and several types of synthetic soil glasses and lunar soil simulants. The suitability for shielding studies of synthetic soil and soil simulants as surrogates for lunar soil was established, and the energy deposition as a function of depth for a particular heavy ion beam passing through a new type of lunar highland simulant was measured. A fragmentation and energy loss model was used to extend the results over a range of heavy ion charges and energies, including protons at solar particle event (SPE) energies. The measurements and model calculations indicate that a modest amount of lunar soil affords substantial protection against primary GCR nuclei and SPE, with only modest residual dose from surviving charged fragments of the heavy beams.

  16. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  17. International Deep Planet Survey, 317 stars to determine the wide-separated planet frequency

    Science.gov (United States)

    Galicher, R.; Marois, C.; Macintosh, B.; Zuckerman, B.; Song, I.; Barman, T.; Patience, J.

    2013-09-01

    Since 2000, more than 300 nearby young stars were observed for the International Deep Planet Survey with adaptive optics systems at Gemini (NIRI/NICI), Keck (Nirc2), and VLT (Naco). Massive young AF stars were included in our sample whereas they have generally been neglected in first generation surveys because the contrast and target distances are less favorable to image substellar companions. The most significant discovery of the campaign is the now well-known HR 8799 multi-planet system. This remarkable finding allows, for the first time, an estimate of the Jovians planet population at large separations (further than a few AUs) instead of deriving upper limits. During my presentation, I will present the survey showing images of multiple stars and planets. I will then propose a statistic study of the observed stars deriving constraints on the Jupiter-like planet frequency at large separations.

  18. PlanetVac: Sample Return with a Puff of Gas

    Science.gov (United States)

    Zacny, K.; Mueller, R.; Betts, B. H.

    2014-12-01

    PlanetVac is a regolith sample acquisition mission concept that uses compressed gas to blow material from the surface up a pneumatic tube and directly into a sample return container. The PlanetVac sampling device is built into the lander legs to eliminate cost and complexity associated with robotic arms and scoops. The pneumatic system can effectively capture fine and coarse regolith, including small pebbles. It is well suited for landed missions to Mars, asteroids, or the Moon. Because of the low pressures on all those bodies, the technique is extremely efficient. If losses are kept to minimum, 1 gram of compressed gas could efficiently lift 6000 grams of soil. To demonstrate this approach, the PlanetVac lander with four legs and two sampling tubes has been designed, integrated, and tested. Vacuum chamber testing was performed using two well-known planetary regolith simulants: Mars Mojave Simulant (MMS) and lunar regolith simulant JSC-1A. One of the two sampling systems was connected to a mockup of an earth return rocket while the second sampling system was connected to a lander deck mounted instrument (clear box for easy viewing). The tests included a drop from a height of approximately 50 cm onto the bed of regolith, deployment of sampling tubes into the regolith, pneumatic acquisition of sample into an instrument (sample container) and the rocket, and the launch of the rocket. The demonstration has been successful and can be viewed here: https://www.youtube.com/watch?v=DjJXvtQk6no. In most of the tests, 20 grams or more of sample was delivered to the 'instrument' and approximately 5 grams of regolith was delivered into a sampling chamber within the rocket. The gas lifting efficiency was calculated to be approximately 1000:1; that is 1 gram of gas lofted 1000 grams of regolith. Efficiencies in lower gravity environments are expected to be much higher. This successful, simple and lightweight sample capture demonstration paves the way to using such sampling system

  19. sciARTbooklet: Rachael Nee / Potato Powered Cosmos

    CERN Multimedia

    Hoch, Michael

    2017-01-01

    Rachael Nee rachaelnee@gmail.com graduated from MA Fine Art at Chelsea College of Arts, UK with Distinction in 2015, her art practice is concerned with energy, entropy and matter. www.rachaelnee.comart@CMS_sciARTbooklet: web page : http://artcms.web.cern.ch/artcms/ A tool to support students with their research on various scientific topics, encourage an understanding of the relevance of expression through the arts, a manual to recreate the artwork and enable students to define and develop their own artistic inquiry in the creation of new artworks. The art@CMS sciART booklet series directed by Dr. Michael Hoch, michael.hoch@cern.ch scientist and artist at CERN, in collaboration with the HST 2017 participants (S. Bellefontaine, S. Chaiwan, A. Djune Tchinda, R. O’Keeffe, G. Shumanova)

  20. Review of lunar telescope studies at MSFC

    Science.gov (United States)

    Hilchey, John D.; Nein, Max E.

    1993-09-01

    In the near future astronomers can take advantage of the lunar surface as the new 'high ground' from which to study the universe. Optical telescopes placed and operated on the lunar surface would be successors to NASA's Great Observatories. Four telescopes, ranging in aperture from a 16-m, IR/Vis/UV observatory down to a 1-m, UV 'transit' instrument, have been studied by the Lunar Telescope Working Group and the LUTE (lunar telescope ultraviolet experiment) Task Team of the Marshall Space Flight Center (MSFC). This paper presents conceptual designs of the telescopes, provides descriptions of the telescope subsystem options selected for each concept, and outlines the potential evolution of their science capabilities.

  1. Stratigraphy, Sequence, and Crater Populations of Lunar Impact Basins from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for the Late Heavy Bombardment

    Science.gov (United States)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    New measurements of the topography of the Moon from the Lunar Orbiter Laser Altimeter (LOLA)[1] provide an excellent base-map for analyzing the large crater population (D.20 km)of the lunar surface [2, 3]. We have recently used this data to calculate crater size-frequency distributions (CSFD) for 30 lunar impact basins, which have implications for their stratigraphy and sequence. These data provide an avenue for assessing the timing of the transitions between distinct crater populations characteristic of ancient and young lunar terrains, which has been linked to the late heavy bombardment (LHB). We also use LOLA data to re-examine relative stratigraphic relationships between key lunar basins.

  2. The Near Side : Regional Lunar Gravity Field Determination

    NARCIS (Netherlands)

    Goossens, S.

    2005-01-01

    In the past ten years the Moon has come fully back into focus, resulting in missions such as Clementine and Lunar Prospector. Data from these missions resulted in a boost in lunar gravity field modelling. Until this date, the lunar gravity field has mainly been expressed in a global representation,

  3. SciCloud: A Scientific Cloud and Management Platform for Smart City Data

    DEFF Research Database (Denmark)

    Liu, Xiufeng; Nielsen, Per Sieverts; Heller, Alfred

    2017-01-01

    private scientific cloud, SciCloud, to tackle these grand challenges. SciCloud provides on-demand computing resource provisions, a scalable data management platform and an in-place data analytics environment to support the scientific research using smart city data....

  4. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    Science.gov (United States)

    Strayer, Michael

    2005-01-01

    Good morning. Welcome to SciDAC 2005 and San Francisco. SciDAC is all about computational science and scientific discovery. In a large sense, computational science characterizes SciDAC and its intent is change. It transforms both our approach and our understanding of science. It opens new doors and crosses traditional boundaries while seeking discovery. In terms of twentieth century methodologies, computational science may be said to be transformational. There are a number of examples to this point. First are the sciences that encompass climate modeling. The application of computational science has in essence created the field of climate modeling. This community is now international in scope and has provided precision results that are challenging our understanding of our environment. A second example is that of lattice quantum chromodynamics. Lattice QCD, while adding precision and insight to our fundamental understanding of strong interaction dynamics, has transformed our approach to particle and nuclear science. The individual investigator approach has evolved to teams of scientists from different disciplines working side-by-side towards a common goal. SciDAC is also undergoing a transformation. This meeting is a prime example. Last year it was a small programmatic meeting tracking progress in SciDAC. This year, we have a major computational science meeting with a variety of disciplines and enabling technologies represented. SciDAC 2005 should position itself as a new corner stone for Computational Science and its impact on science. As we look to the immediate future, FY2006 will bring a new cycle to SciDAC. Most of the program elements of SciDAC will be re-competed in FY2006. The re-competition will involve new instruments for computational science, new approaches for collaboration, as well as new disciplines. There will be new opportunities for virtual experiments in carbon sequestration, fusion, and nuclear power and nuclear waste, as well as collaborations

  5. Neuropathic pain and SCI: Identification and treatment strategies in the 21st century.

    Science.gov (United States)

    Hatch, Maya N; Cushing, Timothy R; Carlson, Gregory D; Chang, Eric Y

    2018-01-15

    Pain is a common complication in patients following spinal cord injury (SCI), with studies citing up to 80% of patients reporting some form of pain. Neuropathic pain (NP) makes up a substantial percentage of all pain symptoms in patients with SCI and is often complex. Given the high prevalence of NP in patients with SCI, proper identification and treatment is imperative. Indeed, identification of pain subtypes is a vital step toward determining appropriate treatment. A variety of pharmacological and non-pharmacological treatments can be undertaken including antiepileptics, tricyclic antidepressants, opioids, transcranial direct current stimulation, and invasive surgical procedures. Despite all the available treatment options and advances in the field of SCI medicine, providing adequate treatment of NP after SCI continues to be challenging. It is therefore extremely important for clinicians to have a strong foundation in the identification of SCI NP, as well as an understanding of appropriate treatment options. Here, we highlight the definitions and classification tools available for NP identification, and discuss current treatment options. We hope that this will not only provide a better understanding of NP for physicians in various subspecialties, but that it will also help guide future research on this subject. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Institutional profile: the national Swedish academic drug discovery & development platform at SciLifeLab.

    Science.gov (United States)

    Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S

    2017-06-01

    The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.

  7. ''Fast track'' lunar NTR systems assessment for NASA's first lunar outpost and its evolvability to Mars

    International Nuclear Information System (INIS)

    Borowski, S.K.; Alexander, S.W.

    1993-01-01

    Integrated systems and missions studies are presented for an evolutionary lunar-to-Mars space transportion system (STS) based on nuclear thermal rocket (NTR) technology. A ''standardized'' set of engine and stage components are identified and used in a ''building block'' fashion to configure a variety of piloted and cargo, lunar and Mars vehicles. The reference NTR characteristics include a thrust of 50 thousand pounds force (klbf), specific impulse (I sp ) of 900 seconds, and an engine thrust-to-weight ratio of 4.3. For the National Aeronautics and Space Administration's (NASA) First Lunar Outpost (FLO) mission, an expendable NTR stage powered by two such engines can deliver ∼96 metric tonnes (t) to trans-lunar injection (TLI) conditions for an initial mass in low Earth orbit (IMLEO) of ∼198 t compared to 250 t for a cryogenic chemical system. The stage liquid hydrogen (LH 2 ) tank has a diameter, length, and capacity of 10 m, 14.5 m and 66 t, respectively. By extending the stage length and LH 2 capacity to ∼20 m and 96 t, a single launch Mars cargo vehicle could deliver to an elliptical Mars parking orbit a 63 t Mars excursion vehicle (MEV) with a 45 t surface payload. Three 50 klbf engines and the two standardized LH 2 tanks developed for the lunar and Mars cargo vehicles are used to configure the vehicles supporting piloted Mars missions as early as 2010. The ''modular'' NTR vehicle approach forms the basis for an efficient STS able to handle the needs of a wide spectrum of lunar and Mars missions

  8. Modeling lunar volcanic eruptions

    Science.gov (United States)

    Housley, R. M.

    1978-01-01

    Simple physical arguments are used to show that basaltic volcanos on different planetary bodies would fountain to the same height if the mole fraction of gas in the magma scaled with the acceleration of gravity. It is suggested that the actual eruption velocities and fountain heights are controlled by the velocities of sound in the two phase gas/liquid flows. These velocities are in turn determined by the gas contents in the magma. Predicted characteristics of Hawaiian volcanos are in excellent accord with observations. Assuming that the only gas in lunar volcano is the CO which would be produced if the observed Fe metal in lunar basalts resulted from graphite reduction, lunar volcanos would fountain vigorously, but not as spectacularly as their terrestrial counterparts. The volatile trace metals, halogens, and sulfur released would be transported over the entire moon by the transient atmosphere. Orange and black glass type pyroclastic materials would be transported in sufficient amounts to produce the observed dark mantle deposits.

  9. Gravitational Microlensing of Earth-mass Planets

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West

    It was only 17 years ago that the first planet outside of our own solar system was detected in the form of 51 Pegasi b. This planet is unlike anything in our own solar system. In fact, this planet was the first representative of a class of planets later known as “hot Jupiters”– gas giants......, i.e. it is much easier to detect high mass planets in close orbits. With these two methods it is hard to detect planets in an exo-solar system with a structure similar to our own solar system; specifically, it is hard to detect Earth-like planets in Earth-like orbits. It is presently unknown how...... common such planets are in our galaxy. There are a few other known methods for detecting exoplanets which have very different bias patterns. This thesis has been divided into two parts, treating two of these other methods. Part I is dedicated to the method of gravitational microlensing, a method...

  10. Rocky Planet Formation: Quick and Neat

    Science.gov (United States)

    Kenyon, Scott J.; Najita, Joan R.; Bromley, Benjamin C.

    2016-11-01

    We reconsider the commonly held assumption that warm debris disks are tracers of terrestrial planet formation. The high occurrence rate inferred for Earth-mass planets around mature solar-type stars based on exoplanet surveys (˜20%) stands in stark contrast to the low incidence rate (≤2%-3%) of warm dusty debris around solar-type stars during the expected epoch of terrestrial planet assembly (˜10 Myr). If Earth-mass planets at au distances are a common outcome of the planet formation process, this discrepancy suggests that rocky planet formation occurs more quickly and/or is much neater than traditionally believed, leaving behind little in the way of a dust signature. Alternatively, the incidence rate of terrestrial planets has been overestimated, or some previously unrecognized physical mechanism removes warm dust efficiently from the terrestrial planet region. A promising removal mechanism is gas drag in a residual gaseous disk with a surface density ≳10-5 of the minimum-mass solar nebula.

  11. Constructing large scale SCI-based processing systems by switch elements

    International Nuclear Information System (INIS)

    Wu, B.; Kristiansen, E.; Skaali, B.; Bogaerts, A.; Divia, R.; Mueller, H.

    1993-05-01

    The goal of this paper is to study some of the design criteria for the switch elements to form the interconnection of large scale SCI-based processing systems. The approved IEEE standard 1596 makes it possible to couple up to 64K nodes together. In order to connect thousands of nodes to construct large scale SCI-based processing systems, one has to interconnect these nodes by switch elements to form different topologies. A summary of the requirements and key points of interconnection networks and switches is presented. Two models of the SCI switch elements are proposed. The authors investigate several examples of systems constructed for 4-switches with simulations and the results are analyzed. Some issues and enhancements are discussed to provide the ideas behind the switch design that can improve performance and reduce latency. 29 refs., 11 figs., 3 tabs

  12. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    International Nuclear Information System (INIS)

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-01-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M ⊕ to 1 M J ) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  13. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    Energy Technology Data Exchange (ETDEWEB)

    Quintana, Elisa V. [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Lissauer, Jack J., E-mail: elisa.quintana@nasa.gov [Space Science and Astrobiology Division 245-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  14. KEPLER PLANETS: A TALE OF EVAPORATION

    International Nuclear Information System (INIS)

    Owen, James E.; Wu, Yanqin

    2013-01-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕ . Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and

  15. KEPLER PLANETS: A TALE OF EVAPORATION

    Energy Technology Data Exchange (ETDEWEB)

    Owen, James E. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  16. Using the Lunar Phases Concept Inventory to Investigate College Students' Pre-instructional Mental Models of Lunar Phases

    Science.gov (United States)

    Lindell, Rebecca S.; Sommer, Steven R.

    2004-09-01

    The Lunar Phases Concept Inventory (LPCI) is a twenty-item multiple-choice inventory developed to aid instructors in assessing the mental models their students utilize when answering questions concerning phases of the moon. Based upon an in-depth qualitative investigation of students' understanding of lunar phases, the LPCI was designed to take advantage of the innovative model analysis theory to probe the different dimensions of students' mental models of lunar phases. As part of a national field test, pre-instructional LPCI data was collected for over 750 students from multiple post-secondary institutions across the United States and Canada. Application of model analysis theory to this data set allowed researchers to probe the different mental models of lunar phases students across the country utilize prior to instruction. Results of this analysis display strikingly similar results for the different institutions, suggesting a potential underlying cognitive framework.

  17. Classifying Planets: Nature vs. Nurture

    Science.gov (United States)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  18. GeoSciML v3.0 - a significant upgrade of the CGI-IUGS geoscience data model

    Science.gov (United States)

    Raymond, O.; Duclaux, G.; Boisvert, E.; Cipolloni, C.; Cox, S.; Laxton, J.; Letourneau, F.; Richard, S.; Ritchie, A.; Sen, M.; Serrano, J.-J.; Simons, B.; Vuollo, J.

    2012-04-01

    GeoSciML version 3.0 (http://www.geosciml.org), released in late 2011, is the latest version of the CGI-IUGS* Interoperability Working Group geoscience data interchange standard. The new version is a significant upgrade and refactoring of GeoSciML v2 which was released in 2008. GeoSciML v3 has already been adopted by several major international interoperability initiatives, including OneGeology, the EU INSPIRE program, and the US Geoscience Information Network, as their standard data exchange format for geoscience data. GeoSciML v3 makes use of recently upgraded versions of several Open Geospatial Consortium (OGC) and ISO data transfer standards, including GML v3.2, SWE Common v2.0, and Observations and Measurements v2 (ISO 19156). The GeoSciML v3 data model has been refactored from a single large application schema with many packages, into a number of smaller, but related, application schema modules with individual namespaces. This refactoring allows the use and future development of modules of GeoSciML (eg; GeologicUnit, GeologicStructure, GeologicAge, Borehole) in smaller, more manageable units. As a result of this refactoring and the integration with new OGC and ISO standards, GeoSciML v3 is not backwardly compatible with previous GeoSciML versions. The scope of GeoSciML has been extended in version 3.0 to include new models for geomorphological data (a Geomorphology application schema), and for geological specimens, geochronological interpretations, and metadata for geochemical and geochronological analyses (a LaboratoryAnalysis-Specimen application schema). In addition, there is better support for borehole data, and the PhysicalProperties model now supports a wider range of petrophysical measurements. The previously used CGI_Value data type has been superseded in favour of externally governed data types provided by OGC's SWE Common v2 and GML v3.2 data standards. The GeoSciML v3 release includes worked examples of best practice in delivering geochemical

  19. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  20. Strength and compressibility of returned lunar soil.

    Science.gov (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  1. Measurement of the lunar neutron density profile

    International Nuclear Information System (INIS)

    Woolum, D.S.; Burnett, D.S.; Furst, M.; Weiss, J.R.

    1975-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g cm -2 depth below the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment (LNPE) using particle tracks produced by the 10 B (n,α) 7 Li reaction. Both the absolute magnitude and the depth profile of the neutron density are in good agreement with theoretical calculations by Lingenfelter, Canfield, and Hampel. However, relatively small deviations between experiment and theory in the effect of Cd absorption on the neutron density and in the relative 149 Sm to 157 Gd capture rates reported previously (Russ et al., 1972) imply that the true lunar 157 Gd capture rate is about one half of that calculated theoretically. (Auth.)

  2. Spinal Cord Injury Community Survey: Understanding the Needs of Canadians with SCI.

    Science.gov (United States)

    Noreau, Luc; Noonan, Vanessa K; Cobb, John; Leblond, Jean; Dumont, Frédéric S

    2014-01-01

    There is a lack of literature regarding service needs of people with SCI living in the community. Better assessment of expressed and met and unmet needs would help in the development of effective service delivery. From a national SCI Community Survey in Canada, the aim was to identify the most critical service needs of people living in the community at least 1 year post discharge from rehabilitation and the support they received to meet their needs. Data were collected mainly through a secure Web site and encompassed demographics, personal and household income, an SCI severity measure, and an SCI community needs measure containing information on 13 SCI-related needs. A total of 1,549 persons with SCI (traumatic lesion, n = 1,137; nontraumatic lesion, n = 412) across Canada completed the survey. Most critical needs for community integration were expressed by a substantial proportion of survey participants, but significantly more expressed and met needs were reported by persons with a traumatic than a nontraumatic lesion. Personal and environmental characteristics influenced the probability of expressing and meeting needs (eg, severity of injury and household income). Help and support to meet expressed needs were received from government agencies, community organizations, and friends or family. Better assessment of expressed and met or unmet needs for services remains a challenge but will serve as a tool to optimize service delivery in the community. Environmental barriers to services, particularly the process of getting needs met and associated costs, remain an issue that requires a reconsideration of some aspects of access to services.

  3. Planet formation in Binaries

    OpenAIRE

    Thebault, Ph.; Haghighipour, N.

    2014-01-01

    Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review her...

  4. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    Science.gov (United States)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  5. Gardening process of lunar surface layer inferred from the galactic cosmic-ray exposure ages of lunar samples

    International Nuclear Information System (INIS)

    Iriyama, Jun; Honda, Masatake.

    1979-01-01

    From the cosmic-ray exposure age data, (time scale 10 7 - 10 8 years), of the lunar surface materials, we discuss the gardening process of the lunar surface layer caused by the meteoroid impact cratering. At steady state, it is calculated that, in the region within 10 - 50 m of the surface, a mixing rate of 10 -4 to 10 -5 mm/yr is necessary to match the exposure ages. Observed exposure ages of the lunar samples could be explained by the gardening effect calculated using a crater formation rate which is slightly modified from the current crater population data. (author)

  6. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION

    Directory of Open Access Journals (Sweden)

    M. Martini

    2013-12-01

    Full Text Available Since the 1970s Lunar Laser Ranging (LLR to the Apollo Cube Corner Retroreflector (CCR arrays (developed by the University of Maryland, UMD supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10−3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests, in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF and created a new industry-standard test procedure (SCF-Test to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP and the

  7. Moonstruck how lunar cycles affect life

    CERN Document Server

    Naylor, Ernest

    2015-01-01

    Throughout history, the influence of the full Moon on humans and animals has featured in folklore and myths. Yet it has become increasingly apparent that many organisms really are influenced indirectly, and in some cases directly, by the lunar cycle. Breeding behaviour among some marine animals has been demonstrated to be controlled by internal circalunar biological clocks, to the point where lunar-daily and lunar-monthly patterns of Moon-generated tides are embedded in their genes. Yet, intriguingly, Moon-related behaviours are also found in dry land and fresh water species living far beyond the influence of any tides. In Moonstruck, Ernest Naylor dismisses the myths concerning the influence of the Moon, but shows through a range of fascinating examples the remarkable real effects that we are now finding through science. He suggests that since the advent of evolution on Earth, which occurred shortly after the formation of the Moon, animals evolved adaptations to the lunar cycle, and considers whether, if Moo...

  8. GeoSciML version 3: A GML application for geologic information

    Science.gov (United States)

    International Union of Geological Sciences., I. C.; Richard, S. M.

    2011-12-01

    After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred

  9. Study Protocol of the International Spinal Cord Injury (InSCI) Community Survey

    NARCIS (Netherlands)

    Gross-Hemmi, Mirja H.; Post, Marcel W. M.; Ehrmann, Cristina; Fekete, Christine; Hasnan, Nazirah; Middleton, James W.; Reinhardt, Jan D.; Strom, Vegard; Stucki, Gerold

    Objective: The Learning Health System for Spinal Cord Injury (LHS-SCI) is an initiative embedded in the World Health Organization's (WHO's) Global Disability Plan and requires the statistical collection of data on the lived experience of persons with SCI to consequently formulate recommendations and

  10. Planets in a Room

    Science.gov (United States)

    Giacomini, l.; Aloisi, F.; De Angelis, I.

    2017-09-01

    Teaching planetary science using a spherical projector to show the planets' surfaces is a very effective but usually very expensive idea. Whatsmore, it usually assumes the availability of a dedicated space and a trained user. "Planets in a room" is a prototypal low cost version of a small, spherical projector that teachers, museum, planetary scientists and other individuals can easily build and use on their own, to show and teach the planets The project of "Planets in a Room" was made by the italian non-profit association Speak Science with the collaboration of INAF-IAPS of Rome and the Roma Tre University (Dipartimento di Matematica e Fisica). This proposal was funded by the Europlanet Outreach Funding Scheme in 2016. "Planets in a room" will be presented during EPSC 2017 to give birth to the second phase of the project, when the outreach and research community will be involved and schools from all over Europe will be invited to participate with the aim of bringing planetary science to a larger audience.

  11. Living matter: the "lunar eclipse" phenomena.

    Science.gov (United States)

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  12. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  13. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    OpenAIRE

    Ding, Chunyu; Su, Yan; Xing, Shuguo; Dai, Shun; Xiao, Yuan; Feng, Jianqing; Liu, Danqing; Li, Chunlai

    2017-01-01

    In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to co...

  14. The properties of the lunar regolith at Chang'e-3 landing site: A study based on LPR data

    Science.gov (United States)

    Feng, J.; Su, Y.; Xing, S.; Ding, C.; Li, C.

    2015-12-01

    In situ sampling from surface is difficult in the exploration of planets and sometimes radar sensing is a better choice. The properties of the surface material such as permittivity, density and depth can be obtained by a surface penetrating radar. The Chang'e-3 (CE-3) landed in the northern Mare Imbrium and a Lunar Penetrating Radar (LPR) is carried on the Yutu rover to detect the shallow structure of the lunar crust and the properties of the lunar regolith, which will give us a close look at the lunar subsurface. We process the radar data in a way which consist two steps: the regular preprocessing step and migration step. The preprocessing part includes zero time correction, de-wow, gain compensation, DC removal, geometric positioning. Then we combine all radar data obtained at the time the rover was moving, and use FIR filter to reduce the noise in the radar image with a pass band frequency range 200MHz-600MHz. A normal radar image is obtained after the preprocessing step. Using a nonlinear least squares fitting method, we fit the most hyperbolas in the radar image which are caused by the buried objects or rocks in the regolith and estimate the EM wave propagation velocity and the permittivity of the regolith. For there is a fixed mathematical relationship between dielectric constant and density, the density profile of the lunar regolith is also calculated. It seems that the permittivity and density at the landing site is larger than we thought before. Finally with a model of variable velocities, we apply the Kirchhoff migration method widely used in the seismology to transform the the unfocused space-time LPR image to a focused one showing the object's (most are stones) true location and size. From the migrated image, we find that the regolith depth in the landing site is smaller than previous study and the stone content rises rapidly with depth. Our study suggests that the landing site is a young region and the reworked history of the surface is short, which is

  15. Current status of SCI and SCIE publications in the field of radiation oncology in Korea

    International Nuclear Information System (INIS)

    Kang, Jin Oh

    2007-01-01

    To investigate current status of SCI (Science Citation Index) and SCI Expanded publication of Korean radiation oncologists. Published SCI and SCIE articles the conditions of first author's address as 'Korea' and 'Radiation Oncology' or 'Therapeutic Radiology' were searched from Pubmed database. From 1990 to 2006, 146 SCI articles and 32 SCIE articles were published. Most frequently published journal was international Journal of Radiation Oncology Biology Physics, where 56 articles were found. Articles with 30 or more citations were only five and 10 or more citations were 26. Yonsei University, which had 57 published articles, was the top among 19 affiliations which had one or more SCI and SCIE articles. Authors with five or more articles were 9 and Seong J. of Yonsei University was the top with 19 articles. The investigations showed disappointing results. The members of Korean Society of Radiation Oncologists must consider a strategy to increase SCI and SCIE publications

  16. Targeting Translational Successes through CANSORT-SCI: Using Pet Dogs To Identify Effective Treatments for Spinal Cord Injury.

    Science.gov (United States)

    Moore, Sarah A; Granger, Nicolas; Olby, Natasha J; Spitzbarth, Ingo; Jeffery, Nick D; Tipold, Andrea; Nout-Lomas, Yvette S; da Costa, Ronaldo C; Stein, Veronika M; Noble-Haeusslein, Linda J; Blight, Andrew R; Grossman, Robert G; Basso, D Michele; Levine, Jonathan M

    2017-06-15

    Translation of therapeutic interventions for spinal cord injury (SCI) from laboratory to clinic has been historically challenging, highlighting the need for robust models of injury that more closely mirror the human condition. The high prevalence of acute, naturally occurring SCI in pet dogs provides a unique opportunity to evaluate expeditiously promising interventions in a population of animals that receive diagnoses and treatment clinically in a manner similar to persons with SCI, while adhering to National Institutes of Health guidelines for scientific rigor and transparent reporting. In addition, pet dogs with chronic paralysis are often maintained long-term by their owners, offering a similarly unique population for study of chronic SCI. Despite this, only a small number of studies have used the clinical dog model of SCI. The Canine Spinal Cord Injury Consortium (CANSORT-SCI) was recently established by a group of veterinarians and basic science researchers to promote the value of the canine clinical model of SCI. The CANSORT-SCI group held an inaugural meeting November 20 and 21, 2015 to evaluate opportunities and challenges to the use of pet dogs in SCI research. Key challenges identified included lack of familiarity with the model among nonveterinary scientists and questions about how and where in the translational process the canine clinical model would be most valuable. In light of these, we review the natural history, outcome, and available assessment tools associated with canine clinical SCI with emphasis on their relevance to human SCI and the translational process.

  17. COMPASS Final Report: Lunar Communications Terminal (LCT)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2010-01-01

    The Lunar Communications Terminal (LCT) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session designed a terminal to provide communications between lunar South Pole assets, communications relay to/from these assets through an orbiting Lunar Relay Satellite (LRS) and navigation support. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The Terminal consists of a pallet containing the communications and avionics equipment, surrounded by the thermal control system (radiator), an attached, deployable 10-m tower, upon which were mounted locally broadcasting and receiving modems and a deployable 1 m diameter Ka/S band dish which provides relay communications with the lunar relay satellites and, as a backup, Earth when it is in view. All power was assumed to come from the lunar outpost Habitat. Three LCT design options were explored: a stand-alone LCT servicing the manned outpost, an integrated LCT (into the Habitat or Lunar Lander), and a mini-LCT which provides a reduced level of communication for primarily robotic areas dealing as in situ resource utilization (ISRU) and remote science. Where possible all the designs assumed single fault tolerance. Significant mass savings were found when integrating the LCT into the Habitat or Lander but increases in costs occurred depending upon the level of man rating required for such designs.

  18. Lunar ranging instrument for Chandrayaan-1

    Indian Academy of Sciences (India)

    ... Committee on Scientific Values · Project Lifescape · Scientific Data of Public Interest ... Lunar Laser Ranging Instrument (LLRI)proposed for the first Indian lunar ... field by precisely measuring the altitude from a polar orbit around the Moon. ... Laboratory for Electro-Optics Systems, Indian Space Research Organization ...

  19. Trapping planets in an evolving protoplanetary disk: preferred time, locations and planet mass

    OpenAIRE

    Baillié, Kévin; Charnoz, Sébastien; Pantin, Éric

    2016-01-01

    Planet traps are necessary to prevent forming planets from falling onto their host star by type I migration. Surface mass density and temperature gradient irregularities favor the apparition of traps and deserts. Such features are found at the dust sublimation lines and heat transition barriers. We study how planets may remain trapped or escape as they grow and as the disk evolves. We model the temporal viscous evolution of a protoplanetary disk by coupling its dynamics, thermodynamics, geome...

  20. Useful Method To Optimize The Rehabilitation Effort At A SCI Rehabilitation Centre

    DEFF Research Database (Denmark)

    Steensgaard, Randi; Dahl Hoffmann, Dorte

    “Useful Method To Optimize The Rehabilitation Effort At A SCI Rehabilitation Centre” The Nordic Spinal Cord Society (NoSCoS) Meeting, Trondheim......“Useful Method To Optimize The Rehabilitation Effort At A SCI Rehabilitation Centre” The Nordic Spinal Cord Society (NoSCoS) Meeting, Trondheim...

  1. SciServer: An Online Collaborative Environment for Big Data in Research and Education

    Science.gov (United States)

    Raddick, Jordan; Souter, Barbara; Lemson, Gerard; Taghizadeh-Popp, Manuchehr

    2017-01-01

    For the past year, SciServer Compute (http://compute.sciserver.org) has offered access to big data resources running within server-side Docker containers. Compute has allowed thousands of researchers to bring advanced analysis to big datasets like the Sloan Digital Sky Survey and others, while keeping the analysis close to the data for better performance and easier read/write access. SciServer Compute is just one part of the SciServer system being developed at Johns Hopkins University, which provides an easy-to-use collaborative research environment for astronomy and many other sciences.SciServer enables these collaborative research strategies using Jupyter notebooks, in which users can write their own Python and R scripts and execute them on the same server as the data. We have written special-purpose libraries for querying, reading, and writing data. Intermediate results can be stored in large scratch space (hundreds of TBs) and analyzed directly from within Python or R with state-of-the-art visualization and machine learning libraries. Users can store science-ready results in their permanent allocation on SciDrive, a Dropbox-like system for sharing and publishing files.SciServer Compute’s virtual research environment has grown with the addition of task management and access control functions, allowing collaborators to share both data and analysis scripts securely across the world. These features also open up new possibilities for education, allowing instructors to share datasets with students and students to write analysis scripts to share with their instructors. We are leveraging these features into a new system called “SciServer Courseware,” which will allow instructors to share assignments with their students, allowing students to engage with big data in new ways.SciServer has also expanded to include more datasets beyond the Sloan Digital Sky Survey. A part of that growth has been the addition of the SkyQuery component, which allows for simple, fast

  2. Detecting Volatiles Deep in the Lunar Regolith

    Science.gov (United States)

    Crotts, A.; Heggy, E.; Ciarletti, V.; Colaprete, A.; Moghaddam, M.; Siegler, M. A.

    2015-12-01

    There is increasing theoretical and empirical evidence, from the Apollo era and after, of volatiles deep in the lunar interior, in the crust and deeper, both hydrogen-rich and otherwise. This comes in the form of fire fountain samples from Apollo 15 and Apollo 17, of hydrated minerals excavated by impacts which reach the base of the lunar crust e.g., crater Bullialdus, of hydration of apatite and other minerals, as well as predictions of a water-concentrated layer along with the KREEP material at the base of the lunar crust. We discuss how the presence of these volatiles might be directly explored. In particular water vapor molecules percolating to the surface through lunar regolith might be expected to stick and freeze into the regolith, at depths of several meters depending on the regolith temperature profile, porosity and particle size distribution, quantities that are not well known beyond two meters depth. To explore these depths in the regolith we use and propose several modes of penetrating radar. We will present results using the SELENE/Kaguya's Lunar Sounding RADAR (LSR) to probe the bulk volatile dielectric and loss structure properties of the regolith in various locations, both within permanently shadowed regions (PSRs) and without, and within neutron suppression regions (NSRs) as traced by epithermal neutrons and without. We also propose installation of ground penetrating RADAR (GPR) on a roving lunar platform that should be able to probe between 0.2 and 1.6 GHz, which will provide a probe of the entire depth of the lunar regolith as well as a high-resolution (about 4 cm FWHM) probe of the upper meter or two of the lunar soil, where other probes of volatiles such as epithermal neutron absorption or drilling might be employed. We discuss predictions for what kinds of volatile density profiles might be distinguished in this way, and whether these will be detected from orbit as NSRs, whether these must be restricted to PSRs, and how these might appear in

  3. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    Energy Technology Data Exchange (ETDEWEB)

    Wittenmyer, Robert A.; Tinney, C. G. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Liang [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Liu, Fan [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Horner, Jonathan [Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052 (Australia); Endl, Michael [McDonald Observatory, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Johnson, John Asher [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Carter, B. D., E-mail: rob@unsw.edu.au [Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia)

    2015-02-10

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M{sub Jup}. These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M{sub Jup} and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet.

  4. THE PAN-PACIFIC PLANET SEARCH. II. CONFIRMATION OF A TWO-PLANET SYSTEM AROUND HD 121056

    International Nuclear Information System (INIS)

    Wittenmyer, Robert A.; Tinney, C. G.; Wang, Liang; Liu, Fan; Horner, Jonathan; Endl, Michael; Johnson, John Asher; Carter, B. D.

    2015-01-01

    Precise radial velocities from the Anglo-Australian Telescope (AAT) confirm the presence of a rare short-period planet around the K0 giant HD 121056. An independent two-planet solution using the AAT data shows that the inner planet has P = 89.1 ± 0.1 days, and m sin i = 1.35 ± 0.17 M Jup . These data also confirm the planetary nature of the outer companion, with m sin i = 3.9 ± 0.6 M Jup and a = 2.96 ± 0.16 AU. HD 121056 is the most-evolved star to host a confirmed multiple-planet system, and is a valuable example of a giant star hosting both a short-period and a long-period planet

  5. Introduction of JAXA Lunar and Planetary Exploration Data Analysis Group: Landing Site Analysis for Future Lunar Polar Exploration Missions

    Science.gov (United States)

    Otake, H.; Ohtake, M.; Ishihara, Y.; Masuda, K.; Sato, H.; Inoue, H.; Yamamoto, M.; Hoshino, T.; Wakabayashi, S.; Hashimoto, T.

    2018-04-01

    JAXA established JAXA Lunar and Planetary Exploration Data Analysis Group (JLPEDA) at 2016. Our group has been analyzing lunar and planetary data for various missions. Here, we introduce one of our activities.

  6. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    Science.gov (United States)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  7. Armstrong practices in Lunar Module simulator

    Science.gov (United States)

    1969-01-01

    Neil A. Armstrong, Commander for the Apollo 11 Moon-landing mission, practices for the historic event in a Lunar Module simulator in the Flight Crew Training building at KSC. Accompanying Armstrong on the Moon flight will be Command Module Pilot Michael Collins and Lunar Module Pilot Edwin E. Aldrin Jr.

  8. Trajectory Design for the Lunar Polar Hydrogen Mapper Mission

    Science.gov (United States)

    Genova, Anthony L.; Dunham, David W.

    2017-01-01

    The presented trajectory was designed for the Lunar Polar Hydrogen Mapper (LunaH-Map) 6U CubeSat, which was awarded a ride on NASAs Space Launch System (SLS) with Exploration Mission 1 (EM-1) via NASAs 2015 SIMPLEX proposal call. After deployment from EM-1s upper stage (which is planned to enter heliocentric space via a lunar flyby), the LunaH-Map CubeSat will alter its trajectory via its low-thrust ion engine to target a lunar flyby that yields a Sun-Earth-Moon weak stability boundary transfer to set up a ballistic lunar capture. Finally, the orbit energy is lowered to reach the required quasi-frozen science orbit with periselene above the lunar south pole.

  9. Constraining the volatile budget of the lunar interior

    Science.gov (United States)

    Potts, N. J.; Bromiley, G. D.

    2017-12-01

    Measurements of volatiles (F, Cl, S, H2O) in a range of lunar samples confirm the presence of volatile material in lunar magmas. It remains unknown, however, where this volatile material is stored and when it was delivered to the Moon. On Earth, point defects within mantle olivine, and its high-pressure polymorphs, are thought to be the largest reservoir of volatile material. However, as volatiles have been cycled into and out of the Earth's mantle throughout geological time, via subduction and volcanism, this masks any original volatile signatures. As the Moon has no plate tectonics, it is expected that any volatile material present in the deep lunar interior would have been inherited during accretion and differentiation, providing insight into the delivery of volatiles to the early Earth-Moon system. Our aim was, therefore, to test the volatile storage capacity of the deep lunar mantle and determine mineral/melt partitioning for key volatiles. Experiments were performed in a primitive lunar mantle composition and run at relevant T, P, and at fO2 below the IW buffer. Experiments replicated the initial stages of LMO solidification with either olivine + melt, olivine + pyroxene + melt, or pyroxene + melt as the only phases present. Mineral-melt partition coefficients (Dx) derived for volatile material (F, Cl, S, H2O) vary significantly compared to those derived for terrestrial conditions. An order of magnitude more H2O was found to partition into lunar olivine compared to the terrestrial upper mantle. DF derived for lunar olivine are comparable to the highest terrestrial derived values whilst no Cl was found to partition into lunar olivine under these conditions. Furthermore, an inverse trend between DF and DOH hints towards coupled-substitution mechanisms between H and F under low-fO2/lunar bulk composition. These results suggest that if volatile material was present in the LMO a significant proportion could be partitioned into the lower lunar mantle. The

  10. Lunar Cycles, Catchability of Penaeid Shrimps and Implications for ...

    African Journals Online (AJOL)

    Keywords: Penaeidae, fishing effort, lunar phases, profitability, spatial closures. ... closures during periods of the lunar cycle with predictably low catch-per- ... each lunar phase and month using two-way ANOVA. ... shrimps, for which the CPUE declined throughout the fishing season ... (Garcia, 1988) and abundance of.

  11. Extrasolar Planets in the Classroom

    Science.gov (United States)

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  12. CE-4 Mission and Future Journey to Lunar

    Science.gov (United States)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  13. Not just quantity: gluteus maximus muscle characteristics in able-bodied and SCI individuals--implications for tissue viability.

    Science.gov (United States)

    Wu, Gary A; Bogie, Kath M

    2013-08-01

    Some individuals with spinal cord injury (SCI) remain pressure ulcer (PU) free whilst others experience a recurring cycle of tissue breakdown. Detailed analysis of gluteal muscle characteristics may provide insights to local tissue viability variability. The study hypothesis was that SCI individuals have altered muscle composition compared to able-bodied (AB). Ten AB and ten SCI received a supine pelvic CT scan, with contrast. Cross-sectional area (CSA) and overall muscle volume were derived using image analysis. Gluteal muscle tissue type was classified at the S2/S3 sacral vertebrae midpoint, the superior greater trochanters margin (GT) and the inferior ischial tuberosities margin (IT) using the linear transformation Hounsfield Unit scale. SCI gluteal CSA was less than for AB throughout the muscle, with the greatest relative atrophy at the IT (48%). Average AB gluteal volume was nearly double SCI. Eight SCI had over 20% infiltrative adipose tissue, three with over 50%. SCI gluteal CSA and intramuscular fat infiltration were significantly negatively correlated (p SCI IT axial slices showed less lean muscle and higher intramuscular fat infiltration than more proximally (p SCI gluteal muscle characteristics were indicative of impaired tissue viability. SCI disuse muscle atrophy was anticipated; the analytic approach further indicated that intramuscular atrophy was not uniform. SCI muscle composition showed increased proportions of both low density muscle and adipose tissue. CT scan with contrast is effective for gluteal muscle characterization. This assessment technique may contribute to determination of personalized risk for PU development and other secondary complications. Published by Elsevier Ltd.

  14. Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot.

    Science.gov (United States)

    Takeuchi, Yuki; Kabutomori, Ryo; Yamauchi, Chihiro; Miyagi, Hitomi; Takemura, Akihiro; Okano, Keiko; Okano, Toshiyuki

    2018-04-18

    Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.

  15. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site

    Directory of Open Access Journals (Sweden)

    Chunyu Ding

    2017-01-01

    Full Text Available In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar data. In this paper, the random medium theory and Apollo drilling core data are used to construct a modeling method based on discrete heterogeneous random media, and the simulation data are processed and collected by the electromagnetic numerical method FDTD (finite-difference time domain. When comparing the LPR data with the simulated data, the heterogeneous random medium model is more consistent with the actual distribution of the media in the lunar regolith layer. It is indicated that the interior structure of the lunar regolith layer at the landing site is not a pure lunar regolith medium but rather a regolith-rock mixture, with rocks of different sizes and shapes. Finally, several reasons are given to explain the formation of the geological structures of the lunar regolith layer at the Chang’E 3 landing site, as well as the possible geological stratification structure.

  16. Extrasolar planets searches today and tomorrow

    CERN Multimedia

    2000-01-01

    So far the searches for extrasolar planets have found 40 planetary companions orbiting around nearby stars. In December 1999 a transit has been observed for one of them, providing the first independent confirmation of the reality of close-in planets as well as a measurement of its density. The techniques used to detect planets are limited and the detection threshold is biased but a first picture of the planet diversity and distribution emerges. Results of the search for extra-solar planets and their impacts on planetary formation will be reviewed. Future instruments are foreseen to detect Earth-like planets and possible signatures of organic activity. An overview of these future projects will be presented and more particularly the Darwin-IRSI mission studied by ESA for Horizon 2015.

  17. LADEE UVS Observations of Atoms and Dust in the Lunar Tail

    Science.gov (United States)

    Wooden, Diane H.; Colaprete, Anthony; Cook, Amanda M.; Shirley, Mark H.; Vargo, Kara E.; Elphic, Richard C.; Stubbs, Timothy J.; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) was a lunar orbiter launched in September 2013 that investigated the composition and temporal variation of the tenuous lunar exosphere and dust environment. A major goal of the mission was to characterize the dust exosphere prior to future lunar exploration activities, which may alter the lunar environment. The Ultraviolet/Visible Spectrometer (UVS) onboard LADEE addresses this goal, utilizing two sets of optics: a limbviewing telescope, and a solar-viewing telescope. We report on spectroscopic (approximately 280 - 820 nm) observations viewing down the lunar wake or along the 'lunar tail' from lunar orbit. Prior groundbased studies have observed the emission from neutral sodium atoms extended along the lunar tail, so often this region is referred to as the lunar sodium tail. UVS measurements were made on the dark side of the moon, with the UVS limb-viewing telescope pointed outward in the direction of the Moon's wake (almost anti-sun), during different lunar phases. These UVS observation activities sample a long column and allow the characterization of scattered light from dust and emission lines from atoms in the lunar tail. Observations in this UVS configuration show the largest excess of scattered blue light in our data set, indicative of the presence of small dust grains in the tail. Once lofted, nanoparticles may become charged and picked up by the solar wind, similar to the phenomena witnessed above Enceladus's northern hemisphere or by the STEREO/WAVES instrument while close to Earth's orbit. The UVS data show that small dust grains as well as atoms become entrained in the lunar tail.

  18. Design of guidance laws for lunar pinpoint soft landing

    NARCIS (Netherlands)

    Guo, J.; Han, C.

    2009-01-01

    Future lunar missions ask for the capability to perform precise Guidance, Navigation and Control (GNC) to the selected landing sites on the lunar surface. This paper studies the guidance issues for the lunar pinpoint soft landing problem. The primary contribution of this paper is the design of

  19. Studies in matter antimatter separation and in the origin of lunar magnetism

    Science.gov (United States)

    Barker, W. A.; Greeley, R.; Parkin, C.; Aggarwal, H.; Schultz, P.

    1975-01-01

    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed.

  20. Detection of Abnormal Muscle Activations during Walking Following Spinal Cord Injury (SCI)

    Science.gov (United States)

    Wang, Ping; Low, K. H.; McGregor, Alison H.; Tow, Adela

    2013-01-01

    In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI…