WorldWideScience

Sample records for luminescent reporter vargula

  1. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Buckley, Heather L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arnold, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  2. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications

    International Nuclear Information System (INIS)

    Vuojola, Johanna; Soukka, Tero

    2014-01-01

    Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and a large surface area for biomolecule immobilization. Lanthanide-based reporters, when properly shielded from the quenching effects of water, usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling time-gated luminescence detection. Because of these properties, lanthanide-based reporters have found widespread applications in various fields of life. This review focuses on the field of bioanalytical applications. Luminescent lanthanide reporters and assay formats utilizing these reporters pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications. (topical review)

  3. Luminescence dating at Rose cottage cave: a progress report

    CSIR Research Space (South Africa)

    Woodborne, S

    1997-10-01

    Full Text Available Deal with infrared-stimulated luminescence and thermoluminescence dates from Rose Cottage Cave in South Africa. Discrepancy between luminescence and radiocarbon dates; Concentration of radioactive elements in sediments before and after leaching...

  4. WellReader: a MATLAB program for the analysis of fluorescence and luminescence reporter gene data.

    Science.gov (United States)

    Boyer, Frédéric; Besson, Bruno; Baptist, Guillaume; Izard, Jérôme; Pinel, Corinne; Ropers, Delphine; Geiselmann, Johannes; de Jong, Hidde

    2010-05-01

    Fluorescent and luminescent reporter gene systems in combination with automated microplate readers allow real-time monitoring of gene expression on the population level at high precision and sampling density. This generates large amounts of data for the analysis of which computer tools are missing to date. We have developed WellReader, a MATLAB program for the analysis of fluorescent and luminescent reporter gene data. WellReader allows the user to load the output files of microplate readers, remove outliers, correct for background effects and smooth and fit the data. Moreover, it computes biologically relevant quantities from the measured signals, notably promoter activities and protein concentrations, and compares the resulting expression profiles of different genes under different conditions. WellReader is available under a LGPL licence at http://prabi1.inrialpes.fr/trac/wellreader.

  5. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  6. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  7. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  8. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  9. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  10. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  11. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  12. luminescence properties

    Indian Academy of Sciences (India)

    1Faculty of Science and Arts, Department of Chemistry, Bozok University, Yozgat 66900, Turkey. 2Faculty of Science, Department of Chemistry, Erciyes ... synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) ...

  13. Ostreococcus tauri Luminescent Reporter Lines as Biosensors for Detecting Pollution From Copper-Mine Tailing Effluents in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Castillo

    2018-05-01

    Full Text Available Phytoplankton cells are excellent biosensors for environmental monitoring and toxicity assessments in different natural systems. Green algae, in particular, appear to be more responsive to copper (Cu disturbances. This is interesting considering that Cu pollution in coastal environments has increased over the last century, with enormous repercussions to marine ecosystems. Unfortunately, no high-throughput method exists for the environmental monitoring of Cu toxicity in seawater. To assess potential uses as biosensors of Cu pollution, high-throughput screening was performed on five luminescence reporter lines constructed in the green algae Ostreococcus tauri RCC745. The reporter line expressing the iron storage ferritin protein fused to luciferase (Fer-Luc was the most sensitive, responding to Cu concentrations in the μM range. Fer-Luc was also the most sensitive reporter line for detecting toxicity in mining-derived polluted seawater predominantly contaminated by soluble Cu. Nevertheless, the Cyclin-Dependent-Kinase A (CDKA reporter was most suitable for detecting the toxicity of copper-mine tailing effluents containing other metals (e.g., iron. These results highlight that Ostreococcus biosensors can serve as a reliable, inexpensive, and automated, high-throughput laboratory approach for performing seawater analyses of coastal areas subjected to metal disturbances. When challenged with Cu, O. tauri not only evidenced a rapid, transcriptional response for the tested genes, but also showed changes in a broad range of genes, especially as related to the stress response. Overall, the obtained results reinforce that a single biosensor is insufficient when dealing with complex mixtures of toxic compounds in natural environments.

  14. Sensitive luminescent reporter viruses reveal appreciable release of hepatitis C virus NS5A protein into the extracellular environment.

    Science.gov (United States)

    Eyre, Nicholas S; Aloia, Amanda L; Joyce, Michael A; Chulanetra, Monrat; Tyrrell, D Lorne; Beard, Michael R

    2017-07-01

    The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  16. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  17. Luminescence sensitivity changes in quartz

    CERN Document Server

    Wintle, A G

    1999-01-01

    In the luminescence dating of sedimentary or heated quartz, some heat treatment is usually applied to the sample immediately prior to the measurement of the optically stimulated luminescence. In this paper we report experiments on a 30,000-year-old sedimentary quartz, in which we use the luminescence response to a test dose to monitor the changes in sensitivity that are caused by holding the quartz at temperatures from 160 to 280 deg. C for times from 10 s to 22 h. For an optically bleached sample, the monitoring is by both optically stimulated luminescence and the 110 deg. C TL peak; both luminescence signals are shown to have the same sensitisation (i.e. activation energy) characteristics. For natural or laboratory irradiated samples only the 110 deg. C TL peak can be used; sensitivity increases of up to a factor of 1.3 and 3 are observed for the natural and laboratory irradiated aliquots, respectively. Up to four exponential components are used to deconvolve the sensitivity change data; the dominant compon...

  18. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  19. On luminescence lifetimes in quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Galloway, R.B.

    2000-01-01

    In this paper we present results of investigations concerning the time dependence of luminescence emission relative to the time of stimulation in quartz. Measurements of time-resolved spectra were performed on a new versatile pulsed light emitting diode system using 525 nm stimulation, an 11 μs duration pulse, a repetition rate of 11 kHz and a 64 μs dynamic range. Effects on luminescence lifetime resulting from sample treatments such as optical stimulation, irradiation, and preheating, are reported

  20. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  1. Luminescence dating in archaeology

    International Nuclear Information System (INIS)

    Wintle, A.G.

    2001-01-01

    Thermoluminescence (TL) dating is routinely applied to burnt lithic material. Simple fires are capable of enabling stones weighing a few hundred grams to reach 450 o C, thus zeroing the TL signal. TL dates have been obtained for Upper and Lower Paleolithic sites in Europe and the Near East. TL dating continues to be used for dating pottery and for authentification of ceramic works of art. Some recent studies report the use of optically stimulated luminescence (OSL) (also know as photoluminescence) for dating very small samples of quartz, e.g. from small pieces of pottery or frm metallurgical slag The major recent advance has been in the development of a reliable laboratory procedure for using the OSL signal from quartz to obtain the past radiation exposure. The quartz OSL signal is extremely sensitive to light and is reduced to a negligible level on exposure to direct sunlight for radionuclides during burial, signal to date san.sized quartz grains extracted from sediments, The OSL signal is stimulated by 470 nm light from emitting diodes and the detected using flirters centred on 340 nm A similar signal can be obtained from feldspar grain when are exposed to infrared wavelengths around 880 nm. The infrared stimulated luminescence (IRSL) signals is also rapidly depleted by exposure to sunlight, and dating of colluvial deposits from archaeological sites has been reported

  2. Luminescence and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blasse, G; Bleijenberg, K C; Powell, R C

    1980-01-01

    This paper deals with the luminescence of uranate centres in solids. The luminescence properties are influenced by the coordination number of the hexavalent uranium ion and by the crystallographic surroundings of the uranate centre. Transitions playing a role in the luminescence processes within the octahedral UO/sub 6//sup 6 -/ group are discussed using the results from both theoretical and experimental studies on another octahedral uranium complex: UF/sub 6/. The luminescence of the octahedral uranate group in oxidic compounds is discussed. Attention is paid to the vibrational structure, which is observed in the luminescence spectra at low temperatures and to the temperature quenching of the luminescence. The temperature quenching of the uranate luminescence in uranium-doped tungstates with ordered perovskite structure can be described in terms of a three state single configurational coordinate diagram. The complicated luminescence spectra of uranium-activated sodium fluoride (NaF-U) crystals have been unraveled using chemical variation of the crystal compositions and using site selective laser excitation techniques. Four different luminescent uranate centres have been observed in NaF-U. A model for the configurations of the luminescent centres has been deduced using the results from ionic conductivity experiments.

  3. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  4. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  5. Luminescence detection of shellfish

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Spencer, J.Q.; Naylor, J.D.

    1996-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) has been active in the development and application of luminescence techniques in the detection of irradiated foods, in support of UK legislation. Thermoluminescence (TL), photostimulated luminescence (PSL) and photo-transfer luminescence (PTTL) are radiation-specific phenomena which arise due to energy stored by trapped charge carriers following irradiation. The energy released following stimulation is accompanied by detectable luminescence. The TL method involves preparation of pure silicate extracts from the sample and subsequent TL analysis, whereas PSL uses stimulation by electromagnetic radiation (visible, or near visible wavelengths) thus avoiding heating the sample. (author)

  6. Luminescence studies on phosphor screens

    International Nuclear Information System (INIS)

    Panayiotakis, G.; Nomikos, C.; Bakas, A.; Proimos, B.

    1994-01-01

    We report our results on x-ray phosphor screens prepared of some new materials focusing attention on their efficiency under fluoroscopy conditions, on optimization conditions and on comparisons among the various materials. All data are presented in absolute values. A theoretical model is presented, that takes into account the granular structure of the screens, permitting the explanation and prediction of the luminescence properties of the screens. (authors)

  7. Luminescence studies on phosphor screens

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotakis, G; Nomikos, C; Bakas, A; Proimos, B [Medical Physics Department, University of Patras, 265 00 Patras, Greece (Greece)

    1994-12-31

    We report our results on x-ray phosphor screens prepared of some new materials focusing attention on their efficiency under fluoroscopy conditions, on optimization conditions and on comparisons among the various materials. All data are presented in absolute values. A theoretical model is presented, that takes into account the granular structure of the screens, permitting the explanation and prediction of the luminescence properties of the screens. (authors). 12 refs, 3 figs.

  8. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  9. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency

    NARCIS (Netherlands)

    Desmet, L.; Ras, A.J.M.; Boer, de D.K.G.; Debije, M.G.

    2012-01-01

    We report conversion efficiencies of experimental single and dual light guide luminescent solar concentrators. We have built several 5¿¿cm×5¿¿cm and 10¿¿cm×10¿¿cm luminescent solar concentrator (LSC) demonstrators consisting of c-Si photovoltaic cells attached to luminescent light guides of Lumogen

  10. Cerium luminescence in nd0 perovskites

    International Nuclear Information System (INIS)

    Setlur, A.A.; Happek, U.

    2010-01-01

    The luminescence of Ce 3+ in perovskite (ABO 3 ) hosts with nd 0 B-site cations, specifically Ca(Hf,Zr)O 3 and (La,Gd)ScO 3 , is investigated in this report. The energy position of the Ce 3+ excitation and emission bands in these perovskites is compared to those of typical Al 3+ perovskites; we find a Ce 3+ 5d 1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al 3+ perovskites. It is also shown that Ce 3+ luminescence quenching is due to Ce 3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce 3+ luminescence quenching, the energy position of the Ce 3+ 5d 1 excited state with respect to the host conduction band, and the host composition. - Graphical abstract: Ce 3+ decay times versus temperature for perovskites with nd 0 B-site cations.

  11. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  12. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  13. Luminescence study of spodumene

    International Nuclear Information System (INIS)

    Isotani, S.; Fujii, A.T.; Antonini, R.; Pontuschka, W.M.; Rabani, S.R.; Furtado, W.W.

    1990-02-01

    A comparative study is made of the luminescence of five kinds of spodumene from Minas Gerais, Brazil, studied previously by optical absorption spectroscopy. Natural gemstones are used which, in the course of the experiments, were irradiated with X-rays. (L.C.) [pt

  14. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  15. Observation of luminescent spectra in low energy ion-neutral collisions. Progress report, June 1, 1976--May 31, 1978

    International Nuclear Information System (INIS)

    Leventhal, J.J.

    1978-01-01

    The experiments reported provide detailed information on the fundamental nature of energy transfer processes in ion-molecule or atom-molecule collisions. By combining ion beam techniques with emission spectroscopy, data are obtained which directly lead to internal energy state distributions of atomic and molecular products of these collisions. Data are in the form of emission spectra from nascent energetically excited species formed in the energy transfer process. Changes in the collision-produced spectra as a function of beam kinetic energy yield information on the extent of energy conversion (kinetic → internal) in the collision process. Some of the specific energy transfer processes studied are applicable to the problem of achieving inverted energy level populations in high pressure gas lasers. Also discussed are experiments designed to test theoretical models which predict product energy partitioning in molecular collisions. Because experimentally determined energy state distributions deviate substantially from the predicted distributions it is concluded that additional theoretical work is needed. A simple model was developed which qualitatively reproduces the important features of the data. This model, which is considerably more general than those previously available is outlined and briefly discussed

  16. Luminescence from potassium feldspars stimulated by infrared and green light

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.

    1993-01-01

    A series of experiments are reported which investigate stimulated luminescence from potassium feldspar. The aim is to provide a basic phenomenological description of the response of the material to stimulation by heat, infrared radiation (875 DELTA 80 nm) and a green light wavelength band from 5 15...... to 560 nm. Two conclusions are drawn: firstly it is suggested that the majority of the trapped charge responsible for the infrared stimulated luminescence signal does not give rise to a thermoluminescence signal, and secondly that a large traction of the two optically stimulated luminescence signals...

  17. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.

  18. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  19. Luminescence dating of Netherland's sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we revity: 1) the development of the methodology, 2) tests of the reliability of luminescence dating on Netherlands' sediments;

  20. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  1. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  2. LUMINESCENCE DETERMINATION OF ETODOLAC

    Directory of Open Access Journals (Sweden)

    A. V. Yegorova

    2015-02-01

    Full Text Available A highly sensitive, simple and rapid method for determination of non-steroidal anti- inflammatory drug – etodolac (Et in washings from surfaces of pharmaceutical equipment have been proposed. The intensity of native luminescence of water-n-propanol solutions of etodolac (λex= 274 nm; λlum= 350 nm was used as the analytical signal. The calibration graph is linear in the concentration range 0.014-2.3 μg/ml, the limit of detection is 0.5 ng/ml.

  3. Luminescence characteristics of dental ceramics for retrospective dosimetry: a preliminary study

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Correcher, V.; Delgado, A.; Goksu, Y.; Huebner, S.

    2002-01-01

    Ceramic materials that are widely employed in dental prosthetics and repairs exhibit luminescent properties. Because of their use in the body, these materials are potentially of interest in situations where retrospective dosimetry for individuals is required but where monitoring was not planned. The luminescent properties of dental ceramics obtained in Germany, Spain and the UK were examined. Linear dose-response characteristics were obtained in the range <100 mGy to 10 Gy using thermoluminescence (TL), optically stimulated luminescence and infrared-stimulated luminescence measurement techniques. Measurements of time-resolved luminescence were also performed to examine the nature of the luminescence recombination under visible (470 nm) and IR (855 nm) stimulation. The results obtained by TL and optically stimulated techniques suggest that there may be deeper traps than previously observed in certain types of dental ceramic. Such traps may be less susceptible to optical and athermal fading than was reported in earlier studies. (author)

  4. Thermo-luminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Reither, M; Schorn, B; Schneider, E

    1981-01-01

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber. The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field.

  5. Persistent luminescence nanothermometers

    Science.gov (United States)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  6. Spectral luminescence and geochemistry of coral aragonite: Effects of whole-core treatment

    NARCIS (Netherlands)

    Nagtegaal, R.; Grove, C.A.; Kasper, S.; Zinke, J.; Brummer, G.J.A.

    2012-01-01

    Luminescent and geochemical properties of coral skeletons are increasingly used for time-series analysis to resolve past and ongoing changes in environmental and climatic conditions. Corals also contain non-skeletal matter which not only quenches luminescence but is also reported to compromise

  7. Reflection measurements for luminescent powders

    Science.gov (United States)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  8. Luminescence enhancement in irradiated polyethylene

    International Nuclear Information System (INIS)

    Charlesby, A.; Owen, G.P.

    1976-01-01

    Results are presented for the luminescence decay in polyethylene following irradiation at liquid nitrogen temperature and its enhancement on application of an electric field. It is found that both the luminescence enhancement and its subsequent decay may be described by a model involving electron tunnelling from a monoenergetic trap distribution to the parent positive ion. The possible nature of the trap is briefly discussed. (author)

  9. On the luminescence of perovskite type rare earth gallates

    International Nuclear Information System (INIS)

    Jianmei, Y.; Qingyuan, W.; Shuzhen, L.; Lianren, S.; Mingyu, C.

    1985-01-01

    It has been reported that perovskite type lanthanum gallates may be a good host material for laser and luminescence, but in the rare earth gallates studied, the numbers of perovskite type are less than that of the garnet type and there is less report on their spectroscopic properties in the literature. In this paper synthesis and spectroscopic properties of these compounds are studied

  10. Luminescence process, refractory stabilities, and new novel electronic states: scanning chemical reactions and novel products for laser induced isotope separation. Progress report, December 1, 1975--July 15, 1976

    International Nuclear Information System (INIS)

    Gole, J.L.

    1976-08-01

    The formulation, development, and use of versatile oven systems for high temperature metal vaporization at temperatures in excess of 2000 0 C are discussed. Refinements of an apparatus appropriate for the production and study of small metal aggregates M/sub n/(2 less than or equal to n less than or equal to 6) are discussed at length. Improvements in the argon ion and nitrogen pumped dye laser systems, and necessary additions for effective interfacing of these dye lasers to the aggregates apparatus are described. Internal calibration standards are discussed. Progress on the production of carbon vapor and the reaction of this vapor with metal atoms and metal dimers to form metal carbides is outlined. Metal sulfide chemistry is discussed. Several specific studies of the luminescence process are outlined. Included in these studies are completed work on aluminum oxidation. Studies of germanium and silicon oxidation are outlined, and new investigations of inorganic hydride oxidation are presented. The status of our efforts to form new and novel surfaces via aggregate deposition is outlined. Quantum chemical calculations on small metal aggregates are discussed. The first applications of dynamic laser induced fluorescence to the AlO molecule are presented

  11. Goldenphilicity: Luminescent gold compounds

    International Nuclear Information System (INIS)

    Sansores, L.E.

    2002-01-01

    In the solids and molecules different types of bonds are presented depending on the involved atoms, covalent bonds are common among elements of open shell, where more bond orbitals are filled than anti bond orbitals. It is expected that ionic bonds among closed shell atoms which have charges of opposite sign. Bonds type Van der Waals are presented among molecules which have a bipolar moment. It would not be expected bonds among zero charge species, or more generally with the same nominal charge and in any case the attractive forces would be very small. In fact it is expected that two metallic cations to be repelled each other. There recently is evidence that in organic or organometallic compounds could exist attractive interactions between two cations of the d 8 -d 10 -s 2 families. These bonds are weak but stronger than those of Van der Waals. They are compared with the hydrogen bonds. In this work it was reviewed some examples in which the goldenphilicity plays an important role in the luminescence that the gold complexes present. Examples of mono, bi and trinuclear and the structures that these organometallic compounds could take are examined. (Author)

  12. Study of the luminescence properties of a natural amazonite

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V., E-mail: v.correcher@ciemat.es [CIEMAT, Av. Complutense 22, Madrid 28040 (Spain); Garcia-Guinea, J. [Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal 2, Madrid 28006 (Spain)

    2011-09-15

    Most gemstones, being natural materials (silicates, carbonates, phosphates, etc.), exhibit luminescence emission. This property could be potentially employed for personal dosimetry in the case of radiation accident or radiological terrorism where conventional monitoring has not been established. We, herein, report on the thermoluminescence (TL), radioluminescence (RL) and infra-red stimulated luminescence (IRSL) response of a well-characterised natural amazonite (KAlSi{sub 3}O{sub 8}) that, due to its bright blue-green colour when polished, is used as a gemstone. The luminescence emission wavelengths, intensities and thermal kinetics of the amazonite luminescence curves reveal that the ultraviolet band measured on amazonite aliquots is similar to other common K-rich feldspars. On this basis, one can conclude (i) association between twinning and the UV-blue TL emission can be related to structural defects located in the twin-domain boundaries where ionic alkali-self-diffusion, irreversible water losses and irreversible dehydroxylation processes can be involved. (ii) Amazonite exhibits a complex structure with several planar defects (twinning and exsolution interphases which can hold hydroxyl groups, water molecules, etc.) and point defects (impurities, Na, Pb, Mn, etc.) that can act as luminescence centres, and in fact, green and red emissions are respectively associated with the presence of Mn and Fe impurities. Finally, (iv) the thermal stability tests performed on the TL emission of the amazonite confirm a continuum in the trap distribution, i.e. progressive changes in the glow curve shape, intensity and temperature position of the maximum peak.

  13. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  14. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  15. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  16. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates

    International Nuclear Information System (INIS)

    Puntus, L.N.; Zolin, V.F.; Babushkina, T.A.; Kutuza, I.B.

    2004-01-01

    The luminescence and PMR spectra of europium salts of six isomers of 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-pyridinedicarboxylic acids (PDA) had been studied. The distribution of the effective charge in the nearest surroundings of the Eu 3+ ion in these salts was evaluated from Stark splittings of electronic transitions. The values of relative integral intensities of electronic transitions 5 D 0 - 7 F J (J=0-4) in the luminescence spectra were reported. Compounds investigated were divided into three subgroups taking into account the details of the structure of the ligands and details of the luminescence spectra. The ligand coordination manners as well as the strength of interaction between lanthanide ion and ligands were confirmed by data of the PMR and IR spectroscopy

  17. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    Science.gov (United States)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  18. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  19. Doping the dots: doped quantum dots for luminescent solar concentrators

    NARCIS (Netherlands)

    Eilers, J.J.

    2015-01-01

    In this thesis, synthesis methods for luminescent organically capped colloidal ZnSe QDs of different sizes, ranging from 4.0 to 7.5 nm are reported. These QDs are analyzed using TEM, absorption spectroscopy, photoluminescence measurements and temperature dependent photoluminescence decay

  20. The effects of Tb 3+ doping concentration on luminescence ...

    Indian Academy of Sciences (India)

    BaF2 phosphor; crystal structure; luminescence properties; X-ray diffraction; concentration quenching. 1. Introduction ... reported that the particle size, shape, crystallinity, etc., sig- nificantly ... Figure 3 shows the excitation and emission spectra of sam- ple with 4 ... gies obtained earlier.9,10 The ground term of the Tb3+ ion is.

  1. Tuning luminescence intensity of RHO6G dye using silver ...

    Indian Academy of Sciences (India)

    Wintec

    Wang and Kerker (1982) found that due to interaction of metal and dye in core shell particles splitting of extinction bands occurs. En- hancement also has been reported due to such interaction. Quenching of the luminescence of dye molecules ad- sorbed on a smooth Ag surface was observed by Ritchie and Burstein (1981).

  2. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  3. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  4. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  5. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  6. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Down- conversion (DC) luminescent properties of doped NaLaF4 were also .... Figure 1 shows the XRPD patterns of undoped NaLaF4 and .... which can be assigned to the transitions from the 7F6 ground.

  7. A portable luminescence dating instrument

    DEFF Research Database (Denmark)

    Kook, M.H.; Murray, A.S.; Lapp, Torben

    2011-01-01

    We describe a portable luminescence reader suitable for use in remote localities in the field. The instrument weighs about 8kg and is based around a 30mm bialkali photomultiplier detecting signals through a glass filter centered on 340nm. Stimulation is by 470nm blue LEDs (24W in total) operating...

  8. Luminescence and host lattice structure of crystalline micro and nanoparticles co-doped with lanthanide ions

    International Nuclear Information System (INIS)

    Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte

    2012-01-01

    This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)

  9. Study of Polymeric Luminescent Blend (PC/PMMA) Doped with Europium Complex under Gamma-Iradiation

    International Nuclear Information System (INIS)

    Parra, D. F.

    2006-01-01

    Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with europium in organic complex were studied. Polymeric luminescent blends are potential materials for many applications; however, little information has been reported concerning the stability under thermal and radiation conditions. Luminescent films were synthesized from europium thenoyltrifluoroacetonate at different concentrations doped in PC/PMMA blends. Films produced of the luminescent polymer blend were irradiated in a 60 C o source. Their luminescent properties, in the solid state, as well as, the thermal oxidative resistance after gamma irradiation was investigated. These systems were characterized by elemental analysis, thermogravimetry (TGA), differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). Based on TGA data, the thermal stability of PC/PMMA:(tta)3 system is higher than the polymer blend. The DSC results indicated that those new systems are chemically stables. The emission spectra of the Eu 3 +-tta complex doped in the PC/PMMA recorded at 298 and 77 K exhibited the characteristic bands arising from the 5 D 0 →7 F J transitions (J = 0-6). The luminescence intensity decreases with increasing of precursor concentration in the doped polymer obtained by chemical reaction. This result is different from that of samples obtained by physical method in melting doping. The blend was irradiated under ionizing radiation of 60 C o source. After irradiation of the luminescent films the physical properties of luminescence, thermal and oxidative stability were evaluated.(Fapesp and Cnpq financial support)

  10. Luminescence of LiH(D):Ru monocrystals

    International Nuclear Information System (INIS)

    Sabirzyanov, A.A.; Oparin, D.V.; Pilipenko, G.I.; Gavrilov, F.F.

    1993-01-01

    Luminescence of lithium hydride (deuteride) activated by ruthenium is recorded for the first time. The features connected with the structure and oscillations of the basic lattice are detected in luminescence spectrum. The qualitative model of luminescence spectrum is suggested

  11. Luminescence centers in bismuth orthogermanate

    International Nuclear Information System (INIS)

    Bordun, O.M.

    2001-01-01

    The luminescence and photoexcitation spectra of single crystals,ceramics,and thin films of Bi 4 Ce 3 O 1 2 are studied.The decomposition of the luminescence spectra into elementary components by the Alentsev-Fock method showed that they consist of three bands with maxima at 2.7,2.4,and 2.05 eV.The bands with maxima at 2.7 and 2.4 eV are assigned to the emission of self-trapped Frenkel excitons describing the excited state of a (BiO 6 ) 9- molecular ion. Emission bands with maxima at 2.0 5 eV are assigned to recombination on traps caused by structural defects

  12. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  13. Apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Sante Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  14. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  15. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  16. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  17. Electrostatic probes in luminescent discharges

    International Nuclear Information System (INIS)

    Cunha Raposo, C. da.

    1980-01-01

    A system to produce luminescent type plasma by continuos discharge and ionization by high frequency was constructed. The ionization was done in the air and in the argon under pressures from 3 to 10 mmHg. The parameters of a non magnetized collisional plasma and the parameters of a magnetized plasma such as, density, eletron temperature and potential, using a Langmuir probe with plane geometry, were determined. (M.C.K.) [pt

  18. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  19. Methods of producing luminescent images

    International Nuclear Information System (INIS)

    Broadhead, P.; Newman, G.A.

    1977-01-01

    A method is described for producing a luminescent image in a layer of a binding material in which is dispersed a thermoluminescent material. The layer is heated uniformly to a temperature of 80 to 300 0 C and is exposed to luminescence inducing radiation whilst so heated. The preferred exposing radiation is X-rays and preferably the thermoluminescent material is insensitive to electromagnetic radiation of wavelength longer than 300 mm. Information concerning preparation of the luminescent material is given in BP 1,347,672; this material has the advantage that at elevated temperatures it shows increased sensitivity compared with room temperature. At temperatures in the range 80 to 150 0 C the thermoluminescent material exhibits 'afterglow', allowing the image to persist for several seconds after the X-radiation has ceased, thus allowing the image to be retained for visual inspection in this temperature range. At higher temperatures, however, there is negligible 'afterglow'. The thermoluminescent layers so produced are particularly useful as fluoroscopic screens. The preferred method of heating the thermoluminescent material is described in BP 1,354,149. An example is given of the application of the method. (U.K.)

  20. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect.

    Science.gov (United States)

    Wang, Meng; Guo, Lin; Cao, Dapeng

    2018-03-06

    Rapid and selective sensing of sulfur dioxide (SO 2 ) gas has attracted more and more attention because SO 2 not only causes environmental pollution but also severely affects the health of human beings. Here we report an amino-functionalized luminescent metal-organic framework (MOF) material (i.e., MOF-5-NH 2 ) and further investigate its sensing property for SO 2 gas and its derivatives as a luminescent probe. The results indicate that the MOF-5-NH 2 probe can selectively and sensitively sense SO 2 derivatives (i.e., SO 3 2- ) in real time by a luminescence turn-on effect with a lower detection limit of 0.168 ppm and a response time of less than 15 s. Importantly, the luminescence turn-on phenomenon can be observed by the naked eye. We also assembled MOF-5-NH 2 into a test paper to achieve the aim of portable detection, and the lower-limit concentration of the test paper for sensing SO 2 in real time was found to be about 0.05 ppm. Moreover, MOF-5-NH 2 also shows good anti-interference ability, strong luminescence stability, and reusability, which means that this material is an excellent sensing candidate. The amino functionalization may also provide a modification strategy to design luminescent sensors for other atmospheric pollutants.

  1. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  2. Discuss on luminescence dose data analysis technology

    International Nuclear Information System (INIS)

    Ma Xinhua; Xiao Wuyun; Ai Xianyun; Shi Zhilan; Liu Ying

    2009-01-01

    This article describes the development of luminescence dose data measurement and processing technology. General design planning of luminescence dose data measurement and processing technology is put forward with the diverse demands. The emphasis is focused on dose data processing method, luminescence curve analysis method, using of network, mechanics of communication among computers, data base management system of individual dose in this paper. The main methods and skills used in this technology as well as their advantages are also discussed. And it offers general design references for development luminescence dose data processing software. (authors)

  3. Luminescence from Ce in sol-gel SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Seed Ahmed, H.A.A.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Koao, L.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Nagpure, I.M.; Gusowski, M.A. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa)

    2012-05-15

    The sol-gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce{sup 4+} ions capture electrons to form excited Ce{sup 3+} ions from which the luminescence originates.

  4. Luminescence properties of lustre decorated majolica

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibilia, E.; Padeletti, G.; Fermo, P.

    Luminescence measurements have been performed on several Italian Renaissance ceramic shards produced in central Italy, as well as on some others from Hispano-Moresque and Fatimid periods. The aim of this study was the characterisation of the raw materials used to manufacture lustre decorated majolica. At first, the thermoluminescence (TL) dating of all ceramic bodies was performed, because the shards lacked sure chronological attribution, having been provided by private collectors, or found during emergency restoration works or archaeological surveys. To characterise the defects and the recombination centers of the different components of the ceramics (ceramic body, glaze, glaze, and lustre), radioluminescence (RL) measurements have been performed on samples representative of each historical period. The dating results are reported, as well as the preliminary RL results.

  5. Thermal dependence of luminescence lifetimes and radioluminescence in quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, V., E-mail: vpagonis@mcdaniel.edu [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Chithambo, M.L. [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Chen, R. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Chruścińska, A. [Institute of Physics, Nicholas Copernicus University, 87-100 Toruń (Poland); Fasoli, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Li, S.H. [Department of Earth Sciences, The University of Hong Kong (Hong Kong); Martini, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Ramseyer, K. [Institut für Geologie, Baltzerstrasse 1-3, 3012 Bern (Switzerland)

    2014-01-15

    During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers L{sub H} and L{sub L} in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers L{sub H} and L{sub L}, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was

  6. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  7. Experimental and modelling study of pulsed optically stimulated luminescence in quartz, marble and beta irradiated salt

    International Nuclear Information System (INIS)

    Pagonis, V; Mian, S M; Barnold, C; Chithambo, M L; Christensen, E

    2009-01-01

    Optical stimulation luminescence (OSL) signals can be obtained using continuous-wave optical stimulation (CW-OSL), the linear modulation optical stimulation method (LM-OSL) and the time-resolved optical stimulation (TR-OSL) method. During TR-OSL measurements, the stimulation and emission of luminescence are experimentally separated in time by using short light pulses. This paper presents new TR-OSL data for annealed high purity synthetic quartz, for marble and for commercially available iodized salt. A new type of behaviour for TR-OSL signals for quartz and iodized salt is presented, in which the OSL signal exhibits a nonmonotonic behaviour during optical stimulation; this type of behaviour has not been reported previously in the literature for quartz. Furthermore, a luminescence component with very long luminescence lifetime is reported for some quartz aliquots, which may be due to the presence of a delayed-OSL (DOSL) mechanism in quartz. A new kinetic model for TR-OSL in quartz is presented, which is based on a main electron trap and on several luminescence centres. The model is used to quantitatively fit several sets of experimental data of pulsed optically stimulated luminescence from quartz.

  8. Luminescent converter of neodymium laser radiation

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Golab, S.

    1992-01-01

    The new luminescent converter of neodymium laser radiation has been worked out. Activated inorganic compounds of ytterbium and erbium ions has been used as luminescent agent. The multi-component inorganic glass containing tellurium oxide as well as boron, sodium, magnesium and zinc oxides has been applied as a converter matrix

  9. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  10. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  11. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far ...

  12. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  13. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  14. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  15. Luminescence detection of irradiated foods

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.

    1990-01-01

    The need for forensic tests to identify irradiated foods has been widely recognised at a time of growing international trade in such products and impending changes in UK and EEC legislation to control the process. This paper outlines the requirements for and of such tests, and discusses recent developments in luminescence approaches aimed at meeting the needs of public analysts, retailers and consumers. Detecting whether or not food has been irradiated, and if so to what dose, is one of the challenges which food irradiation poses to the scientist. (author)

  16. Rupture luminescence from natural fibers

    Science.gov (United States)

    Li, W.; Haneman, D.

    1999-12-01

    Fibers of cotton and wool, and samples of paper, have been ruptured in tension in vacuum and in air, and give detectable luminescence in the visible range. All have a common emission peak at around 2.0 eV, which is ascribed to the deexcitation of states excited by the rupture of organic chain molecule bonds. Rubber bands give stronger emission in air, but no emission in vacuum, suggesting the material breaks only at weak interchain bonds. Mohair, cat, and horse hair also give emission in air. The phenomena reveal effects that would occur widely in nature.

  17. Luminescence response of synthetic opal under femtosecond laser pumping

    International Nuclear Information System (INIS)

    Vasnetsov, M.V.; Bazhenov, V.Yu.; Dmitruk, I.N.; Kudryavtseva, A.D.; Tcherniega, N.V.

    2015-01-01

    Synthetic opal is an artificial photonic metamaterial composed from spherical globules of amorphous silica (SiO 2 ) about 300 nm in diameter. We report, for the first time to our knowledge, the origin of a narrow luminescence spectral peak (4 nm HWHM) and optical second and third harmonic generation in synthetic opal samples under femtosecond laser excitation (800 nm) at liquid-nitrogen temperature. Stimulated-emission effects are discussed related to the possibility of nanocavity lasing at the condition of the first Mie resonance in a dielectric sphere. - Highlights: • Second harmonic generation in a synthetic opal (amorphous material composed from spherical SiO 2 globules) was observed. • Narrow luminescence peak which we assign to a Mie resonance in a globule was detected at liquid-nitrogen temperature

  18. Identifying irradiated flour by photo-stimulated luminescence technique

    International Nuclear Information System (INIS)

    Ros Anita Ahmad Ramli; Muhammad Samudi Yasir; Zainon Othman; Wan Saffiey Wan Abdullah

    2013-01-01

    Full-text: The photo-stimulated luminescence technique is recommended by European Committee for standardization for the detection food irradiation (EN 13751:2009). This study shows on luminescence technique to identify gamma irradiated five types of flour (corn flour, tapioca flour, wheat flour, glutinos rice flour and rice flour) at three difference dose levels in the range 0.2 - 1 kGy. The signal level is compare with two thresholds (700 and 5000). The majority of irradiated samples produce a strong signal above the upper threshold (5000 counts/ 60 s). All the control samples gave negative screening result while the signals below the lower threshold (700 counts/ 60s) suggest that the sample has not been irradiated. A few samples show the signal levels between the two thresholds (intermediate signals) suggest that further investigation. Reported procedure was also tested over 60 days, confirming the applicability and feasibility of proposed methods. (author)

  19. The effect of thermal oxidation on the luminescence properties of nanostructured silicon.

    Science.gov (United States)

    Liu, Lijia; Sham, Tsun-Kong

    2012-08-06

    Herein is reported a detailed study of the luminescence properties of nanostructured Si using X-ray excited optical luminescence (XEOL) in combination with X-ray absorption near-edge structures (XANES). P-type Si nanowires synthesized via electroless chemical etching from Si wafers of different doping levels and porous Si synthesized using electrochemical method are examined under X-ray excitation across the Si K-, L(3,2) -, and O K-edges. It is found that while as-prepared Si nanostructures are weak light emitters, intense visible luminescence is observed from thermally oxidized Si nanowires and porous Si. The luminescence mechanism of Si upon oxidation is investigated by oxidizing nanostructured Si at different temperatures. Interestingly, the two luminescence bands observed show different response with the variation of absorption coefficient upon Si and O core-electron excitation in elemental silicon and silicon oxide. A correlation between luminescence properties and electronic structures is thus established. The implications of the finding are discussed in terms of the behavior of the oxygen deficient center (OCD) and non-bridging oxygen hole center (NBOHC). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA

    OpenAIRE

    Che, CM; Chen, T; To, WP; Zou, T; FUNG, SK; Lok, CN; YANG, C; Cao, B

    2016-01-01

    The selective targeting of mismatched DNA overexpressed in cancer cells is an appealing strategy in designing cancer diagnosis and therapy protocols. Few luminescent probes that specifically detect intracellular mismatched DNA have been reported. Here we used Pt(II) complexes with luminescence sensitive to subtle changes in the local environment and report several Pt(II) complexes that selectively bind to and identify DNA mismatches. We evaluated the complexes' DNA-binding characteristics by ...

  1. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  2. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  3. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  4. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    Kry, S.

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  5. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  6. Luminescence dynamics in type-II GaAs/AlAs superlattices near the type-I to type-II crossover

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Kalt, H.; Hvam, Jørn Märcher

    1996-01-01

    We report on a study of the time-resolved luminescence of type-II GaAs/AlAs superlattices near the type-I to type-II crossover. In spite of the slight type-II band alignment, the luminescence is dominated by the type-I transition. This is due to the inhomogeneous broadening of the type-I transiti...

  7. Sol-gel synthesis and luminescence studies of MgO: Ln3+ (Ln3+= Eu3+ and Tb3+) nanophosphors

    International Nuclear Information System (INIS)

    Rastogi, Chandresh Kumar; Jitendra Kumar; Sivakumar, Sri

    2012-01-01

    Lanthanide-doped nanostructures have been extensively studied in recent years because of their excellent luminescent properties. These materials find potential applications in display devices, fluorescent lamps and lasers. Very few reports are available on the luminescence studies of lanthanide-doped magnesium oxide (MgO) nanocrystals

  8. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  9. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  10. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  11. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  12. Synthesis, crystal structure, theoretical study and luminescence ...

    Indian Academy of Sciences (India)

    and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China. cChina-Australia Joint ... School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China e-mail: ..... The title complex is luminescent.

  13. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  14. Luminescence basic concepts, applications and instrumentation

    CERN Document Server

    Virk, Hardev Singh

    2014-01-01

    The word luminescence was first used by a German physicist, Eilhardt Wiedemann, in 1888. He also classified luminescence into six kinds according to the method of excitation. No better basis of classification is available today. He recognized photoluminescence, thermoluminescence, electroluminescence, crystalloluminescence, triboluminescence, and chemiluminescence. The designations are obvious, characterized by the prefix. This Volume consists of 9 Chapters, including 8 Review Papers and one Case Study. The first two papers are based on OLEDs. Organic light emitting diodes (OLEDs) have been th

  15. Review of present trends in luminescence research

    International Nuclear Information System (INIS)

    Williams, F.; Delaware Univ., Newark

    1981-01-01

    The difficulties of a comprehensive review of the broad and diverse branches of molecular and solid-state luminescence research are noted. This review is thus limited to selective topics. Some general concepts and trends are then introduced, including: luminescence excitation as a collective excitation of a many-body problem, encompassing in some cases the source and probe in its formulation; continuing trends towards extremal conditions of experiments and towards inhomogeneous and structured materials, from man-made superlattices to biological materials; and increased attention to applications of luminescence research to lamps, displays, solar devices and biological research. Representative recent and new specific research areas include: site selection spectroscopy and 'hole burning'; picosecond delayed coherent anti-Stokes Raman scattering; computer simulation of dynamical processes in luminescence; electron-hole expansion from the Fermi pressure of e-h plasmas; and hot electron phenomena and hot luminescence. Finally some pending problems in luminescence research, such as reconciling the configuration coordinate model and the electronic band theory and clarifying multi-phonon non-radiative processes, are discussed. (orig.)

  16. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  17. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  18. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  19. Luminescence studies of rare earth doped dosimeters

    International Nuclear Information System (INIS)

    Karali, T.

    1999-10-01

    The main objective of this thesis has been to address the applications and fundamentals of thermoluminescence (TL) and to contribute to existing knowledge about TL mechanisms in materials which are applied as radiation dosimeters. This issue has been explored for a long time but the mechanisms lack completeness and certainty. TL, Radioluminescence (RL) and Radio-thermoluminescence (RLTL) measurements have been conducted on a high sensitivity TL spectrometer both at low (30-290 K) and high (25-400 deg. C) temperatures, and different heat treatments (furnace and laser) were conducted in order to study the possible impurity clustering which changes the TL spectra and efficiency of the dosimeters. Studies have been based on three different host structure, namely sulphate, borates and zircon. The spectra of calcium sulphate samples doped with Tm 3+ and Dy 3+ at different concentration were examined using TL, RL and RLTL. Similar procedures were applied to the borate samples. Modifications of the material by thermal treatments convert the state of dispersion of the rare earth ions between isolated, pair or defect clusters, which alter the dosimeter efficiency. In some cases, modified geometries are detectable by movement of the line emissions such as for quenched samples which are attributable to new microcrystal line phases. The study of co-doped samples showed unequivocal evidence of a glow peak displacement of the two dopants within a single sample. This result supports the new view that RE 3+ ions could form part of a complex defect acting as both charge trap and recombination centres. Pulsed laser heating with a UV laser changed the glow curve shape and lead to strong signals. The detailed mechanisms for this process are discussed. The RL and TL spectra of synthetic zircon crystals doped with different RE 3+ ions (Pr, Sm, Eu, Gd, Ho, Dy, Er, and Yb) and phosphorus are reported. Even though there is some intrinsic emission from the host lattice the major signals are

  20. Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2015-01-01

    The influence of annealing, irradiation dose, preheating and measurement temperature on luminescence lifetimes has been studied in quartz annealed at 1000 °C. The measurements were supplemented by studies on quartz annealed at 900 and 800 °C. Lifetimes increase with dose as well as with temperature and duration of annealing between 800 and 1000 °C. Preheating produces the same effect. The changes are accounted for in terms of hole-transfer from the non-radiative luminescence centre to and between radiative centres. The influence of measurement temperature on lifetimes depends on whether the stimulation is carried out from ambient to 200 °C or otherwise. This result is unlike that in quartz annealed at or below 500 °C where lifetimes are independent of the direction of heating. In particular, lifetimes decrease monotonically when measurements are made from 20 to 200 °C but not when recorded from 200 to 20 °C. The latter produces a pattern resembling that in quartz annealed up to 500 °C. The results are concluded as evidence of thermal effects on separate luminescence centres. In support of this, different values of the activation energy for thermal quenching were found for each supposed luminescence centre. The change of the corresponding luminescence intensity with temperature is also qualitatively consistent with this notion. - Highlights: • Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature is reported. • Lifetimes increase with dose, annealing between 800 and 1000 °C, and preheating. • Lifetimes under stimulation temperature are affected by direction of heating. • Changes are accounted for in terms of hole-transfer luminescence centres.

  1. Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosticher, Céline [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France); Viana, Bruno, E-mail: bruno.viana@chimie-paristech.fr [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Maldiney, Thomas; Richard, Cyrille [Unité de Technologies Chimiques et Biologiques pour la Santé, CNRS, UMR 8258, Paris Cedex F-75270 (France); Inserm U1022, Paris Cedex F-75270 (France); Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex F-75270 (France); Chanéac, Corinne, E-mail: corinne.chaneac@upmc.fr [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France)

    2016-02-15

    Biocompatible nanoparticles possessing persistent luminescence properties offer attractive possibilities for in vivo imaging applications as it allows an excitation of the sensors outside the animal before injection and a long-lasting emission of light. Here we report the development of highly biocompatible calcium phosphate nanoparticles doped with europium, Mn{sup 2+} and Ln{sup 3+} (Ln{sup 3+}=Dy{sup 3+}, Pr{sup 3+}) ions synthesized by hydrothermal route and tailored to present red-near infrared persistent luminescence after UV excitation. Nanosize biphasic HAp/β-TCP compounds with sphere and rod-shaped were obtained. Two emission bands in the red-near infrared range were observed and attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transitions of Mn{sup 2+} ions in HAp/β-TCP. An annealing treatment in reductive atmosphere post-synthesis was essential to reveal persistent luminescence properties. Indeed, such thermal treatment allows reducing Eu{sup 3+} ions in Eu{sup 2+} ions and generating required defaults as oxygen vacancies in the crystal necessary for red emission in accordance with persistent luminescence mechanism. These nanoparticles have been tested for the first time for in vivo imaging on small animal as proof of concept of prospective highly biocompatible nanoprobes. - Highlights: • Biocompatible HAp/b-TCP nanoparticles with persistent luminescence are investigated. • Reducing step induced persistent luminescence. • Nanoparticles have been tested for the first time for in vivo imaging. • Persistent luminescence is observed after 10 min in vivo.

  2. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  3. Luminescence imaging of water during carbon-ion irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-01-01

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  4. MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence.

    Science.gov (United States)

    Chatterjee, Jaidip; Miyamoto, Carol M; Zouzoulas, Athina; Lang, B Franz; Skouris, Nicolas; Meighen, Edward A

    2002-10-01

    The induction of luminescence in Vibrio harveyi at the later stages of growth is controlled by a quorum-sensing mechanism in addition to nutritional signals. However, the mechanism of transmission of these signals directly to the lux promoters is unknown and only one regulatory protein, LuxR, has been shown to bind directly to lux promoter DNA. In this report, we have cloned and sequenced two genes, crp and metR, coding for the nutritional regulators, CRP (cAMP receptor protein) and MetR (a LysR homologue), involved in catabolite repression and methionine biosynthesis respectively. The metR gene was cloned based on a general strategy to detect lux DNA-binding proteins expressed from a genomic library, whereas the crp gene was cloned based on its complementation of an Escherichia coli crp mutant. Both CRP and MetR were shown to bind to lux promoter DNA, with CRP being dependent on the presence of cAMP. Expression studies indicated that the two regulators had opposite effects on luminescence: CRP was an activator and MetR a repressor. Disruption of crp decreased luminescence by about 1,000-fold showing that CRP is a major activator of luminescence the same as LuxR, whereas disruption of MetR resulted in activation of luminescence over 10-fold, confirming its function as a repressor. Comparison of the levels of the autoinducers involved in quorum sensing excreted by V. harveyi, and the crp and metR mutants, showed that autoinducer production was not significantly different, thus indicating that the nutritional signals do not affect luminescence by changing the levels of the signals required for quorum sensing. Indeed, the large effects of these nutritional sensors show that luminescence is controlled by multiple signals related to the environment and the cell density which must be integrated at the molecular level to control expression at the lux promoters.

  5. Grassy Silica Nanoribbons and Strong Blue Luminescence

    Science.gov (United States)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-09-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  6. Luminescence characterization of a sodium rich feldspar

    International Nuclear Information System (INIS)

    Correcher, V.; Sanchez M, L.; Garcia G, J.; Rivera, T.

    2006-01-01

    This paper reports on the radioluminescence (RL) and thermoluminescence (TL) properties of a sodium rich feldspar ((Na,K)[AlSi 3 O 8 ]) with a mean molecular composition of orthoclase (Or) and albite (Ab) of Or 1 Ab 99 . Despite the complexity of the luminescence signals of the sample, it is possible to determine six different emission bands at about 300, 380, 420, 460, 550 and 680 nm. The 300 nm emission can be associated to structural defects related to the recombination process in which the Na + ion diffusion-limited is involved. The UV-blue emission band at (i) 380 nm is characteristic of mineral phases containing SiO 4 tetrahedral and could be related to intrinsic defects in the lattice, (ii) the 420 nm band could be associated to the presence of Cu (II) ions placed next to the hole traps or the recombination on a centre formed from a hole-oxygen atom adjacent to two Al atoms (Al-O-Al) and (iii) the 460 nm waveband could be due to the presence of Ti 4+ . The green and red emissions are respectively associated to the presence of Mn 2+ and Fe 3+ ions. The ratio between the relative intensities, peaked at 290 (the more intense waveband) and 550 nm is about 10:1 in both TL and RL; this fact indicates that the efficiency of recombination centres does no changes regardless on the type of the process. (Author)

  7. Magnetic nanosensor particles in luminescence upconversion capability.

    Science.gov (United States)

    Wilhelm, Stefan; Hirsch, Thomas; Scheucher, Elisabeth; Mayr, Torsten; Wolfbeis, Otto S

    2011-09-05

    Nanoparticles (NPs) exhibit interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be observed in their bulk counterparts. The synthesis of NPs (i.e., crystalline particles ranging in size from 1 to 100 nm) has been intensely studied in the past decades. Magnetic nanoparticles (MNPs) form a particularly attractive class of NPs and have found numerous applications such as in magnetic resonance imaging to visualize cancer, cardiovascular, neurological and other diseases. Other uses include drug targeting, tissue imaging, magnetic immobilization, hyperthermia, and magnetic resonance imaging. MNPs, due to their magnetic properties, can be easily separated from (often complex) matrices and manipulated by applying external magnetic field. Near-infrared to visible upconversion luminescent nanoparticles (UCLNPs) form another type of unusual nanoparticles. They are capable of emitting visible light upon NIR light excitation. Lanthanide-doped (Yb, Er) hexagonal NaYF₄ UCLNPs are the most efficient upconversion phosphors known up to now. The use of UCLNPs for in vitro imaging of cancer cells and in vivo imaging in tissues has been demonstrated. UCLNPs show great potential as a new class of luminophores for biological, biomedical, and sensor applications. We are reporting here on our first results on the combination of MNP and UCLNP technology within an ongoing project supported by the DFG and the FWF (Austria).

  8. Luminescence studies of molecular materials

    International Nuclear Information System (INIS)

    Miller, P.F.

    2000-01-01

    Molecular materials have been widely studied for their potential uses in novel semiconductor devices. They occupy the intellectually interesting area between molecular and bulk descriptions of matter, and as such often have unique and useful characteristics. The design and engineering of these structures is inter-disciplinary in its nature, embracing the fields of physics, electrical engineering and both synthetic and physical chemistry. In this thesis luminescence studies of molecular materials will be presented that probe the nature of the excited states in two promising semiconductor systems. Luminescence techniques provide a powerful and sensitive tool in the investigation of kinetic pathways of radiative and non-radiative emission from these samples. This is particularly appropriate here, as the materials being studied are of potential use in electroluminescent devices. The suitability of photoluminescence techniques comes from both the electroluminescence and photoluminescence sharing the same emitting state. The first class of material studied here is an organic semiconducting polymer, cyano-substituted polyphenylenevinylene (CN-PPV). Conjugated polymers combine semiconducting electronic properties with favourable processing properties and offer the possibility of tuning their optical and electronic properties chemically. The cyanosubstitution increases the electron affinity of the polymer backbone, facilitating electron injection in light-emitting diodes. The polymers are soluble in solvents such as toluene and chloroform due the presence of alkoxy sidegroups. CdSe semiconductor nanocrystals are the other class of material characterised in this work. Semiconductor nanocrystals exhibit interesting size-tunable optical properties due to the confinement of the electronic wave functions. Characterisation of samples produced by different synthetic routes has been carried out to demonstrate the advantages of a novel synthetic method in terms of physical and

  9. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    Science.gov (United States)

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  10. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  11. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao, E-mail: haibaomu@xjtu.edu.cn, E-mail: gjzhang@xjtu.edu.cn; Zhang, Guan-Jun, E-mail: haibaomu@xjtu.edu.cn, E-mail: gjzhang@xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Li, Feng; Wang, Meng [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2016-06-15

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  12. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  13. Luminescence, virulence and quorum sensing signal production by pathogenic Vibrio campbellii and Vibrio harveyi isolates.

    Science.gov (United States)

    Defoirdt, T; Verstraete, W; Bossier, P

    2008-05-01

    To study the relationship between luminescence, autoinducer production and virulence of pathogenic vibrios. Luminescence, quorum sensing signal production and virulence towards brine shrimp nauplii of 13 Vibrio campbellii and Vibrio harveyi strains were studied. Although only two of the tested strains were brightly luminescent, all of them were shown to produce the three different types of quorum sensing signals known to be produced by Vibrio harveyi. Cell-free culture fluids of all strains significantly induced bioluminescence in the cholerae autoinducer 1, autoinducer 2 and harveyi autoinducer 1 reporter strains JAF375, JMH597 and JMH612, respectively. There was no relation between luminescence and signal production and virulence towards brine shrimp. There is a large difference between different strains of Vibrio campbellii and Vibrio harveyi with respect to bioluminescence. However, this is not reflected in signal production and virulence towards gnotobiotic brine shrimp. Moreover, there seems to be no relation between quorum sensing signal production and virulence towards brine shrimp. The results presented here indicate that strains that are most brightly luminescent are not necessarily the most virulent ones and that the lower virulence of some of the strains is not due to a lack of autoinducer production.

  14. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  15. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  17. Luminescence dating of the Zeketai loess section in the Ili Basin, northwestern China: Methodological considerations

    Science.gov (United States)

    Qin, Jintang; Zhou, Liping

    2018-04-01

    Loess deposits in Xinjiang, northwestern China are ideal archives for past environmental changes in the Westerlies-dominated central Asia. Among previous luminescence dating studies of loess in Xinjiang, few have attempted to systematically investigate the methodological aspects. In this study, we report results of a multiple-procedure luminescence dating of the Zeketai loess section in the Ili Basin, central Xinjiang. Optically stimulated luminescence (OSL) and post-infrared infrared stimulated luminescence (pIRIR) signals were used for quartz and polymineral grains of different sizes. The pIRIR ages obtained with two protocols agree well with each other and constrain the loess deposition between 50 ka and 88 ka. The OSL ages of fine-grained quartz are in stratigraphic order and range from 37 ka to 61 ka, but are ∼30% younger than the pIRIR295 ages of both fine and medium grained polyminerals. Although the causes of the discrepancy between the ages derived from different luminescence dating protocols are still to be understood, we stress that the quartz OSL ages of loess in this region are likely to be underestimated, especially for samples older than 40 ka. The polymineral or potassium feldspar pIRIR signal is recommended for dating loess in the Ili Basin, at least as an internal check.

  18. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  19. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption.

    Science.gov (United States)

    Zhang, Congyang; Wang, Bo; Li, Wanbin; Huang, Shouqiang; Kong, Long; Li, Zhichun; Li, Liang

    2017-10-31

    Traditional smart fluorescent materials, which have been attracting increasing interest for security protection, are usually visible under either ambient or UV light, making them adverse to the potential application of confidential information protection. Herein, we report an approach to realize confidential information protection and storage based on the conversion of lead-based metal-organic frameworks (MOFs) to luminescent perovskite nanocrystals (NCs). Owing to the invisible and controlled printable characteristics of lead-based MOFs, confidential information can be recorded and encrypted by MOF patterns, which cannot be read through common decryption methods. Through our conversion strategy, highly luminescent perovskite NCs can be formed quickly and simply by using a halide salt trigger that reacts with the MOF, thus promoting effective information decryption. Finally, through polar solvents impregnation and halide salt conversion, the luminescence of the perovskite NCs can be quenched and recovered, leading to reversible on/off switching of the luminescence signal for multiple information encryption and decryption processes.

  20. Luminescent polymethyl methacrylate modified by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Guilherme F. [Faculdade de Tecnologia de Sao Paulo (FATEC-ZL), Sao Paulo, SP (Brazil); Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C{sub 2}F{sub 4}) in closed reactor for 48 hours. A second part was reacted with C{sub 2}F{sub 4} after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  1. Luminescent polymethyl methacrylate modified by gamma radiation

    International Nuclear Information System (INIS)

    Morais, Guilherme F.; Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F.

    2011-01-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C 2 F 4 ) in closed reactor for 48 hours. A second part was reacted with C 2 F 4 after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  2. Luminescent materials: probing the excited state of emission centers by spectroscopic methods

    International Nuclear Information System (INIS)

    Mihóková, E; Nikl, M

    2015-01-01

    We review recent methods employed to study the excited state of rare-earth centers in various luminescent and scintillating materials. The focus is on processes that help determine localization of the excited state within the material band gap, namely photoionization and thermally stimulated ionization. Then the tunneling process between the luminescence center and the trapping state is addressed. We describe the experimental implementation of methods recently developed to study these processes. We report theoretical models helping the data interpretation. We also present application to currently investigated materials. (topical review)

  3. Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale.

    Science.gov (United States)

    Aigouy, L; Cazé, A; Gredin, P; Mortier, M; Carminati, R

    2014-08-15

    We report on an experimental technique to quantify the relative importance of electric and magnetic dipole luminescence from a single nanosource in structured environments. By attaching a Eu^{3+}-doped nanocrystal to a near-field scanning optical microscope tip, we map the branching ratios associated with two electric dipole and one magnetic dipole transitions in three dimensions on a gold stripe. The relative weights of the electric and magnetic radiative local density of states can be recovered quantitatively, based on a multilevel model. This paves the way towards the full electric and magnetic characterization of nanostructures for the control of single emitter luminescence.

  4. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  5. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Rusu, Mircea; Stere, Oana; Haiduc, Maria; Caramete, Laurentiu

    2004-01-01

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  6. Cleavage Luminescence from Cleaved Indium Phosphide

    International Nuclear Information System (INIS)

    Dong-Guang, Li

    2008-01-01

    We outline the experiments performed to gain further information about the structure and properties of cleaved InP surfaces. The experiments involved detecting the luminescence produced after cleaving thin InP plates within a high vacuum, by a process of converting the luminescence to an electrical signal which could be amplified and measured accurately. The experimental results show that the detected luminescence durations from cleaved InP are usually only about 10μs. It is believed that this time represents the time of travel of the crack with the actual recombination time being much shorter. Strong signals could also be picked up from cleaved InP in air

  7. [Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria].

    Science.gov (United States)

    Boiandin, A N; Kalacheva, G S; Rodicheva, E K; Volova, T G

    2008-01-01

    The ability of marine luminescent bacteria to synthesize polyesters of hydroxycarboxylic acids (polyhydroxyalkanoates, PHA) as reserve macromolecules was studied. Twenty strains from the collection of the luminescent bacteria CCIBSO (WDSM839) of the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, assigned to different taxa (Photobacterium leiognathi, Ph. phosphoreum, Vibrio harveyi, and V. fischeri) were analyzed. The most productive strains were identified, and the conditions ensuring high polymer yields in batch culture (40-70% of the cell dry mass weight) were determined. The capacity of synthesizing two- and three-component polymers containing hydroxybutyric acid as the main monomer and hydroxyvaleric and hydroxyhexanoic acids was revealed in Ph. leiognathi and V. harveyi strains. The results allow luminescent microorganisms to be regarded as new producers of multicomponent polyhydroxyalkanoates.

  8. Process for obtaining luminescent glass layers

    International Nuclear Information System (INIS)

    Heindi, R.; Robert, A.

    1984-01-01

    Process for obtaining luminescent glass layers, application to the production of devices provided with said layers and to the construction of photoscintillators. The process comprises projecting onto a support, by cathodic sputtering, the material of at least one target, each target including silica and at least one chemical compound able to give luminescent centers, such as a cerium oxide, so as to form at least one luminescent glass layer of the said support. The layer or layers formed preferably undergo a heat treatment such as annealing in order to increase the luminous efficiency thereof. It is in this way possible to form a scintillating glass layer on the previously frosted entrance window of a photomultiplier in order to obtain an integrated photoscintillator

  9. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    , which display very different behaviour. The first involves the internal transitions of common transition metal ions. The second is typical of centres not displaying excited states within the band gap that are likely to arise from direct recombination between the conduction band and the ground state......The technique of optically stimulated luminescence has important uses in the dose evaluation of irradiated feldspars. The luminescence process involves the eviction of electrons from donor traps, charge transfer through the conduction band, and recombination at acceptor sites; each...

  10. Mitochondria Targeting with Luminescent Rhenium(I) Complexes.

    Science.gov (United States)

    Skiba, Joanna; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof; Ferraro, Giarita; Marasco, Daniela; Merlino, Antonello; Shafikov, Marsel Z; Czerwieniec, Rafał; Kowalski, Konrad

    2017-05-15

    Two new neutral fac -[Re(CO)₃(phen)L] compounds ( 1 , 2 ), with phen = 1,10-phenanthroline and L = O₂C(CH₂)₅CH₃ or O₂C(CH₂)₄C≡CH, were synthetized in one-pot procedures from fac -[Re(CO)₃(phen)Cl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, ¹H- and 13 C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria. To investigate the mechanism of mitochondrial staining, a new non-emissive compound, fac -[Re(CO)₃(phen)L], with L = O₂C(CH₂)₃((C₅H₅)Fe(C₅H₄), i.e., containing a ferrocenyl moiety, was synthetized and characterized ( 3 ). 3 shows the same mitochondrial accumulation pattern as 1 and 2 . Emission of 3 can only be possible when ferrocene-containing ligand dissociates from the metal center to produce a species containing the luminescent fac -[Re(CO)₃(phen)]⁺ core. The release of ligands from the Re center was verified in vitro through the conjugation with model proteins. These findings suggest that the mitochondria accumulation of compounds 1 - 3 is due to the formation of luminescent fac -[Re(CO)₃(phen)]⁺ products, which react with cellular matrix molecules giving secondary products and are uptaken into the negatively charged mitochondrial membranes. Thus, reported compounds feature a rare dissociation-driven mechanism of action with great potential for biological applications.

  11. Mitochondria Targeting with Luminescent Rhenium(I Complexes

    Directory of Open Access Journals (Sweden)

    Joanna Skiba

    2017-05-01

    Full Text Available Two new neutral fac-[Re(CO3(phenL] compounds (1,2, with phen = 1,10-phenanthroline and L = O2C(CH25CH3 or O2C(CH24C≡CH, were synthetized in one-pot procedures from fac-[Re(CO3(phenCl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, 1H- and 13C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria. To investigate the mechanism of mitochondrial staining, a new non-emissive compound, fac-[Re(CO3(phenL], with L = O2C(CH23((C5H5Fe(C5H4, i.e., containing a ferrocenyl moiety, was synthetized and characterized (3. 3 shows the same mitochondrial accumulation pattern as 1 and 2. Emission of 3 can only be possible when ferrocene-containing ligand dissociates from the metal center to produce a species containing the luminescent fac­[Re(CO3(phen]+ core. The release of ligands from the Re center was verified in vitro through the conjugation with model proteins. These findings suggest that the mitochondria accumulation of compounds 1–3 is due to the formation of luminescent fac-[Re(CO3(phen]+ products, which react with cellular matrix molecules giving secondary products and are uptaken into the negatively charged mitochondrial membranes. Thus, reported compounds feature a rare dissociation-driven mechanism of action with great potential for biological applications.

  12. Synthesis, characterisation and functionalisation of luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Labéguerie-Egéa, Jessica; McEvoy, Helen M.; McDonagh, Colette

    2011-01-01

    The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2′-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy) 2 (phen-5-NH 2 )(PF 6 )), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.

  13. Luminescence spectra of lead tungstate, spodumene and topaz crystals

    International Nuclear Information System (INIS)

    Ramachandran, Vasuki

    2002-01-01

    A detailed set of thermoluminescence, cathodoluminescence and radioluminescence (TL, CLTL and RLTL) data of lead tungstate, Spodumene and Topaz have been reported for the first time over a wide temperature range from 25 to 500K. Lead tungstate (PbWO 4 ), a widely known scintillating material, gives TL glow peaks which are related to complex defect centres. Doping of this crystal with trivalent rare earth ions (La 3+ , Y 3+ ) reduces the slow component of the emission thereby making it more suitable for its applications. The pentavalent dopants on the other hand, enhance the green emission and quench the blue emission at temperatures 100K. The origin and the irradiation temperature definitely have an effect on the spectrum. No strong relationship could be derived from the dose dependence data. Two less studied minerals, Spodumene and Topaz have also been investigated with the luminescence techniques. The glow peak near 250degC is thought to have originated from Mn 2+ centres. As there are no ESR data available, the assignment of defect centres is rather difficult. Cr + acts as the quencher in green spodumene. Topaz had the same treatment as the other two sets of samples and the defect centre characterisation looks complex as each coloured sample gave different patterns of glow peaks. Cathodoluminescence whilst heating (CLTL) of all these samples showed some unusual features in the form of a luminescence intensity step which is believed to have originated from the presence of ice. Water, in nanoparticle size quantities, is present as a contaminant in the lattice and undergoes a phase transition at 170K from hexagonal to cubic structures. This phase change influences the luminescence efficiency of the host material and is reflected in the spectrum as a discontinuity in intensity. (author)

  14. Luminescent properties in films of ZrO2: Dy

    International Nuclear Information System (INIS)

    Martinez, R. C.; Guzman, J.; Rivera, T.; Ceron, P.; Montes, E.; Guzman, D.; Garcia H, M.; Falcony, C.; Azorin, J.

    2014-08-01

    In this work the luminescent characterization of zirconium oxide (ZrO 2 ) films impure with dysprosium (Dy +3 ) is reported, obtained by means of the ultrasonics spray pyrolysis technique. The films were deposited on glass substrates (Corning), in a temperatures interval of 400 to 550 grades C, using as precursor elements Zirconium oxide chloride octahydrate (ZrOCl 2 ·8H 2 O) and Dysprosium tri-chloride (DyCl 3 ), dissolved in deionized water, varying the concentration of the contaminated from the 1 to 20 atomic % with relationship to the zirconium in solution. The luminescent characterization was analyzed by means of photoluminescence and thermoluminescence. The photoluminescence results showed a spectrum with three maxima which correspond to the electronic transitions 4 F 9/2 - 6 H 15/2 , 4 F 9/2 - 6 H 13/2 and 4 F 9/2 - 6 H 11/2 characteristics of the Dy 3+ ion. The thermoluminescence (Tl) response when being exposed to a monochrome UV beam in 240 nm showed a wide curve that exhibits a maxim centered in 200 grades C. The Tl response of ZrO 2 :Dy in function of the dose was shown lineal in the interval of 24 mJ/cm 2 to 432 mJ/cm 2 . A study of the repeatability and dissipation of the ZrO 2 :Dy Tl response is included. Considering the shown previous results we can conclude that the ZrO 2 in film form obtained by spray pyrolysis has luminescent properties in 240 nm. (Author)

  15. Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei, E-mail: nanoyang@qq.com; Jiang, Zhongcheng; Dong, Jiazhang; Zhang, Liuqian [Hunan University, College of Materials Science and Engineering (China); Pan, Anlian, E-mail: anlian.pan@gmail.com; Zhuang, Xiujuan [Hunan University, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province (China)

    2015-10-15

    We report a scheme for investigating two-step stimulated structure change of luminescence centers. Amorphous silica nanospheres with uniform diameter of 9–15 nm have been synthesized by Stöber method. Strong hydroxyl-related infrared-absorption band is observed in infrared spectrum. The surface hydroxyl groups exert great influence on the luminescent behavior of silica. They provide stable and intermediate energy states to accommodate excitation electrons. The existence of these surface states reduces the energy barrier of photochemical reactions, creating conditions for two-step excitation process. By carefully examining excitation and emission process, the nearest excitation band is absent in both optical absorption spectrum and excitation spectrum. This later generated state confirms the generation of new luminescence centers as well as the existence of photochemical reactions. Stimulated by different energies, two-step excitation process impels different photochemical reactions, prompting generation of different lattice defects on surface area of silica. Thereby, tunable luminescence is achieved. After thermal treatment, strong gap excitation band appears with the disappearance of strong surface excitation band. Strong blue luminescence also disappears. The research is significance to precise introducing structural defects and controlling position of luminescence peaks.

  16. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    Science.gov (United States)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  17. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  18. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  19. Multistate Luminescent Solar Concentrator "Smart" Windows

    NARCIS (Netherlands)

    Sol, Jeroen A.H.P.; Timmermans, Gilles H.; Breugel, van Abraham J.; Schenning, Albertus P.H.J.; Debije, Michael G.

    2018-01-01

    A supertwist liquid crystalline luminescent solar concentrator (LSC) "smart" window is fabricated which can be switched electrically between three states: one designed for increased light absorption and electrical generation (the "dark" state), one for transparency (the "light" state), and one for

  20. Luminescent Solar Concentrators with Fibre Geometry

    NARCIS (Netherlands)

    Edelenbosch, O.Y.; Fisher, M.; Patrignani, L.; Sark, W.G.J.H.M. van; Chatten, A.J.

    2013-01-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear

  1. Co-precipitation synthesis and upconversion luminescence ...

    Indian Academy of Sciences (India)

    Introduction. Researches of rare-earth-doped upconversion (UC) materials as fluorescent labels, temperature-sensing probes, solid-state lasers and new generation television screens have recently started to be considered1,2 due to their enhanced luminescent properties induced by the small size. UC process is the gener-.

  2. Holographic patterning of luminescent photopolymer nanocomposites

    International Nuclear Information System (INIS)

    Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim

    2008-01-01

    Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated

  3. Probing luminescence centers in Na rich feldspar

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar; Lapp, Torben; Kook, Myung Ho

    2016-01-01

    our understanding of the luminescence mechanisms and recombination sites, in a sample of Na rich plagioclase feldspar (oligoclase). Both the UV and violet–blue emissions show resonant excitations arising from a distribution of energy levels. We propose, contrary to the general understanding...

  4. Studies of positron induced luminescence from polymers

    International Nuclear Information System (INIS)

    Xu, J.; Hulett, L.D. Jr.; Lewis, T.A.; Tolk, N.H.

    1994-01-01

    Light emission from polymers (anthracene dissolved in polystryrene) induced by low-energy positrons and electrons has been studied. Results indicate a clear difference between optical emissions under positron and electron bombardment. The positron-induced luminescence spectrum is believed to be generated by both collisional and annihilation processes

  5. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  6. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  7. Co-precipitation synthesis and upconversion luminescence ...

    Indian Academy of Sciences (India)

    ... light: strong green (539 nm), weak red (670 nm) and near-infrared (760 nm). The upconversion luminescence is based on two-photon absorption by the energy transfer from the donor (Yb3+) to the acceptor (Ho3+). All the results indicate that ZrO2:Yb3+-Ho3+ phosphors could be a promising biological labelling material.

  8. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  9. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  10. Paper-based biodetection using luminescent nanoparticles.

    Science.gov (United States)

    Ju, Qiang; Noor, M Omair; Krull, Ulrich J

    2016-05-10

    Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer

  11. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  12. Excitonic effects in the luminescence of quantum wells

    International Nuclear Information System (INIS)

    Deveaud, B.; Kappei, L.; Berney, J.; Morier-Genoud, F.; Portella-Oberli, M.T.; Szczytko, J.; Piermarocchi, C.

    2005-01-01

    We report on the origin of the excitonic luminescence in quantum wells. This study is carried out by time-resolved photoluminescence experiments performed on a very high-quality InGaAs quantum well sample in which the photoluminescence contributions at the energy of the exciton and at the band edge can be clearly separated and traced over a broad range of times and densities. This allows us to compare the two conflicting theoretical approaches to the question of the origin of the excitonic luminescence in quantum wells: the model of the exciton population and the model of the Coulomb correlated plasma. We measure the exciton formation time and we show the fast exciton formation and its dependence with carrier density. We are also able to give the boundaries of the Mott transition in our system, and to show the absence of observable renormalization of the gap below the onset of this transition. We detail the characteristics of the trion formation and evidence the possible formation of both positive and negative trions in the absence of any resident free carrier populations

  13. Cr3+ and Cr4+ luminescence in glass ceramic silica

    International Nuclear Information System (INIS)

    Martines, Marco A.U.; Davolos, Marian R.; Jafelicci, Miguel Junior; Souza, Dione F. de; Nunes, Luiz A.O.

    2008-01-01

    This paper reports on the effect of glass ceramic silica matrix on [CrO 4 ] 4- and Cr 2 O 3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 deg. C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7μm) and other in the visible region (0.6-0.7μm) assigned to Cr 4+ and to Cr 3+ , respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO 4 ] 4- where Cr 4+ substitutes for Si 4+ and also hexacoordinated Cr 3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful tool for detecting the two chromium optical centers in the glass ceramic silica

  14. UV luminescence of dendrimer-encapsulated gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyeong Seop; Kim, Jun Myung; Sohn, So Hyeong; Han, Noh Soo; Park, Seung Min [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of)

    2016-10-15

    Size-dependent luminescence color is one of the interesting properties of metal nanocrystals, whose sizes are in the dimension of the Fermi wavelength of an electron. Despite the short Fermi wavelength of electrons in gold (-0.7 nm), luminescence of gold nanoclusters has been reported to range from the near-infrared to near-ultraviolet, depending on the number of atoms in the nanoclusters. The photoluminescence of G4-OH (Au) obtained by the excitation of 266 nm showed UV emission in addition to the well-known blue emission. The higher intensity and red-shifted emission of the gold nanoclusters was distinguished from the emission of dendrimers. The UV emission at 352 nm matched the emission energy of Au{sub 4} in the spherical jellium model, rather than the planar Au{sub 8}, which supported the emission of Au{sub 4} formed in G4-OH. Despite the change of [HAuCl{sub 4} ]/[G4-OH], the relative population between Au{sub 4} and Au{sub 8} was similar in G4-OH(Au), which indicated that the closed electronic and geometric structures stabilized the magic number of Au{sub 4}.

  15. Cathode and ion-luminescence of Eu:ZnO thin films prepared by reactive magnetron sputtering and plasma decomposition of non-volatile precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Rostra, Jorge [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain); Ferrer, Francisco J. [Centro Nacional de Aceleradores, CSIC, Univ. Sevilla, Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Martín, Inocencio R. [Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, U. La Laguna, C/Astrofísico Francisco Sánchez s/n, E-38206 La Laguna, Santa Cruz de Tenerife (Spain); González-Elipe, Agustín R.; Yubero, Francisco [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain)

    2016-10-15

    This paper reports the luminescent behavior of Eu:ZnO thin films prepared by an one-step procedure that combines reactive magnetron sputtering deposition of ZnO with the plasma activated decomposition of a non-volatile acetylacetonate precursor of Eu sublimated in an effusion cell. Chemical composition and microstructure of the Eu:ZnO thin films have been characterized by several methods and their photo-, cathode- and ion-luminescent properties studied as a function of Eu concentration. The high transparency and well controlled optical properties of the films have demonstrated to be ideal for the development of cathode- and ion- luminescence sensors.

  16. Design of a synthetic luminescent probe from a biomolecule binding domain: selective detection of AU-rich mRNA sequences.

    Science.gov (United States)

    Raibaut, Laurent; Vasseur, William; Shimberg, Geoffrey D; Saint-Pierre, Christine; Ravanat, Jean-Luc; Michel, Sarah L J; Sénèque, Olivier

    2017-02-01

    We report the design of a luminescent sensor based upon the zinc finger (ZF) protein TIS11d, that allows for the selective time-resolved detection of the UUAUUUAUU sequence of the 3'-untranslated region of messenger RNA. This sensor is composed of the tandem ZF RNA binding domain of TIS11d functionalized with a luminescent Tb 3+ complex on one of the ZFs and a sensitizing antenna on the other. This work provides the proof of principle that an RNA binding protein can be re-engineered as an RNA sensor and, more generally, that tunable synthetic luminescent probes for biomolecules can be obtained by modifying biomolecule-binding domains.

  17. Luminescence properties of Yb:Nd:Tm:KY3F10 nanophosphor and thermal treatment effects

    International Nuclear Information System (INIS)

    Gomes, Laércio; Linhares, Horácio Marconi da Silva M.D.; Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego; Ranieri, Izilda Marcia

    2015-01-01

    In this work, we present the spectroscopic properties of KY 3 F 10 (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates 1 G 4 (Tm 3+ ) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd 3+ to Tm 3+ ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the 1 G 4 level luminescence kinetic of Tm 3+ in Yb/Nd/Tm system revealed that the luminescence efficiency ( 1 G 4 ) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up 1 ) and (Nd×Yb×Tm) (Up 2 ) upconversion processes to the 1 G 4 luminescence are 33% (Up 1 ) and 67% for Up 2 . Up 2 process represented by Nd 3+ ( 4 F 3/2 )→Yb 3+ ( 2 F 7/2 ) followed by Yb 3+ ( 2 F 5/2 )→Tm ( 3 H 4 )→Tm 3+ ( 1 G 4 ) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF 4 and KY 3 F 10 bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the 1 G 4 luminescence efficiency strongly increases from 0.38% (T=25 °C) to 12% (T=400 °C). Results shown that the Nd 3+ ions distribution has a concentration

  18. Luminescence of yttrium niobium-tantalate doubly activated by europium and/or terbium under X-ray and electron beam excitation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, I.D., E-mail: arellano@utp.edu.co [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Nazarov, M.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Republic of Moldova (Moldova, Republic of); School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Cortes, J.A. [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Ahmad Fauzi, M.N [School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-09-15

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O{sub 4} activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. The influence of these rare earth ions on the luminescence of yttrium niobium-tantalate phosphors was investigated. The luminescent properties were studied under X-ray and electron beam excitations. Under these excitations, the emission centers of the rare earth activators (Eu{sup 3+},Tb{sup 3+}) were found to contribute efficiently to the overall luminescence. Changing the mol concentration of the incorporated activators resulted in a broad variation of visible photoluminescence. Color cathodoluminescence images showed clearly the dependence of chromaticity on the different activators. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing a broad variation of visible photoluminescence from blue to red. - Highlights: Black-Right-Pointing-Pointer The Y(Ta,Nb)O{sub 4} phosphors were activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. Black-Right-Pointing-Pointer The phosphors were studied under X-ray and electron beam excitations. Black-Right-Pointing-Pointer The emission centers contribute efficiently to the overall luminescence. Black-Right-Pointing-Pointer Changing the concentration of the activators resulted in a broad luminescence.

  19. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  20. Electric field dependence of the total excimer luminescence of xenon excited below the atomic ionization limit

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In the spectral region of interest (i.e., 11.1 eV ≤ h nu ≤ 11.9 eV), the photoionization yield of electrons from excited-state dimers of xenon, increases monotonically to relatively high values (e.g., Y(11.7 eV) = 0.43 electrons/absorbed photon). It is also known however, that the luminescence intensity excited by photons in this region is quite high, even at low pressures. These two observations can be reconciled only by assuming that one of the processes leading to excimer luminescence involves dimer-ion + electron recombination. If this assumption is correct, application of an electric field, with concomitant collection of the free charges generated by the incident photons, should lead to a decrease in luminescence intensity; moreover, this decrease should follow the energy dependence of the photoionization yield function. The present report demonstrates experimentally that this is indeed the case. Such experiments combining luminescence and electric fields were made, until now, only by high-energy excitation. In this case the deconvolution of the various decay channels is hardly possible

  1. Luminescence process, refractory stabilities, and new and novel electronic states: scanning chemical reactions and novel products for laser induced isotope separation. Progress report, March 1, 1975--November 20, 1975

    International Nuclear Information System (INIS)

    Gole, J.L.

    1975-11-01

    The formulation and development of versatile oven systems for high temperature metal vaporation at temperatures greater than 2000 0 C are discussed. The construction of an apparatus appropriate to the production and study of small metal aggregates M/sub n/ (2 less than or equal to n less than or equal to 6) is discussed at length. This includes a consideration of the construction and operation of an argon ion pumped dye laser system. The dye laser system will be used to induce fluorescence from the small metal aggregates, and thereby will lead to the study of their molecular electronic structure. The production of carbon vapor and the reaction of this vapor with metal atoms and metal dimers to form metal carbides is outlined. A thorough study of the luminescence process leading to a new understanding of those chemiluminescent phenomena occurring as a result of the ''single collision'' bimolecular reaction of metal atoms and metal dimers with select oxidants is outlined. Methods for the determination of upper bounds to the heats of sublimation and vaporization of those metals which can be strongly oxidized in a ''single collision'' bimolecular reaction are presented. Extremely simple methods by which one can infer the radiative lifetimes of metastable product chemiluminescing molecules are also discussed. Beginning efforts toward the formulation of new and novel catalytic surfaces via aggregate deposition are outlined. Current studies of the titanium oxide system are presented. These chemiluminescence studies allow the determination of a lower bound to the TiO dissociation energy and a determination of the heat of vaporization of titanium metal

  2. Luminescent amine sensor based on europium(III) chelate.

    Science.gov (United States)

    Petrochenkova, Nataliya V; Mirochnik, Anatolii G; Emelina, Tatyana B; Sergeev, Alexander A; Leonov, Andrei A; Voznesenskii, Sergey S

    2018-07-05

    The effect of methylamine vapor on luminescence of Eu(III) tris-benzoylacetonate (I) immobilized in thin-layer chromatography plates has been investigated. It has been revealed that interaction of I with analyte vapor results in increase of the intensity of Eu(III) luminescence. The mechanism of the effect of methylamine vapors on intensification of the Eu(III) luminescence has been suggested using the data of IR spectroscopy and quantum chemistry calculations. The mechanism of luminescence sensitization consists in bonding of an analyte molecule with a water molecule into the coordination sphere of Eu(III). As a result, the bond of a water molecule with the luminescence centre weakens, rigid structural fragment including europium ion, water and methylamine molecules forms. The presence of such fragment must naturally promote decrease of influence of OH-vibrations on luminescence of the complex I. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Neutron dosimetry using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Miller, S.D.; Eschbach, P.A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron-induced proton recoils for radiation dosimetry is a well-known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years at Pacific Northwest laboratories (PNL) has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one-year period, and the capability of analyzing single grains within a hydrogenous matrix. 4 refs., 10 figs

  4. Luminescence properties of a nanoporous freshwater diatom.

    Science.gov (United States)

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay. Copyright © 2011 John Wiley & Sons, Ltd.

  5. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov

    2012-01-01

    ), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal.Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when......This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non...... radiation field is spatially non-uniform across the sample area. We document the effect of this correction method and further investigate on the effect of lifting the source to achieve a better dose-rate uniformity.Finally we summarise two recently-developed novel facilities to help investigate (i) the time...

  6. The double luminescence of Color Centers

    International Nuclear Information System (INIS)

    Baldacchini, Giuseppe

    2015-01-01

    An experiment on the luminescence of Color Centers (CCs) carried out in 1987 at the ENEA Laboratories in Frascati had a negative result, but subsequent investigations showed that it was not a failure but rather a discovery of a new phenomenon. Since the coming of lasers, CCs in alkali halides have been successfully used as optically active materials, in particular FA Centers. One of these centers, well known for its medium infrared laser emission at 77 K, cooled further to 2 K emitted in the near infrared and without laser effect. Further investigations showed that the double luminescence was a fundamental property unknown until that time. This important discovery was achieved in Frascati because of the existence since 1973 of a solid and extensive expertise in the field of CCs, which continued over time and later on applied to the modern miniaturized photonic devices [it

  7. Anomalous enhancement of nanodiamond luminescence upon heating

    Science.gov (United States)

    Khomich, A. A.; Kudryavtsev, O. S.; Dolenko, T. A.; Shiryaev, A. A.; Fisenko, A. V.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    Characteristic photoluminescence (PL) of nanodiamonds (ND) of different origin (detonation, HPHT, extracted from meteorite) was studied in situ at high temperatures in the range 20-450 °C. Luminescence was excited using 473 nm laser and recorded in the range 500-800 nm. In contrast to decrease of point defect PL in bulk diamond with temperature, we found that the ND luminescence related to ND surface defects increases almost an order of magnitude upon heating to 200-250 °C. The observed effect reveals that water adsorbed on ND surfaces efficiently quenches PL; water desorption on heating leads to dramatic increase of the radiative de-excitation.

  8. Cerenkov luminescence imaging of medical isotopes.

    Science.gov (United States)

    Ruggiero, Alessandro; Holland, Jason P; Lewis, Jason S; Grimm, Jan

    2010-07-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters (18)F, (64)Cu, (89)Zr, and (124)I; beta-emitter (131)I; and alpha-particle emitter (225)Ac for potential use in CLI. The novel radiolabeled monoclonal antibody (89)Zr-desferrioxamine B [DFO]-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-, beta-, and alpha-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of (89)Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear

  9. Uranyl(VI) luminescence spectroscopy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Steudtner, Robin; Franzen, Carola; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Haubitz, Toni [Brandenburg Univ. of Technology, Cottbus-Senftenberg (Germany)

    2016-07-01

    We studied the influence of temperature and ionic strength on the luminescence characteristics (band position, decay time and intensity) of the free uranyl ion (UO{sub 2}{sup 2+}) in acidic aqueous solution. Under the chosen conditions an increasing temperature reduced both intensity and luminescence decay time of the UO{sub 2}{sup 2+} luminescence, but the individual U(VI) emission bands did not change.

  10. Method and apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Santa Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  11. Ab initio calculations of cross luminescence materials

    International Nuclear Information System (INIS)

    Kanchana, V.

    2016-01-01

    Abintio calculations have been performed to study the structural, electronic, and optical properties of ABX 3 (A=alkali, B=alkaline-earth, and X=halide) compounds. The ground state properties are calculated using the pseudopotential method with the inclusion of van der Waals interaction, which we find inevitable in reproducing the experimental structure properties in alkali iodides because of its layered structure. All calculations were performed using the Full-Potential Linearized Augmented Plane Wave method. The band structures are plotted with various functionals and we find the newly developed Tran and Blaha modified Becke-Johnson potential to improve the band gap significantly. The optical properties such as complex dielectric function, refractive index, and absorption spectra are calculated which clearly reveal the optically isotropic nature of these materials though being structurally anisotropic, which is the key requirement for ceramic scintillators. Cross luminescence materials are very interesting because of its fast decay. One of the major criteria for the cross luminescence to happen is the energy difference between valence band and next deeper core valence band being lesser when compared to energy gap of the compound, so that radiative electronic transition may occur between valence band and core valence band. We found this criteria to be satisfied in all the studied compounds leading to cross luminescence except for KSrI 3 , RbSrI 3 . The present study suggest that among the six compounds studied, CsSrI 3 , CsMgCl 3 , CsCaCl 3 , and CsSrCl 3 compounds are cross luminescence materials, which is well explained from the band structure, optical properties calculations. Chlorides are better scintillators that iodides and CsMgCl 3 is found to be promising one among the studied compounds. Apart from these materials we have also discussed electronic structure and optical properties of other scintillator compounds. (author)

  12. Thermally stimulated luminescence of KDP activated crystals

    International Nuclear Information System (INIS)

    Tagaeva, B.S.

    2005-01-01

    The aim of this work is the study of recombination luminescence pure and doped by the ions Tl, Se, Pb and Cu of crystals double potassium phosphates (KDP) at irradiation by X-rays. It is established that in the given crystals mechanisms for under-threshold defect formation are realize. The impurity ions results the basic crystal light sum redistribution in the TL peaks. Explanations for some phenomena are given. (author)

  13. Thermal History Using Microparticle Trap Luminescence

    Science.gov (United States)

    2012-06-01

    the size and shape of bacterial or viral agents and dispersed in a burst vessel . After the test, luminescence from the microparticles is measured to...platinum resistor sputtered on 1 nm adhesion layer of chrome, in turn on a 200nm LPCVD nitride; silicon wet -etching makes this a platform suspended...increased to 500°C until combustion occurred (- 7 min). The remaining powder was collected, crushed in a agate mortar, and annealed (typically at 900

  14. Process for producing a self luminescent material

    Energy Technology Data Exchange (ETDEWEB)

    Abe, E

    1962-01-28

    A self luminescent material is produced by a process comprising applying a hydroxide or fluoride of promethium-147 suspended in a medium of paraffinic acid to the surface of a fluorescent body. Promethium-147 decays with a half-life of 2.6 years and emits beta-rays but not alpha- and gamma-rays so that it is suitable for manufacturing self luminescent materials. A chloride of promethium-147 cannot be employed because its structure is destroyed by acids. Although fluorides and hydroxides of promethium-147 are difficult to mix with the fluorescent body material, they become mixable when paraffinic acids containing from 12 to 20 carbon atoms, (for example, steric acid, palmitic acid and margaric acid) are used as a medium. In embodiments, the self luminescent materials are prepared by either neutralization of a promethium-147 chloride solution having a specific radioactivity of 1.2 c/cc. with an ammonium hydroxide solution to form gelatinous hydroxide, or the reaction of a promethium-147 chloride solution with H/sub 2/SiF/sub 6/ by heating at 80/sup 0/C to form a fluoride of promethium-147. The products have a specific radioactivity of 8 to 12 mc/g. These products are suspended in vehicles of polystyrene and methacrylic resin to produce the self luminescent coating materials. Tests show that the initical brightness is comparatively high, the decreasing rate of brightness is small, no blackening effects by alpha-rays occur and costs are low. The brightness of the coating containing promethium-147 is 82-85 after 5 days, 100-105 after 100 days and 82-92 after 180 days. With respect to the coating containing radium the values are 31-70 after 5 days, 28-49 after 100 days and 19-31 after 180 days.

  15. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  16. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  17. Optically stimulated luminescence (OSL) and some other luminescence images from granite slices exposed with radiations

    International Nuclear Information System (INIS)

    Hashimoto, T.; Notoya, S.; Ojima, T.; Hoteida, M.

    1995-01-01

    Optically stimulated luminescence (OSL) images of some X- and γ-irradiated granite slices were obtained using photon detection through a 570 nm bandpass filter with diode-laser excitation of 910 nm. Alternative photo-induced phosphorescence (PIP) images, which were colour photographed immediately after the sunlight exposure of slice samples, were also found to be helpful in the observation of the luminescence properties and to filter selection for OSL measurements. These OSL and PIP images were compared with some other colour luminescence images, including thermoluminescence images (TLCI) and after-glow images (AGCI). It was obvious that there exists a variety of coloured emissions derived mainly from feldspar constituents and these were found to be dependent on the geological history or metamorphism of the granites. (Author)

  18. Near-Infrared Quantum Cutting Long Persistent Luminescence

    OpenAIRE

    Zou, Zehua; Feng, Lin; Cao, Cheng; Zhang, Jiachi; Wang, Yuhua

    2016-01-01

    By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called ?near-infrared quantum cutting long persistent luminescence (NQPL)?, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Guided by the NQPL concept, we fabricate the first NQPL phosphor Ca2Ga2GeO7:Pr3+,Yb3+. It reveals that both the two-step energy transfer of model (I) and the one-step energy ...

  19. Luminescence of water or ice as a new detection method for magnetic monopoles

    Directory of Open Access Journals (Sweden)

    Pollmann Anna Obertacke

    2017-01-01

    We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.

  20. Luminescence sensitivity changes in quartz as a result of annealing

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Agersnap Larsen, N.; Mejdahl, V.

    1995-01-01

    archaeological samples show very different OSL sensitivities. In this paper we report on studies of the effect of high temperature annealing on the OSL and phototransferred TL (PTTL) signals from sedimentary and synthetic quartz. A dramatic enhancement of both OSL and PTTL sensitivity was found especially...... in the temperature range 500-800 degrees C. Computer simulations of the possible effects are shown to produce data that agree in all essential details with the experimental observations. It is further demonstrated that the enhanced OSL sensitivity as a function of annealing temperature is not a pre-dose effect....... of magnitude less per unit radiation than that for heated material. The reason these temperature-induced sensitivity changes occur in quartz is presently not well understood. This phenomenon is also seen in the related area of luminescence dating in which sedimentary quartz and quartz from heated...

  1. Development of photo stimulated luminescence technique for detecting irradiated food

    International Nuclear Information System (INIS)

    Ros Anita Ahmad Ramli; Ahmad Zainuri Mohd Dzomir; Zainon Othman; Wan Saffiey Wan Abdullah

    2012-01-01

    The exposure of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf-life of food. To ensure free consumer choice, irradiated food will be labeled. The availability of a reliable method to detect irradiated food is important to enforce legal controls on labeling requirements, ensure proper distribution and increase consumer confidence. This paper reports on the preliminary application of photo stimulated luminescence technique (PSL) as a potential method to detect irradiated food and perhaps be used for monitoring irradiated food on sale locally in the near future. Thus this study will be beneficial and relevant for application of food irradiation towards improving food safety and security in Malaysia. (author)

  2. Development of Photostimulated Luminescence Technique for Detecting Irradiated Food

    International Nuclear Information System (INIS)

    Ros Anita Ahmad Ramli; Ahmad Zainuri Mohd Dzomir; Zainon Othman; Wan Saffiey Wan Abdullah; Muhamad Samudi Yasir

    2015-01-01

    The exposure of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf-life of food. To ensure free consumer choice, irradiated food will be labeled. The availability of a reliable method to detect irradiated food is important to enforce legal controls on labeling requirements, ensure proper distribution and increase consumer confidence. This paper reports on the preliminary application of photostimulated luminescence technique (PSL) as a potential method to detect irradiated food and perhaps be used for monitoring irradiated food on sale locally in the near future. Thus this study will be beneficial and relevant for application of food irradiation towards improving food safety and security in Malaysia. (author)

  3. Radioluminescence of organic compounds: specific luminescence of condensed aromatic scintillators

    International Nuclear Information System (INIS)

    Lopes da Silva, J.

    1978-01-01

    The influence of the nature of ionizing particles on the radioluminescence yield of aromatic scintillators is studied. Both prompt and delayed scintillation components are considered. An expression giving the specific luminescence dS/dx as a function of the charge number z and of the incident particle specific energy loss have been derived, following a track model published before, that is consistent with recent conclusions about the nature, evolution and distribution of the primary excitations created by an ionizing particle in the organic scintillator. The good agreement between the theoretical curves derived in this paper and the experimental ones previously reported provided us with a means of evaluating the different parameters included in the proposed expressions. The numerical values of these parameters included in the proposed expressions. The numerical values of these parameters agree with those of other authors and are theoretically discussed and justified [fr

  4. Unclonable Security Codes Designed from Multicolor Luminescent Lanthanide-Doped Y2O3 Nanorods for Anticounterfeiting.

    Science.gov (United States)

    Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar

    2017-04-26

    The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.

  5. Testing optically stimulated luminescence dating on sand-sized quartz of deltaic deposits from the Sperchios delta plain, central Greece

    Directory of Open Access Journals (Sweden)

    Evangelos Tsakalos

    2018-04-01

    Full Text Available This study reports on the first investigation into the potential of luminescence dating to establish a chronological framework for the depositional sequences of the Sperchios delta plain, central Greece. A series of three borehole cores (20 m deep and two shallow cores (4 m deep, from across the delta plain, were extracted, and samples were collected for luminescence dating. The luminescence ages of sand-sized quartz grains were obtained from small aliquots of quartz, using the Single-Aliquot Regenerative-dose (SAR protocol. The equivalent dose determination included a series of tests and the selection of the Minimum Age Model (MAM as the most appropriate statistical model. This made it possible to confirm the applicability of quartz Optically Stimulated Luminescence (OSL dating to establish absolute chronology for deltaic sediments from the Sperchios delta plain.Testing age results of the five cores showed that the deltaic sediments were deposited during the Holocene. A relatively rapid deposition is implied for the top ∼14 m possibly as a result of the deceleration in the rate of the sea-level rise and the transition to terrestrial conditions, while on the deeper parts, the reduced sedimentation rate may indicate a lagoonal or coastal environment. Keywords: Luminescence dating, Holocene, Sedimentation rates, Deltaic deposits, Sperchios delta plain, Central Greece

  6. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    Science.gov (United States)

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  7. Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability.

    Science.gov (United States)

    Maldiney, Thomas; Byk, Gerardo; Wattier, Nicolas; Seguin, Johanne; Khandadash, Raz; Bessodes, Michel; Richard, Cyrille; Scherman, Daniel

    2012-02-14

    We have recently reported the design and use of inorganic nanoparticles with persistent luminescence properties. Such nanoparticles can be excited with a UV lamp for 2min and emit light in the near-infrared area for dozen of minutes without any further excitation. This property is of particular interest for small animal optical imaging, since it avoids the autofluorescence of endogenous fluorophores which is one major problem encountered when using fluorescent probes. We report herein the synthesis of persistent luminescence nanoparticles (PLNPs) and their functionalization with two small targeting molecules: biotin and Rak-2. We provide characterization of each PLNP as well as preliminary evidence of the ability of PLNP-PEG-Biotin to target streptavidin and PLNP-PEG-Rak-2 to bind prostate cancer cells in vitro. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications

    International Nuclear Information System (INIS)

    Jin, D; Connally, R; Piper, J

    2006-01-01

    We report the results of a detailed study of the spectral and temporal properties of visible emission from three different GaN-based ultraviolet (UV) light emitting diodes (UV LEDs). The primary UV emission in the 360-380 nm band decays rapidly (less than 1 μs) following switch-off; however, visible luminescence (470-750 nm) with a decay lifetime of tens of microseconds was observed at approximately 10 -4 of the UV intensity. For applications of UV LEDs in time-resolved fluorescence (TRF) employing lanthanide chelates, the visible luminescence from the LEDs competes with the target Eu 3+ or Tb 3+ fluorescence in both spectral and temporal domains. A UV band-pass filter (Schott UG11 glass) was therefore used to reduce the visible luminescence of the UV LEDs by three orders of magnitude relative to UV output to yield a practical excitation source for TRF

  9. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized

    International Nuclear Information System (INIS)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R.

    2005-01-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  10. Defect-induced luminescence in sol-gel silica samples doped with Co(II) at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Sandoval, S. [Centro de Investigacion y Estudios Avanzados, Queretaro, Apdo. Postal 1-798, Queretaro, Qro. 76001 (Mexico); Estevez, M. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Pacheco, S. [Instituto Mexicano del Petroleo, Av. 100 metros (Mexico); Vargas, S. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Rodriguez, R. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico)], E-mail: rogelior@servidor.unam.mx

    2007-12-20

    The defect-induced luminescence properties of silica samples prepared by the sol-gel method and doped with Co(II) are reported. Silica monoliths doped with different concentrations of Co(II) were laser irradiated (He-Ne 632.8 nm) producing fluorescence. However, this fluorescence is exponentially reduced with the irradiation time, to practically disappear. The rate the fluorescence decays can be well modeled with a double exponential function of the irradiation time, containing two different relaxation times; a baseline is also required to take into account some residual fluorescence. The characteristic times involved in this luminescence quenching process are in the range of seconds. This luminescence suppression can be associated to the local heating produced by the laser irradiation when focused in a small area (2 {mu}m in diameter) on the sample. This heating process reduces physical (grain boundaries, surface states) and chemical (oxygen vacancies produced by the dopant) defects in the sample.

  11. Modelling the IRSN's radio-photo-luminescent dosimeter using the MCPNX Monte Carlo code

    International Nuclear Information System (INIS)

    Hocine, N.; Donadille, L.; Huet, Ch.; Itie, Ch.

    2010-01-01

    The authors report the modelling of the new radio-photo-luminescent (RPL) dosimeter of the IRSN using the MCPNX Monte Carlo code. The Hp(10) and Hp(0, 07) dose equivalents are computed for different irradiation configurations involving photonic beams (gamma and X) defined according to the ISO 4037-1 standard. Results are compared to experimental measurements performed on the RPL dosimeter. The agreement is good and the model is thus validated

  12. Luminescent properties of terbium complex with phenylanthranilic acid

    International Nuclear Information System (INIS)

    Alakaeva, L.A.; Kalazhokova, I.A.; Naurzhanova, F.Kh.

    1990-01-01

    Existence of terbium luminescence reaction in complex with phenanthranilic acid (FAA) is ascertained. The optimal conditions of terbium complexing with FAA are found. The ratio of components in the complex is 1:1. The influence of foreign rare earth in terbium luminescence intensity in complex with FAA is studied

  13. Luminescence properties of some food dye-stuffs

    International Nuclear Information System (INIS)

    Astanov, S.Kh.; Muminova, Z.A.; Urunov, R.G.

    2004-01-01

    The luminescence properties of the natural food dye-stuffs and vitamins in temperature range of 300-5.2 K are studied. On the basis of experimental data on quantum yields of the fluorescence, trans-cis-isomerization and luminescence of the molecular oxygen the main ways of the inactivation of electronic excitations in researching compounds have been defined. (author)

  14. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  15. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  16. Luminescence spectroscopy with synchrotron radiation: History, highlights, future

    International Nuclear Information System (INIS)

    Zimmerer, Georg

    2006-01-01

    Luminescence spectroscopy and the investigation of dynamical processes with synchrotron radiation (SR) started about 35 years ago in nearly all SR laboratories existing at that time. In the present paper, the pioneering experiments are particularly emphasized. The exciting development is illustrated presenting highlights for the whole period from the beginning to the present day. The highlights are taken from fields like exciton self-trapping, inelastic electron-electron scattering, optically stimulated desorption, cross luminescence, or probing of cluster properties with luminescence spectroscopic methods. More technological aspects play a role in present day's experiments, like quantum cutting in rare-earth-doped insulators. Promising two-photon excitation and light amplification experiments with SR will be included, as well as the first results obtained in a luminescence experiment with selective Vaccum ultraviolet-free electron laser excitation. Finally, a few ideas concerning the future development of luminescence spectroscopy with SR will be sketched

  17. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  18. Circularly polarized luminescence of syndiotactic polystyrene

    Science.gov (United States)

    Rizzo, Paola; Abbate, Sergio; Longhi, Giovanna; Guerra, Gaetano

    2017-11-01

    Syndiotactic polystyrene (s-PS) films, when crystallized from the amorphous state by temporary sorption of non-racemic guest molecules (like carvone) not only exhibit unusually high optical activity, both in the UV-Visible and Infrared ranges, but also present circularly polarized luminescence (CPL) with high dissymmetry ratios (g = ΔI/I values in the range 0.02-0.03). Experimental evidences provide support, rather than to the usual molecular circular dichroism, to a supramolecular chiral optical response being extrinsic to the site of photon absorption and emission, possibly associated with a helical morphology of s-PS crystallites.

  19. Luminescent properties of praseodymium in some fluorides

    International Nuclear Information System (INIS)

    Potapov, A.S.; Rodnyj, P.A.; Mikhrin, S.B.; Magunov, I.R.

    2005-01-01

    Influence of diverse factors on efficiency of the Pr 3+ cascade emission in BaF 2 : Pr and SrAlF 5 : Pr. The effect of the environment of the luminescence center on the mutual position of the lowest 5d and the 4f level 1 S 0 of Pr 3+ ion is considered. PrF 3 clustering in BaF 2 is observed at a high praseodymium concentration. The promising potential of magnesium as a charge compensator for praseodymium in SrAlF 5 is demonstrated [ru

  20. Luminescent solar concentrators with fiber geometry.

    Science.gov (United States)

    Edelenbosch, Oreane Y; Fisher, Martyn; Patrignani, Luca; van Sark, Wilfried G J H M; Chatten, Amanda J

    2013-05-06

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5 g spectrum up to 1100 nm at normal incidence by ~35 x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.

  1. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  2. Optically stimulated luminescence dating of rock surfaces

    DEFF Research Database (Denmark)

    Sohbati, Reza

    There are many examples of rock surfaces, rock art and stone structures whose ages are of great importance to the understanding of various phenomena in geology, climatology and archaeology. Optically stimulated luminescence (OSL) dating is a well-established chronological tool that has successfully...... to include the effects of the environmental dose rate. By fitting the model to the dose-depth variation from a single clast, four events (two light exposures of different durations each followed by a burial period) in the history of a single cobble are identified and quantified. However, the use of model...

  3. Luminescence at the end of the tunnelling - Investigating charge transfer mechanisms and luminescence dating methods for feldspar minerals

    NARCIS (Netherlands)

    Kars, R.H.

    2014-01-01

    This thesis comprises analyses of mineral physics with an application in geology and archeology. The thesis contributes to the development of feldspar luminescence dating methods in order to extend the applicable age range of feldspar luminescence dating in the Quaternary (last 2.6 Ma). The research

  4. Thermally stimulated luminescence and persistent luminescence of β-irradiated YAG:Pr"3"+ nanophosphors produced by combustion synthesis

    International Nuclear Information System (INIS)

    Santacruz-Gomez, K.; Meléndrez, R.; Gil-Tolano, M.I.; Jimenez, J.A.; Makale, M.T.; Barboza-Flores, M.; Castaneda, B.; Soto-Puebla, D.; Pedroza-Montero, M.; McKittrick, J.; Hirata, G.A.

    2016-01-01

    In this work, the thermally stimulated luminescence (TSL) and persistent luminescence (PLUM) properties of praseodymium doped yttrium aluminum garnet (YAG:Pr"3"+) exposed to β-irradiation are reported. X-ray diffraction (XRD) confirms a single phase of YAG obtained by the combustion method. Transmission electron microscopy (TEM) shows that powder particles appear to be irregular crystals with an average size of 67 nm. TSL glow-curve deconvolution of YAG:Pr"3"+ after β-irradiation consist in six peaks centered at 394, 450, 467, 543, 637 and 705 K. The TSL fading and PLUM signals were found to be associated with at least with two different kinds of traps, corresponding to the peaks located at 394, 450 and 467 K. YAG:Pr"3"+ nanophosphors analyzed in this work showed interesting features about the dosimetric sensitivity as well as the reproducibility for both TSL/PLUM techniques, with good linearity dose response. These results indicate that nanocrystalline YAG:Pr3"+ is a good candidate for dosimetric applications in the range of 80 mGy-20 Gy. - Highlights: • β-irradiated YAG:Pr"3"+ TSL consist in 394, 450, 467, 543, 637 and 705 K peaks. • YAG:Pr"3"+ is a good candidate for dosimetry in the range of 80 mGy-20 Gy. • PLUM can be potentially used for in vivo, in situ and quasi in real time dosimetry.

  5. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    Science.gov (United States)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  6. Luminescence optically stimulated: theory and applications

    International Nuclear Information System (INIS)

    Rivera M, T.; Azorin N, J.

    2002-01-01

    The thermally stimulated luminescence (Tl) has occupied an important place in the Solid state physics (FES) by the flexibility of the phenomena, mainly for its applications in the fields of Radiation Physics (FR) and Medical Physics (MF). The reason of this phenomena lies in the fact of the electrons release by the action of heat. Under that same reason, it can be used the action of another stimulant agent for releasing the trapped electrons in the metastable states (EM), this agent is the light which has the same effect that the heat, giving as result the production of light photons at using light in the visible spectra, of different wavelength that the excitation light. This phenomena is called Luminescence optically stimulated (LOE). The LOE has a great impact in the Solid State Physics (FES), dating and now in the use of the phenomena as a dosimetric method, alternate to the Tl, for its use in the ionizing and non-ionizing radiations fields. (Author)

  7. Nervous control of photophores in luminescent fishes.

    Science.gov (United States)

    Zaccone, Giacomo; Abelli, Luigi; Salpietro, Lorenza; Zaccone, Daniele; Macrì, Battesimo; Marino, Fabio

    2011-07-01

    Functional studies of the autonomic innervation in the photophores of luminescent fishes are scarce. The majority of studies have involved either the stimulation of isolated photophores or the modulatory effects of adrenaline-induced light emission. The fish skin is a highly complex organ that performs a wide variety of physiological processes and receives extensive nervous innervations. The latter includes autonomic nerve fibers of spinal sympathetic origin having a secretomotor function. More recent evidence indicates that neuropeptide-containing nerve fibers, such as those that express tachykinin and its NK1 receptor, neuropeptide Y, or nitric oxide, may also play an important role in the nervous control of photophores. There is no anatomical evidence that shows that nNOS positive (nitrergic) neurons form a population distinct from the secretomotor neurons with perikarya in the sympathetic ganglia. The distribution and function of the nitrergic nerves in the luminous cells, however, is less clear. It is likely that the chemical properties of the sympathetic postganglionic neurons in the ganglia of luminescent fishes are target-specific, such as observed in mammals. Copyright © 2010 Elsevier GmbH. All rights reserved.

  8. A luminescent metal-organic framework for sensing methanol in ethanol solution.

    Science.gov (United States)

    Jin, Zhao; He, Hongming; Zhao, Huanyu; Borjigin, Tsolmon; Sun, Fuxing; Zhang, Daming; Zhu, Guangshan

    2013-10-07

    A new luminescent Zn-MOF has been synthesized under hydrothermal condition using a semi-rigid ligand H3pcoip (4-(2-carboxyphenoxy)isophthalic acid) is reported. The luminescence properties of 1 in methanol, ethanol, and water have been investigated. Interestingly, compound 1 has a unique response to methanol compared to ethanol and water. Moreover, 1 displays a turn-on switching property triggered by methanol solvent molecules and a high sensitivity towards methanol concentration as low as 2 × 10(-7) (V(MeOH)/V(total)) in ethanol solution. The results indicate that the Zn-MOF has potential application as a sensor for detecting methanol in ethanol solution with excellent selectivity and high sensitivity.

  9. Near infrared and upconversion luminescence behaviour of Er3+/Yb3+ codoped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Arunkumar, S.; Vijayakumar, R.; Marimuthu, K.

    2014-04-01

    The broadband NIR and upconversion luminescence behavior in a new series of Er3+/Yb3+ codoped TeO2-B2O3-SrO-BaO-Li2O-LiF glasses have been studied exciting at a wavelength of 980 nm using semiconductor laser. A broadband emission is observed from 1450 to 1650 nm with a full width at half maximum (FWHM) around 165 nm in 0.5wt% Yb3+ ion content E0.5YLTB glass. The radiative parameters such as transition probability (A), stimulated emission cross-section (σE), experimental and calculated branching ratios (βR), optical gain width (σp×FWHM) and radiative lifetime (τcal) have been calculated for the 4I13/2→4I15/2 NIR emission. Upconversion luminescence spectra of the prepared glasses have been studied and the ESA & ET processes have also been discussed and reported.

  10. A deepwater fish with 'lightsabers'--dorsal spine-associated luminescence in a counterilluminating lanternshark.

    Science.gov (United States)

    Claes, Julien M; Dean, Mason N; Nilsson, Dan-Eric; Hart, Nathan S; Mallefet, Jérôme

    2013-01-01

    We report the discovery of light organs (photophores) adjacent to the dorsal defensive spines of a small deep-sea lanternshark (Etmopterus spinax). Using a visual modeling based on in vivo luminescence recordings we show that this unusual light display would be detectable by the shark's potential predators from several meters away. We also demonstrate that the luminescence from the spine-associated photophores (SAPs) can be seen through the mineralized spines, which are partially translucent. These results suggest that the SAPs function, either by mimicking the spines' shape or by shining through them, as a unique visual deterrent for predators. This conspicuous dorsal warning display is a surprising complement to the ventral luminous camouflage (counterillumination) of the shark.

  11. Analyte-triggered luminescence of Eu{sup 3+} ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, Rocío, E-mail: raguilar@ifuap.buap.mx [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Zelocualtecatl-Montiel, Iván [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Gálvez-Vázquez, María de Jesús [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico); Silva-González, Rutilo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico)

    2017-04-15

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu{sup 3+} ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu{sup 3+} ions inserted in Nafion membranes (Naf/Eu{sup 3+}) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu{sup 3+} luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu{sup 3+} membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu{sup 3+} ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  12. Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications.

    Science.gov (United States)

    Yang, Ri-Long; Zhu, Ying-Jie; Chen, Fei-Fei; Dong, Li-Ying; Xiong, Zhi-Chao

    2017-08-02

    Counterfeiting of valuable certificates, documents, and banknotes is a serious issue worldwide. As a result, the need for developing novel anticounterfeiting materials is greatly increasing. Herein, we report a new kind of ultralong hydroxyapatite nanowire (HAPNW)-based paper with luminescence, fire resistance, and waterproofness properties that may be exploited for anticounterfeiting applications. In this work, lanthanide-ion-doped HAPNWs (HAPNW:Ln 3+ ) with lengths over 100 μm have been synthesized and used as a raw material to fabricating a free-standing luminescent, fire-resistant, water-proof paper through a simple vacuum filtration process. It is interesting to find that the luminescence intensity, structure, and morphology of HAPNW:Ln 3+ highly depend on the experimental conditions. The as-prepared HAPNW:Ln 3+ paper has a unique combination of properties, such as high flexibility, good processability, writing and printing abilities, luminescence, tunable emission color, waterproofness, and fire resistance. In addition, a well-designed pattern can be embedded in the paper that is invisible under ambient light but viewable as a luminescent color under ultraviolet light. Moreover, the HAPNW:Ln 3+ paper can be well-preserved without any damage after being burned by fire or soaked in water. The unique combination of luminescence, fire resistance, and waterproofness properties and the nanowire structure of the as-prepared HAPNW:Ln 3+ paper may be exploited toward developing a new kind of multimode anticounterfeiting technology for various high-level security antiforgery applications, such as in making forgery-proof documents, certificates, labels, and tags and in packaging.

  13. Principal and secondary luminescence lifetime components in annealed natural quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Ogundare, F.O.; Feathers, J.

    2008-01-01

    Time-resolved luminescence spectra from quartz can be separated into components with distinct principal and secondary lifetimes depending on certain combinations of annealing and measurement temperature. The influence of annealing on properties of the lifetimes related to irradiation dose and temperature of measurement has been investigated in sedimentary quartz annealed at various temperatures up to 900 deg. C. Time-resolved luminescence for use in the analysis was pulse stimulated from samples at 470 nm between 20 and 200 deg. C. Luminescence lifetimes decrease with measurement temperature due to increasing thermal effect on the associated luminescence with an activation energy of thermal quenching equal to 0.68±0.01eV for the secondary lifetime but only qualitatively so for the principal lifetime component. Concerning the influence of annealing temperature, luminescence lifetimes measured at 20 deg. C are constant at about 33μs for annealing temperatures up to 600 0 C but decrease to about 29μs when the annealing temperature is increased to 900 deg. C. In addition, it was found that lifetime components in samples annealed at 800 deg. C are independent of radiation dose in the range 85-1340 Gy investigated. The dependence of lifetimes on both the annealing temperature and magnitude of radiation dose is described as being due to the increasing importance of a particular recombination centre in the luminescence emission process as a result of dynamic hole transfer between non-radiative and radiative luminescence centres

  14. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  15. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  16. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  17. Oxide/polymer nanocomposites as new luminescent materials

    Science.gov (United States)

    Vollath, D.; Szabó, D. V.; Schlabach, S.

    2004-06-01

    It is demonstrated that nanocomposites, consisting of an electrically insulating oxide core and PMMA coating exhibit strong luminescence. This luminescence is connected to the interface, where PMMA is bond via a carboxylate bonding to the surface. In this case, luminescence is originated at the carbonyl group of the coating polymer. With decreasing particle size, this emission shows a blue shift, following a law inversely the ones found for quantum confinement systems. For semi-conducting oxides, such as ZnO, this interface related emission is found additionally to quantum confinement phenomena.

  18. Splitting of the luminescent excited state of the uranyl ion

    International Nuclear Information System (INIS)

    Flint, C.D.; Sharma, P.; Tanner, P.A.

    1982-01-01

    The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds

  19. NaCl samples for optical luminescence dosimetry

    International Nuclear Information System (INIS)

    Catli, S.

    2005-01-01

    Optically stimulated luminescence (OSL) have been used broadly for luminescence dosimetry and dating. In many cases, it has been pointed out that the decay of the OSL do not generally behave according to a simple exponential function. In this study the Infra-red stimulated luminescence (IRSL) intensity from NaCl samples were experimentally measured. The decay curves for this sample were fitted to some functions and it is in good agreement with the function y = α + b exp(-cx). The IRSL decay curves from NaCl using different β-doses have been obtained and investigated their dose response

  20. Chemisorptive luminescence on γ-irradiated magnesium oxide

    International Nuclear Information System (INIS)

    Breakspere, R.J.; Read, R.L.

    1976-01-01

    The intensity of a chemisorptive luminescence produced on MgO by oxygen at room temperature is increased by prior γ-irradiation of the MgO, under vacuum, before adsorption. This enhancement of the luminescence increases with radiation dose up to 1.9 x 10 6 rad and is attributed to the interaction between the F + sub (s) centres produced by the radiation and oxygen molecules arriving at the surface from the gas phase. In this work, the spectrum of the emitted luminescence could not be measured. (author)

  1. A luminescence imaging system based on a CCD camera

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Markey, B.G.

    1997-01-01

    Stimulated luminescence arising from naturally occurring minerals is likely to be spatially heterogeneous. Standard luminescence detection systems are unable to resolve this variability. Several research groups have attempted to use imaging photon detectors, or image intensifiers linked...... to photographic systems, in order to obtain spatially resolved data. However, the former option is extremely expensive and it is difficult to obtain quantitative data from the latter. This paper describes the use of a CCD camera for imaging both thermoluminescence and optically stimulated luminescence. The system...

  2. Determination of uranium by luminescent method (tablet variant)

    International Nuclear Information System (INIS)

    Sergeev, A.N.; Yufa, B.Ya.

    1985-01-01

    A new tablet variant of luminescent determination of uranium in rocks is developed. The analytical process includes the following operations: sample decomposition, uranium separation from luminescence quencher impurities, preparation of luminescent sample (tablet), photometry of the tablet. The method has two variants developed: the first one is characterized by a more hard decomposition, sample mass being 0.2 g; the second variant has a better detection limit (5x10 -6 %), the sample mass being 0.2-1 g. Procedures of the sample preparation for both variants of analysis are described

  3. Container Verification Using Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Tanner, Jennifer E.; Miller, Steven D.; Conrady, Matthew M.; Simmons, Kevin L.; Tinker, Michael R.

    2008-01-01

    Containment verification is a high priority for safeguards containment and surveillance. Nuclear material containers, safeguards equipment cabinets, camera housings, and detector cable conduit are all vulnerable to tampering. Even with a high security seal on a lid or door, custom-built hinges and interfaces, and special colors and types of finishes, the surfaces of enclosures can be tampered with and any penetrations repaired and covered over. With today's technology, these repairs would not be detected during a simple visual inspection. Several suggested solutions have been to develop complicated networks of wires, fiber-optic cables, lasers or other sensors that line the inside of a container and alarm when the network is disturbed. This results in an active system with real time evidence of tampering but is probably not practical for most safeguards applications. A more practical solution would be to use a passive approach where an additional security feature was added to surfaces which would consist of a special coating or paint applied to the container or enclosure. One type of coating would incorporate optically stimulated luminescent (OSL) material. OSL materials are phosphors that luminesce in proportion to the ionizing radiation dose when stimulated with the appropriate optical wavelengths. The OSL fluoresces at a very specific wavelength when illuminated at another, very specific wavelength. The presence of the pre-irradiated OSL material in the coating is confirmed using a device that interrogates the surface of the enclosure using the appropriate optical wavelength and then reads the resulting luminescence. The presence of the OSL indicates that the integrity of the surface is intact. The coating itself could be transparent which would allow the appearance of the container to remain unchanged or the OSL material could be incorporated into certain paints or epoxies used on various types of containers. The coating could be applied during manufacturing

  4. Detection of food irradiation with luminescence methods

    International Nuclear Information System (INIS)

    Anderle, H.

    1997-06-01

    Food irradiation is applied as method for the preservation of foods, the prevention of food spoilage and the inhibition of food-borne pathogens. Doses exceeding 10 kGy (10 kJ/kg) are not recommended by the WHO. The different legislation requires methods for the detection and the closimetry of irradiated foods. Among the physical methods based on the radiation-induced changes in inorganic, nonhygroscopic crystalline solids are thermoluminescence (TL), photostimulated luminescence (PSL) and lyoluminescence (LL) measurement. The luminescence methods were tested on natural minerals. Pure quartz, feldspars, calcite, aragonite and dolomite of known origin were irradiated, read out and analyzed to determine the influence of luminescence-activators and deactivators. Carbonate minerals show an orange-red TL easily detectable by blue-sensitive photomultiplier tubes. TIL-inactive carbonate samples may be identified by a lyoluminescence method using the reaction of trapped irradiation-generated charge carriers with the solvent during crystal-lattice breakup. The fine-ground mineral is dissolved in an alkaline complexing agent/chemiluminescence sensitizer/chemiluminescence catalyst (EDTA/luminol/hemin) reagent mixture. The TL and PSL of quartz is too weak to contribute a significant part for the corresponding signals in polymineral dust. Alkali and soda feldspar show intense TL and PSL. The temperature maxima in the TL glow curves allow a clear distinction. PSL does not give this additional information, it suffers from bleaching by ambient light and requires light-protection. Grain disinfestated with low irradiation doses (500 Gy) may not identified by both TL and PSL measurement. The natural TL of feldspar particles may be overlap with the irradiation-induced TL of other minerals. As a routine method, irradiated spices are identified with TL measurement. The dust particles have to be enriched by heavy-liquid flotation and centrifugation. The PSL method allows a clear

  5. Mechanical, spectral, and luminescence properties of ZnS:Mn doped PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Fontenot, Ross S. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Allison, Stephen W., E-mail: steve.allison@emergingmeasurements.com [Emerging Measurements, Collierville, TN 38017 (United States); Lynch, Kyle J, E-mail: kjlynch@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Hollerman, William A. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Sabri, Firouzeh, E-mail: fsabri@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States)

    2016-02-15

    Zinc sulfide doped with manganese (ZnS:Mn) is one of the brightest triboluminescent materials known and has been studied for a variety of applications. The powder form of this material restricts its safe handling and utilization, which limits the range of applications that can take advantage of its unique properties. In this study, the tribo- and photo-luminescent properties as well as the mechanical properties of ZnS:Mn encapsulated in an inert and optically transparent elastomer – Sylgard 184, have been investigated and fully characterized. ZnS:Mn particles of 8.5 µm diameter were incorporated into the Sylgard 184 polymer matrix prior to the curing stage with increasing amounts targeting a final (mass) concentration of 5%, 15%, and 50%. Additionally, the effect of the ZnS:Mn particles on the overall surface properties of the encapsulating elastomer was investigated and reported here. It was observed that the triboluminescent emission from impact scales with phosphor concentration and was not affected by the encapsulating medium. - Highlights: • Polymer encapsulation effects on the luminescent properties of ZnS:Mn was investigated. • Sylgard 184 encapsulated with ZnS:Mn (5, 15, 50 wt%) were characterized. • The triboluminescent emission from impact, scales with phosphor concentration. • Effect of the elastomeric medium on luminescent properties of ZnS:Mn was determined. • The work presented here demonstrates the feasibility of ZnS:Mn-based flexible sensors.

  6. Conformal and highly luminescent monolayers of Alq3 prepared by gas-phase molecular layer deposition.

    Science.gov (United States)

    Räupke, André; Albrecht, Fabian; Maibach, Julia; Behrendt, Andreas; Polywka, Andreas; Heiderhoff, Ralf; Helzel, Jonatan; Rabe, Torsten; Johannes, Hans-Hermann; Kowalsky, Wolfgang; Mankel, Eric; Mayer, Thomas; Görrn, Patrick; Riedl, Thomas

    2014-01-22

    The gas-phase molecular layer deposition (MLD) of conformal and highly luminescent monolayers of tris(8-hydroxyquinolinato)aluminum (Alq3) is reported. The controlled formation of Alq3 monolayers is achieved for the first time by functionalization of the substrate with amino groups, which serve as initial docking sites for trimethyl aluminum (TMA) molecules binding datively to the amine. Thereby, upon exposure to 8-hydroxyquinoline (8-HQ), the self-limiting formation of highly luminescent Alq3 monolayers is afforded. The growth process and monolayer formation were studied and verified by in situ quartz crystal monitoring, optical emission and absorption spectroscopy, and X-ray photoelectron spectroscopy. The nature of the MLD process provides an avenue to coat arbitrarily shaped 3D surfaces and porous structures with high surface areas, as demonstrated in this work for silica aerogels. The concept presented here paves the way to highly sensitive luminescent sensors and dye-sensitized metal oxides for future applications (e.g., in photocatalysis and solar cells).

  7. Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing

    International Nuclear Information System (INIS)

    Sato, Keisuke; Hirakuri, Kenji

    2006-01-01

    We report an annealing effect on electrical and luminescence properties of a red electroluminescent device consisting of nanocrystalline silicon (nc-Si). The red luminescence was generated by flowing the forward current into the device at a low threshold direct current (DC) forward voltage with a rise of annealing temperature up to 500 deg. C. Moreover, the luminescence of the device annealed at 500 deg. C was more intense than that of the device annealed at 200 deg. C or less under the same forward current density, because of the injection of a large quantity of carriers to the radiative recombination centers at the nc-Si surface vicinity. These were attained by a low resistivity of indium tin oxide (ITO) electrode and good contact at the ITO electrode/luminous layer interface region by the annealing treatment. The above results indicated that the annealing treatment of the device is effective for the realization of high luminance due to the improvement in the injection efficiency of carriers to the radiative recombination centers

  8. Luminescence variations in europium-doped silicon-substituted hydroxyapatite nanobiophosphor via three different methods

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Cao Xuan; Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn

    2015-07-15

    Highlights: • Europium doped silicon-substituted hydroxyapatite was synthesized by wet chemical synthesis method. • Morphology of nanoparticles depended on the synthesized method. • Photoluminescence intensity of the sample increases with the increasing of Si substitutions, Eu dopants and thermal annealing. - Abstract: This paper reports the first attempt for the synthesis of europium-doped Si-substituted hydroxyapatite (HA) nanostructure to achieve strong and stable luminescence of nanobiophosphor, particularly, by addition of different Eu dopants, Si substitutions, and application of optimum annealing temperatures of up to 1000 °C. The nanobiophosphor was synthesized by the coprecipitation, microwave, and hydrothermal methods. The nanoparticles demonstrated a nanowire to a spindle-like morphology, which was dependent on the method of synthesis. The photoluminescence (PL) intensity of the sample increases with the increase in Si substitutions and Eu dopants. The luminescent nanoparticles also showed the typical luminescence of Eu{sup 3+} centered at 610 nm, which was more efficient for the annealed Eu-doped Si-HA nanoparticles than for the as-synthesized nanoparticles. Among the different synthesis methods, the hydrothermal method reveals the best light emission represented by high PL intensity and narrow PL spectra. These results suggest the potential application of Eu-doped Si-HA in stable and biocompatible nanophosphors for light emission and nanomedicine.

  9. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    Science.gov (United States)

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  10. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  11. Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics

    International Nuclear Information System (INIS)

    Massing, J; Kähler, C J; Cierpka, C; Kaden, D

    2016-01-01

    The simultaneous and non-intrusive measurement of temperature and velocity fields in flows is of great scientific and technological interest. To sample the velocity and temperature, tracer particle based approaches have been developed, where the velocity is measured using PIV or PTV and the temperature is obtained from the intensity (LIF, thermographic phosphors) or frequency (TLC) of the light emitted or reflected by the tracer particles. In this article, a measurement technique is introduced, that relates the luminescent intensity ratio of individual dual-color luminescent tracer particles to temperature. Different processing algorithms are tested on synthetic particle images and compared with respect to their accuracy in estimating the intensity ratio. Furthermore, polymer particles which are doped with the temperature sensitive dye europium (III) thenoyltrifluoroacetonate (EuTTA) and the nearly temperature insensitive reference dye perylene are characterized as valid tracers. The results show a reduction of the temperature measurement uncertainty of almost 40% (95% confidence interval) compared to previously reported luminescent particle based measurement techniques for microfluidics. (paper)

  12. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  13. Detection of irradiated food using photostimulated luminescence

    International Nuclear Information System (INIS)

    Malec-Czechowska, K.; Stachowicz, W.

    2005-01-01

    Detection of irradiated spices, dried mushrooms and flavour blends using photostimulated luminescence (PSL) is presented. PSL measurements were carried out as described in standard PN-EN 13751. A lower threshold (T 1 700 counts/60s) and an upper threshold (T 2 = 5000 counts/60s) were used to classify the sample. PSL intensities below the threshold were classified as from non-irradiated samples and PSL signals above the upper threshold were regarded from irradiated samples. Signal levels between the two thresholds were classified as intermediate, showing that further investigations are necessary. The PSL tests were carried out at Institute Nutritional Physiology, Federal Research Centre for Nutrition in Karlsruhe with a SURRAC PPSL Iradiated food screening system (SURRAC, Glasgow, UK). (author)

  14. Delayed Luminescence and Biophotons from Biological Materials

    Science.gov (United States)

    Knoesel, Ernst; Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel

    2008-03-01

    There has recently been increased interest in the field of biophotonics, since it is a non-invasive technique. Many biological systems, such as yeast, bacteria, leaves, seeds, and algae display the unusual phenomenon of a weak, delayed luminescence on the timescale of seconds to minutes after transient illumination. It is also observed that the time decay of the biophotonic emission is not exponential, even after the delay, and that there can be oscillations in intensity with time, which depend on the duration of the illumination. Results from two types of yeast, i.e. bread yeast, and saccharomyces, as well as those from several types of algae are presented. Possible mechanisms for the source of the ultraweak photon emission are discussed.

  15. Sono-luminescence and nuclear fusion

    International Nuclear Information System (INIS)

    Seife, Ch.; Hilgenfeldt, S.; Lohse, D.

    2002-01-01

    This article presents multi-bubble and single-bubble luminescence. Since long scientists have known that ultra-sound waves could trigger the formation of bubbles in water (phenomenon called cavitation) but in 1930, for the first time experiments showed that these bubbles could emit light in particular conditions. In 1989 F. Gaitan succeeded in trapping a single bubble by using stationary ultra-sound waves, this bubble was exploding 20.000 times per second according to the frequency of the wave while emitting a series of flashes of light. Some scientists thought that the gas inside the bubble could reach very high values of temperature and pressure, and proposed the possibility of nuclear fusion to explain the excess of neutrons that has been evidenced in a cavitation experiment with deuterated acetone. The last part of this article describes the controversy triggered by the article describing this experiment, that was published by 'Science' in march 2002. (A.C.)

  16. Metal luminescence in a bright disintegrated prominence

    International Nuclear Information System (INIS)

    Yakovkin, N.A.; Zel'dina, M.Yu.; Rakhubovskij, A.S.; AN Ukrainskoj SSR, Kiev. Glavnaya Astronomicheskaya Observatoriya)

    1975-01-01

    It is found that Na, Mg, Ca, Sc, Ti, Fe, Sr, and Ba contents in a protuberance relative to the hydrogen content is about the same as in photosphere and chromosphere (except for the Na abundance). The metals are in the state of single ionization with the exception of calcium [Ca ++ ] approximately [Ca + ], strontium [Sr ++ ] = 0.5 [Sr + ], and barium [Ba ++ ] = 6Ba + , whose secondary ionization occurs from metastable states by Lsub(α)-emission in the protuberance. The Lsub(α)-emission ionizes neutral iron as well. Primary ionization of remaining metals is performed by the solar near ultraviolet. Luminescence in metal lines is provided by the photosphere emission scattering, and only H and KCa + lines are excited by electron impacts

  17. Detection of irradiated prawns by photostimulated luminescence

    International Nuclear Information System (INIS)

    Chen, Susu; Saito, Kimie; Hagiwara, Shoji; Todoriki, Setsuko; Nakajima, Mitsutoshi

    2011-01-01

    The purpose of this study was to investigate how photostimulated luminescence (PSL) can be applied to verify whether prawns have been irradiated by analyzing their intestinal tracts. Prawns from five different locations which were irradiated at doses of 1 kGy of γ-radiations were analyzed using the Japanese model PSL system. The results showed that the integrated photon counts of all the irradiated samples exceeded the upper threshold value (T 2 =4000 counts/90 s), whereas those of the non-irradiated samples were blew than the lower threshold value (T 1 =1000 counts/90 s). Moreover, using the other parameters which were decrease of intensity after optically stimulation and increase of intensity by optically stimulation, a clear difference was observed between non-irradiated and 1 kGy irradiated samples. Therefore, the Japanese model PSL system can be used as a screening method for detecting irradiated prawns by analyzing their intestinal tracts. (author)

  18. Luminescent solar concentrators utilizing stimulated emission.

    Science.gov (United States)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  19. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    International Nuclear Information System (INIS)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; Lill, Daniel T. de

    2015-01-01

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C 6 H 2 O 5 )(C 6 H 3 O 5 )(H 2 O)] n (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted

  20. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  1. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  2. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  3. Thermo-optical properties of optically stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Johnsen, O.

    1995-01-01

    Optically stimulated luminescence processes in feldspars are subject to competing thermal enhancement and quenching processes: this article describes the thermal enhancement effects for orthoclase, albite and plagioclase feldspars. It is demonstrated that certain lattice vibrational modes can be ...

  4. Fabrication and Spectral Properties of Wood-Based Luminescent Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xianjun Li

    2014-01-01

    Full Text Available Pressure impregnation pretreatment is a conventional method to fabricate wood-based nanocomposites. In this paper, the wood-based luminescent nanocomposites were fabricated with the method and its spectral properties were investigated. The results show that it is feasible to fabricate wood-based luminescent nanocomposites using microwave modified wood and nanophosphor powders. The luminescent strength is in positive correlation with the amount of phosphor powders dispersed in urea-formaldehyde resin. Phosphors absorb UV and blue light efficiently in the range of 400–470 nm and show a broad band of bluish-green emission centered at 500 nm, which makes them good candidates for potential blue-green luminescent materials.

  5. Examination of the picture properties of luminescence memory foils

    International Nuclear Information System (INIS)

    Ewert, U.; Heine, S.; Nockemann, C.; Stade, J.; Tillack, G.R.; Wessel, H.; Zscherpel, U.; Mattis, A.

    1995-01-01

    Luminescence memory foils are a new medium for radiography without films. They are known by the name of image plates or digital memory foils. The suitability of such systems for industrial radiography is examined. (orig.) [de

  6. Negative luminescence and devices based on this phenomenon

    International Nuclear Information System (INIS)

    Ivanov-Omskii, V. I.; Matveev, B. A.

    2007-01-01

    Recent publications concerned with infrared emitters whose electrical modulation results in absorption of radiation detected as negative luminescence are reviewed. The main properties of the devices based on this phenomenon are analyzed

  7. Negative luminescence and devices based on this phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov-Omskii, V I; Matveev, B. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: bmat@iropt3.ioffe.rssi.ru

    2007-03-15

    Recent publications concerned with infrared emitters whose electrical modulation results in absorption of radiation detected as negative luminescence are reviewed. The main properties of the devices based on this phenomenon are analyzed.

  8. Renewable energy : better luminescent solar panels in prospect

    NARCIS (Netherlands)

    Debije, M.G.

    2015-01-01

    Devices known as luminescent solar concentrators could find use as renewable-energy generators, but have so far been plagued by a major light-reabsorption effect. A new study offers a promising route to tackling this problem

  9. Influence of excitonic effects on luminescence quantum yield in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sachenko, A.V.; Kostylyov, V.P.; Vlasiuk, V.M. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 prospect Nauky, 03028 Kyiv (Ukraine); Sokolovskyi, I.O., E-mail: isokolovskyi@mun.ca [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 prospect Nauky, 03028 Kyiv (Ukraine); Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, NL, A1B 3X7 Canada (Canada); Evstigneev, M. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, NL, A1B 3X7 Canada (Canada)

    2017-03-15

    Nonradiative exciton lifetime in silicon is determined by comparison of the experimental and theoretical curves of bulk minority charge carriers lifetime on doping and excitation levels. This value is used to analyze the influence of excitonic effects on internal luminescence quantum yield at room temperature, taking into account both nonradiative and radiative exciton lifetimes. A range of Shockley-Hall-Reed lifetimes is found, where excitonic effects lead to an increase of internal luminescence quantum yield.

  10. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  11. Optical and luminescent properties of the lead and barium molybdates

    Energy Technology Data Exchange (ETDEWEB)

    Spassky, D.A. E-mail: dima@opts.phys.msu.ru; Ivanov, S.N.; Kolobanov, V.N.; Mikhailin, V.V.; Zemskov, V.N.; Zadneprovski, B.I.; Potkin, L.I

    2004-12-01

    Time-resolved luminescence as well as excitation and reflectivity spectra of the oriented lead and barium molybdate single crystals were studied using synchrotron radiation. Features in reflectivity spectra in the fundamental absorption region were analyzed. The contribution of electronic states of lead cation to the formation of the bandgap in PbMoO{sub 4} is supposed. The role of lead states in the intrinsic luminescence of PbMoO{sub 4} is discussed.

  12. A gamma/neutron-discriminating, Cooled, Optically Stimulated Luminescence (COSL) dosemeter

    International Nuclear Information System (INIS)

    Eschbach, P.A.; Miller, S.D.

    1992-07-01

    The Cooled Optically Stimulated Luminescence (COSL) of CaF 2 :Mn (grain sizes from 0.1 to 100 microns) powder embedded in a hydrogenous matrix is reported as a function of fast-neutron dose. When all the CaF 2 :Mn grains are interrogated at once, the COSL plastic dosemeters have a minimum detectable limit of 1 cSv fast neutrons; the gamma component from the bare 252 cf exposure was determined with a separate dosemeter. We report here on a proton-recoil-based dosemeter that generates pulse height spectra, much like the scintillator of Hornyak, (2) to provide information on both the neutron and gamma dose

  13. Flight testing of a luminescent surface pressure sensor

    Science.gov (United States)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  14. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  15. Luminescence properties of Yb:Nd:Tm:KY{sub 3}F{sub 10} nanophosphor and thermal treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Laércio, E-mail: lgomes@ipen.br [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Linhares, Horácio Marconi da Silva M.D. [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego [Departamento de Ciências dos Materiais, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Ranieri, Izilda Marcia [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil)

    2015-01-15

    In this work, we present the spectroscopic properties of KY{sub 3}F{sub 10} (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates {sup 1}G{sub 4} (Tm{sup 3+}) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd{sup 3+} to Tm{sup 3+} ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the {sup 1}G{sub 4} level luminescence kinetic of Tm{sup 3+} in Yb/Nd/Tm system revealed that the luminescence efficiency ({sup 1}G{sub 4}) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up{sub 1}) and (Nd×Yb×Tm) (Up{sub 2}) upconversion processes to the {sup 1}G{sub 4} luminescence are 33% (Up{sub 1}) and 67% for Up{sub 2}. Up{sub 2} process represented by Nd{sup 3+} ({sup 4}F{sub 3/2})→Yb{sup 3+} ({sup 2}F{sub 7/2}) followed by Yb{sup 3+} ({sup 2}F{sub 5/2})→Tm ({sup 3}H{sub 4})→Tm{sup 3+} ({sup 1}G{sub 4}) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF{sub 4} and KY{sub 3}F{sub 10} bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the

  16. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  17. Highly sensitive luminescent sensor for cyanide ion detection in aqueous solution based on PEG-coated ZnS nanoparticles.

    Science.gov (United States)

    Mehta, Surinder K; Salaria, Khushboo; Umar, Ahmad

    2013-03-15

    Using polyethylene glycol (PEG) coated ZnS nanoparticles (NPs), a novel and highly sensitive luminescent sensor for cyanide ion detection in aqueous solution has been presented. ZnS NPs have been used to develop efficient luminescence sensor which exhibits high reproducibility and stability with the lowest limit of detection of 1.29×10(-6) mol L(-1). The observed limit of detection of the fabricated sensor is ~6 times lower than maximum value of cyanide permitted by United States Environmental Protection Agency for drinking water (7.69×10(-6) mol L(-1)). The interfering studies show that the developed sensor possesses good selectivity for cyanide ion even in presence of other coexisting ions. Importantly, to the best of our knowledge, this is the first report which demonstrates the utilization of PEG- coated ZnS NPs for efficient luminescence sensor for cyanide ion detection in aqueous solution. This work demonstrates that rapidly synthesized ZnS NPs can be used to fabricate efficient luminescence sensor for cyanide ion detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  19. SrAl2O4:Eu2+ (1%) luminescence under UV, VUV and electron beam excitation

    Science.gov (United States)

    Nazarov, M.; Mammadova, S.; Spassky, D.; Vielhauer, S.; Abdullayeva, S.; Huseynov, A.; Jabbarov, R.

    2018-01-01

    This paper reports the luminescence properties of nanosized SrAl2O4:Eu2+ (1%) phosphors. The samples were prepared by combustion method at 600 °C, followed by annealing of the resultant combustion ash at 1000 °C in a reductive (Ar + H2) atmosphere. X-ray diffraction (XRD), photo luminescence (PL) and cathodoluminescence (CL) analysis and thermal stimulated luminescence (TSL) method were applied to characterize the phosphor. For the first time a peak at 375 nm was observed in CL spectra of SrAl2O4:Eu2+ (1%) nanophosphors. Luminescence excitation spectra analysis have shown that this peak is related to crystal defects. Also in TSL curve one strong peak was observed in the region above room temperature (T = 325 K), which is attributed to lattice defects, namely oxygen vacancies. A green LED was fabricated by the combination of the SrAl2O4:Eu2+ (1%) nanosized phosphor and a 365 nm UV InGaN chip.

  20. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    Science.gov (United States)

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  1. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    Science.gov (United States)

    Wei, Weili; Xu, Can; Wu, Li; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicochemical properties of C-dots at will. Unexpectedly, the as-prepared C-dots possess bright photoluminescence with QY up to 69.1% which is almost the highest ever reported, favorable biocompatibility, excellent aqueous and nonaqueous dispersibility, ultrahigh photostability, and readily functionalization. We have demonstrated that they are particularly suitable for multicolor luminescent display and long-term and real-time cellular imaging. Furthermore, the methodology is readily scalable to large yield, and can provide sufficient amount of C-dots for practical demands.

  2. Structural and luminescence studies on Dy{sup 3+} doped lead boro–telluro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvi, S. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Arunkumar, S.; Muralidharan, G. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy{sup 3+}doped lead boro−telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B−O vibrations, P−O−P symmetric vibrations and Te−O stretching modes of TeO{sub 3} and TeO{sub 6} units. The metal–ligand bond was identified through UV−vis−NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd−Ofelt (JO) intensity parameters (Ω{sub 2}, Ω{sub 4} and Ω{sub 6}), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σ{sub P}{sup E}) and branching ratio (β{sub R}) for the transitions that include {sup 4}F{sub 9/2}→{sup 6}H{sub 11/2}, {sup 6}H{sub 13/2} and {sup 6}H{sub 15/2} bands. The effect of Dy{sup 3+} ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the {sup 4}F{sub 9/2} level of the title glasses has been found to decrease with the increase in Dy{sup 3+} ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  3. Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses

    Science.gov (United States)

    Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  4. LUMINESCENCE DIAGNOSTICS OF TUMORS WITH UPCONVERSION NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    V. V. Rocheva

    2016-01-01

    Full Text Available Background: To improve quality of surgery in oncology, it is necessary to completely remove the tumor, including its metastases, to minimize injury to normal tissues and to reduce duration of an intervention. Modern methods of detection based on radiological computerized tomography and magnetic resonance imaging can identify a tumor after its volume has become big enough, i.e. it contains more than 10 billion cells. Therefore, an improvement of sensitivity and resolution ability of diagnostic tools to identify early stages of malignant neoplasms seems of utmost importance. Aim: To demonstrate the potential of a new class of anti-Stokes luminescence nanoparticles for deep optical imaging with high contrast of malignant tumors. Materials and methods: Upconversion nanoparticles with narrow dispersion and a  size of 70 to 80  nm, with a  core/shell structure of NaYF4:Yb3+:Tm3+/NaYF4 were used in the study. The nanoparticles have an intensive band of anti-Stokes photoluminescence at a wavelength of 800  nm under irradiation with a  wavelength of 975  nm (both wavelengths are within the transparency window for biological tissues. The conversion coefficient of the excitation radiation into the anti-Stokes luminescence was 9%. To increase the time during which nanoparticles can circulate in blood flow of small animals, the nanoparticles were covered by a  biocompatible amphiphilic polymer shell. As a  tumor model we used Lewis epidermoid carcinoma transfected to mice. Results: We were able to obtain stable water colloids of nanoparticles covered with amphiphilic polymer that could preserve their initial size at least for one month. The use of upconversion nanoparticles with a  hydrophilic shell made of intermittent maleic anhydride and octadecene co-polymer with subsequent coating with diglycidyl polyethylene glycol ether allowed for reduction of non-specific reaction of nanoparticles with plasma proteins. In its turn, it resulted in an

  5. Luminescence from hydrodynamic cavitation. Method and preliminary analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, T.; Farhat, M.; Field, J. [and others

    2001-06-01

    This report describes a photon-counting study of the cavitation luminescence produced by flow over a hydrofoil. The object was to obtain quantitative data on the number of photons emitted for various flow conditions and to study the link between the light output and the potential for cavitation damage. The flow experiments were performed in a cavitation tunnel capable of achieving flow velocities of up to ca. 50 m s{sup -1} in the test sections. The experimental hydrofoil was a NACA 009 blade. Parameters varied were the flow velocity, the incident angle of the hydrofoil and the cavitation index. The results show that significant photon counts are recorded when leading edge cavitation takes place and U-shaped vortices (cavities) shed from the main cavity. The photon count increases dramatically as the flow velocity increases or the cavitation index is reduced. Departure from a Poisson distribution in the arrival times of photons at the detector may be related to the way vortices shed from the main cavity. Finally, there is a clear correlation between light output and the conditions which could cause cavitation damage. (author)

  6. Luminescence from hydrodynamic cavitation. Method and preliminary analysis

    International Nuclear Information System (INIS)

    Leighton, T.; Farhat, M.; Field, J.

    2001-01-01

    This report describes a photon-counting study of the cavitation luminescence produced by flow over a hydrofoil. The object was to obtain quantitative data on the number of photons emitted for various flow conditions and to study the link between the light output and the potential for cavitation damage. The flow experiments were performed in a cavitation tunnel capable of achieving flow velocities of up to ca. 50 m s -1 in the test sections. The experimental hydrofoil was a NACA 009 blade. Parameters varied were the flow velocity, the incident angle of the hydrofoil and the cavitation index. The results show that significant photon counts are recorded when leading edge cavitation takes place and U-shaped vortices (cavities) shed from the main cavity. The photon count increases dramatically as the flow velocity increases or the cavitation index is reduced. Departure from a Poisson distribution in the arrival times of photons at the detector may be related to the way vortices shed from the main cavity. Finally, there is a clear correlation between light output and the conditions which could cause cavitation damage. (author)

  7. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  8. Aluminum Nitride Ceramic as an Optically Stimulable Luminescence Dosimeter Plate

    Directory of Open Access Journals (Sweden)

    Go Okada

    2016-04-01

    Full Text Available Photostimulable storage phosphors have been used in a wide range of applications including radiation measurements in one- and two-dimensional spaces, called point dosimetry and radiography. In this work, we report that an aluminum nitride (AlN ceramic plate, which is practically used as a heat sink (SHAPAL®, Tokuyama Corp., Yamaguchi, Japan, shows good optically-stimulated luminescence (OSL properties with sufficiently large signal and capability for imaging applications, and we have characterized the AlN plate for OSL applications. Upon interaction with X-rays, the sample color turns yellowish, due to a radiation-induced photoabsorption band in the UV-blue range below ~500 nm. After irradiating the sample with X-rays, an intense OSL emission can be observed in the UV (360 nm spectral region during stimulation by red light. Although our measurement setup is not optimized, dose detection was confirmed as low as ~3 mGy to over 20 Gy. Furthermore, we have successfully demonstrated that the SHAPAL® AlN ceramic plate has great potential to be used as an imaging plate in radiography.

  9. Design of Biotin-Functionalized Luminescent Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kimihiro Susumu

    2007-01-01

    Full Text Available We report the design and synthesis of a tetraethylene glycol- (TEG- based bidentate ligand functionalized with dihydrolipoic acid (DHLA and biotin (DHLA—TEG—biotin to promote biocompatibility of luminescent quantum dots (QD's. This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG- (molecular weight average ∼600 modified DHLA (DHLA—PEG600 and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.

  10. A pulse radiolysis based singlet oxygen luminescence facility

    International Nuclear Information System (INIS)

    Gorman, A.A.; Hamblett, I.; Land, E.J.

    1989-01-01

    In this paper the authors report the first successful time-resolved detection of singlet oxygen, O 2 ( 1 Δ g ), luminescence using the pulse radiolysis technique. The use of this technique (a) to produce high concentrations of solute (S) triplet states in aerated benzene (B) via a combination of channels 1-4 and (b) to subsequently form O 2 ( 1 Δ g ) via channel 5 has already been described. The method complements direct pulsed laser excitation of S in that formation of 3 S*, and therefore of O 2 ( 1 Δ g ), is still efficient in those instances where intersystem crossing (channel 4) is unimportant. In the latter situation a laser-based experiment would require an additional light-absorbing sensitizer which could subsequently transfer triplet energy to high concentrations of S. Such experiments, certainly of a quantitative nature, are usually doomed to failure because of competitive light absorption problems. No such problems exist with pulse radiolysis, and the high available triplet energy of 3 B* (84 kcal mol -1 ) ensures that virtually any solute of interest, in the O 2 ( 1 Δ g ) context, will be efficiently promoted to its triplet state

  11. A Radiation Dosimetry Method Using Pulsed Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Akselrod, M.S.; McKeever, S.W.S.

    1999-01-01

    A method for the determination of absorbed radiation dose is described based on pulsed optically stimulated luminescence (POSL). The method relies upon the stimulation of an irradiated sample with a train of light pulses from a suitable light source (e.g. a laser) using a wavelength which is within the range of wavelengths corresponding to the radiation-induced optical absorption in the irradiated sample. The subsequent emitted light, due to the detrapping of trapped charges and their subsequent recombination with charge of the opposite sign, is synchronously detected in the period between each stimulation pulse. The total luminescence is summed over the desired number of stimulation pulses and this forms the measured POSL signal. By monitoring the emitted light only in the period between stimulation pulses one can reduce the optical filtering required to discriminate between the stimulation light and the emission light; in this way a high measurement efficiency, and, therefore, a high radiation sensitivity (luminescence intensity per unit absorbed dose) is achieved. Key parameters in the method are the intrinsic luminescence lifetime for the material being used as the luminescent detector, the width of the optical stimulation pulse, and the period between pulses. For optimum operation the measurement parameters should be such that both the pulse width and the time between pulses are much less than the luminescence lifetime. By appropriate choice of the power of the optical stimulation, the frequency of the stimulation pulses, and the total stimulation period, one can also re-measure the absorbed dose several times. In this way, a re-read capability is available with the procedure. The method is illustrated using light from a 2nd-harmonic Nd:YAG laser, with irradiated, anion-deficient aluminium oxide as the luminescent detector material. (author)

  12. Dating Last Interglacial Coastal Systems Using New Feldspar Luminescence Technologies

    Science.gov (United States)

    Lamothe, M.

    2017-12-01

    The recent explosion in new luminescence dating technologies offers new opportunities to explore Quaternary marine coastal facies and landforms. However, tectonic and climatic processes controlling the development of Pleistocene coastal lithosomes are commonly obscured by their poorly constrained geological age. Luminescence dating of feldspar probes one order of magnitude deeper into geological time than radiocarbon and more than 5 times the current age range of quartz optically-stimulated luminescence, routinely used in luminescence dating. However, feldspar luminescence stimulated by infrared photons (eg IRSL) is hampered by anomalous fading. Successful correction methods developed by us over the last 15 years did produce sound chronologies but the fading-corrected ages carried large uncertainties. New approaches initiated by other laboratories, mainly in Europe, have isolated high temperature post-IRSL luminescence as this signal seems to be only slightly affected by fading. However, the gain in stability seems to be lessened due to bleachibility issues, generating age overestimations. We developed a novel protocol known as post-isothermal IRSL dating (Pit-IR) that focuses on a dual system of luminescence signals, probing low (50C) and medium (225C) temperature IRSL signals following isothermal treatments of various intensities. These protocols have been tested on Last interglacial coastal sediments in strikingly different GIA contexts along the Atlantic coastal areas of SE USA as well as from Morocco, Brazil and LIG sites in the Mediterranean basin. A systematic analysis of these results would suggest that a) falling-stages sequences are more commonly preserved as the OSL/IRSL ages are preferentially dating from the end of the MIS5e high stand and b) MIS5a marine sediments may be detectable away from areas generally thought to be affected by peripheral bulge collapse.

  13. Luminescence characteristics of quartz and feldspar from tectonically uplifted terraces in Kashmir Basin, Jammu and Kashmir, India

    International Nuclear Information System (INIS)

    Jaiswal, Manoj K.; Bhat, M.I.; Bali, B.S.; Ahmad, Shabir; Chen, Y.G.

    2009-01-01

    The Kashmir Valley or the Jhelum basin is an intermontane-basin in NW Himalaya bounded by the Pir Panjal Range in the south and southwest and the Great Himalayan Range in the north and northeast. The valley is marked by active major thrust boundaries in its south and southwestern parts. Remote sensing studies and morphometric analysis suggest neo-tectonic activities and the formation of tectonic terraces due to uplift on the major thrust boundaries in NW Himalayas. The quartz from freshly eroded mountain belts is usually found to show very poor luminescence sensitivity and thus not suitable for optical dating. Similar problems occurred with the quartz from the Srinagar Basin. Due to this, feldspar was selected as a natural dose meter for dating tectonically uplifted terraces in an active and dynamic belt of the NW Himalayas. We report here for the first time the luminescence characteristics of quartz and feldspar minerals from the study area. However, feldspar also shows poor luminescence sensitivity, although enough to perform optical dating. Athermal fading was observed in all the feldspar samples, which was corrected using 'g' values; a large scatter was found in the g values, probably due to intermixing of feldspar grains from varying source rock types and also due to poor luminescence sensitivity. An average g value correction to the mean paleodose was found to agree if compared with the thermo-luminescence date of loess deposit dated earlier. The ages show that the terrace formation started taking place at ∼100 ka in the southwestern part of the Jhelum basin and continued with pulses at 50 ka and 11 ka towards the northwestern part.

  14. Luminescent Solar Concentrators in the Algal Industry

    Science.gov (United States)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  15. Nonimaging optics in luminescent solar concentration.

    Science.gov (United States)

    Markman, B D; Ranade, R R; Giebink, N C

    2012-09-10

    Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.

  16. Optically stimulated luminescence in retrospective dosimetry

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Murray, A.S.

    2002-01-01

    Since the beginning of the 1990s the exploration of optically stimulated luminescence in retrospective accident dosimetry has driven an intensive investigation and development programme at Ris deg. into measurement facilities and techniques. This paper reviews some of the outcomes of this programme, including the evaluation of the single-aliquot regenerative-dose measurement protocol with brick quartz and the determination of dose-depth profiles in building materials as a guide to determining the mean energy of the incident radiation. Investigations into heated materials are most advanced, and a lower detection limit for quartz extracted from Chernobyl bricks was determined to be <10 mGy. The first results from the measurement of doses in unheated building materials such as mortar and concrete are also discussed. Both small-aliquot and single-grain techniques have been used to assess accident doses in these cement based building materials more commonly found in workplaces. Finally some results of a preliminary investigation of the OSL properties of household chemicals are discussed with reference to their potential as accident dosemeters. (author)

  17. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  18. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  19. Spectral and luminescence properties of Cr(3+) ad Nd(3+) ions in gallium garnet crystals

    Science.gov (United States)

    Denisov, A. L.; Ostroumov, V. G.; Saidov, Z. S.; Smirnov, V. A.; Shcherbakov, I. A.

    1986-01-01

    The effective peak stimulated-emission cross section of chromium-doped gadolinium-scandium-gallium garnets (GSGG) has been determined to be 8.5 x 10 to the -21st sq cm at room temperature. The values of the energy-gap Delta E(2E-4T2) chromim fluorescence lifetime and the chromium to neodymium energy-transfer parameter C(DA) (Cr-Nd) are determined for several gallium garnets. Temperature-dependent absorption and luminescence spectra of neodymium-doped GGG and GSGG are reported and discussed in the context of their use as laser materials.

  20. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Heo, Y.W.; Norton, D.P.; Pearton, S.J.

    2005-01-01

    The properties of ZnO films grown by molecular-beam epitaxy are reported. The primary focus was on understanding the origin of deep-level luminescence. A shift in deep-level emission from green to yellow is observed with reduced Zn pressure during the growth. Photoluminescence and Hall measurements were employed to study correlations between deep-level/near-band-edge emission and carrier density. With these results, we suggest that the green emission is related to donor-deep acceptor (Zn vacancy V Zn - ) and the yellow to donor-deep acceptor (oxygen vacancy, O i - )

  1. Luminescence properties of tetravalent uranium in aqueous solution

    International Nuclear Information System (INIS)

    Kirishima, A.; Kimura, T.; Nagaishi, R.; Tochiyama, O.

    2004-01-01

    The luminescence spectra of U 4+ in aqueous solutions were observed in the UV-VIS region at ambient and liquid nitrogen temperatures. The excitation spectrum indicates that the luminescence is arising from the deexcitation of a 5f electron at the 1 S 0 level and no other emissions of U 4+ in aqueous solutions were detected for other f-f transitions. All the luminescence peaks were assigned to the transitions from 1 S 0 to lower 5f levels. To estimate the luminescence lifetime, luminescence decay curves were measured using time-resolved laser-induced fluorescence spectroscopy. At room temperature, the decay curve indicated that the lifetime was shorter than 20 ns. On the other hand, the frozen sample of U 4+ in aqueous solution at liquid nitrogen temperature showed the same emission spectrum as at room temperature and its lifetime was 149 ns in H 2 O system and 198 ns in D 2 O system. The longer lifetime at liquid nitrogen temperature made it possible to measure the spectrum of U 4+ at the concentration as low as 10 -6 M. The difference in the anion species (ClO 4 - , Cl - , SO 4 2- ) affected the structure of the emission spectrum to some extent. (orig.)

  2. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  3. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO

    International Nuclear Information System (INIS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Elbaum, Danek; Koper, Kamil; Stępień, Piotr

    2013-01-01

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles’ green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell. (paper)

  4. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  5. Luminescence of UO2+sub(2(aq)) + FU+sub(2(aq)) and evidence for the formation of a new inorganic radiative exciplex in aqueous solution

    International Nuclear Information System (INIS)

    Deschaux, M.; Marcantonatos, M.D.

    1981-01-01

    Steady-state and time-resolved luminescence measurements, as well as decays of excited UO 2 2+ + FUO 2 + in aqueous solution, show the formation of a radiative exciplex, resulting from the interaction of *FUO 2 H + with UO 2 2+ , similarly to the *U 2 O 4 H 4+ exciplex already reported. Lifetimes and evaluations of the luminescence yields of the *UO 2 2+ , *FUO 2 + and of the exciplex of probable *(O(F)UOHOUO) 3+ composition, are given. The overall heat of the exciplex formation is estimated. (author)

  6. Pyrene-Containing ortho-Oligo(phenylene)ethynylene Foldamer as a Ratiometric Probe Based on Circularly Polarized Luminescence.

    Science.gov (United States)

    Reiné, Pablo; Justicia, Jose; Morcillo, Sara P; Abbate, Sergio; Vaz, Belen; Ribagorda, María; Orte, Ángel; Álvarez de Cienfuegos, Luis; Longhi, Giovanna; Campaña, Araceli G; Miguel, Delia; Cuerva, Juan M

    2018-04-20

    In this manuscript, we report the first synthesis of an organic monomolecular emitter, which behaves as a circularly polarized luminescence (CPL)-based ratiometric probe. The enantiopure helical ortho-oligo(phenylene)ethynylene ( o-OPE) core has been prepared by a new and efficient macrocyclization reaction. The combination of such o-OPE helical skeleton and a pyrene couple leads to two different CPL emission features in a single structure whose ratio linearly responds to silver(I) concentration.

  7. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR...

  8. Sub-ppb level detection of uranium using ligand sensitized luminescence

    International Nuclear Information System (INIS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-01-01

    Uranyl ion (UO 2 2+ ) is known to exhibit weak luminescence in aqueous medium due to poor molar absorptivity and low quantum yield. In order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HClO 4 have been widely used. Like lanthanides, uranyl luminescence can also be sensitized by using some organic ligands. Pyridine 2,6-dicarboxylic acid (PDA) has shown enhancement of luminescence of uranyl in aqueous medium. Enhancement in intensity is due to sensitization of uranyl luminescence by PDA. In order to see the effect of non-aqueous medium, in this work, luminescence of uranyl-PDA complex has been studied in acetonitrile medium. More than one order luminescence enhancement has been observed compared to UO 2 2+ - PDA complex in aqueous medium. The lifetime of uranyl luminescence of the complex in acetonitrile medium is 90 μs which is very high compared to 10 μs in aqueous medium, suggesting that the luminescence enhancement is a result of reduction in non-radiative decay channels in acetonitrile medium. The large enhancement of uranyl luminescence of uranyl-PDA complex in acetonitrile medium can be used for ultra-trace level detection of uranium. Linearity in the luminescence intensity has been observed over the uranium concentration range of 5 to 80 ppb and the detection limit calculated using the criterion of 3 σ is ~ 0.2 ppb. (author)

  9. Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication

    Science.gov (United States)

    Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-Yan

    2014-03-01

    Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on. Electronic supplementary information (ESI) available: Details of FTIR, XRD and DLS of CDF, optical properties of CDF, TEM images of other obtained products, luminescent spectra of CDF at different temperatures, and the optical photographs of CDF inks and silica glasses with different concentrations

  10. Photoluminescence, reddish orange long persistent luminescence and photostimulated luminescence properties of praseodymium doped CdGeO3 phosphor

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Chen, Li; Fu, Yinrong; Mu, Zhongfei; Wang, Tao; Lin, Jun

    2014-01-01

    Highlights: • A novel phosphor CdGeO 3 :Pr 3+ was synthesized successfully. • The persistent luminescence properties of CdGeO 3 :Pr 3+ were studied. • The photostimulated luminescence properties of CdGeO 3 :Pr 3+ were investigated. • The persistent and photostimulated luminescence mechanisms were discussed in detail. - Abstract: Praseodymium doped CdGeO 3 phosphors were prepared successfully by a conventional high temperature solid-state reaction method. It showed reddish orange long persistent luminescence (LPL) after the short UV-irradiation. The reddish orange photostimulated luminescence (PSL) was also observed upon near infrared stimulation at 980 nm after per-exposure into UV light. The origin of LPL and PSL was identified with the emission from Pr 3+ ions with the aid of traps in host lattice. The optimal concentration of Pr 3+ ions for the brightest photoluminescence (PL) emission and the best LPL characteristic were experimentally to be about 3% and 0.5 mol%, respectively. The trapping and de-trapping processes of charge carriers between shallower and deep traps were illustrated. A model was proposed on the basis of experimental results to study the mechanisms of LPL and PSL

  11. Luminescent properties of Al2O3: Tb powders

    International Nuclear Information System (INIS)

    Esparza G, A.E.; Garcia, M.; Falcony, C.; Azorin N, J.

    2000-01-01

    In this work the photo luminescent and cathode luminescent characteristics of aluminium oxide (Al 2 O 3 ) powders impurified with terbium (Tb) were studied for their use in dosimetry. The optical, structural, morphological characteristics of the powders as function of variation in the impurity concentration and the annealing temperature will be presented. As regards the optical properties of powders (photoluminescence and cathode luminescence) it was observed a characteristic emission associated with radiative transitions between electron energy levels of terbium, the spectra associated with this emission consists of several peaks associated with such transitions. In the structural and morphological characterization (X-ray diffraction and scanning electron microscopy) it was appreciated that in accordance the annealing temperature of powders is augmented it is evident the apparition of certain crystalline phases. The results show that this is a promissory material for radiation dosimetry. (Author)

  12. Optical and luminescence properties of zinc oxide (Review)

    Science.gov (United States)

    Rodnyi, P. A.; Khodyuk, I. V.

    2011-11-01

    We generalize and systematize basic experimental data on optical and luminescence properties of ZnO single crystals, thin films, powders, ceramics, and nanocrystals. We consider and study mechanisms by which two main emission bands occur, a short-wavelength band near the fundamental absorption edge and a broad long-wavelength band, the maximum of which usually lies in the green spectral range. We determine a relationship between the two luminescence bands and study in detail the possibility of controlling the characteristics of ZnO by varying the maximum position of the short-wavelength band. We show that the optical and luminescence characteristics of ZnO largely depend on the choice of the corresponding impurity and the parameters of the synthesis and subsequent treatment of the sample. Prospects for using zinc oxide as a scintillator material are discussed. Additionally, we consider experimental results that are of principal interest for practice.

  13. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2011-01-01

    . Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal......Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub......-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic...

  14. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  15. Terbium and dysprosium complexes luminescence at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meshkova, S B; Kravchenko, T B; Kononenko, L.I.; Poluehktov, N S [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1979-01-01

    The variation is studied of the luminescence intensity of terbium and dysprosium complexes used in the analysis as solutions are cooled down to the liquid nitrogen temperature. Three groups of methods have been studied: observation of fluorescence of aqueous solutions, precipitate and extract suspensions in organic solvents. The brightest luminescence and greatest increase in luminescence intensity are observed at freezing of complex solvents with 1,2-dioxybenzene-3,5-disulfonic acid (DBSA) and iminodiacetic acid (IDA) and DBSA+EDTA, as well as in the case of benzene extracting of complexes with phenanthroline and salicylic acid. Otherwise the intensity increases 2-14-fold and for the complex of terbium with acetoacetic ester 36-fold.

  16. Luminescence and photosensitivity of PbI2 crystals

    International Nuclear Information System (INIS)

    Novosad, S.S.; Novosad, I.S.; Matviishin, I.M.

    2002-01-01

    One studied effect of temperature treatment and storage conditions on spectra features of PbI 2 crystals grown by the Bridgman-Stockbarger method from salt additionally purified by directed crystallization. Spectra of X-ray luminescence, photoluminescence and thermostimulated luminescence were investigated within 85-295 K temperature range under stationary X-ray excitation and emission of N 2 -laser. One studied photoelectret properties of those crystals under 85 K. Luminescence of PbI 2 crystals with maximum within 595 nm region observed following their thermal annealing under 475-495 K temperature and typical for near-the-surface section of specimens may be caused by oxygen-containing centres [ru

  17. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  18. Optically stimulated luminescence dosimetry with gypsum wallboard (drywall)

    International Nuclear Information System (INIS)

    Thompson, J. W.; Burdette, K. E.; Inrig, E. L.; Dewitt, R.; Mistry, R.; Rink, W. J.; Boreham, D. R.

    2010-01-01

    Gypsum wallboard (drywall) represents an attractive target for retrospective dosimetry by optically stimulated luminescence (OSL) in the event of a radiological accident or malicious use of nuclear material. In this study, wallboard is shown to display a radiation-induced luminescence signal (RIS) as well as a natural background signal (NS), which is comparable in intensity to the RIS. Excitation and emission spectra show that maximum luminescence intensity is obtained for stimulation with blue light-emitting diodes (470 nm) and for detection in the ultraviolet region (290-370 nm). It is necessary to decrease the optical stimulation power dramatically in order to adequately separate the RIS from the interfering background signal. The necessary protocols are developed for accurately measuring the absorbed dose as low as 500 mGy and demonstrate that the RIS decays logarithmically with storage time, with complete erasure expected within 1-4 d. (authors)

  19. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  20. Co-seismic luminescence in Lima, 150 km from the epicenter of the Pisco, Peru earthquake of 15 August 2007

    Directory of Open Access Journals (Sweden)

    J. A. Heraud

    2011-04-01

    Full Text Available The first photographs of Co-seismic Luminescence, commonly known as Earthquake lights (EQLs, were reported in 1968 in Japan. However, there have been documented reports of luminescence associated with earthquakes since ancient times in different parts of the world. Besides this, there is modern scientific work dealing with evidence of and models for the production of such lights. During the Peru 15 August 2007 Mw=8.0 earthquake which occurred at 06:40 p.m. LT, hence dark in the southern wintertime, several EQLs were observed along the Peruvian coast and extensively reported in the capital city of Lima, about 150 km northwest of the epicenter. These lights were video-recorded by a security camera installed at the Pontificia Universidad Catolica del Peru (PUCP campus and time-correlated with seismic ground accelerations registered at the seismological station on campus, analyzed and related to highly qualified eyewitness observations of the phenomena from other parts of the city and to other video recordings. We believe the evidence presented here contributes significantly to sustain the hypothesis that electromagnetic phenomena related to seismic activity can occur, at least during an earthquake. It is highly probable that continued research in luminescence and the use of magnetometers in studying electromagnetic activity and radon gas emanation detectors will contribute even more towards determining their occurrence during and probably prior to seismic activity.

  1. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N T

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  2. The solar noise barrier project 3. The effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels

    NARCIS (Netherlands)

    Debije, M.G.; Tzikas, C.; de Jong, M.; Kanellis, M.; Slooff, L.H.

    We report on the relative performances of two large-scale luminescent solar concentrator (LSC) noise barriers placed in an outdoor environment monitored for over a year. Comparisons are made for the performances of a number of attached photovoltaic cells with changing spectral illumination, cloud

  3. High-resolution light microscopy using luminescent nanoparticles.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Roy, Indrajit; Yong, Ken-Tye; Pudavar, Haridas E; Prasad, Paras N

    2010-01-01

    This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.

  4. Excitonic surface polaritons in luminescence from ZnTe crystals

    International Nuclear Information System (INIS)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G.

    1984-01-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ΔE/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated. (author)

  5. Excitonic surface polaritons in luminescence from ZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G. (AN Ukrainskoj SSR, Kiev. Inst. Fiziki)

    1984-10-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ..delta..E/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated.

  6. Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Lindvold, Lars René; Andersen, Claus Erik

    2011-01-01

    of experiments performed using two organic scintillators, one commercially available and one custom made. The luminescent lifetimes of the scintillators have been measured using i) optical excitation by pulsed UV light, and ii) irradiative excitation using high-energy X-rays from a linac. A luminescent lifetime...... component on the order of 20 μs was estimated for the custom-made organic scintillator, while the commercial scintillator exhibited a fast component of approximately 5 ns lifetime (7 ns as stated by the manufacturer) and an approximate 10 μs lifetime slow component. Although these lifetimes are not long...

  7. Concentration depolarization of luminescence of Eu3+-doped glasses

    International Nuclear Information System (INIS)

    Bodunov, E.N.; Lebedev, V.P.; Malyshev, V.A.; Przheuskij, A.K.

    1989-01-01

    Experimental study of concentrational depolarization luminescence (CDL) of phosphate and germanate glasses, containing Eu 3+ ions, has been carried out. On the basis of three-body self-consistent approximation the theory of CDL is conceived, which takes into account Eu-Eu interaction of higher multipolarities. By comparing the theory with the experiment energy transfer radii for Eu-Eu dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions are determined. The attempt to discriminate Eu-Eu interaction types in the studied range of Eu 3+ ion concentration change has failed owing to law accuracy of luminescence emittance anisotropy measurement

  8. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  9. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  10. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan [Indira Ghandi Centre for Atomic Research, Tamil Nadu (India). Materials Chemistry Div.

    2017-10-01

    Luminescence from UO{sub 2}{sup 2+} (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y{sup 3+}; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  11. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    International Nuclear Information System (INIS)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan

    2017-01-01

    Luminescence from UO_2"2"+ (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y"3"+; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  12. Na-rich feldspar as a luminescence dosimeter in infrared stimulated luminescence (IRSL) dating

    DEFF Research Database (Denmark)

    Sohbati, Reza; Murray, Andrew; Jain, Mayank

    2013-01-01

    on geological origin and erosion history, but the dosimetry of K-rich feldspar grains extracted from rocks is complicated because the internal dose rate is very dependent on the original feldspar grain size. The in situ grain size information is lost during the crushing process used to separate the grains...... settings for which independent age control is available. The blue and yellow luminescence emissions are measured for IR stimulation at 50 °C (IR50), and post-IR IR stimulation at 290 °C (pIRIR290). Thermal stability experiments imply that the corresponding signals in both emissions have comparable thermal...... stabilities and that all signals have similar recombination kinetics and are thermally stable over geological timescales. The IR50 doses measured using blue and yellow emissions are similar to or lower than quartz doses while pIRIR290 blue doses are higher than those from yellow emission and quartz doses...

  13. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  14. Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host.

    Science.gov (United States)

    Kuznetsov, A S; Tikhomirov, V K; Moshchalkov, V V

    2012-09-10

    A mechanism for white luminescence of Ag nanoclusters dispersed in oxyfluoride glass host has been revealed by studying a temperature dependence of its polarization memory. The spectral dependence of the polarization memory indicates the presence of a variety of Ag nanoclusters, particularly emitting in the blue, green and red. Temperature activated intercluster energy transfer has been found responsible for white luminescence. The means for increasing luminescence quantum yield have been suggested. This efficient white luminescence may be used in highly demanded devices, such as luminescent lamps, displays, color phosphors for LEDs, photovoltaic devices based on down shifting of solar spectrum.

  15. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    Science.gov (United States)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir; Tischler, Jonathan R.; Tisdale, William A.; Walker, Brian J.

    2017-12-12

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  16. Influence of sample oxidation on the nature of optical luminescence from porous silicon

    International Nuclear Information System (INIS)

    Coulthard, I.; Antel, W. J. Jr.; Freeland, J. W.; Sham, T. K.; Naftel, S. J.; Zhang, P.

    2000-01-01

    Site-selective luminescence experiments were performed upon porous-silicon samples exposed to varying degrees of oxidation. The source of different luminescence bands was determined to be due to either quantum confinement in nanocrystalline silicon or defective silicon oxide. Of particular interest is the defective silicon-oxide luminescence band found at 2.1 eV, which was found to frequently overlap with a luminescence band from nanocrystalline silicon. Some of the historical confusion and debate with regards to the source of luminescence from porous silicon can be attributed to this overlap. (c) 2000 American Institute of Physics

  17. Soft X-ray excited optical luminescence from functional organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K., E-mail: tsham@uwo.ca

    2015-10-01

    Highlights: • Many functional organic materials convert X-ray energy into visible light. • The X-ray induced luminescence (XEOL) across an absorption edge can be site and excitation channel specific. • XEOL is composition, morphology, size and crystallinity dependent. • XEOL using the time structure of a synchrotron can reveal the decay and energy transfer dynamics of the sample. • The combined use of XEOL and XAS in the analysis of functional organic materials is illustrated. - Abstract: This brief report reviews some of the recent findings in the study of synchrotron based X-ray excited optical luminescence (XEOL) from representative organic light emitting device (OLED) and related functional organic materials. The systems of interest include Alq{sub 3}, aluminium tris(8-hydroxylquinoline); Ru(bipy){sub 3}{sup 2+}, tris-(2,2-bipyridine) ruthenium(II); Ir(bpy){sub 3}, tris(2-phenyl-bipyridine)iridium; PVK (poly(N-vinylcarbazole)) and [Au{sub 2}(dppe)(bipy)]{sup 2+}, a Au(I) polymer containing 1,2-bis(diphenylphosphino)ethane and the 4,40-bipyridyl ligands, as well as TBPe (2,5,8,11-tetra-tert-butylperylene) polyhedral crystals and fluorescein isothiocyanate (FITC) and FITC-labelled proteins. It is shown that tunable and pulsed X-rays from synchrotron light sources enable the detailed tracking of the optical properties of organic functional materials by monitoring the luminescence in both the energy and time domain as the excitation energy is scanned across an element-specific absorption edge. The use of XEOL and X-ray absorption spectroscopy (XAS) in materials analysis is illustrated.

  18. Comparison of Eu(NO3)3 and Eu(acac)3 precursors for doping luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Enrichi, F.; Ricco, R.; Scopece, P.; Parma, A.; Mazaheri, A. R.; Riello, P.; Benedetti, A.

    2010-01-01

    In this study, we report the comparison between Eu 3+ -doped silica nanoparticles synthesized by Stoeber method using Eu(NO 3 ) 3 or Eu(acac) 3 as precursors. The impact of different europium species on the properties of the final silica nanospheres is investigated in details in terms of size, morphology, reachable doping amount, and luminescence efficiency. Moreover, the results obtained for different thermal treatments are presented and discussed. It is shown that the organic complex modify the silica growing process, leading to bigger and irregular nanoparticles (500-800 nm) with respect to the perfectly spherical ones (400 nm) obtained by the nitrate salt, but their luminescence intensity and lifetime is significantly higher when 800-900 o C annealing is performed.

  19. Luminescent chemical waves in the Cu(II)-catalyzed oscillatory oxidation of SCN- ions with hydrogen peroxide.

    Science.gov (United States)

    Pekala, Katarzyna; Jurczakowski, Rafał; Lewera, Adam; Orlik, Marek

    2007-05-10

    The oscillatory oxidation of thiocyanate ions with hydrogen peroxide, catalyzed by Cu2+ ions in alkaline media, was so far observed as occurring simultaneously in the entire space of the batch or flow reactor. We performed this reaction for the first time in the thin-layer reactor and observed the spatiotemporal course of the above process, in the presence of luminol as the chemiluminescent indicator. A series of luminescent patterns periodically starting from the random reaction center and spreading throughout the entire solution layer was reported. For a batch-stirred system, the bursts of luminescence were found to correlate with the steep decreases of the oscillating Pt electrode potential. These novel results open possibilities for further experimental and theoretical investigations of those spatiotemporal patterns, including studies of the mechanism of this chemically complex process.

  20. Photodegradation of luminescence in organic-ligand-capped Eu3+:LaF3 nano-particles

    International Nuclear Information System (INIS)

    King, Gavin G. G.; Taylor, Luke R.; Longdell, Jevon J.; Clarke, David J.; Quilty, J. W.

    2014-01-01

    The luminescence from europium doped lanthanum trifluoride (Eu 3+ :LaF 3 ) nano-crystals can be greatly enhanced by capping with β-diketonate organic ligands. Here, we report on photo-stability measurements for the case of nano-crystals capped with thenoyltrifluroacetone (TTA) and compared with those capped with an inactive ligand, oleic acid. With exposure to UV pump light, we observed significant decrease in fluorescence and change in emission spectrum of the TTA-capped nano-particles whilst the fluorescence lifetime remained approximately constant. After a dose of order 70 kJ cm −2 , the luminescence level was similar to that of oleic acid capped nano-crystals. We discuss possible mechanisms

  1. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.

    Science.gov (United States)

    Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie

    2016-02-12

    Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Strictly monolayer large continuous MoS2 films on diverse substrates and their luminescence properties

    International Nuclear Information System (INIS)

    Mohapatra, P. K.; Deb, S.; Singh, B. P.; Vasa, P.; Dhar, S.

    2016-01-01

    Despite a tremendous interest on molybdenum disulfide as a thinnest direct band gap semiconductor, single step synthesis of a large area purely monolayer MoS 2 film has not yet been reported. Here, we report a CVD route to synthesize a continuous film of strictly monolayer MoS 2 covering an area as large as a few cm 2 on a variety of different substrates without using any seeding material or any elaborate pretreatment of the substrate. This is achieved by allowing the growth to take place in the naturally formed gap between a piece of SiO 2 coated Si wafer and the substrate, when the latter is placed on top of the former inside a CVD reactor. We propose a qualitative model to explain why the MoS 2 films are always strictly monolayer in this method. The photoluminescence study of these monolayers shows the characteristic excitonic and trionic features associated with monolayer MoS 2 . In addition, a broad defect related luminescence band appears at ∼1.7 eV. As temperature decreases, the intensity of this broad feature increases, while the band edge luminescence reduces

  3. C8-structured carbon quantum dots: Synthesis, blue and green double luminescence, and origins of surface defects

    Science.gov (United States)

    Xifang, Chen; Wenxia, Zhang; Qianjin, Wang; Jiyang, Fan

    Carbon quantum dots (CQDs) have attracted great attention in the past few years due to their low cytotoxicity, exploited various synthesis methods, unexampled abundance of raw materials on earth, and robust near-infrared to near-UV luminescence. Carbon nanoparticles have applications in biological labeling, delivery of drugs and biological molecules into cells, and light emitting diodes and lasing. CQDs generally exist as nanodiamonds or graphite quantum dots according to previous research reports. In this study, we report the first synthesis of the third-allotrope CQDs through carbonization of sucrose and study their luminescence properties. These CQDs have a body-centered cubic structure and each lattice point is composed of eight atoms which form a sub-cube (so called C8 crystal structure). High-resolution transmission electron microscopy and X-ray diffraction confirm the C8 structure of the synthesized carbon nanocrystallites with an average size of 2 nm. The C8 CQDs exhibit double-band luminescence with two peaks centered at around 432 and 520 nm. The study based on the photoluminescence, UV-Vis absorption, Fourier-transform infrared, and X-ray photoelectron spectroscopies reveals that the green emission originates from the C=O related surface defect.

  4. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    Science.gov (United States)

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  5. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  6. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    Science.gov (United States)

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  7. Organic wavelength selective mirrors for luminescent solar concentrators

    NARCIS (Netherlands)

    Verbunt, P.P.C.; Debije, M.G.; Broer, D.J.; Bastiaansen, C.W.M.; Boer, de D.K.G.; Wehrspohn, R.; Gombert, A.

    2012-01-01

    Organic polymeric chiral nematic liquid crystalline (cholesteric) wavelength selective mirrors can increase the efficiency of luminescent solar concentrators (LSCs) when they are illuminated with direct sunlight normal to the device. However, due to the angular dependence of the reflection band, at

  8. Tm2+ luminescent materials for solar radiation conversion devices

    NARCIS (Netherlands)

    Van der Kolk, E.

    2015-01-01

    A solar radiation conversion device is described that comprises a luminescent Tm 2+ inorganic material for converting solar radiation of at least part of the UV and/or visible and/or infra red solar spectrum into infrared solar radiation, preferably said infrared solar radiation having a wavelength

  9. Dosimetry based on thermally and optically stimulated luminescence

    International Nuclear Information System (INIS)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and α-Al 2 O 3 have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in α-Al 2 O 3 :C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of αAl 2 O 3 :C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for γ-irradiated αAl 2 O 3 :C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au)

  10. Pukaki 1-01 : initial luminescence dating and radiometric measurements

    International Nuclear Information System (INIS)

    Rieser, U.

    2001-01-01

    Core from Pukaki 1-01 was sampled for luminescence dating and radiometric measurements on 14 March 2001 in the dark room laboratory at Victoria University. Seven samples were taken to get an overview of the crater history, and laboratory work was completed in August 2001. (author). 2 figs., 3 tabs

  11. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  12. Cooled optically stimulated luminescence in CaF2:Mn

    International Nuclear Information System (INIS)

    Miller, S.D.; Endres, G.W.R.; McDonald, J.C.; Swinth, K.L.

    1988-01-01

    A new optically stimulated luminescence technique has been developed for the readout of CaF 2 :Mn thermoluminescent material. Minimum detectable gamma exposures may potentially be measured at 10 nC.kg -1 using the 254 nm line of a mercury lamp. Additional studies were done on CaF 2 :Mn using 351 nm excimer laser stimulation. (author)

  13. Leaf Roof – designing luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Doudart de la Grée, G.C.H.; Papadopoulos, A.; Rosemann, A.L.P.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology has resulted in a functional prototype . The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs. This paper outlines the

  14. Patterned dye structures limit reabsorption in luminescent solar concentrators

    NARCIS (Netherlands)

    Tsoi, S.; Broer, D.J.; Bastiaansen, C.W.M.; Debije, M.G.

    2010-01-01

    This work describes a method for limiting internal losses of a luminescent solar concentrator (LSC) due to reabsorption through patterning the fluorescent dye doped coating of the LSC. By engineering the dye coating into regular line patterns with fill factors ranging from 20 - 80%, the surface

  15. Leaf Roof - Designing Luminescent Solar Concentrating PV Roof Tiles

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Doudart de la Gree, G.; Papadopoulos, A..; Rosemann, A.; Debije, M.G.; Cox, M.; Krumer, Zachar

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology [1] has resulted in a functional prototype. The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs [2]. This paper outlines

  16. Principles and applications of the digital luminescent radiography

    International Nuclear Information System (INIS)

    Doehring, W.; Prokop, M.; Bergh, B.

    1986-01-01

    Digital luminescent radiography is a novel technique for routine diagnostics that allows the establishment of digital projection radiograms. Two goals are pursued: Best possible utilisation of the image data contained in the radiation field, and integration of these data into a digital communication system. (orig.) [de

  17. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  18. Luminescence (IRSL) dating of Yeni Rabat church in Artvin, Turkey

    International Nuclear Information System (INIS)

    Şahiner, Eren; Meriç, Niyazi; Uygun, Selda

    2013-01-01

    Luminescence dating is a chronological method that has been used extensively in terrestrial materials. In this study, we present Infrared Stimulated Luminescence (IRSL) dating results obtained for sediment and pottery samples taken from Yeni Rabat Church, Ardanuç, Artvin, Turkey. For this purpose, equivalent dose (ED) and annual dose rate (AD) of samples were measured. For annual dose rate, concentrations of radioactive isotopes (U, Th, K) were determined by using a high-purity germanium detector. For the equivalent dose, polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used. The optimal preheat temperature was determined for sediment and pottery samples. Ages were calculated by Aitken's luminescence age calculation method, which found 710±190 years for the pottery sample and 1450±370 years, 1390±420 years, 1430±310 years, 2210±520 years and 1640±390 years for different sediment samples, respectively. These estimated age ranges support the theory that Yeni Rabat Church could have been constructed in medieval times. - Highlights: ► The luminescence (IRSL) ages of the samples, taken from in Yeni Rabat church in Artvin-Turkey were found. ► Equivalent doses and annual doses were determined. ► Polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used

  19. Optically stimulated luminescence dosimetry using natural and synthetic materials

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; McKeever, S.W.S.

    1996-01-01

    The application of optically stimulated luminescence (OSL) for use in radiation dosimetry is reviewed. A broad description is given of OSL techniques developed at Riso National Laboratory and at Oklahoma State University, and recent collaborative investigations on the properties of a variety...

  20. A luminescence lifetime assisted ratiometric fluorimeter for biological applications

    Science.gov (United States)

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-12-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.

  1. Systematic development of new thermoluminescence and optically stimulated luminescence materials

    Energy Technology Data Exchange (ETDEWEB)

    Yukihara, E.G., E-mail: eduardo.yukihara@okstate.edu [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Milliken, E.D.; Oliveira, L.C. [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Orante-Barron, V.R. [Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico (Mexico); Jacobsohn, L.G. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, SC (United States); Blair, M.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-01-15

    This paper presents an overview of a systematic study to develop new thermoluminescence (TL) and optically stimulated luminescence (OSL) materials using solution combustion synthesis (SCS) for applications such as personal OSL dosimetry, 2D dose mapping, and temperature sensing. A discussion on the material requirements for these applications is included. We present X-ray diffraction (XRD) data on single phase materials obtained with SCS, as well as radioluminescence (RL), TL and OSL data of lanthanide-doped materials. The results demonstrate the possibility of producing TL and OSL materials with sensitivity similar to or approaching those of commercial TL and OSL materials used in dosimetry (e.g., LiF:Mg,Ti and Al{sub 2}O{sub 3}:C) using SCS. The results also show that the luminescence properties can be improved by Li co-doping and annealing. The presence of an atypical TL background and anomalous fading are discussed and deserve attention in future investigations. We hope that these preliminary results on the use of SCS for production of TL and OSL materials are helpful to guide future efforts towards the development of new luminescence materials for different applications. - Highlights: Black-Right-Pointing-Pointer TL and OSL material produced with sensitivity similar to commercial materials. Black-Right-Pointing-Pointer Luminescence properties improved by Li co-doping and annealing. Black-Right-Pointing-Pointer The presence of atypical TL background and anomalous fading observed.

  2. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  3. Blue and green luminescence of reduced graphene oxide quantum dots

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Henych, Jiří; Lang, Kamil; Kormunda, M.

    2013-01-01

    Roč. 63, november (2013), s. 537-546 ISSN 0008-6223 Institutional support: RVO:61388980 Keywords : different solvents * graphene oxides * green luminescence * intensive cavitations * N-methyl-2-pyrrolidone Subject RIV: CA - Inorganic Chemistry Impact factor: 6.160, year: 2013

  4. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    Directory of Open Access Journals (Sweden)

    Wenyan Chen

    2014-07-01

    Full Text Available Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri, larvae and embryos of zebrafish (Danio rerio were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v and 1.95% (v/v respectively, and embryonic development was inhibited at just 1% (v/v. Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR, while the LC50 of larvae was 75.23% (v/v and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent.

  5. Time-resolved luminescence from feldspars: New insight into fading

    DEFF Research Database (Denmark)

    Tsukamoto, S.; Denby, P.M.; Murray, A.S.

    2006-01-01

    Time-resolved infrared optically stimulated luminescence (IR-OSL) signals of K- and Na-feldspar samples extracted from sediments were measured in UV, blue and red detection windows, using a fast photon counter and pulsed IR stimulation (lambda = 875 nm). We observe that the relative contribution ...

  6. Luminescence performance of Eu -doped lead-free zinc phosphate ...

    Indian Academy of Sciences (India)

    luminescence properties in combination with its non-toxicity and non-hygroscopic nature ..... two colours will appear to the human eye as one colour and. Figure 10. ... [4] Mariappam C R, Govindaraj G, Rathan S V and Vijaya. Prakash G 2005 ...

  7. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  8. Development of scintillation and luminescent detectors at BARC

    International Nuclear Information System (INIS)

    Pradhan, A.S.

    1991-01-01

    Research and development work carried out at the Bhabha Atomic Research Centre, Bombay, in the field of radiation detectors for various applications, particularly in the area of scintillation and luminescent detectors is reviewed. The review is presented in the form of 7 articles. (author). figs

  9. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    Science.gov (United States)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  10. A new design for luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Doudart de la Gree, G.C.H.; Papadopoulos, A.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.; Reinders, A.H.M.E.; Rosemann, A.L.P.

    2015-01-01

    In our paper we explore the opportunity of combining luminescent solar concentrating (LSC) materials and crystalline PV solar cells in a new design for a roof tile by design-driven research on the energy performance of various configurations of the LSC PV device and on the aesthetic appeal in a roof

  11. Synthesis and luminescence in sol–gel auto-combustion ...

    Indian Academy of Sciences (India)

    2017-11-14

    Nov 14, 2017 ... Eu-doped CaSnO3 showed broad blue emission centred about 434 nm, a ... symmetry [5]. Recently, luminescence properties of rare-earth-cation- ... able attention due to their abundant emission colours based on their 4f–4f or ...

  12. Luminescence properties of the Sm-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2015-01-01

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 compositions were investigated and analysed. The Li 2 B 4 O 7 :Sm, LiKB 4 O 7 :Sm, CaB 4 O 7 :Sm, and LiCaBO 3 :Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm 3+ (4f 5 , 6 H 5/2 ) ions, exclusively. All observed 4f – 4f transitions of the Sm 3+ centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm 3+ ions peaked about 598 nm ( 4 G 5/2 → 6 H 7/2 transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm 3+ luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm 3+ centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce 3+ non-controlled impurity and intrinsic luminescence centres to the Sm 3+ centres has been observed. Peculiarities of the Sm 3+ local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 glasses of high quality were obtained. • EPR, optical absorption and luminescence spectra of Sm 3+ ions in obtained glasses were

  13. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  14. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    International Nuclear Information System (INIS)

    Xie, Ruishi; Zhang, Xingquan; Liu, Haifeng

    2014-01-01

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  15. Luminescence studies on Dy3+ doped calcium boro-tellurite glasses for White light applications

    Science.gov (United States)

    Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2017-09-01

    A new series of Dy3+ doped calcium boro-tellurite glasses have been prepared by melt quenching technique and their spectroscopic properties were studied through FTIR, absorption luminescence and lifetime spectral measurements. FTIR studies have been made to explore the presence of various stretching and bending vibrations of different borate and tellurite groups in the prepared glasses. The bonding parameter values were estimated from the absorption band positions using Nephelauxetic ratios to examine the nature of the metal-ligand bond. The optical band gap and Urbach energy (ΔE) values were obtained from the absorption spectra to explore the electronic band structure of the studied glasses. Judd-Ofelt (JO) theory have been used to determine the JO intensity parameters (Ω2, Ω4, Ω6) following the least square fitting procedure between the experimental and calculated oscillator strength values. The luminescence spectra of the Dy3+ doped calcium boro-tellurite glasses exhibit two intense emission bands corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions. Further, they exhibit less intense emission band due to the 4F9/2→6H11/2 transition. Luminescence spectra were characterized through CIE 1931 chromaticity diagram to obtain the dominant emission color of the prepared glasses. The JO intensity parameters and refractive index values have been used to calculate the radiative parameters such as transition probabilities (AR), branching ratios (βR) and stimulated emission cross-section (σPE) values for the observed transitions in the luminescence spectra. The decay curves of all the studied glasses found to exhibit non-exponential behavior and further to understand the energy transfer process takes place between the Dy3+ ions, the decay curves were fitted to the Inokuti-Hirayama (IH) model. The structural and optical properties of the Dy3+ doped calcium boro-tellurite glasses have been studied as a function of different metal cations (Zn, Cd, Pb and

  16. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi, E-mail: rxie@foxmail.com; Zhang, Xingquan; Liu, Haifeng

    2014-03-15

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  17. Luminescence detection of phase transitions in crystals and nanoparticle inclusions

    International Nuclear Information System (INIS)

    Townsend, P. D.; Yang, B.; Wang, Y.

    2008-01-01

    Luminescence measurements are extremely sensitive to variations in structural environment and thus have the potential to probe distortions of fluorescence sites. Changes can be monitored via luminescence efficiency, emission spectra or excited state lifetimes and these factors are influenced by the local neighbourhood around the emission site, and therefore by structure, composition, pressure and temperature. A rarely exploited approach for condensed matter has been to use the changes in luminescence responses during heating or cooling of a material to provide a rapid survey to detect the presence of phase transitions. One can often differentiate between bulk and surface effects by contrasting results from radioluminescence for bulk responses, and cathodoluminescence or photoluminescence for surface effects. One expects that discontinuous changes in optical parameters occur during temperature changes through phase transitions of insulating materials. In practice, optical signals also exist from surface states of fullerenes and high temperature superconductors etc which identify the presence of structural or superconducting transitions. Numerous examples are cited which match standard documented transitions. Interestingly many examples show the host signals are strongly sensitive to impurity phase transitions from inclusions such as nanoparticles of water, N 2 , O 2 or CO 2 . Recent luminescence data reveal many examples of new transitions, hysteresis and irreversible changes. The signals equally respond to relaxations of a structure and surprisingly indicate that in some materials, such as SrTiO 3 or ZnO, ion implantation of the surface triggers relaxations and phase changes throughout the bulk of the material. Luminescence routes to detect phase transitions are powerful tools but have a tiny literature and so the subject is ideal for rapid exploitation and development. (Author)

  18. Characterization and luminescent properties of thermally annealed olivines

    International Nuclear Information System (INIS)

    Colin-Garcia, Maria; Correcher, Virgilio; Garcia-Guinea, Javier; Heredia-Barbero, Alejandro; Roman-Lopez, Jesus; Ortega-Gutierrez, Fernando; Negron-Mendoza, Alicia; Ramos-Bernal, Sergio

    2013-01-01

    Olivine is an iron-magnesium solid solution silicate (Mg,Fe) 2 SiO 4 and it is probably one of the most abundant mineral phase in the Solar System, it is present in the primitive carbonaceous meteorites (i.e Allende), and in ordinary chondritic meteorite, comets or terrestrial planets. The olivine grains in those bodies have been exposed to different radiation sources like UV, electrons, cosmic radiation, etc. Here, we explore the effect of ionizing and non ionizing radiation on the luminescence emission of the two well-characterised olivine samples from Mexico and Spain by means of cathodoluminescence and thermoluminescence. The analyses by X-ray dispersive energies in the scanning electron microscopy show differences between the samples in the amount of iron and magnesium and also show traces of rare elements. Olivine exhibits spectral cathodoluminescence emissions of low intensity, explained for the quenching of the luminescence of the iron, and sharp signals assigned as impurities. Cathodoluminescence and thermoluminescence glow curves of the natural, and UV induced olivine samples were obtained. Our results show that thermal treatments at 1100 °C change the mineral molecular structure and the luminescence properties of this mineral phase. These results confirm an active participation of physical factors influencing the luminescent properties of olivine. -- Highlights: ► Luminescent properties of two olivines samples (Mexican and Spanish) were explored. ► EDS show different iron and magnesium content and traces of rare elements on both. ► Olivine exhibits spectral CL emissions of low intensity due to the quenching of iron. ► Treatments at 1100 °C change the mineral structure and its response to UV radiation

  19. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  1. Photostimulated luminescence from a fluorobromozirconate glass-ceramic and the effect of crystallite size and phase

    CERN Document Server

    Secu, M; Spaeth, J M; Edgar, A; Williams, G V M; Rieser, U

    2003-01-01

    We report a systematic study of the photoluminescence (PL), photostimulated luminescence (PSL) and thermostimulated luminescence (TSL) from europium-and bromine-doped fluorozirconate glass-ceramics. Eu sup 2 sup + ions in the as-prepared glass show no PL, but after suitable thermal annealing hexagonal phase and orthorhombic phase barium bromide crystallites are precipitated and PL is observed from Eu sup 2 sup + ions in these crystallites. Room temperature PSL is observed from the orthorhombic phase, with an efficiency which is up to 9% of the well known crystalline storage phosphor BaFBr:Eu sup 2 sup +. The emission is at 404 nm, and there is a maximum in the stimulation at 580 nm. We associate the PSL with an optically quenchable peak in the glow curve, which has an activation energy of 1.20 eV and attribute this feature to a perturbed F centre. Room temperature PSL from glass-ceramics containing predominantly the hexagonal phase of BaBr sub 2 has a relative efficiency of less than 0.07%. The resultant trap...

  2. Luminescence dating of some historical/pre-historical natural hazards of India

    International Nuclear Information System (INIS)

    Gartia, R.K.

    2008-01-01

    The Indian sub-continent is characterized by host of natural hazards like earthquake, tsunami, cyclones, floods, landslides/mudflows. It is necessary to build-up a database of historical/pre-historical natural hazards for planning scenarios for emergency response to various them. In short, there is a vast scope of providing chronology to hazardous events by using known techniques of dating including luminescence dating which has an excellent window span down from few hundred years to one hundred thousand years. In this work we report the dates of some historical/pre-historical natural hazards of India. In particular we focus on three kinds of natural hazards namely, earthquakes, tsunami, and mudflows. For example of earthquake we cover a historical earthquake of Manipur that created two massive fissures at Kumbi, 25 km from the state capital, Imphal. For pre-historical ones, we cover Assam-Shillong area known for its highest levels of seismicity in India. We demonstrate the evidence of a paleo-tsunami that devastated Mahabalipuram near Chennai. Incidentally, Mahabalipuram was badly affected by the great tsunami of 26th Dec 2004. Finally, luminescence dating technique has been applied to some historical/pre-historical mudflows of Manipur. A recent mudflow on 10th July 2004 damaged more than 90 houses, block National Highway-39, the life-line of Manipur for more than a fort-night. (author)

  3. Luminescent Langmuir-Blodgett film of a new amphiphilic Eu3+ β-diketonate

    International Nuclear Information System (INIS)

    Gomes, Luciano F.; Oliveira, Kleber T. de; Neri, Claudio R.; Sousa Filho, Paulo C. de; Bianco, Marcos J. dal; Ramos, Ana P.; Zaniquelli, Maria E.D.; Serra, Osvaldo A.

    2008-01-01

    This work reports on the synthesis and characterization of the ligand 3-hexadecylpentane-2,4-dione (Hhdacac) and its Eu 3+ complexes Eu(hdacac) 6 .2H 2 O, Eu(hdacac) 6 .phen and Eu(hdacac) 6 .tta, where phen and tta denote 1,10-phenanthroline and thenoyltrifluoroacetone, respectively. These new compounds present long carbon chains and their expected miscibility into non-polar ambients is confirmed by the emission spectra of Eu(hdacac) 6 .tta in hexane. Moreover, the amphiphilic properties of Eu(hdacac) 6 complexes allow the obtainment of thin luminescent films by the Langmuir-Blodgett technique. In both cases (solids and films), the typical antenna effect of β-diketonates is observed. The alluring characteristics of these compounds raise great interest in many fields of Materials Science, like photo- and electro-luminescent materials (mainly thin 'organic' films), metal catalysts or probes in non-polar solutions, and Langmuir-Blodgett films of several compositions. For the characterization of these products, nuclear magnetic resonance spectroscopy ( 1 H NMR), thermogravimetric analysis, elementary analyses (C, H), scanning electron microscopy (energy dispersive X-ray spectroscopy), absorption (UV-vis/FT-IR) and photoluminescence spectroscopies were used

  4. Phase transformation, morphology evolution and luminescence property variation in Y2O3: Eu hollow microspheres

    International Nuclear Information System (INIS)

    Wang, Qin; Guo, Jing; Jia, Wenjing; Liu, Baocang; Zhang, Jun

    2012-01-01

    Highlights: ► We report a general and facile method for the synthesis of Y 2 O 3 : Eu hollow microspheres. ► This method may be of great significance in the synthesis of many other hollow spherical materials. ► Phase, morphology and luminescence property were found to be strongly dependent on temperature and pH. ► The evolution process under various temperatures and pH values were discussed. ► The sample shows a strong red emission under short UV irradiation, and the lifetime is determined to be 7.0 ms. - Abstract: Y 2 O 3 : Eu hollow microspheres with average size of 500–600 nm have been successfully synthesized via a solvothermal method in the presence of sodium citrate as surfactant followed by a subsequent heat treatment process. High polymer F127(EO 106 PO 70 EO 106 ) served as a soft template in the formation of as prepared hollow microspheres. It is found that the pH values and the reaction temperature are two crucial factors in determining the phase, morphology and luminescence properties of the Y 2 O 3 : Eu hollow microspheres. Morphology evolution can be achieved by changing the pH and the reaction temperature. The properties of the Eu 3+ -doped Y 2 O 3 : Eu nanocrystals were characterized by XRD, FE-SEM, HR-TEM and UV–vis spectroscopy.

  5. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen

    International Nuclear Information System (INIS)

    Marín-Suárez, Marta; Arias-Martos, María C.; Fernández-Sánchez, Jorge F.; Fernández-Gutiérrez, Alberto; Galeano-Díaz, Teresa

    2013-01-01

    We report on a strategy to model both the size (d) and the polydispersity (PdI) of magnetic oxygen-sensitive nanoparticles with a typical size of 200 nm in order to increase the surface area. The strategy is based on experimental design and Response Surface Methodology. Nanoparticles were prepared by mini emulsion solvent evaporation of solutions of poly(styrene-co-maleic anhydride). Features of this strategy include (1) a quick selection of the most important variables that govern d and PdI; (2) a better understanding of the parameters that affect the performance of the polymer; and (3) optimized conditions for the synthesis of nanoparticles of targeted d and PdI. The results were used to produce nanoparticles in sizes that range from 100 to 300 nm and with small polydispersity. The addition of a platinum porphyrin complex that acts as a luminescent probe for oxygen and of magnetite (Fe 3 O 4 ) to the polymeric particles, did not affect d and PdI, thus demonstrating that this strategy simplifies their synthesis. The resulting luminescent and magnetic sensor nanoparticles respond to dissolved oxygen with sensitivity (Stern-Volmer constant) of around 35 bar −1 . (author)

  6. Luminescence resonance energy transfer (LRET) aptasensor for ochratoxin A detection using upconversion nanoparticles

    Science.gov (United States)

    Jo, Eun-Jung; Byun, Ju-Young; Mun, Hyoyoung; Kim, Min-Gon

    2017-07-01

    We report an aptasensor for homogeneous ochratoxin A (OTA) detection based on luminescence resonance energy transfer (LRET). This system uses upconversion nanoparticles (UCNPs), such as NaYF4:Yb3+, Er 3+, as the donor. The aptamer includes the optimum-length linker (5-mer-length DNA) and OTA-specific aptamer sequences. Black hole quencher 1 (BHQ1), as the acceptor, was modified at the 3' end of the aptamer sequence. BHQ1 plays as a quencher in LRET aptasensor and shows absorption at 543 nm, which overlaps with well the emission of the UCNPs. When OTA is added, the BHQ1-labeled OTA aptamer was folded due to the formation of the G-quadruplex-OTA complex, which induced the BHQ1 close to the UCNPs. Consequently, resonance energy transfer between UCNPs (donor) and BHQ1 (acceptor) enables quenching of upconversion luminescence signals under laser irradiation of 980 nm. Our results showed that the LRET-based aptasensor allows specific OTA analysis with a limit of detection of 0.03 ng/mL. These results demonstrated that the OTA in diverse foods can be detected specifically and sensitively in a homogeneous manner.

  7. Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio qinghaiensis sp. Q67

    Directory of Open Access Journals (Sweden)

    Qijie Jian

    2017-10-01

    Full Text Available Most tropical fruits after harvest are very perishable because of fungal infection. Since some pathogenic fungi can produce hazardous compounds such as mycotoxins, novel rapid and effective methods to assess those hazardous compounds are urgently needed. Herein we report that Vibrio qinghaiensis sp. Q67, a luminescent bacterium, can be used to rapidly assess the toxicities of mycotoxins and cultures from mycotoxin-producing pathogens. A good correlation (R2 > 0.98 between concentrations of the mycotoxins (fumonisin B1, deoxynivalenol, zearalenone, ochratoxin A, patulin, and citrinin and the luminous intensity of V. qinghaiensis sp. Q67 was obtained. Furthermore, significant correlations (R2 > 0.96 between the amount of mycotoxin and the luminous intensity from the cultures of 10 major mycotoxin-producing pathogens were also observed. In addition, Fusarium proliferatum (half-maximal inhibitory concentration (IC50 = 17.49% exhibited greater luminescence suppression than Fusarium semitectum (IC50 = 92.56% or Fusarium oxysporum (IC50 = 28.61%, which was in agreement with the existing higher levels of fumonisin B1, fumonisin B2, and deoxynivalenol, which were measured by high-performance liquid chromatography-tandem mass spectrometry. These results suggest that V. qinghaiensis sp. Q67 is a promising alternative for the rapid evaluation of the toxicity of fungal mycotoxins.

  8. Optically stimulated luminescence dating of the Huanghe river terrace in Lanzhou basin

    International Nuclear Information System (INIS)

    Wang Ping; Yuan Daoyang; Liu Xinwang; Jiang Hanchao

    2007-01-01

    In this paper, profile observation and geologic strata structure analysis on the third level terrace at Fanjiaping on the south bank of the Huanghe River in the Lanzhou basin were reported, and systemically collected samples of fluvial sediments and the overlying diluvium and aeolian loess were analyzed by optically stimulated luminescence (OSL). The granulometric and magnetic susceptibility samples from the fine grain sedimentary layer at the middle of the profile were collected at a 2.5 cm interval. According to simplified multiple aliquot dating on fine grain quartz of 16 optically stimulated luminescence samples and electron spin resonance (ESR) dating of the underlying early fluvial layer, the following chronology results of the strata profile of the third terrace were obtained. The under- lying early fluvial layer is of gravels that belong to Fanjiaping formation in early and middle Pleistogene. The river-bed sedimentation of the Huanghe River started about 80,000 years ago. The accumulation of mainly proluvial sediments started about 70,000 years ago. And the continuous loess accumulation began about 55,000 years ago. The age of formation of the third terrace of Huanghe River was estimated at about 70,000 years, corresponding to the time between the last interglacial period and the last glacial period in the late Pleistocene. (authors)

  9. Thermally and optically stimulated luminescence of new ZnO nano phosphors exposed to beta radiation

    International Nuclear Information System (INIS)

    Cruz V, C.; Burruel I, S.E.; Grijalva M, H.; Chernov, V.; Bernal, R.

    2006-01-01

    In this work, we report the thermoluminescence (TL) and the optically stimulated luminescence (OSL) of ZnO nano phosphors obtained by thermal annealing of ZnS powders synthesized by precipitation in a chemical bath deposition reaction. To obtain nanocrystalline ZnO, ZnS pellet-shaped samples were subjected to a sintering process at 700 C during 24 under air atmosphere. Some samples were exposed to beta particles in the 0.15-10.15 kGy dose range and the integrated thermoluminescence as a function of dose increased as dose increased, with no saturation clue for the tested doses. Computerized glow-curve deconvolution of the experimental TL curves in individual peaks revealed a second order kinetics. In order to test the BOSL (Blue Optically Stimulated Luminescence) response, samples were beta irradiated with doses up to 600 Gy, showing an increasing OSL intensity as dose increases. From the experimental results that we have obtained, we conclude that the new ZnO phosphors under investigation are good candidates to be used as dosimetric materials. (Author)

  10. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.

    Science.gov (United States)

    Sathish, Veerasamy; Ramdass, Arumugam; Velayudham, Murugesan; Lu, Kuang-Lieh; Thanasekaran, Pounraj; Rajagopal, Seenivasan

    2017-12-12

    The detection of chemical explosives is a major area of research interest and is essential for the military as well as homeland security to counter the catastrophic effects of global terrorism. In recent years, tremendous effort has been devoted to the development of luminescent materials for the detection of explosives in the vapor, solution, and solid states with a high degree of selectivity and sensitivity and a rapid response time. Apart from the wide range of organic fluorescent chemosensors, transition metal complexes play a prominent role in the sensing of nitroaromatic explosives owing to their rich photophysical characteristics. This review briefly summarizes the salient features of the design and preparation of transition metal (Zn(ii), Ir(iii), Pd(ii), Pt(ii), Re(i) and Ru(ii)) complexes/metallacycles/metallosupramolecules with emphasis on their photophysical properties, sensing behavior, mechanism of action, and the driving forces for detecting explosives and future prospects and challenges. Most of the probes that have been reported to date act as "turn-off" luminescent sensors because their emission (intensity, lifetime, and quantum yield) is eventually quenched upon sensing with nitroaromatic compounds (NACs) through photo-induced electron or energy transfer. These unique properties of transition metal complexes in response to explosives open up new vistas for the development of real world applications such as on-site detection, in-field security, forensic research, etc.

  11. Organic luminescent materials. First results on synthesis and characterization of Alq{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Gagliardi, S.; Montereali, R.M.; Pace, A. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Balaji Pode, R. [Nagpur University, Nagpur (India). Dept. of Physics

    2000-07-01

    Inorganic semiconductor diodes brought a technological revolution in the field of efficient light and laser sources in the last 20 years. New development in this field are expected from organic compounds, thanks to their low cost of synthesis and the relative easiness of growth as thin films. In particular, electrically pumped luminescent devices based on organic thin layers are among the most promising systems for next generation flat panel displays and semiconductor lasers. The tris - (8-hydroxy quinoline)-aluminium complex-Alq{sub 3} - is one of the most studied electro luminescent materials. In this paper, after a short introduction regarding historical development in the field, are reported preliminary results on the growth of Alq{sub 3} films and on their optical and spectroscopic characterization. [Italian] Negli ultimi 20 anni i diodi semiconduttori hanno portato una rivoluzione tecnologica nel campo delle sorgenti luminose e laser. Un nuovo sviluppo possibile in questo campo sono i composti organici, grazie al basso costo di sintesi e la relativa facilita' di crescerli in forma di film sottile. In particolare, dispositivi luminescenti pompati elettricamente basati su film sottili di materiali organici sono promettenti per una nuova generazione di display per schermi piatti e laser a Alq{sub 3} e' uno dei materiali elettroluminescenti piu' studiati. In questo rapporto, dopo una breve introduzione sullo sviluppo storico in questo campo, presentiamo i nostri primi risultati sulla crescita e caratterizzazione ottica di film di Alq{sub 3}.

  12. Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors

    Science.gov (United States)

    Kumar, Deepak; Verma, Kartikey; Verma, Shefali; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    NaYF4 is regarded as the best upconversion (UC) matrix owing to its low phonon energy, more chemical stability, and a superior refractive index. This review reports on the various synthesis techniques of lanthanide-doped NaYF4 phosphors for UC application. The UC intensity depends on different properties of the matrix and those are discussed in detail. Plasmon-enhanced luminescence UC of the lanthanide-doped NaYF4 core-shells structure is discussed based on a literature survey. The present review provides the information about how the UC intensity can be enhanced. The idea about the UC is then deliberately used for versatile applications such as luminescent materials, display devices, biomedical imaging and different security appliances. In addition, the present review demonstrates the recent trends of NaYF4 UC materials in solar cell devices. The role of NaYF4 phosphor to eradicate the spectral variance among the incident solar spectrum, semiconductor as well as the sub-band gap nature of the semiconductor materials is also discussed in detail. Considering the fact that the research status on NaYF4 phosphor for photovoltaic application is now growing, the present review is therefore very important to the researchers. More importantly, this may promote more interesting research platforms to investigate the realistic use of UC nanophosphors as spectral converters for solar cells.

  13. Characterisation and luminescence studies of Tm and Na doped magnesium borate phosphors.

    Science.gov (United States)

    Ekdal, E; Garcia Guinea, J; Karabulut, Y; Canimoglu, A; Harmansah, C; Jorge, A; Karali, T; Can, N

    2015-09-01

    In this study, structural and luminescence properties of magnesium borate of the form MgB4O7 doped with Tm and Na were investigated by X-ray diffraction (XRD), Raman spectroscopy and cathodoluminescence (CL). The morphologies of the synthetised compounds exhibit clustered granules and road-like materials. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect is discussed. The CL spectra of undoped MgB4O7 shows a broad band emission centred around 350 nm which is postulated to be produced by self-trapped excitons and some other defects. From the CL emission spectrum, main emission bands centred at 360, 455, 475 nm due to the respective transitions of (1)D2→(3)H6,(1)D2→(3)F4 and (1)G4→(3)H6 suggest the presence of Tm(3+) ion in MgB4O7 lattice site. CL mechanism was proposed to explain the observed phenomena which are valuable in possibility of the developing new luminescent materials for different applications. In addition, the experimental Raman spectrum of doped and undoped MgB4O7 were reported and discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Suppression of Red Luminescence in Wire Explosion Derived Eu:ZnO

    Science.gov (United States)

    Pallavi, Bandi; Sathyan, Sneha; Yoshimura, Takuya; Kumar, Praveen; Anbalagan, Kousika; Talluri, Bhusankar; Ramanujam, Sarathi; Ranjan, Prem; Thomas, Tiju

    2018-03-01

    Europium oxide (Eu2O3) is coated on zinc (Zn) wire using the electrophoretic deposition process. The coated Zn wire is subjected to the wire explosion process (WEP) which is rapid (material has ˜ 0.24 at.% doping. This analysis also shows that, unlike another popular material GaN, in the case of ZnO, Eu3+ strictly substitutes for Zn2+ (i.e., dopant replacing a cation-anion pair does not seem possible). It may be noted that Eu3+ in a suitable host is oftentimes reported to be an efficient luminophore. The IR spectra show a band shift from 486 cm-1 to 493 cm-1; with peak shifts from 436 cm-1 to 430 cm-1 in Raman spectra. These too indicate the presence of Eu in the samples. However, at room temperature, only green luminescence (centered at 534 nm) is observed from the sample indicating (1) high concentrations of OZn anti-site defects and Zn vacancies, and (2) concomitant quenching of the luminescence at room temperature. Our results suggest that WEP is viable for synthesizing rare earth doped ceramic materials. However, obtaining efficient phosphors using this approach will likely require, (1) reduction of defect densities, and (2) appropriate passivation using post-processing.

  15. Dental diagnostic clinical instrument ('Canary') development using photothermal radiometry and modulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, R J; Sivagurunathan, K; Garcia, J; Matvienko, A; Mandelis, A [Center for Advanced Diffusion Wave Technologies (CADIFT), Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario, M5S 3G8 (Canada); Abrams, S, E-mail: mandelis@mie.utoronto.c [Quantum Dental Technologies, 748 Briar Hill Avenue, Toronto, Ontario, M6B 1L3 (Canada)

    2010-03-01

    Since 1999, our group at the CADIFT, University of Toronto, has developed the application of Frequency Domain Photothermal Radiometry (PTR) and Luminescence (LUM) to dental caries detection. Various cases including artificial caries detection have been studied and some of the inherent advantages of the adaptation of this technique to dental diagnostics in conjunction with modulated luminescence as a dual-probe technique have been reported. Based on these studies, a portable, compact diagnostic instrument for dental clinic use has been designed, assembled and tested. A semiconductor laser, optical fibers, a thermoelectric cooled mid-IR detector, and a USB connected data acquisition card were used. Software lock-in amplifier techniques were developed to compute amplitude and phase of PTR and LUM signals. In order to achieve fast measurement and acceptable signal-to-noise ratio (SNR) for clinical application, swept sine waveforms were used. As a result sampling and stabilization time for each measurement point was reduced to a few seconds. A sophisticated software interface was designed to simultaneously record intra-oral camera images with PTR and LUM responses. Preliminary results using this instrument during clinical trials in a dental clinic showed this instrument could detect early caries both from PTR and LUM signals.

  16. Temperature dependence of the Al2O3:C response in medical luminescence dosimetry

    International Nuclear Information System (INIS)

    Edmund, Jens M.; Andersen, Claus E.

    2007-01-01

    Over the last years, attention has been given to applications of Al 2 O 3 :C in space and medical dosimetry. One such application is in vivo dose verification in radiotherapy of cancer patients and here we investigate the temperature effects on the radioluminescence (RL) and optically stimulated luminescence (OSL) signals in the room-to-body temperature region. We found that the OSL response changes with both irradiation and stimulation temperatures as well as the OSL integration time. We conclude that temperature effects on the OSL response can be removed by integration if the irradiation temperature is not varied. The RL response only depends on the irradiation temperature. We recommend that calibration should be carried out at the same irradiation temperature at which the measurement is performed (i.e. at body temperature for in vivo measurements). The overall change in the integrated OSL and RL signals with irradiation and stimulation temperature covers an interval from -0.2% to 0.6% per deg. C. This indicates the correction factor one must take into account when performing luminescence dosimetry at different temperatures. The same effects were observed regardless of crystal type, test doses and stimulation and detection wavelengths. The reported temperature dependence seems to be a general property of Al 2 O 3 :C

  17. Dental diagnostic clinical instrument (Canary) development using photothermal radiometry and modulated luminescence

    International Nuclear Information System (INIS)

    Jeon, R J; Sivagurunathan, K; Garcia, J; Matvienko, A; Mandelis, A; Abrams, S

    2010-01-01

    Since 1999, our group at the CADIFT, University of Toronto, has developed the application of Frequency Domain Photothermal Radiometry (PTR) and Luminescence (LUM) to dental caries detection. Various cases including artificial caries detection have been studied and some of the inherent advantages of the adaptation of this technique to dental diagnostics in conjunction with modulated luminescence as a dual-probe technique have been reported. Based on these studies, a portable, compact diagnostic instrument for dental clinic use has been designed, assembled and tested. A semiconductor laser, optical fibers, a thermoelectric cooled mid-IR detector, and a USB connected data acquisition card were used. Software lock-in amplifier techniques were developed to compute amplitude and phase of PTR and LUM signals. In order to achieve fast measurement and acceptable signal-to-noise ratio (SNR) for clinical application, swept sine waveforms were used. As a result sampling and stabilization time for each measurement point was reduced to a few seconds. A sophisticated software interface was designed to simultaneously record intra-oral camera images with PTR and LUM responses. Preliminary results using this instrument during clinical trials in a dental clinic showed this instrument could detect early caries both from PTR and LUM signals.

  18. Highly Luminescent Dual Mode Polymeric Nanofiber-Based Flexible Mat for White Security Paper and Encrypted Nanotaggant Applications.

    Science.gov (United States)

    Gangwar, Amit Kumar; Gupta, Ashish; Kedawat, Garima; Kumar, Pawan; Singh, Bhanu Pratap; Singh, Nidhi; Srivastava, Avanish K; Dhakate, Sanjay R; Gupta, Bipin Kumar

    2018-05-23

    Increasing counterfeiting of important data, currency, stamp papers, branded products etc., has become a major security threat which could lead to serious damage to the global economy. Consequences of such damage are compelling for researchers to develop new high-end security features to address full-proof solutions. Herein, we report a dual mode flexible highly luminescent white security paper and nanotaggants composed of nanophosphors incorporated in polymer matrix to form a nanofiber-based mat for anti-counterfeiting applications. The dual mode nanofibers are fabricated by electrospinning technique by admixing the composite of NaYF 4 :Eu 3+ @NaYF 4 :Yb 3+ , Er 3+ nanophosphors in the polyvinyl alcohol solution. This flexible polymer mat derived from nanofibers appears white in daylight, while emitting strong red (NaYF 4 :Eu 3+ ) and green (NaYF 4 :Yb 3+ , Er 3+ ) colors at excitation wavelengths of 254 nm and 980 nm, respectively. These luminescent nanofibers can also be encrypted as a new class of nanotaggants to protect confidential documents. These obtained results suggest that highly luminescent dual mode polymeric nanofiber-based flexible white security paper and nanotaggants could offer next-generation high-end unique security features against counterfeiting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    Science.gov (United States)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  20. Temperature dependence of luminescence from silica glasses under in-reactor and 60Co gamma-ray irradiation

    Science.gov (United States)

    Takahara, Shogo; Yoshida, Tomoko; Tanabe, Tetuo; , Tatuya, Ii; Hirano, Masahiro; Okada, Moritami

    2004-06-01

    In order to investigate the temperature effects on the dynamic radiation damaging process, we have carried out in situ measurements of in-reactor luminescence (IRL) and gamma-ray induced luminescence (GIL) of a silica glass at temperatures ranging from 70 K to 370 K. Both luminescence spectra were found to consist of two broad emission centers at 3.1 eV and 4.1 eV with an additional temperature independent emission around 2.5 eV. The 2.5 eV emission different from the other two showed long tail to the lower energy side and was attributed to the Cherenkov radiation. The 3.1 eV band was attributed to a B 2 β oxygen deficient center on the basis of our photoluminescence measurement. The intensity of the 3.1 eV IRL increased with increasing temperature up to ca. 200 K and saturated above 200 K, which is clearly different from the reported temperature dependence of 3.1 eV photoluminescence, suggesting the existence of some different relaxation mechanism of excited electron under ionizing radiations.

  1. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes.

    Science.gov (United States)

    Jun, Shinae; Lee, Junho; Jang, Eunjoo

    2013-02-26

    A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.

  2. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+,Yb(3+-doped rare-earth microparticles.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ma

    Full Text Available Cerenkov luminescence imaging (CLI has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs, which can be dually excited by Cerenkov luminescence (CL resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration.Yb(3+- and Er(3+- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD, scanning electron microscopy (SEM, and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models.the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results.this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

  3. Multi-functional bio-compatible luminescent apatite with fatty acid passivated nano silver covers and its theranostics potential

    Science.gov (United States)

    Asha, S.; Nimrodh Ananth, A.; Vanitha Kumari, G.; Prakash, B.; Jose, Sujin P.; Jothi Rajan, M. A.

    2017-09-01

    Europium doped hydroxyapatite (EDA) nanorods with linoleic acid passivated silver ions on their surfaces were synthesized using facile, one-step hydrothermal route. Annealing the samples at 250 °C resulted in formation of ultra-small silver (USS) nanoparticles on the surface by nucleation through diffusion process. EDA exhibited luminescence properties due to the presence of europium ions doped on the calcium sites of hydroxyapatite. These EDA nanorods exhibited a different luminescent behavior in the presence of silver ions and USS nanoparticles. This report also demonstrates excellent biocompatibility and cytotoxicity of EDA nanorods with silver ions towards fibroblast cell lines (F929) and breast cancer cells (MCF-7). Visible and near infra-red (NIR) emissions in EDA, induced by silver ions and USS nanoparticles makes it a potential system for deep tissue imaging applications. The arrangement of USS over the EDA was tunable and hence the selectivity and enhancement of the Eu3+ ions emission can also be tuned. The multifunctional properties of this system such as its active luminescence over a wide range, its cell proliferation towards normal cells and cytotoxicity towards cancer cells shows its potential for application in cancer theranostics.

  4. Correlation between room temperature luminescence and energy-transfer in Er–Au co-implanted silica

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, T., E-mail: tiziana.cesca@unipd.it [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy); Kalinic, B.; Maurizio, C.; Scian, C. [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy); Trave, E.; Battaglin, G. [Department of Molecular Sciences and Nanosystems, Dorsoduro 2137, I-30123 Venice, Ca’ Foscari University of Venice (Italy); Mazzoldi, P.; Mattei, G. [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy)

    2015-11-01

    We report on the room temperature photoluminescence characterization in the visible and near-infrared range of Er–Au co-implanted silica systems as a function of the annealing temperature. Besides the characteristic Er{sup 3+} emission at 1540 nm, the samples exhibit luminescence bands in the wavelength region 600–1400 nm related to the formation of ultra-small Au{sub N} aggregates with a number of atoms N less than 50 atoms. In particular, the correlation between such Au{sub N}-related luminescence and the enhancement of the Er{sup 3+} emission was investigated and an anti-correlation between the Er{sup 3+} luminescence at 1540 nm and an Au{sub N}-related band at 980 nm was revealed that represents a possible path for the energy-transfer from Au{sub N} nanoclusters to Er{sup 3+} ions, giving rise to the Er{sup 3+} sensitized emission.

  5. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  6. Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Borissevitch, I.E., E-mail: iourib@ffclrp.usp.br [Departamento de Fisica, Faculdade de Filosofia Ciencia e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP (Brazil); Parra, G.G. [Departamento de Fisica, Faculdade de Filosofia Ciencia e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes 3900, Ribeirao Preto, SP (Brazil); Zagidullin, V.E.; Lukashev, E.P.; Knox, P.P.; Paschenko, V.Z.; Rubin, A.B. [Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Vorobyovy Gory, 119991 Moscow (Russian Federation)

    2013-02-15

    In this work we report on the study of the interaction of CdSe/ZnS-PEGOH 570 Quantum Dot (QD) with negatively charged meso-tetrakis(p-sulfonato-phenyl)porphyrin (TPPS{sub 4}) using optical absorption and fluorescence spectroscopies accompanied with time resolved 'single photon counting' and dynamic and resonance light scattering techniques. In the steady-state experiments the QD luminescence quenching by TPPS{sub 4} was well approximated by a square law. In the time-resolved experiments we observed a typical multi-exponential luminescence decay curve, successfully fitted by a bi-exponential approximation. At QD interaction with porphyrin the time quenching of both components was described by a linear Stern-Volmer dependence. The discrepancy between Stern-Volmer dependences in the steady-state and time resolved experiments may be due to formation of mixed m(TPPS{sub 4})+n(QD) complexes, in which one TPPS{sub 4} molecule can quench several excited QDs. This idea is in accordance with the dynamic and resonance light scattering data, which demonstrate an increase of the scattering particle size at the TPPS{sub 4} addition to QD solutions. - Highlights: Black-Right-Pointing-Pointer Quantum Dot luminescence quenching by TPPS porphyrin was studied in water solutions. Black-Right-Pointing-Pointer The size of particles in QD solutions possessed increase at the TPPS4 addition. Black-Right-Pointing-Pointer Quenching of the QD luminescence by TPPS4 is realized in contact QD-porphyrin complexes. Black-Right-Pointing-Pointer The formation of mixed quantum dot-porphyrin aggregates takes place.

  7. Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability.

    Science.gov (United States)

    Zhang, Haihua; Liao, Qing; Wu, Yishi; Chen, Jianwei; Gao, Qinggang; Fu, Hongbing

    2017-11-08

    Zero-dimensional (0D) perovskite Cs 4 PbBr 6 has been speculated to be an efficient solid-state emitter, exhibiting strong luminescense on achieving quantum confinement. Although several groups have reported strong green luminescence from Cs 4 PbBr 6 powders and nanocrystals, doubts that the origin of luminescence comes from Cs 4 PbBr 6 itself or CsPbBr 3 impurities have been a point of controversy in recent investigations. Herein, we developed a facile one-step solution self-assembly method to synthesize pure zero-dimensional rhombohedral Cs 4 PbBr 6 micro-disks (MDs) with a high PLQY of 52% ± 5% and photoluminescence full-width at half maximum (FWHM) of 16.8 nm. The obtained rhombohedral MDs were high quality single-crystalline as demonstrated by XRD and SAED patterns. We demonstrated that Cs 4 PbBr 6 MDs and CsPbBr 3 MDs were phase-separated from each other and the strong green emission comes from Cs 4 PbBr 6 . Power and temperature dependence spectra evidenced that the observed strong green luminescence of pure Cs 4 PbBr 6 MDs originated from direct exciton recombination in the isolated octahedra with a large binding energy of 303.9 meV. Significantly, isolated PbBr 6 4- octahedra separated by a Cs + ion insert in the crystal lattice is beneficial to maintaining the structural stability, depicting superior thermal and anion exchange stability. Our study provides an efficient approach to obtain high quality single-crystalline Cs 4 PbBr 6 MDs with highly efficient luminescence and stability for further optoelectronic applications.

  8. Investigation on luminescence enhancement and decay characteristics of long afterglow nanophosphors for dark-vision display applications

    Energy Technology Data Exchange (ETDEWEB)

    Swati, G.; Chawla, S.; Mishra, S.; Rajesh, B.; Vijayan, N.; Sivaiah, B.; Dhar, A.; Haranath, D., E-mail: haranath@nplindia.org

    2015-04-01

    Graphical abstract: - Highlights: • Synthesis and structural characterization has been performed on long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} nanophosphor having afterglow time of ∼12 h. • Studied the effect of various fuels used for synthesis of nanophosphors on the decay and luminescence characteristics. Interestingly, afterglow times varied significantly with different fuels used for the synthesis of the nanophosphor. • Excitation by different illuminants has profound influence on the luminescence intensity and afterglow times of the synthesized nanophosphor. • Such studies could be guidelines for appropriate usage of nanophosphor under different lighting environment. - Abstract: Long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} nanophosphors were synthesized via a facile but effectual auto-combustion technique followed by post-annealing treatment at elevated temperatures. The influence of various fuels during synthesis and thereafter improvement in the luminescence decay characteristics under various illuminant irradiations of long afterglow nanophosphors have been reported. Extensive studies on structural, morphological and luminescent properties of the as-synthesized afterglow nanophosphors have been presented. Powder X-ray diffraction studies confirm the presence of high-purity, single-phase monoclinic nanophosphors. HRTEM investigations confirm the formation of nanophosphors of particle size less than 50 nm. Photoluminescence emission is attributed to the characteristic d–f transition (4f{sup 6}5d{sup 1}→4f{sup 7}) of Eu{sup 2+} ions and was positioned at 512 nm. As-synthesized nanophosphors exhibit considerable confinement effects resulting into blue shift in emission maxima as compared to their bulk counterparts. The mechanism underlined for long afterglow has been discussed using trapping–detrapping model. The nanophosphor being multifunctional finds many interesting applications including dark-vision display

  9. Cooperative effects in CdSe/ZnS-PEGOH quantum dot luminescence quenching by a water soluble porphyrin

    International Nuclear Information System (INIS)

    Borissevitch, I.E.; Parra, G.G.; Zagidullin, V.E.; Lukashev, E.P.; Knox, P.P.; Paschenko, V.Z.; Rubin, A.B.

    2013-01-01

    In this work we report on the study of the interaction of CdSe/ZnS-PEGOH 570 Quantum Dot (QD) with negatively charged meso-tetrakis(p-sulfonato-phenyl)porphyrin (TPPS 4 ) using optical absorption and fluorescence spectroscopies accompanied with time resolved “single photon counting” and dynamic and resonance light scattering techniques. In the steady-state experiments the QD luminescence quenching by TPPS 4 was well approximated by a square law. In the time-resolved experiments we observed a typical multi-exponential luminescence decay curve, successfully fitted by a bi-exponential approximation. At QD interaction with porphyrin the time quenching of both components was described by a linear Stern–Volmer dependence. The discrepancy between Stern–Volmer dependences in the steady-state and time resolved experiments may be due to formation of mixed m(TPPS 4 )+n(QD) complexes, in which one TPPS 4 molecule can quench several excited QDs. This idea is in accordance with the dynamic and resonance light scattering data, which demonstrate an increase of the scattering particle size at the TPPS 4 addition to QD solutions. - Highlights: ► Quantum Dot luminescence quenching by TPPS porphyrin was studied in water solutions. ► The size of particles in QD solutions possessed increase at the TPPS4 addition. ► Quenching of the QD luminescence by TPPS4 is realized in contact QD–porphyrin complexes. ► The formation of mixed quantum dot–porphyrin aggregates takes place.

  10. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  11. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  12. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Harley R.; Crawford, T. Daniel, E-mail: crawdad@vt.edu [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-04-21

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL

  13. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    Science.gov (United States)

    Zhang, Yunfei; Xie, Qiguang; Robertson, J Brian; Johnson, Carl Hirschie

    2012-01-01

    We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET) rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+) specific; neither Ca(++), Mg(++), Na(+), nor K(+) changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+) ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  14. pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.

    Directory of Open Access Journals (Sweden)

    Yunfei Zhang

    Full Text Available We report the development of a genetically encodable and ratiometic pH probe named "pHlash" that utilizes Bioluminescence Resonance Energy Transfer (BRET rather than fluorescence excitation. The pHlash sensor-composed of a donor luciferase that is genetically fused to a Venus fluorophore-exhibits pH dependence of its spectral emission in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification in vivo. Its spectral ratio response is H(+ specific; neither Ca(++, Mg(++, Na(+, nor K(+ changes the spectral form of its luminescence emission. Moreover, it can be used to image pH in single cells. This is the first BRET-based sensor of H(+ ions, and it should allow the approximation of pH in cytosolic and organellar compartments in applications where current pH probes are inadequate.

  15. Surface Luminescence Dating Of 'Dragon Houses' And Armena Gate At Styra (Euboea, Greece)

    Science.gov (United States)

    Liritzis, I.; Polymeris, G. S.; Zacharias, N.

    The Optical Stimulated Luminescence (OSL) surface dating employing the singlealiquot regenerative (SAR) technique on quartz was applied to some small enigmatic buildings made of large marble schist slabs in a skillful corbelling technique, and a fortified megalithic gate, at Styra, Kapsala, Laka Palli and Kastro Armena in southern Euboea. The function and origins of the structures have created a puzzle that has fed the imagination and lead to various interpretations by many scholars. No archaeological excavations or methods of dating have been available for the megalithic-like structures. The dates reported suggest the earliest construction to have taken place during the Classical period. Re-use of these structures has occurred during Hellenistic and Roman times (the latter associated with the large scale quarrying of marbles), as well as, in Medieval times (found in agreement with the historical literature) and the contemporary period (as reported by shepherds). In all cases the datable slabs were rather reset as repairs.

  16. Luminescence life time and time-resolved spectroscopy of Cr3+ ions in strontium barium niobate

    International Nuclear Information System (INIS)

    Han, T.P.J.; Jaque, F.; Jaque, D.; Garcia-Sole, J.; Ivleva, L.

    2006-01-01

    This paper reports on the photo-luminescence spectroscopic results of congruent strontium-barium-niobate (SBN) crystals doped with Cr 2 O, at cryogenic temperature (20 K). The experimental results reveal the need of re-assignment of the Cr 3+ ions defect centres in this material. For first time, a broad emission band in the near infrared region centred at ca. 950 nm is reported. This emission band has micro-seconds decaytime constant and a band-width full-width at half-maximum (FWHM) larger than 1700 cm -1 and has been ascribed to the vibronically assisted 4 T 2 →4 A 2 transition. A much narrower emission band centred at ca. 764 nm with milli-seconds decaytime constant and a FWHM band-width of ca. 170 cm -1 is correlated to the 2 E →4 A 2 radiative transition (R-line)

  17. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  18. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    International Nuclear Information System (INIS)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R.; Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E.

    2015-01-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  19. Investigations of gamma irradiation on the properties of luminescent films of polycarbonate(PC) matrix doped with europium complex [Eu(tta)3(H2O)2

    International Nuclear Information System (INIS)

    Forster, Pedro L.; Lugao, Ademar B.; Martins, Natalia A.; Egute, Nayara S.; Parra, Duclerc F.; Brito, Hermi F.

    2009-01-01

    Luminescent lanthanide complexes have attracted much recent interest for their application as luminescent materials. The combination of unique spectroscopic properties from rare earth complexes associated to physical and chemical intrinsic properties of polymers became more attractive in the last years. A number of advantages of these substances have been reported or realized over the much studied conjugated polymers and nonlanthanide. Luminescent films composed by diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(tta) 3 (H 2 O) 2 ] doped into a polycarbonate (PC) matrix were prepared and irradiated at gamma radiation with 5, 10, and 20 kGy. The PC polymer was doped with 1% (w/w) of the Eu 3+ complex. The thermal properties was investigated by utilization of differential scanning calorimeter (DSC) changes in thermal stability was observed due to the addition of doping agent into the polycarbonate matrix. Changes in photophysical properties due of gamma radiation was observed by emission, excitation spectra and fourier transformed infrared spectra (FTIR). Based on the emission spectra of PC:1% Eu(tta)3 film were observed the characteristic bands arising from the 5 D 0 7 F J transitions of Eu 3+ ion (J=0-4), indicating the ability to obtain the luminescence films. (author)

  20. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  1. Stress determination in thermally grown alumina scales using ruby luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Renusch, D.; Veal, B.W.; Koshelev, I.; Natesan, K.; Grimsditch [Argonne National Lab., IL (United States); Hou, P.Y. [Lawrence Berkeley Lab., CA (United States)

    1996-06-01

    By exploiting the strain dependence of the ruby luminescence line, we have measured the strain in alumina scales thermally grown on Fe-Cr- Al alloys. Results are compared and found to be reasonably consistent with strains determined using x rays. Oxidation studies were carried out on alloys Fe - 5Cr - 28Al and Fe - 18Cr - 10Al (at.%). Significantly different levels of strain buildup were observed in scales on these alloys. Results on similar alloys containing a ``reactive element`` (Zr or Hf) in dilute quantity are also presented. Scales on alloys containing a reactive element (RE) can support significantly higher strains than scales on RE-free alloys. With the luminescence technique, strain relief associated with spallation thresholds is readily observed.

  2. Freestanding silicon quantum dots: origin of red and blue luminescence.

    Science.gov (United States)

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  3. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A A; Gonon, P; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  4. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Gonon, P.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  5. Device for the evaluation of radio-photo-luminescent glasses

    International Nuclear Information System (INIS)

    Hoegl, A.; Schubert, K.

    1979-01-01

    The UV light for irradiation of the glass as well as the luminescent light generated by the UV light are recorded in different measuring circuits. Intensity variations of the UV light source are corrected by a programmed control system and a comparing and correcting device linking both measuring circuits with one another and containing integrating stages as well as a-d converters. In order to eliminate the influence of sensitivity variations of the light converter and of the amplifying level of the succeeding amplifier a reference light source is added to the light converter. The programmed control system causes alternating measuring phases of luminescence and reference light. The correction is done by the comparing and correcting unit. (DG) [de

  6. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    Science.gov (United States)

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  7. Cerenkov Luminescence Tomography for In Vivo Radiopharmaceutical Imaging

    Directory of Open Access Journals (Sweden)

    Jianghong Zhong

    2011-01-01

    Full Text Available Cerenkov luminescence imaging (CLI is a cost-effective molecular imaging tool for biomedical applications of radiotracers. The introduction of Cerenkov luminescence tomography (CLT relative to planar CLI can be compared to the development of X-ray CT based on radiography. With CLT, quantitative and localized analysis of a radiopharmaceutical distribution becomes feasible. In this contribution, a feasibility study of in vivo radiopharmaceutical imaging in heterogeneous medium is presented. Coupled with a multimodal in vivo imaging system, this CLT reconstruction method allows precise anatomical registration of the positron probe in heterogeneous tissues and facilitates the more widespread application of radiotracers. Source distribution inside the small animal is obtained from CLT reconstruction. The experimental results demonstrated that CLT can be employed as an available in vivo tomographic imaging of charged particle emitters in a heterogeneous medium.

  8. Luminescence quartz dating of lime mortars. A first research approach

    International Nuclear Information System (INIS)

    Zacharias, N.; Mauz, B.; Michael, C.T.

    2002-01-01

    Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870±230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095±190 a. (author)

  9. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    Directory of Open Access Journals (Sweden)

    Guang-Wei Zhang

    2013-11-01

    Full Text Available Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR and dynamic light scattering (DLS. The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  10. The luminescence of CaWO4: Bi single crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Pashkovsky, M.; Voloshinovskii, A.; Kuklinski, B.; Grinberg, M.

    2006-01-01

    Influence of doping with Bi 3+ ions and Bi 3+ -Na + or Bi 3+ -Li + ions pairs on luminescence, emission kinetics and light yield of CaWO 4 crystals has been investigated. It has been shown that under excitation in the A-band at 272 and 287nm, related to the Bi 3+ ions absorption, the luminescence peaked at 468nm decaying with time τ=0.41μs is observed. For bismuth concentration 50-500ppm and the equimolar concentrations of the Bi 3+ ions accompanied by Na + or Li + ions compensators the significant suppression of the phosphorescence peaked at 520nm, related to the defect WO 3 -V O complex, and an improvement of scintillation characteristics of the CaWO 4 are noticed. Energy transfer from the defect WO 3 -V O and regular WO 4 2- oxy-anions to Bi 3+ ions have been observed at room temperatures and discussed

  11. Shock-induced luminescence from Z-cut lithium niobate

    International Nuclear Information System (INIS)

    Brannon, P.J.; Morris, R.W.; Asay, J.R.

    1985-01-01

    Shock-induced luminescence from lithium niobate has been studied in the stress range 1.6--21.0 GPa. Both fast-framing photography and five-channel optical pyrometry were used to observe the luminescence. The framing photography showed that the emission pattern is heterogeneous for stresses just above the dynamic yield point. A further increase of the stress resulted in a pattern which was essentially homogeneous to within the experimental spatial resolution of about 30 μm. Narrowband filters and photomultiplier tubes were used in the optical pyrometry experiments. A broadband spectrum with a peak near 700 nm was observed. A plot of the energy dissipated by the shock versus shock stress correlates very well with a plot of the 700-nm intensity versus shock stress. The mechanism for light emission in lithium niobate appears to be closely related to the dynamic yielding process

  12. Luminescence and structural study of porous silicon films

    Science.gov (United States)

    Xie, Y. H.; Wilson, W. L.; Ross, F. M.; Mucha, J. A.; Fitzgerald, E. A.; Macaulay, J. M.; Harris, T. D.

    1992-03-01

    A combination of photoluminescence, TEM, and Fourier transform IR spectroscopy is used to investigate the luminescence properties of 3-micron thick, strongly emitting, and highly porous silicon films. TEMs indicate that these samples have structures of predominantly 6-7-nm size clusters. In the as-prepared films, there is a significant concentration of Si-H bonds which is gradually replaced by Si-O bonds during prolonged aging in air. Upon optical excitation these films exhibit strong visible emission, peaking at about 690 nm. The excitation edge is shown to be emission-wavelength dependent, revealing the inhomogeneous nature of both the initially photoexcited and luminescing species. The correlation of the spectral and structural information suggest that the source of the large blue shift of the visible emission compared to the bulk Si bandgap energy is due to quantum confinement in the nanometer-size Si clusters.

  13. Control of spontaneous emission rate in luminescent resonant diamond particles

    Science.gov (United States)

    Savelev, R.; Zalogina, A.; Kudryashov, S.; Ivanova, A.; Levchenko, A.; Makarov, S.; Zuev, D.; Shadrivov, I.

    2018-01-01

    We study the properties of luminescent diamond particles of different sizes (up to ~1.5 μm) containing multiple NV-centers. We theoretically predict that the average liftetime in such particles is decreased by several times as compared to optically small subwavelength nanodiamonds. In our experiments, samples were obtained by milling the plasma-enhanced chemical vapor deposited diamond film, and characterized by Raman spectroscopy and dark- field spectroscopy methods. Time-resolved luminescence measurements of the excited state of NV-centers showed that their average lifetime varies from 10 to 17 ns in different samples. By comparing this data to the values of the lifetime of the NV-centers in optically small nanodiamonds, known from literature, we confirm a severalfold decrease of the lifetime in resonant particles.

  14. Naturally Efficient Emitters: Luminescent Organometallic Complexes Derived from Natural Products

    Science.gov (United States)

    Zhang, Wen-Hua; Young, David J.

    2013-08-01

    Naturally occurring molecules offer intricate structures and functionality that are the basis of modern medicinal chemistry, but are under-represented in materials science. Herein, we review recent literature describing the use of abundant and relatively inexpensive, natural products for the synthesis of ligands for luminescent organometallic complexes used for organic light emitting diodes (OLEDs) and related technologies. These ligands are prepared from the renewable starting materials caffeine, camphor, pinene and cinchonine and, with the exception of caffeine, impart performance improvements to the emissive metal complexes and resulting OLED devices, with emission wavelengths that span the visible spectrum from blue to red. The advantages of these biologically-derived molecules include improved solution processibility and phase homogeneity, brighter luminescence, higher quantum efficiencies and lower turn-on voltages. While nature has evolved these carbon-skeletons for specific purposes, they also offer some intriguing benefits in materials science and technology.

  15. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR....... The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results....

  16. Direct and indirect dating of gypsum occurrences in deserts using luminescence methods

    International Nuclear Information System (INIS)

    Nagar, Y.C.; Juyal, N.; Singhyi, A.K.; Kocurek, G.; Wadhawan, S.K.

    2005-01-01

    In the present study we have made an attempt to directly date gypsum or provide indirect age estimate for gypsum formation through dating the associated sediments (quartz) using the luminescence dating technique. In the direct dating of gypsum, we explored the Optically Stimulated Luminescence (OSL) and Thermally Stimulated Luminescence (TL) behaviour of gypsum. The associated sediments (indirect dating) were dated using the traces of quartz extract from gypsum (concentration 0.1% ) and the underlying and overlying quartz sand in playa

  17. Mathematical aspects of ground state tunneling models in luminescence materials

    International Nuclear Information System (INIS)

    Pagonis, Vasilis; Kitis, George

    2015-01-01

    Luminescence signals from a variety of natural materials have been known to decrease with storage time at room temperature due to quantum tunneling, a phenomenon known as anomalous fading. This paper is a study of several mathematical aspects of two previously published luminescence models which describe tunneling phenomena from the ground state of a donor–acceptor system. It is shown that both models are described by the same type of integral equation, and two new analytical equations are presented. The first new analytical equation describes the effect of anomalous fading on the dose response curves (DRCs) of naturally irradiated samples. The DRCs in the model were previously expressed in the form of integral equations requiring numerical integration, while the new analytical equation can be used immediately as a tool for analyzing experimental data. The second analytical equation presented in this paper describes the anomalous fading rate (g-Value per decade) as a function of the charge density in the model. This new analytical expression for the g-Value is tested using experimental anomalous fading data for several apatite crystals which exhibit high rate of anomalous fading. The two new analytical results can be useful tools for analyzing anomalous fading data from luminescence materials. In addition to the two new analytical equations, an explanation is provided for the numerical value of a constant previously introduced in the models. - Highlights: • Comparative study of two luminescence models for feldspars. • Two new analytical equations for dose response curves and anomalous fading rate. • The numerical value z=1.8 of previously introduced constant in models explained.

  18. Photostimulated luminescence (PSL): A new approach to identifying irradiated foods

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.

    1991-01-01

    PSL, and particularly Anti-Stokes luminescence is a highly specific indicator of energy storage in systems which have been exposed to ionising radiation. The preliminary work illustrated here demonstrates the radiation response of food analogues and the manner in which the phenomenon complements existing tests for irradiated herbs and spices. There appears to be considerable potential for further extension of this approach to a wider range of foods and food components. 5 figs

  19. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  20. Photostimulated luminescence, fast method of detection of irradiated foodstuffs

    International Nuclear Information System (INIS)

    Guzik, G.P.; Stachowicz, W.

    2005-01-01

    The principle of pulsed photostimulated luminescence (PPSL) method, description of instrumentation and methodology of measurements are presented. The pathway of operational procedure and testing of the PPSL instrument in the Laboratory for Detection of Irradiated Food of the Institute of Nuclear Chemistry and Technology are described. Attention has been paid to the positives of the new method while some limitation of its application have been also discussed. (author)

  1. Characterization of UV written waveguides with luminescence microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Rosbirk, Tue

    2005-01-01

    Luminescence microscopy is used to measure the refractive index profile and molecular defect distribution of UV written waveguides with a spatial resolution of ~0.4 mm and high signal-to-noise ratio. The measurements reveal comlex waveguide formation dynamics with significant topological changes...... in the core profile. In addition, it is observed that thewaveguide formation process requires several milliseconds of UV exposure before starting....

  2. Luminescence dating of Late Quaternary sediments from East Greenland

    DEFF Research Database (Denmark)

    Mejdahl, V.; Funder, Svend Visby

    1994-01-01

    Luminescence dating based on K-feldspars and using both TL and OSL methods have been performed on 94 sediment samples from East Greenland. The ages go back more than 380 ka, but are mainly from the last interglaciation and the subsequent period and include both shallow-marine/coastal-fluvial and ...... owing to incomplete bleaching. OSL may give better results than TL in these sediments...

  3. Dosimetry based on thermally and optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and {alpha}-Al{sub 2}O{sub 3} have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in {alpha}-Al{sub 2}O{sub 3}:C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of {alpha}Al{sub 2}O{sub 3}:C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for {gamma}-irradiated {alpha}Al{sub 2}O{sub 3}:C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au) 8 tabs., 59 ills., 90 refs.

  4. Luminescent micro- and nanofibers based on novel europium phthalate complex

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail: mdatcu@infim.ro [National Institute of Materials Physics, Multifunctional Materials and Structures, PO Box MG-7, 77125 Magurele-Bucharest (Romania); Preda, N.; Matei, E.; Enculescu, I. [National Institute of Materials Physics, Multifunctional Materials and Structures, PO Box MG-7, 77125 Magurele-Bucharest (Romania)

    2012-09-14

    We synthesized by wet chemical route a novel europium-potassium phthalate complex Eu{sup 3+}K{sup +}[(COO){sub 2}(C{sub 6}H{sub 4})]{sub 2}. The compound is a white powder insoluble in water. X-ray diffraction evaluation shows that we obtained a new crystalline compound with no traces of the starting materials (potassium hydrogen phthalate and europium chloride). Scanning electron microscopy reveals that the powder consists of fiber-shaped structures with sizes larger than 250 nm in diameter. Energy dispersive X-ray analysis proves that the compound has a 1:1 europium-potassium ratio. Fourier transform infrared spectroscopy confirms the presence of the phthalate in the new compound. Photoluminescence and cathodoluminescence measurements show that the fiber-shaped structures are intensely luminescent with emission bands corresponding to the {sup 5}D{sub 0} {yields} {sup 7}F{sub J} (J = 1-4) Eu (III) ion's transitions in the region between 580 nm and 700 nm, the most intense maximum being observed around 615 nm. Up-converted luminescence with a maximum at 315 nm was recorded. -- Highlights: Black-Right-Pointing-Pointer A new europium-potassium phthalate complex was synthesized by wet chemical route. Black-Right-Pointing-Pointer Fiber-shaped crystalline structures with sizes larger than 250 nm. Black-Right-Pointing-Pointer The most probable structure of the molecule is [C{sub 6}H{sub 4}(COO{sup -}){sub 2}]{sub 2} K{sup +}Eu{sup 3+}. Black-Right-Pointing-Pointer Intense luminescence due to Eu{sup 3+} ions {sup 5}D{sub 0} {yields} {sup 7}F{sub J} transitions. Black-Right-Pointing-Pointer Up-converted luminescence with a maximum at 315 nm was recorded.

  5. Luminescence dosimetry: recent developments in theory and applications

    International Nuclear Information System (INIS)

    McKeever, S.W.S.

    2000-01-01

    Thermally and optically stimulated luminescence have been used in applications in solid state physics, radiation dosimetry and geological dating for several decades. This paper gives a generalized description of these methods in terms of non-equilibrium thermodynamics and in doing so highlights similarities and differences between the methods. Recent advances in both the theory and application of the techniques are highlighted with numerous specific examples. (Author)

  6. Luminescence (IRSL) dating of Yeni Rabat church in Artvin, Turkey

    Science.gov (United States)

    Şahiner, Eren; Meriç, Niyazi; Uygun, Selda

    2013-05-01

    Luminescence dating is a chronological method that has been used extensively in terrestrial materials. In this study, we present Infrared Stimulated Luminescence (IRSL) dating results obtained for sediment and pottery samples taken from Yeni Rabat Church, Ardanuç, Artvin, Turkey. For this purpose, equivalent dose (ED) and annual dose rate (AD) of samples were measured. For annual dose rate, concentrations of radioactive isotopes (U, Th, K) were determined by using a high-purity germanium detector. For the equivalent dose, polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used. The optimal preheat temperature was determined for sediment and pottery samples. Ages were calculated by Aitken's luminescence age calculation method, which found 710±190 years for the pottery sample and 1450±370 years, 1390±420 years, 1430±310 years, 2210±520 years and 1640±390 years for different sediment samples, respectively. These estimated age ranges support the theory that Yeni Rabat Church could have been constructed in medieval times.

  7. Synthesis and Features of Luminescent Bromo- and Iodohectorite Nanoclay Materials

    Directory of Open Access Journals (Sweden)

    Hellen Silva Santos

    2017-11-01

    Full Text Available The smectites represent a versatile class of clay minerals with broad usage in industrial applications, e.g., cosmetics, drug delivery, bioimaging, etc. Synthetic hectorite Na0.7(Mg5.5Li0.3[Si8O20](OH4 is a distinct material from this class due to its low-cost production method that allows to design its structure to match better the applications. In the current work, we have synthesized for the first time ever nanoclay materials based on the hectorite structure but with the hydroxyl groups (OH− replaced by Br− or I−, yielding bromohectorite (Br-Hec and iodohectorite (I-Hec. It was aimed that these materials would be used as phosphors. Thus, OH− replacement was done to avoid luminescence quenching by multiphonon de-excitation. The crystal structure is similar to nanocrystalline fluorohectorite, having the d001 spacing of 14.30 Å and 3 nm crystallite size along the 00l direction. The synthetic materials studied here show strong potential to act as host lattices for optically active species, possessing mesoporous structure with high specific surface area (385 and 363 m2 g−1 for Br-Hec and I-Hec, respectively and good thermal stability up to 800 °C. Both materials also present strong blue-green emission under UV radiation and short persistent luminescence (ca. 5 s. The luminescence features are attributed to Ti3+/TiIV impurities acting as the emitting center in these materials.

  8. X-ray micro-modulated luminescence tomography (XMLT)

    Science.gov (United States)

    Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge

    2014-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898

  9. Cerenkov luminescence tomography based on preconditioning orthogonal matching pursuit

    Science.gov (United States)

    Liu, Haixiao; Hu, Zhenhua; Wang, Kun; Tian, Jie; Yang, Xin

    2015-03-01

    Cerenkov luminescence imaging (CLI) is a novel optical imaging method and has been proved to be a potential substitute of the traditional radionuclide imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). This imaging method inherits the high sensitivity of nuclear medicine and low cost of optical molecular imaging. To obtain the depth information of the radioactive isotope, Cerenkov luminescence tomography (CLT) is established and the 3D distribution of the isotope is reconstructed. However, because of the strong absorption and scatter, the reconstruction of the CLT sources is always converted to an ill-posed linear system which is hard to be solved. In this work, the sparse nature of the light source was taken into account and the preconditioning orthogonal matching pursuit (POMP) method was established to effectively reduce the ill-posedness and obtain better reconstruction accuracy. To prove the accuracy and speed of this algorithm, a heterogeneous numerical phantom experiment and an in vivo mouse experiment were conducted. Both the simulation result and the mouse experiment showed that our reconstruction method can provide more accurate reconstruction result compared with the traditional Tikhonov regularization method and the ordinary orthogonal matching pursuit (OMP) method. Our reconstruction method will provide technical support for the biological application for Cerenkov luminescence.

  10. Absorption and luminescence of crystalline quartz under electron nanosecond irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, B P; Lisitsyn, V M; Stepanchuk, V N [Tomskij Politekhnicheskij Inst. (USSR)

    1981-02-01

    The purpose of the study is continuation of investigations of principal regularities of production and destruction of short-lived defects in quartz and accompanying luminescence under electron pulse irradiation. For investigation purposes samples of crystalline synthetic quartz have been used. The irradiation has been performed at 80-400 K temperatures by means of an electron pulse accelerator with parameters: electron flow pulse duration 10 ns, pulse current density up to 1000 A/cm/sup 2/, electron mean energy 200 keV. Temperature-time characteristics of absorption and luminescence spectrum are studied. It has been found that quartz irradiation by electron pulses of nanosecond duration leads to appearance of short-lived bands of optical absorption at 4.1 and 5.15 eV to which by kinetic parameters correspond luminescence bands at 2.6 and 3.1 eV, respectively. The enumerated absorption bands are induced by quartz irradiation independently of the prehistory and phase state of the sample and are caused obviously by intrinsic radiation defects. Possible models of such defects are suggested.

  11. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  12. Evaluation of one-step luminescent cyanoacrylate fuming.

    Science.gov (United States)

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. A chromosomally based luminescent bioassay for mercury detection in red soil of China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, He [Chinese Academy of Sciences, Nanking (China). State Key Lab. of Soil and Sustainable Agriculture; Nanjing Normal Univ., Nanking (China). College of Life Science; Cheng, Han; Ting, Mao; Zhong, Wen-Hui [Nanjing Normal Univ., Nanking (China). College of Chemistry and Environmental Science; Lin, Xian-Gui [Chinese Academy of Sciences, Nanking (China). State Key Lab. of Soil and Sustainable Agriculture

    2010-07-15

    A luminescent reporter gene system was constructed by fusing the mercury-inducible promoter, P{sub merT}, and its regulatory gene, merR, with a promoterless reporter gene EGFP. A stable and nonantibiotic whole-cell reporter (BMB-ME) was created by introducing the system cassette into the chromosome of Pseudomonas putida strain and then applied it for mercury detection in the red soil of China. Spiked with 10 and 100 {mu}g g{sup -1} Hg{sup 2+} and after 15 and 30 days incubation, soil samples were extracted and evaluated water soluble, bioavailable, organic matter bound, and residual fractions of mercury by both BMB-ME and chemical way. The expression of EGFP was confirmed in soil extraction, and fluorescence intensity was quantified by luminescence spectrometer. The sensor strain BMB-ME appeared to have a detection range similar to that of reversed-phase high-performance liquid chromatography method. The optimal temperature for EGFP expression was 35 C and the lowest detectable concentration of Hg{sup 2+} 200 nM. Cu{sup 2+}, Fe{sup 2+}, Mn{sup 2+}, Sn{sup 2+}, Zn{sup 2+}, Co{sup 2+}, Ag{sup +}, Ba{sup 2+}, Mg{sup 2+}, and Pb{sup 2+} ions at nanomolar level did not interfere with the measurement. These results showed that the BMB-ME constitute an adaptable system for easy sensing of small amounts of mercury in the red soil of China. (orig.)

  14. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  15. Hormesis response of marine and freshwater luminescent bacteria to metal exposure

    Directory of Open Access Journals (Sweden)

    KAILI SHEN

    2009-01-01

    Full Text Available The stimulatory effect of low concentrations of toxic chemicals on organismal metabolism, referred to as hormesis, has been found to be common in the widely used luminescence bioassay. This paper aims to study the hormesis phenomenon in both marine and freshwater luminescent bacteria, named Photobacterium phosphorem and Vibrio qinghaiensis. The effects of Cu (II, Zn (II, Cd (II and Cr (VI on luminescence of these two bacteria were studied for 0 to 75 minutes exposure by establishing dose- and time-response curves. A clear hormesis phenomenon was observed in all four testing metals at low concentrations under the condition of luminescence assays.

  16. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  17. The research of characteristic difference of selected frequency luminescence for desert sand

    International Nuclear Information System (INIS)

    Liu Chao; Wei Mingjian; Li Huhou

    2011-01-01

    The characters of selected frequency luminescence of four groups of samples from Badain Jaran desert are measured by BG2003 luminescence spectrograph. The measurement subjects include selected frequency optical stimulate luminescence spectrum, selected frequency thermoluminescence spectrum and the dose response curve. A double-peak map is obtained by the result from all groups of data and spectrum. The difference is emerged between each group. The optical stimulate luminescence and thermoluminescence is applied in the measurement process. The dispersion of photon count on every response wavelength is analyzed. Based on the analysis, a better result can be gained by selected frequency thermoluminescence. (authors)

  18. Luminescence and radiocarbon dating of raised beach sediments, Bunger Hills, East Antarctica

    International Nuclear Information System (INIS)

    Augustinus, P.C.; Duller, G.A.T.

    2002-01-01

    Luminescence and radiocarbon dating of raised marine sediments from the Bunger Hills, East Antarctica, demonstrates that luminescence methods can be applied to such poorly bleached sediments as long as the luminescence behaviour of the sediments is understood. This is essential as the complete zeroing of the luminescence signal due to light exposure is required to allow an accurate age for the sediment accumulation. Unfortunately, independent checks on the luminescence ages are rare. In the present study, some independent age control is provided by AMS radiocarbon ages from shell obtained from and adjacent to the luminescence dated horizons, although the radiocarbon ages may suffer to some degree from variability in the marine reservoir effect. Application of the single aliquot luminescence technique to feldspar grains from the marine sediments demonstrated that the luminescence behaviour of the sediments was complex. For each sample, 18 replicate paleodose estimates were used to demonstrate whether the sediments were well bleached before deposition. Optically, well-bleached samples give younger luminescence ages, whilst poorly bleached samples often give excessively old ages compared to the associated radiocarbon-dated material. (author)

  19. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Barbaglia, Mario O; Bonetto, Fabian J [Consejo Nacional de Investigaciones Cientificas y Tecnicas and Instituto Balseiro, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Instituto Balseiro, and Comision Nacional de Energia Atomica, Laboratorio de Cavitacion y Biotecnologia, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina)

    2004-02-15

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point.

  20. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    International Nuclear Information System (INIS)

    Barbaglia, Mario O.; Bonetto, Fabian J.

    2004-01-01

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point

  1. Delayed luminescence in a multiparameter approach to evaluation and reduction of radiobiological risks

    Science.gov (United States)

    Grasso, Rosaria; Cammarata, Francesco Paolo; Minafra, Luigi; Marchese, Valentina; Russo, Giorgio; Manti, Lorenzo; Musumeci, Francesco; Scordino, Agata

    2017-07-01

    In the framework of the research project ETHICS "Pre-clinical experimental and theoretical studies to improve treatment and protection by charged particles" funded by the National Nuclear Physics Institute, Italy, we studied the phenomenon called delayed luminescence emitted by non-tumorigenic breast epithelial MCF10A cell line after proton irradiation at different doses (0.5, 2, 6, 9 Gy). The aim is to found possible correlations between delayed luminescence and in vitro damaging induced by ion irradiation. The first results of this research show that the delayed luminescence kinetics is proton dose dependent. An interesting correlation between delayed luminescence and clonogenic potential was observed.

  2. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    International Nuclear Information System (INIS)

    Zakharko, Ya.M.; Luchechko, A.P.; Ubizskii, S.B.; Syvorotka, I.I.; Martynyuk, N.V.; Syvorotka, I.M.

    2007-01-01

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb 3+ ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb 3+ ion excitation, as well as the mechanism of lifetime shortening for the excited Yb 3+ luminescence have been discussed

  3. Luminescence and luminescence quenching of Eu{sub 2}Mo{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Janulevicius, Matas; Grigorjevaite, Julija; Merkininkaite, Greta [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Sakirzanovas, Simas [Department of Applied Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, Arturas, E-mail: arturas.katelnikovas@chf.vu.lt [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2016-11-15

    A polycrystalline Eu{sub 2}Mo{sub 4}O{sub 15} phosphor sample was prepared by high temperature solid state reaction. Phase purity and morphological features of the phosphor were investigated by X-ray diffraction and scanning electron microscopy, respectively. Reflectance spectra showed that the optical band gap of Eu{sub 2}Mo{sub 4}O{sub 15} is 2.95 eV. Phosphor emits intensive red light when excited with 394 and 465 nm radiation. Temperature dependent emission and luminescence lifetime measurements revealed that external and internal quantum yields decrease at the same rate and that luminescence quenches due to photoionization. The calculated external quantum yields for 394 and 465 nm excitation were 7.8% and 53.5%, respectively.

  4. Structure and luminescent investigation of new Ln(III)-TTA complexes containing N-methyl-ε-caprolactam as ligand

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alex Santos, E-mail: alexb@ifes.edu.br [Coordenadoria de Química e Biologia, IFES, Vitória, ES 29040-780 (Brazil); Caliman, Ewerton Valadares [Coordenadoria de Engenharia Metalúrgica, IFES, Vitória, ES 29040-780 (Brazil); Dutra, José Diogo L. [Departamento de Química Fundamental, UFPE, Recife, PE 50590-470 (Brazil); Da Silva, Jeferson G. [Departamento de Farmácia, UFJF, Governador Valadares, MG 35010-17 (Brazil); Araujo, Maria Helena, E-mail: maria.araujo@pq.cnpq.br [Departamento de Química, UFMG, Belo Horizonte, MG 31270-901 (Brazil)

    2016-02-15

    The synthesis and photoluminescent properties of Ln(III)-TTA complexes (Ln=Eu(III) and Sm(III) ions; TTA=3-thenoyltrifluoroacetonate) with N-methyl-ε-caprolactam (NMC) are reported. The Ln complexes were characterized by elemental analysis, complexometric titration with EDTA and infrared spectroscopy. The molecular structures of the [Eu(TTA){sub 3}(NMC)(H{sub 2}O)] and [Sm(TTA){sub 3}(NMC)(H{sub 2}O)]·H{sub 2}O compounds were determined by single crystal X-ray crystallography. In these structures, the three TTA molecules are coordinated to the metal in anionic form as bidentate ligands, while the H{sub 2}O and NMC molecules are coordinated to the metal in neutral form as monodentated ligands. The coordination polyhedron around the Ln(III) atom can be described as square antiprismatic molecular geometry. The geometry of the [Eu(TTA){sub 3}(NMC)(H{sub 2}O)] complex was optimized with the Sparkle/RM1 model for Ln(III) complexes, allowing analysis of intramolecular energy transfer processes of the Eu(III) compound. The spectroscopic properties of the 4f{sup 6} intraconfigurational transitions of the Eu(III) complex were then studied experimentally and theoretically. The low value of emission quantum efficiency of {sup 5}D{sub 0} emitting level (η) of Eu(III) ion (ca. 36%) is due to the vibrational modes of the water molecule that act as luminescence quenching. In addition, the luminescence decay curves, the experimental intensity parameters (Ω{sub λ}), lifetimes (τ), radiative (A{sub rad}) and non-radiative (A{sub nrad}) decay rates, theoretical quantum yield (q{sub cal}) were also determined and discussed. - Highlights: • New Ln-TTA complexes with lactam were obtained and their luminescence investigated. • Jablonsky diagram for the Eu(III) complex shows the main channel for the IET process. • Data confirm the potentiality of the Eu(III) complex to produce red luminescence. • LUMPAC has provided useful information on the luminescence of the Eu

  5. Luminescence and circularly polarized luminescence of macrocyclic Eu(III) and Tb(III) complexes embedded in xerogel and sol-gel SiO2 glasses

    International Nuclear Information System (INIS)

    Morita, M.; Rau, D.; Kai, T.

    2002-01-01

    Luminescence, time-resolved luminescence, circularly polarized luminescence (CPL) and decay profiles of Ln(III)(15-crownether-5) (Ln=Ce, Sm, Eu, Tb) and Tb(III)-(R),(S)-cyclen derivative complexes doped in xerogel and sol-gel silica glasses are measured at temperatures down to 10 K to characterize luminescence properties and the electronic structure in the excited states. Luminescence spectral profiles and calculation of crystal field parameters (B 0 (2) ,B 2 (2) ) in the 5 D 0 → 7 F J (J=1,2) transition give evidence of the fact that the pentagonal and planar structure of Eu(III) (15-crownether-5) does hold in xerogel and sol-gel glasses prepared at temperatures below 100 deg. C. As annealing temperatures are increased from 80 deg. C to 750 deg. C, Eu(III) complexes in sol-gel glasses are found to decompose gradually to SiO 2 :Eu 3+ . Tb(III)-(R) and (S)-cyclen derivative complexes in xerogel reveal at room temperature and 10 K sharp CPL spectra with luminescence dissymmetry factors g lum =-0.1 and 0.1, respectively. These complexes doped in sol-gel glasses represent luminescence characteristics of rare earth ions encapsulated in the nano-porous host

  6. The characteristics of rapid detection of irradiated foods by photostimulated luminescence (PSL)

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Yamazaki, Masao; Mizuno, Hiroaki; Goto, Michiko; Hagiwara, Shoji; Todoriki, Setsuko; Honda, Katsunori

    2007-01-01

    The Photostimulated luminescence (PSL) method offered a rapid, convenient and sensitive way for detecting irradiated food. We developed a new PSL system with the tree classification modes for identifying irradiated foods. The present study reports the changes of the signal intensities and the typical decay curves of PSL for irradiated the powdered leaf products and several kinds of silicate minerals under dark storage. Any of powdered leaf products under dark storage at 4-50degC showed the typical decay curves of PSL even after 5 months, and irradiated paprika and yellow ocher could be still identify after heat-treatment at 120degC. PSL intensities of silicate minerals increased with the increase of radiation dose and show a linear relationship up to a about 1 kGy, but varied among silicate minerals. (author)

  7. Self-assembly of a helical zinc-europium complex: speciation in aqueous solution and luminescence

    Directory of Open Access Journals (Sweden)

    Emmanuel eDeiters

    2013-09-01

    Full Text Available Two new tridentate(NNO-bidentate(NN compartmental ligands, HL5 and HL6, are synthesized from pyridine and benzimidazole synthons. They react in aqueous solution under physiological conditions with ZnII, LnIII, or a mixture thereof, to yield complexes of different stoichiometries, 1:3, 2:2, 2:3, 1:1:3, the speciation of which is established by UV-visible titrations and ESI mass spectrometry. Photophysical studies of the EuIII-containing solutions in Tris-HCl 0.1 M (pH = 7.4 show that lanthanide luminescence arises from a unique N6O3 coordination site with pseudo D3 symmetry. Relevant parameters such as crystal field splitting, lifetime, radiative lifetime and intrinsic quantum yield perfectly match those reported for dinuclear 4f-4f helicates in which the EuIII ion has the same coordination environment.

  8. Uncertainties associated with the use of optically stimulated luminescence in personal dosimetry

    International Nuclear Information System (INIS)

    Benevides, L.; Romanyukha, A.; Hull, F.; Duffy, M.; Voss, S.; Moscovitch, M.

    2011-01-01

    This study investigates several sources of uncertainty associated with the application of optically stimulated luminescence (OSL) to personal dosimetry. A commercial OSL system based on Al 2 O 3 :C was used for this study. First, it is demonstrated that the concept of repeated evaluation (readout) of the same dosemeter, often referred to as 're-analysis', can introduce uncertainty in the re-estimated dose. This uncertainty is associated with the fact that the re-analysis process depletes some of the populated traps, resulting in a continuous decrease of the OSL signal with each repeated reading. Furthermore, the rate of depletion may be dose-dependent. Second, it is shown that the previously reported light-induced fading in this system is the result of light leaks through miniature openings in the dosemeter badge. (authors)

  9. Synthesis, characterization and luminescence studies of gold(I–NHC amide complexes

    Directory of Open Access Journals (Sweden)

    Adrián Gómez-Suárez

    2013-10-01

    Full Text Available A flexible, efficient and straightforward methodology for the synthesis of N-heterocyclic carbene gold(I–amide complexes is reported. Reaction of the versatile building block [Au(OH(IPr] (1 (IPr = 1,3-bis(2,6-diisopropylphenylimidazol-2-ylidene with a series of commercially available (heteroaromatic amines leads to the synthesis of several [Au(NRR’(IPr] complexes in good yields and with water as the sole byproduct. Interestingly, these complexes present luminescence properties. UV–vis and fluorescence measurements have allowed the identification of their excitation and emission wavelengths (λmax. These studies revealed that by selecting the appropriate amine ligand the emission can be easily tuned to achieve a variety of colors, from violet to green.

  10. Luminescent solar concentrators with a bottom-mounted photovoltaic cell: performance optimization and power gain analysis

    Institute of Scientific and Technical Information of China (English)

    Ningning Zhang; Yi Zhang; Jun Bao; Feng Zhang; Sen Yan; Song Sun; Chen Gao

    2017-01-01

    Polymethyl methacrylate (PMMA) plate luminescent solar concentrators with a bottom-mounted (BM-LSCs) photovoltaic (PV) cell are fabricated by using a mixture of Lumogen Red 305 and Yellow 083 fluorescent dyes and a commercial monocrystalline silicon cell.The fabricated LSC with dye concentrations of 40 ppm has the highest power gain of 1.50,which is the highest value reported for the dye-doped PMMA plate LSCs.The power gain of the LSC comes from three parts:the waveguide light,the transmitted light,and the reflected light from a white reflector,and their contributions are analyzed quantitatively.The results suggest that the BM-LSCs have great potential for future low-cost PV devices in building integrated PV applications.

  11. Optical filtering and luminescence property of some molybdates prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. J., E-mail: yadav.pooja75@yahoo.in [Department of Electronics, RTM Nagpur University, Nagpur (India); Joshi, C. P. [Physics Department, RCOEM, Nagpur (India); Moharil, S. V., E-mail: svmoharil@yahoo.com [Physics Department, RTM Nagpur University, Nagpur (India)

    2014-10-15

    As an important class of lanthanide inorganic compounds, rare earth ions doped molybdates have gained much attention due to their attractive luminescence and structural properties, supporting various promising applications as phosphor materials in the fields such as white light-emitting diodes, optical fibers, biolabel, lasers, and so on. The molybdate family has promising trivalent cation conducting properties and most of the optical properties result from electron transitions of the 4f shell, which are greatly affected by the composition and structures of rare-earth compounds. In this paper we report the molybdate CaMoO{sub 4}:Eu{sup 3+} for red SSL and Bi{sub 1.4}Y{sub 0.6}MoO{sub 6}, Y{sub 6}MoO{sub 12} for optical filtering, prepared by one step combustion synthesis.

  12. Optical spectroscopy and luminescence quenching of LuI3:Ce3+

    International Nuclear Information System (INIS)

    Birowosuto, M.D.; Dorenbos, P.; Haas, J.T.M. de; Eijk, C.W.E. van; Kraemer, K.W.; Guedel, H.U.

    2006-01-01

    Optical spectroscopy of LuI 3 doped with Ce 3+ using ultraviolet and visible light excitation is reported. LuI 3 host excitation and emission and 4f-5d excitation and emission of Ce 3+ are observed. An empirical model based on crystal field splitting was used to estimate the energy of the highest 4f-5d excitation band. The crystal field splitting and centroid shift were compared to those of LuCl 3 :Ce 3+ and LuBr 3 :Ce 3+ . Temperature dependence of X-ray excited luminescence spectra shows thermal quenching, whereas that of the decay curve of Ce 3+ emission excited at the lowest 5d band of Ce 3+ does not indicate the presence of quenching of Ce 3+ emission for temperature below 625K. The quenching in LuI 3 :Ce 3+ therefore occurs before the 5d Ce 3+ emission takes place

  13. Luminescence of rare-earth ions in Mg[sub 2]SiO[sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Van der Voort, D; Maat-Gersdorf, I de; Blasse, G [Rijksuniversiteit Utrecht (Netherlands)

    1992-01-01

    The luminescence of the rare-earth ions Eu[sup 3+], Tb[sup 3+] and Ce[sup 3+] in Mg[sub 2]SiO[sub 4] is reported. The Tb[sup 3+] ion shows a change in emission colour from blue to green depending on the charge compensator. This is ascribed to a difference in coupling of the Tb[sup 3+] ion to the vibrational lattice modes. The Eu[sup 3+] ion has an average quantum efficiency under charge-transfer excitation of 60% at 4.2 and 20% at 300 K. The Ce[sup 3+] emission is situated in the blue and shows a Stokes shift of 3 500 cm[sup -1]. The relaxation of these ions in the excited state is discussed in terms of their positive effective charge and the stiffness of their surroundings.

  14. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  15. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Gessner, Andre

    2010-12-01

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5 D 0 - 7 F 0 -transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are

  16. Cu"+ luminescence in Na_2Sr_2Al_2PO_4Cl_9 halophosphate phosphor

    International Nuclear Information System (INIS)

    Yerpude, Vrushali; Dhoble, S.J.; Ghormare, K.B.

    2016-01-01

    This article reports the luminescence of copper doped halophosphate Na_2Sr_2Al_2PO_4Cl_9. The phosphor was synthesized by wet chemical method by varying Cu concentrations as 0.02, 0.05, 0.1, 0.2 and 0.5 mole %.The material was further dried in the oven at 80 °C with subsequent quenching at 200°C. Photoluminescence (PL) properties were studied with Shimadzu RF-5301 PC Spectroflurophotometer. PL excitation spectra of monitored at 439 nm emission wavelength, shows a prominent peak around 381 nm from the ground state electronic configuration 3d"1"0.The PL emission spectra of the phosphor monitored at 381 nm excitation wavelength in the blue region shows a broadband band around 412 nm with a shoulder peak at 440 nm, corresponding to the 3d"1"0 ↔ 3d"94s transitions of copper, which are strictly forbidden for the free ion but become partially allowed in crystals or glasses by coupling with lattice vibrations of odd parity resulting in broad excitation and emission bands. The luminescence intensity is found to increase progressively with the doping concentrations of activator and the maximum intensity is observed for 0.1 mole %. The PL spectra is found to be the same for all concentrations with difference only in the intensity. The excited states energies and the Stokes shift are reported to be very sensitive to the size and the symmetry of the copper site, leading to strong modulations of the spectral distribution, depending on the nature of the material. (author)

  17. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS

    Science.gov (United States)

    Liu, Xiao-Li; Liang, Shan; Nan, Fan; Yang, Zhong-Jian; Yu, Xue-Feng; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2013-05-01

    We report the synthesis of 43-nm diameter Au nanocube dimers by using Ag+ ions as competitive ligands to freeze l-cysteine-induced assembly process of the nanocubes to a desirable stage. Ascribed to the resonant interparticle coupling with an newly arising plasmon band at 710 nm and local field enhancement, the two-photon luminescence intensity of the Au nanocube dimers in solution was over 20 times stronger than that of the monomers in the wavelength range 555-620 nm. Furthermore, by coupling Raman tags onto the nanocube surface, a solution-based surface-enhanced Raman scattering (SERS) of the nanocube dimers had an enhancement factor of over 10 times compared to the isolated nanocubes. To sum up, with high stability in solution and attractive optical properties, the Au nanocube dimers have potential applications in in vivo bio-imaging and solution-based SERS.We report the synthesis of 43-nm diameter Au nanocube dimers by using Ag+ ions as competitive ligands to freeze l-cysteine-induced assembly process of the nanocubes to a desirable stage. Ascribed to the resonant interparticle coupling with an newly arising plasmon band at 710 nm and local field enhancement, the two-photon luminescence intensity of the Au nanocube dimers in solution was over 20 times stronger than that of the monomers in the wavelength range 555-620 nm. Furthermore, by coupling Raman tags onto the nanocube surface, a solution-based surface-enhanced Raman scattering (SERS) of the nanocube dimers had an enhancement factor of over 10 times compared to the isolated nanocubes. To sum up, with high stability in solution and attractive optical properties, the Au nanocube dimers have potential applications in in vivo bio-imaging and solution-based SERS. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01170d

  18. Investigations on luminescence behavior of Er3+/Yb3+ co-doped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Arunkumar, S.; Venkata Krishnaiah, K.; Marimuthu, K.

    2015-01-01

    Er3+/Yb3+ co-doped boro-tellurite glasses with the chemical composition 30TeO2+(24 - x)B2O3 + 15SrO + 10BaO + 10Li2O + 10LiF + 1Er2O3 + xYb2O3 (where x = 0, 0.1, 0.5, 1 and 2 in wt%) have been prepared and their luminescence behavior were studied and reported. Absorption spectral measurements have been used to derive the Judd-Ofelt (JO) intensity parameters from the experimental and calculated oscillator strength values following the JO theory. The various lasing parameters such as stimulated emission cross-section (σEp), experimental and calculated branching ratios (βR) and radiative lifetime (τcal) for the 2H9/2 → 4I15/2, 4S3/2 → 4I15/2 and 4I13/2 → 4I15/2 emission transitions were determined using the JO intensity parameters. The absorption and emission cross-section values for the 4I13/2 → 4I15/2 emission band have been calculated using McCumbar theory and the Gain cross-section for the 4I13/2 → 4I15/2 emission transition also obtained. The upconversion emission mechanism have been studied through various energy transfer processes and the intensity of the upconversion emission transitions are found to increase with the increase in Yb3+ ion concentration. The luminescence decay curves corresponding to the 4I13/2 → 4I15/2 transition of the Er3+/Yb3+ co-doped boro-tellurite glasses under 980 nm excitation wavelength have also been studied and reported in the present work.

  19. Dependence of the thermal influence on luminescence lifetimes from quartz on the duration of optical stimulation

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2003-01-01

    Time-resolved luminescence spectra may be measured from quartz at various stages of continuous optical stimulation in order to investigate properties of the spectra associated with the 'fast', 'medium', and 'slow' components of continuous optically stimulated luminescence (OSL). In this work, temperature related changes of luminescence lifetimes and luminescence intensity, both evaluated from time-resolved luminescence spectra recorded in the 'fast' 'medium' and 'slow' component regions of quartz OSL, have been investigated. The luminescence, stimulated at 525 nm, and measured at intervals between 20 deg. C and 200 deg. C reaches maximum intensity at 100 deg. C and decreases thereafter up to 200 deg. C, the maximum temperature of the investigations. Luminescence lifetimes, on the other hand, remain constant within 40±3 μs between 20 deg. C and 100 deg. C and then decrease down to about μs at 200 deg. C. The initial increase of luminescence intensity with temperature between 20 deg. C and 100 deg. C is discussed in terms of thermal assistance to luminescence stimulation. Beyond 100 deg. C, radiative recombination is affected by quenching of luminescence and reduction in luminescence lifetimes. The activation energy for thermal quenching was evaluated to be in the range 0.63±0.07 eV at all stimulation times and that of thermal assistance was evaluated to be about 0.06 eV for the 'fast' and 'medium' component regions and about 0.1 eV for the 'slow' component region of the OSL

  20. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  1. A label-free luminescent switch-on assay for ATP using a G-quadruplex-selective iridium(III) complex.

    Science.gov (United States)

    Leung, Ka-Ho; Lu, Lihua; Wang, Modi; Mak, Tsun-Yin; Chan, Daniel Shiu-Hin; Tang, Fung-Kit; Leung, Chung-Hang; Kwan, Hiu-Yee; Yu, Zhiling; Ma, Dik-Lung

    2013-01-01

    We report herein the G-quadruplex-selective property of a luminescent cyclometallated iridium(III) complex for the detection of adenosine-5'-triphosphate (ATP) in aqueous solution. The ATP-binding aptamer was employed as the ATP recognition unit, while the iridium(III) complex was used to monitor the formation of the G-quadruplex structure induced by ATP. The sensitivity and fold enhancement of the assay were higher than those of the previously reported assay using the organic dye crystal violet as a fluorescent probe. This label-free luminescent switch-on assay exhibits high sensitivity and selectivity towards ATP with a limit of detection of 2.5 µM.

  2. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures.

    Science.gov (United States)

    Mughal, A; El Demellawi, J K; Chaieb, Sahraoui

    2014-12-14

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material's luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon.

  3. Band-gap engineering by molecular mechanical strain-induced giant tuning of the luminescence in colloidal amorphous porous silicon nanostructures

    KAUST Repository

    Mughal, Asad Jahangir

    2014-01-01

    Nano-silicon is a nanostructured material in which quantum or spatial confinement is the origin of the material\\'s luminescence. When nano-silicon is broken into colloidal crystalline nanoparticles, its luminescence can be tuned across the visible spectrum only when the sizes of the nanoparticles, which are obtained via painstaking filtration methods that are difficult to scale up because of low yield, vary. Bright and tunable colloidal amorphous porous silicon nanostructures have not yet been reported. In this letter, we report on a 100 nm modulation in the emission of freestanding colloidal amorphous porous silicon nanostructures via band-gap engineering. The mechanism responsible for this tunable modulation, which is independent of the size of the individual particles and their distribution, is the distortion of the molecular orbitals by a strained silicon-silicon bond angle. This mechanism is also responsible for the amorphous-to-crystalline transformation of silicon. This journal is

  4. A label-free luminescent switch-on assay for ATP using a G-quadruplex-selective iridium(III complex.

    Directory of Open Access Journals (Sweden)

    Ka-Ho Leung

    Full Text Available We report herein the G-quadruplex-selective property of a luminescent cyclometallated iridium(III complex for the detection of adenosine-5'-triphosphate (ATP in aqueous solution. The ATP-binding aptamer was employed as the ATP recognition unit, while the iridium(III complex was used to monitor the formation of the G-quadruplex structure induced by ATP. The sensitivity and fold enhancement of the assay were higher than those of the previously reported assay using the organic dye crystal violet as a fluorescent probe. This label-free luminescent switch-on assay exhibits high sensitivity and selectivity towards ATP with a limit of detection of 2.5 µM.

  5. Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging.

    Science.gov (United States)

    Mandal, Amal Kumar; Sreejith, Sivaramapanicker; He, Tingchao; Maji, Swarup Kumar; Wang, Xiao-Jun; Ong, Shi Li; Joseph, James; Sun, Handong; Zhao, Yanli

    2015-05-26

    We report an experimental observation of aggregation-induced enhanced luminescence upon three-photon excitation in aggregates formed from a class of unsymmetrical cyanostilbene derivatives. Changing side chains (-CH3, -C6H13, -C7H15O3, and folic acid) attached to the cyanostilbene core leads to instantaneous formation of aggregates with sizes ranging from micrometer to nanometer scale in aqueous conditions. The crystal structure of a derivative with a methyl side chain reveals the planarization in the unsymmetrical cyanostilbene core, causing luminescence from corresponding aggregates upon three-photon excitation. Furthermore, folic acid attached cyanostilbene forms well-dispersed spherical nanoaggregates that show a high three-photon cross-section of 6.0 × 10(-80) cm(6) s(2) photon(-2) and high luminescence quantum yield in water. In order to demonstrate the targeted bioimaging capability of the nanoaggregates, three cell lines (HEK293 healthy cell line, MCF7 cancerous cell line, and HeLa cancerous cell line) were employed for the investigations on the basis of their different folate receptor expression level. Two kinds of nanoaggregates with and without the folic acid targeting ligand were chosen for three-photon bioimaging studies. The cell viability of three types of cells incubated with high concentration of nanoaggregates still remained above 70% after 24 h. It was observed that the nanoaggregates without the folic acid unit could not undergo the endocytosis by both healthy and cancerous cell lines. No obvious endocytosis of folic acid attached nanoaggregates was observed from the HEK293 and MCF7 cell lines having a low expression of the folate receptor. Interestingly, a significant amount of endocytosis and internalization of folic acid attached nanoaggregates was observed from HeLa cells with a high expression of the folate receptor under three-photon excitation, indicating targeted bioimaging of folic acid attached nanoaggregates to the cancer cell line

  6. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized; Luminiscencia opticamente estimulada de ZnO obtenido por tratamiento termico de ZnS sintetizado quimicamente

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R. [Universidad de Sonora, A.P. 130, Hermosillo (Mexico)

    2005-07-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  7. Luminescent and scintillation properties of Bi{sup 3+} doped Y{sub 2}SiO{sub 5} and Lu{sub 2}SiO{sub 5} single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu., E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials (LOM), Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Malinowski, P. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Jary, V.; Kucerkova, R.; Beitlerova, A.; Mares, J.A.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Fedorov, A. [Institute for Single Crystals NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv (Ukraine)

    2014-10-15

    In this paper we report our follow-up research on the Bi{sup 3+} luminescence in orthosilicate compounds, focusing on absorption, luminescent and scintillation properties of YSO:Bi and LSO:Bi SCFs with the Bi concentration ranging from 0.05 to 0.18 at%. For purpose of this research, single crystalline films (SCF) of Y{sub 2}SiO{sub 5}:Bi and Lu{sub 2}SiO{sub 5}:Bi have been grown by the LPE method onto YSO and LSO substrates from the melt-solution based on Bi{sub 2}O{sub 3} flux. - Highlights: • YSO:Bi and LSO:Bi films have been grown by liquid phase epitaxy. • Bi{sup 3+} absorption and luminescence depends on Bi concentration. • Scintillation properties of YSO:Bi and LSO:Bi films have been studied.

  8. Luminescence properties of Ce3+-activated alkaline earth silicon nitride M2Si5N8 (M = Ca, Sr, Ba) materials

    NARCIS (Netherlands)

    Li, Y.Q.; With, de G.; Hintzen, H.T.J.M.

    2006-01-01

    The luminescence properties of Ce3+, Li+ or Na+ co-doped alkaline-earth silicon nitride M2Si5N8 (M=Ca, Sr, Ba) are reported. The solubility of Ce3+ and optical properties of M2-2xCexLixSi5N8 (x0.1) materials have been investigated as function of the cerium concentration by X-ray powder diffraction

  9. On the correlation between annealing and variabilities in pulsed-luminescence from quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2006-01-01

    Properties of luminescence lifetimes in quartz related to annealing between 500 and 900 deg. C have been investigated. The luminescence was pulse-stimulated at 470nm from sets of granular quartz annealed at 500, 600, 700, 800, and 900 deg. C. The lifetimes decrease with annealing temperature from about 42 to 33μs when the annealing temperature is increased from 500 to 900 deg. C. Luminescence lifetimes are most sensitive to duration of annealing at 600 deg. C, decreasing from 40.2+/-0.7μs by as much as 7μs when the duration of annealing is changed from 10 to 60min. However, at 800-900 deg. C lifetimes are essentially independent of annealing temperature at about 33μs. Increasing the exciting beta dose causes an increase in the lifetimes of the stimulated luminescence in the sample annealed at 800 deg. C but not in those annealed at either 500 or 600 deg. C. The temperature-resolved distribution of luminescence lifetimes is affected by thermal quenching of luminescence. These features may be accounted for with reference to two principal luminescence centres involved in the luminescence emission process

  10. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4:Eu2+

    International Nuclear Information System (INIS)

    Wei, Yongbin; Wu, Zheng; Jia, Yanmin; Liu, Yongsheng

    2015-01-01

    Piezoelectrically-induced stress-luminescence in the CaAl 2 O 4 :Eu 2+ was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl 2 O 4 :Eu 2+ arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl 2 O 4 :Eu 2+ ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl 2 O 4 :Eu 2+ was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors

  11. Pottery versus sediment: Optically stimulated luminescence dating of the Neolithic Vinča culture, Serbia

    DEFF Research Database (Denmark)

    Bate, Stephen; Stevens, Thomas; Buylaert, Jan-Pieter

    2017-01-01

    Optically stimulated luminescence (OSL) dating was applied to the Neolithic Vinča culture's type-site, Vinča Belo-Brdo, to establish best protocols for routine luminescence dating of similar Holocene sites, critical in understanding Neolithic to Chalcolithic cultural development. Equivalent dose ...

  12. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    International Nuclear Information System (INIS)

    Cheah, S.F.; Lee, S.C.; Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z.

    2015-01-01

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer

  13. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Luminescence of Ce doped oxygen crystalline compounds based on Hf and Ba

    CERN Document Server

    Borisevich, A E; Lecoq, P

    2003-01-01

    The luminescence properties of the Ce-doped hafnium and barium compounds have been investigated to determine their potential as heavy scintillation materials. Compounds have been prepared by solid state synthesis. All of them have shown a bright luminescence attributed to trivalent cerium. Emission bands are peaked in the 425-475nm spectral region at room temperature.

  15. Terbium nitrate luminescence quenching by eosin in he presence of lithium perchlorate in sulfolane solutions

    International Nuclear Information System (INIS)

    Ostakhov, S.S.; Kolosnitsyn, V.S.; Krasnogorskaya, N.N.; Kazakov, V.P.

    2000-01-01

    Quenching of terbium nitrate luminescence by anionic dye, eosin, in the presence of lithium perchlorate in sulfolane solutions was studied. Temperature dependence of terbium nitrate luminescence in sulfolane solutions in the presence of perchlorate anions were considered. The values of energy required for water molecular substitution in Tb 3+ ion coordination sphere for solvent molecule in electrolyte solution were ascertained [ru

  16. Luminescence and scintillation of Eu.sup.2+./sup.-doped high silica glass

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; Chen, D.; Yu, B.; Zhang, Q.; Shen, Y.; Nikl, Martin; Kučerková, Romana; Beitlerová, Alena; Wanarak, C.; Phunpueok, A.

    2011-01-01

    Roč. 5, č. 1 (2011), s. 40-42 ISSN 1862-6254 R&D Projects: GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : glasses * Eu 2+ * luminescence * scintillation * time-resolved luminescence * porous materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.218, year: 2011

  17. Study on the relationship of protease production and luminescence in Vibrio harveyi.

    Science.gov (United States)

    Nakayama, T; Nomura, N; Matsumura, M

    2006-07-01

    To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.

  18. Plasma luminescence feedback control system for precise ultrashort pulse laser tissue ablation

    Science.gov (United States)

    Kim, Beop-Min; Feit, Michael D.; Rubenchik, Alexander M.; Gold, David M.; Darrow, Christopher B.; Marion, John E., II; Da Silva, Luiz B.

    1998-05-01

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue without damaging nearby soft tissue using an ultrashort pulse laser. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so bone tissue is selectively ablated while preserving the spinal cord.

  19. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar

    DEFF Research Database (Denmark)

    Guralnik, Benny; Li, Bo; Jain, Mayank

    2015-01-01

    the growth and decay of laboratory-regenerated luminescence signals. Here we review a selection of common models describing the response of infrared stimulated luminescence (IRSL) of feldspar to constant radiation and temperature as administered in the laboratory. We use this opportunity to introduce...

  20. Luminescence properties of Si-containing porous matrix–PbS nanoparticle systems

    International Nuclear Information System (INIS)

    Tarasov, S. A.; Aleksandrova, O. A.; Lamkin, I. A.; Maksimov, A. I.; Maraeva, E. V.; Mikhailov, I. I.; Moshnikov, V. A.; Musikhin, S. F.; Nalimova, S. S.; Permyakov, N. V.; Spivak, Yu. M.; Travkin, P. G.

    2015-01-01

    The luminescence properties of systems that contain lead-sulfide nanoparticles deposited onto substrates fabricated from porous silicon, oxidized porous silicon, and porous (tin-oxide)–(silicon-oxide) layers are studied. It is shown that the structure and composition of the matrix induce a strong effect on the luminescence spectra of colloidal quantum dots, defining their emission wavelength