WorldWideScience

Sample records for lumped element model

  1. Application of Mass Lumped Higher Order Finite Elements

    International Nuclear Information System (INIS)

    J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau

    2005-01-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied

  2. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    International Nuclear Information System (INIS)

    Silva, Alice Cunha da; Su, Jian

    2013-01-01

    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  3. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    Science.gov (United States)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  4. A Calibrated Lumped Element Model for the Prediction of PSJ Actuator Efficiency Performance

    Directory of Open Access Journals (Sweden)

    Matteo Chiatto

    2018-03-01

    Full Text Available Among the various active flow control techniques, Plasma Synthetic Jet (PSJ actuators, or Sparkjets, represent a very promising technology, especially because of their high velocities and short response times. A practical tool, employed for design and manufacturing purposes, consists of the definition of a low-order model, lumped element model (LEM, which is able to predict the dynamic response of the actuator in a relatively quick way and with reasonable fidelity and accuracy. After a brief description of an innovative lumped model, this work faces the experimental investigation of a home-designed and manufactured PSJ actuator, for different frequencies and energy discharges. Particular attention has been taken in the power supply system design. A specific home-made Pitot tube has allowed the detection of velocity profiles along the jet radial direction, for various energy discharges, as well as the tuning of the lumped model with experimental data, where the total device efficiency has been assumed as a fitting parameter. The best fitting value not only contains information on the actual device efficiency, but includes some modeling and experimental uncertainties, related also to the used measurement technique.

  5. Analysis and design of lumped element Marchand baluns

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Krozer, Viktor

    2008-01-01

    In this paper a novel design procedure for lumped element Marchand baluns is proposed. An analysis is performed on the balun structure in order to determine the conditions for ideal balun performance in terms of the lumped element values. The analysis is verified by two broadband designs centered...... around 22.75 GHz and differing only in terms of their impedance transformation ratio. EM simulation results on our proposed lumped element Marchand balun structure predicts an insertion loss of 4 dB and return loss of 40 dB at the design frequency of 22.75 GHz. The amplitude and phase imbalance...

  6. Drop-on-Demand Inkjet Printhead Performance Enhancement by Dynamic Lumped Element Modeling for Printable Electronics Fabrication

    Directory of Open Access Journals (Sweden)

    Maowei He

    2014-01-01

    Full Text Available The major challenge in printable electronics fabrication is the print resolution and accuracy. In this paper, the dynamic lumped element model (DLEM is proposed to directly simulate an inkjet-printed nanosilver droplet formation process and used for predictively controlling jetting characteristics. The static lumped element model (LEM previously developed by the authors is extended to dynamic model with time-varying equivalent circuits to characterize nonlinear behaviors of piezoelectric printhead. The model is then used to investigate how performance of the piezoelectric ceramic actuator influences jetting characteristics of nanosilver ink. Finally, the proposed DLEM is applied to predict the printing quality using nanosilver ink. Experimental results show that, compared to other analytic models, the proposed DLEM has a simpler structure with the sufficient simulation and prediction accuracy.

  7. Lumped-parameter models

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    A lumped-parameter model represents the frequency dependent soil-structure interaction of a massless foundation placed on or embedded into an unbounded soil domain. In this technical report the steps of establishing a lumped-parameter model are presented. Following sections are included in this report: Static and dynamic formulation, Simple lumped-parameter models and Advanced lumped-parameter models. (au)

  8. Lumped Mass Modeling for Local-Mode-Suppressed Element Connectivity

    DEFF Research Database (Denmark)

    Joung, Young Soo; Yoon, Gil Ho; Kim, Yoon Young

    2005-01-01

    connectivity parameterization (ECP) is employed. On the way to the ultimate crashworthy structure optimization, we are now developing a local mode-free topology optimization formulation that can be implemented in the ECP method. In fact, the local mode-freeing strategy developed here can be also used directly...... experiencing large structural changes, appears to be still poor. In ECP, the nodes of the domain-discretizing elements are connected by zero-length one-dimensional elastic links having varying stiffness. For computational efficiency, every elastic link is now assumed to have two lumped masses at its ends....... Choosing appropriate penalization functions for lumped mass and link stiffness is important for local mode-free results. However, unless the objective and constraint functions are carefully selected, it is difficult to obtain clear black-and-white results. It is shown that the present formulation is also...

  9. lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites.

    Directory of Open Access Journals (Sweden)

    Meric Ataman

    2017-07-01

    Full Text Available In the post-genomic era, Genome-scale metabolic networks (GEMs have emerged as invaluable tools to understand metabolic capabilities of organisms. Different parts of these metabolic networks are defined as subsystems/pathways, which are sets of functional roles to implement a specific biological process or structural complex, such as glycolysis and TCA cycle. Subsystem/pathway definition is also employed to delineate the biosynthetic routes that produce biomass building blocks. In databases, such as MetaCyc and SEED, these representations are composed of linear routes from precursors to target biomass building blocks. However, this approach cannot capture the nested, complex nature of GEMs. Here we implemented an algorithm, lumpGEM, which generates biosynthetic subnetworks composed of reactions that can synthesize a target metabolite from a set of defined core precursor metabolites. lumpGEM captures balanced subnetworks, which account for the fate of all metabolites along the synthesis routes, thus encapsulating reactions from various subsystems/pathways to balance these metabolites in the metabolic network. Moreover, lumpGEM collapses these subnetworks into elementally balanced lumped reactions that specify the cost of all precursor metabolites and cofactors. It also generates alternative subnetworks and lumped reactions for the same metabolite, accounting for the flexibility of organisms. lumpGEM is applicable to any GEM and any target metabolite defined in the network. Lumped reactions generated by lumpGEM can be also used to generate properly balanced reduced core metabolic models.

  10. Lumped-parameter Model of a Bucket Foundation

    DEFF Research Database (Denmark)

    Andersen, Lars; Ibsen, Lars Bo; Liingaard, Morten

    2009-01-01

    efficient model that can be applied in aero-elastic codes for fast evaluation of the dynamic structural response of wind turbines. The target solutions, utilised for calibration of the lumped-parameter models, are obtained by a coupled finite-element/boundaryelement scheme in the frequency domain......, and the quality of the models are tested in the time and frequency domains. It is found that precise results are achieved by lumped-parameter models with two to four internal degrees of freedom per displacement or rotation of the foundation. Further, coupling between the horizontal sliding and rocking cannot...

  11. Improved lumped parameter for annular fuel element thermohydraulic analysis

    International Nuclear Information System (INIS)

    Duarte, Juliana Pacheco; Su, Jian; Alvim, Antonio Carlos Marques

    2011-01-01

    Annular fuel elements have been intensively studied for the purpose of increasing power density in light water reactors (LWR). This paper presents an improved lumped parameter model for the dynamics of a LWR core with annular fuel elements, composed of three sub-models: the fuel dynamics model, the neutronics model, and the coolant energy balance model. The transient heat conduction in radial direction is analyzed through an improved lumped parameter formulation. The Hermite approximation for integration is used to obtain the average temperature of the fuel and cladding and also to obtain the average heat flux. The volumetric heat generation in fuel rods was obtained with the point kinetics equations with six delayed neutron groups. The equations for average temperature of fuel and cladding are solved along with the point kinetic equations, assuming linear reactivity and coolant temperature in cases of reactivity insertion. The analytical development of the model and the numeric solution of the ordinary differential equation system were obtained by using Mathematica 7.0. The dynamic behaviors for average temperatures of fuel, cladding and coolant in transient events as well as the reactor power were analyzed. (author)

  12. Fundamentals of electromagnetics 1 internal behavior of lumped elements

    CERN Document Server

    Voltmer, David

    2007-01-01

    This book is the first of two volumes which have been created to provide an understanding of the basic principles and applications of electromagnetic fields for electrical engineering students. Fundamentals of Electromagnetics Vol 1: Internal Behavior of Lumped Elements focuses upon the DC and low-frequency behavior of electromagnetic fields within lumped elements. The properties of electromagnetic fields provide the basis for predicting the terminal characteristics of resistors, capacitors, and inductors. The properties of magnetic circuits are included as well. For slightly higher frequencie

  13. Rigorous theoretical derivation of lumped models to transmission line systems

    International Nuclear Information System (INIS)

    Zhao Jixiang

    2012-01-01

    By virtue of the negative electric parameter concept, i.e. negative lumped resistance, inductance, conductance and capacitance (N-RLGC), the lumped equivalent models of transmission line systems, including the circuit model, two-port π-network and T-network, are given. We start from the N-segment-ladder-like equivalent networks composed distributed parameters, and achieve the input impedance in the form of a continued fraction. Utilizing the continued fraction theory, the expressions of input impedance are obtained under three kinds of extreme cases, i.e. the load impedances are equal to zero, infinity and characteristic impedance, respectively. When the number of segment N is limited to infinity, they are transformed to lumped elements. Comparison between the distributed model and lumped model of transmission lines, the expression of tanh γd, which is the key term in the transmission line equations, are obtained by RLGC, furthermore, according to input admittance, admittance matrix and ABCD matrix of transmission lines, the lumped equivalent circuit models, π-networks and T-networks have been given. The models are verified in the frequency and time domain, respectively, showing that the models are accurate and efficient. (semiconductor integrated circuits)

  14. A Hybrid Lumped Parameters/Finite Element/Boundary Element Model to Predict the Vibroacoustic Characteristics of an Axial Piston Pump

    Directory of Open Access Journals (Sweden)

    Shaogan Ye

    2017-01-01

    Full Text Available Low noise axial piston pumps become the rapid increasing demand in modern hydraulic fluid power systems. This paper proposes a systematic approach to simulate the vibroacoustic characteristics of an axial piston pump using a hybrid lumped parameters/finite element/boundary element (LP/FE/BE model, and large amount of experimental work was performed to validate the model. The LP model was developed to calculate the excitation forces and was validated by a comparison of outlet flow ripples. The FE model was developed to calculate the vibration of the pump, in which the modeling of main friction pairs using different spring elements was presented in detail, and the FE model was validated using experimental modal analysis and measured vibrations. The BE model was used to calculate the noise emitted from the pump, and a measurement of sound pressure level at representative field points in a hemianechoic chamber was conducted to validate the BE model. Comparisons between the simulated and measured results show that the developed LP/FE/BE model is effective in capturing the vibroacoustic characteristics of the pump. The presented approach can be extended to other types of fluid power components and contributes to the development of quieter fluid power systems.

  15. Lumped-parameters equivalent circuit for condenser microphones modeling.

    Science.gov (United States)

    Esteves, Josué; Rufer, Libor; Ekeom, Didace; Basrour, Skandar

    2017-10-01

    This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

  16. Lumped elements for RF and microwave circuits

    CERN Document Server

    Bahl, Inder

    2003-01-01

    Due to the unprecedented growth in wireless applications over the past decade, development of low-cost solutions for RF and microwave communication systems has become of great importance. This practical new book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The books offers you an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Support

  17. A Novel T-Fed 4-Element Quasi-Lumped Resonator Antenna Array

    Directory of Open Access Journals (Sweden)

    S.S. Olokede

    2014-06-01

    Full Text Available In this paper, electrically small corporately T-fed quasi-lumped element resonator antenna array is investigated. The radiating element, a quasi-lumped element resonator is excited by a novel semi hybrid ring-like T-shaped corporate feed network. The characteristics losses due to Ohmic and discontinuities along the feed line which invariably constitutes complex feed structures are mitigated at the instance of the proposed antenna. Technique to implement the compact array with the intent to enhance the gain is presented. The operation dynamics of the feed along with its theoretical explanation is also reported. Findings indicates that the measured gain is 10.97 dBi for antenna of an estate area of about 0.677λ_0 × 1.257λ_0 sq. mm. Valuable insight to the optimum design in terms of compactness, good gain, and ease of fabrication is documented.

  18. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    International Nuclear Information System (INIS)

    Mian, Muhammad Umer; Khir, M. H. Md.; Tang, T. B.; Dennis, John Ojur; Riaz, Kashif; Iqbal, Abid; Bazaz, Shafaat A.

    2015-01-01

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used

  19. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B. [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Dennis, John Ojur [Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Riaz, Kashif; Iqbal, Abid [Faculty of Electronics Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhaw (Pakistan); Bazaz, Shafaat A. [Department of Computer Science, Center for Advance Studies in Engineering, Islamabad (Pakistan)

    2015-07-22

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for the proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.

  20. Application of lumped-parameter models

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the lumped-parameter models for a suction caisson with a ratio between skirt length and foundation diameter equal to 1/2, embedded into an viscoelastic soil. The models are presented for three different values of the shear modulus of the subsoil (section 1.1). Subse...

  1. A Temperature Dependent Lumped-charge Model for Trench FS-IGBT

    DEFF Research Database (Denmark)

    Duan, Yaoqiang; Kang, Yong; Iannuzzo, Francesco

    2018-01-01

    Abstract: This paper proposes a temperature dependent lumped-charge model for FS-IGBT. Due to the evolution of the IGBT structure, the existing lumped-charge IGBT model established for NPT-IGBT is not suitable for the simulation of FS-IGBT. This paper extends the lumped-charge IGBT model including...... the field-stop (FS) structure and temperature characteristics. The temperature characteristics of the model are considered for both the bipolar part and unipolar part. In addition, a new PN junction model which can distinguish the collector structure is presented and validated by TCAD simulation. Finally...

  2. Lumped impulses, discrete displacements and a moving load analysis

    NARCIS (Netherlands)

    Kok, A.W.M.

    1997-01-01

    Finite element models are usually presented as relations between lumped forces and discrete displacements. Mostly finite element models are found by the elaboration of the method of the virtual work - which is a special case of the Galerkin's variational principle -. By application of Galerkin's

  3. Determination of heat flows inside turbochargers by means of a one dimensional lumped model

    OpenAIRE

    Olmeda González, Pablo Cesar; Dolz Ruiz, Vicente; Arnau Martínez, Francisco José; Reyes Belmonte, Miguel Angel

    2013-01-01

    In the present paper, a methodology to calculate the heat fluxes inside a turbocharger from diesel passenger car is presented. The heat transfer phenomenon is solved by using a one dimensional lumped model that takes into account both the heat fluxes between the different turbocharger elements, as well as the heat fluxes between the working fluids and the turbocharger elements. This heat transfer study is supported by the high temperature differences between the working fluids passing thr...

  4. New lumped-mass-stick model based on modal characteristics of structures: development and application to a nuclear containment building

    Science.gov (United States)

    Roh, Hwasung; Lee, Huseok; Lee, Jong Seh

    2013-06-01

    In this study, a new lumped-mass-stick model (LMSM) is developed based on the modal characteristics of a structure such as eigenvalues and eigenvectors. The simplified model, named the "frequency adaptive lumped-massstick model," hasonly a small number of stick elements and nodes to provide the same natural frequencies of the structure and is applied to a nuclear containment building. To investigate the numerical performance of the LMSM, a time history analysis is carried out on both the LMSM and the finite element model (FEM) for a nuclear containment building. A comparison of the results shows that the dynamic responses of the LMSM in terms of displacement and acceleration are almost identical to those of the FEM. In addition, the results in terms of fl oor response spectra at certain elevations are also in good agreement.

  5. Development of a transient, lumped hydrologic model for geomorphologic units in a geomorphology based rainfall-runoff modelling framework

    Science.gov (United States)

    Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.

    2010-05-01

    We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate

  6. The lumped parameter model for fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W S [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    The use of a lumped fuel-pin model in a thermal-hydraulic code is advantageous because of computational simplicity and efficiency. The model uses an averaging approach over the fuel cross section and makes some simplifying assumptions to describe the transient equations for the averaged fuel, fuel centerline and sheath temperatures. It is shown that by introducing a factor in the effective fuel conductivity, the analytical solution of the mean fuel temperature can be modified to simulate the effects of the flux depression in the heat generation rate and the variation in fuel thermal conductivity. The simplified analytical method used in the transient equation is presented. The accuracy of the lumped parameter model has been compared with the results from the finite difference method. (author). 4 refs., 2 tabs., 4 figs.

  7. Lumped-Parameter Models for Windturbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...

  8. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  9. Lumped parameter models for the interpretation of environmental tracer data

    Energy Technology Data Exchange (ETDEWEB)

    Maloszewski, P [GSF-Inst. for Hydrology, Oberschleissheim (Germany); Zuber, A [Institute of Nuclear Physics, Cracow (Poland)

    1996-10-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs.

  10. Lumped parameter models for the interpretation of environmental tracer data

    International Nuclear Information System (INIS)

    Maloszewski, P.; Zuber, A.

    1996-01-01

    Principles of the lumped-parameter approach to the interpretation of environmental tracer data are given. The following models are considered: the piston flow model (PFM), exponential flow model (EM), linear model (LM), combined piston flow and exponential flow model (EPM), combined linear flow and piston flow model (LPM), and dispersion model (DM). The applicability of these models for the interpretation of different tracer data is discussed for a steady state flow approximation. Case studies are given to exemplify the applicability of the lumped-parameter approach. Description of a user-friendly computer program is given. (author). 68 refs, 25 figs, 4 tabs

  11. Lumped parametric model of the human ear for sound transmission.

    Science.gov (United States)

    Feng, Bin; Gan, Rong Z

    2004-09-01

    A lumped parametric model of the human auditoria peripherals consisting of six masses suspended with six springs and ten dashpots was proposed. This model will provide the quantitative basis for the construction of a physical model of the human middle ear. The lumped model parameters were first identified using published anatomical data, and then determined through a parameter optimization process. The transfer function of the middle ear obtained from human temporal bone experiments with laser Doppler interferometers was used for creating the target function during the optimization process. It was found that, among 14 spring and dashpot parameters, there were five parameters which had pronounced effects on the dynamic behaviors of the model. The detailed discussion on the sensitivity of those parameters was provided with appropriate applications for sound transmission in the ear. We expect that the methods for characterizing the lumped model of the human ear and the model parameters will be useful for theoretical modeling of the ear function and construction of the ear physical model.

  12. A passive terahertz video camera based on lumped element kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Sam, E-mail: sam.rowe@astro.cf.ac.uk; Pascale, Enzo; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Ade, Peter A. R.; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; House, Julian; Moseley, Paul; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian [Astronomy Instrumentation Group, School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Wood, Ken [QMC Instruments Ltd., School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Grainger, William [Rutherford Appleton Laboratory, STFC, Swindon SN2 1SZ (United Kingdom); Mauskopf, Philip [Astronomy Instrumentation Group, School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); School of Earth Science and Space Exploration, Arizona State University, Tempe, Arizona 85281 (United States); Spencer, Locke [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada)

    2016-03-15

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)—designed originally for far-infrared astronomy—as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  13. A passive terahertz video camera based on lumped element kinetic inductance detectors

    International Nuclear Information System (INIS)

    Rowe, Sam; Pascale, Enzo; Doyle, Simon; Dunscombe, Chris; Hargrave, Peter; Papageorgio, Andreas; Ade, Peter A. R.; Barry, Peter; Bideaud, Aurélien; Brien, Tom; Dodd, Chris; House, Julian; Moseley, Paul; Sudiwala, Rashmi; Tucker, Carole; Walker, Ian; Wood, Ken; Grainger, William; Mauskopf, Philip; Spencer, Locke

    2016-01-01

    We have developed a passive 350 GHz (850 μm) video-camera to demonstrate lumped element kinetic inductance detectors (LEKIDs)—designed originally for far-infrared astronomy—as an option for general purpose terrestrial terahertz imaging applications. The camera currently operates at a quasi-video frame rate of 2 Hz with a noise equivalent temperature difference per frame of ∼0.1 K, which is close to the background limit. The 152 element superconducting LEKID array is fabricated from a simple 40 nm aluminum film on a silicon dielectric substrate and is read out through a single microwave feedline with a cryogenic low noise amplifier and room temperature frequency domain multiplexing electronics.

  14. Experimental realization of optical lumped nanocircuits at infrared wavelengths.

    Science.gov (United States)

    Sun, Yong; Edwards, Brian; Alù, Andrea; Engheta, Nader

    2012-01-29

    The integration of radiofrequency electronic methodologies on micro- as well as nanoscale platforms is crucial for information processing and data-storage technologies. In electronics, radiofrequency signals are controlled and manipulated by 'lumped' circuit elements, such as resistors, inductors and capacitors. In earlier work, we theoretically proposed that optical nanostructures, when properly designed and judiciously arranged, could behave as nanoscale lumped circuit elements--but at optical frequencies. Here, for the first time we experimentally demonstrate a two-dimensional optical nanocircuit at mid-infrared wavelengths. With the guidance of circuit theory, we design and fabricate arrays of Si3N4 nanorods with specific deep subwavelength cross-sections, quantitatively evaluate their equivalent impedance as lumped circuit elements in the mid-infrared regime, and by Fourier transform infrared spectroscopy show that these nanostructures can indeed function as two-dimensional optical lumped circuit elements. We further show that the connections among nanocircuit elements, in particular whether they are in series or in parallel combination, can be controlled by the polarization of impinging optical signals, realizing the notion of 'stereo-circuitry' in metatronics-metamaterials-inspired optical circuitry.

  15. Improved lumped models for transient combined convective and radiative cooling of multi-layer composite slabs

    International Nuclear Information System (INIS)

    An Chen; Su Jian

    2011-01-01

    Improved lumped parameter models were developed for the transient heat conduction in multi-layer composite slabs subjected to combined convective and radiative cooling. The improved lumped models were obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of three-layer composite slabs was analyzed to illustrate the applicability of the proposed lumped models, with respect to different values of the Biot numbers, the radiation-conduction parameter, the dimensionless thermal contact resistances, the dimensionless thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the higher order lumped model (H 1,1 /H 0,0 approximation) yielded significant improvement of average temperature prediction over the classical lumped model. In addition, the higher order (H 1,1 /H 0,0 ) model was applied to analyze the transient heat conduction problem of steel-concrete-steel sandwich plates. - Highlights: → Improved lumped models for convective-radiative cooling of multi-layer slabs were developed. → Two-point Hermite approximations for integrals were employed. → Significant improvement over classical lumped model was achieved. → The model can be applied to high Biot number and high radiation-conduction parameter. → Transient heat conduction in steel-concrete-steel sandwich pipes was analyzed as an example.

  16. Lumped-Parameter Models for Wind-Turbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Liingaard, Morten

    2007-01-01

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computational model significantly. This may be obtained by the fitting...... of a lumped-parameter model to the results of a rigorous model or experimental results. In this paper, guidelines are given for the formulation of such lumped-parameter models and examples are given in which the models are utilised for the analysis of a wind turbine supported by a surface footing on a layered...

  17. Some error estimates for the lumped mass finite element method for a parabolic problem

    KAUST Repository

    Chatzipantelidis, P.

    2012-01-01

    We study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods. © 2011 American Mathematical Society.

  18. Using a lumped conceptual hydrological model for five different catchments in Sweden

    OpenAIRE

    Ekenberg, Madeleine

    2016-01-01

    Hydrological models offer powerful tools for understanding and predicting. In this thesis we havereviewed the advantages and disadvantages of physically based distributed hydrological models andconceptually lumped hydrological models. Based on that review, we went into depth and developed aMATLAB code to test if a simple conceptual lumped hydrological model, namely GR2M, wouldperform satisfactory for five different catchments in different parts of Sweden. The model had ratherunsatisfactory re...

  19. A lumped parameter model of plasma focus

    International Nuclear Information System (INIS)

    Gonzalez, Jose H.; Florido, Pablo C.; Bruzzone, H.; Clausse, Alejandro

    1999-01-01

    A lumped parameter model to estimate neutron emission of a plasma focus (PF) device is developed. The dynamic of the current sheet is calculated using a snowplow model, and the neutron production with the thermal fusion cross section for a deuterium filling gas. The results were contrasted as a function of the filling pressure with experimental measurements of a 3.68 KJ Mather-type PF. (author)

  20. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    Science.gov (United States)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional

  1. Modelling of nonhomogeneous atmosphere in NPP containment using lumped-parameter model based on CFD calculations

    International Nuclear Information System (INIS)

    Ivo, Kljenak; Miroslav, Babic; Borut, Mavko

    2007-01-01

    The possibility of simulating adequately the flow circulation within a nuclear power plant containment using a lumped-parameter code is considered. An experiment on atmosphere mixing and stratification, which was performed in the containment experimental facility TOSQAN at IRSN (Institute of Radioprotection and Nuclear Safety) in Saclay (France), was simulated with the CFD (Computational Fluid Dynamics) code CFX4 and the lumped-parameter code CONTAIN. During some phases of the experiment, steady states were achieved by keeping the boundary conditions constant. Two steady states during which natural convection was the dominant gas flow mechanism were simulated independently. The nodalization of the lumped-parameter model was based on the flow pattern, simulated with the CFD code. The simulation with the lumped-parameter code predicted basically the same flow circulation patterns within the experimental vessel as the simulation with the CFD code did. (authors)

  2. Lumped Parameter Models of the Central Nervous System for VIIP Research

    Science.gov (United States)

    Vera, J.; Mulugeta, L.; Nelson, E. S.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Myers, J. G.

    2015-01-01

    INTRODUCTION: Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit, such as to Mars and asteroids, expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome [1]. It has been hypothesized that the headward shift of cerebral spinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn induces VIIP syndrome through biomechanical pathways [1, 2]. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the realted IWS abstracts submitted by Nelson et al., Feola et al. and Ethier et al. METHODS: We have developed a nine compartment CNS model (Figure 1) capable of both time-dependent and steady state fluid transport simulations, based on the works of Stevens et al. [3]. The breakdown of compartments within the model includes: vascular (3), CSF (2), brain (1) and extracranial (3). The boundary pressure in the Central Arteries [A] node is prescribed using an oscillating pressure function PA(t) simulating the carotid pulsatile pressure wave as developed by Linninger et al. [4]. For each time step, pressures are integrated through time using an adaptive-timestep 4th and 5th order Runga-Kutta solver. Once pressures are found, constitutive equations are used to solve for flowrates (Q) between each compartment. In addition to fluid flow between the different compartments, compliance (C) interactions between neighboring compartments are represented. We are also developing a second CNS model based on the works of Linninger et al. [4] which takes a more granular approach to represent the interactions of the

  3. A study of the consistent and the lumped source approximations in finite element neutron diffusion calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Azgener, H.A.

    1991-01-01

    In finite element formulations for the solution of the within-group neutron diffusion equation, two different treatments are possible for the group source term: the consistent source approximation (CSA) and the lumped source approximation (LSA). CSA results in intra-group scattering and fission matrices which have the same nondiagonal structure as the global coefficient matrix. This situation might be regarded as a disadvantage, compared to the conventional (i.e. finite difference) methods where the intra-group scattering and fission matrices are diagonal. To overcome this disadvantage, LSA could be used to diagonalize these matrices. LSA is akin to the lumped mass approximation of continuum mechanics. We concentrate on two different aspects of the source approximations. Although it has been reported that LSA does not modify the asymptotic h 2 convergence behaviour for linear elements, the effect of LSA on convergence of higher degree elements has not been investigated. Thus, we would be interested in determining, p, the asymptotic order of convergence, in: Δk |k eff (analytical) -k eff (finite element)| = Ch p (1) for finite element approximations of varying degree (N) with both of the source approximations. Since (1) is valid in the asymptotic limit, we must use ultra-fine meshes and quadruple precision arithmetic. For our order of convergence study, we used infinite cylindrical geometry with azimuthal symmetry. Hence, the effects of singularities remain uninvestigated. The second aspect we dwell on is the performance of LSA in bilinear 3-D finite element calculations, compared to CSA. LSA has been used quite extensively in 1- and 2-D even-parity transport and diffusion calculations. In this work, we will try to assess the relative merits of LSA and CSA in 3-D problems. (author)

  4. Lumping procedure for a kinetic model of catalytic naphtha reforming

    Directory of Open Access Journals (Sweden)

    H. M. Arani

    2009-12-01

    Full Text Available A lumping procedure is developed for obtaining kinetic and thermodynamic parameters of catalytic naphtha reforming. All kinetic and deactivation parameters are estimated from industrial data and thermodynamic parameters are calculated from derived mathematical expressions. The proposed model contains 17 lumps that include the C6 to C8+ hydrocarbon range and 15 reaction pathways. Hougen-Watson Langmuir-Hinshelwood type reaction rate expressions are used for kinetic simulation of catalytic reactions. The kinetic parameters are benchmarked with several sets of plant data and estimated by the SQP optimization method. After calculation of deactivation and kinetic parameters, plant data are compared with model predictions and only minor deviations between experimental and calculated data are generally observed.

  5. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  6. General 3D Lumped Thermal Model with Various Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    Accurate thermal dynamics modeling of high power Insulated Gate Bipolar Transistor (IGBT) modules is important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated...... thermal behaviors in the IGBTs. In this paper, a new three-dimensional (3D) lumped thermal model is proposed, which can easily be characterized from Finite Element Methods (FEM) based simulation and acquire the thermal distribution in critical points. Meanwhile the boundary conditions including...... the cooling system and power losses are modeled in the 3D thermal model, which can be adapted to different real field applications of power electronic converters. The accuracy of the proposed thermal model is verified by experimental results....

  7. On the time-stepping stability of continuous mass-lumped and discontinuous Galerkin finite elements for the 3D acoustic wave equation

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Mulder, W.A.

    2012-01-01

    We solve the three-dimensional acoustic wave equation, discretized on tetrahedral meshes. Two methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial discretization with the leap-frog

  8. Steady And Unsteady Lumped-Parameter Models For Determination of Groundwater Residence Time Distribution

    International Nuclear Information System (INIS)

    Oezyurt, N.N.

    2002-01-01

    Groundwater's residence time distribution is an important information to identify the transport mechanism in aquifer systems. In the absence or scarcity of geometric, hydraulic and geohydrologic data needed to describe a flow system, lumped parameter models, that handle the flow system as a whole, exist as an alternative to determine the residence time distribution. Lumped parametre models comprise of idealized models of piston and well-mixed flow and their combinations. Aquifer properties such as, dead volume and by-pass flow can also be included in these models. With the aid of these models, conceptual aquifer models can be tested and residence time distribution of groundwater can be determined

  9. Revisiting Appendicular Lump

    Directory of Open Access Journals (Sweden)

    R S Bhandari

    2010-06-01

    Full Text Available INTRODUCTION: Appendicular lump is a well known sequalae of acute appendicitis encountered in 2-6% of patients. Successful management of appendicular lump is controversial with different approaches. As many controversies are arising regarding management of appendicular lump. The aim of this study was to find out the outcome and evaluate possible need of changing our management strategy of appendicular lump. METHODS: A retrospective analysis of the patients managed with appendicular lump were done. All the patients admitted with diagnosis of appendicular lump and managed between, over two and half years, were included in the study. All age groups and both sex were included. Any patients whose diagnosis was changed after initial diagnosis of appendicular lump were excluded from the study. RESULTS: Total 75 patients had appendicular lump suggesting 10% incidence. Age varied between 11-83 years with nearly equal incidence in both sexes. Majority had onset of symptoms between 2 to 14 days with an average of 4 days. Average stay was 3 to 4 days. During study period, 12 (16% came with recurrence and 13 (17% cases came for elective appendectomy. CONCLUSIONS: Based on our finding, it is not sufficient to change our classical management strategy of appendicular lump and suggests a need for long term prospective study in this very common clinical condition. KEYWORDS: appendicular lump, conservative management.

  10. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach.

    Science.gov (United States)

    Dennison, James E; Andersen, Melvin E; Yang, Raymond S H

    2003-09-01

    Gasoline consists of a few toxicologically significant components and a large number of other hydrocarbons in a complex mixture. By using an integrated, physiologically based pharmacokinetic (PBPK) modeling and lumping approach, we have developed a method for characterizing the pharmacokinetics (PKs) of gasoline in rats. The PBPK model tracks selected target components (benzene, toluene, ethylbenzene, o-xylene [BTEX], and n-hexane) and a lumped chemical group representing all nontarget components, with competitive metabolic inhibition between all target compounds and the lumped chemical. PK data was acquired by performing gas uptake PK studies with male F344 rats in a closed chamber. Chamber air samples were analyzed every 10-20 min by gas chromatography/flame ionization detection and all nontarget chemicals were co-integrated. A four-compartment PBPK model with metabolic interactions was constructed using the BTEX, n-hexane, and lumped chemical data. Target chemical kinetic parameters were refined by studies with either the single chemical alone or with all five chemicals together. o-Xylene, at high concentrations, decreased alveolar ventilation, consistent with respiratory irritation. A six-chemical interaction model with the lumped chemical group was used to estimate lumped chemical partitioning and metabolic parameters for a winter blend of gasoline with methyl t-butyl ether and a summer blend without any oxygenate. Computer simulation results from this model matched well with experimental data from single chemical, five-chemical mixture, and the two blends of gasoline. The PBPK model analysis indicated that metabolism of individual components was inhibited up to 27% during the 6-h gas uptake experiments of gasoline exposures.

  11. Frequency Combs in a Lumped-Element Josephson-Junction Circuit

    Science.gov (United States)

    Khan, Saeed; Türeci, Hakan E.

    2018-04-01

    We investigate the dynamics of a microwave-driven Josephson junction capacitively coupled to a lumped-element L C oscillator. In the regime of driving where the Josephson junction can be approximated as a Kerr oscillator, this minimal nonlinear system has been previously shown to exhibit a bistability in phase and amplitude. In the present study, we characterize the full phase diagram and show that besides a parameter regime exhibiting bistability, there is also a regime of self-oscillations characterized by a frequency comb in its spectrum. We discuss the mechanism of comb generation which appears to be different from those studied in microcavity frequency combs and mode-locked lasers. We then address the fate of the comblike spectrum in the regime of strong quantum fluctuations, reached when nonlinearity becomes the dominant scale with respect to dissipation. We find that the nonlinearity responsible for the emergence of the frequency combs also leads to its dephasing, leading to broadening and ultimate disappearance of sharp spectral peaks. Our study explores the fundamental question of the impact of quantum fluctuations for quantum systems which do not possess a stable fixed point in the classical limit.

  12. Revisiting appendicular lump.

    Science.gov (United States)

    Bhandari, R S; Thakur, D K; Lakhey, P J; Singh, K P

    2010-01-01

    Appendicular lump is a well known sequalae of acute appendicitis encountered in 2-6% of patients. Successful management of appendicular lump is controversial with different approaches. As many controversies are arising regarding management of appendicular lump. The aim of this study was to find out the outcome and evaluate possible need of changing our management strategy of appendicular lump. A retrospective analysis of the patients managed with appendicular lump were done. All the patients admitted with diagnosis of appendicular lump and managed between, over two and half years, were included in the study. All age groups and both sex were included. Any patients whose diagnosis was changed after initial diagnosis of appendicular lump were excluded from the study. Total 75 patients had appendicular lump suggesting 10% incidence. Age varied between 11-83 years with nearly equal incidence in both sexes. Majority had onset of symptoms between 2 to 14 days with an average of 4 days. Average stay was 3 to 4 days. During study period, 12 (16%) came with recurrence and 13 (17%) cases came for elective appendectomy. Based on our finding, it is not sufficient to change our classical management strategy of appendicular lump and suggests a need for long term prospective study in this very common clinical condition.

  13. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach

    Science.gov (United States)

    Van Dyke, Michael B.

    2014-01-01

    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  14. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....

  15. BWR MARK I pressure suppression pool mixing and stratification analysis using GOTHIC lumped parameter modeling methodology

    International Nuclear Information System (INIS)

    Ozdemir, Ozkan Emre; George, Thomas L.

    2015-01-01

    As a part of the GOTHIC (GOTHIC incorporates technology developed for the electric power industry under the sponsorship of EPRI.) Fukushima Technical Evaluation project (EPRI, 2014a, b, 2015), GOTHIC (EPRI, 2014c) has been benchmarked against test data for pool stratification (EPRI, 2014a, b, Ozdemir and George, 2013). These tests confirmed GOTHIC’s ability to simulate pool mixing and stratification under a variety of anticipated suppression pool operating conditions. The multidimensional modeling requires long simulation times for events that may occur over a period of hours or days. For these scenarios a lumped model of the pressure suppression chamber is desirable to maintain reasonable simulation times. However, a lumped model for the pool is not able to predict the effects of pool stratification that can influence the overall containment response. The main objective of this work is on the development of a correlation that can be used to estimate pool mixing and stratification effects in a lumped modeling approach. A simplified lumped GOTHIC model that includes a two zone model for the suppression pool with controlled circulation between the upper and lower zones was constructed. A pump and associated flow connections are included to provide mixing between the upper and lower pool volumes. Using numerically generated data from a multidimensional GOTHIC model for the suppression pool, a correlation was developed for the mixing rate between the upper and lower pool volumes in a two-zone, lumped model. The mixing rate depends on the pool subcooling, the steam injection rate and the injection depth

  16. Comparison of the AWA lumped-circuit model of electrical discharges with empirical data

    International Nuclear Information System (INIS)

    Maier, W.B. II; Kadish, A.; Robiscoe, R.T.

    1990-01-01

    The authors compare experimental data for three 1.7-m-long transient discharges with an AWA lumped- circuit discharge model in which the arc resistance is taken from the Arc Welder's Ansatz, R a = V*/|I |, where V* is a positive constant and I is the discharge current. In addition to the arc resistance, there is a small series resistance R present in the external circuit. A single value for each of R and V* is deduced from the data, and these values are used to characterize all three discharges. Adequate agreement with the experimental data is obtained; for example, the authors predict the proper number of current reversals for each discharge and abrupt termination of current flow after a finite time. The authors suggest that the AWA lumped circuit provides a better representation of the data than a standard lumped-circuit RLC model and hence is more useful as a tool for prediction and interpretation of discharges

  17. Modelling of nonhomogeneous atmosphere in NPP containment using lumped-parameter model based on CFD calculations

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.; Babic, M.

    2005-01-01

    Full text of publication follows: The modelling and simulation of atmosphere mixing and stratification in nuclear power plant containments is a topic, which is currently being intensely investigated. With the increase of computer power, it has now become possible to model these phenomena with a local instantaneous description, using so-called Computational Fluid Dynamics (CFD) codes. However, calculations with these codes still take relatively long times. An alternative faster approach, which is also being applied, is to model nonhomogeneous atmosphere with lumped-parameter codes by dividing larger control volumes into smaller volumes, in which conditions are modelled as homogeneous. The flow between smaller volumes is modelled using one-dimensional approaches, which includes the prescription of flow loss coefficients. However, some authors have questioned this approach, as it appears that atmosphere stratification may sometimes be well simulated only by adjusting flow loss coefficients to adequate 'artificial' values that are case-dependent. To start the resolution of this issue, a modelling of nonhomogeneous atmosphere with a lumped-parameter code is proposed, where the subdivision of a large volume into smaller volumes is based on results of CFD simulations. The basic idea is to use the results of a CFD simulation to define regions, in which the flow velocities have roughly the same direction. These regions are then modelled as control volumes in a lumped-parameter model. In the proposed work, this procedure was applied to a simulation of an experiment of atmosphere mixing and stratification, which was performed in the TOSQAN facility. The facility is located at the Institut de Radioprotection et de Surete Nucleaire (IRSN) in Saclay (France) and consists of a cylindrical vessel (volume: 7 m3), in which gases are injected. In the experiment, which was also proposed for the OECD/NEA International Standard Problem No.47, air was initially present in the vessel, and

  18. A distributed lumped active all-pass network configuration.

    Science.gov (United States)

    Huelsman, L. P.; Raghunath, S.

    1972-01-01

    In this correspondence a new and interesting distributed lumped active network configuration that realizes an all-pass network function is described. A design chart for determining the values of the network elements is included.

  19. Reservoir theory, groundwater transit time distributions, and lumped parameter models

    International Nuclear Information System (INIS)

    Etcheverry, D.; Perrochet, P.

    1999-01-01

    The relation between groundwater residence times and transit times is given by the reservoir theory. It allows to calculate theoretical transit time distributions in a deterministic way, analytically, or on numerical models. Two analytical solutions validates the piston flow and the exponential model for simple conceptual flow systems. A numerical solution of a hypothetical regional groundwater flow shows that lumped parameter models could be applied in some cases to large-scale, heterogeneous aquifers. (author)

  20. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Long, E-mail: mse.longtan@gmail.com [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Jianxun; Zhuang, Dong [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Chuan [Provincial Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2014-07-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures.

  1. Influences of lumped passes on welding residual stress of a thick-walled nuclear rotor steel pipe by multipass narrow gap welding

    International Nuclear Information System (INIS)

    Tan, Long; Zhang, Jianxun; Zhuang, Dong; Liu, Chuan

    2014-01-01

    Highlights: • The internal residual stress of the thick-walled pipe is measured by using the local removal blind hole method. • Two lumped-pass models are developed to reduce computational cost. • The effect of lumped passes on the welding residual stress is discussed. • Reasonable lumped-pass model can guarantee the accuracy and improve the computational efficiency. - Abstract: The purpose of this study is to investigate the effect of the lumped passes simulation on the distribution of residual stresses before and after heat treatment in a thick-walled nuclear power rotor pipe with a 89-pass narrow gap welding process. The local removal blind hole method was used to measure internal residual stress of the thick-walled pipe after post weld heat treatment (PWHT). Based on the ANSYS software, a two-dimensional axisymmetric finite element model is employed. Two lumped-pass models of M-5th model (five weld beads as one lumped pass) and M-10th model (ten weld beads as one lumped pass) were developed to reduce computational cost. Based on the results in this study, the distributions of residual stresses of a thick-walled welded pipe before and after PWHT are developed. Meanwhile, the distribution of the through-wall axial residual stress along the weld center line is demonstrated to be a self-equilibrating type. In addition, the investigation results show that reasonable and reliable lumped-pass model can not only guarantee the accuracy of the simulated results, but also improve the computational efficiency in the thermo-elastic–plastic FE analysis procedure. Therefore, from the viewpoint of engineering application the developed lumped-pass computational procedure is a promising and useful method to predict residual stress of large and complex welded structures

  2. Recomputing Causality Assignments on Lumped Process Models When Adding New Simplification Assumptions

    Directory of Open Access Journals (Sweden)

    Antonio Belmonte

    2018-04-01

    Full Text Available This paper presents a new algorithm for the resolution of over-constrained lumped process systems, where partial differential equations of a continuous time and space model of the system are reduced into ordinary differential equations with a finite number of parameters and where the model equations outnumber the unknown model variables. Our proposal is aimed at the study and improvement of the algorithm proposed by Hangos-Szerkenyi-Tuza. This new algorithm improves the computational cost and solves some of the internal problems of the aforementioned algorithm in its original formulation. The proposed algorithm is based on parameter relaxation that can be modified easily. It retains the necessary information of the lumped process system to reduce the time cost after introducing changes during the system formulation. It also allows adjustment of the system formulations that change its differential index between simulations.

  3. A correction technique for the dispersive effects of mass lumping for transport problems

    KAUST Repository

    Guermond, Jean-Luc

    2013-01-01

    This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix inversion and has the same anti-dispersive effects as the consistent mass matrix. A novel quasi-lumping technique for P2 finite elements is introduced. Higher-order extensions of the method are also discussed. © 2012 Elsevier B.V.

  4. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai

    2012-10-16

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  5. Lumped model for rotational modes in phononic crystals

    KAUST Repository

    Peng, Pai; Mei, Jun; Wu, Ying

    2012-01-01

    We present a lumped model for the rotational modes induced by the rotational motion of individual scatterers in two-dimensional phononic crystals comprised of square arrays of solid cylindrical scatterers in solid hosts. The model provides a physical interpretation of the origin of the rotational modes, reveals the important role played by the rotational motion in determining the band structure, and reproduces the dispersion relations in a certain range. The model increases the possibilities of manipulating wave propagation in phononic crystals. In particular, expressions derived from the model for eigenfrequencies at high symmetry points unambiguously predict the presence of a new type of Dirac-like cone at the Brillouin center, which is found to be the result of accidental degeneracy of the rotational and dipolar modes.

  6. Dynamic analysis of the 7-GeV APS experiment hall foundation based on equivalent lumped parameter modeling

    International Nuclear Information System (INIS)

    Wambsganss, M.W.

    1989-01-01

    In this technical note, mass-spring-dashpot, also referred to as equivalent lumped parameter, models are employed to model the soil-foundation interaction of two typical floor segments from the 7-GeV APS experiment hall. Equivalent lumped parameter models have the advantage of being easy to apply and of readily allowing for parameter studies. Analysis requires knowledge of certain properties of the soil including density, shear wave velocity, and Poisson's ratio, as well as knowledge of the degree of homogeneity of the underlying soil stratum. These data for the APS site were determined by a geotechnical investigation. A soil profile and pertinent data, obtained from crosshole seismic testing, are given. Natural frequencies and damping are calculated for the vertical, sliding, rocking, and coupled rocking/sliding modes of vibration. Subsequently, various corrections to account for modeling ''deficiencies'' are considered and their influences evaluated. The equivalent lumped parameter models were developed for machine foundations which, compared with the APS foundation, are smaller in plan dimension. Therefore, the applicability of these models in the analysis of the dynamic characteristics of the APS foundation must be established. The modeling is evaluated by applying the equivalent lumped parameter models in the analysis of large foundations for which test data exists. A comparison of theoretical and test results establishes the basis for an assessment of the applicability and accuracy of the modeling

  7. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    International Nuclear Information System (INIS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan

    2016-01-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  8. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing; Elbaz, Ayman M.; Roberts, William L.; Im, Hong G.

    2016-01-01

    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing

  9. Performance and scalability of finite-difference and finite-element wave-propagation modeling on Intel's Xeon Phi

    NARCIS (Netherlands)

    Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.

    2013-01-01

    With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements

  10. Lumped-parameter modeling of PWR downcomer and pressurizer for LOCA conditions

    International Nuclear Information System (INIS)

    Rohatgi, U.S.; Saha, P.; Dubow, A.A.

    1978-01-01

    Two lumped-parameter models, one for a PWR downcomer and the other for a pressurizer, are presented. The models are based on the transient, nonhomogeneous, drift-flux description of two-phase flow, and are suitable for simulating a hypothetical LOCA condition. Effects of thermal nonequilibrium are incorporated in the downcomer model, whereas the pressurizer model can track the interfaces among various flow regimes. Semiimplicit numerical schemes are used for solution. Encouraging results have been obtained for both the models. (author)

  11. A lumped-parameter model for cryo-adsorber hydrogen storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kumar, V.; Raghunathan, K. [India Science Lab, General Motors R and D, Creator Building, International Technology Park, Bangalore 560066 (India); Kumar, Sudarshan [Chemical and Environmental Sciences Lab, General Motors R and D, 30500 Mound Road, Warren, MI 48090 (United States)

    2009-07-15

    One of the primary requirements for commercialization of hydrogen fuel-cell vehicles is the on-board storage of hydrogen in sufficient quantities. On-board storage of hydrogen by adsorption on nano-porous adsorbents at around liquid nitrogen temperatures and moderate pressures is considered viable and competitive with other storage technologies: liquid hydrogen, compressed gas, and metallic or complex hydrides. The four cryo-adsorber fuel tank processes occur over different time scales: refueling over a few minutes, discharge over a few hours, dormancy over a few days, and venting over a few weeks. The slower processes i.e. discharge, dormancy and venting are expected to have negligible temperature gradients within the bed, and hence are amenable to a lumped-parameter analysis. Here we report a quasi-static lumped-parameter model for the cryo-adsorber fuel tank, and discuss the results for these slower processes. We also describe an alternative solution method for dormancy and venting based on the thermodynamic state description. (author)

  12. Effects of non-LTE multiplet dynamics on lumped-state modelling in moderate to high atomic number plasmas

    International Nuclear Information System (INIS)

    Whitney, K G; Dasgupta, A; Davis, J; Coverdale, C A

    2007-01-01

    Two atomic models of the population dynamics of substates within the n 4 and n = 3 multiplets of nickel-like tungsten and beryllium-like iron, respectively, are described in this paper. The flexible atomic code (FAC) is used to calculate the collisional and radiative couplings and energy levels of the excited states within these ionization stages. These atomic models are then placed within larger principal-quantum-number-based ionization dynamic models of both tungsten and iron plasmas. Collisional-radiative equilibrium calculations are then carried out using these models that demonstrate how the multiplet substates depart from local thermodynamic equilibrium (LTE) as a function of ion density. The effect of these deviations from LTE on the radiative and collisional deexcitation rates of lumped 3s, 3p, 3d, 4s, 4p, 4d and 4f states is then calculated and least-squares fits to the density dependence of these lumped-state rate coefficients are obtained. The calculations show that, with the use of lumped-state models (which are in common use), one can accurately model the L- and M-shell ionization dynamics occurring in present-day Z-pinch experiments only through the addition of these extra, non-LTE-induced, rate coefficient density dependences. However, the derivation and use of low-order polynomial fits to these density dependences makes lumped-state modelling both viable and of value for post-processing analyses

  13. Numerical analysis of the resonance mechanism of the lumped parameter system model for acoustic mine detection

    International Nuclear Information System (INIS)

    Wang Chi; Zhou Yu-Qiu; Shen Gao-Wei; Wu Wen-Wen; Ding Wei

    2013-01-01

    The method of numerical analysis is employed to study the resonance mechanism of the lumped parameter system model for acoustic mine detection. Based on the basic principle of the acoustic resonance technique for mine detection and the characteristics of low-frequency acoustics, the ''soil-mine'' system could be equivalent to a damping ''mass-spring'' resonance model with a lumped parameter analysis method. The dynamic simulation software, Adams, is adopted to analyze the lumped parameter system model numerically. The simulated resonance frequency and anti-resonance frequency are 151 Hz and 512 Hz respectively, basically in agreement with the published resonance frequency of 155 Hz and anti-resonance frequency of 513 Hz, which were measured in the experiment. Therefore, the technique of numerical simulation is validated to have the potential for analyzing the acoustic mine detection model quantitatively. The influences of the soil and mine parameters on the resonance characteristics of the soil—mine system could be investigated by changing the parameter setup in a flexible manner. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Causes of breast lumps (image)

    Science.gov (United States)

    ... breast lumps are benign (non-cancerous), as in fibroadenoma, a condition that mostly affects women under age ... with the menstrual cycle, whereas a lump from fibroadenoma does not. While most breast lumps are benign, ...

  15. Scattering of massless lumps and non-local charges in the two-dimensional classical non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.; Pohlmeyer, K.

    1977-09-01

    Finite energy solutions of the field equations of the non-linear sigma-model are shown to decay asymptotically into massless lumps. By means of a linear eigenvalue problem connected with the field equations we then find an infinite set of dynamical conserved charges. They, however, do not provide sufficient information to decode the complicated scattering of lumps. (orig.) [de

  16. Uncertainty quantification in flux balance analysis of spatially lumped and distributed models of neuron-astrocyte metabolism.

    Science.gov (United States)

    Calvetti, Daniela; Cheng, Yougan; Somersalo, Erkki

    2016-12-01

    Identifying feasible steady state solutions of a brain energy metabolism model is an inverse problem that allows infinitely many solutions. The characterization of the non-uniqueness, or the uncertainty quantification of the flux balance analysis, is tantamount to identifying the degrees of freedom of the solution. The degrees of freedom of multi-compartment mathematical models for energy metabolism of a neuron-astrocyte complex may offer a key to understand the different ways in which the energetic needs of the brain are met. In this paper we study the uncertainty in the solution, using techniques of linear algebra to identify the degrees of freedom in a lumped model, and Markov chain Monte Carlo methods in its extension to a spatially distributed case. The interpretation of the degrees of freedom in metabolic terms, more specifically, glucose and oxygen partitioning, is then leveraged to derive constraints on the free parameters to guarantee that the model is energetically feasible. We demonstrate how the model can be used to estimate the stoichiometric energy needs of the cells as well as the household energy based on the measured oxidative cerebral metabolic rate of glucose and glutamate cycling. Moreover, our analysis shows that in the lumped model the net direction of lactate dehydrogenase (LDH) in the cells can be deduced from the glucose partitioning between the compartments. The extension of the lumped model to a spatially distributed multi-compartment setting that includes diffusion fluxes from capillary to tissue increases the number of degrees of freedom, requiring the use of statistical sampling techniques. The analysis of the distributed model reveals that some of the conclusions valid for the spatially lumped model, e.g., concerning the LDH activity and glucose partitioning, may no longer hold.

  17. A lumped model for rotational modes in periodic solid composites

    KAUST Repository

    Peng, Pai; Asiri, Sharefa M.; Zhang, Xiujuan; Li, Yan; Wu, Ying

    2013-01-01

    We present a lumped model to study the rotational modes in a type of two-dimensional periodic solid composites comprised of a square array of rubber-coated steel cylinders embedded in an epoxy matrix. The model captures the physical essence of rotational modes in such systems for various combinations of material parameters, and, therefore it is able to describe the transition behaviour when the system is gradually adjusted from an elastic metamaterial to an elastic phononic crystal. From the model, we can define a transition zone which separates the typical elastic metamaterials and the phononic crystals.

  18. A lumped model for rotational modes in periodic solid composites

    KAUST Repository

    Peng, Pai

    2013-10-01

    We present a lumped model to study the rotational modes in a type of two-dimensional periodic solid composites comprised of a square array of rubber-coated steel cylinders embedded in an epoxy matrix. The model captures the physical essence of rotational modes in such systems for various combinations of material parameters, and, therefore it is able to describe the transition behaviour when the system is gradually adjusted from an elastic metamaterial to an elastic phononic crystal. From the model, we can define a transition zone which separates the typical elastic metamaterials and the phononic crystals.

  19. Lumped hydrological models is an Occam' razor for runoff modeling in large Russian Arctic basins

    OpenAIRE

    Ayzel Georgy

    2018-01-01

    This study is aimed to investigate the possibility of three lumped hydrological models to predict daily runoff of large-scale Arctic basins for the modern period (1979-2014) in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil or vegetation cover properties of studied basins. We found limitations of model parameters calibration in ungauged basins using global optimization alg...

  20. Lumped-parameter fuel rod model for rapid thermal transients

    International Nuclear Information System (INIS)

    Perkins, K.R.; Ramshaw, J.D.

    1975-07-01

    The thermal behavior of fuel rods during simulated accident conditions is extremely sensitive to the heat transfer coefficient which is, in turn, very sensitive to the cladding surface temperature and the fluid conditions. The development of a semianalytical, lumped-parameter fuel rod model which is intended to provide accurate calculations, in a minimum amount of computer time, of the thermal response of fuel rods during a simulated loss-of-coolant accident is described. The results show good agreement with calculations from a comprehensive fuel-rod code (FRAP-T) currently in use at Aerojet Nuclear Company

  1. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  2. Application of Biologically-Based Lumping To Investigate the ...

    Science.gov (United States)

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these experiments, though this simplification provides little insight into the impact of a mixture's chemical composition on toxicologically-relevant metabolic interactions that may occur among its constituents. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically-based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate performance of our PBPK model. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course kinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for the 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 non-target chemicals. Application of this biologic

  3. Decay of Kadomtsev-Petviashvili lumps in dissipative media

    Science.gov (United States)

    Clarke, S.; Gorshkov, K.; Grimshaw, R.; Stepanyants, Y.

    2018-03-01

    The decay of Kadomtsev-Petviashvili lumps is considered for a few typical dissipations-Rayleigh dissipation, Reynolds dissipation, Landau damping, Chezy bottom friction, viscous dissipation in the laminar boundary layer, and radiative losses caused by large-scale dispersion. It is shown that the straight-line motion of lumps is unstable under the influence of dissipation. The lump trajectories are calculated for two most typical models of dissipation-the Rayleigh and Reynolds dissipations. A comparison of analytical results obtained within the framework of asymptotic theory with the direct numerical calculations of the Kadomtsev-Petviashvili equation is presented. Good agreement between the theoretical and numerical results is obtained.

  4. Lumped parameter modeling of a two-phase thermal-hydraulic channel with interface tracking

    International Nuclear Information System (INIS)

    Jo, J.H.; Kaufman, J.M.; Ruger, C.J.; Stein, S.

    1978-01-01

    A nonhomogenous, thermal nonequilibrium model for one-dimensional two-phase flow in a heated channel has been formulated in lumped parameter form. The channel is divided into a variable number of flow regimes separated by moving interfaces. The model can be used to predict the behavior of a LWR core and both primary and secondary sides of a steam generator under transient conditions. (author)

  5. A lumped parameter, low dimension model of heat exchanger

    International Nuclear Information System (INIS)

    Kanoh, Hideaki; Furushoo, Junji; Masubuchi, Masami

    1980-01-01

    This paper reports on the results of investigation of the distributed parameter model, the difference model, and the model of the method of weighted residuals for heat exchangers. By the method of weighted residuals (MWR), the opposite flow heat exchanger system is approximated by low dimension, lumped parameter model. By assuming constant specific heat, constant density, the same form of tube cross-section, the same form of the surface of heat exchange, uniform flow velocity, the linear relation of heat transfer to flow velocity, liquid heat carrier, and the thermal insulation of liquid from outside, fundamental equations are obtained. The experimental apparatus was made of acrylic resin. The response of the temperature at the exit of first liquid to the variation of the flow rate of second liquid was measured and compared with the models. The MWR model shows good approximation for the low frequency region, and as the number of division increases, good approximation spreads to higher frequency region. (Kato, T.)

  6. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2007-01-01

    Full Text Available This study seeks to identify sensitivity tools that will advance our understanding of lumped hydrologic models for the purposes of model improvement, calibration efficiency and improved measurement schemes. Four sensitivity analysis methods were tested: (1 local analysis using parameter estimation software (PEST, (2 regional sensitivity analysis (RSA, (3 analysis of variance (ANOVA, and (4 Sobol's method. The methods' relative efficiencies and effectiveness have been analyzed and compared. These four sensitivity methods were applied to the lumped Sacramento soil moisture accounting model (SAC-SMA coupled with SNOW-17. Results from this study characterize model sensitivities for two medium sized watersheds within the Juniata River Basin in Pennsylvania, USA. Comparative results for the 4 sensitivity methods are presented for a 3-year time series with 1 h, 6 h, and 24 h time intervals. The results of this study show that model parameter sensitivities are heavily impacted by the choice of analysis method as well as the model time interval. Differences between the two adjacent watersheds also suggest strong influences of local physical characteristics on the sensitivity methods' results. This study also contributes a comprehensive assessment of the repeatability, robustness, efficiency, and ease-of-implementation of the four sensitivity methods. Overall ANOVA and Sobol's method were shown to be superior to RSA and PEST. Relative to one another, ANOVA has reduced computational requirements and Sobol's method yielded more robust sensitivity rankings.

  7. A sliding point contact model for the finite element structures code EURDYN

    International Nuclear Information System (INIS)

    Smith, B.L.

    1986-01-01

    A method is developed by which sliding point contact between two moving deformable structures may be incorporated within a lumped mass finite element formulation based on displacements. The method relies on a simple mechanical interpretation of the contact constraint in terms of equivalent nodal forces and avoids the use of nodal connectivity via a master slave arrangement or pseudo contact element. The methodology has been iplemented into the EURDYN finite element program for the (2D axisymmetric) version coupled to the hydro code SEURBNUK. Sample calculations are presented illustrating the use of the model in various contact situations. Effects due to separation and impact of structures are also included. (author)

  8. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty

    Science.gov (United States)

    Schiavazzi, Daniele E.; Baretta, Alessia; Pennati, Giancarlo; Hsia, Tain-Yen; Marsden, Alison L.

    2017-01-01

    Summary Computational models of cardiovascular physiology can inform clinical decision-making, providing a physically consistent framework to assess vascular pressures and flow distributions, and aiding in treatment planning. In particular, lumped parameter network (LPN) models that make an analogy to electrical circuits offer a fast and surprisingly realistic method to reproduce the circulatory physiology. The complexity of LPN models can vary significantly to account, for example, for cardiac and valve function, respiration, autoregulation, and time-dependent hemodynamics. More complex models provide insight into detailed physiological mechanisms, but their utility is maximized if one can quickly identify patient specific parameters. The clinical utility of LPN models with many parameters will be greatly enhanced by automated parameter identification, particularly if parameter tuning can match non-invasively obtained clinical data. We present a framework for automated tuning of 0D lumped model parameters to match clinical data. We demonstrate the utility of this framework through application to single ventricle pediatric patients with Norwood physiology. Through a combination of local identifiability, Bayesian estimation and maximum a posteriori simplex optimization, we show the ability to automatically determine physiologically consistent point estimates of the parameters and to quantify uncertainty induced by errors and assumptions in the collected clinical data. We show that multi-level estimation, that is, updating the parameter prior information through sub-model analysis, can lead to a significant reduction in the parameter marginal posterior variance. We first consider virtual patient conditions, with clinical targets generated through model solutions, and second application to a cohort of four single-ventricle patients with Norwood physiology. PMID:27155892

  9. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing

    2016-09-20

    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing different reaction stages, which are determined by a systematic optimization process to ensure that the separation of different reaction stages with highest accuracy. The procedure is implemented and the model prediction was compared against that from a conventional method, yielding a significantly improved agreement with the experimental data. © 2016 American Chemical Society.

  10. Some error estimates for the lumped mass finite element method for a parabolic problem

    KAUST Repository

    Chatzipantelidis, P.; Lazarov, R. D.; Thomé e, V.

    2012-01-01

    for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods

  11. Measurement of Hydrologic Streamflow Metrics and Estimation of Streamflow with Lumped Parameter Models in a Managed Lake System, Sebago Lake, Maine

    Science.gov (United States)

    Reeve, A. S.; Martin, D.; Smith, S. M.

    2013-12-01

    Surface waters within the Sebago Lake watershed (southern Maine, USA) provide a variety of economically and intrinsically valuable recreational, commercial and environmental services. Different stakeholder groups for the 118 km2 Sebago Lake and surrounding watershed advocate for different lake and watershed management strategies, focusing on the operation of a dam at the outflow from Sebago Lake. While lake level in Sebago Lake has been monitored for over a century, limited data is available on the hydrologic processes that drive lake level and therefore impact how dam operation (and other changes to the region) will influence the hydroperiod of the lake. To fill this information gap several tasks were undertaken including: 1) deploying data logging pressure transducers to continuously monitor stream stage in nine tributaries, 2) measuring stream discharge at these sites to create rating curves for the nine tributaries, and using the resulting continuous discharge records to 3) calibrate lumped parameter computer models based on the GR4J model, modified to include a degree-day snowmelt routine. These lumped parameter models have been integrated with a simple lake water-balance model to estimate lake level and its response to different scenarios including dam management strategies. To date, about three years of stream stage data have been used to estimate stream discharge in all monitored tributaries (data collection is ongoing). Baseflow separation indices (BFI) for 2010 and 2011 using the USGS software PART and the Eckhart digital filter in WHAT range from 0.80-0.86 in the Crooked River and Richmill Outlet,followed by Northwest (0.75) and Muddy (0.53-0.56) Rivers, with the lowest BFI measured in Sticky River (0.41-0.56). The BFI values indicate most streams have significant groundwater (or other storage) inputs. The lumped parameter watershed model has been calibrated for four streams (Nash-Sutcliffe = 0.4 to 0.9), with the other major tributaries containing

  12. An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation

    International Nuclear Information System (INIS)

    Besagni, Giorgio; Mereu, Riccardo; Chiesa, Paolo; Inzoli, Fabio

    2015-01-01

    Highlights: • We validate a CFD approach for a convergent nozzle ejector using global and local measurement. • We evaluate seven RANS turbulence models for convergent nozzle ejector. • We introduce a lumped parameter model for on-design and off-design ejector performance evaluation. • We analyze the relationship between local flow behavior and lumped parameters of the model. • We discuss how to improve predicting capabilities of the model by variable parameters calibrated on CFD simulations. - Abstract: This paper presents an Integrated Lumped Parameter Model-Computational Fluid-Dynamics approach for off-design ejector performance evaluation. The purpose of this approach is to evaluate the entrainment ratio, for a fixed geometry, in both on-design and off-design operating conditions. The proposed model is based on a Lumped Parameter Model (LPM) with variable ejector component efficiencies provided by CFD simulations. The CFD results are used for developing maps for ejector component efficiencies in a broad range of operating conditions. The ejector component efficiency maps couple the CFD and the LPM techniques for building an Integrated LPM-CFD approach. The proposed approach is demonstrated for a convergent nozzle ejector and the paper is structured in four parts. At first, the CFD approach is validated by global and local data and seven Reynolds Averaged Navier Stokes (RANS) turbulence models are compared: the k–ω SST showed good performance and was selected for the rest of the analysis. At second, a Lumped Parameter Model (LPM) for subsonic ejector is developed and the ejector component efficiencies have been defined. At third, the CFD approach is used to investigate the flow field, to analyze its influence on ejector component efficiencies and to propose efficiency correlations and maps linking ejector component efficiencies and local flow quantities. In the last part, the efficiency maps are embedded into the lumped parameter model, thus creating

  13. Advertising Pricing Models in Media Markets: Lump-Sum versus Per-Consumer Charges

    OpenAIRE

    Helmut Dietl; Markus Lang; Panlang Lin

    2012-01-01

    This paper develops a model of asymmetric competition between a pay and a free media platform. The pay media platform generates revenues from media consumers through subscription fees, while the free media platform generates revenues from charging advertisers either on a lump-sum basis (regime A) or on a per-consumer basis (regime B). We show that the free platform produces a higher advertising level and attracts more consumers in regime A than B although advertisers must pay more for ads and...

  14. lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models

    Science.gov (United States)

    Pilz, Tobias; Francke, Till; Bronstert, Axel

    2017-08-01

    The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.

  15. Cytomorphological study of palpable breast lumps

    Directory of Open Access Journals (Sweden)

    PK Choudhary

    2015-09-01

    Full Text Available Background: Breast lump is a very common clinical presentation for which fine needle aspiration cytology is often sought for. Because of it’s significant diagnositic value, FNAC has become a routine tool in the evaluation of the nature of the lesion. The objective of this study was to determine the cytomorphological patterns of breast lump in eastern part of Nepal among individuals attending Nobel Medical College. Materials and Methods: This was a retrospective descriptive study done in department of pathology from December 2012 to June 2015. All individuals presenting with breast lumps was included in this study. FNAC was done as per standard procedure and categorized as per United Kingdom National Health Survey Breast Screening Programme (UK-NHS-BSP categories and further also categorized in to neoplastic and non-neolastic categories. Results: We studied 771 cases of breast lumps. Occurrence of breast lump was more common in female (97.4%. Neoplastic lesions accounted for 84.1% of cases out of which benign comprised of 94.6% and malignant comprised of 5.6%. Common benign lesions observed were that of fibroadenona (264 and fibrocystic changes (204. Ductal carcinoma was the most common malignant lesions. All malignant lesions were observed in older age and female sex population.Conclusion: Most of the cases of breast lumps are benign in nature and very few accounted for malignant cases. There is predominance of benign lesions in young age and increased malignancy in older age and female population. 

  16. A 3D Lumped Thermal Network Model for Long-term Load Profiles Analysis in High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Ghimire, Pramod

    2016-01-01

    )-based simulation is another method which is often used to analyze the steady-state thermal distribution of IGBT modules, but it is not possible to be used for long-term analysis of load profiles of power converter, which is needed for reliability assessments and better thermal design. This paper proposes a novel...... enables both accurate and fast temperature estimation of high power IGBT modules in the real loading conditions of the converter; meanwhile the critical details of the thermal dynamics and thermal distribution are also maintained. The proposed thermal model is verified by both FEM simulation......The conventional RC lumped thermal networks are widely used to estimate the temperature of power devices, but they are lack of accuracy in addressing detailed thermal behaviors/couplings in different locations and layers of the high power IGBT modules. On the other hand, Finite Element (FE...

  17. Development of a macro-element by condensation, shown for the load categories of aircraft crash and seismic events, for soil-structure interaction in the case of flexible foundation

    International Nuclear Information System (INIS)

    Matthees, W.

    1989-01-01

    This report presents the results of a three-dimensional model developed for the analysis of soil-structure interaction problems. The realistic treatment of the stiffness for the foundation plate avoids the restriction of lumped parameter models for one-dimensional beam-models with a rigid plate or for multi-dimensional models with distributed lumped parameters. The soil-behaviour is defined by the condensation of a limited soil section, called macro-element. An improved matrix radiation damping comparable with lumped parameters is resultant from the condensation of viscous dampers, situated along the boundaries of the soil section. The finess of discretization is similar for the soil and for the structure. The method is presented in the time domain for a linear axisymmetric code with lumped mass having a consistent mass coupling of the macro-element. By application of the macro-element a realistic three-dimensional system may be analyzed with a reasonable numerical effort. (orig.) With 80 figs., 3 tabs [de

  18. Intermittent reservoir daily-inflow prediction using lumped and ...

    Indian Academy of Sciences (India)

    For the present case study considered, both MLR and ARIMA models performed ... is to be remembered that the transformation of ... Multi-linear regression; lumped and distributed data; time-series models; cause-effect ... flow data are short for adequate system study. ..... that the standard deviation, skewness, kurtosis.

  19. Rational Solutions and Lump Solutions of the Potential YTSF Equation

    Science.gov (United States)

    Sun, Hong-Qian; Chen, Ai-Hua

    2017-07-01

    By using of the bilinear form, rational solutions and lump solutions of the potential Yu-Toda-Sasa-Fukuyama (YTSF) equation are derived. Dynamics of the fundamental lump solution, n1-order lump solutions, and N-lump solutions are studied for some special cases. We also find some interaction behaviours of solitary waves and one lump of rational solutions.

  20. 7 CFR 1726.205 - Multiparty lump sum quotations.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Multiparty lump sum quotations. 1726.205 Section 1726....205 Multiparty lump sum quotations. The borrower or its engineer must contact a sufficient number of... basis of written lump sum quotations, the borrower will select the supplier or contractor based on the...

  1. Application of Biologically Based Lumping To Investigate the Toxicokinetic Interactions of a Complex Gasoline Mixture.

    Science.gov (United States)

    Jasper, Micah N; Martin, Sheppard A; Oshiro, Wendy M; Ford, Jermaine; Bushnell, Philip J; El-Masri, Hisham

    2016-03-15

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. We developed an approach that applies chemical lumping methods to complex mixtures, in this case gasoline, based on biologically relevant parameters used in physiologically based pharmacokinetic (PBPK) modeling. Inhalation exposures were performed with rats to evaluate the performance of our PBPK model and chemical lumping method. There were 109 chemicals identified and quantified in the vapor in the chamber. The time-course toxicokinetic profiles of 10 target chemicals were also determined from blood samples collected during and following the in vivo experiments. A general PBPK model was used to compare the experimental data to the simulated values of blood concentration for 10 target chemicals with various numbers of lumps, iteratively increasing from 0 to 99. Large reductions in simulation error were gained by incorporating enzymatic chemical interactions, in comparison to simulating the individual chemicals separately. The error was further reduced by lumping the 99 nontarget chemicals. The same biologically based lumping approach can be used to simplify any complex mixture with tens, hundreds, or thousands of constituents.

  2. Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.

    Science.gov (United States)

    Werner, J; Buse, M; Foegen, A

    1989-01-01

    In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.

  3. Lump solutions to the Kadomtsev–Petviashvili equation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wen-Xiu, E-mail: mawx@cas.usf.edu

    2015-09-25

    Through symbolic computation with Maple, a class of lump solutions, rationally localized in all directions in the space, to the (2 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation is presented, making use of its Hirota bilinear form. The resulting lump solutions contain six free parameters, two of which are due to the translation invariance of the KP equation and the other four of which satisfy a non-zero determinant condition guaranteeing analyticity and rational localization of the solutions. Three contour plots with different determinant values are sequentially made to show that the corresponding lump solution tends to zero when the determinant approaches zero. Two particular lump solutions with specific values of the involved parameters are plotted, as illustrative examples. - Highlights: • Positive quadratic function solutions. • Solitons rationally-localized in all directions in the space. • Solving systems of nonlinear algebraic equations by symbolic computation with Maple.

  4. Optimal Component Lumping: problem formulation and solution techniques

    DEFF Research Database (Denmark)

    Lin, Bao; Leibovici, Claude F.; Jørgensen, Sten Bay

    2008-01-01

    This paper presents a systematic method for optimal lumping of a large number of components in order to minimize the loss of information. In principle, a rigorous composition-based model is preferable to describe a system accurately. However, computational intensity and numerical issues restrict ...

  5. Lumped element modelling of superconducting circuits with SPICE

    CERN Document Server

    Baveco, Maurice Antoine

    2015-01-01

    In this project research is carried out aimed at benchmarking a general-purpose circuit simulation software tool (”SPICE”). The project lasted for 8 weeks, from 29 June 2015 until 21 August 2015 at Performance Evaluation section at CERN. The goal was to apply it on a model of superconducting magnets, namely the main dipole circuit (RB circuit) of the the LHC (Large Hadron Collider), developed by members of the section. Then the strengths and the flaws of the tool were investigated. Transient effects were the main simulation focus point. In the first stage a simplified RB circuit was modelled in SPICE based on subcircuits. The first results were promising but still not with a perfect agreement. After implementing more detailed subcircuits there is an improvement and promising agreement achieved between SPICE and the results of the paper (PSpice) [2]. In general there are more strengths than drawbacks of simulating with SPICE. For example, it should have a shorter simulation time than PSpice for the same mo...

  6. Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays

    NARCIS (Netherlands)

    Visser, Sid; Meijer, Hil G.E.; van Putten, Michel J.A.M.; van Gils, Stephan A.

    2012-01-01

    A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential

  7. Towards a lumped reaction model for future designer fuels

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, A.; Wright, Y.M.; Boulouchos, K. [ETH Zurich, Aerothermochemistry and Combustion Systems Laboratory, Zurich (Switzerland). Inst. of Energy Technology

    2009-07-01

    The homogeneous charge compression ignition (HCCI) is one of the most promising engine processes to simultaneously reduce nitrogen oxide and soot emissions. However, its applicability is hindered by its relatively limited operating range. Designer fuels offer unique possibilities for tailoring evaporation and auto-ignition properties, offering a means to control and expand the HCCI operation range. The identification of HCCI relevant fuel properties as well as the definition of a new fuel index able to describe a fuels suitability for HCCI was required in order to develop such designer fuels. This paper discussed a numerical and experimental investigation of a large set of technical fuels covering a wide range of properties. The paper discussed mechanism development approaches, optimization of the lumped mechanism, and and results. Zheng's 7-step reaction mechanism was successfully coupled with a genetic optimization algorithm and fitted to n-heptane ignition delay data. It was concluded that the presented coupled approach could improve the predictive quality of the model and demonstrate that the Zheng model was sufficiently elaborate to emulate the influence of temperature, pressure, exhaust gas recirculation and lambda on ignition. 8 refs., 1 tab., 3 figs.

  8. Towards a lumped reaction model for future designer fuels

    International Nuclear Information System (INIS)

    Vandersickel, A.; Wright, Y.M.; Boulouchos, K.

    2009-01-01

    The homogeneous charge compression ignition (HCCI) is one of the most promising engine processes to simultaneously reduce nitrogen oxide and soot emissions. However, its applicability is hindered by its relatively limited operating range. Designer fuels offer unique possibilities for tailoring evaporation and auto-ignition properties, offering a means to control and expand the HCCI operation range. The identification of HCCI relevant fuel properties as well as the definition of a new fuel index able to describe a fuels suitability for HCCI was required in order to develop such designer fuels. This paper discussed a numerical and experimental investigation of a large set of technical fuels covering a wide range of properties. The paper discussed mechanism development approaches, optimization of the lumped mechanism, and and results. Zheng's 7-step reaction mechanism was successfully coupled with a genetic optimization algorithm and fitted to n-heptane ignition delay data. It was concluded that the presented coupled approach could improve the predictive quality of the model and demonstrate that the Zheng model was sufficiently elaborate to emulate the influence of temperature, pressure, exhaust gas recirculation and lambda on ignition. 8 refs., 1 tab., 3 figs.

  9. Use of Lump Parameter Codes at SNSA

    International Nuclear Information System (INIS)

    Muehleisen, A.

    2006-01-01

    The lump parameter codes are due to the specifics of Slovenian regulation used only in a very limited scope by the SNSA itself. The law requires that most of the analysis needed for regulatory decision making have to be performed by technical support organisations (TSOs). The use of lump parameter codes is therefore limited to the amount needed to maintain necessary technical competence and to support, to a degree, the reasoning for raising new issues and methodologies. SNSA has available its own NPP MELCOR model and uses for its own purposes NPP Krsko RELAP model. RELAP model is also part of the SNSA NPA analyser. Here presented recent uses at SNSA include use of NPA in support of a project, aimed at estimating maturity and uses of CFD codes for regulatory purposes, transition from MELCOR 1.8.3 to 1.8.5 model and its validation, developing MELCOR PAR model and use of NPA for training purposes. NPA use in support of investigation of CFD usability has been in performing lump parameter code calculation against which the CFD results could be compared. The case of SI injection and the following boron distribution in the reactor vessel has been used for this purpose. The comparison showed that for the particular case there is no urgent need for CFD code calculations, nevertheless the project clearly demonstrated wealth of additional information that can be gained by the use of CFD code. As far as MELCOR model is concerned, only transition of the model to the newer code version has been performed and PAR input prepared and tested. Even though there is a feeling at SNSA that some preliminary analysis with it (such as analysis of typical accidents with PARs present and analysis in support of wet cavity modification) would be useful as a support for decision making as well as for simple training purposes we have not been able to perform them due to other priorities and lack of human resources. SNSA is additionally tasked with support to TSOs in their efforts to maintain and

  10. Single lump breast surface stress assessment study

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Paitong, P.; Alcain, J. B.; Lai, S. L.; Retnasamy, V.

    2017-09-01

    Breast cancer is one of the commonest cancers diagnosed among women around the world. Simulation approach has been utilized to study, characterize and improvise detection methods for breast cancer. However, minimal simulation work has been done to evaluate the surface stress of the breast with lumps. Thus, in this work, simulation analysis was utilized to evaluate and assess the breast surface stress due to the presence of a lump within the internal structure of the breast. The simulation was conducted using the Elmer software. Simulation results have confirmed that the presence of a lump within the breast causes stress on the skin surface of the breast.

  11. Development of CAP code for nuclear power plant containment: Lumped model

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon, E-mail: sjhong90@fnctech.com [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech. Co. Ltd., Heungdeok 1 ro 13, Giheung-gu, Yongin-si, Gyeonggi-do 446-908 (Korea, Republic of); Ha, Sang Jun [Central Research Institute, Korea Hydro & Nuclear Power Company, Ltd., 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-09-15

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP.

  12. Development of CAP code for nuclear power plant containment: Lumped model

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Hwang, Su Hyun; Lee, Byung Chul; Ha, Sang Jun

    2015-01-01

    Highlights: • State-of-art containment analysis code, CAP, has been developed. • CAP uses 3-field equations, water level oriented upwind scheme, local head model. • CAP has a function of linked calculation with reactor coolant system code. • CAP code assessments showed appropriate prediction capabilities. - Abstract: CAP (nuclear Containment Analysis Package) code has been developed in Korean nuclear society for the analysis of nuclear containment thermal hydraulic behaviors including pressure and temperature trends and hydrogen concentration. Lumped model of CAP code uses 2-phase, 3-field equations for fluid behaviors, and has appropriate constitutive equations, 1-dimensional heat conductor model, component models, trip and control models, and special process models. CAP can run in a standalone mode or a linked mode with a reactor coolant system analysis code. The linked mode enables the more realistic calculation of a containment response and is expected to be applicable to a more complicated advanced plant design calculation. CAP code assessments were carried out by gradual approaches: conceptual problems, fundamental phenomena, component and principal phenomena, experimental validation, and finally comparison with other code calculations on the base of important phenomena identifications. The assessments showed appropriate prediction capabilities of CAP

  13. Method for Lumped Parameter simulation of Digital Displacement pumps/motors based on CFD

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital displacement fluid power pumps/motors offers improved efficiency and performance compared to traditional variable displacement pump/motors. These improvements are made possible by using efficient electronically controlled seat valves and careful design of the flow geometry. To optimize...... the design and control of digital displacement machines, there is a need for simulation models, preferably models with low computational cost. Therefore, a low computational cost generic lumped parameter model of digital displacement machine is presented, including a method for determining the needed model...... parameters based on steady CFD results, in order to take detailed geometry information into account. The response of the lumped parameter model is compared to a computational expensive transient CFD model for an example geometry....

  14. Simplified microstrip discontinuity modeling using the transmission line matrix method interfaced to microwave CAD

    Science.gov (United States)

    Thompson, James H.; Apel, Thomas R.

    1990-07-01

    A technique for modeling microstrip discontinuities is presented which is derived from the transmission line matrix method of solving three-dimensional electromagnetic problems. In this technique the microstrip patch under investigation is divided into an integer number of square and half-square (triangle) subsections. An equivalent lumped-element model is calculated for each subsection. These individual models are then interconnected as dictated by the geometry of the patch. The matrix of lumped elements is then solved using either of two microwave CAD software interfaces with each port properly defined. Closed-form expressions for the lumped-element representation of the individual subsections is presented and experimentally verified through the X-band frequency range. A model demonstrating the use of symmetry and block construction of a circuit element is discussed, along with computer program development and CAD software interface.

  15. 28 CFR 523.16 - Lump sum awards.

    Science.gov (United States)

    2010-07-01

    ... satisfactory performance of an unusually hazardous assignment; (c) An act which protects the lives of staff or... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.16 Lump sum awards. Any staff member may recommend... award is calculated. No seniority is accrued for such awards. Staff may recommend lump sum awards of...

  16. The application of model with lumped parameters for transient condition analyses of NPP

    International Nuclear Information System (INIS)

    Stankovic, B.; Stevanovic, V.

    1985-01-01

    The transient behaviour of NPP Krsko during the accident of pressurizer spray valve stuck open has been simulated y lumped parameters model of the PWR coolant system components, developed at the faculty of Mechanical Engineering, University of Belgrade. The elementary volumes which are characterised by the process and state parameters, and by junctions which are characterised by the geometrical and flow parameters are basic structure of physical model. The process parameters obtained by the model RESI, show qualitative agreement with the measured valves, in a degree in which the actions of reactor safety engineered system and emergency core cooling system are adequately modelled; in spite of the elementary physical model structure and only the modelling of thermal process in reactor core and equilibrium conditions of pressurizer and steam generator. The pressurizer pressure and liquid level predicted by the non-equilibrium pressurizer model SOP show good agreement until the HIPS (high pressure pumps) is activated. (author)

  17. Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)

    Science.gov (United States)

    Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.

    2018-05-01

    A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.

  18. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach

    Science.gov (United States)

    Garavaglia, Federico; Le Lay, Matthieu; Gottardi, Fréderic; Garçon, Rémy; Gailhard, Joël; Paquet, Emmanuel; Mathevet, Thibault

    2017-08-01

    Model intercomparison experiments are widely used to investigate and improve hydrological model performance. However, a study based only on runoff simulation is not sufficient to discriminate between different model structures. Hence, there is a need to improve hydrological models for specific streamflow signatures (e.g., low and high flow) and multi-variable predictions (e.g., soil moisture, snow and groundwater). This study assesses the impact of model structure on flow simulation and hydrological realism using three versions of a hydrological model called MORDOR: the historical lumped structure and a revisited formulation available in both lumped and semi-distributed structures. In particular, the main goal of this paper is to investigate the relative impact of model equations and spatial discretization on flow simulation, snowpack representation and evapotranspiration estimation. Comparison of the models is based on an extensive dataset composed of 50 catchments located in French mountainous regions. The evaluation framework is founded on a multi-criterion split-sample strategy. All models were calibrated using an automatic optimization method based on an efficient genetic algorithm. The evaluation framework is enriched by the assessment of snow and evapotranspiration modeling against in situ and satellite data. The results showed that the new model formulations perform significantly better than the initial one in terms of the various streamflow signatures, snow and evapotranspiration predictions. The semi-distributed approach provides better calibration-validation performance for the snow cover area, snow water equivalent and runoff simulation, especially for nival catchments.

  19. Uncovering and testing the fuzzy clusters based on lumped Markov chain in complex network.

    Science.gov (United States)

    Jing, Fan; Jianbin, Xie; Jinlong, Wang; Jinshuai, Qu

    2013-01-01

    Identifying clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. By means of a lumped Markov chain model of a random walker, we propose two novel ways of inferring the lumped markov transition matrix. Furthermore, some useful results are proposed based on the analysis of the properties of the lumped Markov process. To find the best partition of complex networks, a novel framework including two algorithms for network partition based on the optimal lumped Markovian dynamics is derived to solve this problem. The algorithms are constructed to minimize the objective function under this framework. It is demonstrated by the simulation experiments that our algorithms can efficiently determine the probabilities with which a node belongs to different clusters during the learning process and naturally supports the fuzzy partition. Moreover, they are successfully applied to real-world network, including the social interactions between members of a karate club.

  20. Pembelajaran Seni Tari Kuda Lumping Di Desa Dukuhwaluh Kecamatan Kembaran Kab. Banyumas

    OpenAIRE

    Daryanto, Daryanto

    2011-01-01

    The goals this research were to determine: 1). What are the requirements given to prospective players of Kuda Lumping; 2). What material provided and what methods are used in training Kuda Lumping; 3). What is the cost required to conduct training of Kuda Lumping, and from which source. 4). How long does it take to produce players who are ready to perform Kuda Lumping showcased in front of an audience. From the research result shows that: 1. Requirements given to players of Kuda Lumping...

  1. PEMBELAJARAN SENI TARI KUDA LUMPING DI DESA DUKUHWALUH KECAMATAN KEMBARAN KAB. BANYUMAS

    OpenAIRE

    Daryanto Daryanto

    2011-01-01

    The goals this research were to determine: 1). What are the requirements given to prospective players of Kuda Lumping; 2). What material provided and what methods are used in training Kuda Lumping; 3). What is the cost required to conduct training of Kuda Lumping, and from which source. 4). How long does it take to produce players who are ready to perform Kuda Lumping showcased in front of an audience. From the research result shows that: 1. Requirements given to players of Kuda Lumping...

  2. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  3. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  4. PEMBELAJARAN SENI TARI KUDA LUMPING DI DESA DUKUHWALUH KECAMATAN KEMBARAN KAB. BANYUMAS

    Directory of Open Access Journals (Sweden)

    Daryanto Daryanto

    2011-03-01

    Full Text Available The goals this research were to determine: 1. What are the requirements given to prospective players of Kuda Lumping; 2. What material provided and what methods are used in training Kuda Lumping; 3. What is the cost required to conduct training of Kuda Lumping, and from which source. 4. How long does it take to produce players who are ready to perform Kuda Lumping showcased in front of an audience. From the research result shows that: 1. Requirements given to players of Kuda Lumping (Ebeg, are namely: (1 has Kuda Lumping, (2 can dance in group / compact dance, (3 perform the ritual bathing and diving in rivers and (4 conduct ”Ngasrep” or fasting for 3 (three days without stopping. 2. The practice material was first given to prospective players Kuda Lumping is dance. In practing the dance material, the new dancers were directly guided by the seniors. The method used is by giving examples of dancing by the senior players to prospective players. When giving examples accompanied by gamelan / music, while dancer candidates of Kuda Lumping followed. 3. Fee required for training activities at least IDR 400,000,- (four hundred thousand rupiah. This cost does not include the cost to buy a kuda lumping. Sources of cost comes from the self-help group members of kuda lumping, like dalang ( director of the dance and local people. It means the training and activities of Kuda Lumping, did not receive funding / donations from the government, both the village and district governments. The cost for training activities was used to rent the gamelan, to purchase clothing / costume players, “sesaji”, consumption and honorariums. 4. To train / produce, it take a player at least 3.5 (three and a half months and a maximum of 7 (seven months. This calculation is based on the starting time of dance exercise, until doing the bath in the river as the last stage. Key Wordsi: Kuda lumping, learning ,ngasrep, ritual of bathe, ritual offerings, wayang,

  5. Lump Sum Moving Cost and Aggregate Office Space Use

    NARCIS (Netherlands)

    G. Romijn

    1997-01-01

    textabstractWhen firms decide to change office space use, in many instances this involves relocation. Relocation involves sizable costs to the firm that can to a large extent be characterized as lump sum, i.e. independent of the change in demand. In this paper we propose and solve a model of the

  6. An efficient finite element solution for gear dynamics

    International Nuclear Information System (INIS)

    Cooley, C G; Parker, R G; Vijayakar, S M

    2010-01-01

    A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.

  7. Comments on lump solutions in SFT

    International Nuclear Information System (INIS)

    Bonora, Loriano; Tolla, Driba D.

    2016-01-01

    We analyze a recently proposed scheme to construct analytic lump solutions in open SFT. We argue that in order for the scheme to be operative and to guarantee background independence it must be implemented in the same 2D conformal field theory in which SFT is formulated. We outline and discuss two different possible approaches. Next we reconsider an older proposal for analytic lump solutions and implement a few improvements. In the course of the analysis we formulate a distinction between regular and singular gauge transformations and advocate the necessity of defining a topology in the space of string fields. (orig.)

  8. Comments on lump solutions in SFT

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, Loriano; Tolla, Driba D. [International School for Advanced Studies (SISSA), Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy)

    2016-04-15

    We analyze a recently proposed scheme to construct analytic lump solutions in open SFT. We argue that in order for the scheme to be operative and to guarantee background independence it must be implemented in the same 2D conformal field theory in which SFT is formulated. We outline and discuss two different possible approaches. Next we reconsider an older proposal for analytic lump solutions and implement a few improvements. In the course of the analysis we formulate a distinction between regular and singular gauge transformations and advocate the necessity of defining a topology in the space of string fields. (orig.)

  9. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.

  10. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    International Nuclear Information System (INIS)

    Carey, D.C.

    1999-01-01

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE

  11. Importance theory for lumped-parameter systems

    International Nuclear Information System (INIS)

    Cady, K.B.; Kenton, M.A.; Ward, J.C.; Piepho, M.G.

    1981-01-01

    A general sensitivity theory has been developed for nonlinear lumped parameter system simulations. The point of departure is general perturbation theory for nonlinear systems. Importance theory as developed here allows the calculation of the sensitivity of a response function to any physical or design parameter; importance of any equation or term or physical effect in the system model on the response function; variance of the response function caused by the variances and covariances of all physical parameters; and approximate effect on the response function of missing physical phenomena or incorrect parameters

  12. Optimum Design and Operation of Cyclic Storage Systems; Lumped Approach

    Directory of Open Access Journals (Sweden)

    Leila Ostadrahimi

    2007-01-01

    Full Text Available Conjunctive use of surface and groundwater resources is a preferred approach in water resources management. Compared to dam construction, groundwater has certain advantages, among which are less costs, less sedimentation and evaporation, fewer water quality problems, and less social and cultural problems. To reduce the major problems associated with the development of large-scale surface impoundment systems, cyclic storage systems can be used as an alternative. A cyclic storage system (CYCS is an integrated interactive system consisting of two subsystems of surface water storage (reservoir and groundwater; this system together with artificial recharge is able to satisfy the predefined demands with rather high reliability. In order to optimize these systems, one must consider the hydraulic interactions between all the components, but unfortunately it has been neglected in many studies. In this article, a nonlinear optimization model for design and operation of cyclic storage systems has been developed using the lumped approach. In order to evaluate the model, its results have been compared with the results of a model in which distributed approach had been deployed, and so the efficiency of lumped models to solve the problems of cyclic storage systems has been investigated.

  13. Genetic Algorithms for Estimating Effective Parameters in a Lumped Reactor Model for Reactivity Predictions

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico

    2001-01-01

    The control system of a reactor should be able to predict, in real time, the amount of reactivity to be inserted (e.g., by control rod movements and boron injection and dilution) to respond to a given electrical load demand or to undesired, accidental transients. The real-time constraint renders impractical the use of a large, detailed dynamic reactor code. One has, then, to resort to simplified analytical models with lumped effective parameters suitably estimated from the reactor data.The simple and well-known Chernick model for describing the reactor power evolution in the presence of xenon is considered and the feasibility of using genetic algorithms for estimating the effective nuclear parameters involved and the initial nonmeasurable xenon and iodine conditions is investigated. This approach has the advantage of counterbalancing the inherent model simplicity with the periodic reestimation of the effective parameter values pertaining to each reactor on the basis of its recent history. By so doing, other effects, such as burnup, are automatically taken into account

  14. The role of men in early detection of their spouses' breast lump(s ...

    African Journals Online (AJOL)

    We aim to determine whether men can be of help in the early detection of lumps in their spouses' breast. 230 questionnaires were administered to married men. The responses were accepted as “yes” or “no. 217 men (94.35%) responded. 195 (89.86%) were aware of breast cancer. 212 ( 97.7%) were either Christians or ...

  15. Characterization of an air jet haptic lump display.

    Science.gov (United States)

    Bianchi, Matteo; Gwilliam, James C; Degirmenci, Alperen; Okamura, Allison M

    2011-01-01

    During manual palpation, clinicians rely on distributed tactile information to identify and localize hard lumps embedded in soft tissue. The development of tactile feedback systems to enhance palpation using robot-assisted minimally invasive surgery (RMIS) systems is challenging due to size and weight constraints, motivating a pneumatic actuation strategy. Recently, an air jet approach has been proposed for generating a lump percept. We use this technique to direct a thin stream of air through an aperture directly on the finger pad, which indents the skin in a hemispherical manner, producing a compelling lump percept. We hypothesize that the perceived parameters of the lump (e.g. size and stiffness) can be controlled by jointly adjusting air pressure and the aperture size through which air escapes. In this work, we investigate how these control variables interact to affect perceived pressure on the finger pad. First, we used a capacitive tactile sensor array to measure the effect of aperture size on output pressure, and found that peak output pressure increases with aperture size. Second, we performed a psychophysical experiment for each aperture size to determine the just noticeable difference (JND) of air pressure on the finger pad. Subject-averaged pressure JND values ranged from 19.4-24.7 kPa, with no statistical differences observed between aperture sizes. The aperture-pressure relationship and the pressure JND values will be fundamental for future display control.

  16. Rutting resistance of asphalt mixture with cup lumps modified binder

    Science.gov (United States)

    Shaffie, E.; Hanif, W. M. M. Wan; Arshad, A. K.; Hashim, W.

    2017-11-01

    Rutting is the most common pavement distress in pavement structures which occurs mainly due to several factors such as increasing of traffic volume, climatic conditions and also due to construction design errors. This failure reduced the service life of the pavement, reduced driver safety and increase cost of maintenance. Polymer Modified Binder has been observed for a long time in improving asphalt pavement performance. Research shows that the use of polymer in bituminous mix not only improve the resistance to rutting but also increase the life span of the pavement. This research evaluates the physical properties and rutting performance of dense graded Superpave-designed HMA mix. Two different types of dense graded Superpave HMA mix were developed consists of unmodified binder mix (UMB) and cup lumps rubber (liquid form) modified binder mix (CLMB). Natural rubber polymer modified binder was prepared from addition of 8 percent of cup lumps into binder. Results showed that all the mixes passed the Superpave volumetric properties criteria which indicate that these mixtures were good with respect to durability and flexibility. Furthermore, rutting results from APA rutting test was determined to evaluate the performance of these mixtures. The rutting result of CLMB demonstrates better resistance to rutting than those prepared using UMB mix. Addition of cup lumps rubber in asphalt mixture was found to be significant, where the cup lumps rubber has certainly improves the binder properties and enhanced its rutting resistance due to greater elasticity offered by the cup lumps rubber particles. It shows that the use of cup lumps rubber can significantly reduce the rut depth of asphalt mixture by 41% compared to the minimum rut depth obtained for the UMB mix. Therefore, it can be concluded that the cup lumps rubber is suitable to be used as a modifier to modified binder in order to enhance the properties of the binder and thus improves the performance of asphalt mixes.

  17. A simplified lumped model for the optimization of post-buckled beam architecture wideband generator

    Science.gov (United States)

    Liu, Weiqun; Formosa, Fabien; Badel, Adrien; Hu, Guangdi

    2017-11-01

    Buckled beams structures are a classical kind of bistable energy harvesters which attract more and more interests because of their capability to scavenge energy over a large frequency band in comparison with linear generator. The usual modeling approach uses the Galerkin mode discretization method with relatively high complexity, while the simplification with a single-mode solution lacks accuracy. It stems on the optimization of the energy potential features to finally define the physical and geometrical parameters. Therefore, in this paper, a simple lumped model is proposed with explicit relationship between the potential shape and parameters to allow efficient design of bistable beams based generator. The accuracy of the approximation model is studied with the effectiveness of application analyzed. Moreover, an important fact, that the bending stiffness has little influence on the potential shape with low buckling level and the sectional area determined, is found. This feature extends the applicable range of the model by utilizing the design of high moment of inertia. Numerical investigations demonstrate that the proposed model is a simple and reliable tool for design. An optimization example of using the proposed model is demonstrated with satisfactory performance.

  18. Dynamic modelling as an element of the availibility and process oriented behaviour investigation of complex power plants; Dynamische Modellbildung als Element von verfuegbarkeits- und prozessorientierten Untersuchungen komplexer kraftwerkstechnischer Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Klatt, M.

    2007-12-20

    A software-tool was developed, which, with its specially built component library, allows the modelling of availability and dynamic behaviour of large scale power plant units. The requested graphic representation near to the process flow schema required a search for new ways of data and information flow modelling. The large quantity of components of a power plant unit with its most important components thereby requires a block oriented modelling approach based on lumped and distributed lumped parameters. (orig.)

  19. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  20. Correlation of Fukushima data with SSI models

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.

    1985-01-01

    The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problem. The objective of this work is to compare predicted response using the standard lumped parameter models with experimental data. These comparisons are shown to be good for fairly uniform soil systems. (orig.)

  1. airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models

    Science.gov (United States)

    Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre

    2017-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated

  2. Lumped transmission line avalanche pulser

    Science.gov (United States)

    Booth, Rex

    1995-01-01

    A lumped linear avalanche transistor pulse generator utilizes stacked transistors in parallel within a stage and couples a plurality of said stages, in series with increasing zener diode limited voltages per stage and decreasing balanced capacitance load per stage to yield a high voltage, high and constant current, very short pulse.

  3. Generalized Kutta–Joukowski theorem for multi-vortex and multi-airfoil flow (a lumped vortex model

    Directory of Open Access Journals (Sweden)

    Bai Chenyuan

    2014-02-01

    Full Text Available For purpose of easy identification of the role of free vortices on the lift and drag and for purpose of fast or engineering evaluation of forces for each individual body, we will extend in this paper the Kutta–Joukowski (KJ theorem to the case of inviscid flow with multiple free vortices and multiple airfoils. The major simplification used in this paper is that each airfoil is represented by a lumped vortex, which may hold true when the distances between vortices and bodies are large enough. It is found that the Kutta–Joukowski theorem still holds provided that the local freestream velocity and the circulation of the bound vortex are modified by the induced velocity due to the outside vortices and airfoils. We will demonstrate how to use the present result to identify the role of vortices on the forces according to their position, strength and rotation direction. Moreover, we will apply the present results to a two-cylinder example of Crowdy and the Wagner example to demonstrate how to perform fast force approximation for multi-body and multi-vortex problems. The lumped vortex assumption has the advantage of giving such kinds of approximate results which are very easy to use. The lack of accuracy for such a fast evaluation will be compensated by a rigorous extension, with the lumped vortex assumption removed and with vortex production included, in a forthcoming paper.

  4. 20 CFR 222.44 - Other relationship determinations for lump-sum payments.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Other relationship determinations for lump... THE RAILROAD RETIREMENT ACT FAMILY RELATIONSHIPS Relationship as Parent, Grandchild, Brother or Sister... have the relationships to the employee shown below for lump-sum payment purposes: (a) Grandchildren. A...

  5. Dark lump excitations in superfluid Fermi gases

    Science.gov (United States)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  6. Dark lump excitations in superfluid Fermi gases

    International Nuclear Information System (INIS)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity

  7. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    KAUST Repository

    Karam, Ayman M.; Alsaadi, Ahmad Salem; Ghaffour, NorEddine; Laleg-Kirati, Taous-Meriem

    2016-01-01

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  8. Analysis of direct contact membrane distillation based on a lumped-parameter dynamic predictive model

    KAUST Repository

    Karam, Ayman M.

    2016-10-03

    Membrane distillation (MD) is an emerging technology that has a great potential for sustainable water desalination. In order to pave the way for successful commercialization of MD-based water desalination techniques, adequate and accurate dynamical models of the process are essential. This paper presents the predictive capabilities of a lumped-parameter dynamic model for direct contact membrane distillation (DCMD) and discusses the results under wide range of steady-state and dynamic conditions. Unlike previous studies, the proposed model captures the time response of the spacial temperature distribution along the flow direction. It also directly solves for the local temperatures at the membrane interfaces, which allows to accurately model and calculate local flux values along with other intrinsic variables of great influence on the process, like the temperature polarization coefficient (TPC). The proposed model is based on energy and mass conservation principles and analogy between thermal and electrical systems. Experimental data was collected to validated the steady-state and dynamic responses of the model. The obtained results shows great agreement with the experimental data. The paper discusses the results of several simulations under various conditions to optimize the DCMD process efficiency and analyze its response. This demonstrates some potential applications of the proposed model to carry out scale up and design studies. © 2016

  9. A lumped parameter core dynamics model for MTR type research reactors under natural convection regime

    International Nuclear Information System (INIS)

    Ardaneh, Kazem; Zaferanlouei, Salman

    2013-01-01

    Highlights: ► A model is presented to simulate the reactivity insertion transient in MTR reactors. ► Transient dynamics of IAEA 10 MW MTR type research reactor are evaluated. ► Maximum unprotected reactivity insertion for safe condition is calculated. ► The model predictions are validated with corresponding results in the literature. - Abstract: On the basis of lumped parameter modeling of both the kinetic and thermal–hydraulic effects, a reasonably accurate simplified model has been developed to predict the dynamic response of MTR reactors following to an unprotected reactivity insertion under natural convection regime. By this model the reactor transient behavior at a given initial steady-state can be solved by a set of ordinary differential equations. The model predictions have an acceptable consent with corresponding results of reactivity insertion transients analyzed in the literature. The inherent safety characteristics of MTR research reactors utilizing natural convection is clearly demonstrated by the expanded model. The safety margin of reactor operating is selected ONB condition and thereby the proposed model determines that any slight increase in the value of $0.73 for inserted reactivity will cause the maximum cladding surface temperature to exceed the ONB condition

  10. Incidence of malignancy in females presenting with breast lumps in OPD: a study of 277 cases

    International Nuclear Information System (INIS)

    Chaudhary, I.A.; Qureshi, S.K.; Rasul, S.

    2003-01-01

    Objective: To find the incidence of malignancy in females presenting with breast lumps in surgical out patient and to find out the age related incidence of benign and malignant diseases in these patients. Patients and Methods: All cases reporting to surgical outdoor with breast lumps were included and underwent investigation for the breast lumps to determine the histopathological diagnosis. Results: A total of 277 cases were studied. 24.2% breast lumps were malignant and 75.8% were benign. The incidence of malignancy increases from 0% in 2nd decade to 38.9% in 5th and 100% in 9th decade of life. The probability of diagnosing a breast lump as a malignant is one in three in 4th decade, two in five in 5th decade and more than one in two there after. Fibrocystic disease (33.8%) and Fibro adenoma (27.1%) was the commonest finding among the benign lumps. Among malignant lumps infiltrating duct carcinoma (68.7%) is the commonest finding. Conclusion: There is a significantly high incidence of malignant breast lumps after the 3rd decade of life and it increases subsequently. It is recommended that the surgeon managing a case of breast lump in a patient above 30 years should be highly suspicious and cautious so that early detection and management of malignant lumps be carried out. (author)

  11. Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method

    International Nuclear Information System (INIS)

    Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.

    1981-01-01

    A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model

  12. Preparation of lumped fission product (FP) cross sections for a multigroup library

    International Nuclear Information System (INIS)

    Ono, S.; Corcuera, R.P.

    1984-01-01

    A method for the calculation of lumped Fission Product (FP) cross sections has been developed. The group constants fo each nuclide are generated by NJOY code, based on ENDF/B-V data. In this first version, cross section of 28 nuclides are lumped for typical characteristics of Binary Breeder Reactor (BBR). One energy group calculations are made for a 1000 MWe fast reactor to verify the influence of burnup, number of FP and fuel composition on the lumped fission product cross sections. (Author) [pt

  13. Reduction in thermal conductivity of BiSbTe lump

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Kaleem [King Saud University, Sustainable Energy Technologies Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia); Wan, C. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Beijing (China); Al-Eshaikh, M.A.; Kadachi, A.N. [King Saud University, Research Center, College of Engineering, PO Box 800, Riyadh (Saudi Arabia)

    2017-03-15

    In this work, systematic investigations on the thermal conductivities of BiSbTe lump, microstructured pristine BiSbTe bulk and single wall carbon nanotubes (SWCNTs)/BiSbTe bulk nanocomposites were performed. BiSbTe lumps were crushed to form a coarse powder (200 μm) and effect of particle size reduction on the effective thermal conductivity of BiSbTe (200 μm) bulk were analyzed. For further reduction in the conductivity, a two pronged strategy has been employed. First, additional refinement of BiSbTe (200 μm) were performed through ball milling in an inert environment. Second, SWCNTs in 0.75, and 1.0 vol% were distributed uniformly in the fine BiSbTe ball milled powder. The results showed that the effective thermal conductivities decrease with the reduction in the particle size from lump to BiSbTe (200 μm) bulk as well as with the addition of SWCNTs accompanied by further refinement of BiSbTe particles. The significant reduction in thermal conductivities of the lump was achieved for pure BiSbTe (200 μm) bulk and 0.75 vol% of SWCNTs/BiSbTe composite. This can be ascribed to the enhanced phonon scattering by the grain boundaries between the nanostructured BiSbTe particles as well as the interfaces between BiSbTe and the low dimensional carbon nanotubes. (orig.)

  14. Radial heat conduction in a power reactor fuel element

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1998-01-01

    Two radial conduction models, one for steady state and another for unsteady state, in a nuclear power reactor fuel element are developed. The objective is to obtain the temperatures in the fuel pellet and the cladding. The lumped-parameter hypothesis are adopted to represent the system. Both models are verified and their results are compared with similar ones. A method to calculate the conductance in the gap between the UO 2 pellet and the clad and its associated uncertainty is included in the steady state model. (author) [es

  15. Fast-neutron scattering from elemental cadmium

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-07-01

    Neutron differential-elastic-scattering cross sections of elemental cadmium are measured from approx. = 1.5 to 4.0 MeV at incident-neutron energy intervals of 50 to 200 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Concurrently, lumped-level neutron inelastic-excitation cross sections are measured. The experimental results are used to deduce parameters of an optical-statistical model that is descriptive of the observables and are compared with corresponding quantities given in ENDF/B-V

  16. Numerical analysis of macro-crack formation behavior within the lump coke; Cokes sonai kiretsu shinten kiko no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H; Sato, H; Miura, T [Tohoku University, Sendai (Japan). Faculty of Engineering

    1995-03-15

    The thermal stress analysis within lump coke was studied in order to investigate macro-crack formation and deformation behavior which strongly influence heat and mass transfer in a coke oven chamber. The dilatation of plastic layer, heating rate dependence of thermophysical and mechanical properties of coal/coke, creep in the plastic and semi-coke layers, macro-crack propagation and radiative heat transfer within the macro-crack were considered in an analytical model. The macro-crack propagation was determined from the estimated crack tip stress intensity factor, K{sub I}, at the macro-crack tip compared with the plane strain fracture toughness, K{sub IC}, through the unsteady-state calculation. Calculated results on crack formation and deformation behavior of lump coke were in good agreement with experimental observations in a laboratory-scale oven chamber. The analytical model could predict micro-crack formation within the lump coke normal to the heated wall and the coke surface close to the heated wall. 12 refs., 13 figs.

  17. 29 CFR Appendix A to Part 4022 - Lump Sum Mortality Rates

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Lump Sum Mortality Rates A Appendix A to Part 4022 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION COVERAGE AND BENEFITS BENEFITS PAYABLE IN TERMINATED SINGLE-EMPLOYER PLANS Pt. 4022, App. A Appendix A to Part 4022—Lump Sum Mortality...

  18. Electric circuit coupling of a slotted semi-analytical model for induction motors based on harmonic modeling

    NARCIS (Netherlands)

    Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Waarma, J.; Lomonova, E.A.

    2014-01-01

    The use of empirically determined coefficients to include the effects of leakage and fringing flux is a large drawback of traditional induction motor (IM) models, such as lumped parameter, magnetic equivalent circuit and anisotropic layer models. As an alternative, Finite Element Analysis (FEA) is

  19. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction with a Triangular Glottal Model of the Vocal Folds

    Science.gov (United States)

    Galindo, Gabriel E.; Peterson, Sean D.; Erath, Byron D.; Castro, Christian; Hillman, Robert E.; Zañartu, Matías

    2017-01-01

    Purpose: Our goal was to test prevailing assumptions about the underlying biomechanical and aeroacoustic mechanisms associated with phonotraumatic lesions of the vocal folds using a numerical lumped-element model of voice production. Method: A numerical model with a triangular glottis, posterior glottal opening, and arytenoid posturing is…

  20. The development of a volume element model for energy systems engineering and integrative thermodynamic optimization

    Science.gov (United States)

    Yang, Sam

    The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in

  1. Improving the temporal transposability of lumped hydrological models on twenty diversified U.S. watersheds

    Directory of Open Access Journals (Sweden)

    G. Seiller

    2015-03-01

    Full Text Available Study region: Twenty diversified U.S. watersheds. Study focus: Identifying optimal parameter sets for hydrological modeling on a specific catchment remains an important challenge for numerous applied and research projects. This is particularly the case when working under contrasted climate conditions that question the temporal transposability of the parameters. Methodologies exist, mainly based on Differential Split Sample Tests, to examine this concern. This work assesses the improved temporal transposability of a multimodel implementation, based on twenty dissimilar lumped conceptual structures and on twenty U.S. watersheds, over the performance of the individual models. New hydrological insights for the region: Individual and collective temporal transposabilities are analyzed and compared on the twenty studied watersheds. Results show that individual models performances on contrasted climate conditions are very dissimilar depending on test period and watershed, without the possibility to identify a best solution in all circumstances. They also confirm that performance and robustness are clearly enhanced using an ensemble of rainfall-runoff models instead of individual ones. The use of (calibrated weight averaged multimodels further improves temporal transposability over simple averaged ensemble, in most instances, confirming added-value of this approach but also the need to evaluate how individual models compensate each other errors. Keywords: Rainfall-runoff modeling, Multimodel approach, Differential Split Sample Test, Deterministic combination, Outputs averaging

  2. Experimental Modeling of Monolithic Resistors for Silicon ICS with a Robust Optimizer-Driving Scheme

    Directory of Open Access Journals (Sweden)

    Philippe Leduc

    2002-06-01

    Full Text Available Today, an exhaustive library of models describing the electrical behavior of integrated passive components in the radio-frequency range is essential for the simulation and optimization of complex circuits. In this work, a preliminary study has been done on Tantalum Nitride (TaN resistors integrated on silicon, and this leads to a single p-type lumped-element circuit. An efficient extraction technique will be presented to provide a computer-driven optimizer with relevant initial model parameter values (the "guess-timate". The results show the unicity in most cases of the lumped element determination, which leads to a precise simulation of self-resonant frequencies.

  3. An enhanced lumped element electrical model of a double barrier memristive device

    International Nuclear Information System (INIS)

    Solan, Enver; Ochs, Karlheinz; Dirkmann, Sven; Hansen, Mirko; Kohlstedt, Hermann; Ziegler, Martin; Schroeder, Dietmar; Mussenbrock, Thomas

    2017-01-01

    The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model. (paper)

  4. Lump solutions with interaction phenomena in the (2+1)-dimensional Ito equation

    Science.gov (United States)

    Zou, Li; Yu, Zong-Bing; Tian, Shou-Fu; Feng, Lian-Li; Li, Jin

    2018-03-01

    In this paper, we consider the (2+1)-dimensional Ito equation, which was introduced by Ito. By considering the Hirota’s bilinear method, and using the positive quadratic function, we obtain some lump solutions of the Ito equation. In order to ensure rational localization and analyticity of these lump solutions, some sufficient and necessary conditions are provided on the parameters that appeared in the solutions. Furthermore, the interaction solutions between lump solutions and the stripe solitons are discussed by combining positive quadratic function with exponential function. Finally, the dynamic properties of these solutions are shown via the way of graphical analysis by selecting appropriate values of the parameters.

  5. A correction technique for the dispersive effects of mass lumping for transport problems

    KAUST Repository

    Guermond, Jean-Luc; Pasquetti, Richard

    2013-01-01

    This paper addresses the well-known dispersion effect that mass lumping induces when solving transport-like equations. A simple anti-dispersion technique based on the lumped mass matrix is proposed. The method does not require any non-trivial matrix

  6. Cross sections of the lumped fission products for the AMZ library

    International Nuclear Information System (INIS)

    Ono, S.; Corcueca, R.P.; Nascimento, J.A.

    1985-01-01

    The preparation of the lumped fission product cross section for the AMZ library is described. For this purpose 100 nuclides were selected. The cross sections for each nuclide were generated by the NJOY code with evaluated nuclear data from ENDF/B-V, complemented with ENDF/B-IV data. A comparison is performed between the data obtained and the lumped fission product cross section of JFS-II [pt

  7. Path lumping: An efficient algorithm to identify metastable path channels for conformational dynamics of multi-body systems

    Science.gov (United States)

    Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui

    2017-07-01

    Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.

  8. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    Science.gov (United States)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  9. Simulation of hydrogen deflagration experiment – Benchmark exercise with lumped-parameter codes

    Energy Technology Data Exchange (ETDEWEB)

    Kljenak, Ivo, E-mail: ivo.kljenak@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kuznetsov, Mikhail, E-mail: mike.kuznetsov@kit.edu [Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe (Germany); Kostka, Pal, E-mail: kostka@nubiki.hu [NUBIKI Nuclear Safety Research Institute, Konkoly-Thege Miklós út 29-33, 1121 Budapest (Hungary); Kubišova, Lubica, E-mail: lubica.kubisova@ujd.gov.sk [Nuclear Regulatory Authority of the Slovak Republic, Bajkalská 27, 82007 Bratislava (Slovakia); Maltsev, Mikhail, E-mail: maltsev_MB@aep.ru [JSC Atomenergoproekt, 1, st. Podolskykh Kursantov, Moscow (Russian Federation); Manzini, Giovanni, E-mail: giovanni.manzini@rse-web.it [Ricerca sul Sistema Energetico, Via Rubattino 54, 20134 Milano (Italy); Povilaitis, Mantas, E-mail: mantas.p@mail.lei.lt [Lithuania Energy Institute, Breslaujos g.3, 44403 Kaunas (Lithuania)

    2015-03-15

    Highlights: • Blind and open simulations of hydrogen combustion experiment in large-scale containment-like facility with different lumped-parameter codes. • Simulation of axial as well as radial flame propagation. • Confirmation of adequacy of lumped-parameter codes for safety analyses of actual nuclear power plants. - Abstract: An experiment on hydrogen deflagration (Upward Flame Propagation Experiment – UFPE) was proposed by the Jozef Stefan Institute (Slovenia) and performed in the HYKA A2 facility at the Karlsruhe Institute of Technology (Germany). The experimental results were used to organize a benchmark exercise for lumped-parameter codes. Six organizations (JSI, AEP, LEI, NUBIKI, RSE and UJD SR) participated in the benchmark exercise, using altogether four different computer codes: ANGAR, ASTEC, COCOSYS and ECART. Both blind and open simulations were performed. In general, all the codes provided satisfactory results of the pressure increase, whereas the results of the temperature show a wider dispersal. Concerning the flame axial and radial velocities, the results may be considered satisfactory, given the inherent simplification of the lumped-parameter description compared to the local instantaneous description.

  10. Simulation of hydrogen deflagration experiment – Benchmark exercise with lumped-parameter codes

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Kuznetsov, Mikhail; Kostka, Pal; Kubišova, Lubica; Maltsev, Mikhail; Manzini, Giovanni; Povilaitis, Mantas

    2015-01-01

    Highlights: • Blind and open simulations of hydrogen combustion experiment in large-scale containment-like facility with different lumped-parameter codes. • Simulation of axial as well as radial flame propagation. • Confirmation of adequacy of lumped-parameter codes for safety analyses of actual nuclear power plants. - Abstract: An experiment on hydrogen deflagration (Upward Flame Propagation Experiment – UFPE) was proposed by the Jozef Stefan Institute (Slovenia) and performed in the HYKA A2 facility at the Karlsruhe Institute of Technology (Germany). The experimental results were used to organize a benchmark exercise for lumped-parameter codes. Six organizations (JSI, AEP, LEI, NUBIKI, RSE and UJD SR) participated in the benchmark exercise, using altogether four different computer codes: ANGAR, ASTEC, COCOSYS and ECART. Both blind and open simulations were performed. In general, all the codes provided satisfactory results of the pressure increase, whereas the results of the temperature show a wider dispersal. Concerning the flame axial and radial velocities, the results may be considered satisfactory, given the inherent simplification of the lumped-parameter description compared to the local instantaneous description

  11. Modeling of nanofabricated paddle bridges for resonant mass sensing

    International Nuclear Information System (INIS)

    Lobontiu, N.; Ilic, B.; Garcia, E.; Reissman, T.; Craighead, H. G.

    2006-01-01

    The modeling of nanopaddle bridges is studied in this article by proposing a lumped-parameter mathematical model which enables structural characterization in the resonant domain. The distributed compliance and inertia of all three segments composing a paddle bridge are taken into consideration in order to determine the equivalent lumped-parameter stiffness and inertia fractions, and further on the bending and torsion resonant frequencies. The approximate model produces results which are confirmed by finite element analysis and experimental measurements. The model is subsequently utilized to quantify the amount of mass which attaches to the bridge by predicting the modified resonant frequencies in either bending or torsion

  12. Finite element simulation of piezoelectric transformers.

    Science.gov (United States)

    Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H

    2001-07-01

    Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.

  13. Analysis of transient heat conduction in a PWR fuel rod by an improved lumped parameter approach

    Energy Technology Data Exchange (ETDEWEB)

    Dourado, Eneida Regina G. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Cotta, Renato M. [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Mecanica; Jian, Su, E-mail: eneidadourado@gmail.com, E-mail: sujian@nuclear.ufrj.br, E-mail: cotta@mecanica.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    This paper aims to analyze transient heat conduction in a nuclear fuel rod by an improved lumped parameter approach. One-dimensional transient heat conduction is considered, with the circumferential symmetry assumed and the axial conduction neglected. The thermal conductivity and specific heat in the fuel pellet are considered temperature dependent, while the thermophysical properties of the cladding are considered constant. Hermite approximation for integration is used to obtain the average temperature and heat flux in the radial direction. Significant improvement over the classical lumped parameter formulation has been achieved. The proposed model can be also used in dynamic analysis of PWR and nuclear power plant simulators. (author)

  14. Analysis of transient heat conduction in a PWR fuel rod by an improved lumped parameter approach

    International Nuclear Information System (INIS)

    Dourado, Eneida Regina G.; Cotta, Renato M.; Jian, Su

    2017-01-01

    This paper aims to analyze transient heat conduction in a nuclear fuel rod by an improved lumped parameter approach. One-dimensional transient heat conduction is considered, with the circumferential symmetry assumed and the axial conduction neglected. The thermal conductivity and specific heat in the fuel pellet are considered temperature dependent, while the thermophysical properties of the cladding are considered constant. Hermite approximation for integration is used to obtain the average temperature and heat flux in the radial direction. Significant improvement over the classical lumped parameter formulation has been achieved. The proposed model can be also used in dynamic analysis of PWR and nuclear power plant simulators. (author)

  15. New equivalent lumped electrical circuit for piezoelectric transformers.

    Science.gov (United States)

    Gonnard, Paul; Schmitt, P M; Brissaud, Michel

    2006-04-01

    A new equivalent circuit is proposed for a contour-vibration-mode piezoelectric transformer (PT). It is shown that the usual lumped equivalent circuit derived from the conventional Mason approach is not accurate. The proposed circuit, built on experimental measurements, makes an explicit difference between the elastic energies stored respectively on the primary and secondary parts. The experimental and theoretical resonance frequencies with the secondary in open or short circuit are in good agreement as well as the output "voltage-current" characteristic and the optimum efficiency working point. This circuit can be extended to various PT configurations and appears to be a useful tool for modeling electronic devices that integrate piezoelectric transformers.

  16. 24 CFR 570.513 - Lump sum drawdown for financing of property rehabilitation activities.

    Science.gov (United States)

    2010-04-01

    ... DEVELOPMENT BLOCK GRANTS Grant Administration § 570.513 Lump sum drawdown for financing of property... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Lump sum drawdown for financing of property rehabilitation activities. 570.513 Section 570.513 Housing and Urban Development Regulations...

  17. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    Science.gov (United States)

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  18. A 3D Dynamic Lumped Parameter Thermal Network of Air-Cooled YASA Axial Flux Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Abdalla Hussein Mohamed

    2018-03-01

    Full Text Available To find the temperature rise for high power density yokeless and segmented armature (YASA axial flux permanent magnet synchronous (AFPMSM machines quickly and accurately, a 3D lumped parameter thermal model is developed and validated experimentally and by finite element (FE simulations on a 4 kW YASA machine. Additionally, to get insight in the thermal transient response of the machine, the model accounts for the thermal capacitance of different machine components. The model considers the stator, bearing, and windage losses, as well as eddy current losses in the magnets on the rotors. The new contribution of this work is that the thermal model takes cooling via air channels between the magnets on the rotor discs into account. The model is parametrized with respect to the permanent magnet (PM angle ratio, the PM thickness ratio, the air gap length, and the rotor speed. The effect of the channels is incorporated via convection equations based on many computational fluid dynamics (CFD computations. The model accuracy is validated at different values of parameters by FE simulations in both transient and steady state. The model takes less than 1 s to solve for the temperature distribution.

  19. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    Science.gov (United States)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  20. On the treatment of plane fusion front in lumped parameter thermal models with convection

    International Nuclear Information System (INIS)

    Le Tellier, R.; Skrzypek, E.; Saas, L.

    2017-01-01

    Highlights: • Solid phase approximations for a two-phase Stefan fusion problem with convection are analyzed. • A reference solution combines integral conservation eqs and a FE solution of the 1D heat equation. • Numerical results are presented for a transient in light water reactor severe accident analysis. • The models performances are highlighted on fusion transients in terms of Biot and Stefan numbers. - Abstract: Within the framework of lumped parameter models for integral codes, this paper focuses on the modeling of a two-phase Stefan fusion problem with natural convection in the liquid phase. In particular, this specific Stefan problem is of interest when studying corium pool behavior in the framework of light water reactor severe accident analysis. The objective of this research is to analyze the applicability of different approximations related to the modeling of the solid phase in terms of boundary heat flux closure relations. Three different approximations are considered: a quadratic profile based model, a model where a parameter controls the power partitioning at the interface and the steady state conduction assumption. These models are compared with an accurate front-tracking solution of this plane fusion front problem. This “reference” is obtained by combining the same integral conservation equations as the approximate models with a mesh-based solution of the 1D heat equation. Numerical results are discussed for a typical configuration of interest for corium pool analysis. Different fusion transients (constructed from nondimensionalization considerations in terms of Biot and Stefan numbers) are used in order to highlight the potential and limitations of the different approximations.

  1. A weighted least-squares lump correction algorithm for transmission-corrected gamma-ray nondestructive assay

    International Nuclear Information System (INIS)

    Prettyman, T.H.; Sprinkle, J.K. Jr.; Sheppard, G.A.

    1993-01-01

    With transmission-corrected gamma-ray nondestructive assay instruments such as the Segmented Gamma Scanner (SGS) and the Tomographic Gamma Scanner (TGS) that is currently under development at Los Alamos National Laboratory, the amount of gamma-ray emitting material can be underestimated for samples in which the emitting material consists of particles or lumps of highly attenuating material. This problem is encountered in the assay of uranium and plutonium-bearing samples. To correct for this source of bias, we have developed a least-squares algorithm that uses transmission-corrected assay results for several emitted energies and a weighting function to account for statistical uncertainties in the assay results. The variation of effective lump size in the fitted model is parameterized; this allows the correction to be performed for a wide range of lump-size distributions. It may be possible to use the reduced chi-squared value obtained in the fit to identify samples in which assay assumptions have been violated. We found that the algorithm significantly reduced bias in simulated assays and improved SGS assay results for plutonium-bearing samples. Further testing will be conducted with the TGS, which is expected to be less susceptible than the SGS to systematic source of bias

  2. Modelling of FCC (Fluid Catalytic Cracking) risers with six lumps; Modelo de elevadores de Unidades de Craqueamento Catalitico com cinetica de seis classes

    Energy Technology Data Exchange (ETDEWEB)

    Baldessar, Fabio; Negrao, Cezar O. Ribeiro; Palu, Claudia [Centro Federal de Educacao Tecnologica do Parana (CEFET-PR), Curitiba, PR (Brazil)

    2004-07-01

    The current work presents a mathematical model of an ascendant flow vertical reactor (riser) of a Fluid Catalytic Cracking Unit. The two-phase flow (gas-solid) and the cracking reactions are admitted one-dimensional and steady state. Mass, momentum and energy conservation equations are considered for each phase (solid and gas). A six-lump kinetic model is employed to evaluate gasoil, gasoline, GLP, fuel gas, light cycle oil and coke fractions. The model results are compared to experimental values from a pilot plant and to another model found in the literature. The results are in good agreement, showing the model has great potential. (author)

  3. A new discrete-element approach for the assessment of the seismic resistance of composite reinforced concrete-masonry buildings

    International Nuclear Information System (INIS)

    Calio, I.; Cannizzaro, F.; Marletta, M.; Panto, B.; D'Amore, E.

    2008-01-01

    In the present study a new discrete-element approach for the evaluation of the seismic resistance of composite reinforced concrete-masonry structures is presented. In the proposed model, unreinforced masonry panels are modelled by means of two-dimensional discrete-elements, conceived by the authors for modelling masonry structures, whereas the reinforced concrete elements are modelled by lumped plasticity elements interacting with the masonry panels through nonlinear interface elements. The proposed procedure was adopted for the assessment of the seismic response of a case study confined-masonry building which was conceived to be a typical representative of a wide class of residential buildings designed to the requirements of the 1909 issue of the Italian seismic code and widely adopted in the aftermath of the 1908 earthquake for the reconstruction of the cities of Messina and Reggio Calabria

  4. The frequency of malignancy in breast lumps on fnac in females under 35 years of age

    International Nuclear Information System (INIS)

    Iqbal, M.; Iqbal, M.

    2014-01-01

    Breast carcinoma is one of the common malignancies in females and its incidence is increasing in younger age. Diagnosis of carcinoma breast includes clinical evaluation, imaging and pathology. Fine Needle Aspiration Cytology is the first line pathological investigation in the diagnosis with excellent results. Objective: To determine the frequency of malignancy in breast lumps on FNAC in females under 35 years of age. Descriptive cross sectional study. Setting:Department of pathology Fatima Jinnah Medical College (FJMC), Lahore. Duration: Six months from 20th July, 2011 till 20th January, 2012.Methods: 150 female patients 35 years of age or less, presenting to the OPD and Indoor of Sir Ganga Ram Hospital Lahore, an affiliated hospital of FJMC Lahore, with breast lumps were included in the study. Demographic features and consent of the patients were noted. FNAC of the patients was performed as per advice of the consultant. Diagnosis of malignant cases was further confirmed on histology.Results: Out of all, 124 lumps (82.7%) were benign and 26 lumps (17.3%) were malignant. Amongst the benign lumps, 77(62.1%) were fibroadenomas, 28(22.6%) were fibrocystic changes, 08(06.5%) were inflammatory lesions, 07(05.6%) showed pyogenic abscess and 04 lumps (03.2%) were galactoceles. Amongst the malignant lumps, 22(84.6%) were ductal carcinoma, 02(07.7%) colloid carcinoma and 02(07.7%) were malignant phylloides. Conclusions: The frequency of malignancy in breast lumps in Pakistan is significantly high in females under 35 years of age. Appropriate measures are needed for prevention and early diagnosis and treatment in young females. (author)

  5. CLINICO PATHOLOGICAL STUDY OF BENIGN BREAST LUMP – A HOSPITAL BASED STUDY

    Directory of Open Access Journals (Sweden)

    Anindita

    2016-03-01

    Full Text Available BACKGROUND Despite the fact that in majority of cases the initial symptom of benign breast disease is a lump, which can be easily detected by the patient herself by self-examination they generally present at a very late stage and this poses a great difficulty in their management. Early and appropriate diagnosis of breast disease is of utmost importance. AIM The aim of the study was to find out the relative frequency and commonest site of occurrence of benign breast disorder and their relationship with age, parity, menstrual cycle, and socio-economic status and also to find out the accuracy of investigative procedures in their diagnosis. DESIGN This is a cross sectional, interventional. Hospital based study. MATERIALS AND METHOD This study was done in 58 female patients in the age group 10 yrs. to 55 yrs. presenting with clinically benign breast lumps randomly chosen from outpatient department and indoor wards of The Calcutta Medical Research Institute, Kolkata. After taking an accurate history and proper clinical examination these patients were sequentially studied by radiological methods (Ultrasonography and mammography, fine needle aspiration cytology (FNAC and histopathology of removed specimen. Patients were enquired about their age, chief complaints, menstrual history, and use of oral pill, marital status, parity, lactation and socioeconomic status. RESULTS 79% of the benign breast lumps were found to be between 10–35 years, Fibro adenoma being the commonest one (41.38% and fibrocystic disease the second most common (29.31%. Breast lump were more common among unmarried and nulliparous females (48.27%, commonest site being upper and outer quadrant (38.8%. 69% patients were associated with an abnormal menstrual status. 76% of the cases were accurately diagnosed by clinical examination, 70% by mammography, 88% by FNAC and 84% by ultrasonography. CONCLUSION This clinicopathological study of benign breast lump is a small endeavour on our part

  6. Prediction of railway induced ground vibration through multibody and finite element modelling

    Directory of Open Access Journals (Sweden)

    G. Kouroussis

    2013-04-01

    Full Text Available The multibody approach is now recognized as a reliable and mature computer aided engineering tool. Namely, it is commonly used in industry for the design of road or railway vehicles. The paper presents a framework developed for predicting the vibrations induced by railway transportation. Firstly, the vehicle/track subsystem is simulated, on the basis of the home-made C++ library EasyDyn, by mixing the multibody model of the vehicle and the finite element model of the track, coupled to each other through the wheel/rail contact forces. Only the motion in the vertical plane is considered, assuming a total symmetry between left and right rails. This first step produces the time history of the forces exerted by the ballast on the foundation, which are then applied to a full 3-D FEM model of the soil, defined under the commercial software ABAQUS. The paper points out the contribution of the pitch motion of the bogies and carbodies which were neglected in previous publications, as well as the interest of the so-called coupled-lumped mass model (CLM to represent the influence of the foundation in the track model. The potentialities of the model are illustrated on the example of the Thalys high-speed train, riding at 300 km h−1 on the Belgian site of Mévergnies.

  7. Modelling of the PROTO-II crossover network

    International Nuclear Information System (INIS)

    Proulx, G.A.; Lackner, H.; Spence, P.; Wright, T.P.

    1985-01-01

    In order to drive a double ring, symmetrically fed bremsstrahlung diode, the PROTO II accelerator was redesigned. The radially converging triplate water line was reconfigured to drive two radial converging triplate lines in parallel. The four output lines were connected to the two input lines via an electrically enclosed tubular crossover network. Low-voltage Time Domain Reflectrometry (TDR) experiments were conducted on a full scale water immersed model of one section of the crossover network as an aid in this design. A lumped element analysis of the power flow through the network was inadequate in explaining the observed wave transmission and reflection characteristics. A more detailed analysis was performed with a circuit code in which we considered both localized lump-element and transmission line features of the crossover network. Experimental results of the model tests are given and compared with the circuit simulations. 7 figs

  8. Comparison of Lumped and Distributed Hydrologic Models Used for Planning and Water Resources Management at the Combeima River Basin, Colombia.

    Science.gov (United States)

    Salgado, F., II; Vélez, J.

    2014-12-01

    The catchment area is considered as the planning unit of natural resources where multiple factors as biotic, abiotic and human interact in a web of relationships making this unit a complex system. It is also considered by several authors as the most suitable unit for studying the water movement in nature and a tool for the understanding of natural processes. This research implements several hydrological models commonly used in water resources management and planning. It is the case of Témez, abcd, T, P, ARMA (1,1), and the lumped conceptual model TETIS. This latest model has been implemented in its distributed version for comparison purposes and it has been the basis for obtaining information, either through the reconstruction of natural flow series, filling missing data, forecasting or simulation. Hydrological models make use of lumped data of precipitation and potential evapotranspiration, as well as the following parameters for each one of the models which are related to soil properties as capillary storage capacity; the hydraulic saturated conductivity of the upper and lower layers of the soil, and residence times in the flow surface, subsurface layers and base flow. The calibration and the validation process of the models were performed making adjustments to the parameters listed above, taking into account the consistency in the efficiency indexes and the adjustment between the observed and simulated flows using the flow duration curve. The Nash index gave good results for the TETIS model and acceptable values were obtained to the other models. The calibration of the distributed model was complex and its results were similar to those obtained with the aggregated model. This comparison allows planners to use the hydrological multimodel techniques to reduce the uncertainty associated with planning processes in developing countries. Moreover, taking into account the information limitations required to implement a hydrological models, this application can be a

  9. APPROACH TO THE DIAGNOSIS OF A BREAST LUMP

    African Journals Online (AJOL)

    breast cancer in any woman, irrespective of age.1,2 Fortunately, the vast majority of breast lumps are ... malignant breast lesions can be diagnosed in this way. When all aspects ... ultrasonography is the preferred modality for women under 35 ...

  10. Systematic reduction of complex tropospheric chemical mechanisms, Part II: Lumping using a time-scale based approach

    Directory of Open Access Journals (Sweden)

    L. E. Whitehouse

    2004-01-01

    Full Text Available This paper presents a formal method of species lumping that can be applied automatically to intermediate compounds within detailed and complex tropospheric chemical reaction schemes. The method is based on grouping species with reference to their chemical lifetimes and reactivity structures. A method for determining the forward and reverse transformations between individual and lumped compounds is developed. Preliminary application to the Leeds Master Chemical Mechanism (MCMv2.0 has led to the removal of 734 species and 1777 reactions from the scheme, with minimal degradation of accuracy across a wide range of test trajectories relevant to polluted tropospheric conditions. The lumped groups are seen to relate to groups of peroxy acyl nitrates, nitrates, carbonates, oxepins, substituted phenols, oxeacids and peracids with similar lifetimes and reaction rates with OH. In combination with other reduction techniques, such as sensitivity analysis and the application of the quasi-steady state approximation (QSSA, a reduced mechanism has been developed that contains 35% of the number of species and 40% of the number of reactions compared to the full mechanism. This has led to a speed up of a factor of 8 in terms of computer calculation time within box model simulations.

  11. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    International Nuclear Information System (INIS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-01-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties. - Highlights: • Magnetic-coupling between resonant elements affects transmission properties. • Inter-resonant coupling enhances the distance of two resonant frequencies. • The structures are useful for sensors and comparators, etc

  12. A new analytical method for estimating lumped parameter constants of linear viscoelastic models from strain rate tests

    Science.gov (United States)

    Mattei, G.; Ahluwalia, A.

    2018-04-01

    We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.

  13. Mixed lump-kink and rogue wave-kink solutions for a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics

    Science.gov (United States)

    Hu, Cong-Cong; Tian, Bo; Wu, Xiao-Yu; Yuan, Yu-Qiang; Du, Zhong

    2018-02-01

    Under investigation is a (3 + 1) -dimensional B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves in a fluid. Via the Hirota method and symbolic computation, we obtain the mixed lump-kink and mixed rogue wave-kink solutions. Through the mixed lump-kink solutions, we observe three different phenomena between a lump and one kink. For the fusion phenomenon, a lump and a kink are merged with the lump's energy transferring into the kink gradually, until the lump merges into the kink completely. Fission phenomenon displays that a lump separates from a kink. The last phenomenon shows that a lump travels together with a kink with their amplitudes unchanged. In addition, we graphically study the interaction between a rogue wave and a pair of the kinks. It can be observed that the rogue wave arises from one kink and disappears into the other kink. At certain time, the amplitude of the rogue wave reaches the maximum.

  14. Fission and fusion interaction phenomena of mixed lump kink solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Liu, Yaqing; Wen, Xiaoyong

    2018-05-01

    In this paper, a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili (gBKP) equation is investigated by using the Hirota’s bilinear method. With the aid of symbolic computation, some new lump, mixed lump kink and periodic lump solutions are derived. Based on the derived solutions, some novel interaction phenomena like the fission and fusion interactions between one lump soliton and one kink soliton, the fission and fusion interactions between one lump soliton and a pair of kink solitons and the interactions between two periodic lump solitons are discussed graphically. Results might be helpful for understanding the propagation of the shallow water wave.

  15. Simulation of nonlinear dynamics of a PWR core by an improved lumped formulation for fuel heat transfer

    International Nuclear Information System (INIS)

    Su, Jian; Cotta, Renato M.

    2000-01-01

    In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)

  16. Lumped thermal capacitance analysis of transient heat conduction ...

    African Journals Online (AJOL)

    Lumped thermal capacitance analysis has been undertaken to investigate the transient temperature variations, associated induced thermal stress distributions, and the structural integrity of Ghana Research Reactor-1 (GHAR R-1) vessel after 15 years of operation. The beltline configuration of the cylindrical vessel of the ...

  17. 14C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar

    International Nuclear Information System (INIS)

    Lindroos, Alf; Ranta, Heikki; 14C Dating Laboratory, Department of Physics and Astronomy, University of Aarhus (Denmark))" data-affiliation=" (AMS 14C Dating Laboratory, Department of Physics and Astronomy, University of Aarhus (Denmark))" >Heinemeier, Jan; Lill, Jan-Olof

    2014-01-01

    Mortar dating was applied to newly revealed, original mortar in the church of Dalby in Scania, southern Sweden which is considered to be the oldest still standing church in Scandinavia. Small white lime lumps were sampled by chipping from the supporting pillars in the interior of the church. Special emphasis was in sampling lime lumps because the church is situated in the Scania limestone area and aggregate limestone contamination was anticipated in the bulk mortars. Earlier studies have, however, shown that lime lumps do not contain aggregate material but only possible limestone rests from incomplete calcination. The sampled material was prepared for radiocarbon AMS dating. The carbonate in the lime lumps was hydrolyzed according to the sequential leaching technique developed for the Århus 14 C laboratory in Denmark. Prior to the hydrolysis the lime lumps were examined for dead-carbon contamination using a stereo microscope and cathodoluminescence. The lime lumps displayed heterogeneous carbonate luminescence. This is, however, common and it was not considered a problem because carbonate growth in changing pH/Eh conditions often leads to changing luminescence colors. Two lumps had little dead carbon contamination and an early second millennium 14 C signature. One lump, however, seemed to be heavily contaminated with dead carbon. Since the sample passed the microscopic screening, the leftovers of the lump was subjected to PIXE analysis and compared with the other two lumps. The well-defined, early 2nd millennium 14 C age of the lime lumps of this particular church is an important contribution to the discussion on stone church chronology in Scandinavia

  18. An application of the time-step topological model for three-phase transformer no-load current calculation considering hysteresis

    International Nuclear Information System (INIS)

    Carrander, Claes; Mousavi, Seyed Ali; Engdahl, Göran

    2017-01-01

    In many transformer applications, it is necessary to have a core magnetization model that takes into account both magnetic and electrical effects. This becomes particularly important in three-phase transformers, where the zero-sequence impedance is generally high, and therefore affects the magnetization very strongly. In this paper, we demonstrate a time-step topological simulation method that uses a lumped-element approach to accurately model both the electrical and magnetic circuits. The simulation method is independent of the used hysteresis model. In this paper, a hysteresis model based on the first-order reversal-curve has been used. - Highlights: • A lumped-element method for modelling transformers i demonstrated. • The method can include hysteresis and arbitrarily complex geometries. • Simulation results for one power transformer are compared to measurements. • An analytical curve-fitting expression for static hysteresis loops is shown.

  19. Finite-element analysis of dynamic fracture

    Science.gov (United States)

    Aberson, J. A.; Anderson, J. M.; King, W. W.

    1976-01-01

    Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.

  20. Role of cytological grading in the management of breast lump

    International Nuclear Information System (INIS)

    Mehmood, A.; Ahmed, M.; Jamal, S.

    2003-01-01

    Objective: To evaluate the fine needle aspiration (FNA) smears of the breast lumps using the cytological evaluation system (C1 to C5) as practiced in the National Breast Screening Programme in the UK. Results: A total of 75 patients of lump breast were included in the project. The age range was 13-75 years with a peak incidence in the 3rd decade. There were 70 (93.3%) females and 5 (6.6%) male cases. Of the total 75 cases, 7 were designated C1, 45 C2, 5 C3, 7 C4 and 11 C5. In surgical biopsies, all the 45 cases designated as C2 proved to be benign with fibroadenoma and fibrocystic change as predominant lesions. All 11 designated C5 proved to be malignant; whereas, of the 5 cases labeled as C3, 4 were benign and one was malignant and out of seven C4 cases, 5 came out as malignant and 2 proved benign. Conclusion: the fine needle aspiration of lump breast has a sensitivity of 94.1%, specificity of 96.0% and accuracy of 95.5%. The C1-C5 grading system is practical, flexible, and gives room for expression of opinion by cytopathologist and easily interpreted by clincians. (author)

  1. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N(N≥2) lumps annihilating into or producing from N-dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  2. Dynamics of lumps and dark-dark solitons in the multi-component long-wave-short-wave resonance interaction system.

    Science.gov (United States)

    Rao, Jiguang; Porsezian, Kuppuswamy; He, Jingsong; Kanna, Thambithurai

    2018-01-01

    General semi-rational solutions of an integrable multi-component (2+1)-dimensional long-wave-short-wave resonance interaction system comprising multiple short waves and a single long wave are obtained by employing the bilinear method. These solutions describe the interactions between various types of solutions, including line rogue waves, lumps, breathers and dark solitons. We only focus on the dynamical behaviours of the interactions between lumps and dark solitons in this paper. Our detailed study reveals two different types of excitation phenomena: fusion and fission. It is shown that the fundamental (simplest) semi-rational solutions can exhibit fission of a dark soliton into a lump and a dark soliton or fusion of one lump and one dark soliton into a dark soliton. The non-fundamental semi-rational solutions are further classified into three subclasses: higher-order, multi- and mixed-type semi-rational solutions. The higher-order semi-rational solutions show the process of annihilation (production) of two or more lumps into (from) one dark soliton. The multi-semi-rational solutions describe N ( N ≥2) lumps annihilating into or producing from N -dark solitons. The mixed-type semi-rational solutions are a hybrid of higher-order semi-rational solutions and multi-semi-rational solutions. For the mixed-type semi-rational solutions, we demonstrate an interesting dynamical behaviour that is characterized by partial suppression or creation of lumps from the dark solitons.

  3. Finite element modelling of fire situations in UF6 transport containers

    International Nuclear Information System (INIS)

    Basombrio, F.G.

    1996-01-01

    In this report we describe some runs made with the code FASES2. They concern different situations associated to fires originated by accidents in the transport of containers filled with UF6. Such situations have been inspired in cases taken from the current literature, and related to numerical modelling or experiments. We aim to consign the most relevant aspects of such runs, with the future purpose of comparing them with the predictions made with simpler lumped models. In such a way, it will be possible to calibrate the simple models with the results coming from detailed models. (author). 6 refs., 12 figs

  4. Study on vertical seismic response model of BWR-type reactor building

    International Nuclear Information System (INIS)

    Konno, T.; Motohashi, S.; Izumi, M.; Iizuka, S.

    1993-01-01

    A study on advanced seismic design for LWR has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan. As a part of the study, it has been investigated to construct an accurate analytical model of reactor buildings for a seismic response analysis, which can reasonably represent dynamic characteristics of the building. In Japan, vibration models of reactor buildings for horizontal ground motion have been studied and examined through many simulation analyses for forced vibration tests and earthquake observations of actual buildings. And now it is possible to establish a reliable horizontal vibration model on the basis of multi-lumped mass and spring model. However, vertical vibration models have not been so much studied as horizontal models, due to less observed data for vertical motions. In this paper, the vertical seismic response models of a BWR-type reactor building including soil-structure interaction effect are numerically studied, by comparing the dynamic characteristics of (1) three dimensional finite element model, (2) multi-stick lumped mass model with a flexible base-mat, (3) multi-stick lumped mass model with a rigid base-mat and (4) single-stick lumped mass model. In particular, the BWR-type reactor building has the long span truss roof which is considered to be one of the critical members to vertical excitation. The modelings of the roof trusses are also studied

  5. Management of breast lumps in Maiduguri, Nigeria

    Directory of Open Access Journals (Sweden)

    Ali Nuhu

    2014-01-01

    Full Text Available Background: Reported changes in the demography, modes of presentation and histological variants of tumors of the breast have been published in developed and some developing countries. Although benign lesions have persistently accounted for most breast tumors, the incidence of malignant breast lesion in young women in sub-Saharan Africa has been disturbingly high. We reviewed the demographics, pattern and management of breast lumps excised at University of Maiduguri Teaching Hospital (UMTH over a 6 year period. Patients and Methods: A retrospective study of patients with breast lumps at UMTH was carried out between January 2005 and December 2010. Details of their bio-data, clinical, and histopathology details were analyzed using descriptive statistics. Results: A total of 913 patients, comprising 887 females (97.2% and 26 males (2.8% were reviewed. The mean age was 33.1 ± 14.6 years (range: 12-80 years and the mean duration of symptoms was 8 ± 2.14 months (range: 2-23 months. 359 (39.3% were malignant and 577 (63.2% were benign. The mean ages of women and men with invasive carcinomas of the breast were 45.58 ± 13.22 and 49.75 ± 18.28 years, respectively. The mean age of women with benign breast disease was 28.4 ± 10.0 for fibrocystic disease and 21.8 ± 5.31 years for fibroadenoma. Mode of presentations included ulcers (8.7%, axillary lymph node enlargement (30.0%, nipple discharge (13.0% and breast pain (21.7%. The most common histological diagnoses were carcinoma of the breast, N = 340 (37.2%, fibroadenoma, N = 276 (30.2% and fibrocystic disease, N = 199 (21.8%. The least common pathology was tuberculosis of the breast, N = 6; (0.7%. Conclusion: Though benign diseases are still more common, a high percentage of breast lumps in Maiduguri are due to malignant disease and this is frequent in younger women.

  6. 29 CFR Appendix C to Part 4022 - Lump Sum Interest Rates for Private-Sector Payments

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Lump Sum Interest Rates for Private-Sector Payments C Appendix C to Part 4022 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY... Appendix C to Part 4022—Lump Sum Interest Rates for Private-Sector Payments [In using this table: (1) For...

  7. The Numerical Welding Simulation - Developments and Validation of Simplified and Bead Lumping Methods

    International Nuclear Information System (INIS)

    Baup, Olivier

    2001-01-01

    The aim of this work was to study the TIG multipass welding process on stainless steel, by means of numerical methods and then to work out simplified and bead lumping methods in order to reduce adjusting and realisation times of these calculations. A simulation was used as reference for the validation of these methods; after the presentation of the test series having led to the option choices of this calculation (2D generalised plane strains, elastoplastic model with an isotropic hardening, hardening restoration due to high temperatures), various simplifications were tried on a plate geometry. These simplifications related various modelling points with a correct plastic flow representation in the plate. The use of a reduced number of thermal fields characterising the bead deposit and a low number of tensile curves allow to obtain interesting results, decreasing significantly the Computing times. In addition various lumping bead methods have been studied and concerning both the shape and the thermic of the macro-deposits. The macro-deposit shapes studied are in 'L', or in layer or they represent two beads one on top of the other. Among these three methods, only those using a few number of lumping beads gave bad results since thermo-mechanical history was deeply modified near and inside the weld. Thereafter, simplified methods have been applied to a tubular geometry. On this new geometry, experimental measurements were made during welding, which allow a validation of the reference calculation. Simplified and reference calculations gave approximately the same stress fields as found on plate geometry. Finally, in the last part of this document a procedure for automatic data setting permitting to reduce significantly the calculation phase preparation is presented. It has been applied to the calculation of thick pipe welding in 90 beads; the results are compared with a simplified simulation realised by Framatome and with experimental measurements. A bead by

  8. Rogue waves and lump solutions for a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid mechanics

    Science.gov (United States)

    Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Sun, Yan

    2017-08-01

    Under investigation in this letter is a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation, which describes the weakly dispersive waves propagating in a fluid. Employing the Hirota method and symbolic computation, we obtain the lump, breather-wave and rogue-wave solutions under certain constraints. We graphically study the lump waves with the influence of the parameters h1, h3 and h5 which are all the real constants: When h1 increases, amplitude of the lump wave increases, and location of the peak moves; when h3 increases, lump wave’s amplitude decreases, but location of the peak keeps unchanged; when h5 changes, lump wave’s peak location moves, but amplitude keeps unchanged. Breather waves and rogue waves are displayed: Rogue waves emerge when the periods of the breather waves go to the infinity.

  9. Approach to the diagnosis of a breast lump

    African Journals Online (AJOL)

    Generally, the older the woman, the greater the degree of suspicion and the more aggressive the ... When patients present with a history of a breast lump, the first crucial step is to ... A past history of a breast biopsy showing atypical hyperplasia, a family history of ... ultrasonography is the preferred modality for women under ...

  10. Axillary silicone lymphadenopathy presenting with a lump and altered sensation in the breast: a case report

    Directory of Open Access Journals (Sweden)

    Adams Simon T

    2009-03-01

    Full Text Available Abstract Introduction Silicone lymphadenopathy is a rare but recognised complication of procedures involving the use of silicone. It has a poorly understood mechanism but is thought to occur following the transportation of silicone particles from silicone-containing prostheses to lymph nodes by macrophages. Case presentation We report of a case involving a 35-year-old woman who presented to the breast clinic with a breast lump and altered sensation below her left nipple 5 years after bilateral cosmetic breast augmentations. A small lump was detected inferior to the nipple but clinical examination and initial ultrasound investigation showed both implants to be intact. However, mammography and magnetic resonance imaging of both breasts revealed both intracapsular and extracapsular rupture of the left breast prosthesis. The patient went on to develop a flu-like illness and tender lumps in the left axilla and right mastoid regions. An excision biopsy of the left axillary lesion and replacement of the ruptured implant was performed. Subsequent histological analysis showed that the axillary lump was a lymph node containing large amounts of silicone. Conclusion The exclusion of malignancy remains the priority when dealing with lumps in the breast or axilla. Silicone lymphadenopathy should however be considered as a differential diagnosis in patients in whom silicone prostheses are present.

  11. {sup 14}C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, Alf, E-mail: alf.lindroos@abo.fi [Geology and Mineralogy, Department of Natural Sciences, Åbo Akademi University (Finland); Art History, Faculty of Art, Åbo Akademi University (Finland); Ranta, Heikki [Diocese of Lund, Church of Sweden (Sweden); Heinemeier, Jan [AMS " 1" 4C Dating Laboratory, Department of Physics and Astronomy, University of Aarhus (Denmark); Lill, Jan-Olof [Accelerator Laboratory, Turku PET Centre, Åbo Akademi University (Finland)

    2014-07-15

    Mortar dating was applied to newly revealed, original mortar in the church of Dalby in Scania, southern Sweden which is considered to be the oldest still standing church in Scandinavia. Small white lime lumps were sampled by chipping from the supporting pillars in the interior of the church. Special emphasis was in sampling lime lumps because the church is situated in the Scania limestone area and aggregate limestone contamination was anticipated in the bulk mortars. Earlier studies have, however, shown that lime lumps do not contain aggregate material but only possible limestone rests from incomplete calcination. The sampled material was prepared for radiocarbon AMS dating. The carbonate in the lime lumps was hydrolyzed according to the sequential leaching technique developed for the Århus {sup 14}C laboratory in Denmark. Prior to the hydrolysis the lime lumps were examined for dead-carbon contamination using a stereo microscope and cathodoluminescence. The lime lumps displayed heterogeneous carbonate luminescence. This is, however, common and it was not considered a problem because carbonate growth in changing pH/Eh conditions often leads to changing luminescence colors. Two lumps had little dead carbon contamination and an early second millennium {sup 14}C signature. One lump, however, seemed to be heavily contaminated with dead carbon. Since the sample passed the microscopic screening, the leftovers of the lump was subjected to PIXE analysis and compared with the other two lumps. The well-defined, early 2nd millennium {sup 14}C age of the lime lumps of this particular church is an important contribution to the discussion on stone church chronology in Scandinavia.

  12. A multilayer electro-thermal model of pouch battery during normal discharge and internal short circuit process

    International Nuclear Information System (INIS)

    Chen, Mingbiao; Bai, Fanfei; Song, Wenji; Lv, Jie; Lin, Shili

    2017-01-01

    Highlights: • 2D network equivalent circuit considers the interplay of cell units. • The temperature non-uniformity Φ of multilayer model is bigger than that of lumped model. • The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. • Increasing the thermal conductivity of the separator can effectively relieve the heat spot effect of ISC. - Abstract: As the electrical and thermal characteristic will affect the batteries’ safety, performance, calendar life and capacity fading, an electro-thermal coupled model for pouch battery LiFePO_4/C is developed in normal discharge and internal short circuit process. The battery is discretized into many cell elements which are united as a 2D network equivalent circuit. The electro-thermal model is solved with finite difference method. Non-uniformity of current distribution and temperature distribution is simulated and the result is validated with experiment data at various discharge rates. Comparison of the lumped model and the multilayer structure model shows that the temperature non-uniformity Φ of multilayer model is bigger than that of lumped model and shows more precise. The temperature non-uniformity is quantified and the reason of non-uniformity is analyzed. The electro-thermal model can also be used to guide the safety design of battery. The temperature of the ISC element near tabs is the highest because the equivalent resistance of the external circuit (not including the ISC element) is the smallest when the resistance of cell units is small. It is found that increasing the thermal conductivity of integrated layer can effectively relieve the heat spot effect of ISC.

  13. 29 CFR 4044.75 - Other lump sum benefits.

    Science.gov (United States)

    2010-07-01

    ... sum benefits. The value of a lump sum benefit which is not covered under § 4044.73 or § 4044.74 is equal to— (a) The value under the qualifying bid, if an insurer provides the benefit; or (b) The present value of the benefit as of the date of distribution, determined using reasonable actuarial assumptions...

  14. Leaks, Lumps, and Lines: Stigma and Women's Bodies

    Science.gov (United States)

    Chrisler, Joan C.

    2011-01-01

    Women's bodies have often been positioned in art and popular culture as monstrous or defiled and women's bodily products (e.g., menstrual fluid, breast milk) as disgusting. This framing has led to the stigmatization of aspects of women's bodies (e.g., leaking fluids, lumps of fat, and lines in the skin that indicate aging), especially those…

  15. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response

    Science.gov (United States)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-06-01

    Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.

  16. Modelling optimization involving different types of elements in finite element analysis

    International Nuclear Information System (INIS)

    Wai, C M; Rivai, Ahmad; Bapokutty, Omar

    2013-01-01

    Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer

  17. Scattering of fast neutrons from elemental molybdenum

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.

    1982-11-01

    Differential broad-resolution neutron-scattering cross sections of elemental molybdenum were measured at 10 to 20 scattering angles distributed between 20 and 160 degrees and at incident-neutron energy intervals of approx. = 50 to 200 keV from 1.5 to 4.0 MeV. Elastically-scattered neutrons were fully resolved from inelastic events. Lumped-level inelastic-neutron-scattering cross sections were determined corresponding to observed excitation energies of; 789 +- 23, 195 +- 23, 1500 +- 34, 1617 +- 12, 1787, 1874, 1991, 2063 +- 24, 2296, 2569 and 2802 keV. An optical-statistical model was deduced from the measured elastic-scattering results. The experimental values were compared with the respective quantities given in ENDF/B-V

  18. A new lumped-parameter approach to simulating flow processes in unsaturated dual-porosity media

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S. [Lawrence Berkeley Laboratory, CA (United States)

    1995-03-01

    We have developed a new lumped-parameter dual-porosity approach to simulating unsaturated flow processes in fractured rocks. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but unlike the Warren-Root equation, is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module, compatible with the TOUGH simulator, to serve as a source/sink term for fracture elements. The new approach achieves accuracy comparable to simulations in which the matrix blocks are discretized, but typically requires an order of magnitude less computational time.

  19. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  20. Aggressive angiomyxoma presenting with huge abdominal lump: A case report

    Science.gov (United States)

    Kumar, Sanjeev; Agrawal, Nikhil; Khanna, Rahul; Khanna, AK

    2008-01-01

    Agressive angiomyxoma is a rare mesenchymal neoplasm. It mainly presents in females. We here present a case of angiomyxoma presenting as huge abdominal lump along with gluteal swelling. Case note is described along with brief review of literature. PMID:18755035

  1. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-12-31

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig.

  2. GEYSER/TONUS: a coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    International Nuclear Information System (INIS)

    Petit, M.; Durin, M.; Gauvain, J.

    1995-01-01

    The safety requirements for future light water reactors include accounting for severe accidents in the design process. The design must now include mitigation features to limit pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. Modelling the thermal hydraulics inside the containment requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. The effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled. The GEYSER/TONUS multi-dimensional computer code is under development at CEA Saclay to model this complex situation. It allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, and physical models of classical lumped parameters codes will be adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows to construct sophisticated applications based upon it. (J.S.). 22 refs., 1 fig

  3. 1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1988-08-01

    This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples

  4. Incidence data for breast cancer among Yemeni female patients with palpable breast lumps.

    Science.gov (United States)

    Alsanabani, Jamila Ali; Gilan, Waleed; Saadi, Azzan Al

    2015-01-01

    To estimate the incidence of breast cancer in Yemeni female patients presenting with a breast mass. This retrospective study was carried out with 595 female patients with palpable breast lumps, attending to Alkuwait university hospital, Sana'a, Yemen. Triple assessment, including breast examination, mammography and biopsy (FNAC, core needle, or excision), for all patients were performed. The incidences of benign and malignant lesions was calculated. Some 160 (26.9%) of 595 patients had malignancies; 213 (35.8%) were fibroadenomas; 12 (2.0%) were fibrocystic change; 143 (24.03%) were inflammatory lesions (including mastitis and ductectasia); 62 (10.4%) were simple cysts, while 5 (0.8%) were phyllodes tumors. The mean age of patients with malignant lumps was 44.3 years. Among Yemeni female patients with palpable breast lumps, the rate of breast cancer is high, with occurrence at an earlier age than in Western countries. Improving breast cancer awareness programs and increasing breast cancer screening centers inb different areas of Yemen are needed to establish early diagnosis and offer early and optimal treatment.

  5. Using lumped modelling for providing simple metrics and associated uncertainties of catchment response to agricultural-derived nitrates pollutions

    Science.gov (United States)

    RUIZ, L.; Fovet, O.; Faucheux, M.; Molenat, J.; Sekhar, M.; Aquilina, L.; Gascuel-odoux, C.

    2013-12-01

    The development of simple and easily accessible metrics is required for characterizing and comparing catchment response to external forcings (climate or anthropogenic) and for managing water resources. The hydrological and geochemical signatures in the stream represent the integration of the various processes controlling this response. The complexity of these signatures over several time scales from sub-daily to several decades [Kirchner et al., 2001] makes their deconvolution very difficult. A large range of modeling approaches intent to represent this complexity by accounting for the spatial and/or temporal variability of the processes involved. However, simple metrics are not easily retrieved from these approaches, mostly because of over-parametrization issues. We hypothesize that to obtain relevant metrics, we need to use models that are able to simulate the observed variability of river signatures at different time scales, while being as parsimonious as possible. The lumped model ETNA (modified from[Ruiz et al., 2002]) is able to simulate adequately the seasonal and inter-annual patterns of stream NO3 concentration. Shallow groundwater is represented by two linear stores with double porosity and riparian processes are represented by a constant nitrogen removal function. Our objective was to identify simple metrics of catchment response by calibrating this lumped model on two paired agricultural catchments where both N inputs and outputs were monitored for a period of 20 years. These catchments, belonging to ORE AgrHys, although underlain by the same granitic bedrock are displaying contrasted chemical signatures. The model was able to simulate the two contrasted observed patterns in stream and groundwater, both on hydrology and chemistry, and at the seasonal and pluri-annual scales. It was also compatible with the expected trends of nitrate concentration since 1960. The output variables of the model were used to compute the nitrate residence time in both the

  6. Primary Breast Tuberculosis Presenting as a Lump: A Rare Modern ...

    African Journals Online (AJOL)

    mammary area. A 25. year.old female, presented with a lump in the breast and infra.mammary area. She was having off and on fever without any other complaints. There was no positive family history. Primary breast tuberculosis was diagnosed on fine ...

  7. Start-up of belt conveyors used for haulage of large lumps under difficult climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Drobny, J

    1979-01-01

    Investigations are discussed carried out by the Research and Development Center for Brown Coal in Most, Czechoslovakia into effects of climate, weather and mass of coal lumps on reliability of belt conveyors in surface mines. Dirt buildup on the driving drums reduces friction and increases belt sliding hazards. Belt wear increases. Driving drum diameter, increased by the buildup, negatively influences load distribution among the electric motors of the drive system. In extreme cases belt wear and irregular load distribution cause belt failures. Methods for buildup removal used in Czechoslovakia and methods for protection of the return side of a conveyor are described. Effects of large mass of coal lumps and ice buildup on large lumps on the risk of belt damage (cuts, punctures etc,) are discussed. Recommendations for design of coal transfer points are made. 2 refs.

  8. 20 CFR 725.521 - Commutation of payments; lump sum awards.

    Science.gov (United States)

    2010-04-01

    ... present value of future benefit payments commuted, computed at 4 percent true discount compounded annually... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Commutation of payments; lump sum awards. 725.521 Section 725.521 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR...

  9. An Analysis of the Effect of the U. S. Marine Corps' Lump Sum Selective Reenlistment Bonus Program on Reenlistment Decisions

    National Research Council Canada - National Science Library

    Barry, Robert

    2001-01-01

    ... the impact of personal characteristics, civilian pay, unemployment, and the lump sum bonus on reenlistment decisions, Marine retention probabilities under the lump sum payment program are compared...

  10. Use of Ventricular Assist Device in Univentricular Physiology: The Role of Lumped Parameter Models.

    Science.gov (United States)

    Di Molfetta, Arianna; Ferrari, Gianfranco; Filippelli, Sergio; Fresiello, Libera; Iacobelli, Roberta; Gagliardi, Maria G; Amodeo, Antonio

    2016-05-01

    Failing single-ventricle (SV) patients might benefit from ventricular assist devices (VADs) as a bridge to heart transplantation. Considering the complex physiopathology of SV patients and the lack of established experience, the aim of this work was to realize and test a lumped parameter model of the cardiovascular system, able to simulate SV hemodynamics and VAD implantation effects. Data of 30 SV patients (10 Norwood, 10 Glenn, and 10 Fontan) were retrospectively collected and used to simulate patients' baseline. Then, the effects of VAD implantation were simulated. Additionally, both the effects of ventricular assistance and cavopulmonary assistance were simulated in different pathologic conditions on Fontan patients, including systolic dysfunction, diastolic dysfunction, and pulmonary vascular resistance increment. The model can reproduce patients' baseline well. Simulation results suggest that the implantation of VAD: (i) increases the cardiac output (CO) in all the three palliation conditions (Norwood 77.2%, Glenn 38.6%, and Fontan 17.2%); (ii) decreases the SV external work (SVEW) (Norwood 55%, Glenn 35.6%, and Fontan 41%); (iii) increases the mean pulmonary arterial pressure (Pap) (Norwood 39.7%, Glenn 12.1%, and Fontan 3%). In Fontan circulation, with systolic dysfunction, the left VAD (LVAD) increases CO (35%), while the right VAD (RVAD) determines a decrement of inferior vena cava pressure (Pvci) (39%) with 34% increment of CO. With diastolic dysfunction, the LVAD increases CO (42%) and the RVAD decreases the Pvci. With pulmonary vascular resistance increment, the RVAD allows the highest CO (50%) increment with the highest decrement of Pvci (53%). The single ventricular external work (SVEW) increases (decreases) increasing the VAD speed in cavopulmonary (ventricular) assistance. Numeric models could be helpful in this challenging and innovative field to support patients and VAD selection to optimize the clinical outcome and personalize the therapy

  11. Estimation of time to rupture in a fire using 6FIRE, a lumped parameter UF6 cylinder transient heat transfer/stress analysis model

    International Nuclear Information System (INIS)

    Williams, W.R.; Anderson, J.C.

    1995-01-01

    The transportation of UF 6 is subject to regulations requiring the evaluation of packaging under a sequence of hypothetical accident conditions including exposure to a 30-min 800 degree C (1475 degree F) fire [10 CFR 71.73(c)(3)]. An issue of continuing interest is whether bare cylinders can withstand such a fire without rupturing. To address this issue, a lumped parameter heat transfer/stress analysis model (6FIRE) has been developed to simulate heating to the point of rupture of a cylinder containing UF 6 when it is exposed to a fire. The model is described, then estimates of time to rupture are presented for various cylinder types, fire temperatures, and fill conditions. An assessment of the quantity of UF 6 released from containment after rupture is also presented. Further documentation of the model is referenced

  12. The liquid lift: Looking natural without lumps

    Directory of Open Access Journals (Sweden)

    Iñigo de Felipe

    2015-01-01

    Full Text Available Context: Hyaluronic acid (HA is the most common filler used to rejuvenate. Today, a three-dimensional approach prevails over previous techniques in which this material was used in specific areas of the face such as the nasolabial fold, the marionette line, and the eye trough giving a strange appearance that does not look natural. Even with a volumizing purpose, the injection of HA can sometimes produce clinically detectable nodules or lumps where the filler is deposited. Aims: To develop a new technique of injecting HA that can provide more natural results and avoid the lumpiness and nodular appearance that sometimes occurs with the injection of HA. To detect whether mixing HA with diluted anesthetic agent modifies its behavior. Settings and Design: Prospective, case control, single-center study on a private clinic setting. Materials and Methods: Eighty six patients were enrolled in this study. All of them had a previous treatment with nondiluted HA using a needle at least a year before. Patients were injected with 8 mL of reticulated HA (RHA mixed with 6 mL of saline and 2 mL of anesthetic agent. The mixture was administered through a cannula inserted in the face, one at mid-cheek and another at frontal-temporal point of entry. Owing to the lifting effect of this mixture we called this procedure liquid lift (LL. Patients were evaluated 1 month, 6 months, and a year later and asked to compare the LL with previous experiences in terms of natural look, pain, and appearance of nodules. Statistical Analysis Used: Student′s t-test. Results: One month after the treatment, 83 out of 86 patients (96.5% thought LL produced a more natural look than the previous treatment with the needle. Sixty two (72% considered LL less painful than the previous treatment and only eight (9.3% could detect lumps or nodules 1 month after LL was performed compared with 46 (53.5% that described this problem with previous needle injections. The incidence of bruising was

  13. Lumped Thermal Household Model

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob

    2013-01-01

    pump portfolio. Following, we illustrate two disadvantages of individual models, namely that it requires much computational effort to optimize over a large portfolio, and second that it is difficult to accurately model the houses in certain time periods due to local disturbances. Finally, we propose...

  14. The application of model with lumped parameters for transient condition analyses of NPP; Primena modela sa koncentrisanim parametrima za analize pelaznih stanja nukleane elektrane

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, B [Institut GOSA, Beograd (Yugoslavia); Stevanovic, V [Masinski fakultet, Beograd (Yugoslavia)

    1985-07-01

    The transient behaviour of NPP Krsko during the accident of pressurizer spray valve stuck open has been simulated y lumped parameters model of the PWR coolant system components, developed at the faculty of Mechanical Engineering, University of Belgrade. The elementary volumes which are characterised by the process and state parameters, and by junctions which are characterised by the geometrical and flow parameters are basic structure of physical model. The process parameters obtained by the model RESI, show qualitative agreement with the measured valves, in a degree in which the actions of reactor safety engineered system and emergency core cooling system are adequately modelled; in spite of the elementary physical model structure and only the modelling of thermal process in reactor core and equilibrium conditions of pressurizer and steam generator. The pressurizer pressure and liquid level predicted by the non-equilibrium pressurizer model SOP show good agreement until the HIPS (high pressure pumps) is activated. (author)

  15. On a sparse pressure-flow rate condensation of rigid circulation models

    Science.gov (United States)

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  16. Model-based Adjustment of Droplet Characteristic for 3D Electronic Printing

    Directory of Open Access Journals (Sweden)

    Lin Na

    2017-01-01

    Full Text Available The major challenge in 3D electronic printing is the print resolution and accuracy. In this paper, a typical mode - lumped element modeling method (LEM - is adopted to simulate the droplet jetting characteristic. This modeling method can quickly get the droplet velocity and volume with a high accuracy. Experimental results show that LEM has a simpler structure with the sufficient simulation and prediction accuracy.

  17. Advantages and disadvantages of lumping together gastroesophageal reflux disease and dyspepsia

    NARCIS (Netherlands)

    Smout, André J. P. M.

    2006-01-01

    PURPOSE OF REVIEW: The aim of this article is to identify and to balance the arguments in favor of and against lumping together gastroesophageal reflux disease and functional dyspepsia. RECENT FINDINGS: In at least half of the patients diagnosed with gastroesophageal reflux disease no organic

  18. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    Science.gov (United States)

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  19. Definition of datum of materials lump size on conveyors by means of reflected gamma-radiation method

    International Nuclear Information System (INIS)

    Gal'yanov, A.V.; Antonov, V.A.; Laptev, Yu.V.

    2001-01-01

    A method of technological control of large-size lumps in conveyor-transported crushed material based on intensity measurement of X-ray and gamma radiation reflected from the material surface was suggested. The method was substantiated theoretically and as a result it was shown that dispersion of radiation intensity, multiply measured for short periods of time, can be analytic parameter of large-size lumps yield. Principled methodical and design recommendations on the method practical applications are given [ru

  20. Comparative study of aspiration and non-aspiration cytology of palpable breast lumps and correlation with histopathology

    Directory of Open Access Journals (Sweden)

    S Koirala

    2014-09-01

    Full Text Available Background: Breast lump is one of the most common presentations in surgical outpatient departments with anxiety regarding a possible malignancy. Hence a quick diagnosis of a lump in the breast is essential. Fine needle aspiration cytology is an ideal initial diagnostic modality in breast lumps. There is an alternative method of performing needle aspiration, known as fine needle capillary cytology where the specimen is obtained using just a needle without aspiration.Materials and Methods: This hospital-based cross sectional analytical study was carried out in Department of Pathology in National Academy of Medical Sciences, Bir Hospital for one year. The objective of this study was to compare aspiration and non-aspiration cytology of palpable breast lumps and correlation with histopathology.Results: The five criteria scored for each technique were background blood, amount of cellular material, cellular degeneration, cellular trauma and architectural preservation. Compared to fine needle aspiration cytology, fine needle capillary cytology yields less bloody smears with minimal degenerative changes and offers more diagnostically superior specimens. Fine needle aspiration cytology, on the other hand, gives a good yield of diagnostic material.Conclusion: Fine needle aspiration cytology and fine needle capillary cytology are quick, easy, safe and cost-effective techniques. . A high sensitivity and specificity of cytological diagnosis in this study proves that it is comparable to final histology report in its diagnostic efficiency. Thus, fine needle aspiration cytology is a very important preliminary diagnostic test in palpable breast lumps and the results show a high degree of correlation with the final histopathology report.DOI: http://dx.doi.org/10.3126/jpn.v4i8.11501 Journal of Pathology of Nepal; Vol.4,No. 8 (2014 639-643

  1. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  2. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Science.gov (United States)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  3. Analysis of groundwater discharge with a lumped-parameter model, using a case study from Tajikistan

    Science.gov (United States)

    Pozdniakov, S. P.; Shestakov, V. M.

    A lumped-parameter model of groundwater balance is proposed that permits an estimate of discharge variability in comparison with the variability of recharge, by taking into account the influence of aquifer parameters. Recharge-discharge relationships are analysed with the model for cases of deterministic and stochastic recharge time-series variations. The model is applied to study the temporal variability of groundwater discharge in a river valley in the territory of Tajikistan, an independent republic in Central Asia. Résumé Un modèle global de bilan d'eau souterraine a été développé pour estimer la variabilité de l'écoulement par rapport à celle de la recharge, en prenant en compte l'influence des paramètres de l'aquifère. Les relations entre recharge et écoulement sont analysées à l'aide du modèle pour des variations des chroniques de recharge soit déterministes, soit stochastiques. Le modèle est appliquéà l'étude de la variabilité temporelle de l'écoulement souterrain vers une rivière, dans le Tadjikistan, une république indépendante d'Asie centrale. Resumen Se propone un modelo de parámetros concentrados para realizar el balance de aguas subterráneas, el cual permite estimar la variabilidad en la descarga con respecto a la variabilidad en la recarga, en función de los parámetros que caracterizan el acuífero. Las relaciones entre recarga y descarga se analizan con el modelo para distintos casos de series temporales de recarga, tanto deterministas como estocásticas. El modelo se aplica al estudio de la variabilidad temporal de la descarga en un valle aluvial de Tadyikistán, una república independiente del Asia Central.

  4. airGR: an R-package suitable for large sample hydrology presenting a suite of lumped hydrological models

    Science.gov (United States)

    Thirel, G.; Delaigue, O.; Coron, L.; Perrin, C.; Andreassian, V.

    2016-12-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015; Coron et al., 2016), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithm selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. It allows for convenient implementation of model inter-comparisons and

  5. Verification of Orthogrid Finite Element Modeling Techniques

    Science.gov (United States)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  6. Primary Breast Tuberculosis Presenting as a Lump: A Rare Modern ...

    African Journals Online (AJOL)

    A 25‑year‑old female presented with a painless lump in her right breast for 1 month duration. She gave history of low grade fever off and on for the last 2 weeks. There were no other complaints like weight loss, loss of appetite, and any cough. She was unmarried and there was no positive family history of breast tuberculosis.

  7. Physical model of Nernst element

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Ikeda, Kazuaki; Yamaguchi, Satarou

    1998-08-01

    Generation of electric power by the Nernst effect is a new application of a semiconductor. A key point of this proposal is to find materials with a high thermomagnetic figure-of-merit, which are called Nernst elements. In order to find candidates of the Nernst element, a physical model to describe its transport phenomena is needed. As the first model, we began with a parabolic two-band model in classical statistics. According to this model, we selected InSb as candidates of the Nernst element and measured their transport coefficients in magnetic fields up to 4 Tesla within a temperature region from 270 K to 330 K. In this region, we calculated transport coefficients numerically by our physical model. For InSb, experimental data are coincident with theoretical values in strong magnetic field. (author)

  8. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion

    KAUST Repository

    Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z.

    2014-01-01

    © 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.

  9. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion

    KAUST Repository

    Jin, B.

    2014-05-30

    © 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.

  10. Breast Lumps: A 21‑Year Single‑Center Clinical and Histological ...

    African Journals Online (AJOL)

    Results: Only 38% of the patients came within 3 months of finding lumps in their breast. Onehundred and thirty‑seven patients (83%) had benign disease, i.e., fibroadenoma, mammary dysplasia, cysts, adenomas, tuberculosis, phyllodes tumor, mastitis, and lipoma. Only 16.9% i.e., 28 patients had breast cancer, out of which ...

  11. A CPW-Fed Quasi-PIFA Antenna Using Quasi-Lumped Resonators for Mobile Phones

    Directory of Open Access Journals (Sweden)

    Majid Rafiee

    2015-01-01

    Full Text Available A novel single CPW-fed Quasi-Planar Inverted-F Antenna (PIFA using quasi-lumped elements is developed for mobile communication handheld terminals operating at 2.6 GHz. The antenna is composed of an inductor covered by a set of interdigital and parasitic capacitors. The proposed antenna achieves a measured bandwidth of 11% for return loss with the antenna gain of about 4 dBi. The antenna is designed in single layer (zero height which is appropriate to be used in thin devices where a small room is considered for the antenna. The proposed antenna is suitable for use in Long Term Evolution band 7. The operating frequency of introduced antenna depends on the number of interdigital fingers and inductor length rather than the total resonator patch only, so that the operating frequency can be altered while the total patch size remains unchanged. The calculated operating frequency is confirmed by simulation and measurement. Also the dipole-like simulated radiation pattern is confirmed by measurement.

  12. Reduction of chemical reaction models

    Science.gov (United States)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  13. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

    KAUST Repository

    Liu, Shaolin

    2017-09-28

    The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.

  14. Structure-soil-structure interaction of nuclear structures

    International Nuclear Information System (INIS)

    Snyder, M.D.; Shaw, D.E.; Hall, J.R. Jr.

    1975-01-01

    Structure-to-structure interaction resulting from coupling of the foundations through the soil has traditionally been neglected in the seismic analysis of nuclear power plants. This paper examines the phenomenon and available methods of analytical treatment, including finite element and lumped parameter methods. Finite element techniques have lead to the treatment of through soil coupling of structural foundations using two dimensional plane strain models owing to the difficulty of considering three dimensional finite element models. The coupling problem is treated by means of a lumped parameter model derived from elastic half-space considerations. Consequently, the method is applicable to the interaction of any number of foundations and allows the simultaneous application of tri-directional excitation. The method entails the idealization of interacting structures as lumped mass/shear beams with lumped soil springs and dampers beneath each foundation plus a coupling matrix between the interacting foundations. Utilizing classical elastic half-space methods, the individual foundation soil springs and dampers may be derived, accounting for the effects of embedment and soil layering, analogous to the methods used for single soil-structure, interaction problems. The coupling matrix is derived by generating influence coefficients based on the geometric relationship of the structures using classical half-space solutions. The influence coefficients form the coupling flexibility matrix which is inverted to yield the coupling matrix for the lumped parameter model

  15. airGR: a suite of lumped hydrological models in an R-package

    Science.gov (United States)

    Coron, Laurent; Perrin, Charles; Delaigue, Olivier; Andréassian, Vazken; Thirel, Guillaume

    2016-04-01

    Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years with the main objectives of designing models as efficient as possible in terms of streamflow simulation, applicable to a wide range of catchments and having low data requirements. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2015), called airGR, to make these models widely available. It includes: - the water balance annual GR1A (Mouehli et al., 2006), - the monthly GR2M (Mouehli, 2003) models, - three versions of the daily model, namely GR4J (Perrin et al., 2003), GR5J (Le Moine, 2008) and GR6J (Pushpalatha et al., 2011), - the hourly GR4H model (Mathevet, 2005), - a degree-day snow module CemaNeige (Valéry et al., 2014). The airGR package has been designed to facilitate the use by non-expert users and allow the addition of evaluation criteria, models or calibration algorithms selected by the end-user. Each model core is coded in FORTRAN to ensure low computational time. The other package functions (i.e. mainly the calibration algorithm and the efficiency criteria) are coded in R. The package is already used for educational purposes. The presentation will detail the main functionalities of the package and present a case

  16. Painless lump over the forehead which turned painful: an unusual presentation of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    S P Susheela

    2015-05-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common malignancies and is known to most often present with symptomatology pertaining to local hepatic disease. Although HCC is known to metastasize to lungs, abdominal lymph nodes, adrenal glands and the vertebral column, it is rather rare to come across patients with skull metastasis. The manifestation of a solitary frontal bone metastasis leading to a painless lump over the forehead as the initial presenting feature of HCC is highly unusual. This case report pertains to a 40-year-old male patient who had initially observed a painless lump over his forehead that was gradually increasing in size over a span of 3 months. He sought medical attention when, after several months, the "painless lump" suddenly became painful. Investigations revealed the involvement of both the outer and the inner table of the frontal bone, and a biopsy revealed the histopathology to be that of HCC. On further investigation, he was found to have systemic disseminated disease involving both the left and right lungs and vertebrae and treatment was initiated with sorafenib. Despite an initial partial response, the patient subsequently succumbed to hepatic failure. This case report illustrates the fact that HCC can silently progress, and even lead to dissemination and distant metastases before becoming clinically evident.

  17. A NURBS-based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach

    KAUST Repository

    Espath, L. F R

    2015-02-03

    A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.

  18. A NURBS-based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach

    KAUST Repository

    Espath, L. F R; Braun, Alexandre Luis; Awruch, Armando Miguel; Dalcin, Lisandro

    2015-01-01

    A numerical model to deal with nonlinear elastodynamics involving large rotations within the framework of the finite element based on NURBS (Non-Uniform Rational B-Spline) basis is presented. A comprehensive kinematical description using a corotational approach and an orthogonal tensor given by the exact polar decomposition is adopted. The state equation is written in terms of corotational variables according to the hypoelastic theory, relating the Jaumann derivative of the Cauchy stress to the Eulerian strain rate.The generalized-α method (Gα) method and Generalized Energy-Momentum Method with an additional parameter (GEMM+ξ) are employed in order to obtain a stable and controllable dissipative time-stepping scheme with algorithmic conservative properties for nonlinear dynamic analyses.The main contribution is to show that the energy-momentum conservation properties and numerical stability may be improved once a NURBS-based FEM in the spatial discretization is used. Also it is shown that high continuity can postpone the numerical instability when GEMM+ξ with consistent mass is employed; likewise, increasing the continuity class yields a decrease in the numerical dissipation. A parametric study is carried out in order to show the stability and energy budget in terms of several properties such as continuity class, spectral radius and lumped as well as consistent mass matrices.

  19. Electromagnetic and thermal modelling of induction motors, by accounting for space harmonics; Modelisation electromagnetique et thermique des moteurs a induction, en tenant compte des harmoniques d'espace

    Energy Technology Data Exchange (ETDEWEB)

    Mezani, S.

    2004-07-15

    This work is interested in the study of the electromagnetic and thermal behaviors of the induction motor. A state of the art is initially drawn up, where we have presented and discussed the current methods dealing with electromagnetic and thermal modeling of induction motors. An electromagnetic model, that uses the 2D complex finite element method to solve the field equations, is developed. The rotor movement is accounted for by coupling the air gap field, for each space harmonic, using the double air gap method. The superposition principle permits the determination of the final solution. To deal with non linear problems, an approach that introduces equivalent reluctivities, is proposed. We have assumed that the saturation is only due to the first space harmonic. A thermal model is elaborated by using the nodal method. The machine is cut up into 11 cylindrical lumped elements, the thermal model represents the juxtaposition of these lumped elements. The electromagnetic and thermal models are, weakly, coupled together for a more precise determination of the temperature distribution inside the motor. In the validation phase of our work, we have designed a test bench that allows specific torque and temperature measurements. The comparison of the calculations and the measurements is satisfactory. (author)

  20. The lumped heat capacity method applied to target heating

    OpenAIRE

    Rickards, J.

    2013-01-01

    The temperature of metal samples was measured while they were bombarded by the beam from the a particle accelerator. The evolution of the temperature with time can be explained using the lumped heat capacity method of heat transfer. A strong dependence on the type of mounting was found. Se midió la temperatura de muestras metálicas al ser bombardeadas por el haz de iones del Acelerador Pelletron del Instituto de Física. La evolución de la temperatura con el tiempo se puede explicar usando ...

  1. Probing lumps of wee partons in deep inelastic scattering

    International Nuclear Information System (INIS)

    Buchmueller, W.

    1994-06-01

    Recently, the ZEUS collaboration has reported on several remarkable properties of events with a large rapidity gap in deep inelastic scattering. We suggest that the mechanism underlying these events is the scattering of electrons off lumps of wee partons inside the proton. Based on an effective lagrangian approach the Q 2 -, x- and W-distributions are evaluated. For sufficiently small invariant mass of the detected hadronic system, the mechanism implies leading twist behaviour. The x- and W-distributions are determined by the Lipatov exponent which governs the behaviour of parton densities at small x. (orig.)

  2. Modeling high-power RF accelerator cavities with SPICE

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1992-01-01

    The dynamical interactions between RF accelerator cavities and high-power beams can be treated on personal computers using a lumped circuit element model and the SPICE circuit analysis code. Applications include studies of wake potentials, two-beam accelerators, microwave sources, and transverse mode damping. This report describes the construction of analogs for TM mn0 modes and the creation of SPICE input for cylindrical cavities. The models were used to study continuous generation of kA electron beam pulses from a vacuum cavity driven by a high-power RF source

  3. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  4. Acute lymphoblastic leukemia presenting as a breast lump: A report of two cases

    Directory of Open Access Journals (Sweden)

    Syed Besina

    2013-01-01

    Full Text Available Extra-medullary leukemic infiltration of the breast by acute lymphoblastic leukemia (ALL is very rare. We report two cases of ALL presenting as breast masses and diagnosed on fine-needle aspiration (FNA. Our first patient, a post-partum 30-year-old female, developed bilateral breast lumps in her last trimester of pregnancy and complained of easy fatigability. Our second patient, a 14-year-old girl, presented with a right-breast lump of 1-week duration. She had received treatment for ALL 1 year back and had been in complete remission for the last 1 year. FNA of the breast nodules done in both the cases revealed diffuse infiltration by lymphoblasts. Subsequent hematological investigations confirmed bone marrow involvement by ALL in the first case and extra-medullary relapse in the second case. Fine-needle aspiration cytology (FNAC is an easy and cost effective method for the early diagnosis of metastatic leukemic infiltration, avoiding unnecessary excisional biopsies in such cases.

  5. GEYSER/TONUS: A coupled multi-D lumped parameter code for reactor thermal hydraulics analysis in case of severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Petit, M.; Durin, M.; Gauvain, J. [Commissariat a l`Energie Atomique, Gif sur Yvette (France)

    1995-09-01

    In many countries, the safety requirements for future light water reactors include accounting for severe accidents in the design process. As far as the containment is concerned, the design must now include mitigation features to limit the pressure and temperature inside the building. Hydrogen concentration is also a major issue for severe accidents. In this context, new needs appear for the modeling of the thermal hydraulics inside the containment. It requires the description of complex phenomena such as condensation, stratification, transport of gases and aerosols, heat transfers. Moreover, the effect of mitigation systems will increase the heterogeneities in the building, and most of those phenomena can be coupled, as for example hydrogen stratification and condensation. To model such a complex situation, the use of multi-dimensional computer codes seems to be necessary in case of large volumes. The aim of the GEYSER/TONUS computer code is to fulfill this need. This code is currently under development at CEA in Saclay. It will allow the coupling of parts of the containment described in a lumped parameter manner, together with meshed parts. Emphasis is put on the numerical methods used to solve the transient problem, as the objective is to be able to treat complete scenarios. Physical models of classical lumped parameters codes will adapted for the spatially described zones. The code is developed in the environment of the CASTEM 2000/TRIO EF system which allows, thanks to its modular conception, to construct sophisticated applications based upon it.

  6. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  7. Prediction of gasoline yield in a fluid catalytic cracking (FCC riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD approach

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan

    2015-07-01

    Full Text Available Fluid catalytic cracking (FCC is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD software, heavy density catalyst and 4-lump kinetic model. Geometry, boundary conditions and dimensions of industrial riser for catalytic cracking unit are conferred for 2D simulation using commercial CFD code FLUENT 6.3. Continuity, momentum, energy and species transport equations, applicable to two phase solid and gas flow, are used to simulate the physical phenomenon as efficient as possible. This study implements and predicts the use of the granular Eulerian multiphase model with species transport. Time accurate transient problem is solved with the prediction of mass fraction profiles of gas oil, gasoline, light gas and coke. The output curves demonstrate the breaking of heavy hydrocarbon in the presence of catalyst. An approach proposed in this study shows good agreement with the experimental and numerical data available in the literature.

  8. Determination of gold in lump by the gamma-activation analysis method

    International Nuclear Information System (INIS)

    Yantsen, V.A.; Ermakov, K.S.

    2006-01-01

    Full text: In the report the installation is described used in the Central gamma-activation analysis laboratory (CGAAL) for express quantitative determination of gold concentration in large powdered samples. The method of gold contents determination for non-crushed samples (pieces up to 100 mm). The given gamma-activation analysis method is widely used in mining industry, and at researches related with selection of optimal technological circuits designed for sorting the pieces of ore and rock materials. By developing this method it is now possible to create the technological collection of separated pieces by size, large by the amount of samples, imitating various sorts (by gold concentration in them) and types (by elemental composition) ores, and, based on these collection, to compare the efficiencies of various enrichment methods by knowing in advance the concentrations of gold in these lumps being the final sorting products. The Gamma-activation analysis method of large pieces is mainly used as foundation for the x-ray radiometric (XRR) method of pieces separation of gold-bearing ores from the deposits mined by the Navoi mining combine. It allows significant increase in the rate of research and development works on selection of the most reliable separation characteristics. Based on these one can develop optimal technological circuits for ore enrichment with portion sorting methods. (author)

  9. A Hybrid Soft Soil Tire Model (HSSTM) For Vehicle Mobility And Deterministic Performance Analysis In Terramechanics Applications

    OpenAIRE

    Taheri, Shahyar

    2015-01-01

    Accurate and efficient tire models for deformable terrain operations are essential for performing vehicle simulations. Assessment of the forces and moments that occur at the tire-terrain interface, and the effect of the tire motion on properties of the terrain are crucial in understanding the performance of a vehicle. In order to model the dynamic behavior of the tire on different terrains, a lumped mass discretized tire model using Kelvin-Voigt elements is developed. To optimize the computat...

  10. GPU-accelerated element-free reverse-time migration with Gauss points partition

    Science.gov (United States)

    Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong

    2018-06-01

    An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.

  11. Mixed spectral finite elements and perfectly matched layers for elastic waves in time domain; Elements finis mixtes spectraux et couches absorbantes parfaitement adaptees pour la propagation d'ondes elastiques en regime transitoire

    Energy Technology Data Exchange (ETDEWEB)

    Fauqueux, S.

    2003-02-01

    We consider the propagation of elastic waves in unbounded domains. A new formulation of the linear elasticity system as an H (div) - L{sup 2} system enables us to use the 'mixed spectral finite element method', This new method is based on the definition of new spaces of approximation and the use of mass-lumping. It leads to an explicit scheme with reduced storage and provides the same solution as the spectral finite element method. Then, we model unbounded domains by using Perfectly Matched Layers. Instabilities in the PML in the case of particular 2D elastic media are pointed out and investigated. The numerical method is validated and tested in the case of acoustic and elastic realistic models. A plane wave analysis gives results about numerical dispersion and shows that meshes adapted to the physical and geometrical properties of the media are more accurate than the others. Then, an extension of the method to fluid-solid coupling is introduced for 2D seismic propagation. (author)

  12. Distributed ESO based cooperative tracking control for high-order nonlinear multiagent systems with lumped disturbance and application in multi flight simulators systems.

    Science.gov (United States)

    Cong, Zhang

    2018-03-01

    Based on extended state observer, a novel and practical design method is developed to solve the distributed cooperative tracking problem of higher-order nonlinear multiagent systems with lumped disturbance in a fixed communication topology directed graph. The proposed method is designed to guarantee all the follower nodes ultimately and uniformly converge to the leader node with bounded residual errors. The leader node, modeled as a higher-order non-autonomous nonlinear system, acts as a command generator giving commands only to a small portion of the networked follower nodes. Extended state observer is used to estimate the local states and lumped disturbance of each follower node. Moreover, each distributed controller can work independently only requiring the relative states and/or the estimated relative states information between itself and its neighbors. Finally an engineering application of multi flight simulators systems is demonstrated to test and verify the effectiveness of the proposed algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Finding and testing network communities by lumped Markov chains.

    Science.gov (United States)

    Piccardi, Carlo

    2011-01-01

    Identifying communities (or clusters), namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "α-community" if such a probability is not smaller than α. Consistently, a partition composed of α-communities is an "α-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired α-level allows one to immediately select the α-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.

  14. Finding and testing network communities by lumped Markov chains.

    Directory of Open Access Journals (Sweden)

    Carlo Piccardi

    Full Text Available Identifying communities (or clusters, namely groups of nodes with comparatively strong internal connectivity, is a fundamental task for deeply understanding the structure and function of a network. Yet, there is a lack of formal criteria for defining communities and for testing their significance. We propose a sharp definition that is based on a quality threshold. By means of a lumped Markov chain model of a random walker, a quality measure called "persistence probability" is associated to a cluster, which is then defined as an "α-community" if such a probability is not smaller than α. Consistently, a partition composed of α-communities is an "α-partition." These definitions turn out to be very effective for finding and testing communities. If a set of candidate partitions is available, setting the desired α-level allows one to immediately select the α-partition with the finest decomposition. Simultaneously, the persistence probabilities quantify the quality of each single community. Given its ability in individually assessing each single cluster, this approach can also disclose single well-defined communities even in networks that overall do not possess a definite clusterized structure.

  15. A suitable low-order, eight-node tetrahedral finite element for solids

    International Nuclear Information System (INIS)

    Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.

    1998-03-01

    To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element's gradient operator, studies in obtaining a suitable mass lumping, and the element's performance in applications are presented. In particular they examine the eight-node tetrahedral finite element's behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties

  16. A Size Reduction Technique for Mobile Phone PIFA Antennas Using Lumped Inductors

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne

    2005-01-01

    A size reduction technique for the planar inverted-F antenna (PIFA) is presented. An 18 nH lumped inductor is used in addition to a small 0.3 cm3 PIFA. The PIFA is located on dielectric foam, 5 mm above a 40 mm × 100 mm ground plane. It is possible to reduce the center frequency (|S11|min) by 33 ...

  17. Finite element modeling of piezoelectric elements with complex electrode configuration

    International Nuclear Information System (INIS)

    Paradies, R; Schläpfer, B

    2009-01-01

    It is well known that the material properties of piezoelectric materials strongly depend on the state of polarization of the individual element. While an unpolarized material exhibits mechanically isotropic material properties in the absence of global piezoelectric capabilities, the piezoelectric material properties become transversally isotropic with respect to the polarization direction after polarization. Therefore, for evaluating piezoelectric elements the material properties, including the coupling between the mechanical and the electromechanical behavior, should be addressed correctly. This is of special importance for the micromechanical description of piezoelectric elements with interdigitated electrodes (IDEs). The best known representatives of this group are active fiber composites (AFCs), macro fiber composites (MFCs) and the radial field diaphragm (RFD), respectively. While the material properties are available for a piezoelectric wafer with a homogeneous polarization perpendicular to its plane as postulated in the so-called uniform field model (UFM), the same information is missing for piezoelectric elements with more complex electrode configurations like the above-mentioned ones with IDEs. This is due to the inhomogeneous field distribution which does not automatically allow for the correct assignment of the material, i.e. orientation and property. A variation of the material orientation as well as the material properties can be accomplished by including the polarization process of the piezoelectric transducer in the finite element (FE) simulation prior to the actual load case to be investigated. A corresponding procedure is presented which automatically assigns the piezoelectric material properties, e.g. elasticity matrix, permittivity, and charge vector, for finite element models (FEMs) describing piezoelectric transducers according to the electric field distribution (field orientation and strength) in the structure. A corresponding code has been

  18. Electrical model of cold atmospheric plasma gun

    Science.gov (United States)

    Slutsker, Ya. Z.; Semenov, V. E.; Krasik, Ya. E.; Ryzhkov, M. A.; Felsteiner, J.; Binenbaum, Y.; Gil, Z.; Shtrichman, R.; Cohen, J. T.

    2017-10-01

    We present an analytical model of cold atmospheric plasma formed by a dielectric barrier discharge (DBD), which is based on the lumped and distributed elements of an equivalent electric circuit of this plasma. This model is applicable for a wide range of frequencies and amplitudes of the applied voltage pulses, no matter whether or not the generated plasma plume interacts with a target. The model allows quantitative estimation of the plasma plume length and the energy delivered to the plasma. Also, the results of this model can be used for the design of DBD guns which efficiently generate cold atmospheric plasma. A comparison of the results of the model with those obtained in experiments shows a fairly good agreement.

  19. Determining the elemental composition of fuels by bomb calorimetry and the inverse correlation of HHV with elemental composition

    Energy Technology Data Exchange (ETDEWEB)

    Bech, Niels; Jensen, Peter Arendt; Dam-Johansen, Kim [Department of Chemical and Biochemical Engineering, CHEC Research Centre, Technical University of Denmark, Soeltofts Plads, Building 229, DK-2800 Kongens Lyngby (Denmark)

    2009-03-15

    This article presents a method to obtain a simplified elemental analysis of an organic sample in which oxygen, nitrogen, and sulphur are lumped. The method uses a bomb calorimeter, water, and ash measurements combined with a numerical procedure based on a generalised equation for predicting higher heating value. By analysing pure organic substances, literature data, and fuels it is demonstrated that the method can provide hydrogen estimates within {+-}0.7% daf. and carbon and sum of oxygen, nitrogen, and sulphur estimates within {+-}2% daf. for fuels containing less than 90% ash db., 2% nitrogen daf., and 1% daf. sulphur. (author)

  20. A Kohn–Sham equation solver based on hexahedral finite elements

    International Nuclear Information System (INIS)

    Fang Jun; Gao Xingyu; Zhou Aihui

    2012-01-01

    We design a Kohn–Sham equation solver based on hexahedral finite element discretizations. The solver integrates three schemes proposed in this paper. The first scheme arranges one a priori locally-refined hexahedral mesh with appropriate multiresolution. The second one is a modified mass-lumping procedure which accelerates the diagonalization in the self-consistent field iteration. The third one is a finite element recovery method which enhances the eigenpair approximations with small extra work. We carry out numerical tests on each scheme to investigate the validity and efficiency, and then apply them to calculate the ground state total energies of nanosystems C 60 , C 120 , and C 275 H 172 . It is shown that our solver appears to be computationally attractive for finite element applications in electronic structure study.

  1. Critically Important Object Security System Element Model

    Directory of Open Access Journals (Sweden)

    I. V. Khomyackov

    2012-03-01

    Full Text Available A stochastic model of critically important object security system element has been developed. The model includes mathematical description of the security system element properties and external influences. The state evolution of the security system element is described by the semi-Markov process with finite states number, the semi-Markov matrix and the initial semi-Markov process states probabilities distribution. External influences are set with the intensity of the Poisson thread.

  2. Intense deuterium nuclear fusion of pycnodeuterium-lumps coagulated locally within highly deuterated atom clusters

    CERN Document Server

    Yoshiaki, A; Zhang, Y C

    2002-01-01

    Embedded nano-Pd particles of 5 nm in size instantly abundant D-atoms more than 250% in the atomic ratio against Pd-atoms at room temperature when they are kept in D sub 2 gas pressurized to less than 10 atm. In such ultrahigh densities, 2-4 D-atoms can be coagulated inside each octahedral space of Pd lattice (pycnodeuterium-lump). When a stimulation energy such as latticequake causing by ultrasonic wave was supplied to those highly deuterated Pd particles, intense deuterium nuclear fusion (''solid fusion'') was generated there and both excess heat and sup 4 He gas were abundantly produced. Naturally, these facts can not be realized at all in bulk Pd. The results show that the nuclear fusion occurs without any hazardous rays in pycnodeuterium-lumps coagulated locally inside the each cell of the host metal lattice. These unit cells correspond to minimum unit of the solid fusion reactor as a ''Lattice Reactor''. (author)

  3. FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...

    African Journals Online (AJOL)

    FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.

  4. Application of Biologically-Based Lumping To Investigate the Toxicological Interactions of a Complex Gasoline Mixture

    Science.gov (United States)

    People are often exposed to complex mixtures of environmental chemicals such as gasoline, tobacco smoke, water contaminants, or food additives. However, investigators have often considered complex mixtures as one lumped entity. Valuable information can be obtained from these exp...

  5. A suitable low-order, eight-node tetrahedral finite element for solids

    Energy Technology Data Exchange (ETDEWEB)

    Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.

    1998-03-01

    To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.

  6. 20 CFR 222.31 - Relationship as child for annuity and lump-sum payment purposes.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Relationship as child for annuity and lump... UNDER THE RAILROAD RETIREMENT ACT FAMILY RELATIONSHIPS Relationship as Child § 222.31 Relationship as... the employee. For procedures on how a determination of the person's relationship to the employee is...

  7. Mechatronics a foundation course

    CERN Document Server

    de Silva, Clarence W

    2010-01-01

    Mechatronic EngineeringMechatronic SystemsModeling and Design Mechatronic Design Concept Evolution of Mechatronics Application Areas Study of Mechatronics Organization of the Book Basic Elements and Components Mechanical Elements Fluid Elements Thermal Elements Mechanical Components Passive Electrical Elements and MaterialsActive Electronic Components Light Emitters and Displays Light Sensors Modeling of Mechatronic Systems Dynamic Systems and Models Lumped Elements and Analogies Analytical Model Development Model Linearization Linear Graphs Transfer Functions and Frequency-Domain Models Theve

  8. Finite element modeling and simulation with ANSYS workbench

    CERN Document Server

    Chen, Xiaolin

    2014-01-01

    IntroductionSome Basic ConceptsAn Example in FEA: Spring SystemOverview of ANSYS WorkbenchSummaryProblemsBars and TrussesIntroductionReview of the 1-D Elasticity TheoryModeling of TrussesFormulation of the Bar ElementExamples with Bar ElementsCase Study with ANSYS WorkbenchSummaryProblemsBeams and FramesIntroductionReview of the Beam TheoryModeling of Beams and FramesFormulation of the Beam ElementExamples with Beam ElementsCase Study with ANSYS WorkbenchSummaryProblemsTwo-Dimensional ElasticityIntroductionReview of 2-D Elasticity TheoryModeling of 2-D Elasticity ProblemsFormulation of the Pla

  9. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  10. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    International Nuclear Information System (INIS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-01-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  11. Nonlinear finite element modeling of corrugated board

    Science.gov (United States)

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  12. Finite element modelling

    International Nuclear Information System (INIS)

    Tonks, M.R.; Williamson, R.; Masson, R.

    2015-01-01

    The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)

  13. Vertical responses of nuclear power plant structures subject to seimic ground motions

    International Nuclear Information System (INIS)

    Lee, J.P.; Chen, C.

    1975-01-01

    In the seismic analysis of Nuclear Power Plant Structures, it is generally assumed that the floor slab is 'rigid' in its own plane. However, the slab may be quite flexible in the direction perpendicular to the plane of the slab. There are several methods available to treat the problem related to extra amplification due to floor flexibility. The first method is to use the cascade approach. The second method is to model the flexible floor with plate bending elements and combine them with the rest of the building. The third alternative is to represent the building by a composite lumped model in which the floor is also represented by lumped masses. The stiffness of the interconnecting spring between mass points is computed from the physical properties of the corresponding floor slab. The advantages of the method are that the feedback effect is properly included and the computer cost is significantly reduced. Techniques to model the building and the methods used to obtain the spring constants are presented and discussed. The results obtained using the composite lumped mass model approach and those obtained using the finite element method are compared. Various composite lumped mass models and modeling technique are recommended for future engineering applications

  14. Black holes as lumps of fluid

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Dias, Oscar J.C.; Emparan, Roberto; Klemm, Dietmar

    2009-01-01

    The old suggestive observation that black holes often resemble lumps of fluid has recently been taken beyond the level of an analogy to a precise duality. We investigate aspects of this duality, and in particular clarify the relation between area minimization of the fluid vs. area maximization of the black hole horizon, and the connection between surface tension and curvature of the fluid, and surface gravity of the black hole. We also argue that the Rayleigh-Plateau instability in a fluid tube is the holographic dual of the Gregory-Laflamme instability of a black string. Associated with this fluid instability there is a rich variety of phases of fluid solutions that we study in detail, including in particular the effects of rotation. We compare them against the known results for asymptotically flat black holes finding remarkable agreement. Furthermore, we use our fluid results to discuss the unknown features of the gravitational system. Finally, we make some observations that suggest that asymptotically flat black holes may admit a fluid description in the limit of large number of dimensions.

  15. Numerical Modeling of Ophthalmic Response to Space

    Science.gov (United States)

    Nelson, E. S.; Myers, J. G.; Mulugeta, L.; Vera, J.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Ethier, C. R.

    2015-01-01

    To investigate ophthalmic changes in spaceflight, we would like to predict the impact of blood dysregulation and elevated intracranial pressure (ICP) on Intraocular Pressure (IOP). Unlike other physiological systems, there are very few lumped parameter models of the eye. The eye model described here is novel in its inclusion of the human choroid and retrobulbar subarachnoid space (rSAS), which are key elements in investigating the impact of increased ICP and ocular blood volume. Some ingenuity was required in modeling the blood and rSAS compartments due to the lack of quantitative data on essential hydrodynamic quantities, such as net choroidal volume and blood flowrate, inlet and exit pressures, and material properties, such as compliances between compartments.

  16. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  17. Improvements of an FDTD-based surge simulation code and its application to the lightning overvoltage calculation of a transmission tower

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Taku; Tatematsu, Akiyoshi; Yokoyama, Shigeru [Electric Power Engineering Research Lab., CRIEPI (Central Research Institute of Electric Power Industry), 2-6-1 Nagasaka, Yokosuka-shi, Kanagawa-pref. 240-0196 (Japan)

    2007-09-15

    This paper presents new features recently added to a general-purpose surge simulation code based on the Finite Difference Time Domain (FDTD) method. The added features include various-shape conductor models, lumped-parameter circuit-element models, a lightning-channel model, and an integrated analysis environment (IAE). For precisely modelling the shapes of various conductors, the following conductor models have been added: inclined thin wire; disc; square plate; cylinder; cone; and quadrangular pyramid. The lumped-parameter circuit-element models allow the user to represent the lumped impedance of an apparatus placed inside the analysis space. The lightning-channel model realizes a return-stroke development at a speed slower than the light speed. The IAE includes a Graphical User Interface (GUI), which allows the user to enter geometrical data in a visual way. It also provides a waveform plotting program for viewing voltage, current, electric-field, and magnetic-field waveforms and a movie program for displaying the animation of a transient electric/magnetic field intensity distribution. For an illustrative example, the lightning overvoltage calculation of a transmission tower is presented. (author)

  18. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc; Nazarov, Murtazo

    2014-01-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  19. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc

    2014-04-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  20. Discrete element modeling of microstructure of nacre

    Science.gov (United States)

    Chandler, Mei Qiang; Cheng, Jing-Ru C.

    2018-04-01

    The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick-mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress-strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.

  1. The effect of environmental factors on breast lumps of Egyptian women in different socioeconomic levels

    International Nuclear Information System (INIS)

    Salama, D.H.

    2008-01-01

    The environmental risk factors related to the breast tumors (lumps) are essential in order to build strategies to decrease cancer incidence and mortality among different socioeconomic and cultural backgrounds. A case control study of 70 cases and 52 controls were classified into high, middle and low socioeconomic classes. The results revealed significant increased risk of breast tumors among working females, having positive family history, married with lower mean parity, with higher consumption of fatty meals, lesser meat intake. Non significant risk factors were the social class, exposure to ionizing radiation, non lactating. wearing tight bra, consumption of vegetables and fruits, oral contraceptive pill users and exposure to outdoor air pollution or indoor pollution as floors and wall paintings. In conclusion, this study highlights the positive life style for egyptian women so they can prevent some of the environmental risks of breast tumors. Increasing the awareness of breast diseases and regular examination remains the corner stone for early detection management of breast lumps.

  2. Modeling beams with elements in phase space

    International Nuclear Information System (INIS)

    Nelson, E.M.

    1998-01-01

    Conventional particle codes represent beams as a collection of macroparticles. An alternative is to represent the beam as a collection of current carrying elements in phase space. While such a representation has limitations, it may be less noisy than a macroparticle model, and it may provide insights about the transport of space charge dominated beams which would otherwise be difficult to gain from macroparticle simulations. The phase space element model of a beam is described, and progress toward an implementation and difficulties with this implementation are discussed. A simulation of an axisymmetric beam using 1d elements in phase space is demonstrated

  3. Multilayer Finite-Element Model Application to Define the Bearing Structure Element Stress State of Launch Complexes

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.

  4. Towards improved modeling of steel-concrete composite wall elements

    International Nuclear Information System (INIS)

    Vecchio, Frank J.; McQuade, Ian

    2011-01-01

    Highlights: → Improved analysis of double skinned steel concrete composite containment walls. → Smeared rotating crack concept applied in formulation of new analytical model. → Model implemented into finite element program; numerically stable and robust. → Models behavior of shear-critical elements with greater ease and improved accuracy. → Accurate assessments of strength, deformation and failure mode of test specimens. - Abstract: The Disturbed Stress Field Model, a smeared rotating crack model for reinforced concrete based on the Modified Compression Field Theory, is adapted to the analysis of double-skin steel-concrete wall elements. The computational model is then incorporated into a two-dimensional nonlinear finite element analysis algorithm. Verification studies are undertaken by modeling various test specimens, including panel elements subject to uniaxial compression, panel elements subjected to in-plane shear, and wall specimens subjected to reversed cyclic lateral displacements. In all cases, the analysis model is found to provide accurate calculations of structural load capacities, pre- and post-peak displacement responses, post-peak ductility, chronology of damage, and ultimate failure mode. Minor deficiencies are found in regards to the accurate portrayal of faceplate buckling and the effects of interfacial slip between the faceplates and the concrete. Other aspects of the modeling procedure that are in need of further research and development are also identified and discussed.

  5. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations

    KAUST Repository

    Jin, Bangti

    2013-01-01

    We consider the initial boundary value problem for a homogeneous time-fractional diffusion equation with an initial condition ν(x) and a homogeneous Dirichlet boundary condition in a bounded convex polygonal domain Ω. We study two semidiscrete approximation schemes, i.e., the Galerkin finite element method (FEM) and lumped mass Galerkin FEM, using piecewise linear functions. We establish almost optimal with respect to the data regularity error estimates, including the cases of smooth and nonsmooth initial data, i.e., ν ∈ H2(Ω) ∩ H0 1(Ω) and ν ∈ L2(Ω). For the lumped mass method, the optimal L2-norm error estimate is valid only under an additional assumption on the mesh, which in two dimensions is known to be satisfied for symmetric meshes. Finally, we present some numerical results that give insight into the reliability of the theoretical study. © 2013 Society for Industrial and Applied Mathematics.

  6. Finite element modeling of nanotube structures linear and non-linear models

    CERN Document Server

    Awang, Mokhtar; Muhammad, Ibrahim Dauda

    2016-01-01

    This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.

  7. A model of mechanical contacts in hearing aids for uncertainty analysis

    DEFF Research Database (Denmark)

    Creixell Mediante, Ester; Brunskog, Jonas; Jensen, Jakob Søndergaard

    2015-01-01

    Modelling the contact between assembled parts is a key point in the design of complex structures. Uncertainties at the joint parameters arise as a result of randomness in physical properties such as contact surface, load distribution or geometric details. This is a challenge of concern in the hea......Modelling the contact between assembled parts is a key point in the design of complex structures. Uncertainties at the joint parameters arise as a result of randomness in physical properties such as contact surface, load distribution or geometric details. This is a challenge of concern...... in the hearing aid field, where the small lightweight structures present vibration modes at frequencies within the hearing range. To approach this issue, a model of contacts based on lumped elements is suggested. The joint parameters are the stiffness of a series of spring elements placed along the contact...

  8. Metastatic uterine leiomyosarcoma presenting as a breast lump.

    LENUS (Irish Health Repository)

    Sibartie, S

    2009-01-31

    BACKGROUND: It is uncommon to encounter a breast metastasis from an extramammary malignancy and even rarer from a uterine leiomyosarcoma. AIMS: We describe the third case report in the medical literature of a breast metastasis from a uterine leiomyosarcoma. METHODS: We report the management of a 56-year-old patient who presented with a breast lump 3 years after hysterectomy for a fibroid uterus. We conducted a literature review of breast leiomyosarcomas. RESULTS: The excision of the breast mass revealed a low-grade leiomyosarcoma. Radiographic examinations demonstrated metastases to the lung, liver, pelvis and bone. Retrospective pathology review of her uterus identified a small focus of leiomyosarcoma. She received chemotherapy and palliative radiotherapy but passed away within few months. CONCLUSION: Metastasis to the breast from a non-breast primary is generally a sign of disseminated disease and; thus, a poor prognostic indicator.

  9. Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide

    Science.gov (United States)

    Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.

    2011-10-01

    The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.

  10. Effect of nonlinear void reactivity on bifurcation characteristics of a lumped-parameter model of a BWR: A study relevant to RBMK

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Dinkar, E-mail: dinkar@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology Kanpur, Kanpur 208 016 (India); Kalra, Manjeet Singh, E-mail: drmanjeet.singh@dituniversity.edu.in [DIT University, Dehradun 248 009 (India); Wahi, Pankaj, E-mail: wahi@iitk.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2017-04-15

    Highlights: • A simplified model with nonlinear void reactivity feedback is studied. • Method of multiple scales for nonlinear analysis and oscillation characteristics. • Second order void reactivity dominates in determining system dynamics. • Opposing signs of linear and quadratic void reactivity enhances global safety. - Abstract: In the present work, the effect of nonlinear void reactivity on the dynamics of a simplified lumped-parameter model for a boiling water reactor (BWR) is investigated. A mathematical model of five differential equations comprising of neutronics and thermal-hydraulics encompassing the nonlinearities associated with both the reactivity feedbacks and the heat transfer process has been used. To this end, we have considered parameters relevant to RBMK for which the void reactivity is known to be nonlinear. A nonlinear analysis of the model exploiting the method of multiple time scales (MMTS) predicts the occurrence of the two types of Hopf bifurcation, namely subcritical and supercritical, leading to the evolution of limit cycles for a range of parameters. Numerical simulations have been performed to verify the analytical results obtained by MMTS. The study shows that the nonlinear reactivity has a significant influence on the system dynamics. A parametric study with varying nominal reactor power and operating conditions in coolant channel has also been performed which shows the effect of change in concerned parameter on the boundary between regions of sub- and super-critical Hopf bifurcations in the space constituted by the two coefficients of reactivities viz. the void and the Doppler coefficient of reactivities. In particular, we find that introduction of a negative quadratic term in the void reactivity feedback significantly increases the supercritical region and dominates in determining the system dynamics.

  11. Mass-spring model used to simulate the sloshing of fluid in the container under the earthquake

    International Nuclear Information System (INIS)

    Wen Jing; Luan Lin; Gao Xiaoan; Wang Wei; Lu Daogang; Zhang Shuangwang

    2005-01-01

    A lumped-mass spring model is given to simulated the sloshing of liquid in the container under the earthquake in the ASCE 4-86. A new mass-spring model is developed in the 3D finite element model instead of beam model in this paper. The stresses corresponding to the sloshing mass could be given directly, which avoids the construction of beam model. This paper presents 3-D Mass-Spring Model for the total overturning moment as well as an example of the model. Moreover the mass-spring models for the overturning moment to the sides and to the bottom of the container are constructed respectively. (authors)

  12. Discrete Element Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  13. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    Science.gov (United States)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may

  14. Finite element analysis of three dimensional crack growth by the use of a boundary element sub model

    DEFF Research Database (Denmark)

    Lucht, Tore

    2009-01-01

    A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...

  15. Modeling, simulation, and design of SAW grating filters

    Science.gov (United States)

    Schwelb, Otto; Adler, E. L.; Slaboszewicz, J. K.

    1990-05-01

    A systematic procedure for modeling, simulating, and designing SAW (surface acoustic wave) grating filters, taking losses into account, is described. Grating structures and IDTs (interdigital transducers) coupling to SAWs are defined by cascadable transmission-matrix building blocks. Driving point and transfer characteristics (immittances) of complex architectures consisting of gratings, transducers, and coupling networks are obtained by chain-multiplying building-block matrices. This modular approach to resonator filter analysis and design combines the elements of lossy filter synthesis with the transmission-matrix description of SAW components. A multipole filter design procedure based on a lumped-element-model approximation of one-pole two-port resonator building blocks is given and the range of validity of this model examined. The software for simulating the performance of SAW grating devices based on this matrix approach is described, and its performance, when linked to the design procedure to form a CAD/CAA (computer-aided design and analysis) multiple-filter design package, is illustrated with a resonator filter design example.

  16. Magnetic materials and 3D finite element modeling

    CERN Document Server

    Bastos, Joao Pedro A

    2014-01-01

    Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.

  17. Advancements in the behavioral modeling of fuel elements and related structures

    International Nuclear Information System (INIS)

    Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L.

    1989-01-01

    An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs

  18. Compensation of parasitic elements of transistor in the class F amplifier with the tuning of impedances at harmonics

    Directory of Open Access Journals (Sweden)

    Yefymovych A. P.

    2014-02-01

    Full Text Available The authors present a new method of construction and calculation of the output load circuit (OLC for class F power amplifiers (PA with the addition of the third harmonic of the voltage. This method allows compensating the negative influences of parasitic elements of transistor (output capacitance — COUT, and inductance — LOUT on the drain efficiency of the amplifier. The circuit of the parasitic elements was considered as a part of the proposed OLC. To calculate the OLC a system of three algebraic equations was compiled. The system is solved numerically relative to the three parameters of the OLC, for which the impedance on a chip of the transistor (on COUT for odd and even harmonics corresponds to the theory of class F PAs. This method is applicable for the calculation of the OLC, which is realized in the frequency range of 300—500 MHz, where the use of elements with lumped parameters only is not always possible, while using elements with distributed parameters leads to a substantial increase in the size of the whole amplifier. In the developed OLC, the authors used elements with both lumped and distributed parameters, thus achieving a compromise between the geometric dimensions and physical realizability of the circuit elements. The proposed OLC, taking into account the parasitic elements of the transistor, allows setting impedances independently at the first and third harmonics while maintaining impedance at the second harmonic tending to zero. This makes it possible to optimize the drain efficiency at a given level of output power. The efficiency ?d = 72,5% was experimentally obtained at POUT = 1,045 W for the class F amplifier running at 400 MHz. The proposed methodology for constructing and calculating the OLC can be used to implement class F power amplifiers in the integrated-circuit form.

  19. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E

    2006-01-01

    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  20. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter

    2006-01-01

    The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....

  1. Cultural factors associated with the management of breast lumps amongst Xhosa women

    Directory of Open Access Journals (Sweden)

    Nosipho Mdondolo

    2003-11-01

    Full Text Available A qualitative research design and an ethno-nursing research method were used to identify cultural factors influencing Xhosa women’s health seeking behaviours associated with breast lumps. Opsomming ’n Kwalitatiewe navorsingsontwerp en ’n etnoverpleegkundige navorsingsmetode is gebruik. Die doel was om te bepaal watter kulturele faktore Xhosa vroue se strewe na welstand, wat in verband staan met ’n borsvergroeisel, beïnvloed. *Please note: This is a reduced version of the abstract. Please refer to PDF for full text.

  2. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    Science.gov (United States)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  3. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  4. A holistic 3D finite element simulation model for thermoelectric power generator element

    International Nuclear Information System (INIS)

    Wu, Guangxi; Yu, Xiong

    2014-01-01

    Highlights: • Development of a holistic simulation model for the thermoelectric energy harvester. • Account for delta Seebeck coefficient and carrier charge densities variations. • Solution of thermo-electric coupling problem with finite element method. • Model capable of predicting phenomena not captured by traditional models. • A simulation tool for design of innovative TEM materials and structures. - Abstract: Harvesting the thermal energy stored in the ambient environment provides a potential sustainable energy source. Thermoelectric power generators have advantages of having no moving parts, being durable, and light-weighted. These unique features are advantageous for many applications (i.e., carry-on medical devices, embedded infrastructure sensors, aerospace, transportation, etc.). To ensure the efficient applications of thermoelectric energy harvesting system, the behaviors of such systems need to be fully understood. Finite element simulations provide important tools for such purpose. Although modeling the performance of thermoelectric modules has been conducted by many researchers, due to the complexity in solving the coupled problem, the influences of the effective Seebeck coefficient and carrier density variations on the performance of thermoelectric system are generally neglected. This results in an overestimation of the power generator performance under strong-ionization temperature region. This paper presents an advanced simulation model for thermoelectric elements that considers the effects of both factors. The mathematical basis of this model is firstly presented. Finite element simulations are then implemented on a thermoelectric power generator unit. The characteristics of the thermoelectric power generator and their relationship to its performance are discussed under different working temperature regions. The internal physics processes of the TEM harvester are analyzed from the results of computational simulations. The new model

  5. Real-time simulation of response to load variation for a ship reactor based on point-reactor double regions and lumped parameter model

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiao; Zhang De [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China); Chen Wenzhen, E-mail: Cwz2@21cn.com [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China); Chen Zhiyun [Department of Nuclear Energy Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)

    2011-05-15

    Research highlights: > We calculate the variation of main parameters of the reactor core by the Simulink. > The Simulink calculation software (SCS) can deal well with the stiff problem. > The high calculation precision is reached with less time, and the results can be easily displayed. > The quick calculation of ship reactor transient can be achieved by this method. - Abstract: Based on the point-reactor double regions and lumped parameter model, while the nuclear power plant second loop load is increased or decreased quickly, the Simulink calculation software (SCS) is adopted to calculate the variation of main physical and thermal-hydraulic parameters of the reactor core. The calculation results are compared with those of three-dimensional simulation program. It is indicated that the SCS can deal well with the stiff problem of the point-reactor kinetics equations and the coupled problem of neutronics and thermal-hydraulics. The high calculation precision can be reached with less time, and the quick calculation of parameters of response to load disturbance for the ship reactor can be achieved. The clear image of the calculation results can also be displayed quickly by the SCS, which is very significant and important to guarantee the reactor safety operation.

  6. SURVIVING OF COMMERCIAL PROBIOTIC STRAIN Lactobacillus rhamnosus GG IN SLOVAK COW LUMP CHEESE EXPERIMENTALLY INOCULATED WITH Listeria innocua

    Directory of Open Access Journals (Sweden)

    Andrea Lauková

    2014-08-01

    Full Text Available Cow lump cheese represents a traditional Slovak cheese. It belongs to fresh types of cheeses. The aim of this study was to test surviving of commercial probiotic strain Lactobacillus rhamnosus GG in cow lump cheese experimentally infected with L. innocua; (listeriae are contaminants and to check the suitability of GG strain as additive for this product. The counts of GG strain in cow lump cheeses were well balanced during whole experiment. It was found in the counts from 5.48 ± 0.15 to 7.77 ±1.50 log10 cfu/g. Its maximum in cheese was 7.77 ± 1.30 log10 cfu/g on day 7 with stability up to day 14. The identity of GG strain isolated from cheeses was confirmed by PCR. The counts of other lactic acid bacteria were also well balanced during the whole experiment in the experimental cheeses with stability up to day 14. Only in E1/GG cheese, the highest number of LAB was detected (10.60 ±1.26 log10 cfu/g. The count of L. innocua LMG 13568 was not influenced. The pH and lactic acid values were not negatively influenced. Visually, the GG cheese provided a good structure (consistency.It can be disputed that shelf-life of the product could be maintained by this way and/or the product itself with GG strain can be consumed as afunctional food or to serve as a probiotic strain carrier.

  7. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks

    Energy Technology Data Exchange (ETDEWEB)

    Deng, De-Ming; Chang, Cheng-Hung [Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  8. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks.

    Science.gov (United States)

    Deng, De-Ming; Chang, Cheng-Hung

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  9. Soil structure interaction calculations: a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Wight, L.; Zaslawsky, M.

    1976-07-22

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes.

  10. Soil structure interaction calculations: a comparison of methods

    International Nuclear Information System (INIS)

    Wight, L.; Zaslawsky, M.

    1976-01-01

    Two approaches for calculating soil structure interaction (SSI) are compared: finite element and lumped mass. Results indicate that the calculations with the lumped mass method are generally conservative compared to those obtained by the finite element method. They also suggest that a closer agreement between the two sets of calculations is possible, depending on the use of frequency-dependent soil springs and dashpots in the lumped mass calculations. There is a total lack of suitable guidelines for implementing the lumped mass method of calculating SSI, which leads to the conclusion that the finite element method is generally superior for calculative purposes

  11. Seismic safety margins research program. Phase I final report - Major structure response (Project IV)

    International Nuclear Information System (INIS)

    Benda, B.J.; Johnson, J.J.; Lo, T.Y.

    1981-08-01

    The primary task of the Major Structure Response Project within the Seismic Safety Margins Research Program (SSMRP) was to develop detailed finite element models of the Zion Nuclear Power Plant's containment building and auxiliary-fuel-turbine (AFT) complex. The resulting models served as input to the seismic methodology analysis chain. The containment shell was modeled as a series of beam elements with the shear and bending characteristics of a circular cylindrical shell. Masses and rotary inertias were lumped at nodal points; thirteen modes were included in the analysis. The internal structure was modeled with three-dimensional finite elements, with masses again lumped at selected nodes; sixty modes were included in the analysis. The model of the AFT complex employed thin plate and shell elements to represent the concrete shear walls and floor diaphragms, and beam and truss elements to model the braced frames. Because of the size and complexity of the model, and the potentially large number of degrees of freedom, masses were lumped at a limited number of node points. These points were selected so as to minimize the effect of the discrete mass distribution on structural response. One hundred and thirteen modes were extracted. A second objective of Project IV was to investigate the effects of uncertainty and variability on structural response. To this end, four side studies were conducted. Three of them, briefly summarized in this volume, addressed themselves respectively to an investigation of sources of random variability in the dynamic response of nuclear power plant structures; formulation of a methodology for modeling and evaluating the effects of structural uncertainty on predicted modal characteristics of major nuclear power plant structures and substructures; and a preliminary evaluation of nonlinear responses in shear-wall structures. A fourth side study, reported in detail in this volume, quantified variations in dynamic characteristics and seismic

  12. Evaluation of two models for predicting elemental accumulation by arthropods

    International Nuclear Information System (INIS)

    Webster, J.R.; Crossley, D.A. Jr.

    1978-01-01

    Two different models have been proposed for predicting elemental accumulation by arthropods. Parameters of both models can be quantified from radioisotope elimination experiments. Our analysis of the 2 models shows that both predict identical elemental accumulation for a whole organism, though differing in the accumulation in body and gut. We quantified both models with experimental data from 134 Cs and 85 Sr elimination by crickets. Computer simulations of radioisotope accumulation were then compared with actual accumulation experiments. Neither model showed exact fit to the experimental data, though both showed the general pattern of elemental accumulation

  13. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models.

    Science.gov (United States)

    Lee, Sabrina S M; Arnold, Allison S; Miara, Maria de Boef; Biewener, Andrew A; Wakeling, James M

    2013-09-03

    Hill-type models are commonly used to estimate muscle forces during human and animal movement-yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation-deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with "differential" activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r(2), was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r(2)=0.26-0.51), and all exhibited some errors (RMSE=9.63-32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Hualien forced vibration calculation with a finite element model

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.

    1995-01-01

    The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs

  15. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  16. Reduced order modeling and parameter identification of a building energy system model through an optimization routine

    International Nuclear Information System (INIS)

    Harish, V.S.K.V.; Kumar, Arun

    2016-01-01

    Highlights: • A BES model based on 1st principles is developed and solved numerically. • Parameters of lumped capacitance model are fitted using the proposed optimization routine. • Validations are showed for different types of building construction elements. • Step response excitations for outdoor air temperature and relative humidity are analyzed. - Abstract: Different control techniques together with intelligent building technology (Building Automation Systems) are used to improve energy efficiency of buildings. In almost all control projects, it is crucial to have building energy models with high computational efficiency in order to design and tune the controllers and simulate their performance. In this paper, a set of partial differential equations are formulated accounting for energy flow within the building space. These equations are then solved as conventional finite difference equations using Crank–Nicholson scheme. Such a model of a higher order is regarded as a benchmark model. An optimization algorithm has been developed, depicted through a flowchart, which minimizes the sum squared error between the step responses of the numerical and the optimal model. Optimal model of the construction element is nothing but a RC-network model with the values of Rs and Cs estimated using the non-linear time invariant constrained optimization routine. The model is validated with comparing the step responses with other two RC-network models whose parameter values are selected based on a certain criteria. Validations are showed for different types of building construction elements viz., low, medium and heavy thermal capacity elements. Simulation results show that the optimal model closely follow the step responses of the numerical model as compared to the responses of other two models.

  17. Unusual Presentation of Hydatidosis - Neck Lump Causing Costo-Vertebral Erosion.

    Science.gov (United States)

    Alam, Mehtab; Hasan, Syed-Abrar; Hashmi, Shahab-Farkhund

    2016-09-01

    Hydatid disease caused by larval stage of Echinococcus has been recognized endemically in many countries. Liver and lungs are the most commonly affected organs. Involvement of the head and neck region is rare and bony erosion due to hydatidosis is even rarer. We report a case of a 17-year-old girl from a poor socio-economic background who presented with a right sided supraclavicular lump, which after surgical excision and histopathological examination was diagnosed as hydatid cyst of neck. Because of its rarity in the neck region, primary diagnosis of hydatid cyst is overlooked and usually not included in the differential diagnosis of cystic neck swellings. A high index of suspicion is necessary to diagnose hydatid disease in an unusual location even in endemic areas.

  18. Impact of atrial fibrillation on the cardiovascular system through a lumped-parameter approach.

    Science.gov (United States)

    Scarsoglio, Stefania; Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca

    2014-11-01

    Atrial fibrillation (AF) is the most common arrhythmia affecting millions of people in the Western countries and, due to the widespread impact on the population and its medical relevance, is largely investigated in both clinical and bioengineering sciences. However, some important feedback mechanisms are still not clearly established. The present study aims at understanding the global response of the cardiovascular system during paroxysmal AF through a lumped-parameter approach, which is here performed paying particular attention to the stochastic modeling of the irregular heartbeats and the reduced contractility of the heart. AF can be here analyzed by means of a wide number of hemodynamic parameters and avoiding the presence of other pathologies, which usually accompany AF. Reduced cardiac output with correlated drop of ejection fraction and decreased amount of energy converted to work by the heart during blood pumping, as well as higher left atrial volumes and pressures are some of the most representative results aligned with the existing clinical literature and here emerging during acute AF. The present modeling, providing new insights on cardiovascular variables which are difficult to measure and rarely reported in literature, turns out to be an efficient and powerful tool for a deeper comprehension and prediction of the arrythmia impact on the whole cardiovascular system.

  19. Integrated Model of the Eye/Optic Nerve Head Biomechanical Environment

    Science.gov (United States)

    Ethier, C. R.; Feola, A.; Myers, J. G.; Nelson, E.; Raykin, J.; Samuels, B.

    2017-01-01

    Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Previously, it has been suggested that ocular changes observed in VIIP syndrome are related to the cephalad fluid shift that results in altered fluid pressures [1]. We are investigating the impact of changes in intracranial pressure (ICP) using a combination of numerical models, which simulate the effects of various environment conditions, including finite element (FE) models of the posterior eye. The specific interest is to understand how altered pressures due to gravitational changes affect the biomechanical environment of tissues of the posterior eye and optic nerve sheath. METHODS: Additional description of the numerical modeling is provided in the IWS abstract by Nelson et al. In brief, to simulate the effects of a cephalad fluid shift on the cardiovascular and ocular systems, we utilized a lumped-parameter compartment model of these systems. The outputs of this lumped-parameter model then inform boundary conditions (pressures) for a finite element model of the optic nerve head (Figure 1). As an example, we show here a simulation of postural change from supine to 15 degree head-down tilt (HDT), with primary outcomes being the predicted change in strains at the optic nerve head (ONH) region, specifically in the lamina cribrosa (LC), retrolaminar optic nerve, and prelaminar neural tissue (PLNT). The strain field can be decomposed into three orthogonal components, denoted as the first, second and third principal strains. We compare the peak tensile (first principal) and compressive (third principal) strains, since elevated strain alters cell phenotype and induces tissue remodeling. RESULTS AND CONCLUSIONS: Our lumped-parameter model predicted an IOP increase of c. 7 mmHg after 21 minutes of 15 degree HDT, which agreed with previous reports of IOP in HDT [1]. The corresponding FEM simulations predicted a relative increase in the magnitudes of the peak tensile

  20. Foreign body granuloma in the anterior abdominal wall mimicking an acute appendicular lump and induced by a translocated copper-T intrauterine contraceptive device: a case report

    Directory of Open Access Journals (Sweden)

    Ansari Maulana Mohammed

    2009-04-01

    Full Text Available Abstract Introduction Intrauterine contraceptive devices may at times perforate and migrate to adjacent organs. Such uterine perforation usually passes unnoticed with development of potentially serious complications. Case presentation A 25-year-old woman of North Indian origin presented with an acute tender lump in the right iliac fossa. The lump was initially thought to be an appendicular lump and treated conservatively. Resolution of the lump was incomplete. On exploratory laparotomy, a hard suspicious mass was found in the anterior abdominal wall of the right iliac fossa. Wide excision and bisection of the mass revealed a copper-T embedded inside. Examination of the uterus did not show any evidence of perforation. The next day, the patient gave a history of past copper-T Intrauterine contraceptive device insertion. Conclusions Copper-T insertion is one of the simplest contraceptive methods but its neglect with inadequate follow-up may lead to uterine perforation and extra-uterine migration. Regular self-examination for the "threads" supplemented with abdominal X-ray and/or ultrasound in the follow-up may detect copper-T migration early. To the best of our knowledge, this is the first report of intrauterine contraceptive device migration to the anterior abdominal wall of the right iliac fossa.

  1. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)

    Science.gov (United States)

    Long, A. J.

    2014-09-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  2. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    Science.gov (United States)

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  3. Neutron generator power supply modeling in EMMA

    International Nuclear Information System (INIS)

    Robinson, A.C.; Farnsworth, A.V.; Montgomery, S.T.; Peery, J.S.; Merewether, K.O.

    1996-01-01

    Sandia National Laboratories has prime responsibility for neutron generator design and manufacturing, and is committed to developing predictive tools for modeling neutron generator performance. An important aspect of understanding component performance is explosively driven ferroelectric power supply modeling. EMMA (ElectroMechanical Modeling in ALEGRA) is a three dimensional compile time version of Sandia's ALEGRA code. The code is built on top of the general ALEGRA framework for parallel shock-physics computations but also includes additional capability for modeling the electric potential field in dielectrics. The overall package includes shock propagation due to explosive detonation, depoling of ferroelectric ceramics, electric field calculation and coupling with a general lumped element circuit equation system. The AZTEC parallel iterative solver is used to solve for the electric potential. The DASPK differential algebraic equation package is used to solve the circuit equation system. Sample calculations are described

  4. Hydraulic modelling of the CARA Fuel element

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Juanico, Luis; Giorgi, M.; Ghiselli, Alberto M.; Zampach, Ruben; Fiori, Jose M.; Yedros, Pablo A.

    2004-01-01

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x10 4 and 1,5x10 5 ) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author) [es

  5. Optimization of PAM-4 transmitters based on lumped silicon photonic MZMs for high-speed short-reach optical links.

    Science.gov (United States)

    Zhou, Shiyu; Wu, Hsin-Ta; Sadeghipour, Khosrov; Scarcella, Carmelo; Eason, Cormac; Rensing, Marc; Power, Mark J; Antony, Cleitus; O'Brien, Peter; Townsend, Paul D; Ossieur, Peter

    2017-02-20

    We demonstrate how to optimize the performance of PAM-4 transmitters based on lumped Silicon Photonic Mach-Zehnder Modulators (MZMs) for short-reach optical links. Firstly, we analyze the trade-off that occurs between extinction ratio and modulation loss when driving an MZM with a voltage swing less than the MZM's Vπ. This is important when driver circuits are realized in deep submicron CMOS process nodes. Next, a driving scheme based upon a switched capacitor approach is proposed to maximize the achievable bandwidth of the combined lumped MZM and CMOS driver chip. This scheme allows the use of lumped MZM for high speed optical links with reduced RF driver power consumption compared to the conventional approach of driving MZMs (with transmission line based electrodes) with a power amplifier. This is critical for upcoming short-reach link standards such as 400Gb/s 802.3 Ethernet. The driver chip was fabricated using a 65nm CMOS technology and flip-chipped on top of the Silicon Photonic chip (fabricated using IMEC's ISIPP25G technology) that contains the MZM. Open eyes with 4dB extinction ratio for a 36Gb/s (18Gbaud) PAM-4 signal are experimentally demonstrated. The electronic driver chip has a core area of only 0.11mm2 and consumes 236mW from 1.2V and 2.4V supply voltages. This corresponds to an energy efficiency of 6.55pJ/bit including Gray encoder and retiming, or 5.37pJ/bit for the driver circuit only.

  6. Reduced and selective integration techniques in the finite element analysis of plates

    International Nuclear Information System (INIS)

    Hughes, T.J.R.; Cohen, M.; Haroun, M.

    1978-01-01

    Efforts to develop effective plate bending finite elements by reduced integration techniques are described. The basis for the development is a 'thick' plate theory in which transverse shear strains are accounted for. The variables in the theory are all kinematic, namely, displacements and independent rotations. As only C 0 continuity is required, isoparametric elements may be employed, which result in several advantages over thin plate elements. It is shown that the avoidance of shear 'locking' may be facilitated by reduced integration techniques. Both uniform and selective schemes are considered. Conditions under which selective schemes are invariant are identified, and they are found to have an advantage over uniform schemes in the present situation. It is pointed out that the present elements are not subject to the difficulties encountered by thin plate theory elements, concerning boundary conditions. For example, the polygonal approximation of curved, simply supported edges is convergent. Other topics discussed are the equivalence with mixed methods, rank deficiency, convergence criteria and useful mass 'lumping' schemes for dynamics. Numerical results for several thin plate problems indicate the high degree of accuracy attainable by the present elements. (Auth.)

  7. Finite Element Method Based Modeling of Resistance Spot-Welded Mild Steel

    Directory of Open Access Journals (Sweden)

    Miloud Zaoui

    Full Text Available Abstract This paper deals with Finite Element refined and simplified models of a mild steel spot-welded specimen, developed and validated based on quasi-static cross-tensile experimental tests. The first model was constructed with a fine discretization of the metal sheet and the spot weld was defined as a special geometric zone of the specimen. This model provided, in combination with experimental tests, the input data for the development of the second model, which was constructed with respect to the mesh size used in the complete car finite element model. This simplified model was developed with coarse shell elements and a spring-type beam element was used to model the spot weld behavior. The global accuracy of the two models was checked by comparing simulated and experimental load-displacement curves and by studying the specimen deformed shapes and the plastic deformation growth in the metal sheets. The obtained results show that both fine and coarse finite element models permit a good prediction of the experimental tests.

  8. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance.

    Science.gov (United States)

    Martin, S J; Bandey, H L; Cernosek, R W; Hillman, A R; Brown, M J

    2000-01-01

    We derive a lumped-element, equivalent-circuit model for the thickness-shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of pi/2 rad. For low-loss films, this model accurately predicts the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. Elements of the parallel LCR resonator are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and Sauerbrey models.

  9. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-31

    This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.

  10. ELASTO-KINEMATIC COMPUTATIONAL MODEL OF SUSPENSION WITH FLEXIBLE SUPPORTING ELEMENTS

    Directory of Open Access Journals (Sweden)

    Tomáš Vrána

    2016-04-01

    Full Text Available This paper analyzes the impact of flexibility of individual supporting elements of independent suspension on its elasto-kinematic characteristics. The toe and camber angle are the geometric parameters of the suspension, which waveforms and their changes under the action of vertical, longitudinal and transverse forces affect the stability of the vehicle. To study these dependencies, the computational multibody system (MBS model of axle suspension in the system HyperWorks is created. There are implemented Finite-Element-Method (FEM models reflecting the flexibility of the main supporting elements. These are subframe, the longitudinal arms, transverse arms and knuckle. Flexible models are developed using Component Mode Synthesis (CMS by Craig-Bampton. The model further comprises force elements, such as helical springs, shock absorbers with a stop of the wheel and the anti-roll bar. Rubber-metal bushings are modeled flexibly, using nonlinear deformation characteristics. Simulation results are validated by experimental measurements of geometric parameters of real suspension.

  11. A short summary on finite element modelling of fatigue crack closure

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Konjengbam Darunkumar [Indian Institute of Technology, Guwahati (India); Parry, Matthew Roger [Airbus Operations Ltd, Bristol(United Kingdom); Sinclair, Ian [University of Southampton, Southampton (United Kingdom)

    2011-12-15

    This paper presents a short summary pertaining to the finite element modelling of fatigue crack closure. Several key issues related to finite element modelling of fatigue crack closure are highlighted: element type, mesh refinement, stabilization of crack closure, crack-tip node release scheme, constitutive model, specimen geometry, stress-states (i.e., plane stress, plane strain), crack closure monitoring. Reviews are presented for both straight and deflected cracks.

  12. Trampoline Effect: Observations and Modeling

    Science.gov (United States)

    Guyer, R.; Larmat, C. S.; Ulrich, T. J.

    2009-12-01

    The Iwate-Miyagi earthquake at site IWTH25 (14 June 2008) had large, asymmetric at surface vertical accelerations prompting the sobriquet trampoline effect (Aoi et. al. 2008). In addition the surface acceleration record showed long-short waiting time correlations and vertical-horizontal acceleration correlations. A lumped element model, deduced from the equations of continuum elasticity, is employed to describe the behavior at this site in terms of a surface layer and substrate. Important ingredients in the model are the nonlinear vertical coupling between the surface layer and the substrate and the nonlinear horizontal frictional coupling between the surface layer and the substrate. The model produces results in qualitative accord with observations: acceleration asymmetry, Fourier spectrum, waiting time correlations and vertical acceleration-horizontal acceleration correlations. [We gratefully acknowledge the support of the U. S. Department of Energy through the LANL/LDRD Program for this work].

  13. The development of a curved beam element model applied to finite elements method

    International Nuclear Information System (INIS)

    Bento Filho, A.

    1980-01-01

    A procedure for the evaluation of the stiffness matrix for a thick curved beam element is developed, by means of the minimum potential energy principle, applied to finite elements. The displacement field is prescribed through polynomial expansions, and the interpolation model is determined by comparison of results obtained by the use of a sample of different expansions. As a limiting case of the curved beam, three cases of straight beams, with different dimensional ratios are analised, employing the approach proposed. Finally, an interpolation model is proposed and applied to a curved beam with great curvature. Desplacements and internal stresses are determined and the results are compared with those found in the literature. (Author) [pt

  14. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  15. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    Science.gov (United States)

    Long, Andrew J.

    2015-01-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  16. Isolated tear of the tendon to the medial head of gastrocnemius presenting as a painless lump in the calf.

    Science.gov (United States)

    Watura, Christopher; Harries, William

    2009-01-01

    We report on a case of isolated tear of the medial head of gastrocnemius tendon. The patient presented with a painless lump in the right calf and denied any prior history of trauma or strain to the leg. A longitudinal split of the tendon was demonstrated at ultrasound and magnetic resonance imaging (MRI). There were no other abnormalities and the gastrocnemius muscle was normal. There are no reports in the literature of isolated gastrocnemius tendon tear. To date the calf muscle complex injury described in this area is tearing of the medial head of gastrocnemius muscle, sometimes referred to as "tennis leg". We conclude that an isolated tear of the tendon to the medial head of gastrocnemius should be considered in the differential diagnosis of a lump or swelling in the upper medial area of the calf and we recommend ultrasound or MRI as the investigations of choice.

  17. Consistent biokinetic models for the actinide elements

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2001-01-01

    The biokinetic models for Th, Np, Pu, Am and Cm currently recommended by the International Commission on Radiological Protection (ICRP) were developed within a generic framework that depicts gradual burial of skeletal activity in bone volume, depicts recycling of activity released to blood and links excretion to retention and translocation of activity. For other actinide elements such as Ac, Pa, Bk, Cf and Es, the ICRP still uses simplistic retention models that assign all skeletal activity to bone surface and depicts one-directional flow of activity from blood to long-term depositories to excreta. This mixture of updated and older models in ICRP documents has led to inconsistencies in dose estimates and interpretation of bioassay for radionuclides with reasonably similar biokinetics. This paper proposes new biokinetic models for Ac, Pa, Bk, Cf and Es that are consistent with the updated models for Th, Np, Pu, Am and Cm. The proposed models are developed within the ICRP's generic model framework for bone-surface-seeking radionuclides, and an effort has been made to develop parameter values that are consistent with results of comparative biokinetic data on the different actinide elements. (author)

  18. Cytological and Pathological Correlation of FNAC in Assessing Breast Lumps and Axillary Lymph Node Swellings in a Public Sector Hospital in India

    Directory of Open Access Journals (Sweden)

    Vasu Reddy Challa

    2013-01-01

    Full Text Available Background. Breast lumps have varied pathology, and there are different techniques to prove the diagnosis. The aim of the present study is to analyze the role of fine needle aspiration cytology (FNAC of the breast lesions at our center. Methods. We had retrospectively analysed 854 patients who underwent FNAC for primary breast lumps and 190 patients who underwent FNAC for an axillary lymph node in the year 2010. Results. Of 854 patients, histological correlation was available in 723 patients. The analysis was done for 812 patients as medical records were not available for 42 patients. FNAC was false negative in seven cases; 2 cases of phyllodes were reported as fibroadenoma, and 5 cases of carcinoma were diagnosed as atypical hyperplasia. The sensitivity, specificity, and false negative value of FNAC in diagnosing breast lumps were 99% (715/723, 100%, and 1%, respectively. Of 190 patients for whom FNAC was performed for axilla, 170 had proven to have axillary lymph node metastases, and the rest had reactive hyperplasia or inflammatory cells. Conclusions. FNAC is rapid, accurate, outpatient based, and less complicated procedure and helps in diagnosis of breast cancer, benign diseases, and axillary involvement in experienced hands with less chance of false results.

  19. Spatial and frequency domain ring source models for the single muscle fiber action potential

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1994-01-01

    In the paper, single-fibre models for the extracellular action potential are developed that will allow the potential to the evaluated at an arbitrary field point in the extracellular space. Fourier-domain models are restricted in that they evaluate potentials at equidistant points along a line...... parallel to the fibre axis. Consequently, they cannot easily evaluate the potential at the boundary nodes of a boundary-element electrode model. The Fourier-domain models employ axial-symmetric ring source models, and thereby provide higher accuracy that the line source model, where the source is lumped...... including anisotropy show that the spatial models require extreme care in the integration procedure owing to the singularity in the weighting functions. With adequate sampling, the spatial models can evaluate extracellular potentials with high accuracy....

  20. Mathematical modeling of CANDU-PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Gaber, F.A.; Aly, R.A.; El-Shal, A.O. [Atomic Energy Authority, Cairo (Egypt)

    2001-07-01

    The paper deals with the transient studies of CANDU 600 pressurized Heavy Water Reactor (PHWR) system. This study involved mathematical modeling of CANDU PHWR major system components and the developments of software to study the thermodynamic performances. Modeling of CANDU-PHWR was based on lumped parameter technique.The integrated CANDU-PHWR model includes the neutronic, reactivity, fuel channel heat transfer, piping and the preheater type U-tube steam generator (PUTSG). The nuclear reactor power was modelled using the point kinetics equations with six groups of delayed neutrons and reactivity feed back due to the changes in fuel temperature and coolant temperature. The complex operation of the preheater type U-tube steam generator (PUTSG) is represented by a non-linear dynamic model using a state variable, moving boundary and lumped parameter techniques. The secondary side of the PUTSG model has six separate lumps including a preheater region, a lower boiling section, a mixing region, a riser, a chimmeny section, and a down-corner. The tube side of PUTSG has three main thermal zones. The PUTSG model is based on conservation of mass, energy and momentum relation-ships. The CANDU-PHWR integrated model are coded in FORTRAN language and solved by using a standard numerical technique. The adequacy of the model was tested by assessing the physical plausibility of the obtained results. (author)

  1. Analytical and finite element modeling of grounding systems

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be

    2007-07-01

    Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)

  2. Hysteretic Models Considering Axial-Shear-Flexure Interaction

    Science.gov (United States)

    Ceresa, Paola; Negrisoli, Giorgio

    2017-10-01

    Most of the existing numerical models implemented in finite element (FE) software, at the current state of the art, are not capable to describe, with enough reliability, the interaction between axial, shear and flexural actions under cyclic loading (e.g. seismic actions), neglecting crucial effects for predicting the nature of the collapse of reinforced concrete (RC) structural elements. Just a few existing 3D volume models or fibre beam models can lead to a quite accurate response, but they are still computationally inefficient for typical applications in earthquake engineering and also characterized by very complex formulation. Thus, discrete models with lumped plasticity hinges may be the preferred choice for modelling the hysteretic behaviour due to cyclic loading conditions, in particular with reference to its implementation in a commercial software package. These considerations lead to this research work focused on the development of a model for RC beam-column elements able to consider degradation effects and interaction between the actions under cyclic loading conditions. In order to develop a model for a general 3D discrete hinge element able to take into account the axial-shear-flexural interaction, it is necessary to provide an implementation which involves a corrector-predictor iterative scheme. Furthermore, a reliable constitutive model based on damage plasticity theory is formulated and implemented for its numerical validation. Aim of this research work is to provide the formulation of a numerical model, which will allow implementation within a FE software package for nonlinear cyclic analysis of RC structural members. The developed model accounts for stiffness degradation effect and stiffness recovery for loading reversal.

  3. Coulomb matrix elements in multi-orbital Hubbard models.

    Science.gov (United States)

    Bünemann, Jörg; Gebhard, Florian

    2017-04-26

    Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.

  4. CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS

    Directory of Open Access Journals (Sweden)

    Oana CHIVU

    2013-05-01

    Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes

  5. Mammographic and sonographic findings of steatocystoma multiplex presenting as breast lumps.

    Science.gov (United States)

    Wan, John Mun Chin; Wong, Jill Su Lin; Tee, Shang-Ian

    2012-12-01

    Steatocystoma multiplex (SM) is an uncommon cutaneous disorder characterised by multiple intradermal cysts distributed over the trunk and proximal extremities. This condition affects both genders and is often inherited as an autosomal dominant trait, although sporadic cases have been described. This report describes the mammographic and sonographic features of the cysts, which presented as breast lumps, for evaluation. The cysts appeared as numerous well-circumscribed, radiolucent nodules with thin radiodense rims on mammography. On sonography, the cysts could be hypoechoic, isoechoic or demonstrate mixed echoes containing debris-fluid levels, depending on the amount of clear oily liquid and keratinous material. SM can be diagnosed based on a clinical setting of multiple asymptomatic small intradermal nodules over the trunk and proximal extremities, positive family history and imaging findings.

  6. Assessing aquifer vulnerability from lumped parameter modeling of modern water proportions in groundwater mixtures - Application to nitrate pollution in California's South Coast Range

    Science.gov (United States)

    Hagedorn, B.; Ruane, M.; Clark, N.

    2017-12-01

    In California, the overuse of synthetic fertilizers and manure in agriculture have caused nitrate (NO3) to be one of the state's most widespread groundwater pollutants. Given that nitrogen fertilizer applications have steadily increased since the 1950s and given that soil percolation and recharge transit times in California can exceed timescales of decades, the nitrate impact on groundwater resources is likely a legacy for years and even decades to come. This study presents a methodology for groundwater vulnerability assessment that operates independently of difficult-to-constrain soil and aquifer property data (i.e., saturated thickness, texture, porosity, conductivity, etc.), but rather utilizes groundwater age and, more importantly, groundwater mixing information to illustrate actual vulnerability at the water table. To accomplish this, the modern (i.e., less than 60-year old) water proportion (MWP) in groundwater mixtures is computed via lumped parameter modeling of chemical tracer (i.e., 3H, 14C and 3Hetrit) data. These MWPs are then linked to groundwater dissolved oxygen (DO) values to describe the risk for soil zone-derived nitrate to accumulate in the saturated zone. Preliminary studies carried out for 71 wells in California's South Coast Range-Coastal (SCRC) study unit reveal MWP values derived from binary dispersion models of 3.24% to 21.8%. The fact that high MWPs generally coincide with oxic (DO ≥1.5 mg/L) groundwater conditions underscores the risk towards increased groundwater NO3 pollution for many of the tested wells. These results support the conclusion that best agricultural management and policy objectives should incorporate groundwater vulnerability models that are developed at the same spatial scale as the decision making.

  7. Directions for computational mechanics in automotive crashworthiness

    Science.gov (United States)

    Bennett, James A.; Khalil, T. B.

    1993-01-01

    The automotive industry has used computational methods for crashworthiness since the early 1970's. These methods have ranged from simple lumped parameter models to full finite element models. The emergence of the full finite element models in the mid 1980's has significantly altered the research direction. However, there remains a need for both simple, rapid modeling methods and complex detailed methods. Some directions for continuing research are discussed.

  8. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders

    2012-01-01

    models may be created by assembling models of floor and wall structures into large models of complete buildings. When assembling the floor and wall models, the number of degrees of freedom quickly increases to exceed the limits of computer capacity, at least in a reasonable amount of computational time...... Hz. Three different methods of model reduction were investigated; Guyan reduction, component mode synthesis and a third approach where a new finite element model was created with structural elements. Eigenvalue and steady-state analyses were performed in order to compare the errors...

  9. Finite element model for heat conduction in jointed rock masses

    International Nuclear Information System (INIS)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points

  10. Finite-element modeling and micromagnetic modeling of perpendicular writers

    Science.gov (United States)

    Heinonen, Olle; Bozeman, Steven P.

    2006-04-01

    We compare finite-element modeling (FEM) and fully micromagnetic modeling results of four prototypical writers for perpendicular recording. In general, the agreement between the two models is quite good in the vicinity of saturated or near-saturated magnetic material, such as the pole tip, for quantities such as the magnetic field, the gradient of the magnetic field and the write width. However, in the vicinity of magnetic material far from saturation, e.g., return pole or trailing edge write shield, there can be large qualitative and quantitative differences.

  11. Parallelized FDTD simulation for flat-plate bounded wave EMP simulator with lumped terminator

    International Nuclear Information System (INIS)

    Zhu Xiangqin; Chen Weiqing; Chen Zaigao; Cai Libing; Wang Jianguo

    2013-01-01

    A parallelized finite-difference time-domain(FDTD) method for simulating the bounded wave electromagnetic pulse (EMP) simulator with lumped terminator and parallel plate is presented. The effects of several model-parameters on the simulator to the fields in the working volume are simulated and analyzed. The results show that if the width of the lower PEC plate is(or is bigger than)1.5 times that of the upper plate of working volume, the projection length of front transitional section does not have a significant effect on the rise-times of electric fields at the points near the front transitional section, and the rise-times of electric fields at the points near the working volume center decrease as the projection length increases, but the decrement of rise-time decreases. The rise-times of E z at all points also decrease as the lower PEC plate's width increases, but the decrements of rise-time decreases. If the projection length of the front transitional section is fixed, the good results can not be obtained by increasing or decreasing the height of the simulator only, however, which has an optimal value. (authors)

  12. Finite element model updating of concrete structures based on imprecise probability

    Science.gov (United States)

    Biswal, S.; Ramaswamy, A.

    2017-09-01

    Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.

  13. Elements for modeling and design of centrifugal compressor housings

    International Nuclear Information System (INIS)

    Magoia, J.E.; Calderon, T.

    1990-01-01

    Various aspects of the structural analysis of centrifugal compressor housings are studied. These are usually used in different kinds of nuclear sites. Multiple areas of the analysis are evaluated with elastic models based on finite elements: sensitivity to different variables, quality of models on facing theoretical solutions and performed measurements. The development of an excentric bar element improved for the rigidized plate model, is included. The definition of criteria for a more efficient structural analysis as well as recommendations for the design of centrifugal compressor housings concludes the work. (Author) [es

  14. A proposal for a determination method of element division on an analytical model for finite element elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2010-01-01

    This study proposes an element size selection method named the 'Impact-Meshing (IM) method' for a finite element waves propagation analysis model, which is characterized by (1) determination of element division of the model with strain energy in the whole model, (2) static analysis (dynamic analysis in a single time step) with boundary conditions which gives a maximum change of displacement in the time increment and inertial (impact) force caused by the displacement change. In this paper, an example of application of the IM method to 3D ultrasonic wave propagation problem in an elastic solid is described. These examples showed an analysis result with a model determined by the IM method was convergence and calculation time for determination of element subdivision was reduced to about 1/6 by the IM Method which did not need determination of element subdivision by a dynamic transient analysis with 100 time steps. (author)

  15. Crack modeling of rotating blades with cracked hexahedral finite element method

    Science.gov (United States)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  16. Modeling grain boundaries in polycrystals using cohesive elements: Qualitative and quantitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    El Shawish, Samir, E-mail: Samir.ElShawish@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Cizelj, Leon [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Simonovski, Igor [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands)

    2013-08-15

    Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses.

  17. Three-dimensional modeling with finite element codes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.

    1986-01-17

    This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.

  18. Advanced modelling of doubly fed induction generator wind turbine under network disturbance

    DEFF Research Database (Denmark)

    Seman, S.; Iov, Florin; Niiranen, J.

    This paper presents a variable speed wind turbine simulator. The simulator is used for a 2 MW wind turbine transient behavior study during a short-term symmetrical network disturbance. The mechanical part of wind turbine model consists of the rotor aerodynamic model, the wind turbine control...... converter, the model of the main transformer and a simple model of the grid. The simulation results obtained by means of the detailed wind turbine model are compared with the results obtained from a simplified simulator with an analytical model and FEM model of DFIG. The comparison of the results shows...... and the drive train model. The Doubly Fed Induction Generator (DFIG) is represented by an analytical two-axis model with constant lumped parameters and by Finite Element Method (FEM) based model. The model of the DFIG is coupled with the model of the passive crowbar protected and DTC controlled frequency...

  19. Numerical modeling of the dynamic behavior of structures under impact with a discrete elements / finite elements coupling

    International Nuclear Information System (INIS)

    Rousseau, J.

    2009-07-01

    That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)

  20. Finite element modeling of TFTR poloidal field coils

    International Nuclear Information System (INIS)

    Baumgartner, J.A.; O'Toole, J.A.

    1986-01-01

    The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope

  1. Finite element modeling of trolling-mode AFM.

    Science.gov (United States)

    Sajjadi, Mohammadreza; Pishkenari, Hossein Nejat; Vossoughi, Gholamreza

    2018-06-01

    Trolling mode atomic force microscopy (TR-AFM) has overcome many imaging problems in liquid environments by considerably reducing the liquid-resonator interaction forces. The finite element model of the TR-AFM resonator considering the effects of fluid and nanoneedle flexibility is presented in this research, for the first time. The model is verified by ABAQUS software. The effect of installation angle of the microbeam relative to the horizon and the effect of fluid on the system behavior are investigated. Using the finite element model, frequency response curve of the system is obtained and validated around the frequency of the operating mode by the available experimental results, in air and liquid. The changes in the natural frequencies in the presence of liquid are studied. The effects of tip-sample interaction on the excitation of higher order modes of the system are also investigated in air and liquid environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Finite element modelling of fire situations in UF6 transport containers; Modelado por elementos finitos de situaciones de incendio en contenedores para el transporte de UF6

    Energy Technology Data Exchange (ETDEWEB)

    Basombrio, F G

    1997-12-31

    In this report we describe some runs made with the code FASES2. They concern different situations associated to fires originated by accidents in the transport of containers filled with UF6. Such situations have been inspired in cases taken from the current literature, and related to numerical modelling or experiments. We aim to consign the most relevant aspects of such runs, with the future purpose of comparing them with the predictions made with simpler lumped models. In such a way, it will be possible to calibrate the simple models with the results coming from detailed models. (author). 6 refs., 12 figs.

  3. Computer model verification for seismic analysis of vertical pumps and motors

    International Nuclear Information System (INIS)

    McDonald, C.K.

    1993-01-01

    The general principles of modeling vertical pumps and motors are discussed and then two examples of verifying the models are presented in detail. The first examples is a vertical pump and motor assembly. The model and computer analysis are presented and the first four modes (frequencies) calculated are compared to the values of the same modes obtained from a shaker test. The model used for this example is a lumped mass connected by massless beams model. The shaker test was performed by National Technical Services, Los Angeles, CA. The second example is a larger vertical motor. The model used for this example is a finite element three dimensional shell model. The first frequency obtained from this model is compared to the first frequency obtained from shop tests for several different motors. The shop tests were performed by Reliance Electric, Stratford, Ontario and Siemens-Allis, Inc., Norwood, Ohio

  4. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use

    Science.gov (United States)

    Breuer, L.; Huisman, J.A.; Willems, P.; Bormann, H.; Bronstert, A.; Croke, B.F.W.; Frede, H.-G.; Graff, T.; Hubrechts, L.; Jakeman, A.J.; Kite, G.; Lanini, J.; Leavesley, G.; Lettenmaier, D.P.; Lindstrom, G.; Seibert, J.; Sivapalan, M.; Viney, N.R.

    2009-01-01

    This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model

  5. Dynamics Modeling and Analysis of Local Fault of Rolling Element Bearing

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2015-01-01

    Full Text Available This paper presents a nonlinear vibration model of rolling element bearings with 5 degrees of freedom based on Hertz contact theory and relevant bearing knowledge of kinematics and dynamics. The slipping of ball, oil film stiffness, and the nonlinear time-varying stiffness of the bearing are taken into consideration in the model proposed here. The single-point local fault model of rolling element bearing is introduced into the nonlinear model with 5 degrees of freedom according to the loss of the contact deformation of ball when it rolls into and out of the local fault location. The functions of spall depth corresponding to defects of different shapes are discussed separately in this paper. Then the ode solver in Matlab is adopted to perform a numerical solution on the nonlinear vibration model to simulate the vibration response of the rolling elements bearings with local fault. The simulation signals analysis results show a similar behavior and pattern to that observed in the processed experimental signals of rolling element bearings in both time domain and frequency domain which validated the nonlinear vibration model proposed here to generate typical rolling element bearings local fault signals for possible and effective fault diagnostic algorithms research.

  6. Three dimensional mathematical model of tooth for finite element analysis

    Directory of Open Access Journals (Sweden)

    Puškar Tatjana

    2010-01-01

    Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.

  7. Elasto-viscoplastic finite element model for prestressed concrete structures

    International Nuclear Information System (INIS)

    Prates Junior, N.P.; Silva, C.S.B.; Campos Filho, A.; Gastal, F.P.S.L.

    1995-01-01

    This paper presents a computational model, based on the finite element method, for the study of reinforced and prestressed concrete structures under plane stress states. It comprehends short and long-term loading situations, where creep and shrinkage in concrete and steel relaxation are considered. Elasto-viscoplastic constitutive models are used to describe the behavior of the materials. The model includes prestressing and no prestressing reinforcement, on situation with pre- and post-tension with and without bond. A set of prestressed concrete slab elements were tested under instantaneous and long-term loading. The experimental data for deflections, deformations and ultimate strength are used to compare and validate the results obtained through the proposed model. (author). 11 refs., 5 figs

  8. finite element model for predicting residual stresses in shielded

    African Journals Online (AJOL)

    eobe

    This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.

  9. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics.

    Science.gov (United States)

    Craiem, Damian; Magin, Richard L

    2010-01-20

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.

  10. A finite element model of ferroelectric/ferroelastic polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  11. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  12. Boundary element method for modelling creep behaviour

    International Nuclear Information System (INIS)

    Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora

    2002-01-01

    A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)

  13. Investigation of faulted tunnel models by combined photoelasticity and finite element analysis

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Huang, Yuping

    1994-01-01

    Models of square and circular tunnels with short faults cutting through their surfaces are investigated by photoelasticity. These models, when duplicated by finite element analysis can predict the stress states of square or circular faulted tunnels adequately. Finite element analysis, using gap elements, may be used to investigate full size faulted tunnel system

  14. A Finite Element Model for convection-dominatel transport problems

    International Nuclear Information System (INIS)

    Carmo, E.G.D. do; Galeao, A.C.N.R.

    1987-08-01

    A new Protev-Galerkin Finite Element Model which automatically incorporates the search for the appropriate upwind direction is presented. It is also shown that modifying the Petrov-Galerkin weightin functions associated with elements adjascent to downwing boudaries effectively eliminates numerical oscillations normally obtained near boundary layers. (Author) [pt

  15. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  16. Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

    Science.gov (United States)

    Simons, Rainee N.; Miranda, Felix A.

    2006-01-01

    In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.

  17. Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Directory of Open Access Journals (Sweden)

    M. T. Jilani

    2014-12-01

    Full Text Available This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR, that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit.

  18. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  19. Fuel element transfer cask modelling using MCNP technique

    International Nuclear Information System (INIS)

    Rosli Darmawan

    2009-01-01

    Full text: After operating for more than 25 years, some of the Reaktor TRIGA PUSPATI (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement. (author)

  20. Fuel Element Transfer Cask Modelling Using MCNP Technique

    International Nuclear Information System (INIS)

    Darmawan, Rosli; Topah, Budiman Naim

    2010-01-01

    After operating for more than 25 years, some of the Reaktor TRIGA Puspati (RTP) fuel elements would have been depleted. A few addition and fuel reconfiguration exercises have to be conducted in order to maintain RTP capacity. Presently, RTP spent fuels are stored at the storage area inside RTP tank. The need to transfer the fuel element outside of RTP tank may be prevalence in the near future. The preparation shall be started from now. A fuel element transfer cask has been designed according to the recommendation by the fuel manufacturer and experience of other countries. A modelling using MCNP code has been conducted to analyse the design. The result shows that the design of transfer cask fuel element is safe for handling outside the RTP tank according to recent regulatory requirement.

  1. FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION

    Directory of Open Access Journals (Sweden)

    K. S. Kurachka

    2014-01-01

    Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.

  2. Transport and dispersion of pollutants in surface impoundments: a finite element model

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied

  3. Transport and dispersion of pollutants in surface impoundments: a finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  4. Preliminary modeling of moisture movement in the tuff beneath Mortandad Canyon, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Geddis, A.M.

    1992-01-01

    An area of upper/middle Mortandad Canyon on the Los Alamos National Laboratory is modeled in cross-section. UNSAT2, a finite element model (FEM) is used to predict moisture movement. Hydraulic characteristics of the tuff are described by van Genuchten parameters determined from laboratory tests on cores taken from a borehole within the cross-section. Material properties are distributed horizontal planar in space to cover the solution domain with required initial conditions. An estimate of seepage flux from a thin perched alluvial aquifer into the upper surface of the tuff is taken from a lumped parameter model. Moisture redistribution for a ponded boundary condition and a larger flux is investigated. A composite simulation using material properties from two separate coreholes is also evaluated

  5. Finite element modelling and updating of friction stir welding (FSW joint for vibration analysis

    Directory of Open Access Journals (Sweden)

    Zahari Siti Norazila

    2017-01-01

    Full Text Available Friction stir welding of aluminium alloys widely used in automotive and aerospace application due to its advanced and lightweight properties. The behaviour of FSW joints plays a significant role in the dynamic characteristic of the structure due to its complexities and uncertainties therefore the representation of an accurate finite element model of these joints become a research issue. In this paper, various finite elements (FE modelling technique for prediction of dynamic properties of sheet metal jointed by friction stir welding will be presented. Firstly, nine set of flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by FSW are used. Nine set of specimen was fabricated using various types of welding parameters. In order to find the most optimum set of FSW plate, the finite element model using equivalence technique was developed and the model validated using experimental modal analysis (EMA on nine set of specimen and finite element analysis (FEA. Three types of modelling were engaged in this study; rigid body element Type 2 (RBE2, bar element (CBAR and spot weld element connector (CWELD. CBAR element was chosen to represent weld model for FSW joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, total error of the natural frequencies for CBAR model is improved significantly. Therefore, CBAR element was selected as the most reliable element in FE to represent FSW weld joint.

  6. Local Refinement of the Super Element Model of Oil Reservoir

    Directory of Open Access Journals (Sweden)

    A.B. Mazo

    2017-12-01

    Full Text Available In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailing to describe hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves is modeled (characteristic scale of such changes is km / year. The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200-500 m. The tensor coefficients of the super-element model are calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model is constructed for calculating small-scale processes (with a scale of m / day, which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem are formulated on the basis of the super-element solution. This approach allows us to reduce the computational costs in order to solve the problems of designing and monitoring the oil reservoir. To demonstrate the proposed approach, we give an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We show a good compliance between the locally refined solution of the super-element model in the area of measure exposure and the results of numerical modeling of the whole history of reservoir

  7. Business model elements impacting cloud computing adoption

    DEFF Research Database (Denmark)

    Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek

    The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology a...

  8. Finite element modelling of fibre-reinforced brittle materials

    NARCIS (Netherlands)

    Kullaa, J.

    1997-01-01

    The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The

  9. Analytical study on model tests of soil-structure interaction

    International Nuclear Information System (INIS)

    Odajima, M.; Suzuki, S.; Akino, K.

    1987-01-01

    Since nuclear power plant (NPP) structures are stiff, heavy and partly-embedded, the behavior of those structures during an earthquake depends on the vibrational characteristics of not only the structure but also the soil. Accordingly, seismic response analyses considering the effects of soil-structure interaction (SSI) are extremely important for seismic design of NPP structures. Many studies have been conducted on analytical techniques concerning SSI and various analytical models and approaches have been proposed. Based on the studies, SSI analytical codes (computer programs) for NPP structures have been improved at JINS (Japan Institute of Nuclear Safety), one of the departments of NUPEC (Nuclear Power Engineering Test Center) in Japan. These codes are soil-spring lumped-mass code (SANLUM), finite element code (SANSSI), thin layered element code (SANSOL). In proceeding with the improvement of the analytical codes, in-situ large-scale forced vibration SSI tests were performed using models simulating light water reactor buildings, and simulation analyses were performed to verify the codes. This paper presents an analytical study to demonstrate the usefulness of the codes

  10. Biomechanical Evaluations of Hip Fracture Using Finite Element Model that Models Individual Differences of Femur

    OpenAIRE

    田中, 英一; TANAKA, Eiichi; 山本, 創太; YAMAMOTO, Sota; 坂本, 誠二; SAKAMOTO, Seiji; 中西, 孝文; NAKANISHI, Takafumi; 原田, 敦; HARADA, Atsushi; 水野, 雅士; MIZUNO, Masashi

    2004-01-01

    This paper is concerned with an individual finite element modeling system for femur and biomechanical evaluations of the influences of loading conditions, bone shape and bone density on risks of hip fracture. Firstly, a method to construct an individual finite element model by morphological parameters that represent femoral shapes was developed. Using the models with different shapes constructed by this method, the effects of fall direction, posture of upper body, femur shape and bone density...

  11. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.

  12. Analysis of pipe mitred bends using beam models - by finite element method

    International Nuclear Information System (INIS)

    Salles, A.C.S.L. de.

    1984-01-01

    The formulation of a recently proposed displacement based straight pipe element for the analysis of pipe mitred bends is summarized in this work. The element kinematics includes axial, bending, torsional and ovalisation displacements, all varying cubically along the axis of the element. Interaction effects between angle adjoined straight pipe section are modeled including the appropriate additional strain terms in the stiffness matrix formulation and by using a penalty procedure to enforce continuity of pipe skin flexural rotations at the common helical edge. The element model capabilities are ilustrated in some sample analysis and the results are compared with other available experimental, analytical or more complex numerical models. (Author) [pt

  13. A type of 2D magnetic equivalent circuit framework of permanent magnet for magnetic system in AEMR

    Directory of Open Access Journals (Sweden)

    Huimin Liang

    2015-02-01

    Full Text Available Modeling of permanent magnet (PM is very important in the process of electromagnetic system calculation of aerospace electromagnetic relay (AEMR. In traditional analytical calculation, PM is often equivalent to a lumped parameter model of one magnetic resistance and one magnetic potential, but great error is often caused for the inner differences of PM; based on the conception of flux tube, a type of 2D magnetic equivalent circuit framework of permanent magnet model (2D MECF is established; the element is defined, the relationship between elements is deduced, and solution procedure as well as verification condition of this model is given; by a case study of the electromagnetic system of a certain type of AEMR, the electromagnetic system calculation model is established based on 2D MECF and the attractive force at different rotation angles is calculated; the proposed method is compared with the traditional lumped parameter model and finite element method (FEM; for some types of electromagnetic systems with symmetrical structure, 2D MECF proves to be of acceptable accuracy and high calculation speed which fit the requirement of robust design for AEMR.

  14. Mesh-morphing algorithms for specimen-specific finite element modeling.

    Science.gov (United States)

    Sigal, Ian A; Hardisty, Michael R; Whyne, Cari M

    2008-01-01

    Despite recent advances in software for meshing specimen-specific geometries, considerable effort is still often required to produce and analyze specimen-specific models suitable for biomechanical analysis through finite element modeling. We hypothesize that it is possible to obtain accurate models by adapting a pre-existing geometry to represent a target specimen using morphing techniques. Here we present two algorithms for morphing, automated wrapping (AW) and manual landmarks (ML), and demonstrate their use to prepare specimen-specific models of caudal rat vertebrae. We evaluate the algorithms by measuring the distance between target and morphed geometries and by comparing response to axial loading simulated with finite element (FE) methods. First a traditional reconstruction process based on microCT was used to obtain two natural specimen-specific FE models. Next, the two morphing algorithms were used to compute mappings from the surface of one model, the source, to the other, the target, and to use this mapping to morph the source mesh to produce a target mesh. The microCT images were then used to assign element-specific material properties. In AW the mappings were obtained by wrapping the source and target surfaces with an auxiliary triangulated surface. In ML, landmarks were manually placed on corresponding locations on the surfaces of both source and target. Both morphing algorithms were successful in reproducing the shape of the target vertebra with a median distance between natural and morphed models of 18.8 and 32.2 microm, respectively, for AW and ML. Whereas AW-morphing produced a surface more closely resembling that of the target, ML guaranteed correspondence of the landmark locations between source and target. Morphing preserved the quality of the mesh producing models suitable for FE simulation. Moreover, there were only minor differences between natural and morphed models in predictions of deformation, strain and stress. We therefore conclude that

  15. Straightened cervical lordosis causes stress concentration: a finite element model study

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue [Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, (China); Liao, Shenhui [School of Information Science and Engineering, Central South University, Changsha, Hunan (China)

    2013-03-15

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  16. Straightened cervical lordosis causes stress concentration: a finite element model study

    International Nuclear Information System (INIS)

    Wei, Wei; Shi, Shiyuan; Fei, Jun; Wang, Yifan; Chen, Chunyue; Liao, Shenhui

    2013-01-01

    In this study, we propose a finite element analysis of the complete cervical spine with straightened and normal physiological curvature by using a specially designed modelling system. An accurate finite element model is established to recommend plausible approaches to treatment of cervical spondylosis through the finite element analysis results. There are few reports of biomechanics influence of the straightened cervical curve. It is difficult to measure internal responses of cervical spine directly. However, the finite element method has been reported to have the capability to quantify both external and internal responses to mechanical loading, such as the strain and stress distribution of spinal components. We choose a subject with a straightened cervical spine from whom to collect the CT scan data, which formed the basis of the finite element analysis. By using a specially designed modelling system, a high quality finite element model of the complete cervical spine with straightened curvature was generated, which was then mapped to reconstruct a normal physiological curvature model by a volumetric mesh deformation method based on discrete differential properties. Then, the same boundary conditions were applied to do a comparison. The result demonstrated that the active movement range of straightened cervical spine decreased by 24–33 %, but the stress increased by 5–95 %. The stress was concentrated at the facet joint cartilage, uncovertebral joint and the disk. The results suggest that cervical lordosis may have a direct impact on cervical spondylosis treatment. These results may be useful for clinical treatment of cervical spondylosis with straightened curvature.

  17. Design and modeling of Faraday cages for substrate noise isolation

    Science.gov (United States)

    Wu, Joyce H.; del Alamo, Jesús A.

    2013-07-01

    A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.

  18. Elements of a collaborative systems model within the aerospace industry

    Science.gov (United States)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been

  19. Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary

    Directory of Open Access Journals (Sweden)

    Larry B. Crowder

    2011-11-01

    Full Text Available Valuing ecosystem services with microeconomic underpinnings presents challenges because these services typically constitute nonmarket values and contribute to human welfare indirectly through a series of ecological pathways that are dynamic, nonlinear, and difficult to quantify and link to appropriate economic spatial and temporal scales. This paper develops and demonstrates a method to value a portion of ecosystem services when a commercial fishery is dependent on the quality of estuarine habitat. Using a lumped-parameter, dynamic open access bioeconomic model that is spatially explicit and includes predator-prey interactions, this paper quantifies part of the value of improved ecosystem function in the Neuse River Estuary when nutrient pollution is reduced. Specifically, it traces the effects of nitrogen loading on the North Carolina commercial blue crab fishery by modeling the response of primary production and the subsequent impact on hypoxia (low dissolved oxygen. Hypoxia, in turn, affects blue crabs and their preferred prey. The discounted present value fishery rent increase from a 30% reduction in nitrogen loadings in the Neuse is $2.56 million, though this welfare estimate is fairly sensitive to some parameter values. Surprisingly, this number is not sensitive to initial conditions.

  20. Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading

    Science.gov (United States)

    Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.

    2017-12-01

    Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.

  1. Mathematical model of thermal and mechanical steady state fuel element behaviour TEDEF

    International Nuclear Information System (INIS)

    Dinic, N.; Kostic, Z.; Josipovic, M.

    1987-01-01

    In this paper a numerical model of thermal and thermomechanical behaviour of a cylindrical metal uranium fuel element is described. Presented are numerical method and computer program for solving the stationary temperature field and thermal stresses of a fuel element. The model development is a second phase of analysis of these phenomena, and may as well be used for analysing power nuclear reactor fuel elements behaviour. (author)

  2. Application of flexibility model in modeling of flow boiling heat transfer

    International Nuclear Information System (INIS)

    Peng Jinfeng; Zhao Fuyu

    2009-01-01

    The mathematical modeling and computer simulation have been widely used in the analysis of system's dynamic characteristics, and often useful for system control. One of the popular methods for this purpose is the lumped parameter method. For flow boiling heat transfer system, the traditional lumped parameter modeling method has a problem that the heat transfer coefficients change suddenly at the boundary of coolant phase change. It can cause error. In this paper, an idea of flexibility model is developed to deal with the boundary problem and to improve the model of flow boiling heat transfer. The segments of coolant phase change's boundary are identified, and the membership functions which are derived from Fuzzy Mathematics are used to derive approximate expressions of heat transfer coefficient in those regions. The continuity of heat transfer coefficient can be described by those expressions. The membership functions are derived from mathematical analysis and transformation. The result shows that this idea is feasible and the conclusion is practicable.

  3. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom; Lai, Keji; Wang, Hailiang; Dai, Hongjie; Kelly, Michael A.; Shen, Zhi-xun

    2009-01-01

    inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can

  4. Estimation of parasitic losses in a proposed mesoscale resonant engine: Experiment and model

    Science.gov (United States)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2014-02-01

    A resonant engine in which the piston-cylinder assembly is replaced by a flexible cavity is realized at the mesoscale using flexible metal bellows to demonstrate the feasibility of the concept. A four stroke motoring technique is developed and measurements are performed to determine parasitic losses. A non-linear lumped parameter model is developed to evaluate the engine performance. Experimentally, the heat transfer and friction effects are separated by varying the engine speed and operating frequency. The engine energy flow diagram showing the energy distribution among various parasitic elements reveals that the friction loss in the bellows is smaller than the sliding friction loss in a typical piston-cylinder assembly.

  5. PDE Modeling of a Microfluidic Thermal Process for Genetic Analysis Application

    Directory of Open Access Journals (Sweden)

    Reza Banaei Khosroushahi

    2013-01-01

    Full Text Available This paper details the infinite dimensional dynamics of a prototype microfluidic thermal process that is used for genetic analysis purposes. Highly effective infinite dimensional dynamics, in addition to collocated sensor and actuator architecture, require the development of a precise control framework to meet the very tight performance requirements of this system, which are not fully attainable through conventional lumped modeling and controller design approaches. The general partial differential equations describing the dynamics of the system are separated into steady-state and transient parts which are derived for a carefully chosen three-dimensional axisymmetric model. These equations are solved analytically, and the results are verified using an experimentally verified precise finite element method (FEM model. The final combined result is a framework for designing a precise tracking controller applicable to the selected lab-on-a-chip device.

  6. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  7. Quantitative Modelling of Trace Elements in Hard Coal.

    Science.gov (United States)

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  8. Comparison of finite element J-integral evaluations for the blunt crack model and the sharp crack model

    International Nuclear Information System (INIS)

    Pan, Y.C.; Kennedy, J.M.

    1983-01-01

    In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is that of hot sodium coming into contact with either unprotected concrete or steel-lined concrete equipment cells and containment structures. An aspect of this is the potential of concrete cracking which would significantly influence the safety assessment. Concrete cracking in finite element analysis can be modeled as a blunt crack in which the crack is assumed to be uniformly distributed throughout the area of the element. A blunt crack model based on the energy release rate and the effective strength concepts which was insensitive to the element size was presented by Bazant and Cedolin. Some difficulties were encountered in incorporating their approach into a general purpose finite element code. An approach based on the J-integral to circumvent some of the difficulties was proposed by Pan, Marchertas, and Kennedy. Alternatively, cracking can also be modeled as a sharp crack where the crack surface is treated as the boundary of the finite element mesh. The sharp crack model is adopted by most researchers and its J-integral has been well established. It is desirable to establish the correlation between the J-integrals, or the energy release rates, for the blunt crack model and the sharp crack model so that data obtained from one model can be used on the other

  9. Mean-field models and superheavy elements

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.

    2001-03-01

    We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)

  10. Finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  11. Parallel direct solver for finite element modeling of manufacturing processes

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P.A.F.

    2017-01-01

    The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...

  12. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Directory of Open Access Journals (Sweden)

    Asad Rehman

    Full Text Available An upwind space-time conservation element and solution element (CE/SE scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme. Keywords: Dusty gas flow, Solid particles, Upwind schemes, Rarefaction wave, Shock wave, Contact discontinuity

  13. An elemental model of retrospective revaluation without within-compound associations.

    Science.gov (United States)

    Connor, Patrick C; Lolordo, Vincent M; Trappenberg, Thomas P

    2014-03-01

    When retrospective revaluation phenomena (e.g., unovershadowing: AB+, then A-, then test B) were discovered, simple elemental models were at a disadvantage because they could not explain such phenomena. Extensions of these models and novel models appealed to within-compound associations to accommodate these new data. Here, we present an elemental, neural network model of conditioning that explains retrospective revaluation apart from within-compound associations. In the model, previously paired stimuli (say, A and B, after AB+) come to activate similar ensembles of neurons, so that revaluation of one stimulus (A-) has the opposite effect on the other stimulus (B) through changes (decreases) in the strength of the inhibitory connections between neurons activated by B. The ventral striatum is discussed as a possible home for the structure and function of the present model.

  14. Finite element model updating of natural fibre reinforced composite structure in structural dynamics

    Directory of Open Access Journals (Sweden)

    Sani M.S.M.

    2016-01-01

    Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.

  15. A review on application of finite element modelling in bone biomechanics

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar Parashar

    2016-09-01

    Full Text Available In the past few decades the finite element modelling has been developed as an effective tool for modelling and simulation of the biomedical engineering system. Finite element modelling (FEM is a computational technique which can be used to solve the biomedical engineering problems based on the theories of continuum mechanics. This paper presents the state of art review on finite element modelling application in the four areas of bone biomechanics, i.e., analysis of stress and strain, determination of mechanical properties, fracture fixation design (implants, and fracture load prediction. The aim of this review is to provide a comprehensive detail about the development in the area of application of FEM in bone biomechanics during the last decades. It will help the researchers and the clinicians alike for the better treatment of patients and future development of new fixation designs.

  16. Importance of physical examination in early detection of lump in breast in women of different age groups

    International Nuclear Information System (INIS)

    Abbas, H.; Imran, S.; Waris, Noorul-ain-Hafeez; Khanam, A.; Khurshid, R.

    2010-01-01

    Background: The spectrum of breast lesions in adolescents varies markedly from that for adults, with the former lesions being overwhelmingly benign. Fine needle biopsy can be used to distinguish benign and malignant tumour. Study Design: This study examined the characteristics and outcome of women with different age groups in whom physical examination was their sole method of lump in breast detection. Patients and Methods: A total of 200 patients were included in the study. These were divided into 3 groups. Group A was consisting of 75 girls with age of pubescent. Group B included 69 suspected breast cancer women with age range 26-38 years. Fifty-six suspected breast cancer women with age range 41-60 year were included as group C. Study was carried out in patients admitted in the Department/Out-door of Surgery, Sir Ganga Ram Hospital, Lahore, Pakistan. Study period was 6 months. All women received a physical examination by a breast surgeon. Proforma including demographic and clinical characteristics were filled. The diagnosis for patients in this study was achieved by core needle biopsy using a 14-gauge cutting needle. Results: It was observed that early age at menarche ( 25 may be a risk factor in peri/post menopausal women. Active life style is more important with increasing age as it decreases the risk of developing tumour state. Family history was more common in women with peri/post menopausal status as compared to other age groups. Clinical characteristics showed that lump size <2.5 cm was more common in both pubescent and reproductive age. While lump size with a range of 2.5-5.0 cm, was observed in all groups of patients. Fibroadenoma is observed in almost all women with pubescent age while both benign and malignant tumour observed in women with reproductive age. Malignant tumour was observed mostly in women with peri/post menopausal status. Conclusion: Study concluded that early detection or clinical examination with FNA cut out the patients from harassment

  17. Computer modelling of water reactor fuel element performance and life time

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Golovnin, I.S.; Elesin, V.F.

    1983-01-01

    Well calibrated models and methods of calculation permit the confident prediction of fuel element behaviour under most different operational conditions; based on the prediction of this kind one can improve designs and fuel element behaviour. Therefore, in the Soviet Union in the development of reactor cores for NPP one of the leading parts is given to design problems associated with computer modelling of fuel element performance and reliability. Special attention is paid to methods of calculation that permit the prediction of fuel element behaviour under conditions which either make experimental studies very complicated (practically impossible) or require laborious and expensive in-pile tests. Primarily it concerns accidents of different types, off-normal conditions, transients, fuel element behaviour at high burn-up, when an accumulation of a great amount of fission fragments is accompanied by changes in physical and mechanical properties as induced by irradiation damage, mechanical fatigue, physical and chemical reactions with a coolant, fission products etc. Some major computer modelling programs for the prediction of water reactor fuel behaviour are briefly described below and tendencies in the further development of work in this area are summarized

  18. On constitutive modelling in finite element analysis

    International Nuclear Information System (INIS)

    Bathe, K.J.; Snyder, M.D.; Cleary, M.P.

    1979-01-01

    This compact contains a brief introduction to the problems involved in constitutive modeling as well as an outline of the final paper to be submitted. Attention is focussed on three important areas: (1) the need for using theoretically sound material models and the importance of recognizing the limitations of the models, (2) the problem of developing stable and effective numerical representations of the models, and (3) the necessity for selection of an appropriate finite element mesh that can capture the actual physical response of the complete structure. In the final paper, we will be presenting our recent research results pertaining to each of these problem areas. (orig.)

  19. Finite element model updating in structural dynamics using design sensitivity and optimisation

    OpenAIRE

    Calvi, Adriano

    1998-01-01

    Model updating is an important issue in engineering. In fact a well-correlated model provides for accurate evaluation of the structure loads and responses. The main objectives of the study were to exploit available optimisation programs to create an error localisation and updating procedure of nite element models that minimises the "error" between experimental and analytical modal data, addressing in particular the updating of large scale nite element models with se...

  20. Mechanical model development of rolling bearing-rotor systems: A review

    Science.gov (United States)

    Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng

    2018-03-01

    The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.

  1. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics

    International Nuclear Information System (INIS)

    Craiem, Damian; Magin, Richard L

    2010-01-01

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress–strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues. (perspective)

  2. Transient Behaviour of Superconducting Magnet Systems of Fusion Reactor ITER during Safety Discharge

    Directory of Open Access Journals (Sweden)

    A. M. Miri

    2008-01-01

    Full Text Available To investigate the transient behaviour of the toroidal and poloidal field coils magnet systems of the International Thermonuclear Experimental Reactor during safety discharge, network models with lumped elements are established. Frequency-dependant values of the network elements, that is, inductances and resistances are calculated with the finite element method. That way, overvoltages can be determined. According to these overvoltages, the insulation coordination of coils has to be selected.

  3. Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

    CERN Document Server

    Asner, A

    1985-01-01

    Compensation of the magnetization current induced sextupole error at LHC injection field by short lumped permanent sextupole magnets, incorporated into the end configuration of superconducting dipoles

  4. Material model for non-linear finite element analyses of large concrete structures

    NARCIS (Netherlands)

    Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.

    2016-01-01

    A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including

  5. Standard problems to evaluate soil structure interaction computer codes

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Philippacopoulos, A.J.

    1979-01-01

    The seismic response of nuclear power plant structures is often calculated using lumped parameter methods. A finite element model of the structure is coupled to the soil with a spring-dashpot system used to represent the interaction process. The parameters of the interaction model are based on analytic solutions to simple problems which are idealizations of the actual problems of interest. The objective of the work reported in this paper is to compare predicted responses using the standard lumped parameter models with experimental data. These comparisons are shown to be good for a fairly uniform soil system and for loadings which do not result in nonlinear interaction effects such as liftoff. 7 references, 7 figures

  6. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    Science.gov (United States)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation

  7. The influence of lumping on the behavior of reservoir with light oil and CO2

    Energy Technology Data Exchange (ETDEWEB)

    Scanavini, Helena Finardi Alvares [Universidade Estadual de Campinas (UNISIM/UNICAMP), SP (Brazil). Dept. de Engenharia de Petroleo. Pesquisa em Simulacao e Gerenciamento de Reservatorios; Schiozer, Denis Jose [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2012-07-01

    Compositional simulation demands a large number of equations and functions to be solved, once fluid properties depend on reservoir pressure and temperature and also on fluid composition. As a consequence, the number of components used influences considerably in the simulation run time and accuracy: more components yield more equations to be solved with expected higher run time. Giant petroleum fields discovered recently in Brazil (pre-salt reservoirs) demand compositional simulation due to the fluid characteristics (light oil with the presence of CO2). However, the computational time can be a limitation because of the number of grid blocks that are necessary to represent the reservoir. So, reducing the number of components is an important step for the simulation models. Under this context, this paper presents a study on the influence of different lumping clusters, used to reduce the number of components in a volatile oil, on reservoir simulation. Phase diagram, saturation pressure and simulation results were used for comparison purposes. The best results were obtained for the cases with 14, 9 and 7 pseudo components, which represented correctly the original fluid, reducing till three times the simulation run time, for the same production volumes of oil and gas. (author)

  8. Development of a PWR-W GOTHIC 3D model for containment accident analysis

    International Nuclear Information System (INIS)

    Bocanegra, Rafael; Jimenez, Gonzalo; Fernández-Cosials, Mikel Kevin

    2016-01-01

    Highlights: • The development of several 3D PWR containment models is described. • A Large Break LOCA is simulated. • The temperature and velocity fields are highly dependent on three-dimensional phenomena. • The pressure evolution is qualitatively similar in all models with small quantitative differences. - Abstract: The confinement of radioactive material in a nuclear power plant, including the discharge control and the release minimization, is a fundamental safety function to be ensured in a design basis accident (DBA). For plant licensing analysis, the containment is usually modeled with a lumped parameter approach. Inherent to the lumped parameter approach is the assumption that within each region the fluid is well mixed. However, the containment is a large building with a complex configuration and it is distributed in several compartments that avoid the well mixing of the fluid and could have three-dimensional effects that affect the thermal–hydraulic behavior. Therefore, the commonly used lumped parameter approach may not be enough to capture these effects. In order to study these assumptions, four generic PWR containment models have been developed for Mass and Energy (M&E) release analysis with GOTHIC 8.0 (QA) code, three of them being subdivided and the fourth one is a lumped parameter model. A Large Break LOCA is simulated in order to compare the thermal–hydraulic behavior of the different models. The results show a high dependence on the three-dimensional phenomena, especially the temperature and velocity distribution. In contrast, the pressure evolution is qualitatively similar in all models with small quantitative differences.

  9. MODELS OF THE USE OF DISTANCE LEARNING ELEMENTS IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Vasyl I. Kovalchuk

    2017-09-01

    Full Text Available The article presents three models of the use of elements of distance learning at school. All models partially or fully implement the training, interaction and collaboration of the participants in the educational process. The first model is determined by the use of open cloud services and Web 2.0 for the implementation of certain educational and managerial tasks of the school. The second model uses support for learning management and content creation. The introduction of the second model is possible with the development of the IT infrastructure of the school, the training of teachers for the use of distance learning technologies, the creation of electronic educational resources. The third model combines the use of Web 2.0 technologies and training and content management systems. Models of the use of elements of distance learning are presented of the results of regional research experimental work of schools.

  10. Modelling of Conveyor Belt Passage by Driving Drum Using Finite Element Methods

    Directory of Open Access Journals (Sweden)

    Nikoleta Mikušová

    2017-12-01

    Full Text Available The finite element methods are used in many disciplines by the development of products, typically in mechanical engineering (for example in automotive industry, biomechanics, etc.. Some modern programs of the finite element's methods have specific tools (electromagnetic, fluid and structural simulations. The finite elements methods allow detailed presentation of structures by bending or torsion, complete design, testing and optimization before the prototype production. The aims of this paper were to the model of conveyor belt passage by driving drum. The model was created by the program Abaqus CAE. The created model presented data about forces, pressures, and deformation of the belt conveyor.

  11. Modelling and Multi-Variable Control of Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Holm, J. R.

    2003-01-01

    In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static as the dyn......In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static...... as the dynamic behavior. Based on this model the effects of the cross couplings has been examined. The influence of the cross couplings on the achievable control performance has been investigated. A MIMO controller is designed and the performance is compared with the control performance achieved by using...

  12. Dynamic Modelling of the DEP Controlled Boiling in a Microchannel

    Science.gov (United States)

    Lackowski, Marcin; Kwidzinski, Roman

    2018-04-01

    The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.

  13. Isotope and trace element models of crustal evolution

    International Nuclear Information System (INIS)

    O'Nions, R.K.; Hamilton, P.J.

    1981-01-01

    Some of the isotopic constraints on the development of continental crust from about 3.8 Ga ago are reviewed. Particularly it is noted that Archaean granitic (sensu lato) rocks have initial 143 Nd/ 144 Nd ratios close to predicted values for the bulk Earth at the time before emplacement, whereas those Phanerozoic granites investigated so far diverge considerably from the bulk Earth and betray the existence of later continental crust in their provenance. Geochemical evidence for recycling of some continent-derived elements into the mantle is examined and the important distinction between selected element recycling and bulk return of continental material is emphasized. Various transport models that have been proposed to model the development of continental crust are examined and some of their differences and similarities, particularly with respect to implications for continental recycling, are highlighted. (author)

  14. Multi-Site Calibration of Linear Reservoir Based Geomorphologic Rainfall-Runoff Models

    Directory of Open Access Journals (Sweden)

    Bahram Saeidifarzad

    2014-09-01

    Full Text Available Multi-site optimization of two adapted event-based geomorphologic rainfall-runoff models was presented using Non-dominated Sorting Genetic Algorithm (NSGA-II method for the South Fork Eel River watershed, California. The first model was developed based on Unequal Cascade of Reservoirs (UECR and the second model was presented as a modified version of Geomorphological Unit Hydrograph based on Nash’s model (GUHN. Two calibration strategies were considered as semi-lumped and semi-distributed for imposing (or unimposing the geomorphology relations in the models. The results of models were compared with Nash’s model. Obtained results using the observed data of two stations in the multi-site optimization framework showed reasonable efficiency values in both the calibration and the verification steps. The outcomes also showed that semi-distributed calibration of the modified GUHN model slightly outperformed other models in both upstream and downstream stations during calibration. Both calibration strategies for the developed UECR model during the verification phase showed slightly better performance in the downstream station, but in the upstream station, the modified GUHN model in the semi-lumped strategy slightly outperformed the other models. The semi-lumped calibration strategy could lead to logical lag time parameters related to the basin geomorphology and may be more suitable for data-based statistical analyses of the rainfall-runoff process.

  15. The Distributed Lambda (?) Model (DLM): A 3-D, Finite-Element Muscle Model Based on Feldman's ? Model; Assessment of Orofacial Gestures

    Science.gov (United States)

    Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan

    2013-01-01

    Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…

  16. Elements of complexity in subsurface modeling, exemplified with three case studies

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freshley, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-03

    There are complexity elements to consider when applying subsurface flow and transport models to support environmental analyses. Modelers balance the benefits and costs of modeling along the spectrum of complexity, taking into account the attributes of more simple models (e.g., lower cost, faster execution, easier to explain, less mechanistic) and the attributes of more complex models (higher cost, slower execution, harder to explain, more mechanistic and technically defensible). In this paper, modeling complexity is examined with respect to considering this balance. The discussion of modeling complexity is organized into three primary elements: 1) modeling approach, 2) description of process, and 3) description of heterogeneity. Three examples are used to examine these complexity elements. Two of the examples use simulations generated from a complex model to develop simpler models for efficient use in model applications. The first example is designed to support performance evaluation of soil vapor extraction remediation in terms of groundwater protection. The second example investigates the importance of simulating different categories of geochemical reactions for carbon sequestration and selecting appropriate simplifications for use in evaluating sequestration scenarios. In the third example, the modeling history for a uranium-contaminated site demonstrates that conservative parameter estimates were inadequate surrogates for complex, critical processes and there is discussion on the selection of more appropriate model complexity for this application. All three examples highlight how complexity considerations are essential to create scientifically defensible models that achieve a balance between model simplification and complexity.

  17. Finite element model updating of a small steel frame using neural networks

    International Nuclear Information System (INIS)

    Zapico, J L; González, M P; Alonso, R; González-Buelga, A

    2008-01-01

    This paper presents an experimental and analytical dynamic study of a small-scale steel frame. The experimental model was physically built and dynamically tested on a shaking table in a series of different configurations obtained from the original one by changing the mass and by causing structural damage. Finite element modelling and parameterization with physical meaning is iteratively tried for the original undamaged configuration. The finite element model is updated through a neural network, the natural frequencies of the model being the net input. The updating process is made more accurate and robust by using a regressive procedure, which constitutes an original contribution of this work. A novel simplified analytical model has been developed to evaluate the reduction of bending stiffness of the elements due to damage. The experimental results of the rest of the configurations have been used to validate both the updated finite element model and the analytical one. The statistical properties of the identified modal data are evaluated. From these, the statistical properties and a confidence interval for the estimated model parameters are obtained by using the Latin Hypercube sampling technique. The results obtained are successful: the updated model accurately reproduces the low modes identified experimentally for all configurations, and the statistical study of the transmission of errors yields a narrow confidence interval for all the identified parameters

  18. [Three dimensional finite element model of a modified posterior cervical single open-door laminoplasty].

    Science.gov (United States)

    Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q

    2017-06-06

    Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.

  19. A 2.5D finite element and boundary element model for the ground vibration from trains in tunnels and validation using measurement data

    Science.gov (United States)

    Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos

    2018-05-01

    A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.

  20. Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics

    International Nuclear Information System (INIS)

    McWilliam, Michael K; Crawford, Curran

    2014-01-01

    This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane

  1. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor cores requires an iterative approach between the thermal-hydraulic, neutronic, and operational analysis. This paper will concentrate on the thermal-hydraulic behavior of a hydrogen-cooled small particle bed reactor (PBR). The PBR core modeled here consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flows, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit to a common plenum. A fast running one-dimensional lumped-parameter steady-state code (FTHP) was developed to evaluate the effects of design changes in fuel assembly and power distribution. Another objective for the code was to investigate various methods of coolant control to minimize hot channel effects and maximize outlet temperatures

  2. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)

    2017-03-15

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  3. Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model

    International Nuclear Information System (INIS)

    Park, Jong-beom; Park, No-Cheol; Lee, Sang-Jeong; Park, Young-Pil; Choi, Youngin

    2017-01-01

    Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.

  4. European column buckling curves and finite element modelling including high strength steels

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Stan, Tudor-Cristian

    2017-01-01

    Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....

  5. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  6. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  7. An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials

    International Nuclear Information System (INIS)

    Lee Hae Sung.

    1991-01-01

    This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions

  8. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  9. A CFD numerical model for the flow distribution in a MTR fuel element

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho; Angelo, Gabriel

    2015-01-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  10. A CFD numerical model for the flow distribution in a MTR fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Delvonei Alves de; Santos, Pedro Henrique Di Giovanni; Oliveira, Fabio Branco Vaz de; Torres, Walmir Maximo; Umbehaun, Pedro Ernesto; Souza, Jose Antonio Batista de; Belchior Junior, Antonio; Sabundjian, Gaiane; Prado, Adelk de Carvalho, E-mail: acprado@ipen.br, E-mail: delvonei@ipen.br, E-mail: dpedro_digiovanni_s@hotmail.com, E-mail: fabio@ipen.br, E-mail: wmtorres@ipen.br, E-mail: umbehaun@ipen.br, E-mail: jasouza@ipen.br, E-mail: abelchior@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Edvaldo, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil); Angelo, Gabriel, E-mail: gangelo@fei.edu.br [Fundacao Educacional Inaciana (FEI), Sao Bernardo do Campo, SP (Brazil)

    2015-07-01

    Previously, an instrumented dummy fuel element (DMPV-01), with the same geometric characteristics of a MTR fuel element, was designed and constructed for pressure drop and flow distribution measurement experiments at the IEA-R1 reactor core. This dummy element was also used to measure the flow distribution among the rectangular flow channels formed by element fuel plates. A CFD numerical model was developed to complement the studies. This work presents the proposed CFD model as well as a comparison between numerical and experimental results of flow rate distribution among the internal flow channels. Numerical results show that the model reproduces the experiments very well and can be used for the studies as a more convenient and complementary tool. (author)

  11. Solid Modeling and Finite Element Analysis of an Overhead Crane Bridge

    Directory of Open Access Journals (Sweden)

    C. Alkin

    2005-01-01

    Full Text Available The design of an overhead crane bridge with a double box girder has been investigated and a case study of a crane with 35 ton capacity and 13 m span length has been conducted. In the initial phase of the case study, conventional design calculations proposed by F. E. M. Rules and DIN standards were performed to verify the stress and deflection levels. The crane design was modeled using both solids and surfaces. Finite element meshes with 4-node tetrahedral and 4-node quadrilateral shell elements were generated from the solid and shell models, respectively. After a comparison of the finite element analyses, the conventional calculations and performance of the existing crane, the analysis with quadratic shell elements was found to give the most realistic results. As a result of this study, a design optimization method for an overhead crane is proposed. 

  12. Modeling of a carbon nanotube ultracapacitor.

    Science.gov (United States)

    Orphanou, Antonis; Yamada, Toshishige; Yang, Cary Y

    2012-03-09

    The modeling of carbon nanotube ultracapacitor (CNU) performance based on the simulation of electrolyte ion motion between the cathode and the anode is described. Using a molecular dynamics (MD) approach, the equilibrium positions of the electrode charges interacting through the Coulomb potential are determined, which in turn yield the equipotential surface and electric field associated with the capacitor. With an applied ac voltage, the current is computed based on the nanotube and electrolyte particle distribution and interaction, resulting in the frequency-dependent impedance Z(ω). From the current and impedance profiles, the Nyquist and cyclic voltammetry (CV) plots are then extracted. The results of these calculations compare well with existing experimental data. A lumped-element equivalent circuit for the CNU is proposed and the impedance computed from this circuit correlates well with the simulated and measured impedances.

  13. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  14. Coupled distinct element-finite element numerical modelling of fluid circulation in deforming sedimentary basins.

    Science.gov (United States)

    Hindle, D.; Malz, A.; Donndorf, S.; Kley, J.; Kopp, H.

    2012-04-01

    We develop a coupled numerical model for fluid flow in deforming sedimentary basins. We combine a distinct element method for large deformations of crustal materials, with a finite element method for fluid flow according to a diffusion type equation. The key question in such a model is how to simulate evolving permeabilities due to upper and possibly middle crustal deformation, and the coupled issue of how localisation of deformation in faults and shear zones is itself influenced by fluid flow and fluid pressure and vice versa. Currently our knowledge of these issues is restricted, even sketchy. There are a number of hypotheses, based partly on geological and isotope geochemical observations, such as "seismic pumping" models, and fluid induced weak décollement models for thrust sheet transport which have gained quite wide acceptance. Observations around thrusts at the present day have also often been interpreted as showing deformation induced permeability. However, combining all the physics of these processes into a numerical simulation is a complicated task given the ranges of, in particular time scales of the processes we infer to be operating based on our various observations. We start this task by using an elastic fracture relationship between normal stresses across distinct element contacts (which we consider to be the equivalent of discrete, sliding fractures) and their openness and hence their transmissivity. This relates the mechanical state of the distinct element system to a discrete permeability field. Further than that, the geometry of the mechanical system is used to provide boundary conditions for fluid flow in a diffusion equation which also incorporates the permeability field. The next question we address is how to achieve a feedback between fluid pressures and deformation. We try two approaches: one treats pore space in the DEM as real, and calculates the force exerted locally by fluids and adds this to the force balance of the model; another

  15. Efficient Finite Element Models for Calculation of the No-load losses of the Transformer

    Directory of Open Access Journals (Sweden)

    Kamran Dawood

    2017-10-01

    Full Text Available Different transformer models are examined for the calculation of the no-load losses using finite element analysis. Two-dimensional and three-dimensional finite element analyses are used for the simulation of the transformer. Results of the finite element method are also compared with the experimental results. The Result shows that 3-dimensional provide high accuracy as compared to the 2 dimensional full and half model. However, the 2-dimensional half model is the less time-consuming method as compared to the 3 and 2-dimensional full model. Simulation time duration taken by the different models of the transformer is also compared. The difference between the 3-dimensional finite element method and experimental results are less than 3%. These numerical methods can help transformer designers to minimize the development of the prototype transformers.

  16. UNIFIED MODELS OF ELEMENTS OF POWER SUPPLY SYSTEMS BASED ON EQUATIONS IN PHASE COORDINATES

    Directory of Open Access Journals (Sweden)

    Yu.N. Vepryk

    2015-12-01

    Full Text Available Purpose. The models of electrical machines in the phase coordinates, the universal algorithm for the simulation of separate elements in a d-q coordinates system and in a phase-coordinates system are proposed. Methodology. Computer methods of investigation of transients in electrical systems are based on a compilation of systems of differential equations and their numerical integration solution methods. To solve differential equations an implicit method of numerical integration was chosen. Because it provides to complete structural simulation possibility: firstly developing models of separate elements and then forming a model of the complex system. For the mathematical simulation of electromagnetic transients in the elements of the electrical systems has been accepted the implicit Euler-Cauchy method, because it provides a higher precision and stability of the computing processes. Results. In developing the model elements identified two groups of elements: - Static elements and electrical machines in the d-q coordinates; - Rotating electrical machines in phase coordinates. As an example, the paper provides a model of synchronous and asynchronous electric machines in the d-q coordinates system and the phase coordinate system. The generalization algorithm and the unified notation form of equations of elements of an electrical system are obtained. It provides the possibility of using structural methods to develop a mathematical model of power systems under transient conditions. Practical value. In addition, the using of a computer model allows to implement multivariant calculations for research and study of factors affecting the quantitative characteristics of the transients.

  17. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  18. Model Experiments on Chemical Properties of Superheavy Elements in Aqueous Solutions

    CERN Document Server

    Szeglowski, Z

    2003-01-01

    This paper presents a brief review of model experiments on investigation of chemical properties of transactinide elements, ranging from 104 to 116. The possibilities of isolation of the nuclei of these elements from nuclear reaction products, using the ion-exchange method, are also considered.

  19. Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites

    International Nuclear Information System (INIS)

    Hawileh, Rami A.; El-Maaddawy, Tamer A.; Naser, Mohannad Z.

    2012-01-01

    Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.

  20. Hadron matrix elements of quark operators in the relativistic quark model, 2. Model calculation

    Energy Technology Data Exchange (ETDEWEB)

    Arisue, H; Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, H

    1979-11-01

    Phenomenological studies of the matrix elements of two- and four-quark operators are made on the basis of relativistic independent quark model for typical three cases of the potentials: rigid wall, linearly rising and Coulomb-like potentials. The values of the matrix elements of two-quark operators are relatively well reproduced in each case, but those of four-quark operators prove to be too small in the independent particle treatment. It is suggested that the short-range two-quark correlations must be taken into account in order to improve the values of the matrix elements of the four-quark operators.

  1. An Integrated Biomechanical Model for Microgravity-Induced Visual Impairment

    Science.gov (United States)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2012-01-01

    When gravitational unloading occurs upon entry to space, astronauts experience a major shift in the distribution of their bodily fluids, with a net headward movement. Measurements have shown that intraocular pressure spikes, and there is a strong suspicion that intracranial pressure also rises. Some astronauts in both short- and long-duration spaceflight develop visual acuity changes, which may or may not reverse upon return to earth gravity. To date, of the 36 U.S. astronauts who have participated in long-duration space missions on the International Space Station, 15 crew members have developed minor to severe visual decrements and anatomical changes. These ophthalmic changes include hyperopic shift, optic nerve distension, optic disc edema, globe flattening, choroidal folds, and elevated cerebrospinal fluid pressure. In order to understand the physical mechanisms behind these phenomena, NASA is developing an integrated model that appropriately captures whole-body fluids transport through lumped-parameter models for the cerebrospinal and cardiovascular systems. This data feeds into a finite element model for the ocular globe and retrobulbar subarachnoid space through time-dependent boundary conditions. Although tissue models and finite element representations of the corneo-scleral shell, retina, choroid and optic nerve head have been integrated to study pathological conditions such as glaucoma, the retrobulbar subarachnoid space behind the eye has received much less attention. This presentation will describe the development and scientific foundation of our holistic model.

  2. Analytical model and design of spoke-type permanent-magnet machines accounting for saturation and nonlinearity of magnetic bridges

    Science.gov (United States)

    Liang, Peixin; Chai, Feng; Bi, Yunlong; Pei, Yulong; Cheng, Shukang

    2016-11-01

    Based on subdomain model, this paper presents an analytical method for predicting the no-load magnetic field distribution, back-EMF and torque in general spoke-type motors with magnetic bridges. Taking into account the saturation and nonlinearity of magnetic material, the magnetic bridges are equivalent to fan-shaped saturation regions. For getting standard boundary conditions, a lumped parameter magnetic circuit model and iterative method are employed to calculate the permeability. The final field domain is divided into five types of simple subdomains. Based on the method of separation of variables, the analytical expression of each subdomain is derived. The analytical results of the magnetic field distribution, Back-EMF and torque are verified by finite element method, which confirms the validity of the proposed model for facilitating the motor design and optimization.

  3. Frequency domain finite-element and spectral-element acoustic wave modeling using absorbing boundaries and perfectly matched layer

    Science.gov (United States)

    Rahimi Dalkhani, Amin; Javaherian, Abdolrahim; Mahdavi Basir, Hadi

    2018-04-01

    Wave propagation modeling as a vital tool in seismology can be done via several different numerical methods among them are finite-difference, finite-element, and spectral-element methods (FDM, FEM and SEM). Some advanced applications in seismic exploration benefit the frequency domain modeling. Regarding flexibility in complex geological models and dealing with the free surface boundary condition, we studied the frequency domain acoustic wave equation using FEM and SEM. The results demonstrated that the frequency domain FEM and SEM have a good accuracy and numerical efficiency with the second order interpolation polynomials. Furthermore, we developed the second order Clayton and Engquist absorbing boundary condition (CE-ABC2) and compared it with the perfectly matched layer (PML) for the frequency domain FEM and SEM. In spite of PML method, CE-ABC2 does not add any additional computational cost to the modeling except assembling boundary matrices. As a result, considering CE-ABC2 is more efficient than PML for the frequency domain acoustic wave propagation modeling especially when computational cost is high and high-level absorbing performance is unnecessary.

  4. Nonlinear transfer of elements from soil to plants: impact on radioecological modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S.; Kolehmainen, Mikko; Roivainen, Paeivi; Kumlin, Timo; Makkonen, Sari; Holopainen, Toini; Juutilainen, Jukka [University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 1627, Kuopio (Finland)

    2016-08-15

    In radioecology, transfer of radionuclides from soil to plants is typically described by a concentration ratio (CR), which assumes linearity of transfer with soil concentration. Nonlinear uptake is evidenced in many studies, but it is unclear how it should be taken into account in radioecological modeling. In this study, a conventional CR-based linear model, a nonlinear model derived from observed uptake into plants, and a new simple model based on the observation that nonlinear uptake leads to a practically constant concentration in plant tissues are compared. The three models were used to predict transfer of {sup 234}U, {sup 59}Ni and {sup 210}Pb into spruce needles. The predictions of the nonlinear and the new model were essentially similar. In contrast, plant radionuclide concentration was underestimated by the linear model when the total element concentration in soil was relatively low, but within the range commonly observed in nature. It is concluded that the linear modeling could easily be replaced by a new approach that more realistically reflects the true processes involved in the uptake of elements into plants. The new modeling approach does not increase the complexity of modeling in comparison with CR-based linear models, and data needed for model parameters (element concentrations) are widely available. (orig.)

  5. Modeling the element cycle of aquatic plants

    International Nuclear Information System (INIS)

    Asaeda, Takashi

    2007-01-01

    Aquatic plants play an important role in element cycles in wetlands and the efficiency of the process is extremely related to their proportional biomass allocation to above- and belowground organs. Therefore, the framework of most macrophyte productivity models is usually similar with a mass-balance approach consisting of gross production, respiration and mortality losses and the translocation between organs. These growth models are incorporated with decomposition models to evaluate the annual cycle of elements. Perennial emergent macrophytes with a relatively large biomass have a particularly important role in element cycles. Their phenological stages, such as the beginning of hibernation of belowground rhizome systems, emergence of new shoots in spring with resources stocked in the rhizomes, flowering, downward translocation of photosynthetic products later on and then the mortality of the aboveground system in late autumn, depend on the environmental conditions, basically the nutrients, water depth, climatic variations, etc. Although some species retain standing dead shoots for a long time, dead shoots easily fall into water, starting to decompose in the immediate aftermath. However, their decomposition rates in the water are relatively low, causing to accumulate large amounts of organic sediments on the bottom. Together with the deposition of allochthonous suspended matters in the stand, this process decreases the water depth, transforming wetlands gradually into land. The depth of penetration of roots into the sediments to uptake nutrients and water is extremely site specific, however, in water-logged areas, the maximum penetrable depth may be approximately estimated by considering the ability of oxygen transport into the rhizome system. The growth of perennial submerged plants is also estimated by a process similar to that of emergent macrophytes. However, compared with emergent macrophytes, the root system of submerged macrophytes is weaker, and the nutrient

  6. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  7. 41 CFR 301-11.638 - May we offer a lump sum payment to cover the income tax liability on the covered ITRA?

    Science.gov (United States)

    2010-07-01

    ... payment to cover the income tax liability on the covered ITRA? 301-11.638 Section 301-11.638 Public... Thereafter Agency Responsibilities § 301-11.638 May we offer a lump sum payment to cover the income tax... understands that he/she is responsible for any income taxes without further reimbursement. See the...

  8. 41 CFR 301-11.538 - May we offer a lump sum payment to cover the income tax liability on the covered ITRA?

    Science.gov (United States)

    2010-07-01

    ... payment to cover the income tax liability on the covered ITRA? 301-11.538 Section 301-11.538 Public... 1994 Agency Responsibilities § 301-11.538 May we offer a lump sum payment to cover the income tax... understands that he/she is responsible for any income taxes without further reimbursement. (See the...

  9. Finite element model updating using bayesian framework and modal properties

    CSIR Research Space (South Africa)

    Marwala, T

    2005-01-01

    Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...

  10. A subroutine for the calculation of resonance cross sections of U-238 in HTR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Cuniberti, R; Marullo, G C

    1971-02-15

    In this paper, a survey of the codes used at Ispra for the calculations of resonance absorption in HTR fuel elements is presented and a subroutine for the calculation of resonance cross-sections, in a seven groups energy structure, for a HTR lattice of annular type is described. A library of homogeneous resonance integrals and a wide tabulation of lump and kernel Bell factors, and moderators efficiency is given. This paper deals mainly with the problem of taking into account the correct slowing down of neutrons in the graphite and with the derivation of Bell factors to be used in a multigroup calculation scheme.

  11. Modeling fragmentation with new high order finite element technology and node splitting

    Directory of Open Access Journals (Sweden)

    Olovsson Lars

    2015-01-01

    Full Text Available The modeling of fragmentation has historically been linked to the weapons industry where the main goal is to optimize a bomb or to design effective blast shields. Numerical modeling of fragmentation from dynamic loading has traditionally been modeled by legacy finite element solvers that rely on element erosion to model material failure. However this method results in the removal of too much material. This is not realistic as retaining the mass of the structure is critical to modeling the event correctly. We propose a new approach implemented in the IMPETUS AFEA SOLVER® based on the following: New High Order Finite Elements that can easily deal with very large deformations; Stochastic distribution of initial damage that allows for a non homogeneous distribution of fragments; and a Node Splitting Algorithm that allows for material fracture without element erosion that is mesh independent. The approach is evaluated for various materials and scenarios: -Titanium ring electromagnetic compression; Hard steel Taylor bar impact, Fused silica Taylor bar impact, Steel cylinder explosion, The results obtained from the simulations are representative of the failure mechanisms observed experimentally. The main benefit of this approach is good energy conservation (no loss of mass and numerical robustness even in complex situations.

  12. Kinetic modelling of hydrocracking catalytic reactions by the single events theory; Modelisation cinetique des reactions catalytiques d`hydrocraquage par la theorie des evenements constitutifs

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, J.M.

    1998-11-23

    Kinetic modelling of petroleum hydrocracking is particularly difficult given the complexity of the feedstocks. There are two distinct classes of kinetics models: lumped empirical models and detailed molecular models. The productivity of lumped empirical models is generally not very accurate, and the number of kinetic parameters increases rapidly with the number of lumps. A promising new methodology is the use of kinetic modelling based on the single events theory. Due to the molecular approach, a finite and limited number of kinetic parameters can describe the kinetic behaviour of the hydrocracking of heavy feedstock. The parameters are independent of the feedstock. However, the available analytical methods are not able to identify the products on the molecular level. This can be accounted for by means of an posteriori lamping technique, which incorporates the detailed knowledge of the elementary step network. Thus, the lumped kinetic parameters are directly calculated from the fundamental kinetic coefficients and the single event model is reduced to a re-lumped molecular model. Until now, the ability of the method to extrapolate to higher carbon numbers had not been demonstrated. In addition, no study had been published for three phase (gas-liquid-solid) systems and a complex feedstock. The objective of this work is to validate the `single events` method using a paraffinic feedstock. First of all, a series of experiments was conducted on a model compound (hexadecane) in order to estimate the fundamental kinetic parameters for acyclic molecules. To validate the single event approach, these estimated kinetic coefficients were used to simulate hydrocracking of a paraffinic mixture ranging from C11 to C18. The simulation results were then compared to the results obtained from the hydrocracking experiments. The comparison allowed to validate the model for acyclic molecules and to demonstrate that the model is applicable to compounds with higher carbon numbers. (author

  13. Finite element modeling of micromachined MEMS photon devices

    Science.gov (United States)

    Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.

    1999-09-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.

  14. Finite Element Modeling of Micromachined MEMS Photon Devices

    International Nuclear Information System (INIS)

    Datskos, P.G.; Evans, B.M.; Schonberger, D.

    1999-01-01

    The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness

  15. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.

    Science.gov (United States)

    Wu, J Z; Herzog, W; Epstein, M

    1998-02-01

    The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.

  16. Model-order reduction of lumped parameter systems via fractional calculus

    Science.gov (United States)

    Hollkamp, John P.; Sen, Mihir; Semperlotti, Fabio

    2018-04-01

    This study investigates the use of fractional order differential models to simulate the dynamic response of non-homogeneous discrete systems and to achieve efficient and accurate model order reduction. The traditional integer order approach to the simulation of non-homogeneous systems dictates the use of numerical solutions and often imposes stringent compromises between accuracy and computational performance. Fractional calculus provides an alternative approach where complex dynamical systems can be modeled with compact fractional equations that not only can still guarantee analytical solutions, but can also enable high levels of order reduction without compromising on accuracy. Different approaches are explored in order to transform the integer order model into a reduced order fractional model able to match the dynamic response of the initial system. Analytical and numerical results show that, under certain conditions, an exact match is possible and the resulting fractional differential models have both a complex and frequency-dependent order of the differential operator. The implications of this type of approach for both model order reduction and model synthesis are discussed.

  17. Finite element modeling of the filament winding process using ABAQUS

    OpenAIRE

    Miltenberger, Louis C.

    1992-01-01

    A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...

  18. Some aspects to improve sound insulation prediction models for lightweight elements

    NARCIS (Netherlands)

    Gerretsen, E.

    2007-01-01

    The best approach to include lightweight building elements in prediction models for airborne and impact sound insulation between rooms, as in EN 12354, is not yet completely clear. Two aspects are at least of importance, i.e. to derive the sound reduction index R for lightweight elements for

  19. Development of Multidimensional Gap Conductance model using Virtual Link Gap Element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Chan; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The gap conductance that determines temperature gradient between pellet and cladding can be quite sensitive to gap thickness. For instance, once the gap size increases up to several micrometers in certain region, difference of pellet surface temperatures increases up to 100 Kelvin. Therefore, iterative thermo-mechanical coupled analysis is required to solve temperature distribution throughout pellet and cladding. Recently, multidimensional fuel performance codes have been being developed in the advanced countries to evaluate thermal behavior of fuel for off normal conditions and DBA(design based accident) conditions using the Finite Element Method (FEM). FRAPCON-FRAPTRAN code system, which is well known as the verified and reliable code, incorporates 1D thermal module and multidimensional mechanical module. In this code, multidimensional gap conductance model is not applied. ALCYONE developed by CEA introduces equivalent heat convection coefficient that represents multidimensional gap conductance as a function of gap thickness. BISON, which is multidimensional fuel performance code developed by INL, owns multidimensional gap conductance model using projected thermal contact. In general, thermal contact algorithm is nonlinear calculation which is expensive approach numerically. The gap conductance model for multi-dimension is difficult issue in terms of convergence and nonlinearity because gap conductance is function of gap thickness which depends on mechanical analysis at each iteration step. In this paper, virtual link gap (VLG) element has been proposed to resolve convergence issue and nonlinear characteristic of multidimensional gap conductance. In terms of calculation accuracy and convergence efficiency, the proposed VLG model was evaluated. LWR fuel performance codes should incorporate thermo-mechanical loop to solve gap conductance problem, iteratively. However, gap conductance in multidimensional model is difficult issue owing to its nonlinearity and

  20. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction

    International Nuclear Information System (INIS)

    Upadrashta, Deepesh; Yang, Yaowen

    2015-01-01

    Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)