WorldWideScience

Sample records for luminescent nanomaterials application

  1. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  2. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.

    Science.gov (United States)

    Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji

    2018-07-04

    Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.

  3. Nanomaterials for Defense Applications

    Science.gov (United States)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  4. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  5. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    Science.gov (United States)

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  6. Nanomaterials in biomedical applications

    DEFF Research Database (Denmark)

    Christiansen, Jesper de Claville; Potarniche, Catalina-Gabriela; Vuluga, Z.

    2011-01-01

    Advances in nano materials have lead to applications in many areas from automotive to electronics and medicine. Nano composites are a popular group of nano materials. Nanocomposites in medical applications provide novel solutions to common problems. Materials for implants, biosensors and drug del...

  7. Applications of nanomaterials in sensors and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Tuantranont, Adisorn (ed.) [National Electronics and Computer Technology Center (NECTEC), Pathumthani (Thailand). Nanoelectronics and MEMS Laboratory

    2013-11-01

    Recent progress in the synthesis of nanomaterials and our fundamental understanding of their properties has led to significant advances in nanomaterial-based gas, chemical and biological sensors. Leading experts around the world highlight the latest findings on a wide range of nanomaterials including nanoparticles, quantum dots, carbon nanotubes, molecularly imprinted nanostructures or plastibodies, nanometals, DNA-based structures, smart nanomaterials, nanoprobes, magnetic nanomaterials, organic molecules like phthalocyanines and porphyrins, and the most amazing novel nanomaterial, called graphene. Various sensing techniques such as nanoscaled electrochemical detection, functional nanomaterial-amplified optical assays, colorimetry, fluorescence and electrochemiluminescence, as well as biomedical diagnosis applications, e.g. for cancer and bone disease, are thoroughly reviewed and explained in detail. This volume will provide an invaluable source of information for scientists working in the field of nanomaterial-based technology as well as for advanced students in analytical chemistry, biochemistry, electrochemistry, material science, micro- and nanotechnology.

  8. Application of nanotechnologies and nanomaterials

    International Nuclear Information System (INIS)

    Vissokov, G.

    2011-01-01

    Full text: In the present report, we give a brief description of the present state, development, and application of nanotechnologies (NT) and nanomaterials (NM) in some key industries, such as chemical industry and power industry (nanocatalysts, and nanocatalysis, hydrogen storage and fuel cells, artificial photosynthesis and Gratzel's cell, energy efficiency, energy storage); fabrication of consolidated nanostructures (ceramic nano-materials, nanostructured coatings, production of low-combustibility plastics, nanostructured hard materials, nanostructures with colossal magnetoresistance); fabrication of ultra-high strength carbon fibres; nano-technologies for environmental protection (adsorption of heavy metals by self-ordered self-organized nano-structure ensembles, photocatalyric purification of liquids, fabrication of mesoporous materials, application of nanoporous polymers for water purification, nanoparticles and environment); medical applications; military applications and fight against terrorism; household applications; energetic and some other [1-7].; In 2010, the European Union and the governments of the USA and Japan each invested over $ 2 billion in nanoscience, which is ample evidence to substantiate the claim that the 21 st century will be the century of nanotechnologies. Some of the optimistic forecasts predict that in 2014 the total revenues from NT will exceed those brought by the information technologies and telecommunications combined. At present, more than 800 companies are involved in R&TD in this field (including giants such as Intel, IBM, Samsung, and Mitsubishi) while more than ten Nobel prizes were awarded for research in nanoscience

  9. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  10. The applications of nanomaterials in nuclear medicine

    International Nuclear Information System (INIS)

    Liu Jinjian; Liu Jianfeng

    2010-01-01

    Over the last decade, nanotechnology and nanomaterials have gained rapid development in medical application, especially in targeted drug delivery and gene transfer vector domain, and nano-materials are also beginning to applied in nuclear medicine. This paper is to make a view of the application research of several types of nanomaterials in nuclear medicine, and discuss some problems and the main direction of future development. (authors)

  11. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  12. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song

    2012-01-01

    The controlled release of therapeutics has been one of the major challenges for scientists and engineers during the past three decades. Coupled with excellent biocompatibility profiles, various nanomaterials have showed great promise for biomedical applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate goal of controlled and targeted release by "smart" nanomaterials. The most heavily explored strategies include (1) pH, (2) enzymes, (3) redox, (4) magnetic, and (5) light-triggered release.

  13. Magnetic nanomaterials undamentals, synthesis and applications

    CERN Document Server

    Sellmyer, David J

    2017-01-01

    Timely and comprehensive, this book presents recent advances in magnetic nanomaterials research, covering the latest developments, including the design and preparation of magnetic nanoparticles, their physical and chemical properties as well as their applications in different fields, including biomedicine, magnetic energy storage, wave–absorbing and water remediation. By allowing researchers to get to the forefront developments related to magnetic nanomaterials in various disciplines, this is invaluable reading for the nano, magnetic, energy, medical, and environmental communities.

  14. Recent applications of nanomaterials in capillary electrophoresis.

    Science.gov (United States)

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Stimuli responsive nanomaterials for controlled release applications

    KAUST Repository

    Li, Song; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    applications. Stimuli-responsive nanomaterials guarantee the controlled release of cargo to a given location, at a specific time, and with an accurate amount. In this review, we have combined the major stimuli that are currently used to achieve the ultimate

  17. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  18. Thermoelectric nanomaterials materials design and applications

    CERN Document Server

    Koumoto, Kunihito

    2014-01-01

    Presently, there is an intense race throughout the world to develop good enough thermoelectric materials which can be used in wide scale applications. This book focuses comprehensively on very recent up-to-date breakthroughs in thermoelectrics utilizing nanomaterials and methods based in nanoscience. Importantly, it provides the readers with methodology and concepts utilizing atomic scale and nanoscale materials design (such as superlattice structuring, atomic network structuring and properties control, electron correlation design, low dimensionality, nanostructuring, etc.). Furthermore, also

  19. Biomedical Applications of Zinc Oxide Nanomaterials

    Science.gov (United States)

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  20. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  1. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  2. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  3. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  4. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  5. Synthesis and Application of Graphene Based Nanomaterials

    Science.gov (United States)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  6. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  7. A comparative study on the luminescence properties of Ce3+/Tb3+ doped Gd-based host nanomaterials

    Science.gov (United States)

    Jadhao, Charushila Vasant; Rani, Barkha; Sahu, Niroj Kumar

    2018-04-01

    A comparative study on the crystal phases and their respective luminescence behaviour of Gd3+ based host materials such as GdPO4, GdF3, GdVO4 and Gd2O3 sensitized with 7at.% Ce3+ and activated with 5 at.% Tb3+ have been reported. The nanomaterials were prepared by polyol method using ethylene glycol as solvent and found to have different crystal structures such as monoclinic, orthorhombic, tetragonal and cubic phase. Clear characteristics emission from Tb3+ has been observed in all the samples when excited in the absorption wavelength of Ce3+ and Gd3+ (˜280 nm). Among all the above materials, intense emission of Tb3+ is found in GdPO4 followed by GdF3, Gd2O3 and GdVO4 respectively. The Tb3+ emission is strongly influenced by the energy transfer process and crystal structure of the host materials and hence this study will be important for choosing suitable materials for display devices and biomedical applications.

  8. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  9. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    Science.gov (United States)

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  10. Recent advances in applications of nanomaterials for sample preparation.

    Science.gov (United States)

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    Science.gov (United States)

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Engineering noble metal nanomaterials for environmental applications

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  13. Engineering noble metal nanomaterials for environmental applications.

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-07

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  14. Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

    KAUST Repository

    Ahmed, Elaf

    2017-01-01

    Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication

  15. Multifunctional DNA Nanomaterials for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Dick Yan Tam

    2015-01-01

    Full Text Available The rapidly emerging DNA nanotechnology began with pioneer Seeman’s hypothesis that DNA not only can carry genetic information but also can be used as molecular organizer to create well-designed and controllable nanomaterials for applications in materials science, nanotechnology, and biology. DNA-based self-assembly represents a versatile system for nanoscale construction due to the well-characterized conformation of DNA and its predictability in the formation of base pairs. The structural features of nucleic acids form the basis of constructing a wide variety of DNA nanoarchitectures with well-defined shapes and sizes, in addition to controllable permeability and flexibility. More importantly, self-assembled DNA nanostructures can be easily functionalized to construct artificial functional systems with nanometer scale precision for multipurposes. Apparently scientists envision artificial DNA-based nanostructures as tool for drug loading and in vivo targeted delivery because of their abilities in selective encapsulation and stimuli-triggered release of cargo. Herein, we summarize the strategies of creating multidimensional self-assembled DNA nanoarchitectures and review studies investigating their stability, toxicity, delivery efficiency, loading, and control release of cargos in addition to their site-specific targeting and delivery of drug or cargo molecules to cellular systems.

  16. Antimicrobial nanomaterials for food packaging applications

    Directory of Open Access Journals (Sweden)

    Radusin Tanja I.

    2016-01-01

    Full Text Available Food packaging industry presents one of the fastest growing industries nowadays. New trends in this industry, which include reducing food as well as packaging waste, improved preservation of food and prolonged shelf-life together with substitution of petrochemical sources with renewable ones are leading to development of this industrial area in diverse directions. This multidisciplinary challenge is set up both in front of food and material scientists. Nanotechnology is recently answering to these challenges, with different solutions-from improvements in materials properties to active packaging solutions, or both at the same time. Incorporation of nanoparticles into polymer matrix and preparation of hybrid materials is one of the methods of modification of polymer properties. Nano scaled materials with antimicrobial properties can act as active components when added into polymer, thereby leading to prolonged protective function of pristine food packaging material. This paper presents a review in the field of antimicrobial nanomaterials for food packaging in turn of technology, application and regulatory issues.

  17. Advanced nanomaterials and their applications in renewable energy

    CERN Document Server

    Liu, Jingbo Louise

    2015-01-01

    Advanced Nanomaterials and Their Applications in Renewable Energy presents timely topics related to nanomaterials' feasible synthesis and characterization, and their application in the energy fields. In addition, the book provides insights and scientific discoveries in toxicity study, with information that is easily understood by a wide audience. Advanced energy materials are important in designing materials that have greater physical, electronic, and optical properties. This book emphasizes the fundamental physics and chemistry underlying the techniques used to develop solar and fuel cell

  18. Luminescent nanodiamonds for biomedical applications.

    Science.gov (United States)

    Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C

    2011-12-01

    In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.

  19. Nanomaterials application in electrochemical detection of heavy metals

    International Nuclear Information System (INIS)

    Aragay, Gemma; Merkoçi, Arben

    2012-01-01

    Highlights: ► We review the recent trends in the application of nanomaterials for electrochemical detection of heavy metals. ► Different types of nanomaterials including metal nanoparticles, different carbon nanomaterials or nanochannels have been applied on the electrochemical analysis of heavy metals in various sensing formats/configurations. ► The great properties of nanomaterials allow the new devices to show advantages in terms of sensing performance (i.e. increase the sensitivity, decrease the detection limits and improve the stability). ► Between the various electrochemical techniques, voltammetric and potentiometric based ones are particularly taking interesting advantages by the incorporation of new nanomaterials due to the improved electrocatalytic properties beside the increase of the sensor's transducing area. - Abstract: Recent trends in the application of nanomaterials for electrochemical detection of heavy metals are shown. Various nanomaterials such as nanoparticles, nanowires, nanotubes, nanochannels, graphene, etc. have been explored either as modifiers of electrodes or as new electrode materials with interest to be applied in electrochemical stripping analysis, ion-selective detection, field-effect transistors or other indirect heavy metals (bio)detection alternatives. The developed devices have shown increased sensitivity and decreased detection limits between other improvements of analytical performance data. The phenomena behind nanomaterials responses are also discussed and some typical responses data of the developed systems either in standard solutions or in real samples are given. The developed nanomaterials based electrochemical systems are giving new inputs to the existing devices or leading to the development of novel heavy metal detection tools with interest for applications in field such as diagnostics, environmental and safety and security controls or other industries.

  20. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  1. Surface engineering of graphene-based nanomaterials for biomedical applications.

    Science.gov (United States)

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  2. Applications of nanomaterials as vaccine adjuvants

    Science.gov (United States)

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  3. Biomedical Applications of Nanotechnology and Nanomaterials

    OpenAIRE

    Vinay Bhardwaj; Ajeet Kaushik

    2017-01-01

    The spurring growth and clinical adoption of nanomaterials and nanotechnology in medicine, i.e. “nanomedicine”, to shape global health care system is a collective effort that comprises academia research, industrial drive, and political and financial support from government.[...

  4. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    International Nuclear Information System (INIS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-01-01

    Rare earths orthovanadates (REVO 4 ) doped with luminescent lanthanide ions (Ln 3+ ) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu 3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO 4 3− groups to Eu 3+ ions. In the presented study, Fe 3 O 4 @SiO 2 @GdVO 4 :Eu 3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO 4 doped with Ln 3+ . Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells

  5. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Szczeszak, Agata [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Ekner-Grzyb, Anna [Adam Mickiewicz University, Department of Behavioural Ecology, Faculty of Biology (Poland); Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Mrówczyńska, Lucyna [Adam Mickiewicz University, Department of Cell Biology, Faculty of Biology (Poland); Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2015-03-15

    Rare earths orthovanadates (REVO{sub 4}) doped with luminescent lanthanide ions (Ln{sup 3+}) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu{sup 3+} ions is well known for its efficient and intense red emission, induced by energy transfer from the VO{sub 4}{sup 3−} groups to Eu{sup 3+} ions. In the presented study, Fe{sub 3}O{sub 4}@SiO{sub 2}@GdVO{sub 4}:Eu{sup 3+} 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO{sub 4} doped with Ln{sup 3+}. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  6. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Science.gov (United States)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  7. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  8. Application of nanomaterials in solar thermal energy storage

    Science.gov (United States)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  9. Nanomaterials for biosensing applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael eHolzinger

    2014-08-01

    Full Text Available A biosensor device is defined by its biological, or bioinspired receptor unit with unique specificities towards corresponding analytes. These analytes are often of biological origin like DNAs or proteins from the immune system (antibodies, antigens of diseases or infections. Such analytes can also be simple molecules like glucose or pollutants when a biological receptor unit with particular specificity is available. One of many other challenges in biosensor development is the efficient signal capture of the biological recognition event (transduction. Such transducers translate the interaction of the analyte with the biological element into electrochemical, electrochemiluminescent, magnetic, gravimetric, or optical signals. In order to increase sensitivities and to lower detection limits down to even individual molecules, nanomaterials are promising candidates due to the possibility to immobilize an enhanced quantity of bioreceptor units at reduced volumes and even to act itself as transduction element. Among such nanomaterials, gold nanoparticles, semi-conductor quantum dots, polymer nanoparticles, carbon nanotubes, nanodiamonds, and graphene are intensively studied. Due to the vast evolution of this research field, this review summarizes in a non-exhaustive way the advantages of nanomaterials by focusing on nano-objects which provide further beneficial properties than just an enhanced surface area.

  10. Luminescence optically stimulated: theory and applications

    International Nuclear Information System (INIS)

    Rivera M, T.; Azorin N, J.

    2002-01-01

    The thermally stimulated luminescence (Tl) has occupied an important place in the Solid state physics (FES) by the flexibility of the phenomena, mainly for its applications in the fields of Radiation Physics (FR) and Medical Physics (MF). The reason of this phenomena lies in the fact of the electrons release by the action of heat. Under that same reason, it can be used the action of another stimulant agent for releasing the trapped electrons in the metastable states (EM), this agent is the light which has the same effect that the heat, giving as result the production of light photons at using light in the visible spectra, of different wavelength that the excitation light. This phenomena is called Luminescence optically stimulated (LOE). The LOE has a great impact in the Solid State Physics (FES), dating and now in the use of the phenomena as a dosimetric method, alternate to the Tl, for its use in the ionizing and non-ionizing radiations fields. (Author)

  11. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu Qiao

    2018-01-01

    Full Text Available Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  12. Perspectives on the Emerging Applications of Multifaceted Biomedical Polymeric Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammed Gumel

    2015-01-01

    Full Text Available Biodegradable and biocompatible polymeric nanomaterials, serving as biomedical devices have garnered significant attention as a promising solution to therapeutic management of many chronic diseases. Despite their potentials, majority of the synthetic nanomaterials used in biomedical applications lack crucial properties, for example, ligand binding sites, responsiveness, and switchability to efficiently deliver intended drugs to the target site. Advancements in manipulating nanoscale geometry have incurred the incorporation of triggered release mechanism within the nanomaterials design. This expanded their potential applications beyond nanocarriers to theranostics exhibiting both tandem drug delivery and diagnostic capabilities. Additionally, it highlights possibilities to design nanomaterials that could translate chemical response(s to photometric display, thus making affordable biosensors and actuators readily available for biomedical exploitation. It is anticipated that, in the near future, these implementations could be made to access some of the most difficult therapy locations, for example, blood brain barrier to provide efficient management of Alzheimer, Huntington, and other neurodegenerative diseases. This review aims to serve as a reference platform by providing the readers with the overview of the recent advancements and cutting-edge techniques employed in the production and instrumentation of such nanomaterials.

  13. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    Science.gov (United States)

    Tseng, Yi-Hsuan

    In this dissertation, a hybrid nanomaterial, single-wall carbon nanotubes-copper sulfide nanoparticles (SWNTs-CuS NPs), was synthesized and its properties were analyzed. Due to its unique optical and thermal properties, the hybrid nanomaterial exhibited great potential for infrared (IR) sensing and energy harvesting. The hybrid nanomaterial was synthesized with the non-covalent bond technique to functionalize the surface of the SWNTs and bind the CuS nanoparticles on the surface of the SWNTs. For testing and analyzing the hybrid nanomaterial, SWNTs-CuS nanoparticles were formed as a thin film structure using the vacuum filtration method. Two conductive wires were bound on the ends of the thin film to build a thin film device for measurements and analyses. Measurements found that the hybrid nanomaterial had a significantly increased light absorption (up to 80%) compared to the pure SWNTs. Moreover, the hybrid nanomaterial thin film devices exhibited a clear optical and thermal switching effect, which could be further enhanced up to ten times with asymmetric illumination of light and thermal radiation on the thin film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials was demonstrated, indicating a new route for achieving thermoelectricity. In addition, CuS nanoparticles have great optical absorption especially in the near-infrared region. Therefore, the hybrid nanomaterial thin films also have the potential for IR sensing applications. The first application to be covered in this dissertation is the IR sensing application. IR thin film sensors based on the SWNTs-CuS nanoparticles hybrid nanomaterials were fabricated. The IR response in the photocurrent of the hybrid thin film sensor was significantly enhanced, increasing the photocurrent by 300% when the IR light illuminates the thin film device asymmetrically. The detection limit could be as low as 48mW mm-2. The dramatically enhanced

  14. Overview of Cellulose Nanomaterials, Their Capabilities and Applications

    Science.gov (United States)

    Robert J. Moon; Gregory T. Schueneman; John Simonsen

    2016-01-01

    Cellulose nanomaterials (CNs) are a new class of cellulose particles with properties and functionalities distinct from molecular cellulose and wood pulp, and as a result, they are being developed for applications that were once thought impossible for cellulosic materials. Momentum is growing in CN research and development, and commercialization in this field is...

  15. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far ...

  16. Chemical Sensing Applications of ZnO Nanomaterials

    Science.gov (United States)

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  17. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    Science.gov (United States)

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  19. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  20. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-01-01

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  1. Magnetic and luminescent hybrid nanomaterial based on Fe{sub 3}O{sub 4} nanocrystals and GdPO{sub 4}:Eu{sup 3+} nanoneedles

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin; Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2012-10-15

    A bifunctional hybrid nanomaterial, which can show magnetic and luminescent properties, was obtained. A magnetic phase was synthesized as a core/shell type composite. Nanocrystalline magnetite, Fe{sub 3}O{sub 4} was used as the core and was encapsulated in a silica shell. The luminescent phase was GdPO{sub 4} doped with Eu{sup 3+} ions, as the emitter. The investigated materials were synthesized using a coprecipitation method. Encapsulated Fe{sub 3}O{sub 4} was 'trapped' in a nano-scaffold composed of GdPO{sub 4} crystalline nanoneedles. When an external magnetic field was applied, this hybrid composite was attracted in one direction. Also, the luminescent phase can move simultaneously with magnetite due to a 'trapping' effect. The structure and morphology of the obtained nanocomposites were examined with the use of transmission electron microscopy and X-ray powder diffraction. Spectroscopic properties of the Eu{sup 3+}-doped nanomaterials were studied by measuring their excitation and emission spectra as well as their luminescence decay times.Graphical Abstract.

  2. Luminescence basic concepts, applications and instrumentation

    CERN Document Server

    Virk, Hardev Singh

    2014-01-01

    The word luminescence was first used by a German physicist, Eilhardt Wiedemann, in 1888. He also classified luminescence into six kinds according to the method of excitation. No better basis of classification is available today. He recognized photoluminescence, thermoluminescence, electroluminescence, crystalloluminescence, triboluminescence, and chemiluminescence. The designations are obvious, characterized by the prefix. This Volume consists of 9 Chapters, including 8 Review Papers and one Case Study. The first two papers are based on OLEDs. Organic light emitting diodes (OLEDs) have been th

  3. One-Step Thermolysis Synthesis of Divalent Transition Metal Ions Monodoped and Tridoped CdS and ZnS Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    S. E. Saeed

    2014-01-01

    Full Text Available Mn2+, Co2+, or Ni2+ monodoped CdS (or ZnS and Mn2+-Co2+-Ni2+ tridoped CdS (or ZnS have been successfully synthesized by novel one-step thermolysis method using thiourea as a sulphur source. The synthesized nanomaterials were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and scanning electron microscopy (SEM. It is found that the average diameter and morphology of the synthesized samples varied with the nature of dopant ion. The successful doping of Mn2+-Co2+-Ni2+ tridoped ions into the host CdS (or ZnS was proved by the EDX spectra. The luminescence of CdS is only enhanced when monodoped with Mn2+ whereas it is enhanced when ZnS is either monodoped with Mn2+, Co2+, or Ni2+ or tridoped with Mn2+-Co2+-Ni2+. The synthesized samples could therefore offer opportunities for further fundamental research and technological applications.

  4. Synthesis and characterization of lanthanide based nanomaterials for radiation detection and biomedical applications

    Science.gov (United States)

    Yao, Mingzhen

    2011-12-01

    Lanthanide based nanomaterials have shown a great potential in various areas such as luminescence imaging, luminescent labels, and detection of cellular functions. Due to the f-f transitions of the metal ion, luminescence of lanthanide ions is characterized by sharp and narrow emissions. In this dissertation lanthanide based nanoparticles such as Ce3+, Eu3+ and other lanthanide ions doped LaF3 were synthesized, their characterization, encapsulation and embedding into hybrid matrix were investigated and some of their biomedical and radiological applications were studied. DMSO is a common solvent which has been used widely for biological applications. LaF3:Ce nanoparticles were synthesized in DMSO and it was found that their fluorescent emission originates from the metal-to-ligand charge-transfer excited states. After conjugation with PpIX and then encapsulation within PLGA, the particles show efficient uptake by cancer cells and great cytotoxicity, which is promising for applications in cancer treatments. However, the emission of Eu3+ in DMSO is totally different from LaF3:Ce, very strong characteristic luminescence is observed but no emissions from metal-to-ligand charge-transfer excited states as observed in LaF3:Ce in DMSO. Besides, it is very interesting to see that the coupling of Eu 3+ with O-H oscillations after water was introduced has an opposite effect on emission peaks at 617 nm and its shoulder peak at 613 nm. As a result, the intensity ratio of these two emissions has a nearly perfect linear dependence on increasing water concentration in Eu-DMSO, which provides a very convenient and valuable method for water determination in DMSO. Ce3+ has been well known as an emitter for radiation detection due to its very short decay lifetime. However, its emission range limited the environment in which the detection system works. Whereas, Quantum dots have high luminescence quantum efficiency but their low stopping power results in very weak scintillation

  5. Modified iron oxide nanomaterials: Functionalization and application

    International Nuclear Information System (INIS)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-01-01

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  6. Modified iron oxide nanomaterials: Functionalization and application

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Samira; Julkapli, Nurhidayatullaili Muhd

    2016-10-15

    Iron oxide magnetic nanoparticles have aroused the interest of researchers of materials' chemistry due to its exceptional properties such as decent magnetic, electric, catalytic, biocompatibility, and low toxicity. However, these magnetic nanoparticles are predisposed towards aggregation and forming larger particles, due to its strong anisotropic dipolar interactions, particularly in the aqueous phase, consequently depriving them of dispersibility and particular properties, ultimately degrading their performance. Hence, this review focuses on modified magnetic nanoparticles that are stable, easily synthesized, possess a high surface area and could be facile-separated via magnetic forces, and are of low toxicity and costs for applications such as catalyst/catalyst support, food security, biomedical, and pollutant remediation. - Highlights: • Nanomagnetite is interesting due to its exceptional properties. • Nanomagnetite is predisposed towards aggregation and forming larger particles. • Modified nanomagnetite are stable, easily synthesized, possess high surface area. • Modified nanomagnetite got applications as catalyst/catalyst support.

  7. Self-assembled Nanomaterials for Chemotherapeutic Applications

    Science.gov (United States)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  8. Multi-functional carbon nanomaterials: Tailoring morphology for multidisciplinary applications

    Energy Technology Data Exchange (ETDEWEB)

    Dervishi, Enkeleda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-14

    Carbon based nanomaterials are being developed to have many new properties and applications. Graphene, is a mono-layer 2D atomic thick structure formed from hexagons of carbon atoms bound together by sp^2hybrid bonds. A carbon nanotube (CNT) can be viewed as a sheet of graphene rolled up into a cylinder, usually 1-2 nanometers in diameter and a few microns thick. A few applications of graphene and carbon nanotubes include the development of Nanoelectronics, nanocomposite materials, Hydrogen storage and Li⁺ battery, etc.

  9. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  10. Nanomaterials in Food - Current and Future Applications and Regulatory Aspects

    Science.gov (United States)

    Aschberger, K.; Gottardo, S.; Amenta, V.; Arena, M.; Botelho Moniz, F.; Bouwmeester, H.; Brandhoff, P.; Mech, A.; Quiros Pesudo, L.; Rauscher, H.; Schoonjans, R.; Vittoria Vettori, M.; Peters, R.

    2015-05-01

    Nanotechnology can contribute to the development of innovative applications in the agriculture, food and feed sector by e.g. enabling improved delivery of nutrients or increased efficacy of agrichemicals. It is expected that applications will increase in the near future and may therefore become a relevant source of human exposure to nanomaterials (NM). To gain more up-to date information, RIKILT and the Joint Research Centre (JRC) were commissioned by the European Food Safety Authority (EFSA) to prepare an inventory of currently used and reasonably foreseen applications of NM in agriculture and food/feed production and carried out a review of regulatory aspects concerning NM in both EU and non-EU countries. An analysis of the information records in the inventory shows that nano-encapsulates, silver and titanium dioxide are the most frequent type of NM listed and that food additives and food contact materials are the most frequent types of application. A comparison between marketed applications and those in development indicates a trend from inorganic materials (e.g. silver) towards organic materials (nano-encapsulates, nanocomposites). Applications in novel food, feed additives, biocides and pesticides are currently mostly at a developmental stage. The review of EU and non-EU legislation shows that currently a few EU legal acts incorporate a definition of a nanomaterial and specific provisions for NM, whereas in many non-EU countries a broader approach is applied, which mainly builds on guidance for industry.

  11. Nanomaterials in Food - Current and Future Applications and Regulatory Aspects

    International Nuclear Information System (INIS)

    Aschberger, K; Gottardo, S; Amenta, V; Arena, M; Moniz, F Botelho; Mech, A; Pesudo, L Quiros; Rauscher, H; Bouwmeester, H; Brandhoff, P; Peters, R; Schoonjans, R; Vettori, M Vittoria

    2015-01-01

    Nanotechnology can contribute to the development of innovative applications in the agriculture, food and feed sector by e.g. enabling improved delivery of nutrients or increased efficacy of agrichemicals. It is expected that applications will increase in the near future and may therefore become a relevant source of human exposure to nanomaterials (NM). To gain more up-to date information, RIKILT and the Joint Research Centre (JRC) were commissioned by the European Food Safety Authority (EFSA) to prepare an inventory of currently used and reasonably foreseen applications of NM in agriculture and food/feed production and carried out a review of regulatory aspects concerning NM in both EU and non-EU countries. An analysis of the information records in the inventory shows that nano-encapsulates, silver and titanium dioxide are the most frequent type of NM listed and that food additives and food contact materials are the most frequent types of application. A comparison between marketed applications and those in development indicates a trend from inorganic materials (e.g. silver) towards organic materials (nano-encapsulates, nanocomposites). Applications in novel food, feed additives, biocides and pesticides are currently mostly at a developmental stage. The review of EU and non-EU legislation shows that currently a few EU legal acts incorporate a definition of a nanomaterial and specific provisions for NM, whereas in many non-EU countries a broader approach is applied, which mainly builds on guidance for industry. (paper)

  12. Carbon Nanomaterials for Optical Absorber Applications

    Directory of Open Access Journals (Sweden)

    Anupama KAUL

    2011-12-01

    Full Text Available Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs, synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to the benchmark, a diffuse metal black - Au-black - from wavelength l ~ 350 nm – 2500 nm. The reflectance of the MWCNT arrays was measured to be as low as 0.02 % at 2 mm in the infra-red (IR. Growth conditions were optimized for the realization of high-areal density arrays of MWCNTs using a plasma-based chemical vapor deposition (CVD process. Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

  13. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  14. Multitasking mesoporous nanomaterials for biorefinery applications

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Kapil [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications

  15. LAYERED DOUBLE HYDROXIDES: NANOMATERIALS FOR APPLICATIONS IN AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Luíz Paulo Figueredo Benício

    2015-02-01

    Full Text Available The current research aims to introduce Layered Double Hydroxides (LDH as nanomaterials to be used in agriculture, with particular reference to its use as storage and slow release matrix of nutrients and agrochemicals for plant growing. Structural characteristics, main properties, synthesis methods and characterization of LDH were covered in this study. Moreover, some literature data have been reported to demonstrate their potential for storage and slow release of nitrate, phosphate, agrochemicals, besides as being used as adsorbent for the wastewater treatment. This research aims to expand, in near future, the investigation field on these materials, with application in agriculture, increasing the interface between chemistry and agronomy.

  16. Electrochemically Active Biofilms Assisted Nanomaterial Synthesis for Environmental Applications

    KAUST Repository

    Ahmed, Elaf

    2017-12-01

    Nanomaterials have a great potential for environmental applications due to their high surface areas and high reactivity. This dissertation investigated the use of electrochemically active biofilms (EABs) as a synthesis approach for the fabrication and environmental applications of different nanomaterials. Bacteria in EABs generate electrons upon consuming electron donor and have the ability to transport these electrons to solid or insoluble substrates through extracellular electron transport (EET) mechanism. The extracellularly transported electrons, once utilized, can lead to nanoparticle synthesis. In this dissertation, noble metal (i.e., Au, Pd, and Pt) ultra-small nanoparticles (USNPs) were first synthesized with the assistance by the EABs. The assynthesized USNPs had a size range between 2 and 7 nm and exhibited excellent catalytic performance in dye decomposition. Also in this research, a two-dimensional (2D) cobalt nanosheet was successfully synthesized in the presence of EABs. A simple biogenic route led to the transformation of cobalt acetate to produce a green, toxic free homogeneous 2D cobalt nanosheet structure. Further, TiO2 nanotubes were successfully combined with the noble metal USNPs to enhance their photocatalytic activity. In this work, for the first time, the noble metal USNPs were directly reduced and decorated on the internal surfaces of the TiO2 nanotubes structure assisted by the EABs. The USNPs modified TiO2 nanotubes generated significantly improved photoelectrocatatlyic performances. This dissertation shines lights on the use of EABs in ultra-small nanoparticle synthesis.

  17. Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin

    2010-09-01

    Full Text Available The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D ceria (CeO2 nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO2 nanomaterials.

  18. Applications of Nanomaterials in Dental Science: A Review.

    Science.gov (United States)

    Sharan, Jitendra; Singh, Shivani; Lale, Shantanu V; Mishra, Monu; Koul, Veena; Kharbanda, P

    2017-04-01

    Nanotechnology has revolutionized health care industry in a large scale and its applications are a boon to modern medicine and dental science. It is expected to pervade and further revolutionize the art and science of dentistry and may well have important applications spanning all the aspects of oral diseases, diagnosis, prevention and treatment. Materials science in dentistry has embraced the technology to produce nanomaterials that are being used in caries inhibitors, antimicrobial resins, hard tissue remineralizing agents, targeted drug delivery, scaffolds, bio-membranes, nanocrystalline hydroxyl apatite, restorative cements, adhesion promoters and boosters, bioactive glass, tissue conditioners, reinforced methacrylate resins, root canal disinfectants, friction free orthodontic arch wires and nano composites life. These upcoming technologies have potential to bring about significant benefits in the form of improvement in dental science and to society. The present review presents the latest recent developments in this interdisciplinary field bridging nanotechnology and dental science.

  19. Luminescence dosimetry: recent developments in theory and applications

    International Nuclear Information System (INIS)

    McKeever, S.W.S.

    2000-01-01

    Thermally and optically stimulated luminescence have been used in applications in solid state physics, radiation dosimetry and geological dating for several decades. This paper gives a generalized description of these methods in terms of non-equilibrium thermodynamics and in doing so highlights similarities and differences between the methods. Recent advances in both the theory and application of the techniques are highlighted with numerous specific examples. (Author)

  20. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2012-02-01

    Full Text Available Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing.

  1. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    Science.gov (United States)

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  2. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    Science.gov (United States)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  3. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications.

    Science.gov (United States)

    Feng, Feng; Wu, Junchi; Wu, Changzheng; Xie, Yi

    2015-02-11

    Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic-scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    Science.gov (United States)

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications

    International Nuclear Information System (INIS)

    Vuojola, Johanna; Soukka, Tero

    2014-01-01

    Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and a large surface area for biomolecule immobilization. Lanthanide-based reporters, when properly shielded from the quenching effects of water, usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling time-gated luminescence detection. Because of these properties, lanthanide-based reporters have found widespread applications in various fields of life. This review focuses on the field of bioanalytical applications. Luminescent lanthanide reporters and assay formats utilizing these reporters pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications. (topical review)

  6. The applicability of chemical alternatives assessment for engineered nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case......, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials both as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. This article is protected...... for alternatives assessment approaches as they can be considered both emerging “chemicals” of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging and critical elements...

  7. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    Science.gov (United States)

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  8. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ali Mostofizadeh

    2011-01-01

    Full Text Available In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nanotechnology which is called carbon-related nanomaterials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nanomaterials. Carbon nanomaterials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nanomaterials such as zero-dimensional carbon nanomaterials (including fullerene, carbon-encapsulated metal nanoparticles, nanodiamond, and onion-like carbons, one-dimensional carbon nanomaterials (including carbon nanofibers and carbon nanotubes, and two-dimensional carbon nanomaterials (including graphene and carbon nanowalls are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nanomaterials.

  9. Biodegradable black phosphorus-based nanomaterials in biomedicine: theranostic applications.

    Science.gov (United States)

    Wang, Zhen; Liu, Zhiming; Su, Chengkang; Yang, Biwen; Fei, Xixi; Li, Yi; Hou, Yuqing; Zhao, Henan; Guo, Yanxian; Zhuang, Zhengfei; Zhong, Huiqing; Guo, Zhouyi

    2017-09-20

    Ascribe to the unique two-dimensional planar nanostructure with exceptional physical and chemical properties, black phosphorous (BP) as the emerging inorganic two-dimensional nanomaterial with high biocompatibility and degradability has been becoming one of the most promising materials of great potentials in biomedicine. The exfoliated BP sheets possess ultra-high surface area available for valid bio-conjugation and molecular loading for chemotherapy. Utilizing the intrinsic near-infrared optical absorbance, BP-based photothermal therapy in vivo, photodynamic therapy and biomedical imaging has been realized, achieving unprecedented anti-tumor therapeutic efficacy in animal experiments. Additionally, the BP nanosheets can strongly react with oxygen and water, and finally degrade to non-toxic phosphate and phosphonate in the aqueous solution. This manuscript aimed to summarize the preliminary progresses on theranostic application of BP and its derivatives black phosphorus quantum dots (BPQDs), and discussed the prospects and the state-of-art unsolved critical issues of using BP-based material for theranostic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Applications of radiotracer techniques for the toxicology studies of nanomaterials

    International Nuclear Information System (INIS)

    Ma Yuhui; Zhang Zhiyong; Zhang Yuan; He Xiao; Zhang Haifeng; Chai Zhifang

    2008-01-01

    With the rapid development of nanosciences and nanotechnology, a wide variety of manufactured nanomaterials are now used in commodities, pharmaceutics, cosmetics, biomedical products, and industries. While nanomaterials possess more novel and unique physicochemical properties than bulk materials, they also have an unpredictable impact on human health. In the toxicology studies of nanomaterials, it is essential to know the basic behaviors in vivo, that is absorption, distribution, metabolism, and excretion (ADME) of these newly designed materials. Radiotracer techniques are especially well suited to such studies and has got the chance to demonstrate its enchantment. In this presentation, studies on radiotracer techniques used in nanotoxicology will be reviewed and new progresses at Institute of High Energy Physics, including the label methods and behaviors of labeled nanomaterials, such as fullerene, carbon nanotubes, and nanometer metal oxide in animals and in aquatic environments will be reported. (authors)

  11. Greener production of nanomaterials and their applications in catalysis and environmental remediation

    Science.gov (United States)

    Metal nanomaterials have attracted considerable attention because of their unique magnetic, optical, electrical, and catalytic properties and their potential applications in nanoelectronics. There is great interest in synthesizing metal nanoparticles due to their extraordinary pr...

  12. Applications and toxicity of graphene family nanomaterials and their composites

    Directory of Open Access Journals (Sweden)

    Singh Z

    2016-03-01

    Full Text Available Zorawar Singh Department of Zoology, Khalsa College, Amritsar, Punjab, India Abstract: Graphene has attracted much attention of scientific community due to its enormous potential in different fields, including medical sciences, agriculture, food safety, cancer research, and tissue engineering. The potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene family nanomaterials (GFNs. Due to their unique chemical and physical properties, graphene and its derivatives have found important places in their respective application fields, yet they are being found to have cytotoxic and genotoxic effects too. Since the discovery of graphene, a number of researches are being conducted to find out the toxic potential of GFNs to different cell and animal models, finding their suitability for being used in new and varied innovative fields. This paper presents a systematic review of the research done on GFNs and gives an insight into the mode and action of these nanosized moieties. The paper also emphasizes on the recent and up-to-date developments in research on GFNs and their nanocomposites for their toxic effects. Keywords: graphene, quantum dots, desalination, drug delivery, antibacterial, cytotoxicity, genotoxicity

  13. Applications and toxicity of graphene family nanomaterials and their composites

    Science.gov (United States)

    Singh, Zorawar

    2016-01-01

    Graphene has attracted much attention of scientific community due to its enormous potential in different fields, including medical sciences, agriculture, food safety, cancer research, and tissue engineering. The potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene family nanomaterials (GFNs). Due to their unique chemical and physical properties, graphene and its derivatives have found important places in their respective application fields, yet they are being found to have cytotoxic and genotoxic effects too. Since the discovery of graphene, a number of researches are being conducted to find out the toxic potential of GFNs to different cell and animal models, finding their suitability for being used in new and varied innovative fields. This paper presents a systematic review of the research done on GFNs and gives an insight into the mode and action of these nanosized moieties. The paper also emphasizes on the recent and up-to-date developments in research on GFNs and their nanocomposites for their toxic effects. PMID:27051278

  14. Mobility of coated and uncoated TiO2 nanomaterials in soil columns--Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials.

    Science.gov (United States)

    Nickel, Carmen; Gabsch, Stephan; Hellack, Bryan; Nogowski, Andre; Babick, Frank; Stintz, Michael; Kuhlbusch, Thomas A J

    2015-07-01

    Nanomaterials are commonly used in everyday life products and during their life cycle they can be released into the environment. Soils and sediments are estimated as significant sinks for those nanomaterials. To investigate and assess the behaviour of nanomaterials in soils and sediments standardized test methods are needed. In this study the applicability of two existing international standardized test guidelines for the testing of nanomaterials, OECD TG 106 "Adsorption/Desorption using a Bath Equilibrium Method" and the OECD TG 312 "Leaching in Soil Columns", were investigated. For the study one coated and two uncoated TiO2 nanomaterials were used, respectively. The results indicate that the OECD TG 106 is not applicable for nanomaterials. However, the test method according to OECD TG 312 was found to be applicable if nano-specific adaptations are applied. The mobility investigations of the OECD TG 312 indicated a material-dependent mobility of the nanomaterials, which in some cases may lead to an accumulation in the upper soil layers. Whereas no significant transport was observed for the uncoated materials for the double-coated material (coating with dimethicone and aluminiumoxide) a significant transport was detected and attributed to the coating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The application of nanomaterials in controlled drug delivery for bone regeneration.

    Science.gov (United States)

    Shi, Shuo; Jiang, Wenbao; Zhao, Tianxiao; Aifantis, Katerina E; Wang, Hui; Lin, Lei; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Li, Xiaoming

    2015-12-01

    Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part. Copyright © 2015 Wiley Periodicals, Inc.

  16. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery.

    Science.gov (United States)

    Chen, Daiqin; Dougherty, Casey A; Zhu, Kaicheng; Hong, Hao

    2015-07-28

    Carbon based nanomaterials have attracted significant attention over the past decades due to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this review, we will summarize the current state-of-the-art applications of carbon nanomaterials in cancer imaging and drug delivery/therapy. The carbon nanomaterials will be categorized into fullerenes, nanotubes, nanohorns, nanodiamonds, nanodots and graphene derivatives based on their morphologies. The chemical conjugation/functionalization strategies of each category will be introduced before focusing on their applications in cancer imaging (fluorescence/bioluminescence, magnetic resonance (MR), positron emission tomography (PET), single-photon emission computed tomography (SPECT), photoacoustic, Raman imaging, etc.) and cargo (chemo/gene/therapy) delivery. The advantages and limitations of each category and the potential clinical utilization of these carbon nanomaterials will be discussed. Multifunctional carbon nanoplatforms have the potential to serve as optimal candidates for image-guided delivery vectors for cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Synergetic Effects of Combined Nanomaterials for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Michael Holzinger

    2017-05-01

    Full Text Available Nanomaterials have become essential components for the development of biosensors since such nanosized compounds were shown to clearly increase the analytical performance. The improvements are mainly related to an increased surface area, thus providing an enhanced accessibility for the analyte, the compound to be detected, to the receptor unit, the sensing element. Nanomaterials can also add value to biosensor devices due to their intrinsic physical or chemical properties and can even act as transducers for the signal capture. Among the vast amount of examples where nanomaterials demonstrate their superiority to bulk materials, the combination of different nano-objects with different characteristics can create phenomena which contribute to new or improved signal capture setups. These phenomena and their utility in biosensor devices are summarized in a non-exhaustive way where the principles behind these synergetic effects are emphasized.

  18. Review on the Synthesis and Applications of Fe3O4 Nanomaterials

    Directory of Open Access Journals (Sweden)

    Xiaodi Liu

    2013-01-01

    Full Text Available Recently, Fe3O4 nanomaterials have attracted tremendous attention because of their favorable electric and magnetic properties. Fe3O4 nanostructures with various morphologies have been successfully synthesized and have been used in many fields such as lithium-ion batteries (LIBs, wastewater treatment, and magnetic resonance imaging (MRI contrast agents. In this paper, we provide an in-depth discussion of recent development of Fe3O4 nanomaterials, including their effective synthetic methods and potential applications.

  19. Advances in nanomaterials

    CERN Document Server

    Khan, Zishan

    2016-01-01

    This book provides a review of the latest research findings and key applications in the field of nanomaterials. The book contains twelve chapters on different aspects of nanomaterials. It begins with key fundamental concepts to aid readers new to the discipline of nanomaterials, and then moves to the different types of nanomaterials studied. The book includes chapters based on the applications of nanomaterials for nano-biotechnology and solar energy. Overall, the book comprises chapters on a variety of topics on nanomaterials from expert authors across the globe. This book will appeal to researchers and professional alike, and may also be used as a reference for courses in nanomaterials.

  20. Surface dating of bricks, an application of luminescence techniques

    Science.gov (United States)

    Galli, Anna; Martini, Marco; Maspero, Francesco; Panzeri, Laura; Sibilia, Emanuela

    2014-05-01

    Luminescence techniques are a powerful tool to date archaeological ceramic materials and geological sediments. Thermoluminescence (TL) is widely used for bricks dating to reconstruct the chronology of urban complexes and the development of human cultures. However, it can sometimes be inconclusive, since TL assesses the firing period of bricks, which can be reused, even several centuries later. This problem can be circumvented using a dating technique based on a resetting event different from the last heating. OSL (Optically Stimulated Luminescence) exploits the last light exposition of the brick surface, which resets the light-sensitive electron traps until the surface is definitely shielded by mortar and superimposed bricks. This advanced application (surface dating) has been successfully attempted on rocks, marble and stone artifacts, but not yet on bricks. A recent conservation campaign at the Certosa di Pavia gave the opportunity to sample some bricks belonging to a XVII century collapsed wall, still tied to their mortars. This was an advantageous condition to test this technique, comparing the dating results with precise historical data. This attempt gave satisfactory results, allowing to identify bricks surely reused and to fully confirm that the edification of the perimetral wall occurred at the end of XVII century.

  1. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  2. High-resolution light microscopy using luminescent nanoparticles.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Roy, Indrajit; Yong, Ken-Tye; Pudavar, Haridas E; Prasad, Paras N

    2010-01-01

    This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.

  3. Applications and toxicity of graphene family nanomaterials and their composites

    OpenAIRE

    Singh, Zorawar

    2016-01-01

    Zorawar Singh Department of Zoology, Khalsa College, Amritsar, Punjab, India Abstract: Graphene has attracted much attention of scientific community due to its enormous potential in different fields, including medical sciences, agriculture, food safety, cancer research, and tissue engineering. The potential for widespread human exposure raises safety concerns about graphene and its derivatives, referred to as graphene family nanomaterials (GFNs). Due to their unique chemical and physical pro...

  4. Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications

    International Nuclear Information System (INIS)

    Ok, Jong Girl; Kim, Bo Hyun; Chung, Do Kwan; Sung, Woo Yong; Lee, Seung Min; Lee, Se Won; Kim, Wal Jun; Park, Jin Woo; Chu, Chong Nam; Kim, Yong Hyup

    2008-01-01

    A reliable and precise machining process, electrical discharge machining (EDM), was investigated in depth as a novel method for the engineering of carbon nanomaterials. The machining characteristics of EDM applied to carbon nanomaterials 'in air' were systematically examined using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The EDM process turned out to 'melt' carbon nanomaterials with the thermal energy generated by electrical discharge, which makes both the materially and geometrically unrestricted machining of nanomaterials possible. Since the EDM process conducted in air requires neither direct contact nor chemical agents, it protects the carbon nanomaterial workpieces against physical damage and unnecessary contamination. From this EDM method, several advanced field emission applications including 'top-down' patterning and the creative lateral comb-type triode device were derived, while our previously reported study on emission uniformity enhancement by the EDM method was also referenced. The EDM method has great potential as a clean, effective and practical way to utilize carbon nanomaterials for various uses

  5. Application of dental nanomaterials: potential toxicity to the central nervous system.

    Science.gov (United States)

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  6. Testing the application of quartz and feldspar luminescence dating to MIS 5 Japanese marine deposits

    DEFF Research Database (Denmark)

    Thiel, Christine; Tsukamoto, Sumiko; Tokuyasu, Kayoko

    2015-01-01

    The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated...

  7. Current applications and future prospects of nanomaterials in tumor therapy

    Directory of Open Access Journals (Sweden)

    Huang Y

    2017-03-01

    Full Text Available Yu Huang,1 Chao-Qiang Fan,1 Hui Dong,1 Su-Min Wang,1 Xiao-Chao Yang,2 Shi-Ming Yang1 1Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China; 2Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, People’s Republic of China Abstract: Tumors are one of the most serious human diseases and cause numerous global deaths per year. In spite of many strategies applied in tumor therapy, such as radiation therapy, chemotherapy, surgery, and a combination of these treatments, tumors are still the foremost killer worldwide among human diseases, due to their specific limitations, such as multidrug resistance and side effects. Therefore, it is urgent and necessary to develop new strategies for tumor therapy. Recently, the fast development of nanoscience has paved the way for designing new strategies to treat tumors. Nanomaterials have shown great potential in tumor therapy, due to their unique properties, including passive targeting, hyperthermia effects, and tumor-specific inhibition. This review summarizes the recent progress using the innate antitumor properties of metallic and nonmetallic nanomaterials to treat tumors, and related challenges and prospects are discussed. Keywords: tumor, nanomaterials, nanoparticles, nanotechnology

  8. Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications

    Science.gov (United States)

    Firkowska, Izabela; Giannona, Suna; Rojas-Chapana, José A.; Luecke, Klaus; Brüstle, Oliver; Giersig, Michael

    Nanotechnology applied to biology requires a thorough understanding of how molecules, sub-cellular entities, cells, tissues, and organs function and how they are structured. The merging of nanomaterials and life science into hybrids of controlled organization and function is possible, assuming that biology is nanostructured, and therefore man-made nano-materials can structurally mimic nature and complement each other. By taking advantage of their special properties, nanomaterials can stimulate, respond to and interact with target cells and tissues in controlled ways to induce desired physiological responses with a minimum of undesirable effects. To fulfill this goal the fabrication of nano-engineered materials and devices has to consider the design of natural systems. Thus, engineered micro-nano-featured systems can be applied to biology and biomedicine to enable new functionalities and new devices. These include, among others, nanostructured implants providing many advantages over existing, conventional ones, nanodevices for cell manipulation, and nanosensors that would provide reliable information on biological processes and functions.

  9. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  10. Synthesis and characterization of hafnium oxide for luminescent applications

    International Nuclear Information System (INIS)

    Guzman Mendoza, J.; Aguilar Frutis, M.A.; Flores, G. Alarcon; Garcia Hipolito, M.; Azorin Nieto, J.; Rivera Montalvo, T.; Falcony, C.

    2008-01-01

    Full text: Hafnium oxide (HfO 2 ) is a material with a wide range of possible technological applications because it's chemical and physical properties such as high melting point, high chemical stability, high refraction index, high dielectric constant and hardness near to diamond in the tetragonal phase. The large energy gap and low phonon frequencies of the HfO 2 makes it appropriate as a host matrix for been doped with rare earth activators. Efficient luminescent materials find wide application in electroluminescent flat panel displays; color plasma displays panels, scintillators, cathode ray tubes, fluorescent lamps, lasers, etc. In recent years the study of luminescent materials based on HfO 2 has been intensified. Some groups have studied the optical properties of doped and undoped HfO 2 . In this contribution, Hafnium Oxide (HfO 2 ) films were prepared using the spray pyrolysis deposition technique. The material was synthesized using chlorides as raw materials in deionised water as solvent and deposited on Corning glass substrates at temperatures from 300 deg C to 600 deg C. For substrate temperatures lower than 400 deg C, the deposited films are amorphous, while for substrate temperatures higher than 450 deg C, the monoclinic phase of HfO 2 appears. Scanning electron microscopy with microprobe analysis was use to observe the microstructure and obtain the chemical composition of the films; rough surfaces with spherical particles were appreciated. UV and low energy X Ray radiations were used in order to achieve the thermoluminescent characterization of the films as a function of the deposition temperature

  11. Organic fluorescent dye-based nanomaterials: Advances in the rational design for imaging and sensing applications.

    Science.gov (United States)

    Svechkarev, Denis; Mohs, Aaron M

    2018-02-25

    Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral property tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical, and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Market projections of cellulose nanomaterial-enabled products- Part 1: Applications

    Science.gov (United States)

    Jo Anne Shatkin; Theodore H. Wegner; E.M. (Ted) Bilek; John Cowie

    2014-01-01

    Nanocellulose provides a new materials platform for the sustainable production of high-performance nano-enabled products in an array of applications. In this paper, potential applications for cellulose nanomaterials are identified as the first step toward estimating market volume. The overall study, presented in two parts, estimates market volume on the basis of...

  13. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.

    Science.gov (United States)

    Krishna, Katla Sai; Li, Yuehao; Li, Shuning; Kumar, Challa S S R

    2013-11-01

    The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han,W.Q.

    2008-08-01

    -axis. The rhombohedral system consists of three-layered units: ABCABC..., whose honeycomb layers are arranged in a shifted phase, like as those of graphite. Reflecting its weak interlayer bond, the h-BN can be cleaved easily along its layers, and hence, is widely used as a lubricant material. The material is stable up to a high temperature of 2300 C before decomposition sets in [2] does not fuse a nitrogen atmosphere of 1 atm, and thus, is applicable as a refractory material. Besides having such properties, similar to those of graphite, the material is transparent, and acts as a good electric insulator, especially at high temperatures (10{sup 6} {Omega}m at 1000 C) [1]. c-BN and w-BN are tetrahedrally linked BN. The former has a cubic sphalerite-type structure, and the latter has a hexagonal wurtzite-type structure. c-BN is the second hardest known material (the hardest is diamond), the so-called white diamond. It is used mainly for grinding and cutting industrial ferrous materials because it does not react with molten iron, nickel, and related alloys at high temperatures whereas diamond does [1]. It displays the second highest thermal conductivity (6-9 W/cm.deg) after diamond. This chapter focuses principally upon information about h-BN nanomaterials, mainly BN nanotubes (BNNTs), porous BN, mono- and few-layer-BN sheets. There are good reviews book chapters about c-BN in [1, 4-6].

  15. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas.

    Science.gov (United States)

    Luo, Bin; Liu, Shaomin; Zhi, Linjie

    2012-03-12

    A 'gold rush' has been triggered all over the world for exploiting the possible applications of graphene-based nanomaterials. For this purpose, two important problems have to be solved; one is the preparation of graphene-based nanomaterials with well-defined structures, and the other is the controllable fabrication of these materials into functional devices. This review gives a brief overview of the recent research concerning chemical and thermal approaches toward the production of well-defined graphene-based nanomaterials and their applications in energy-related areas, including solar cells, lithium ion secondary batteries, supercapacitors, and catalysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. New nanomaterials for applications in conservation and restoration of stony materials: A review

    International Nuclear Information System (INIS)

    Sierra-Fernandez, A.; Gomez-Villalba, L.S.; Rabanal, M.E.; Fort, R.

    2017-01-01

    In recent times, nanomaterials have been applied in the construction and maintenance of the world's cultural heritage with the aim of improving the consolidation and protection treatments of damaged stone. These nanomaterials include important advantages that could solve many problems found in the traditional interventions. The present paper aims to carry out a review of the state of art on the application of nanotechnology to the conservation and restoration of the stony cultural heritage. We highlight the different types of nanoparticles currently used to produce conservation treatments with enhanced material properties and novel functionalities.

  17. Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications

    International Nuclear Information System (INIS)

    Memic, Adnan; Aldhahri, Musab; Alhadrami, Hani A; Hussain, M Asif; Al Nowaiser, Fozia; Al-Hazmi, Faten; Oklu, Rahmi; Khademhosseini, Ali

    2016-01-01

    The incorporation of nanomaterials in hydrogels (hydrated networks of crosslinked polymers) has emerged as a useful method for generating biomaterials with tailored functionality. With the available engineering approaches it is becoming much easier to fabricate nanocomposite hydrogels that display improved performance across an array of electrical, mechanical, and biological properties. In this review, we discuss the fundamental aspects of these materials as well as recent developments that have enabled their application. Specifically, we highlight synthesis and fabrication, and the choice of nanomaterials for multifunctionality as ways to overcome current material property limitations. In addition, we review the use of nanocomposite hydrogels within the framework of biomedical and pharmaceutical disciplines. (paper)

  18. Key trends in basic and application-oriented research on nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakov, Yuri D; Goodilin, Eugene A [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-09-30

    Key trends in basic and application-oriented research on nanomaterials are considered. It is noted that some studies are now carried out abroad and in domestic laboratories, while some other are to be initiated in the near future. It is emphasized that effective research in the field in question is possible only provided that laboratories are equipped with advanced instrumentation.

  19. Key trends in basic and application-oriented research on nanomaterials

    International Nuclear Information System (INIS)

    Tretyakov, Yuri D; Goodilin, Eugene A

    2009-01-01

    Key trends in basic and application-oriented research on nanomaterials are considered. It is noted that some studies are now carried out abroad and in domestic laboratories, while some other are to be initiated in the near future. It is emphasized that effective research in the field in question is possible only provided that laboratories are equipped with advanced instrumentation.

  20. Perspectives of development of ceramic materials with luminescent applications

    International Nuclear Information System (INIS)

    Alvarado E, A.; Fernandez M, J.L.; Diaz G, J.L.I.; Rivera M, T.

    2005-01-01

    The science and technology of materials believes and it applies the knowledge that allow to relate the composition, it structures and the one processed with those properties that those they make capable for each one of the applications. The ceramic materials are inorganic materials not metallic, constituted by metallic elements and not metallic. In general, they usually behave, as good insulating electric and thermal due to the absence of conductive electrons. Usually, they possess relatively high coalition temperatures and, also, a chemical stability relatively high. Due to these properties, they are indispensable for many of those designs in engineering. The ceramic materials for luminescent applications are constituted typically by pure compounds (Al 2 O 3 , TiO 2 , SiO 2 and ZrO 2 ) or cocktails with some sludges giving as a result (Al 2 O 3 :TR, TiO 2 :Eu, Si:ZrO 2 , ZrO 2 :TR). Presently work describes the panorama to big features on the development of ceramic materials in the CICATA Unit it would Bequeath, which can be characterized by the photoluminescence techniques and thermoluminescence mainly. (Author)

  1. Nanomaterials: Science and applications in the lithium–sulfur battery

    KAUST Repository

    Ma, Lin

    2015-06-01

    © 2015 Elsevier Ltd. All rights reserved. Reliable and cost-effective technologies for electrical energy storage are in great demand in sectors of the global economy ranging from portable devices, transportation, and sustainable production of electricity from intermittent sources. Among the various electrochemical energy storage options under consideration, rechargeable lithium-sulfur (Li-S) batteries remain the most promising platform for reversibly storing large amounts of electrical energy at moderate cost set by the inherent cell chemistry. The success of Li-S storage technology in living up to this promise calls for solutions to fundamental problems associated with the inherently low electrical conductivity of sulfur and sulfides, and the complex solution chemistry of lithiated sulfur compounds in commonly used electrolytes. These problems appear well posed for innovative solutions using nanomaterials and for fundamental answers guided by the tools of nanotechnology. Beginning with a review of the current understanding of Li-S battery chemistry and operation, this review discusses how advances in nano-characterization and theoretical studies of the Li-S system are helping advance the understanding of the Li-S battery. Factors that prevent Li-S cells from realizing the theoretical capacity set by their chemistry are discussed both in terms of the impressive advances in cell design enabled by nanomaterials and recent progress aimed at nanoengineering the cathode and other cell components. Perspectives and directions for future development of the Li-S storage platform are discussed based on accumulated knowledge from previous efforts in the field as well as from the accumulated experience of the writers of this review.

  2. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    Science.gov (United States)

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Environmental and biological applications and implications of soft and condensed nanomaterials

    Science.gov (United States)

    Chen, Pengyu

    Recent innovations and growth of nanotechnology have spurred exciting technological and commercial developments of nanomaterails. Their appealing physical and physicochemical properties offer great opportunities in biological and environmental applications, while in the meantime may compromise human health and environmental sustainability through either unintentional exposure or intentional discharge. Accordingly, this dissertation exploits the physicochemical behavior of soft dendritic polymers for environmental remediation and condensed nano ZnO tetrapods for biological sensing (Chapter two-four), and further delineate the environmental implications of such nanomaterials using algae- the major constituent of the aquatic food chain-as a model system (Chapter five). This dissertation is presented as follows. Chapter one presents a general review of the characteristic properties, applications, forces dictating nanomaterials, and their biological and environmental implications of the most produced and studied soft and condensed nanomaterials. In addition, dendritic polymers and ZnO nanomaterials are thoroughly reviewed separately. Chapter two investigates the physicochemical properties of poly(amidoamine)-tris(hydroxymethyl)amidomethane- dendrimer for its potential applications in water purification. The binding mechanisms and capacities of this dendrimer in hosting major environmental pollutants including cationic copper, anionic nitrate, and polyaromatic phenanthrene are discussed. Chapter three exploits a promising use of dendrimers for removal of potentially harmful discharged nanoparticles (NPs). Specifically, fullerenols are used as a model nanomaterial, and their interactions with two different generations of dendrimers are studied using spectrophotometry and thermodynamics methods. Chapter four elucidates two novel optical schemes for sensing environmental pollutants and biological compounds using dendrimer-gold nanowire complex and gold-coated ZnO tetrapods

  4. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

    Science.gov (United States)

    Liang, Hao; Zhang, Xiao-Bing; Lv, Yifan; Gong, Liang; Wang, Ruowen; Zhu, Xiaoyan; Yang, Ronghua; Tan, Weihong

    2014-06-17

    CONSPECTUS: DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell's nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer-micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand-receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA-nanomaterial complexes can enter cells more easily than free single

  5. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    International Nuclear Information System (INIS)

    Stauss, Sven; Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-01-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors

  6. What is the role of curvature on the properties of nanomaterials for biomedical applications?

    Science.gov (United States)

    Gonzalez Solveyra, Estefania; Szleifer, Igal

    2016-05-01

    The use of nanomaterials for drug delivery and theranostics applications is a promising paradigm in nanomedicine, as it brings together the best features of nanotechnolgy, molecular biology, and medicine. To fully exploit the synergistic potential of such interdisciplinary strategy, a comprehensive description of the interactions at the interface between nanomaterials and biological systems is not only crucial, but also mandatory. Routine strategies to engineer nanomaterial-based drugs comprise modifying their surface with biocompatible and targeting ligands, in many cases resorting to modular approaches that assume additive behavior. However, emergent behavior can be observed when combining confinement and curvature. The final properties of functionalized nanomaterials become dependent not only on the properties of their constituents but also on the geometry of the nano-bio interface, and on the local molecular environment. Modularity no longer holds, and the coupling between interactions, chemical equilibrium, and molecular organization has to be directly addressed in order to design smart nanomaterials with controlled spatial functionalization envisioning optimized biomedical applications. Nanoparticle's curvature becomes an integral part of the design strategy, enabling to control and engineer the chemical and surface properties with molecular precision. Understanding how nanoparticle size, morphology, and surface chemistry are interrelated will put us one step closer to engineering nanobiomaterials capable of mimicking biological structures and their behaviors, paving the way into applications and the possibility to elucidate the use of curvature by biological systems. WIREs Nanomed Nanobiotechnol 2016, 8:334-354. doi: 10.1002/wnan.1365 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  7. Principles and applications of the digital luminescent radiography

    International Nuclear Information System (INIS)

    Doehring, W.; Prokop, M.; Bergh, B.

    1986-01-01

    Digital luminescent radiography is a novel technique for routine diagnostics that allows the establishment of digital projection radiograms. Two goals are pursued: Best possible utilisation of the image data contained in the radiation field, and integration of these data into a digital communication system. (orig.) [de

  8. A luminescence lifetime assisted ratiometric fluorimeter for biological applications

    Science.gov (United States)

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-12-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.

  9. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine

    Science.gov (United States)

    Yang, Guohai; Zhu, Chengzhou; Du, Dan; Zhu, Junjie; Lin, Yuehe

    2015-08-01

    The development of nanotechnology provides promising opportunities for various important applications. The recent discovery of atomically-thick two-dimensional (2D) nanomaterials can offer manifold perspectives to construct versatile devices with high-performance to satisfy multiple requirements. Many studies directed at graphene have stimulated renewed interest on graphene-like 2D layered nanomaterials (GLNs). GLNs including boron nitride nanosheets, graphitic-carbon nitride nanosheets and transition metal dichalcogenides (e.g. MoS2 and WS2) have attracted significant interest in numerous research fields from physics and chemistry to biology and engineering, which has led to numerous interdisciplinary advances in nano science. Benefiting from the unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), these 2D layered nanomaterials have shown great potential in biochemistry and biomedicine. This review summarizes recent advances of GLNs in applications of biosensors and nanomedicine, including electrochemical biosensors, optical biosensors, bioimaging, drug delivery and cancer therapy. Current challenges and future perspectives in these rapidly developing areas are also outlined. It is expected that they will have great practical foundation in biomedical applications with future efforts.

  10. Nanomaterials in Food - Current and Future Applications and Regulatory Aspects

    NARCIS (Netherlands)

    Aschberger, K.; Gottardo, S.; Amenta, V.; Arena, M.; Botelho Moniz, F.; Bouwmeester, Hans; Brandhoff, P.; Mech, A.; Quiros Pesudo, L.; Rauscher, H.; Schoonjans, R.; Vittoria Vettori, M.; Peters, R.

    2015-01-01

    Nanotechnology can contribute to the development of innovative applications in the agriculture, food and feed sector by e.g. enabling improved delivery of nutrients or increased efficacy of agrichemicals. It is expected that applications will increase in the near future and may therefore become a

  11. Effects of Eu substitution on luminescent and magnetic properties of BaTiO{sub 3} nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Veloso, E. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Villarroel, R. [Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Llanos, J. [Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile)

    2013-08-25

    Highlight: •We described a new combined method to obtain Eu{sup 3+}-doped BaTiO{sub 3}. •We report the physical and optical properties of Eu{sup 3+}-doped BaTiO{sub 3}. •The synthesis method improves the stabilization of the tetragonal phase of BaTiO{sub 3}:Eu. •The photoluminescence spectra indicate that the Eu{sup 3+} ions occupy an antisymmetric site. •The as prepared phases could be considered as multifunctional materials. -- Abstract: Eu{sup 3+}-doped BaTiO{sub 3} phases were synthesized by combined sol–gel and hydrothermal methods under an oxygen partial pressure of 60 psi. The crystal phases were characterized by X-ray powder diffraction. The Raman spectra as well as the magnetic properties were also investigated. The photoluminescence emission spectra confirm that the samples were efficiently excited by near-UV light. All spectra were dominated by a red emission band due to the electric dipole transition {sup 5}D{sub 0} → {sup 7}F{sub 2}. The dependence of the Raman spectra and optical and magnetic properties on the amount of Eu{sup 3+} incorporated into the phases was also investigated. The number of magnetic domains increased with the concentration of Eu{sup 3+} added. The stabilization of the tetragonal phases was also observed in Eu{sup 3+}-doped samples, and their ferroelectric properties were also maintained, making these phases interesting multifunctional materials for applications in device design.

  12. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    Science.gov (United States)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of

  13. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  14. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  15. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  16. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  17. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  18. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  19. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  20. Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes

    KAUST Repository

    Croissant, Jonas G.

    2016-11-07

    Organic-inorganic hybrid materials garner properties from their organic and inorganic matrices as well as synergistic features, and therefore have recently attracted much attention at the nanoscale. Non-porous organosilica hybrid nanomaterials with a high organic content such as silsesquioxanes (R-SiO, with R organic groups) and bridged silsesquioxanes (OSi-R-SiO) are especially attractive hybrids since they provide 20 to 80 weight percent of organic functional groups in addition to the known chemistry and stability of silica. In the organosilica family, silsesquioxanes (R-SiO) stand between silicas (SiO) and silicones (RSiO), and are variously called organosilicas, ormosil (organically-modified silica), polysilsesquioxanes and silica hybrids. Herein, we comprehensively review non-porous silsesquioxane and bridged silsesquioxane nanomaterials and their applications in nanomedicine, electro-optics, and catalysis.

  1. Challenges for Insertion of Structural Nanomaterials in Aerospace Applications

    Science.gov (United States)

    Sochi, Emilie J.

    2012-01-01

    In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.

  2. Price tag in nanomaterials?

    Science.gov (United States)

    Gkika, D. A.; Vordos, N.; Nolan, J. W.; Mitropoulos, A. C.; Vansant, E. F.; Cool, P.; Braet, J.

    2017-05-01

    With the evolution of the field of nanomaterials in the past number of years, it has become apparent that it will be key to future technological developments. However, while there are unlimited research undertakings on nanomaterials, limited research results on nanomaterial costs exist; all in spite of the generous funding that nanotechnology projects have received. There has recently been an exponential increase in the number of studies concerning health-related nanomaterials, considering the various medical applications of nanomaterials that drive medical innovation. This work aims to analyze the effect of the cost factor on acceptability of health-related nanomaterials independently or in relation to material toxicity. It appears that, from the materials studied, those used for cancer treatment applications are more expensive than the ones for drug delivery. The ability to evaluate cost implications improves the ability to undertake research mapping and develop opinions on nanomaterials that can drive innovation.

  3. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  4. Carbon-nanotube-based liquids: a new class of nanomaterials and their applications

    International Nuclear Information System (INIS)

    Phan, Ngoc Minh; Nguyen, Manh Hong; Phan, Hong Khoi; Bui, Hung Thang

    2014-01-01

    Carbon-nanotube-based liquids—a new class of nanomaterials—have shown many interesting properties and distinctive features offering unprecedented potential for many applications. This paper summarizes the recent progress on the study of the preparation, characterization and properties of carbon-nanotube-based liquids including so-called nanofluids, nanolubricants and different kinds of nanosolutions containing multi-walled carbon nanotubes/single-walled carbon nanotubes/graphene. A broad range of current and future applications of these nanomaterials in the fields of energy saving, power electronic and optoelectronic devices, biotechnology and agriculture are presented. The paper also identifies challenges and opportunities for future research. (paper)

  5. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications.

    Science.gov (United States)

    Kim, Sungjin; Kim, Jae Hong; Lee, Joon Seok; Park, Chan Beum

    2015-08-12

    Peptide self-assembly is an attractive route for the synthesis of intricate organic nanostructures that possess remarkable structural variety and biocompatibility. Recent studies on peptide-based, self-assembled materials have expanded beyond the construction of high-order architectures; they are now reporting new functional materials that have application in the emerging fields such as artificial photosynthesis and rechargeable batteries. Nevertheless, there have been few reviews particularly concentrating on such versatile, emerging applications. Herein, recent advances in the synthesis of self-assembled peptide nanomaterials (e.g., cross β-sheet-based amyloid nanostructures, peptide amphiphiles) are selectively reviewed and their new applications in diverse, interdisciplinary fields are described, ranging from optics and energy storage/conversion to healthcare. The applications of peptide-based self-assembled materials in unconventional fields are also highlighted, such as photoluminescent peptide nanostructures, artificial photosynthetic peptide nanomaterials, and lithium-ion battery components. The relation of such functional materials to the rapidly progressing biomedical applications of peptide self-assembly, which include biosensors/chips and regenerative medicine, are discussed. The combination of strategies shown in these applications would further promote the discovery of novel, functional, small materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications

    Science.gov (United States)

    Banholzer, Matthew John

    As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of

  7. Shape-selective synthesis of Sn(MoO4)2 nanomaterials for catalysis and supercapacitor applications.

    Science.gov (United States)

    Sakthikumar, K; Ede, Sivasankara Rao; Mishra, Soumyaranjan; Kundu, Subrata

    2016-06-07

    Size and shape-selective Sn(MoO4)2 nanomaterials have been synthesized for the first time using a simple hydrothermal route by the reaction of Sn(ii) chloride salt with sodium molybdate in CTAB micellar media under stirring at 60 °C temperature for about three hours. Needle-like and flake-like Sn(MoO4)2 nanomaterials were synthesized by optimizing the CTAB to metal salt molar ratio and by controlling other reaction parameters. The eventual diameter and length of the nanoneedles are ∼100 ± 10 nm and ∼850 ± 100 nm respectively. The average diameter of the flakes is ∼250 ± 50 nm. The synthesized Sn(MoO4)2 nanomaterials can be used in two potential applications, namely, catalytic reduction of nitroarenes and as an anodic material in electrochemical supercapacitors. From the catalysis study, it was observed that the Sn(MoO4)2 nanomaterials could act as a potential catalyst for the successful photochemical reduction of nitroarenes into their respective aminoarenes within a short reaction time. From the supercapacitor study, it was observed that the Sn(MoO4)2 nanomaterials of different shapes show different specific capacitance (Cs) values and the highest Cs value was observed for Sn(MoO4)2 nanomaterials having a flake-like morphology. The highest Cs value observed was 109 F g(-1) at a scan rate of 5 mV s(-1) for the flake-like Sn(MoO4)2 nanomaterials. The capacitor shows an excellent long cycle life along with 70% retention of the Cs value, even after 4000 consecutive cycles at a current density of 8 mA cm(-2). Other than the applications in catalysis and supercapacitors, the synthesized nanomaterials can find further applications in photoluminescence, sensor and other energy-related devices.

  8. Investigations of the luminescence of phosphate glasses with respect to their application as solid dosemeters

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1977-03-01

    A comprehensive presentation of the luminescent properties of phosphate glass is worked out. The extensive investigations show an essential enlargement of the knowledge on the luminescence of phosphate glass existing hitherto. These results form the basis for a detailed discussion of the luminescence mechanism. By applying additional results of measurements concerning optical and paramagnetic absorption, enabling the access to the atomic effect, propositions were developed for models of absorption, excitation and luminous centers relevant for dosimetry for which Ag ++ was found to be the constituent determining the centers. The interpretation of the luminescence phenomena within the frame of these models leads to considerable corrections on the existing concepts. At the same time the comparability of Ag-doped phosphate glasses and alkali halogenides is shown with respect to their luminescence behaviour, and with it an argument for the existence of crystal-like short-order regions in the amorphous glass is provided. This result serves as a basis for a discussion of the centers in the band model. Further investigations dealt with the quantities of influence for the practical application of the dosemeter. By interpretation of these results explanations are given for the effect of irradiation and evaluation temperatures, of LET, the dose, and UV light on the measuring signal. The phenomenon of 'pre-dose', for which especially surface effects have been detected as cause, is discussed under the aspect of a boundary layer theory. (orig./HP) [de

  9. Critical Shell Thickness of Core/Shell Upconversion Luminescence Nanoplatform for FRET Application

    NARCIS (Netherlands)

    Wang, Yu; Liu, Kai; Liu, Xiaomin; Dohnalova, Katerina; Gregorkiewicz, Tom; Kong, Xianggui; Aalders, Maurice C. G.; Buma, Wybren J.; Zhang, Hong

    2011-01-01

    Almost all the luminescence upconversion nanoparticles used for Forster resonant energy transfer (FRET) applications are bare cores based on the consideration that the energy transfer efficiency is optimized because the distance between energy donors and acceptors is minimized. On the other hand, it

  10. Synthesis and property investigation of metal-based nanomaterials for biotechnological applications

    Science.gov (United States)

    Darsanasiri, Nalin Dammika

    Luminescent lanthanide-based materials have drawn recent interest due to their applications in in vitro cellular imaging. Sensitive biological analysis requires optical labels with high water dispersibility & stability and excellent luminescent properties. Most literature reported lanthanide complexes with high luminescence intensity are hydrophobic and unstable, limiting their biological applications. This project was designed to incorporate a highly luminescent lanthanide beta-diketonate complex in a silica nanoparticle. Eu(btfa)3dmph complex was synthesized, which exhibits red luminescence at 614 nm with a narrow (15 nm) full with half-maximum (btfa=4,4,4-trifluoro-1-phenyl-1,3-butanedione, dmph=4,7-dimethyl,1,10-phenanthroline). A synthetic procedure was optimized to incorporate the Eu-complex in a silica-based nanoparticle with an average particle diameter of 36 nm. Eu-complex based silica nanoparticles exhibit high stability and water-dispersibility with a luminescence quantum yield of 10 %. The nanoparticles showed antimicrobial activity against clinically important E.coli, S.aureus and S.epidermidis. Synthesis, materials characterization, and antimicrobial studies of the complex and the nanoparticles was discussed in the first part of this thesis. Nanotechnology is emerging as a new interdisciplinary field combining biology, chemistry, physics, and material science. Recent advances promise developments in the synthesis, modification and practical applications of polymer-coated manganese (Mn)-based zinc oxide (ZnO) nanoparticles (NPs). The size distribution, shape, and surface modification of metal-based ZnO nanoparticles are the key factors determining their specific physical properties. Due to the strong antibacterial properties and low toxicity towards mammalian cells, ZnO NPs have been successfully used in a wide range of applications including wound dressing, protective clothing, antibacterial surfaces, food preservation, and cosmetics as biocidal and

  11. The Application of Nanomaterials in Stem Cell Therapy for Some Neurological Diseases.

    Science.gov (United States)

    Zhang, Guilong; Khan, Ahsan Ali; Wu, Hao; Chen, Lukui; Gu, Yuchun; Gu, Ning

    2018-02-08

    Stem cell therapy provides great promising therapeutic benefits for various neurological disorders. Cell transplantation has emerged as cell replacement application for nerve damage. Recently, nanomaterials obtain wide development in various industrial and medical fields, and nanoparticles have been applied in the neurological field for tracking and treating nervous system diseases. Combining stem cells with nanotechnology has raised more and more attentions; and it has demonstrated that the combination has huge effects on clinical diagnosis and therapeutics in multiple central nervous system diseases, meanwhile, improves prognosis. The aim of this review was to give a brief overview of the application of nanomaterials in stem cell therapy for neurological diseases. Nanoparticles not only promote stem cell proliferation and differentiation in vitro or in vivo, but also play dominant roles on stem cell imaging and tracking. Furthermore, via delivering genes or drugs, nanoparticles can participate in stem cell therapeutic applications for various neurological diseases, such as ischemic stroke, spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD) and gliomas. However, nanoparticles have potential cytotoxic effects on nerve cells, which are related to their physicochemical properties. Nano-stem cell-based therapy as a promising strategy has the ability to affect neuronal repair and regeneration in the central nervous system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors.

    Science.gov (United States)

    Jiang, Hongji

    2011-09-05

    Graphene is a flat monolayer of carbon atoms packed tightly into a 2D honeycomb lattice that shows many intriguing properties meeting the key requirements for the implementation of highly excellent sensors, and all kinds of proof-of-concept sensors have been devised. To realize the potential sensor applications, the key is to synthesize graphene in a controlled way to achieve enhanced solution-processing capabilities, and at the same time to maintain or even improve the intrinsic properties of graphene. Several production techniques for graphene-based nanomaterials have been developed, ranging from the mechanical cleavage and chemical exfoliation of high-quality graphene to direct growth onto different substrates and the chemical routes using graphite oxide as a precusor to the newly developed bottom-up approach at the molecular level. The current review critically explores the recent progress on the chemical preparation of graphene-based nanomaterials and their applications in sensors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications.

    Science.gov (United States)

    Franklin, Aaron D

    2015-08-14

    For more than 50 years, silicon transistors have been continuously shrunk to meet the projections of Moore's law but are now reaching fundamental limits on speed and power use. With these limits at hand, nanomaterials offer great promise for improving transistor performance and adding new applications through the coming decades. With different transistors needed in everything from high-performance servers to thin-film display backplanes, it is important to understand the targeted application needs when considering new material options. Here the distinction between high-performance and thin-film transistors is reviewed, along with the benefits and challenges to using nanomaterials in such transistors. In particular, progress on carbon nanotubes, as well as graphene and related materials (including transition metal dichalcogenides and X-enes), outlines the advances and further research needed to enable their use in transistors for high-performance computing, thin films, or completely new technologies such as flexible and transparent devices. Copyright © 2015, American Association for the Advancement of Science.

  14. Purifying Nanomaterials

    Science.gov (United States)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  15. Nanomaterials in preventive dentistry

    Science.gov (United States)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  16. Optical spectroscopy and luminescence properties of Ho3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications

    Science.gov (United States)

    Reddy Prasad, V.; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Ho3+ doped zinc fluorophosphate (ZFP) glasses with molar chemical compositions, (60-x) NH4H2PO4+20ZnO+10BaF2+10NaF+xHo2O3 (where x = 0.1, 0.3, 0.5, 1.0 and 1.5 mol%) were prepared by melt quenching technique. These glasses were characterized through physical, structural, optical, excitation, luminescence and decay curve analysis. From the absorption spectra, spectral intensities (fexp and fcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), radiative transition probabilities (AT), radiative lifetimes (τR) and branching ratios (βR) were evaluated for all Ho3+ doped ZFP glass matrices. From the photoluminescence spectra, peak stimulated emission cross-sections (σP) were calculated for all Ho3+ doped ZFP glasses. The Ho3+ doped ZFP glasses show strong green emission at 545 nm and red emission at 656 nm under excitation, 450 nm. The measured lifetimes (τmeas) of (5S2)5F4 level of Ho3+ doped ZFP glasses were obtained from decay profiles. The CIE color coordinates of Ho3+ doped ZFP glasses were calculated from emission spectra and 1.0 mol% of Ho3+ doped ZFP glass matrix gives green emission. Hence, these results confirm that the Ho3+ doped ZFP glasses could be considered as a promising candidate for visible green laser applications.

  17. Layer-by-Layer (LBL) Self-Assembled Biohybrid Nanomaterials for Efficient Antibacterial Applications.

    Science.gov (United States)

    Wu, Yuanhao; Long, Yubo; Li, Qing-Lan; Han, Shuying; Ma, Jianbiao; Yang, Ying-Wei; Gao, Hui

    2015-08-12

    Although antibiotics have been widely used in clinical applications to treat pathogenic infections at present, the problem of drug-resistance associated with abuse of antibiotics is becoming a potential threat to human beings. We report a biohybrid nanomaterial consisting of antibiotics, enzyme, polymers, hyaluronic acid (HA), and mesoporous silica nanoparticles (MSNs), which exhibits efficient in vitro and in vivo antibacterial activity with good biocompatibility and negligible hemolytic side effect. Herein, biocompatible layer-by-layer (LBL) coated MSNs are designed and crafted to release encapsulated antibiotics, e.g., amoxicillin (AMO), upon triggering with hyaluronidase, produced by various pathogenic Staphylococcus aureus (S. aureus). The LBL coating process comprises lysozyme (Lys), HA, and 1,2-ethanediamine (EDA)-modified polyglycerol methacrylate (PGMA). The Lys and cationic polymers provided multivalent interactions between MSN-Lys-HA-PGMA and bacterial membrane and accordingly immobilized the nanoparticles to facilitate the synergistic effect of these antibacterial agents. Loading process was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction spectroscopy (XRD). The minimal inhibition concentration (MIC) of MSN-Lys-HA-PGMA treated to antibiotic resistant bacteria is much lower than that of isodose Lys and AMO. Especially, MSN-Lys-HA-PGMA exhibited good inhibition for pathogens in bacteria-infected wounds in vivo. Therefore, this type of new biohybrid nanomaterials showed great potential as novel antibacterial agents.

  18. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Peng, Zhiwei; Zeng, Guangming; Xu, Piao; Cheng, Min; Wang, Rongzhong; Wan, Jia

    2018-05-01

    Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.

  19. Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry

    International Nuclear Information System (INIS)

    Spooner, N.A.; Smith, B.W.; Williams, O.M.; Creighton, D.F.; McCulloch, I.; Hunter, P.G.; Questiaux, D.G.; Prescott, J.R.

    2011-01-01

    Thermoluminescence (TL), Optically-Stimulated Luminescence (OSL) and Infrared-Stimulated Luminescence (IRSL) emitted from a set of 19 salt (NaCl) samples were studied for potential application to retrospective dosimetry. TL emission spectra revealed intense TL emissions from most samples, centred on 590 nm; UV and blue emissions were also found. Significant thermally-induced sensitivity changes were observed and TL, OSL and IRSL growth curves were measured. Pulse anneal analysis was performed, as was quantitative imaging of the TL, OSL and IRSL to assess sample heterogeneity. Kinetic analysis found lifetimes at 20 °C of the 200 °C and 240 °C TL peaks to be 0.6 ka and 4 ka respectively; sufficient for application to retrospective dosimetry.

  20. Application of photostimulated luminescence (PSL) to detect irradiated molluscs

    International Nuclear Information System (INIS)

    Marchesani, G.; Chiaravalle, A.E.; Chiesa, L.M.

    2011-01-01

    Complete text of publication follows. In contrast to thermally processed foods, irradiation is a cold treatment both to reduce microbiological contamination and to increase the shelf-life of raw seafood. According to the list of States' authorizations molluscs can be irradiated in a range of 0.5 / 3 kGy only in authorized countries (e.g. UK, Belgium and Czech Republic). Therefore the aim of this study is to identify, at different dose levels (0.5, 1, 1.5, 2, 3 kGy), irradiated oysters, clams and mussels using luminescence materials from different sites (shells and pulps) and to determine sample sensitivity for previous screening result confirmation. A total number of 10 samples for each species were analyzed by both procedures: screening and calibrated PSL. Samples were irradiated using a low energy X-ray irradiator (RS-2400, Radsource Inc.) with the following operational settings: 150 kV and 45 mA. Whole pulps were simply dispensed into a clean Petri-dish whereas shells powder required to be fixed as a thick layer with silicone grease. Results obtained showed that screening analysis can be used to identify correctly all irradiated and non irradiated samples. Particularly untreated sample exhibited a sensitivity index from 2 to 4 order of magnitude greater than the exposed sample one, while for exposed specimen calibrated PSL signals, after re-irradiation at defined dose, were of the same order of the first measurement (initial PSL counts). In conclusion mineral debris contaminating pulps and biocarbonates from shells can be considered reliable radioinduced markers and PSL techniques can be easily applied for rapid and simple analysis to identify irradiated molluscs in official controls.

  1. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    Science.gov (United States)

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future.

  2. Synthesis and applications of carbon nanomaterials for energy generation and storage

    Directory of Open Access Journals (Sweden)

    Marco Notarianni

    2016-02-01

    Full Text Available The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.

  3. A Review on the Synthesis of Manganese Oxide Nanomaterials and Their Applications on Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xiaodi Liu

    2013-01-01

    Full Text Available Most recently, manganese oxides nanomaterials, including MnO and MnO2, have attracted great interest as anode materials in lithium-ion batteries (LIBs for their high theoretical capacity, environmental benignity, low cost, and special properties. Up to now, manganese oxides nanostructures with excellent properties and various morphologies have been successfully synthesized. Herein, we provide an in-depth discussion of recent development of the synthesis of manganese oxides nanomaterials and their application in the field of LIBs.

  4. A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging, and toxicity.

    Science.gov (United States)

    Nalwa, Hari Singh

    2014-10-01

    This second special issue of the Journal of Biomedical Nanotechnology in a series contains another 30 state-of-the-art reviews focused on the biomedical applications of nanomaterials, biosensors, bone tissue engineering, MRI and bioimaging, single-cell detection, stem cells, endothelial progenitor cells, toxicity and biosafety of nanodrugs, nanoparticle-based new therapeutic approaches for cancer, hepatic and cardiovascular disease.

  5. Porous Nanomaterials for Ultrabroadband Omnidirectional Anti-Reflection Surfaces with Applications in High Concentration Photovoltaics

    KAUST Repository

    Yao, Yuan

    2016-12-06

    Materials for nanoporous coatings that exploit optimized chemistries and self-assembly processes offer capabilities to reach ≈98% transmission efficiency and negligible scattering losses over the broad wavelength range of the solar spectrum from 350 nm to 1.5 μm, on both flat and curved glass substrates. These nanomaterial anti-reflection coatings also offer wide acceptance angles, up to ±40°, for both s- and p-polarization states of incident light. Carefully controlled bilayer films have allowed for the fabrication of dual-sided, gradient index profiles on plano-convex lens elements. In concentration photovoltaics platforms, the resultant enhancements in the photovoltaics efficiencies are ≈8%, as defined by experimental measurements on systems that use microscale triple-junction solar cells. These materials and their applications in technologies that require control over interface reflections have the potential for broad utility in imaging systems, photolithography, light-emitting diodes, and display technologies.

  6. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications

    Science.gov (United States)

    Zainal, Zulkarnain; Yusof, Nor Azah

    2018-01-01

    Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures. PMID:29438327

  7. Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications

    Directory of Open Access Journals (Sweden)

    Salisu Nasir

    2018-02-01

    Full Text Available Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures.

  8. Application of the luminescence single-aliquot technique for dose estimation in the Marmara Sea

    International Nuclear Information System (INIS)

    Tanir, Guenes; Sencan, Emine; Boeluekdemir, M. Hicabi; Tuerkoez, M. Burak; Tel, Eyuep

    2005-01-01

    The aim of this study is to obtain the equivalent dose, which is the important quantity for all the studies related to the use of luminescence in dating sediments. Recent advances in luminescence dating have led to increasing application of the technique to sediment from the depositional environmental samples. The sample used in this study is the active main fault sample that was collected from the Sea of Marmara in NW Turkey. Equivalent dose was measured using both the multiple-aliquots and the single-aliquot techniques. In this study single aliquot regeneration on additive dose (SARA) procedure was also used. The result obtained was not in agreement with the results evaluated from the multiple-aliquots procedure. So a simple modification was suggested for SARA procedure. In our modified procedure the calculated dose (D) values were obtained by using the additive dose protocol instead of regeneration protocol

  9. Application of Nanomaterials in Production of Self-Sensing Concretes: Contemporary Developments and Prospects

    Directory of Open Access Journals (Sweden)

    Horszczaruk E.

    2016-09-01

    Full Text Available In the recent years structural health monitoring (SHM has gathered spectacular attention in civil engineering applications. Application of such composites enable to improve the safety and performance of structures. Recent advances in nanotechnology have led to development of new family of sensors - self-sensing materials. These materials enable to create the so-called “smart concrete” exhibiting self-sensing ability. Application of self-sensing materials in cement-based materials enables to detect their own state of strain or stress reflected as a change in their electrical properties. The variation of strain or stress is associated with the variation in material’s electrical characteristics, such as resistance or impedance. Therefore, it is possible to efficiently detect and localize crack formation and propagation in selected concrete element. This review is devoted to present contemporary developments in application of nanomaterials in self-sensing cement-based composites and future directions in the field of smart structures.

  10. Nanomaterials: biological effects and some aspects of applications in ecology and agriculture

    Science.gov (United States)

    Starodub, Nickolaj F.; Shavanova, Kateryna E.; Taran, Marina V.; Katsev, Andrey M.; Safronyuk, Sergey L.; Son'ko, Roman V.; Bisio, Chiara; Guidotti, Matteo

    2014-10-01

    Nanosized materials have shown a relevant potential for practical application in a broad number of research fields, in industrial production and in everyday life. However, these substances acquire new properties and therefore may be biologically very active. This raise questions their potential toxic effects on living organisms. In some cases the nanosized materials or nano-composites possess distinct positive properties in enhancing the adaptation of plants in unfavorable conditions and in decreasing the negative effect of some chemical substances. The information about the positive and negative effects of nano-materials as well as the data concerned to the innovative approaches used by authors for the rapid assessment of the total toxicity with the exploitation of bacteria, Daphnia and plants are given. In last case a special attention is paid to the control of natural bioluminescence and chemoluminescence of living medium of organisms, the energy of the seed germination and the efficiency of the photosynthetic apparatus in growing plants by the estimation of chlorophyll fluorescence by the special "Floratest" biosensor. Three specific clases of nano-materials are analysed: a) nano-particles ZnO, Ag2O, FeOx, TiO2 and others, b) colloidal suspension of the same compounds, and c) nanostructured layered clay materials (acid saponites and Nb-containing saponite clays). The next features are analyzed: the biocidal activity (for nanoparticles), the improvement of the nutrition of plants on calcareous soils (for colloidal structures), the activity and performances as heterogeneous catalysts (for Nb-containing saponites, as selective oxidation catalysts for toxic organosulfur compounds into non-noxious products). The chemical and physical characterization of the nanosized materials described here was studied by different spectrophotometric and microscopic techniques, including AFM and SEM.

  11. Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Industrial Technologies Program

    2011-01-05

    This brochure describes the 31 R&D projects that AMO supports to accelerate the commercial manufacture and use of nanomaterials for enhanced energy efficiency. These cost-shared projects seek to exploit the unique properties of nanomaterials to improve the functionality of industrial processes and products.

  12. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  13. Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials – KY{sub 3}F{sub 10}:Yb{sup 3+},Tm{sup 3+}/SiO{sub 2}-NH{sub 2}/Au

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin, E-mail: runowski@amu.edu.pl

    2017-06-15

    Multifunctional luminescent-plasmonic KY{sub 3}F{sub 10}:Yb{sup 3+},Tm{sup 3+}/SiO{sub 2}-NH{sub 2}/Au nanomaterials were successfully obtained. The lanthanide-doped fluoride nanoparticles (NPs), synthesized under hydrothermal conditions exhibited bright blue up-conversion luminescence (λ{sub ex}=980 nm). Such lanthanide nanocrystals (20–40 nm) were coated with amine modified silica shell, forming core/shell nanostructures. Their surface was further uniformly covered with ultra-small gold NPs (4–7 nm). The as-prepared luminescent-plasmonic core/shell nanomaterials exhibited tunable up-conversion emission, due to the interactions between plasmonic and luminescent phases. The emission of Tm{sup 3+} ion was affected by the surface Au NPs, which exhibited strong plasmonic absorption in the visible range (450–650 nm). The increasing amount of the surface Au NPs, led to the significant alterations in a ratio of the Tm{sup 3+} emission bands. The NIR band ({sup 3}H{sub 4}→{sup 3}H{sub 6}) was unchanged, whereas the ratio and relative intensity of the bands in a visible range ({sup 1}G{sub 4}→{sup 3}H{sub 6} and {sup 1}G{sub 4}→{sup 3}F{sub 4}) was altered. This led to the significant change of the emission spectra shape and influenced color of emission, tuning it from bright blue to blue-violet. The products obtained were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), UV–vis absorption spectroscopy and luminescence spectroscopy (excitation/emission spectra and luminescence decay curves).

  14. Infrared (IR) stimulated luminescence from modern bricks in retrospective dosimetry applications

    International Nuclear Information System (INIS)

    Niedermayer, M.; Goeksu, H.Y.; Dalheimer, A.; Bayer, A.

    2000-01-01

    It has frequently been observed that certain roof tiles and bricks, especially from relatively modern European buildings, do not contain enough quartz grains in a suitable grain size range to permit dose reconstruction using thermoluminescence (TL) or optically stimulated luminescence (OSL) methods. In this paper the feasibility of using infrared-stimulated luminescence (IRSL) on the feldspar fraction of such bricks and tiles has been investigated. Appropriate preheating treatments were employed in order to select the most stable signals, and procedures were developed to enhance the signal to noise ratio. The possible effect of anomalous fading under application of these procedures was tested. In the dose range above 100 mGy, it has been demonstrated that using IRSL on the feldspar fraction of such material provides a feasible alternative to the use of green-light-stimulated luminescence (GLSL) on the quartz fraction, for the purposes of retrospective dosimetry. Furthermore, since the use of IRSL as described in this paper involves the measurement of polymineral fine grain fractions of bricks, a technique for the calibration of the built-in β source against the γ source in Secondary Standard Dosimetry facilities for routine use of the technique is described

  15. Lanthanum lead boro-tellurite glasses doped with samarium trioxide for luminescent devices application

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Boro-tellurite based glasses (10La2O3-(20-x) TeO2-30PbO-40B2O3-xSm2O3) (x = 0, 0.5, 1.0 and 2.0 mol %) doped with different concentrations of Sm3+ ions has been investigated. The optical properties have been studied through spectroscopic measurements such as absorption and luminescence. Absorption spectra reveals nine peaks due to 6H5/2→6P3/2, 4I3/2+4F5/2+4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2, and 6H13/2 transitions. Luminescence spectra under the excitation of 403 nm display four emission bands due to 4G5/2→6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of Sm3+ ions. Among them 6H7/2 bright orange -red is more intense which proves that the present glasses are potential candidates for luminescent device applications in visible range as well as optical fibre communication since its refractive index is 1.65 high compared to other glasses.

  16. Characterization of the proton irradiation induced luminescence of materials and application in radiation oncology dosimetry

    Science.gov (United States)

    Darafsheh, Arash; Zhang, Rongxiao; Kassaee, Alireza; Finlay, Jarod C.

    2018-03-01

    Visible light generated as the result of interaction of ionizing radiation with matter can be used for radiation therapy quality assurance. In this work, we characterized the visible light observed during proton irradiation of poly(methyl methacrylate) (PMMA) and silica glass fiber materials by performing luminescence spectroscopy. The spectra of the luminescence signal from PMMA and silica glass fibers during proton irradiation showed continuous spectra whose shape were different from that expected from Čerenkov radiation, indicating that Čerenkov radiation cannot be the responsible radioluminescence signal. The luminescence signal from each material showed a Bragg peak pattern and their corresponding proton ranges are in agreement with measurements performed by a standard ion chamber. The spectrum of the silica showed two peaks at 460 and 650 nm stem from the point defects of the silica: oxygen deficiency centers (ODC) and non-bridging oxygen hole centers (NBOHC), respectively. The spectrum of the PMMA fiber showed a continuous spectrum with a peak at 410 nm whose origin is connected with the fluorescence of the PMMA material. Our results are of interest for various applications based on imaging radioluminescent signal in proton therapy and will inform on the design of high-resolution fiber probes for proton therapy dosimetry.

  17. Advanced nanomaterials

    Science.gov (United States)

    Titus, Elby; Ventura, João; Pedro Araújo, João; Campos Gil, João

    2017-12-01

    Nanomaterials provide a remarkably novel outlook to the design and fabrication of materials. The know-how of designing, modelling and fabrication of nanomaterials demands sophisticated experimental and analytical techniques. The major impact of nanomaterials will be in the fields of electronics, energy and medicine. Nanoelectronics hold the promise of improving the quality of life of electronic devices through superior performance, weight reduction and lower power consumption. New energy production systems based on hydrogen, solar and nuclear sources have also benefited immensely from nanomaterials. In modern medicine, nanomaterials research will have great impact on public health care due to better diagnostic methods and design of novel drugs.

  18. Engineering carbon nanomaterials for future applications: energy and bio-sensor

    Science.gov (United States)

    Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong

    2011-06-01

    This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.

  19. Synthesis of KMgCl{sub 3} nanomaterial and luminescence of Ce{sup 3+}/Dy{sup 3+}/Eu{sup 3+} by different routes

    Energy Technology Data Exchange (ETDEWEB)

    Poddar, Anuradha [Department of Physics, Sindhu Mahavidyalaya, Nagpur 440017 (India); Gedam, S.C., E-mail: gedam_sc@rediffmail.com [Department of Physics, K.Z.S. Science College, Kalmeshwar, Nagpur 441501 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India)

    2015-02-15

    The present KMgCl{sub 3} phosphor has been synthesized through wet chemical synthesis (WCS), solid state diffusion (SSD) and Hispersed centrifuge (HC) routes in the same atmospheric conditions and characterized for luminescence properties. XRDs of the sample prepared by all three methods have been placed at the same position, phase and matched well with standard data. The particle size of 20 nm of KMgCl{sub 3} by a Hispersed centrifuged method was detected using a transmission electron microscope (TEM). The PL emission spectra have been observed for Ce{sup 3+} at 353 nm and 375 nm due to 5d→4f transition, whereas luminescence of Dy{sup 3+} efficiently observed at 484 nm and 579 nm for an excitation of 384 nm due to {sup 4}F{sub 9/2}→ {sup 6}H{sub 15/2} and {sup 6}H{sub 13/2} (blue–yellow region) transition and Eu{sup 3+} is peaking at 596 nm and 616 nm (λ{sub ex}=394 nm) due to level {sup 5}D{sub 0} to {sup 7}F{sub j} (j=0, 1, 2, and 3) radiative transitions. The presented phosphors are excited in the range of 300–400 nm which is mercury free excited range. Synthesis and photoluminescence spectra of trivalent Ce, Dy or Eu rare-earths in KMgCl{sub 3} are described for all three routes, for the first time in the present work. The CIE chromaticity coordinates were also calculated for KMgCl{sub 3}:X (Ce{sup 3+}, Dy{sup 3+} and Eu{sup 3+}) phosphors, which are close to the NTSC standard values. KMgCl{sub 3} matrix is not only suitable for different and easy synthesis but efficient luminescence also. The paper discuses the XRD, crystallinity (morphology) and luminescence of Ce, Dy or Eu rare-earths in KMgCl{sub 3} synthesized by three (WCS, SSD and HC) different routes. - Highlights: • The particle size 20 nm of KMgCl{sub 3} was detected by Hispersed centrifuged method using TEM. • The phosphors are prepared by very simple WCM, SSD and HS technique. • An efficient luminescence is observed in KMgCl{sub 3}:X (X=Ce{sup 3+}, Dy{sup 3+} and Eu{sup 3

  20. Nanomaterials and Nanochemistry

    CERN Document Server

    Bréchignac, Catherine; Lahmani, Marcel

    2007-01-01

    Nanomaterials are a fast developing field of research and applications lie in many separate domains, such as in hi-tech (optics, electronics, biology, aeronautics), but also in consumer industries (automotive, concrete, surface treatments (including paints), cosmetics, etc.).

  1. Application of nanomaterials in two-terminal resistive-switching memory devices

    Directory of Open Access Journals (Sweden)

    Jianyong Ouyang

    2010-05-01

    Full Text Available Nanometer materials have been attracting strong attention due to their interesting structure and properties. Many important practical applications have been demonstrated for nanometer materials based on their unique properties. This article provides a review on the fabrication, electrical characterization, and memory application of two-terminal resistive-switching devices using nanomaterials as the active components, including metal and semiconductor nanoparticles (NPs, nanotubes, nanowires, and graphenes. There are mainly two types of device architectures for the two-terminal devices with NPs. One has a triple-layer structure with a metal film sandwiched between two organic semiconductor layers, and the other has a single polymer film blended with NPs. These devices can be electrically switched between two states with significant different resistances, i.e. the ‘ON’ and ‘OFF’ states. These render the devices important application as two-terminal non-volatile memory devices. The electrical behavior of these devices can be affected by the materials in the active layer and the electrodes. Though the mechanism for the electrical switches has been in argument, it is generally believed that the resistive switches are related to charge storage on the NPs. Resistive switches were also observed on crossbars formed by nanotubes, nanowires, and graphene ribbons. The resistive switches are due to nanoelectromechanical behavior of the materials. The Coulombic interaction of transient charges on the nanomaterials affects the configurable gap of the crossbars, which results into significant change in current through the crossbars. These nanoelectromechanical devices can be used as fast-response and high-density memory devices as well. Dr. Jianyong Ouyang received his bachelor degree from the Tsinghua University in Beijing, China, and MSc from the Institute of Chemistry, Chinese Academy of Science. He received his PhD from the Institute for Molecular

  2. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    Science.gov (United States)

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Hot-wire chemical vapor synthesis for a variety of nano-materials with novel applications

    International Nuclear Information System (INIS)

    Dillon, A.C.; Mahan, A.H.; Deshpande, R.; Alleman, J.L.; Blackburn, J.L.; Parillia, P.A.; Heben, M.J.; Engtrakul, C.; Gilbert, K.E.H.; Jones, K.M.; To, R.; Lee, S-H.; Lehman, J.H.

    2006-01-01

    Hot-wire chemical vapor deposition (HWCVD) has been demonstrated as a simple economically scalable technique for the synthesis of a variety of nano-materials in an environmentally friendly manner. For example we have employed HWCVD for the continuous production of both carbon single- and multi-wall nanotubes (SWNTs and MWNTs). Unanticipated hydrogen storage on HWCVD-generated MWNTs has led insight into the adsorption mechanism of hydrogen on metal/carbon composites at near ambient temperatures that could be useful for developing a vehicular hydrogen storage system. Recent efforts have been focused on growing MWNT arrays on thin nickel films with a simple HWCVD process. New data suggests that these MWNT arrays could replace the gold black coatings currently used in pyroelectric detectors to accurately measure laser power. Finally, we have very recently employed HWCVD for the production of crystalline molybdenum and tungsten oxide nanotubes and nanorods. These metal oxide nanorods and nanotubes could have applications in catalysis, batteries and electrochromic windows or as gas sensors. A summary of the techniques for growing these novel materials and their various potential applications is provided

  4. Application of modeling tools for risk assessment of engineered nanomaterials in aquatic systems

    CSIR Research Space (South Africa)

    Ondiaka, M

    2012-04-01

    Full Text Available Globally, engineered nanomaterials (ENMs) are increasingly being used in nanoproducts to improve their performance. The multi-stage lifecycle of ENMs increases their potential risk profiles to different environmental systems, for example, due...

  5. Convenient synthesis of Cu3(BTC)2 encapsulated Keggin heteropolyacid nanomaterial for application in catalysis.

    Science.gov (United States)

    Wee, Lik H; Bajpe, Sneha R; Janssens, Nikki; Hermans, Ive; Houthoofd, Kristof; Kirschhock, Christine E A; Martens, Johan A

    2010-11-21

    Nanomaterial of Cu(3)(BTC)(2) (BTC = benzene tricarboxylic acid) incorporating Keggin heteropolyacid conveniently prepared at room temperature and recovered by freeze drying outperforms ultrastable Y zeolite in acid catalysed esterification reaction.

  6. Application of Bayesian Network modeling on the stability and toxicity of engineered nanomaterials in aquatic ecosystems

    CSIR Research Space (South Africa)

    Ondiaka, M

    2013-08-01

    Full Text Available The stability of engineered nanomaterials (ENMs) in the aquatic systems influences their eventual interactions with aquatic biota – and subsequently the observed toxic effects. Increasing data suggests that physicochemical properties of ENMs...

  7. Potential Application of Nanomaterials to treat and detect the contaminated water

    Science.gov (United States)

    Singh, R. P.

    2011-12-01

    An ecosystem is very immense to maintain global environmental balance but an imbalance of water alters the function of ecosystems that affects all life on our planet Earth. The destruction of agricultural land, lakes, ponds, rivers, and oceans locally and globally creates environmental imbalances so that catastrophically damage to be appeared widely. The water cycle continually circulates evaporated water into the atmosphere and returns it as precipitation in balance form. If variety of toxins, heavy metals, oils and agricultural chemicals such as pesticides and fertilizers, all get absorbed into soil and groundwater. Then an imbalance appeared for example runoff carries these pollutants into lakes, rivers and oceanic water, as a result, all forms of water evaporated as part of the water cycle and return to the earth as acid rain, which causes worldwide environmental imbalances by killing our ecosystems. Deforestation, urbanization, and industrialization create environmental imbalances in many ways. Soil erosion in the form of dust from wind causes human infectious diseases, including anthrax and tuberculosis. An environmental imbalance occurs due to greenhouse gases, which accumulate in the atmosphere and trap excessive amounts of heat causes global warming, that is purportedly responsible for environmental disasters such as, rising sea levels, floods and the melting of polar ice caps. Our problem is "all talk, no action" and "jack of all trades, master of none". Our efforts in this hot topic are to make balance of water rather than imbalance of water by using positive potential of naomaterials utility and applications to eliminate toxicants/pollutants/adulterants/carcinogens from all forms of imbalance water to save our local and global ecosystems as a balance and healthy wealthy. Several natural, engineered, and non-engineered nanomaterials have strong antimicrobial properties (e.g. TiO2, ZnO, AgNPs, CNTs, fullerene, graphene), used as antimicrobial agents as

  8. Bioengineered nanomaterials

    CERN Document Server

    Tiwari, Atul

    2013-01-01

    Many varieties of new, complex diseases are constantly being discovered, which leaves scientists with little choice but to embrace innovative methods for controlling the invasion of life-threatening problems. The use of nanotechnology has given scientists an opportunity to create nanomaterials that could help medical professionals in diagnosing and treating problems quickly and effectively. Bioengineered Nanomaterials presents in-depth information on bioengineered nanomaterials currently being developed in leading research laboratories around the world. In particular, the book focuses on nanom

  9. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.

    Science.gov (United States)

    Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang

    2017-05-01

    Electrochemical energy storage technology is of critical importance for portable electronics, transportation and large-scale energy storage systems. There is a growing demand for energy storage devices with high energy and high power densities, long-term stability, safety and low cost. To achieve these requirements, novel design structures and high performance electrode materials are needed. Porous 1D nanomaterials which combine the advantages of 1D nanoarchitectures and porous structures have had a significant impact in the field of electrochemical energy storage. This review presents an overview of porous 1D nanostructure research, from the synthesis by bottom-up and top-down approaches with rational and controllable structures, to several important electrochemical energy storage applications including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and supercapacitors. Highlights of porous 1D nanostructures are described throughout the review and directions for future research in the field are discussed at the end. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Studies on possibilities of polymer composites with conductive nanomaterials application in wearable electronics

    Science.gov (United States)

    Gralczyk, Kinga; Janczak, D.; Dybowska-Sarapuk, Ł.; Lepak, S.; Wróblewski, G.; Jakubowska, M.

    2017-08-01

    In the last few years there has been a growing interest in wearable electronic products, which are generating considerable interest especially in sport and medical industries. But rigid electronics is not comfortable to wear, so things like stretchable substrates, interconnects and electronic devices might help. Flexible electronics could adjust to the curves of a human body and allow the users to move freely. The objective of this paper is to study possibilities of polymer composites with conductive nanomaterials application in wearable electronics. Pastes with graphene, silver nanoplates and carbon nanotubes were manufactured and then interconnects were screen-printed on the surfaces of polyethylene terephthalate (PET) and fabric. Afterwards, the resistance and mechanical properties of samples were examined, also after washing them in a washing machine. It has been found that the best material for the conductive phase is silver. Traces printed directly on the fabric using conductive composites with one functional phase (silver nanoplates or graphene or carbon nanotubes) are too fragile to use them as a common solution in wearable electronics. Mechanical properties can be improved not only by adding carbon nanotubes or graphene to the silver paste, but also by printing additional layer of graphene paste or carbon nanotube paste onto silver layer. In fact, these solutions are not sufficient enough to solve a problem of using these composites in wearable electronics.

  11. Engineered Polymer-Based Nanomaterials for Diagnostic, Therapeutic and Theranostic Applications.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Sinicropi, Maria Stefania; Picci, Nevio; Puoci, Francesco

    2016-01-01

    Nanomedicine can be defined as the medical application of molecular nanotechnology and it plays a key role and pharmaceutical research and development, especially related to cancer prevention, monitoring, diagnosis and treatment. In this context, nanomaterials are attracting significant research interest due to their abilities to stay in the blood for long time, accumulate in pathological sites including tumors or inflammatory areas via the enhanced permeability and retention (EPR) effect, and facilitate targeted delivery of specific therapeutic agents. In the last decades, considerable attention was attracted by the development of nano-sized carriers, based on natural or synthetic polymers, able to provide the controlled release of anticancer drugs in the aim to overcome the drawbacks associated to the conventional chemotherapy. Furthermore, when loaded with imaging agents, this kind of systems offers the opportunity to exploit optical or magnetic resonance imaging (MRI) in cancer diagnosis. Polymeric materials are characterized by several functionalities where both therapeutic and imaging components, and also targeting moieties, can be attached for simultaneous targeted therapy and imaging providing innovative platforms defined as theranostic agents with a great potential in monitoring and treatment of cancer.

  12. Implementation of the NANoREG Safe-by-Design approach for different nanomaterial applications

    International Nuclear Information System (INIS)

    Micheletti, C; Roman, M; Tedesco, E; Olivato, I; Benetti, F

    2017-01-01

    The Safe-by-Design (SbD) concept is already in use in different industrial sectors as an integral part of the innovation process management. However, the adopted approach is often limited to design solutions aiming at hazard reduction. Safety is not always considered during the innovation process, mainly due to the lack of knowledge (e.g. in small and medium companies, SMEs) and the lack of dialogue between actors along the innovation chain. The net result is that safety is considered only at the end of the innovation process at the market authorization phase, with potential loss of time and money. This is especially valid for manufactured nanomaterials (MNM) for which the regulatory context is not completely developed, and the safety knowledge is not readily available. In order to contribute to a sustainable innovation process in the nanotechnology field by maximising both benefits and safety, the NANoREG project developed a Safe Innovation approach, based on two elements: the Safe-by-Design approach which aims at including risk assessment into all innovation stages; and the Regulatory Preparedness, focused on the dialogue with stakeholders along the innovation chain. In this work we present some examples about the implementation in our Laboratory of this approach for different MNM applications, covering different steps of the innovation chain. The case studies include: the feasibility study of a medical device including substances, for topical application; the testing of two potential nanotech solutions for the consolidation of cultural heritage artifacts; the testing of coatings already on the market for other uses, which was tested as food contact materials (FCM) to evaluate the conformity to food applications. These three examples represent a good opportunity to show the importance of NANoREG SbD and Safe Innovation Approach in general, for developing new nanotechnology-based products, also highlighting the crucial role of EU ProSafe project in promoting this

  13. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Science.gov (United States)

    Besinis, Alexandros; De Peralta, Tracy; Tredwin, Christopher J; Handy, Richard D

    2015-03-24

    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure.

  14. Implementation of the NANoREG Safe-by-Design approach for different nanomaterial applications

    Science.gov (United States)

    Micheletti, C.; Roman, M.; Tedesco, E.; Olivato, I.; Benetti, F.

    2017-06-01

    The Safe-by-Design (SbD) concept is already in use in different industrial sectors as an integral part of the innovation process management. However, the adopted approach is often limited to design solutions aiming at hazard reduction. Safety is not always considered during the innovation process, mainly due to the lack of knowledge (e.g. in small and medium companies, SMEs) and the lack of dialogue between actors along the innovation chain. The net result is that safety is considered only at the end of the innovation process at the market authorization phase, with potential loss of time and money. This is especially valid for manufactured nanomaterials (MNM) for which the regulatory context is not completely developed, and the safety knowledge is not readily available. In order to contribute to a sustainable innovation process in the nanotechnology field by maximising both benefits and safety, the NANoREG project developed a Safe Innovation approach, based on two elements: the Safe-by-Design approach which aims at including risk assessment into all innovation stages; and the Regulatory Preparedness, focused on the dialogue with stakeholders along the innovation chain. In this work we present some examples about the implementation in our Laboratory of this approach for different MNM applications, covering different steps of the innovation chain. The case studies include: the feasibility study of a medical device including substances, for topical application; the testing of two potential nanotech solutions for the consolidation of cultural heritage artifacts; the testing of coatings already on the market for other uses, which was tested as food contact materials (FCM) to evaluate the conformity to food applications. These three examples represent a good opportunity to show the importance of NANoREG SbD and Safe Innovation Approach in general, for developing new nanotechnology-based products, also highlighting the crucial role of EU ProSafe project in promoting this

  15. Noble metal based plasmonic nanomaterials and their application for bio-imaging and photothermal therapy

    Science.gov (United States)

    Zhu, Dewei

    During the past two decades, researchers have gained more and more insight into the manipulation of nanomaterials to create useful technologies. Numerous classes of nanomaterials have been produced and studied based upon their intriguing chemical and physical properties and their potential applications in diverse fields, ranging from electronics to renewable energy and biomedicine. In this dissertation, we describe the synthesis and potential biomedical applications of several types of noble metal-based nanomaterials in which we control size, shape, and coupling to other materials to tune their localized surface plasmon resonance (LSPR) interaction with light. We demonstrate the application of these novel nanostructures as contrast agents for photoacoustic imaging and as photosensitizers for photothermal therapy. Chapter one first presents protocols for producing monodisperse spherical nanoparticles of gold and silver. The diameter of the nanospheres can be adjusted from less than 2 nm to greater than 10 nm by controlling the reaction conditions, including ligands that cap the nanosphere surfaces, reaction time, and reaction temperature. Next, we describe the synthesis of multi-branched Au nanocrystals with predominantly tripodal, tetrapodal and star-shaped morphologies. We demonstrate tuning of the LSPR energy in these materials by changing the branch length. In the third part of this chapter, we present a novel method for coupling heavily-doped p-type copper selenide (Cu2-xSe) NPs with Au NPs by seeded nanocrystal growth to form a new type of semiconductor-metal heterogeneous nanostructure. This new class of plasmonic nanomaterials can simultaneously exhibit two types of LSPR in a single system, producing a broad optical absorbance that is nearly flat across the near infrared (NIR) spectral region (750-1150nm), along with a small shoulder at 566 nm that originates from the Au NP. We conclude this first chapter by demonstrating the use of self-doped copper sulfide

  16. Quantum Dot-Based Luminescent Oxygen Channeling Assay for Potential Application in Homogeneous Bioassays.

    Science.gov (United States)

    Zhuang, Si-Hui; Guo, Xin-Xin; Wu, Ying-Song; Chen, Zhen-Hua; Chen, Yao; Ren, Zhi-Qi; Liu, Tian-Cai

    2016-01-01

    The unique photoproperties of quantum dots are promising for potential application in bioassays. In the present study, quantum dots were applied to a luminescent oxygen channeling assay. The reaction system developed in this study was based on interaction of biotin with streptavidin. Carboxyl-modified polystyrene microspheres doped with quantum dots were biotinylated and used as acceptors. Photosensitizer-doped carboxyl-modified polystyrene microspheres were conjugated with streptavidin and used as donors. The results indicated that the singlet oxygen that was released from the donor beads diffused into the acceptor beads. The acceptor beads were then exited via thioxene, and were subsequently fluoresced. To avoid generating false positives, a high concentration (0.01 mg/mL) of quantum dots is required for application in homogeneous immunoassays. Compared to a conventional luminescent oxygen channeling assay, this quantum dots-based technique requires less time, and would be easier to automate and miniaturize because it requires no washing to remove excess labels.

  17. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Daniela Rodica [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on

  18. Characterization of nanomaterials

    International Nuclear Information System (INIS)

    Montone, Amelia; Aurora, Annalisa; Di Girolamo, Giovanni

    2015-01-01

    This paper provides an overview of the main techniques used for the characterization of nanomaterials. The knowledge of some basic characteristics, inherent morphology, microstructure, the distribution phase and chemical composition, it is essential to evaluate the functional properties of nanomaterials and make predictions about their behavior in operation. For the characterization of nanomaterials can be used in both imaging techniques both analytic techniques. Among the first found wide application optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Among the latter some types of spectroscopy and X-ray diffraction (XRD). For each type of material to characterize the choice of the most appropriate technique it is based on the type of details that you want to obtain, and on their scale. In this paper are discussed in detail some examples and the main methods used for the characterization of nanomaterials. [it

  19. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application.

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  20. Luminescence optically stimulated: theory and applications; Luminiscencia opticamente estimulada: teoria y aplicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T.; Azorin N, J. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico D.F. (Mexico)

    2002-07-01

    The thermally stimulated luminescence (Tl) has occupied an important place in the Solid state physics (FES) by the flexibility of the phenomena, mainly for its applications in the fields of Radiation Physics (FR) and Medical Physics (MF). The reason of this phenomena lies in the fact of the electrons release by the action of heat. Under that same reason, it can be used the action of another stimulant agent for releasing the trapped electrons in the metastable states (EM), this agent is the light which has the same effect that the heat, giving as result the production of light photons at using light in the visible spectra, of different wavelength that the excitation light. This phenomena is called Luminescence optically stimulated (LOE). The LOE has a great impact in the Solid State Physics (FES), dating and now in the use of the phenomena as a dosimetric method, alternate to the Tl, for its use in the ionizing and non-ionizing radiations fields. (Author)

  1. Luminescence detection of shellfish

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Spencer, J.Q.; Naylor, J.D.

    1996-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) has been active in the development and application of luminescence techniques in the detection of irradiated foods, in support of UK legislation. Thermoluminescence (TL), photostimulated luminescence (PSL) and photo-transfer luminescence (PTTL) are radiation-specific phenomena which arise due to energy stored by trapped charge carriers following irradiation. The energy released following stimulation is accompanied by detectable luminescence. The TL method involves preparation of pure silicate extracts from the sample and subsequent TL analysis, whereas PSL uses stimulation by electromagnetic radiation (visible, or near visible wavelengths) thus avoiding heating the sample. (author)

  2. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications

    International Nuclear Information System (INIS)

    Jin, D; Connally, R; Piper, J

    2006-01-01

    We report the results of a detailed study of the spectral and temporal properties of visible emission from three different GaN-based ultraviolet (UV) light emitting diodes (UV LEDs). The primary UV emission in the 360-380 nm band decays rapidly (less than 1 μs) following switch-off; however, visible luminescence (470-750 nm) with a decay lifetime of tens of microseconds was observed at approximately 10 -4 of the UV intensity. For applications of UV LEDs in time-resolved fluorescence (TRF) employing lanthanide chelates, the visible luminescence from the LEDs competes with the target Eu 3+ or Tb 3+ fluorescence in both spectral and temporal domains. A UV band-pass filter (Schott UG11 glass) was therefore used to reduce the visible luminescence of the UV LEDs by three orders of magnitude relative to UV output to yield a practical excitation source for TRF

  3. Nanomaterials: Opportunities and Challenges for Aerospace

    National Research Council Canada - National Science Library

    Obieta, Isabel; Marcos, J

    2005-01-01

    Nanomaterials are regarded world-wide as key materials of the 21st Century. Also, in aerospace a high potential for nanomaterials applications is postulated and technological breakthroughs are expected in this area...

  4. CE and nanomaterials - Part II: Nanomaterials in CE.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    The scope of this two-part review is to summarize publications dealing with CE and nanomaterials together. This topic can be viewed from two broad perspectives, and this article is trying to highlight these two approaches: (i) CE of nanomaterials, and (ii) nanomaterials in CE. The second part aims at summarization of publications dealing with application of nanomaterials for enhancement of CE performance either in terms of increasing the separation resolution or for improvement of the detection. To increase the resolution, nanomaterials are employed as either surface modification of the capillary wall forming open tubular column or as additives to the separation electrolyte resulting in a pseudostationary phase. Moreover, nanomaterials have proven to be very beneficial for increasing also the sensitivity of detection employed in CE or even they enable the detection (e.g., fluorescent tags of nonfluorescent molecules). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications.

    Science.gov (United States)

    Yang, Ri-Long; Zhu, Ying-Jie; Chen, Fei-Fei; Dong, Li-Ying; Xiong, Zhi-Chao

    2017-08-02

    Counterfeiting of valuable certificates, documents, and banknotes is a serious issue worldwide. As a result, the need for developing novel anticounterfeiting materials is greatly increasing. Herein, we report a new kind of ultralong hydroxyapatite nanowire (HAPNW)-based paper with luminescence, fire resistance, and waterproofness properties that may be exploited for anticounterfeiting applications. In this work, lanthanide-ion-doped HAPNWs (HAPNW:Ln 3+ ) with lengths over 100 μm have been synthesized and used as a raw material to fabricating a free-standing luminescent, fire-resistant, water-proof paper through a simple vacuum filtration process. It is interesting to find that the luminescence intensity, structure, and morphology of HAPNW:Ln 3+ highly depend on the experimental conditions. The as-prepared HAPNW:Ln 3+ paper has a unique combination of properties, such as high flexibility, good processability, writing and printing abilities, luminescence, tunable emission color, waterproofness, and fire resistance. In addition, a well-designed pattern can be embedded in the paper that is invisible under ambient light but viewable as a luminescent color under ultraviolet light. Moreover, the HAPNW:Ln 3+ paper can be well-preserved without any damage after being burned by fire or soaked in water. The unique combination of luminescence, fire resistance, and waterproofness properties and the nanowire structure of the as-prepared HAPNW:Ln 3+ paper may be exploited toward developing a new kind of multimode anticounterfeiting technology for various high-level security antiforgery applications, such as in making forgery-proof documents, certificates, labels, and tags and in packaging.

  6. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    Science.gov (United States)

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  7. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    Science.gov (United States)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  8. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics

    Science.gov (United States)

    The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...

  9. Greener Biomimetic Approach to the Synthesis of Nanomaterials and Sustainable Applications of Nano-Catalysts

    Science.gov (United States)

    The generation of engineered nanomaterials represents a major breakthrough in material science and nanotechnology-based materials. These products have moved beyond the laboratory setting to the ‘real world’. More than 1000 of such products are currently on the market (www.nanote...

  10. BIOMIMETIC APPROACH TO SUSTAINABLE NANOMATERIALS AND SAFER APPLICATION IN CATALYSIS AND REMEDIATION

    Science.gov (United States)

    Vitamins B1, B2, C, and tea polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spon...

  11. Biomimetic 'greener' approach to nanomaterials and their safer application in catalysis and remediation

    Science.gov (United States)

    Vitamins B1,1a B2, C,1b and tea polyphenols1c which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microwave (MW)-assiste...

  12. Biomimetic Approach to Nanomaterials and Their Safer Application in Catalysis and Remediation

    Science.gov (United States)

    Vitamins B1, B2, C, and tea polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water. Shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spon...

  13. Greener Biomimetic Approach to the Synthesis of Nanomaterials and Sustainable Applications of Nano-Catalysts (journal)

    Science.gov (United States)

    The generation of engineered nanomaterials represents a major breakthrough in material science and nanotechnology-based materials. These products have moved beyond the laboratory setting to the ‘real world’. More than 1000 of such products are currently on the market (www.nanote...

  14. Progress in electronics and photonics with nanomaterials

    DEFF Research Database (Denmark)

    Mishra, Yogendra Kumar; Murugan, Arul; Kotakoski, Jani

    2017-01-01

    Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications. Neverthe......Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications...

  15. Multifunctional Nanomaterials Utilizing Hybridization Chain Reaction for Molecular Diagnostics and Bioanalytical Applications

    Science.gov (United States)

    Rana, Md. Muhit

    DNA nanotechnology has shown great promise in molecular diagnostic, bioanalytical and biomedical applications. The great challenge of detecting target analytes, biomarkers and small molecules, in molecular diagnostics is low yield sensitivity. To address this challenge, different nanomaterials have been used for a long time and to date there is no such cost-effective bioanalytical technique which can detect these target biomarkers (DNA, RNA, circulating DNA/miRNA) or environmental heavy metal ions (Hg2+ and Ag+) in a cost-effective and efficient manner. Herein, we initially discuss two possible bioanalytical detection methods- a) colorimetric and b) fluorometric assays which are very popular nowadays due to their distinctive spectroscopic properties. Finally, we report the promising colorimetric assay using a novel DNA based amplification strategy know as hybridization chain reaction (HCR) for potential application in the visual detection of low copies of biomarkers (miRNAs as little as 20 femtomole in an RNA pool and cell extracts in seven different combinations and Ebola virus DNA as low as 400 attomoles in liquid biopsy mimics in sixteen different combinations), environmental and biological heavy metal ions (mercury and silver concentrations as low as 10 pM in water, soil and urine samples) and also successfully applied to a molecular logic gate operation to distinguish OR and AND logic gates. No results showed any false-positive or false-negative information. On the other hand, we also discuss the future possibilities of HCR amplification technology, which is very promising for fluorometric bioanalysis. The HCR based nanoprobe technology has numerous remarkable advantages over other methods. It is re-programmable, simple, inexpensive, easy to assemble and operate and can be performed with visual and spectroscopic read-outs upon recognition of the target analytes. This rapid, specific and sensitive approach for biomarkers and heavy metal ion detection generates

  16. Scaled-Up Production and Transport Applications of Graphitic Carbon Nanomaterials

    Science.gov (United States)

    Saviers, Kimberly R.

    Graphitic carbon nanomaterials enhance the performance of engineered systems for energy harvesting and storage. However, commercial availability remains largely cost-prohibitive due to technical barriers to mass production. This thesis examines both the scaled-up production and energy transport applications of graphitic materials. Cost driven-production of graphitic petals is developed, carbon nanotube array thermal interface materials enhance waste heat energy harvesting, and microsupercapacitors are visually examined using a new electroreflectance measurement method. Graphitic materials have previously been synthesized using batch-style processing methods with small sample sizes, limiting their commercial viability. In order to increase production throughput, a roll-to-roll radio-frequency plasma chemical vapor deposition method is employed to continuously deposit graphitic petals on carbon fiber tow. In consideration of a full production framework, efficient and informative characterization methods in the form of electrical resistance and electrochemical capacitance are highlighted. To co-optimize the functional characteristics of the material, the processing conditions are comprehensively varied using a data-driven predictive design of experiments method. Repeatable and reliable production of graphitic materials will enable a host of creative graphene-based devices to emerge into the marketplace. Two such applications are discussed in the remaining chapters. Waste heat is most efficiently harvested at high temperatures, such as vehicle exhaust systems near 600°C. However, the resistance to heat flux at the interfaces between the harvesting device and its surroundings is detrimental to the system-level performance. To study the performance of thermal interface materials up to 700°C, a reference bar measurement method was designed. Design considerations are discussed and compared to past implementations, particularly regarding radiation heat flux and thermal

  17. Growth and luminescent properties of Yb3+--doped oxide single crystals for scintillator application

    International Nuclear Information System (INIS)

    Yoshikawa, A.; Ogino, H.; Shim, J.B.; Nikl, M.; Solovieva, N.; Fukuda, T.

    2004-01-01

    Rod-shaped (Lu 1-x Yb x ) 3 Al 5 O 12 with x=0.05, 0.15, 0.30 and (Y 1-x Yb x )AlO 3 with x=0.05, 0.10, 0.30 single crystals were grown by the micro-pulling-down method. Edge-defined film-fed growth method was used to prepare (Y 0.9 Yb 0.1 )VO 4 crystal, while Ca 8 (La 1.98 Yb 0.02 )(PO 4 ) 6 O 2 crystal was grown by the Czochralski method. Luminescence of these crystals was studied with main attention paid to the charge transfer emission of Yb 3+ . Temperature tuned decay times in the time scale of units--tens of nanosecond was measured as a feature possibly interesting for an application in scintillation detectors in positron emission tomography

  18. Nanomaterial Registry

    Data.gov (United States)

    U.S. Department of Health & Human Services — By leveraging and developing a set of Minimal Information About Nanomaterials (MIAN), ontology and standards through a community effort, it has developed a data...

  19. International symposium on clusters and nanomaterials (energy and life-sciences applications)

    Energy Technology Data Exchange (ETDEWEB)

    Jena, Purusottam [Virginia Commonwealth Univ., Richmond, VA (United States)

    2017-02-09

    The International Symposium on Clusters and Nanomaterials was held in Richmond, Virginia during October 26-29, 2015. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy and life sciences applications; two of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, and engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in life sciences included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered. The symposium attracted 132 participants from 24 countries in the world. It featured 39 invited speakers in 14 plenary sessions, in addition to one key-note session. Eighty-five contributed papers were presented in two poster sessions and 14 papers from this list were selected to be presented orally at the end of each session to highlight hot topics. Papers presented at the symposium were reviewed and published in SPIE so that these can reach a wide audience. The symposium was highly interactive with ample time allotted for discussions and making new collaborations. The participants’ response

  20. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    Science.gov (United States)

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Substrate-Based Noble-Metal Nanomaterials: Shape Engineering and Applications

    Science.gov (United States)

    Hajfathalian, Maryam

    Nanostructures have potential for use in state-of-the-art applications such as sensing, imaging, therapeutics, drug delivery, and electronics. The ability to fabricate and engineer these nanoscale materials is essential for the continued development of such devices. Because the morphological features of nanomaterials play a key role in determining chemical and physical properties, there is great interest in developing and improving methods capable of controlling their size, shape, and composition. While noble nanoparticles have opened the door to promising applications in fields such as imaging, cancer targeting, photothermal treatment, drug delivery, catalysis and sensing, the synthetic processes required to form these nanoparticles on surfaces are not well-developed. Herein is a detailed account on efforts for adapting established solution-based seed-mediated synthetic protocols to structure in a substrate-based platform. These syntheses start by (i) defining heteroepitaxially oriented nanostructured seeds at site-specific locations using lithographic or directed-assembly techniques, and then (ii) transforming the seeds using either a solution or vapor phase processing route to activate kinetically- or thermodynamically-driven growth modes, to arrive at nanocrystals with complex and useful geometries. The first series of investigations highlight synthesis-routes based on heterogeneous nucleation, where templates serve as nucleation sites for metal atoms arriving in the vapor phase. In the first research direction, the vapor-phase heterogeneous nucleation of Ag on Au was carried out at high temperatures, where the Ag vapor was sourced from a sublimating foil onto adjacent Au templates. This process transformed both the composition and morphology of the initial Au Wulff-shaped nanocrystals to a homogeneous AuAg nanoprism. In the second case, the vapor-phase heterogeneous nucleation of Cu atoms on Au nanocrystal templates was investigated by placing a Cu foil next

  2. The applications of carbon nanomaterials in fiber-shaped energy storage devices

    Science.gov (United States)

    Wu, Jingxia; Hong, Yang; Wang, Bingjie

    2018-01-01

    As a promising candidate for future demand, fiber-shaped electrochemical energy storage devices, such as supercapacitors and lithium-ion batteries have obtained considerable attention from academy to industry. Carbon nanomaterials, such as carbon nanotube and graphene, have been widely investigated as electrode materials due to their merits of light weight, flexibility and high capacitance. In this review, recent progress of carbon nanomaterials in flexible fiber-shaped energy storage devices has been summarized in accordance with the development of fibrous electrodes, including the diversified electrode preparation, functional and intelligent device structure, and large-scale production of fibrous electrodes or devices. Project supported by the National Natural Science Foundation of China (Nos. 21634003, 21604012).

  3. Nitrogenous zeolite nanomaterial and the possibility of its application in agriculture

    Directory of Open Access Journals (Sweden)

    G. Tsintskaladze

    2017-09-01

    Full Text Available New nanotechnological method is proposed to reduce the negative effects of nitrogenous fertilizers and their losses, which involves introduction of nitrogen-containing substance into the structure of natural zeolite. The obtained nanomaterials can be used as a nitrogen fertilizer, which allows the gradual transfer of nitrates into the soil and minimizing fertilization losses. It also significantly reduces groundwater contamination. Also, volatilization as well as drain losses of nitrogen are significantly reduced. Proposed zeolite nanomaterial represents a strong reserve of nitrogen compounds required for feeding the plants. Obtained nanomaterial structure is studied using chemical, X-ray diffractometric and IR spectroscopic methods. Also, nanotechnological process of enrichment and extraction of natural zeolite with ammonium nitrate is established. For proving the effectiveness of proposed nitrogenous fertilizer tests were conducted on corn crop (108 m2 where the average harvest on the recording area amounted 92.6 kg. In addition to the field test, the production test was also conducted on 1 ha where the increased corn crop reached 1.4 t/ha which is equal to 18.9%.

  4. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian

    2018-01-30

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  5. Intelligent Environmental Nanomaterials

    KAUST Repository

    Chang, Jian; Zhang, Lianbin; Wang, Peng

    2018-01-01

    Due to the inherent complexity of environmental problems, especially water and air pollution, the utility of single-function environmental nanomaterials used in conventional and unconventional environmental treatment technologies are gradually reaching their limits. Intelligent nanomaterials with environmentally-responsive functionalities have shown potential to improve the performance of existing and new environmental technologies. By rational design of their structures and functionalities, intelligent nanomaterials can perform different tasks in response to varying application scenarios for the purpose of achieving the best performance. This review offers a critical analysis of the design concepts and latest progresses on the intelligent environmental nanomaterials in filtration membranes with responsive gates, materials with switchable wettability for selective and on-demand oil/water separation, environmental materials with self-healing capability, and emerging nanofibrous air filters for PM2.5 removal. We hope that this review will inspire further research efforts to develop intelligent environmental nanomaterials for the enhancement of the overall quality of environmental or human health.

  6. LCA of Nanomaterials

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Olsen, Stig Irving

    2018-01-01

    Application of nanomaterials in products has led to an increase in number of nanoproducts introduced to the consumer market. However, along with new and improved products, there is a concern about the potential life cycle environmental impacts. Life cycle assessment is able to include a wide range...... of environmental impacts but, due to data limitations, it is commonly applied with focus on the cradle-to-gate part of the nanoproducts life cycle, neglecting use and disposal of the products. These studies conclude that nanomaterials are more energy demanding and have an inferior environmental profile than...

  7. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Toxicity of nanomaterials

    NARCIS (Netherlands)

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter; Mahmoudi, Morteza

    2012-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There

  9. Luminescence dating: methodological research and application to volcanism in the Laschamp environment; Datation par luminescence: recherches methodologiques et applications au volcanisme dans l'environnement de Laschamp

    Energy Technology Data Exchange (ETDEWEB)

    Bassinet, C

    2007-03-15

    The aim of this work was to date lava flows from the Chaine des Puys (Massif Central, France) which were chronologically situated during the period of the Laschamp paleo-magnetic event (30-50 ka). The methods used were thermoluminescence and optically stimulated luminescence applied to quartz grains and quartz pebbles extracted from sediments baked by the lava flows. These minerals often emit luminescence signals exhibiting erratic behaviour. Thus, their radiation doses were tentatively determined by various methods to select those which were most likely to yield reliable results. These intercomparisons highlighted a dispersion of results beyond what could be expected from the uncertainties usually associated with each measurement. In the majority of cases, these observations forced us to propose a relatively wide interval in which the most probable age of the sample is included. (author)

  10. Design, demonstration and performance of a versatile electrospray aerosol generator for nanomaterial research and applications

    International Nuclear Information System (INIS)

    Jennerjohn, Nancy; Fung, David C; Hirakawa, Karen S; Hinds, William; Kennedy, Nola J; Eiguren-Fernandez, Arantzazu; Prikhodko, Sergey; Zavala-Mendez, Jose D

    2010-01-01

    Carbon nanotubes are difficult to aerosolize in a controlled manner. We present a method for generating aerosols not only of carbon nanotubes, but also of many reference and proprietary materials including quantum dots, diesel particulate matter, urban dust, and their mixtures, using electrospraying. This method can be used as a teaching tool, or as the starting point for advanced research, or to deliver nanomaterials in animal exposure studies. This electrospray system generates 180 μg of nanotubes per m 3 of carrier gas, and thus aerosolizes an occupationally relevant mass concentration of nanotubes. The efficiency achievable for single-walled carbon nanotubes is 9.4%. This system is simple and quick to construct using ordinary lab techniques and affordable materials. Since it is easy to replace soiled parts with clean ones, experiments on different types of nanomaterial can be performed back to back without contamination from previous experiments. In this paper, the design, fabrication, operation and characterization of our versatile electrospray method are presented. Also, the morphological changes that carbon nanotubes undergo as they make the transition from dry powders to aerosol particles are presented.

  11. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  12. Application of pulse spectro- zonal luminescent method for the rapid method of material analysis

    International Nuclear Information System (INIS)

    Lisitsin, V.M.; Oleshko, V.I.; Yakovlev, A.N.

    2004-01-01

    Full text: The scope of luminescent methods of the analysis covers enough a big around of substances as the luminescence can be excited in overwhelming majority of nonmetals. Analytical opportunities of luminescent methods can be essentially expanded by use of pulse excitation and registration of spectra of a luminescence with the time resolved methods. The most perspective method is to use pulses of high-current electron beams with the nanosecond duration for excitation from the following reasons: excitation is carried out ionizing, deeply enough by a penetrating radiation; the pulse of radiation has high capacity, up to 10 8 W, but energy no more than 1 J; the pulse of radiation has the nanosecond duration. Electrons with energy in 300-400 keV will penetrate on depth into some tenth shares of mm, i.e. they create volumetric excitation of a sample. Therefore the luminescence raised by an electronic beam has the information about volumetric properties of substance. High density of excitation allow to find out and study the centers (defects) having a small yield of a luminescence, to analyze the weakly luminescent objects. Occurrence of the new effects is possible useful to analyze of materials. There is an opportunity of reception of the information from change of spectral structure of a luminescence during the time after the ending of a pulse of excitation and kinetic characteristics of attenuation of luminescence. The matter is the energy of radiation is absorbed mainly by a matrix, then electronic excitations one is transferred the centers of a luminescence (defects) of a lattice. Therefore during the time after creation electronic excitations the spectrum of a luminescence can repeatedly change, transferring the information on the centers (defects) which are the most effective radiators at present time. Hence, the study of change of spectra of radiation during the time allows providing an additional way of discrimination of the information on the centers of a

  13. Assembly of ordered carbon shells on semiconducting nanomaterials

    Science.gov (United States)

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  14. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  15. Applicability of rat precision-cut lung slices in evaluating nanomaterial cytotoxicity, apoptosis, oxidative stress, and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Ursula G. [Scientific Consultancy — Animal Welfare, Neubiberg (Germany); Vogel, Sandra [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Product Stewardship Water Solutions, BASF SE, Ludwigshafen (Germany); Aumann, Alexandra; Hess, Annemarie; Kolle, Susanne N.; Ma-Hock, Lan [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Wohlleben, Wendel [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Material Physics, BASF SE, Ludwigshafen (Germany); Dammann, Martina; Strauss, Volker; Treumann, Silke; Gröters, Sibylle [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Wiench, Karin [Product Safety, BASF SE, Ludwigshafen (Germany); Ravenzwaay, Bennard van [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany); Landsiedel, Robert, E-mail: robert.landsiedel@basf.com [Experimental Toxicology and Ecology, BASF SE, Ludwigshafen (Germany)

    2014-04-01

    The applicability of rat precision-cut lung slices (PCLuS) in detecting nanomaterial (NM) toxicity to the respiratory tract was investigated evaluating sixteen OECD reference NMs (TiO{sub 2}, ZnO, CeO{sub 2}, SiO{sub 2}, Ag, multi-walled carbon nanotubes (MWCNTs)). Upon 24-hour test substance exposure, the PCLuS system was able to detect early events of NM toxicity: total protein, reduction in mitochondrial activity, caspase-3/-7 activation, glutathione depletion/increase, cytokine induction, and histopathological evaluation. Ion shedding NMS (ZnO and Ag) induced severe tissue destruction detected by the loss of total protein. Two anatase TiO{sub 2} NMs, CeO{sub 2} NMs, and two MWCNT caused significant (determined by trend analysis) cytotoxicity in the WST-1 assay. At non-cytotoxic concentrations, different TiO{sub 2} NMs and one MWCNT increased GSH levels, presumably a defense response to reactive oxygen species, and these substances further induced a variety of cytokines. One of the SiO{sub 2} NMs increased caspase-3/-7 activities at non-cytotoxic levels, and one rutile TiO{sub 2} only induced cytokines. Investigating these effects is, however, not sufficient to predict apical effects found in vivo. Reproducibility of test substance measurements was not fully satisfactory, especially in the GSH and cytokine assays. Effects were frequently observed in negative controls pointing to tissue slice vulnerability even though prepared and handled with utmost care. Comparisons of the effects observed in the PCLuS to in vivo effects reveal some concordances for the metal oxide NMs, but less so for the MWCNT. The highest effective dosages, however, exceeded those reported for rat short-term inhalation studies. To become applicable for NM testing, the PCLuS system requires test protocol optimization. - Highlights: • 16 OECD reference nanomaterials were tested in rat precision-cut lung slices. • Nanomaterial cytotoxicity, apoptose, oxidative stress, and inflammation were

  16. Risk of dust explosions of combustible nanomaterials

    International Nuclear Information System (INIS)

    Dobashi, Ritsu

    2009-01-01

    Nanomaterials have several valuable properties and are widely used for various practical applications. However, safety matters are suspected such as the influence on health and environment, and fire and explosion hazards. To minimize the risk of nanomaterials, appropriate understanding of these hazards is indispensable. Nanoparticles of combustible materials have potential hazard of dust explosion accidents. However, the explosion risk of nanomaterials has not yet been understood adequately because of the lack of data for nanomaterials. In this presentation, the risk of dust explosions of nanomaterials is discussed.

  17. Theoretical description and design of nanomaterial slab waveguides: application to compensation of optical diffraction.

    Science.gov (United States)

    Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti

    2018-04-02

    Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.

  18. Applications of nanomaterials in environmental protection; Untersuchung des Einsatzes von Nanomaterialien im Umweltschutz

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Sonja; Eggers, Bernd; Evertz, Thorsten [Golder Associates GmbH, Celle (Germany)

    2010-06-15

    Following comprehensive research nanomaterials or products which were either still in a re-search/development status or are already available in the marketplace were identified for the water and air sectors. Based on life cycle assessments for two case studies, it was checked how the potential benefits and impacts on the environment for nanotechnology products or processes compare with those for conventional solutions. The first case study deals with the solar treatment of water contami-nated with tetrachloroethylene, comparing nanoscale titanium dioxide (photo-catalysis) and a photo-Fenton process. The second case study on air filtration compares a passenger car cabin-air filter with nanofibres and a conventional filter. (orig.)

  19. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    Science.gov (United States)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  20. Integrated luminescent chemical microsensors based on GaN LEDs for security applications using smartphones

    Science.gov (United States)

    Orellana, Guillermo; Muñoz, Elias; Gil-Herrera, Luz K.; Muñoz, Pablo; Lopez-Gejo, Juan; Palacio, Carlos

    2012-09-01

    Development of PCB-integrateable microsensors for monitoring chemical species is a goal in areas such as lab-on-a-chip analytical devices, diagnostics medicine and electronics for hand-held instruments where the device size is a major issue. Cellular phones have pervaded the world inhabitants and their usefulness has dramatically increased with the introduction of smartphones due to a combination of amazing processing power in a confined space, geolocalization and manifold telecommunication features. Therefore, a number of physical and chemical sensors that add value to the terminal for health monitoring, personal safety (at home, at work) and, eventually, national security have started to be developed, capitalizing also on the huge number of circulating cell phones. The chemical sensor-enabled "super" smartphone provides a unique (bio)sensing platform for monitoring airborne or waterborne hazardous chemicals or microorganisms for both single user and crowdsourcing security applications. Some of the latest ones are illustrated by a few examples. Moreover, we have recently achieved for the first time (covalent) functionalization of p- and n-GaN semiconductor surfaces with tuneable luminescent indicator dyes of the Ru-polypyridyl family, as a key step in the development of innovative microsensors for smartphone applications. Chemical "sensoring" of GaN-based blue LED chips with those indicators has also been achieved by plasma treatment of their surface, and the micrometer-sized devices have been tested to monitor O2 in the gas phase to show their full functionality. Novel strategies to enhance the sensor sensitivity such as changing the length and nature of the siloxane buffer layer are discussed in this paper.

  1. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  2. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine

    Science.gov (United States)

    Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.

    2018-06-01

    Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.

  3. Highly Luminescent Dual Mode Polymeric Nanofiber-Based Flexible Mat for White Security Paper and Encrypted Nanotaggant Applications.

    Science.gov (United States)

    Gangwar, Amit Kumar; Gupta, Ashish; Kedawat, Garima; Kumar, Pawan; Singh, Bhanu Pratap; Singh, Nidhi; Srivastava, Avanish K; Dhakate, Sanjay R; Gupta, Bipin Kumar

    2018-05-23

    Increasing counterfeiting of important data, currency, stamp papers, branded products etc., has become a major security threat which could lead to serious damage to the global economy. Consequences of such damage are compelling for researchers to develop new high-end security features to address full-proof solutions. Herein, we report a dual mode flexible highly luminescent white security paper and nanotaggants composed of nanophosphors incorporated in polymer matrix to form a nanofiber-based mat for anti-counterfeiting applications. The dual mode nanofibers are fabricated by electrospinning technique by admixing the composite of NaYF 4 :Eu 3+ @NaYF 4 :Yb 3+ , Er 3+ nanophosphors in the polyvinyl alcohol solution. This flexible polymer mat derived from nanofibers appears white in daylight, while emitting strong red (NaYF 4 :Eu 3+ ) and green (NaYF 4 :Yb 3+ , Er 3+ ) colors at excitation wavelengths of 254 nm and 980 nm, respectively. These luminescent nanofibers can also be encrypted as a new class of nanotaggants to protect confidential documents. These obtained results suggest that highly luminescent dual mode polymeric nanofiber-based flexible white security paper and nanotaggants could offer next-generation high-end unique security features against counterfeiting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly luminescent and photostable quantum dot-silica monolith and its application to light-emitting diodes.

    Science.gov (United States)

    Jun, Shinae; Lee, Junho; Jang, Eunjoo

    2013-02-26

    A highly luminescent and photostable quantum dot-silica monolith (QD-SM) substance was prepared by preliminary surface exchange of the QDs and base-catalyzed sol-gel condensation of silica. The SM was heavily doped with 6-mercaptohexanol exchanged QDs up to 12 vol % (26 wt %) without particle aggregation. Propylamine catalyst was important in maintaining the original luminescence of the QDs in the SM during sol-gel condensation. The silica layer was a good barrier against oxygen and moisture, so that the QD-SM maintained its initial luminescence after high-power UV radiation (∼1 W) for 200 h and through the 150 °C LED encapsulant curing process. Green and red light-emitting QD-SMs were applied as color-converting layers on blue LEDs, and the external quantum efficiency reached up to 89% for the green QD-SM and 63% for the red one. A white LED made with a mixture of green and red QDs in the SM, in which the color coordinate was adjusted at (0.23, 0.21) in CIE1931 color space for a backlight application, showed an efficacy of 47 lm/W, the highest value yet reported.

  5. Investigation on luminescence enhancement and decay characteristics of long afterglow nanophosphors for dark-vision display applications

    Energy Technology Data Exchange (ETDEWEB)

    Swati, G.; Chawla, S.; Mishra, S.; Rajesh, B.; Vijayan, N.; Sivaiah, B.; Dhar, A.; Haranath, D., E-mail: haranath@nplindia.org

    2015-04-01

    Graphical abstract: - Highlights: • Synthesis and structural characterization has been performed on long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} nanophosphor having afterglow time of ∼12 h. • Studied the effect of various fuels used for synthesis of nanophosphors on the decay and luminescence characteristics. Interestingly, afterglow times varied significantly with different fuels used for the synthesis of the nanophosphor. • Excitation by different illuminants has profound influence on the luminescence intensity and afterglow times of the synthesized nanophosphor. • Such studies could be guidelines for appropriate usage of nanophosphor under different lighting environment. - Abstract: Long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} nanophosphors were synthesized via a facile but effectual auto-combustion technique followed by post-annealing treatment at elevated temperatures. The influence of various fuels during synthesis and thereafter improvement in the luminescence decay characteristics under various illuminant irradiations of long afterglow nanophosphors have been reported. Extensive studies on structural, morphological and luminescent properties of the as-synthesized afterglow nanophosphors have been presented. Powder X-ray diffraction studies confirm the presence of high-purity, single-phase monoclinic nanophosphors. HRTEM investigations confirm the formation of nanophosphors of particle size less than 50 nm. Photoluminescence emission is attributed to the characteristic d–f transition (4f{sup 6}5d{sup 1}→4f{sup 7}) of Eu{sup 2+} ions and was positioned at 512 nm. As-synthesized nanophosphors exhibit considerable confinement effects resulting into blue shift in emission maxima as compared to their bulk counterparts. The mechanism underlined for long afterglow has been discussed using trapping–detrapping model. The nanophosphor being multifunctional finds many interesting applications including dark-vision display

  6. Luminescent properties of terbium complexes with catecholamines and their application in analysis

    International Nuclear Information System (INIS)

    Kravchenko, T.B.; Bel'tyukova, S.V.; Kononenko, L.I.; Poluehktov, N.S.

    1982-01-01

    Tb complexing with a representative of catecholamines - adrenaline - is studied using the luminescence method. It is found, that the complexing takes place in alkaline medium (pH 12.0). To prevent from compound oxidation with air oxygen and to create the necessary pH in solution sodium borohydride is used. The highest luminescence intensity is achieved when the reaction occurs in aqueous-isopropanol solutions. It is established that in the complexes formed the ratio of components is the following: Tb:adrenaline=1:3. Luminescent properties of Tb complex with adrenaline are used to determine the latter. The least detectable amount of adrenaline constitutes 0.02 μg, the determination error does not exceed 5.5% [ru

  7. Development of optically stimulated luminescence technology for personnel monitoring applications at Bhabha Atomic Research Centre

    International Nuclear Information System (INIS)

    Kulkarni, M.S.

    2012-01-01

    The popularity of optically stimulated luminescence (OSL) technology in the radiation dosimetry applications, in general, and personnel and environmental monitoring, in particular, has driven investigation and developmental programme using OSL technique for a viable system for personnel monitoring at Bhabha Atomic Research Centre. The OSL related phosphor materials and instrumentation development has a very recent history in Bhabha Atomic Research Centre. The OSL technique is more versatile and easy to use than thermoluminescence (TL) technique. The X- and gamma ray (both high and low energy) photons and beta particles can be measured with OSL technique. In the OSL technique, the phosphor (say á- Ai 2 O 3 :C) is optically stimulated by blue/green light and the resulting light emitted from Al 2 O 3 :C (410-420 nm) is measured and correlated to the amount of radiation exposure. For a fixed stimulation intensity, the emitted blue light from the Al 2 O 3 :C dosimeter is proportional to the radiation exposure. The OSL technology is being increasingly used in several applications in external radiation dosimetry, in-vivo medical dosimetry in radiotherapy, in-situ, long-term monitoring system for radioactive contaminants, geological and archaeological dating of sediments, etc. For the success of OSL technology for large scale countrywide personnel monitoring program, indigenous development of dosimetric grade sensitive detector material was a key issue. Therefore, since 2002, efforts were directed towards the development of OSL phosphors (like aluminum oxide doped with carbon, á- Al 2 O 3 :C) and related instrumentation. To begin with, simple low cost OSL readers were developed using blue (470 nm) and green (530 nm) LED clusters. New techniques were developed for the preparation of dosimetric grade á- Ai 2 O 3 :C and other OSL phosphors. With the success in the development of indigenous technique for the large scale preparation of á- Al 2 O 3 :C phosphor, a four

  8. Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells.

    Science.gov (United States)

    Singh, Laishram Priyobarta; Singh, Ningthoujam Premananda; Srivastava, Sri Krishna

    2015-04-14

    SnO2:5Tb (SnO2 doped with 5 at% Tb(3+)) nanoparticles were synthesised by a polyol method and their luminescence properties at different annealing temperatures were studied. Characterization of nanomaterials was done by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD studies indicate that the prepared nanoparticles were of tetragonal structures. Upon Tb(3+) ion incorporation into SnO2, Sn(4+) changes to Sn(2+) and, on annealing again at higher temperature, Sn(2+) changes to Sn(4+). The prepared nanoparticles were spherical in shape. Sn-O vibrations were found from the FTIR studies. In photoluminescence studies, the intensity of the emission peaks of Tb(3+) ions increases with the increase of annealing temperature, and emission spectra lie in the region of white emission in the CIE diagram. CCT calculations show that the SnO2:5Tb emission lies in cold white emission. Quantum yields up to 38% can be obtained for 900 °C annealed samples. SnO2:5Tb nanoparticles were well incorporated into the PVA polymer and such a material incorporated into the polymer can be used for display devices. The SnO2:5Tb/Fe3O4 nanohybrid was prepared and investigated for hyperthermia applications at different concentrations of the nanohybrid. This achieves a hyperthermia temperature (42 °C) under an AC magnetic field. The hybrid nanomaterial SnO2:5Tb/Fe3O4 was found to exhibit biocompatibility with HeLa cells (human cervical cancer cells) at concentrations up to 74% for 100 μg L(-1). Also, this nanohybrid shows green emission and thus it will be helpful in tracing magnetic nanoparticles through optical imaging in vivo and in vitro application.

  9. Preparation of Titanium nitride nanomaterials for electrode and application in energy storage

    Directory of Open Access Journals (Sweden)

    Shun Tang

    Full Text Available The Titanium nitride was made by the carbamide and titanic chloride precursors. XRD results indicate that the precursor ratio N:Ti 3:1 leads to higher crystallinity. SEM and EDX demonstrated that Ti and N elements were distributed uniformly with the ratio of 1:1. The TiN used as the electrode material for supercapacitor was also studied. The specific capacities were changed from 407 F.g−1 to 385 F.g−1, 364 F.g−1 and 312 F.g−1, when the current densities were changed from 1 A.g−1 to 2 A.g−1, 5 A.g−1 and 10 A.g−1, respectively. Chronopotentiometry tests showed high coulombic efficiency. Cycling performance of the TiN electrode was evaluated by CV at a scanning rate of 50 mV.s−1 for 20,000 cycles and there was about 9.8% loss. These results indicate that TiN is a promising electrode material for the supercapacitors. Keywords: Energy storage, Nanomaterials, Anode, Titanium nitride, Supercapacitors

  10. Synthesis of Highly Stable Cobalt Nanomaterial Using Gallic Acid and Its Application in Catalysis

    Directory of Open Access Journals (Sweden)

    Saba Naz

    2014-01-01

    Full Text Available We report the room temperature (25–30°C green synthesis of cobalt nanomaterial (CoNM in an aqueous medium using gallic acid as a reducing and stabilizing agent. pH 9.5 was found to favour the formation of well dispersed flower shaped CoNM. The optimization of various parameters in preparation of nanoscale was studied. The AFM, SEM, EDX, and XRD characterization studies provide detailed information about synthesized CoNM which were of 4–9 nm in dimensions. The highly stable CoNM were used to study their catalytic activity for removal of azo dyes by selecting methyl orange as a model compound. The results revealed that 0.4 mg of CoNM has shown 100% removal of dye from 50 μM aqueous solution of methyl orange. The synthesized CoNM can be easily recovered and recycled several times without decrease in their efficiency.

  11. DNA mediated wire-like clusters of self-assembled TiO₂ nanomaterials: supercapacitor and dye sensitized solar cell applications.

    Science.gov (United States)

    Nithiyanantham, U; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-07-21

    A new route for the formation of wire-like clusters of TiO₂ nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO₂ nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO₂ NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 ± 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO₂ nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO₂ nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g(-1) was observed for TiO₂ having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO₂ nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO₂ nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.

  12. Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maduraiveeran Govindhan

    2016-11-01

    Full Text Available The extensive physiological and regulatory roles of nitric oxide (NO have spurred the development of NO sensors, which are of critical importance in neuroscience and various medical applications. The development of electrochemical NO sensors is of significant importance, and has garnered a tremendous amount of attention due to their high sensitivity and selectivity, rapid response, low cost, miniaturization, and the possibility of real-time monitoring. Nanostructured platinum (Pt-based materials have attracted considerable interest regarding their use in the design of electrochemical sensors for the detection of NO, due to their unique properties and the potential for new and innovative applications. This review focuses primarily on advances and insights into the utilization of nanostructured Pt-based electrode materials, such as nanoporous Pt, Pt and PtAu nanoparticles, PtAu nanoparticle/reduced graphene oxide (rGO, and PtW nanoparticle/rGO-ionic liquid (IL nanocomposites, for the detection of NO. The design, fabrication, characterization, and integration of electrochemical NO sensing performance, selectivity, and durability are addressed. The attractive electrochemical properties of Pt-based nanomaterials have great potential for increasing the competitiveness of these new sensors and open up new opportunities in the creation of novel NO-sensing technologies for biological and medical applications.

  13. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    Directory of Open Access Journals (Sweden)

    Pradhan A

    2008-01-01

    Full Text Available During the last 10 years, optically stimulated luminescence (OSL has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al 2 O 3 :C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al 2 O 3 :C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF 3 :Eu 2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al 2 O 3 :C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become

  14. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Sousa, Marcelo de; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-01-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H_2SO_4 and HNO_3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  15. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcelo de, E-mail: marcelosousap2@yahoo.com.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil); Martinez, Diego Stéfani Teodoro, E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) (Brazil); Alves, Oswaldo Luiz, E-mail: oalves@iqm.unicamp.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil)

    2016-06-15

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H{sub 2}SO{sub 4} and HNO{sub 3} by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  16. Operationalization and application of “early warning signs” to screen nanomaterials for harmful properties operationalizationand application of “early warning signs” to screen nanomaterials for harmful properties

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Nielsen, K. N.; Knudsen, N.

    endeavors. This paper explores ho w the first lesson - “Acknowledge and respond to ignorance, uncertainty and risk in techn ology appraisal” could be applied to screen nanomaterials. In cases of ignorance, uncertainty a nd risk, the EEA recommends paying particular attention to important warning signs suc h...... as novelty, persistency, whether materials are readily dispersed in the environment, whether t hey bioaccumulate or lead to potentially irreversible action. Through an analysis of these c riteria using five well-known nanomaterials (titanium dioxide, carbon nanotubes, liposomes, pol y(lactic-co-glycolic acid....... Finally, we discuss how these warning sig ns can be used by different stakeholders such as nanomaterial researchers and developers, compani es and regulators to design benign nanomaterials, communicate what is known about nano -risks and decide on whether to implement precautionary regulatory measures....

  17. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.

    Science.gov (United States)

    Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei

    2013-04-22

    The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Luminescence materials for pH and oxygen sensing in microbial cells - structures, optical properties, and biological applications.

    Science.gov (United States)

    Zou, Xianshao; Pan, Tingting; Chen, Lei; Tian, Yanqing; Zhang, Weiwen

    2017-09-01

    Luminescence including fluorescence and phosphorescence sensors have been demonstrated to be important for studying cell metabolism, and diagnosing diseases and cancer. Various design principles have been employed for the development of sensors in different formats, such as organic molecules, polymers, polymeric hydrogels, and nanoparticles. The integration of the sensing with fluorescence imaging provides valuable tools for biomedical research and applications at not only bulk-cell level but also at single-cell level. In this article, we critically reviewed recent progresses on pH, oxygen, and dual pH and oxygen sensors specifically for their application in microbial cells. In addition, we focused not only on sensor materials with different chemical structures, but also on design and applications of sensors for better understanding cellular metabolism of microbial cells. Finally, we also provided an outlook for future materials design and key challenges in reaching broad applications in microbial cells.

  19. X-ray excited optical luminescence (XEOL) and its application to porous silicon

    International Nuclear Information System (INIS)

    Hill, D.A.

    1998-09-01

    X-ray Excited Optical Luminescence (XEOL) is investigated as a local structural probe of the light-emitting sites in porous silicon. A detailed microscopic model of the XEOL process in porous silicon is proposed. A central aspect of the technique is an assessment of the spatial separation between the primary photoionisation event and subsequent optical radiative recombination. By constructing a Monte Carlo simulation of hot electron propagation in silicon using both elastic and inelastic scattering cross-sections, the mean minimum range of luminescence excitation can be calculated. This range is estimated as 546±1A for the silicon K-edge (∼ 1839eV), but is reduced to 8.9±0.1A for the silicon L 2,3 -edge (∼ 99eV). From known porous silicon properties, it is concluded that this mean minimum range is comparable to the actual range of excitation. Hence, more localised structural information may be obtained from L 2,3 -edge XEOL measurements. This important difference between the two spectra has been neglected in previous studies. Simultaneous measurements of the XEOL and total electron yield (TEY) x-ray absorption spectra (XAS) have been conducted at both the silicon K-edge and L 2,3 -edge for various porous silicon samples and related materials. Measurements have been conducted at the Si K-edge on a rapid thermally oxidised (RTO) porous silicon sample. XEOL spectra yield two distinct luminescence bands in the visible region. From multi-bunch wavelength-selective XEOL measurements, it is concluded that there are blue luminescent defective silica sites together with a red luminescent site originating from silicon-like material. The spectral time decay curve under pulsed x-ray excitation gives two distinct decay components; one fast in the range of a few nanoseconds and the other slow in the range of microseconds. Time-resolved XEOL measurements in single-bunch mode show that the fast band mirrors the blue wavelength XEOL whereas the slow band correlates with the

  20. Study of optically stimulated luminescence (OSL) for radiation detection. Application to an optical fibre {gamma}-radiation sensor; Etude de la luminescence stimulee optiquement (OSL) pour la detection de rayonnements: application a un capteur a fibre optique de rayonnement {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Roy, O. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Electronique et d`Instrumentation Nucleaire]|[Paris-7 Univ., 75 (France)

    1998-12-31

    This work shows up the usefulness of the Optically Stimulated Luminescence (OSL) to resolve radioprotection problems. We study the use of OSL as a gamma dosimetric technique with respect to the ALARA`s concept (As Low As Reasonably Achievable). A new approach based on optical fibers and luminescent materials showing OSL properties (closely related to Thermoluminescence phenomena) is presented in order to improve the remote real time dosimetry monitoring. Like thermoluminescent materials (TLD), OSL materials can trap charges under an irradiation (UV, X, {gamma},...). Instead of heating, the charges trapped are released by light stimulation and produce a visible luminescence which amount is proportional to trap the `data stored` left by irradiation, enabling the dose measurement. The OSL phenomenon offers the same advantages as TLD plus the interesting possibility of a remote optical stimulation. The end-user objective deals with the development of a {gamma}-radiation Optical FIber Sensor (OFS) for dose measurement which can offer new functionalities based on OSL materials coupled with an optical fiber. Rare earth doped Alkaline Earth Sulphides (AES), BAFX:EU{sup 2+} (X = Cl, Br, I) and halogen alkaline have been studied (crystalline form, synthesis techniques, influence of dopants and color centers). Their characteristics are presented and extensively discussed. A specific experimental set-up to characterise various OSL phosphors has been developed. It allows the study of sensitivity, linearity, time decay behaviour of OSL signal and zeroing time. A joint study of OSL and TL has shown the technical limitations as well as the thermal fading and the origin of the long zeroing time. An Optical Fiber Sensor (OFS) based on OSL and using MgS:Sm has been developed for practical applications on nuclear fields. Its specifications are presented and discussed, moreover improvements are proposed. (author) 320 refs.

  1. Synthesis, Characterization and Comparative Luminescence Studies of Rare-Earth-Doped Gd2O3 Nanoparticles

    Science.gov (United States)

    Pyngrope, D.; Singh, L. R.; Prasad, A. I.; Bora, A.

    2018-04-01

    A facile direct precipitation method was used for the synthesis of luminescence nanomaterial. Gd2O3 doped with rare earth element Eu3+ is synthesized by polyol route. The synthesized nanoparticles show their characteristic red emission. The nanoparticles are characterized by x-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL) study. The synthesized nanoparticles are spherical particles with 30 nm size. The photoluminescence studies show the characteristic Eu3+ red emission. The PL study shows the intensity of the magnetic dipole transition ( 5 D0 \\to 7 F1 ) at 592 nm compared to that of the electronic dipole transition ( 5 D0 \\to 7 F2 ) at 615 nm. The nanomaterials can show significant application in various display devices and biomedical applications for tracking.

  2. Smart nanomaterials for biomedics.

    Science.gov (United States)

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  3. The application of time-resolved luminescence spectroscopy to a remote uranyl sensor

    International Nuclear Information System (INIS)

    Varineau, P.T.; Duesing, R.; Wangen, L.E.

    1991-01-01

    Time resolved luminescence spectroscopy is an effective method for the determination of a wide range of uranyl concentrations in aqueous samples. We have applied this technique to the development of a remote sensing device using fiber optic cables coupled with a micro flow cell in order to probe for uranyl in aqueous samples. This sensor incorporates a Nafion membrane through which UO 2 2+ can diffuse in to a reaction/analysis chamber which holds phosphoric acid, a reagent which enhances the uranyl luminescence intensity and lifetime. With this device, anionic and fluorescing organic interferences could be eliminated, allowing for the determination of uranyl over a concentration range of 10 4 to 10 -9 M. 17 refs., 5 figs

  4. Luminescence dating: methodological research and application to volcanism in the Laschamp environment

    International Nuclear Information System (INIS)

    Bassinet, C.

    2007-03-01

    The aim of this work was to date lava flows from the Chaine des Puys (Massif Central, France) which were chronologically situated during the period of the Laschamp paleo-magnetic event (30-50 ka). The methods used were thermoluminescence and optically stimulated luminescence applied to quartz grains and quartz pebbles extracted from sediments baked by the lava flows. These minerals often emit luminescence signals exhibiting erratic behaviour. Thus, their radiation doses were tentatively determined by various methods to select those which were most likely to yield reliable results. These intercomparisons highlighted a dispersion of results beyond what could be expected from the uncertainties usually associated with each measurement. In the majority of cases, these observations forced us to propose a relatively wide interval in which the most probable age of the sample is included. (author)

  5. Quantitative study of luminescence optical tomography. Application to sources localisation in molecular imaging

    International Nuclear Information System (INIS)

    Boffety, Matthieu

    2010-01-01

    Molecular imaging is a major modality in the field of preclinical research. Among the existing methods, techniques based on optical detection of visible or near infrared radiation are the most recent and are mainly represented by luminescence optical tomography techniques. These methods allow for 3D characterization of a biological medium by reconstructing maps of concentration or localisation of luminescent beacons sensitive to biological and chemical processes at the molecular or cellular scale. Luminescence optical tomography is based on a model of light propagation in tissues, a protocol for acquiring surface signal and a numerical inversion procedure used to reconstruct the parameters of interest. This thesis is structured around these three axes and provides an answer to each problem. The main objective of this study is to introduce and present the tools to evaluate the theoretical performances of optical tomography methods. One of its major outcomes is the realisation of experimental tomographic reconstructions from images acquired by an optical imager designed for 2D planar imaging and developed by the company Quidd. In a first step we develop the theory of transport in scattering medium to establish the concept on which our work will rely. We present two different propagation models as well as resolution methods and theoretical difficulties associated with them. In a second part we introduce the statistical tools used to characterise tomographic systems. We define and apply a procedure to simple situations in luminescence optical tomography. The last part of this work presents the development of an inversion procedure. After introducing the theoretical framework we validate the procedure from numerical data before successfully applying it to experimental measurements. (author) [fr

  6. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials

    International Nuclear Information System (INIS)

    Winkler, David A.

    2016-01-01

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based, have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods. - Highlights: • Nanomaterials regulators need good information to make good decisions. • Nanomaterials and their interactions with biology are very complex. • Computational methods use existing data to predict properties of new nanomaterials. • Statistical, data driven modelling methods have been successfully applied to this task. • Much more must be learnt before robust toolkits will be widely usable by regulators.

  7. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro...

  8. Application of Nanomaterials in Production of Self-Sensing Concretes: Contemporary Developments and Prospects

    OpenAIRE

    Horszczaruk E.; Sikora P.; Łukowski P.

    2016-01-01

    In the recent years structural health monitoring (SHM) has gathered spectacular attention in civil engineering applications. Application of such composites enable to improve the safety and performance of structures. Recent advances in nanotechnology have led to development of new family of sensors - self-sensing materials. These materials enable to create the so-called “smart concrete” exhibiting self-sensing ability. Application of self-sensing materials in cement-based materials enables to ...

  9. Study of optically stimulated luminescence (OSL) for radiation detection. Application to an optical fibre γ-radiation sensor

    International Nuclear Information System (INIS)

    Roy, O.

    1998-01-01

    This work shows up the usefulness of the Optically Stimulated Luminescence (OSL) to resolve radioprotection problems. We study the use of OSL as a gamma dosimetric technique with respect to the ALARA's concept (As Low As Reasonably Achievable). A new approach based on optical fibers and luminescent materials showing OSL properties (closely related to Thermoluminescence phenomena) is presented in order to improve the remote real time dosimetry monitoring. Like thermoluminescent materials (TLD), OSL materials can trap charges under an irradiation (UV, X, γ,...). Instead of heating, the charges trapped are released by light stimulation and produce a visible luminescence which amount is proportional to trap the 'data stored' left by irradiation, enabling the dose measurement. The OSL phenomenon offers the same advantages as TLD plus the interesting possibility of a remote optical stimulation. The end-user objective deals with the development of a γ-radiation Optical FIber Sensor (OFS) for dose measurement which can offer new functionalities based on OSL materials coupled with an optical fiber. Rare earth doped Alkaline Earth Sulphides (AES), BAFX:EU 2+ (X = Cl, Br, I) and halogen alkaline have been studied (crystalline form, synthesis techniques, influence of dopants and color centers). Their characteristics are presented and extensively discussed. A specific experimental set-up to characterise various OSL phosphors has been developed. It allows the study of sensitivity, linearity, time decay behaviour of OSL signal and zeroing time. A joint study of OSL and TL has shown the technical limitations as well as the thermal fading and the origin of the long zeroing time. An Optical Fiber Sensor (OFS) based on OSL and using MgS:Sm has been developed for practical applications on nuclear fields. Its specifications are presented and discussed, moreover improvements are proposed. (author)

  10. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  11. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  12. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al{sub 2}O{sub 3}). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al{sub 2}O{sub 3}:C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few {mu}Gy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al{sub 2}O{sub 3}. OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of

  13. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al 2 O 3 ). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al 2 O 3 :C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few μGy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al 2 O 3 . OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of the accident radiation was

  14. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability

    OpenAIRE

    Adeleye, AS; Conway, JR; Garner, K; Huang, Y; Su, Y; Keller, AA

    2016-01-01

    © 2015 Elsevier B.V. The application of nanotechnology in drinking water treatment and pollution cleanup is promising, as demonstrated by a number of field-based (pilot and full scale) and bench scale studies. A number of reviews exist for these nanotechnology-based applications; but to better illustrate its importance and guide its development, a direct comparison between traditional treatment technologies and emerging approaches using nanotechnology is needed. In this review, the performanc...

  15. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules

    Science.gov (United States)

    Knežević, Nikola Ž.; Durand, Jean-Olivier

    2015-01-01

    Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues.Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues. Dedicated to Professor Jeffrey I. Zink on the occasion of his 70th birthday.

  16. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    Science.gov (United States)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  17. Up conversion luminescence of Yb3+–Er3+ codoped CeO2 nanocrystals with imaging applications

    International Nuclear Information System (INIS)

    Cho, Jung-Hyun; Bass, Michael; Babu, Suresh; Dowding, Janet M.; Self, William T.; Seal, Sudipta

    2012-01-01

    The effects of Yb 3+ doping on up conversion in Yb 3+ –Er 3+ co-doped cerium oxide nanocrystals are reported. Green emission around 545 and 560 nm attributed to the 2 H 11/2 , 4 S 3/2 → 4 I 15/2 transitions and red emission around 660 and 680 nm due to 4 F 9/2 → 4 I 15/2 transitions under 975 nm excitation were studied at room temperature. Both green and red emission intensities increase as the Yb 3+ concentration increases from 0%. Emission strength starts to decrease after the Yb 3+ concentration exceeds a critical amount. The green emission strength peaks around 1% Yb 3+ concentration while the red emission strength peaks around 4%. An explanation of competition between different decay mechanisms is presented to account for the luminescence dependence on Yb 3+ concentration. Also, the application of up converting nanoparticles in biomedical imaging is demonstrated. - Highlights: ► Up conversion in Yb 3+ –Er 3+ co-doped cerium oxide nanocrystals. ► Different decay mechanisms determine luminescence efficiency. ► Up converting nanoparticles in biomedical imaging is demonstrated.

  18. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Général Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loïc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, François [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  19. Paper-based biodetection using luminescent nanoparticles.

    Science.gov (United States)

    Ju, Qiang; Noor, M Omair; Krull, Ulrich J

    2016-05-10

    Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer

  20. Carbon nanomaterials for gas adsorption

    CERN Document Server

    Terranova, Maria Letizia

    2012-01-01

    Research in adsorption of gases by carbon nanomaterials has experienced considerable growth in recent years, with increasing interest for practical applications. Many research groups are now producing or using such materials for gas adsorption, storage, purification, and sensing. This book provides a selected overview of some of the most interesting scientific results regarding the outstanding properties of carbon nanomaterials for gas adsorption and of interest both for basic research and technological applications. Topics receiving special attention in this book include storage of H, purific

  1. Application of X-ray luminescence separation to preliminary enrichment of lean scheelite-containing ores

    International Nuclear Information System (INIS)

    Zhaboev, M.N.; Semochkin, G.A.; Blinov, Yu.I.; Dzhambaev, F.M.; Novikov, V.V.; Tereshchenko, S.V.

    1987-01-01

    Investigations of preliminary enrichment of lean ores of amphibole hornfels by the method of X-ray luminescence separation was conducted. Pile and enriched products with different WO 3 content were obtained from these ores; WO 3 content in pile products was 2-2.5 times lower as compared to factory tailing products. WO 3 content in separator concentrate corresponds in all cases to the requirements for the ore designated for flotation enrichment. Carbonate modulus decreases 2.5-4 times in separation concentrate, simplifying the conditions of flotation

  2. Luminescence studies on Dy3+ doped calcium boro-tellurite glasses for White light applications

    Science.gov (United States)

    Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2017-09-01

    A new series of Dy3+ doped calcium boro-tellurite glasses have been prepared by melt quenching technique and their spectroscopic properties were studied through FTIR, absorption luminescence and lifetime spectral measurements. FTIR studies have been made to explore the presence of various stretching and bending vibrations of different borate and tellurite groups in the prepared glasses. The bonding parameter values were estimated from the absorption band positions using Nephelauxetic ratios to examine the nature of the metal-ligand bond. The optical band gap and Urbach energy (ΔE) values were obtained from the absorption spectra to explore the electronic band structure of the studied glasses. Judd-Ofelt (JO) theory have been used to determine the JO intensity parameters (Ω2, Ω4, Ω6) following the least square fitting procedure between the experimental and calculated oscillator strength values. The luminescence spectra of the Dy3+ doped calcium boro-tellurite glasses exhibit two intense emission bands corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions. Further, they exhibit less intense emission band due to the 4F9/2→6H11/2 transition. Luminescence spectra were characterized through CIE 1931 chromaticity diagram to obtain the dominant emission color of the prepared glasses. The JO intensity parameters and refractive index values have been used to calculate the radiative parameters such as transition probabilities (AR), branching ratios (βR) and stimulated emission cross-section (σPE) values for the observed transitions in the luminescence spectra. The decay curves of all the studied glasses found to exhibit non-exponential behavior and further to understand the energy transfer process takes place between the Dy3+ ions, the decay curves were fitted to the Inokuti-Hirayama (IH) model. The structural and optical properties of the Dy3+ doped calcium boro-tellurite glasses have been studied as a function of different metal cations (Zn, Cd, Pb and

  3. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Chunning [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zheng, Xiaoyan [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-15

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for

  4. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    International Nuclear Information System (INIS)

    Heng, Chunning; Zheng, Xiaoyan; Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie; Hui, Junfeng; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of "1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for biological

  5. One-dimensional nanomaterials for energy storage

    Science.gov (United States)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  6. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  7. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    Science.gov (United States)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  8. Nanomaterials Toxicity and Cell Death Modalities

    Directory of Open Access Journals (Sweden)

    Daniela De Stefano

    2012-01-01

    Full Text Available In the last decade, the nanotechnology advancement has developed a plethora of novel and intriguing nanomaterial application in many sectors, including research and medicine. However, many risks have been highlighted in their use, particularly related to their unexpected toxicity in vitro and in vivo experimental models. This paper proposes an overview concerning the cell death modalities induced by the major nanomaterials.

  9. Persistent luminescence of transition metal (Co, Ni...)-doped ZnGa2O4 phosphors for applications in the near-infrared range

    Science.gov (United States)

    Pellerin, Morgane; Castaing, Victor; Gourier, Didier; Chanéac, Corinne; Viana, Bruno

    2018-02-01

    Persistent luminescence materials present many applications including security lighting and bio-imaging. Many progresses have been made in the elaboration of persistent luminescent nanoparticles suitable for the first NIR partial transparency window (650 - 950 nm). Moving to the second and third near-infrared partial transparency windows (1000 nm - 1800 nm) allows further reducing of scattering, absorption and tissue autofluorescence effects. In this work, we present the synthesis of Co2+ and Ni2+ doped zinc-gallate nanoparticles with broad emission covering the NIR-II range. Site occupancy, energy levels, optical features and persistent phenomena are presented.

  10. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging.

    Science.gov (United States)

    Yang, Yang; Sun, Yun; Cao, Tianye; Peng, Juanjuan; Liu, Ying; Wu, Yongquan; Feng, Wei; Zhang, Yingjian; Li, Fuyou

    2013-01-01

    Upconversion luminescence (UCL) properties and radioactivity have been integrated into NaLuF(4):(153)Sm,Yb,Tm nanoparticles by a facile one-step hydrothermal method, making these nanoparticles potential candidates for UCL and single-photon emission computed tomography (SPECT) dual-modal bioimaging in vivo. The introduction of small amount of radioactive (153)Sm(3+) can hardly vary the upconversion luminescence properties of the nanoparticles. The as-designed nanoparticles showed very low cytotoxicity, no obvious tissue damage in 7 days, and excellent in vitro and in vivo performances in dual-modal bioimaging. By means of a combination of UCL and SPECT imaging in vivo, the distribution of the nanoparticles in living animals has been studied, and the results indicated that these particles were mainly accumulated in the liver and spleen. Therefore, the concept of (153)Sm(3+)/Yb(3+)/Tm(3+) co-doped NaLuF(4) nanoparticles for UCL and SPECT dual-modality imaging in vivo of whole-body animals may serve as a platform for next-generation probes for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. It also introduces an easy methodology to quantify in vivo biodistribution of nanomaterials which still needs further understanding as a community. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO

    International Nuclear Information System (INIS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Elbaum, Danek; Koper, Kamil; Stępień, Piotr

    2013-01-01

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles’ green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell. (paper)

  12. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  13. Water dispersible LiNdP{sub 4}O{sub 12} nanocrystals: New multifunctional NIR–NIR luminescent materials for bio-applications

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, L., E-mail: l.marciniak@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw (Poland); Prorok, K.; Bednarkiewicz, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw (Poland); Department of Nanotechnology, Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066 Wrocław (Poland); Kowalczyk, A. [Department of Nanotechnology, Wroclaw Research Centre EIT+, Stabłowicka 147, 54-066 Wrocław (Poland); Hreniak, D.; Strek, W. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw (Poland)

    2016-08-15

    The synthesis and luminescent properties of water colloidal solution of LiNdP{sub 4}O{sub 12} nanocrystals were presented together with demonstrations of their suitability for bio-imaging, remote nano-thermometry and hyperthermal therapy bio-applications. Due to efficient and photostable luminescence at 860 nm under ~808 nm excitation, NPs luminescence was measured in chicken breast at down to 30 mm depths. Moreover temperature dependent spectroscopic features were used in order to remotely measure the temperature of the local environment. Simultaneously, the most heavily Nd{sup 3+} doped NCs demonstrated intentional heating – under 1.5 W of excitation power at 800 nm, local 60 K photo-induced temperature rise was observed. The experimental confirmation of bioimaging of LiNdP{sub 4}O{sub 12} nanoparticles in HEK was presented.

  14. Synthesis of graphene nanomaterials and their application in electrochemical energy storage

    Science.gov (United States)

    Xiong, Guoping

    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and

  15. Cotton-based Cellulose Nanomaterials for Applications in Composites and Electronics

    Science.gov (United States)

    Farahbakhsh, Nasim

    A modern society demands development of highly valued and sustainable products via innovative process technologies and utilizing bio-based alternatives for petroleum based materials. Systematic comparative study of nanocellulose particles as a biodegradable and renewable reinforcing agent can help to develop criteria for selecting an appropriate candidate to be incorporated in polymer nanocomposites. Of particular interest has been nanocellulosic materials including cellulose nanocrystal (CNC) and micro/nanofibrilated cellulose (MFC/NFC) which possess a hierarchical structure that permits an ordered structure with unique properties that has served as building blocks for the design of green and novel materials composites for applications in flexible electronics, medicine and composites. Key differences exist in nanocellulosic materials as a result the process by which the material is produced. This research demonstrates the applicability for the use of recycled cotton as promising sustainable material to be utilized as a substrate for electronic application and a reinforcing agent choice that can be produced without any intensive purification process and be applied to synthetic-based polymer nanocomposites in melt-processing. (Abstract shortened by ProQuest.).

  16. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  17. Prospects and Challenges in Application of Gamma and Electron Beam Processing of Nanomaterials

    International Nuclear Information System (INIS)

    Sampa, M. H.

    2006-01-01

    Application of radiation techniques for nanotechnology has been known for years. X-ray, EB and ion beam lithography are a good example of applications. By using electron beams, ion beams and X-Rays structures as small as 10 nm can be produced. Ion track membranes with track diameters from 10 nm to 100 nm are used as such or as templates for electroplating of nanowires of metal, semiconductor and magnetic materials. In the near future X-Rays, focused ion beams and electron beams will be used for nanolithography and 3D fabrication; heavy ion beams on the other hand can be useful for fabrication of nanopores and nanowires. The use of radiation has proved to be an essential technique in the fabrication of nanostructures with high resolution as the radiation beams can be focused into a few nanomater scales or less. Three groups of products could be considered to be fabricated by radiation techniques: nanoparticles, nanogels and nanocomposites. Nanoparticles has application in electronic devices and bioactive systems. Their radiation synthesis in aqueous dispersions started in the late seventies. Literature describe the radiolytic reduction of many metal ions either single metal or in combination with another metal to generate metallic or bimetallic mixtures as well as core-shell structures. To obtain metallic particles from their parent ions one only needs to ensure reductive conditions during the irradiation. By control over the dose rate delivered to the sample the radiolytic approach can offer the fine control over the rate of generation on the growing species. Nanogels are particles of polymer gels having the dimensions in the order of nanometers. They are applied in pharmaceutical and cosmetic industries, as the bioactive substances delivery systems. Depending on the irradiation parameters (radiation dose, dose rate, polymer concentration, irradiation temperature) molecules with different structures (such as long-chain branches, nanogels, microgel or microgel

  18. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    Science.gov (United States)

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  19. Regional Knowledge Production in Nanomaterials

    DEFF Research Database (Denmark)

    Grimpe, Christoph; Patuelli, Roberto

    2011-01-01

    Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still in their infa......Nanomaterials are seen as a key technology for the twenty-first century, and much is expected of them in terms of innovation and economic growth. They could open the way to many radically new applications, which would form the basis of innovative products. As nanomaterials are still...... in their infancy, universities, public research institutes and private businesses seem to play a vital role in the innovation process. Existing literature points to the importance of knowledge spillovers between these actors and suggests that the opportunities for these depend on proximity, with increasing...... on nanomaterial patenting. Based on European Patent Office data at the German district level (NUTS-3), we estimate two negative binomial models in a knowledge production function framework and include a spatial filtering approach to adjust for spatial autocorrelation. Our results indicate...

  20. Microemulsion mediated synthesis of triangular shape SnO{sub 2} nanoparticles: Luminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in

    2014-01-30

    The triangular prism shapes of SnO{sub 2}·xH{sub 2}O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO{sub 2} nanoparticles was studied. There is the quantum size effect in absorption study of SnO{sub 2} nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO{sub 2} nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO{sub 2} nanoparticles in both microemulsion and powder form. SnO{sub 2} nanoparticles show green emission due to oxygen vacancy. SnO{sub 2} nanoparticles when doped with Eu{sup 3+} ions give the enhanced luminescence of Eu{sup 3+} due to the surface mediated energy transfer from SnO{sub 2} to Eu{sup 3+} ion.

  1. Microemulsion mediated synthesis of triangular shape SnO2 nanoparticles: Luminescence application

    International Nuclear Information System (INIS)

    Luwang, Meitram Niraj

    2014-01-01

    The triangular prism shapes of SnO 2 ·xH 2 O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO 2 nanoparticles was studied. There is the quantum size effect in absorption study of SnO 2 nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO 2 nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO 2 nanoparticles in both microemulsion and powder form. SnO 2 nanoparticles show green emission due to oxygen vacancy. SnO 2 nanoparticles when doped with Eu 3+ ions give the enhanced luminescence of Eu 3+ due to the surface mediated energy transfer from SnO 2 to Eu 3+ ion.

  2. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure.

    Science.gov (United States)

    Bekker, Cindy; Brouwer, Derk H; Tielemans, Erik; Pronk, Anjoeka

    2013-04-01

    In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the potential MNM exposure scenarios within relevant industrial sectors, applied exposure controls, and number of workers potentially exposed to MNM in Dutch industrial sectors producing and applying MNM-enabled end products in the Netherlands. A survey was conducted in three phases: (i) identification of MNM-enabled end products; (ii) identification of relevant industrial sectors; and (iii) a tiered telephone survey to estimate actual use of the products among 40 sector organizations/knowledge centres (Tier 1), 350 randomly selected companies (Tier 2), and 110 actively searched companies (Tier 3). The most dominant industrial sectors producing or applying MNM-enabled end products (market penetration >5%) are shoe repair shops, automotive, construction, paint, metal, and textile cleaning industry. In the majority of the companies (76%), potential risks related to working with MNM are not a specific point of interest. The total number of workers potentially exposed to MNM during the production or application of MNM-enabled end products was estimated at approximately 3000 workers in the Netherlands. The results of this study will serve as a basis for in-depth exposure and health surveys that are currently planned in the Netherlands. In addition, the results can be used to identify the most relevant sectors for policy makers and future studies focussing on evaluating the risks of occupational exposure to MNM.

  3. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    Science.gov (United States)

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  4. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    Directory of Open Access Journals (Sweden)

    Kaur R

    2013-01-01

    Full Text Available Randeep Kaur, Ildiko BadeaDrug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Detonation nanodiamonds (NDs are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

  5. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mirzaei, A.; Janghorban, K.; Hashemi, B. [Shiraz University, Department of Materials Science and Engineering (Iran, Islamic Republic of); Neri, G., E-mail: gneri@unime.it [University of Messina, Department of Electronic Engineering, Chemistry and Industrial Engineering (Italy)

    2015-09-15

    With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

  6. Printable inorganic nanomaterials for flexible transparent electrodes: from synthesis to application

    Science.gov (United States)

    Wang, Dingrun; Mei, Yongfeng; Huang, Gaoshan

    2018-01-01

    Printed and flexible electronics are definitely promising cutting-edge electronic technologies of the future. They offer a wide-variety of applications such as flexible circuits, flexible displays, flexible solar cells, skin-like pressure sensors, and radio frequency identification tags in our daily life. As the most-fundamental component of electronics, electrodes are made of conductive materials that play a key role in flexible and printed electronic devices. In this review, various inorganic conductive materials and strategies for obtaining highly conductive and uniform electrodes are demonstrated. Applications of printed electrodes fabricated via these strategies are also described. Nevertheless, there are a number of challenges yet to overcome to optimize the processing and performance of printed electrodes. Project supported by the National Natural Science Foundation of China (Nos. 51475093, U1632115), the Science and Technology Commission of Shanghai Municipality (No. 14JC1400200), the National Key Technologies R&D Program of China (No. 2015ZX02102-003), and the Changjiang Young Scholars Programme of China.

  7. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  8. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  9. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  10. Studies on α-Al2O3: C based optically stimulated luminescence badge for eye lens monitoring applications

    International Nuclear Information System (INIS)

    Kumar, Munish; Kulkarni, M.S.; Ratna, P.; Gaikwad, N.; Tripathi, S.M.; Sharma, S.D.; Babu, D.A.R.; Bhatnagar, Amit; Muthe, K.P.; Sharma, D.N.

    2014-01-01

    The prototype two element eye-lens dosimeter badge based on indigenously developed α-Al 2 O 3 : C optically stimulated luminescence dosimeter was investigated comprehensively for its suitability for eye-lens monitoring applications. The badge is calibrated to measure the eye-lens dose in terms of H p (3). The minimum measurable dose using the eye-lens dosimeter badge is observed to be ∼ 35 μSv. This prototype eye-lens dosimeter badge was found to be suitable for measuring doses from X-rays, beta and gamma radiations to the eye-lens. The satisfactory performance of the prototype two element eye-lens dosimeter badge along with its attractive features such as multiple readout, less processing time, very good beta response uniquely position it for monitoring the eye-lens dose are presented. (author)

  11. Industrial Production and Professional Application of Manufactured Nanomaterials-Enabled End Products in Dutch Industries: Potential for Exposure

    NARCIS (Netherlands)

    Bekker, C.; Brouwer, D.H.; Tielemans, E.; Pronk, A.

    2013-01-01

    Background: In order to make full use of the opportunities while responsibly managing the risks of working with manufactured nanomaterials (MNM), we need to gain insight into the potential level of exposure to MNM in the industry. Therefore, the goal of this study was to obtain an overview of the

  12. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    Science.gov (United States)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  13. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    Science.gov (United States)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  14. Synthesis of hydrophobic gold nanoclusters: growth mechanism study, luminescence property and catalytic application

    International Nuclear Information System (INIS)

    Selvam, Tamil Selvi; Chi, Kai-Ming

    2011-01-01

    One-pot synthesis of well dispersed, size-controlled gold nanoparticles with the average size of 10–15 nm and luminescent gold nanoclusters with average size of 1.7–2.0 nm were successfully achieved by thermal decomposition of gold organometallic precursor CH 3 AuPPh 3 in the presence of thiol surfactants in o-xylene. Only difference between the preparations of two types of Au nanoparticles is the amount of thiol surfactant employed. The mechanistic study of formation of gold nanoparticles was carried out by analyzing the samples at different reaction time intervals and revealed that two-staged growth process was involved. The nanoclusters showed strong red emission with the maximum intensity at about 600 nm. The maximum room temperature photoluminescence quantum yield was measured as 1.2%. The catalytic ability of the Au nanoclusters to promote Suzuki–Miyaura coupling involving the C–C bond formation was also investigated.

  15. Health hazards associated with nanomaterials.

    Science.gov (United States)

    Pattan, Gurulingappa; Kaul, Gautam

    2014-07-01

    Nanotechnology is a major scientific and economic growth area and presents a variety of hazards for human health and environment. It is widely believed that engineered nanomaterials will be increasingly used in biomedical applications (as therapeutics and as diagnostic tools). However, before these novel materials can be safely applied in a clinical setting, their toxicity needs to be carefully assessed. Nanoscale materials often behave different from the materials with a larger structure, even when the basic material is same. Many mammals get exposed to these nanomaterials, which can reach almost every cell of the mammalian body, causing the cells to respond against nanoparticles (NPs) resulting in cytotoxicity and/or genotoxicity. The important key to understand the toxicity of nanomaterials is that their minute size, smaller than cellular organelles, allows them to penetrate the basic biological structures, disrupting their normal function. There is a wealth of evidence for the noxious and harmful effects of engineered NPs as well as other nanomaterials. The rapid commercialization of nanotechnology field requires thoughtful, attentive environmental, animal and human health safety research and should be an open discussion for broader societal impacts and urgent toxicological oversight action. While 'nanotoxicity' is a relatively new concept to science, this comprehensive review focuses on the nanomaterials exposure through the skin, respiratory tract, and gastrointestinal tract and their mechanism of toxicity and effect on various organs of the body. © The Author(s) 2012.

  16. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  17. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  18. Computational design of safer nanomaterials

    NARCIS (Netherlands)

    Burello, E.

    2015-01-01

    Nanomaterials are expected to find applications in numerous consumer products, posing the challenge to guarantee their safety and environmental sustainability before they can be transferred from research labs to end-consumer products. One emerging solution, called safe design, relies on the

  19. Magnetic characterization techniques for nanomaterials

    CERN Document Server

    2017-01-01

    Sixth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Magnetic Characterization Techniques for Nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  20. Handbook of nanomaterials properties

    CERN Document Server

    Luo, Dan; Schricker, Scott R; Sigmund, Wolfgang; Zauscher, Stefan

    2014-01-01

    Nanomaterials attract tremendous attention in recent researches. Although extensive research has been done in this field it still lacks a comprehensive reference work that presents data on properties of different Nanomaterials. This Handbook of Nanomaterials Properties will be the first single reference work that brings together the various properties with wide breadth and scope.

  1. DNA mediated wire-like clusters of self-assembled TiO2 nanomaterials: supercapacitor and dye sensitized solar cell applications

    Science.gov (United States)

    Nithiyanantham, U.; Ramadoss, Ananthakumar; Ede, Sivasankara Rao; Kundu, Subrata

    2014-06-01

    A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are synthesized by the reaction of titanium-isopropoxide with ethanol and water in the presence of DNA under continuous stirring and heating at 60 °C. The individual size of the TiO2 NPs self-assembled in DNA and the diameter of the wires can be tuned by controlling the DNA to Ti-salt molar ratios and other reaction parameters. The eventual diameter of the individual particles varies between 15 +/- 5 nm ranges, whereas the length of the nanowires varies in the 2-3 μm range. The synthesized wire-like DNA-TiO2 nanomaterials are excellent materials for electrochemical supercapacitor and DSSC applications. From the electrochemical supercapacitor experiment, it was found that the TiO2 nanomaterials showed different specific capacitance (Cs) values for the various nanowires, and the order of Cs values are as follows: wire-like clusters (small size) > wire-like clusters (large size). The highest Cs of 2.69 F g-1 was observed for TiO2 having wire-like structure with small sizes. The study of the long term cycling stability of wire-like clusters (small size) electrode were shown to be stable, retaining ca. 80% of the initial specific capacitance, even after 5000 cycles. The potentiality of the DNA-TiO2 nanomaterials was also tested in photo-voltaic applications and the observed efficiency was found higher in the case of wire-like TiO2 nanostructures with larger sizes compared to smaller sizes. In future, the described method can be extended for the synthesis of other oxide based materials on DNA scaffold and can be further used in other applications like sensors, Li-ion battery materials or treatment for environmental waste water.A new route for the formation of wire-like clusters of TiO2 nanomaterials self-assembled in DNA scaffold within an hour of reaction time is reported. TiO2 nanomaterials are

  2. MAPLE deposition of nanomaterials

    International Nuclear Information System (INIS)

    Caricato, A.P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P.D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  3. MAPLE deposition of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P., E-mail: annapaola.caricato@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Arima, V.; Catalano, M. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Cesaria, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Cozzoli, P.D. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Martino, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Taurino, A.; Rella, R. [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, I-73100 Lecce (Italy); Scarfiello, R. [National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy); Tunno, T. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); Zacheo, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, I-73100 Lecce (Italy); National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze, c/o Distretto Tecnologico, Via Arnesano n. 16, I-73100 Lecce (Italy)

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  4. Green processes for nanotechnology from inorganic to bioinspired nanomaterials

    CERN Document Server

    Basiuk, Elena

    2015-01-01

    This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications. This book also: Maximizes reader insights into the design and fabrication of bioinspired nanomaterials and the design of complex bio-nanohybrids Covers many different applications for nanomaterials, bioinspired nanom...

  5. luminescence properties

    Indian Academy of Sciences (India)

    1Faculty of Science and Arts, Department of Chemistry, Bozok University, Yozgat 66900, Turkey. 2Faculty of Science, Department of Chemistry, Erciyes ... synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) ...

  6. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    Science.gov (United States)

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.

  8. Risk-based classification system of nanomaterials

    International Nuclear Information System (INIS)

    Tervonen, Tommi; Linkov, Igor; Figueira, Jose Rui; Steevens, Jeffery; Chappell, Mark; Merad, Myriam

    2009-01-01

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  9. Risk-based classification system of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tervonen, Tommi, E-mail: t.p.tervonen@rug.n [University of Groningen, Faculty of Economics and Business (Netherlands); Linkov, Igor, E-mail: igor.linkov@usace.army.mi [US Army Research and Development Center (United States); Figueira, Jose Rui, E-mail: figueira@ist.utl.p [Technical University of Lisbon, CEG-IST, Centre for Management Studies, Instituto Superior Tecnico (Portugal); Steevens, Jeffery, E-mail: jeffery.a.steevens@usace.army.mil; Chappell, Mark, E-mail: mark.a.chappell@usace.army.mi [US Army Research and Development Center (United States); Merad, Myriam, E-mail: myriam.merad@ineris.f [INERIS BP 2, Societal Management of Risks Unit/Accidental Risks Division (France)

    2009-05-15

    Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product's life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

  10. Tungsten-based nanomaterials (WO{sub 3} & Bi{sub 2}WO{sub 6}): Modifications related to charge carrier transfer mechanisms and photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Girish Kumar, S., E-mail: girichem@yahoo.co.in; Koteswara Rao, K.S.R., E-mail: raoksrk@gmail.com

    2015-11-15

    Graphical abstract: - Highlights: • Photocatalytic applications of WO{sub 3} and Bi{sub 2}WO{sub 6} based nanomaterial are reviewed. • Modifications to improve their performance are highlighted. • Charge carrier generation–separation–recombination is discussed. • Challenges and future prospects in this area are addressed. - Abstract: Heterogeneous photocatalysis is an ideal green energy technology for the purification of wastewater. Although titania dominates as the reference photocatalyst, its wide band gap is a bottleneck for extended utility. Thus, search for non-TiO{sub 2} based nanomaterials has become an active area of research in recent years. In this regard, visible light absorbing polycrystalline WO{sub 3} (2.4–2.8 eV) and Bi{sub 2}WO{sub 6} (2.8 eV) with versatile structure-electronic properties has gained considerable interest to promote the photocatalytic reactions. These materials are also explored in selective functional group transformation in organic reactions, because of low reduction and oxidation potential of WO{sub 3} CB and Bi{sub 2}WO{sub 6} VB, respectively. In this focused review, various strategies such as foreign ion doping, noble metal deposition and heterostructuring with other semiconductors designed for efficient photocatalysis is discussed. These modifications not only extend the optical response to longer wavelengths, but also prolong the life-time of the charge carriers and strengthen the photocatalyst stability. The changes in the surface-bulk properties and the charge carrier transfer dynamics associated with each modification correlating to the high activity are emphasized. The presence of oxidizing agents, surface modification with Cu{sup 2+} ions and synthesis of exposed facets to promote the degradation rate is highlighted. In depth study on these nanomaterials is likely to sustain interest in wastewater remediation and envisaged to signify in various green energy applications.

  11. Modification and characterization of (energetic) nanomaterials

    NARCIS (Netherlands)

    Heijden, A.E.D.M. van der; Creyghton, Y.L.M.; Peppel, R.J.E. van de; Abadjieva, E.

    2010-01-01

    Nanomaterials are a topic of increased interest, since they have properties which differ from their macroscopic counterparts. Many applications nowadays take advantage of the new functionalities which natural and manufactured nanoparticles possess. Based on these developments, also the research on

  12. Practical Implementation, Characterization and Applications of a Multi-Colour Time-Gated Luminescence Microscope

    Science.gov (United States)

    Zhang, Lixin; Zheng, Xianlin; Deng, Wei; Lu, Yiqing; Lechevallier, Severine; Ye, Zhiqiang; Goldys, Ewa M.; Dawes, Judith M.; Piper, James A.; Yuan, Jingli; Verelst, Marc; Jin, Dayong

    2014-10-01

    Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y2O2S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.

  13. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  14. Luminescence enhancement in irradiated polyethylene

    International Nuclear Information System (INIS)

    Charlesby, A.; Owen, G.P.

    1976-01-01

    Results are presented for the luminescence decay in polyethylene following irradiation at liquid nitrogen temperature and its enhancement on application of an electric field. It is found that both the luminescence enhancement and its subsequent decay may be described by a model involving electron tunnelling from a monoenergetic trap distribution to the parent positive ion. The possible nature of the trap is briefly discussed. (author)

  15. Selenium and tellurium nanomaterials

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  16. Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication

    Science.gov (United States)

    Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-Yan

    2014-03-01

    Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on. Electronic supplementary information (ESI) available: Details of FTIR, XRD and DLS of CDF, optical properties of CDF, TEM images of other obtained products, luminescent spectra of CDF at different temperatures, and the optical photographs of CDF inks and silica glasses with different concentrations

  17. EDITORIAL: Whither nanomaterials? Whither nanomaterials?

    Science.gov (United States)

    Mallouk, Thomas E.; Pinkerton, Fred; Stetson, Ned

    2009-10-01

    As the journal Nanotechnology enters its third decade it is interesting to look back on the field and to think about where it may be headed in the future. The growth of the journal over the past twenty years mirrors that of the field, with exponentially rising numbers of citations and a widening diversity of topics that we identify as nanotechnology. In the early 1990s, Nanotechnology was focused primarily on nanoscale electronics and on scanning probe tools for fabricating and characterizing nanostructures. The synthesis and assembly of nanomaterials was already an active area in chemical research; however, it did not yet intersect strongly with the activities of the physics community, which was interested primarily in new phenomena that emerged on the nanoscale and on the devices that derived from them. In the 1990s there were several key advances that began to bridge this gap. Techniques were developed for making nanocrystals of compound semiconductors, oxides, and metals with very fine control over shape and superstructure. Carbon nanotubes were discovered and their unique electronic properties were demonstrated. Research on the self-assembly of organic molecules on surfaces led to the development of soft lithography and layer-by- layer assembly of materials. The potential to use DNA and then proteins as building blocks of precise assemblies of nanoparticles was explored. These bottom-up structures could not be made by top-down techniques, and their unique properties as components of sensors, electronic devices, biological imaging agents, and drug delivery vehicles began to change the definition of the field. Ten years ago, Inelke Malsch published a study on the scientific trends and organizational dynamics of nanotechology in Europe (1999 Nanotechnology 10 1-7). Scientists from a variety of disciplines were asked which areas of research they would include in the definition of nanotechnology. Although the article concluded with forward-looking thoughts in the

  18. Metal-Organic Framework Nanosheets for Fast-Response and Highly Sensitive Luminescent Sensing of Fe3+

    DEFF Research Database (Denmark)

    Xu, Hui; Iversen, Bo Brummerstedt

    of graphene, Since the discovery of graphene, series of two-dimensional (2-D) nanosheets materials such as metal oxides, metal hydroxides, transition metal chalcogenides (TMDs), boron nitride (BN) and black phosphorus have been of great interests, and have been extensively investigated for applications...... in electronics, lithium-ion batteries, catalysis and mechanical properties, etc. 2-D MOF nanosheets materials, as a new member of the 2-D nanomaterials family, are still at the very early stage. However, to the best of our knowledge, the 2-D MOF nanosheets materials for luminescent sensing have been rarely...

  19. Perspectives of development of ceramic materials with luminescent applications; Perspectivas del desarrollo de materiales ceramicos con aplicaciones luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado E, A; Fernandez M, J L; Diaz G, J L.I.; Rivera M, T [IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico)

    2005-07-01

    The science and technology of materials believes and it applies the knowledge that allow to relate the composition, it structures and the one processed with those properties that those they make capable for each one of the applications. The ceramic materials are inorganic materials not metallic, constituted by metallic elements and not metallic. In general, they usually behave, as good insulating electric and thermal due to the absence of conductive electrons. Usually, they possess relatively high coalition temperatures and, also, a chemical stability relatively high. Due to these properties, they are indispensable for many of those designs in engineering. The ceramic materials for luminescent applications are constituted typically by pure compounds (Al{sub 2}O{sub 3}, TiO{sub 2}, SiO{sub 2} and ZrO{sub 2}) or cocktails with some sludges giving as a result (Al{sub 2}O{sub 3}:TR, TiO{sub 2}:Eu, Si:ZrO{sub 2}, ZrO{sub 2}:TR). Presently work describes the panorama to big features on the development of ceramic materials in the CICATA Unit it would Bequeath, which can be characterized by the photoluminescence techniques and thermoluminescence mainly. (Author)

  20. The temperature-sensitive luminescence of (Y,Gd)VO4:Bi3+,Eu3+ and its application for stealth anti-counterfeiting

    International Nuclear Information System (INIS)

    Chen, Lei; Zhang, Yao; Luo, Anqi; Liu, Fayong; Jiang, Yang; Hu, Qingzhuo; Chen, Shifu; Liu, Ru-Shi

    2012-01-01

    Anti-counterfeiting technologies are desired to protect products far away from the violation of dummy, fake and shoddy goods. The phosphor of (Y,Gd)VO 4 :Bi 3+ ,Eu 3+ was synthesized for the application of this purpose. Its photoluminescence was investigated by exciting with different wavelengths at variant temperatures. Wide emission color ranged from green through yellow to orange was tuned up by tailor-ing Bi 3+ and Eu 3+ concentrations. The temperature dependent luminescence and wavelength selective excitation of (Y,Gd)VO 4 :Bi 3+ ,Eu 3+ were observed, which provide different encryptions in anti-counterfeiting. To verify the feasibility in application, two anti-counterfeiting patterns were fabricated practically and excellent performance was obtained. Moreover, the physical mechanisms for the different phenomena of luminescence were elucidated from excitation spectra combining with the configuration coordinate model. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  2. Reflection measurements for luminescent powders

    Science.gov (United States)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  3. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  4. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Amin M. Saleem

    2016-01-01

    Full Text Available Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million, can give energy density higher than parallel plate capacitor and power density higher than battery. In this paper, carbon nanomaterials and their composites are reviewed for prospective use as electrodes for supercapacitor. Moreover, different physical and chemical treatments on these nanomaterials which can potentially enhance the capacitance are also reviewed.

  5. Generating Electricity from Water through Carbon Nanomaterials.

    Science.gov (United States)

    Xu, Yifan; Chen, Peining; Peng, Huisheng

    2018-01-09

    Over the past ten years, electricity generation from water in carbon-based materials has aroused increasing interest. Water-induced mechanical-to-electrical conversion has been discovered in carbon nanomaterials, including carbon nanotubes and graphene, through the interaction with flowing water as well as moisture. In this Concept article, we focus on the basic principles of electric energy harvesting from flowing water through carbon nanomaterials, and summarize the material modification and structural design of these nanogenerators. The current challenges and potential applications of power conversion with carbon nanomaterials are finally highlighted. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface and Interface Engineering of Conjugated Polymers and Nanomaterials in Applications of Supercapacitors and Surface-functionalization

    KAUST Repository

    Hou, Yuanfang

    2016-05-23

    In this dissertation, three aspects about surface and interface engineering of conjugated polymers and nanomaterials will be discussed. (i) There is a significant promise for electroactive conjugated polymers (ECPs) in applications of electrochemical devices including energy harvesting, electrochromic displays, etc. Among these, ECPs has also been developed as electroactive materials in electrochemical supercapacitors (ESCs). Compared with metal oxides, ECPs are attractive because they have good intrinsic conductivity, low band-gaps, relatively fast doping-and-undoping process, the ease of synthesis, and tunable electronic and structural properties through structural modifications. Here, Multiple-branch-chain 3,4-ethylenedioxythiophene (EDOT) derivatives was designed as crosslinkers in the co-electropolymerization of EDOT to optimize its morphology and improve the cycling stability of PEDOT in the supercapacitor applications. High-surface-area π-conjugated polymeric networks can be synthesized via the electrochemical copolymerization of the 2D (trivalent) motifs benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (BTT) and tris-EDOT-benzo[1,2-b:3,4-b’:5,6-b’’]trithiophene (TEBTT) with EDOT. Of all the material systems studied, P(TEBTT/EDOT)-based frameworks achieved the highest areal capacitance with values as high as 443.8 mF cm-2 (at 1 mA cm-2), higher than those achieved by the respective homopolymers (PTEBTT and PEDOT) in the same experimental conditions of electrodeposition (PTEBTT: 271.1 mF cm-2 (at 1 mA cm-2); PEDOT: 12.1 mF cm-2 (at 1 mA cm-2). (ii) In electrochemical process, the suitable choice of appropriate electrolytes to enlarge the safe working potential window with electrolyte stability is well known to improve ECPs’ performance in ESCs applications. Ionic liquids (ILs) are ion-composed salts and usually fluid within a wide temperature range with low melting points. There are many unique characteristics for these intrinsic ion conductors

  7. Corrosion protection and control using nanomaterials

    CERN Document Server

    Cook, R

    2012-01-01

    This book covers the use of nanomaterials to prevent corrosion. The first section deals with the fundamentals of corrosion prevention using nanomaterials. Part two includes a series of case studies and applications of nanomaterials for corrosion control.$bCorrosion is an expensive and potentially dangerous problem in many industries. The potential application of different nanostructured materials in corrosion protection, prevention and control is a subject of increasing interest. Corrosion protection and control using nanomaterials explores the potential use of nanotechnology in corrosion control. The book is divided into two parts. Part one looks at the fundamentals of corrosion behaviour and the manufacture of nanocrystalline materials. Chapters discuss the impact of nanotechnology in reducing corrosion cost, and investigate the influence of various factors including thermodynamics, kinetics and grain size on the corrosion behaviour of nanocrystalline materials. There are also chapters on electrodeposition ...

  8. Direct determination of graphene quantum dots based on terbium-sensitized luminescence

    Science.gov (United States)

    Llorent-Martínez, Eulogio J.; Molina-García, Lucía; Durán, Gema M.; Ruiz-Medina, Antonio; Ríos, Ángel

    2018-06-01

    Graphene quantum dots (GQD) were determined in water samples using terbium-sensitized luminescence (TSL). Terbium ions complex with GQD due to the carboxylic groups that are usually present in these nanomaterials, increasing the luminescence signal of terbium. In Tb(III)-GQD complexes, GQD absorb energy at their characteristic excitation wavelength and transfer it to terbium ion, which emits at its particular emission wavelength. The analytical signal, measured at λexc = 257 nm and λem = 545 nm, increases proportionally to GQD concentration between 50 and 500 μg L-1. Under optimum conditions, the proposed method presents a detection limit of 15 μg L-1 and is selective to GQD in the presence of other nanomaterials of similar size. As GQD are highly water-soluble, they are potential contaminants in environmental or drinking waters water samples, and hence the method was applied to the analysis of different drinking waters which were the target samples for the application of the developed method.

  9. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I. [Nuclear Reactor Program, Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695 (United States); Gidley, David W. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor MI 48109 (United States)

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  10. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    Science.gov (United States)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  11. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals

    Directory of Open Access Journals (Sweden)

    Yi Hao

    2017-08-01

    Full Text Available Nanoparticles (NPs have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three common carbon nanomaterials, multi-walled carbon nanotubes, fullerene, and reduced graphene oxide, and three commercial metal oxidant NPs, copper oxide (CuO NPs, ferric oxide (Fe2O3 NPs, and titanium oxides (TiO2 NPs, were independently added to water-agar plates at 50 and 200-mg/L concentrations. Detached rose petals were inoculated with spores of B. cinerea and co-cultured with each of the six nanomaterials. The sizes of the lesions on infected rose petals were measured at 72 h after inoculation, and the growth of fungi on the rose petals was observed by scanning electron microscopy. The six NPs inhibited the growth of B. cinerea, but different concentrations had different effects: 50 mg/L of fullerene and CuO NPs showed the strongest antifungal properties among the treatments, while 200 mg/L of CuO and Fe2O3 showed no significant antifungal activities. Thus, NPs may have antifungal activities that prevent B. cinerea infections in plants, and they could be used as antifungal agents during the growth and post-harvesting of roses and other flowers.

  12. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.

  13. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  14. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  15. New nanomaterials for applications in conservation and restoration of stony materials: A review; Revisión de los nuevos nanomateriales para la conservación y restauración del material pétreo.

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Fernandez, A.; Gomez-Villalba, L.S.; Rabanal, M.E.; Fort, R.

    2017-07-01

    In recent times, nanomaterials have been applied in the construction and maintenance of the world's cultural heritage with the aim of improving the consolidation and protection treatments of damaged stone. These nanomaterials include important advantages that could solve many problems found in the traditional interventions. The present paper aims to carry out a review of the state of art on the application of nanotechnology to the conservation and restoration of the stony cultural heritage. We highlight the different types of nanoparticles currently used to produce conservation treatments with enhanced material properties and novel functionalities.

  16. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  17. Nanomaterials and Retinal Toxicity

    Science.gov (United States)

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  18. Molecular toxicity of nanomaterials.

    Science.gov (United States)

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  19. Nanomaterials science

    Directory of Open Access Journals (Sweden)

    Heinrich Rohrer

    2010-01-01

    interesting and daring research proposal, even if it interprets 'nano' somewhat too generously. After all, we want to promote top-class research and not average research just for the sake of 'nano'.Interfaces, material growth at given nano positions, shaping materials to a given nanosize and form, and bistability are key elements for functionalizing materials.InterfacesThe role of interfaces is rapidly increasing in science and technology. The number of interfaces increases with the square of the number of phases of materials. Even if the majority of them are impractical or useless, they are still much more abundant than the materials themselves, and they are the key to new functions. Think of the simple 'mechanical' interface responsible for the lotus effect where wetting is prevented by the rapidly changing surface curvature due to nanoparticles. Think of all the connections of a nanometer-sized area between very different materials, for example, for electron or spin transport. Think of the delicate interfaces that protect nanofunctional units from the environment but allow for communication of various types with other nanocomponents or with the macroscopic world. The solid–liquid interface plays a special role here. For me, it is the interface of the future, both for local growth and removal of nm3 quantities and for working with biological specimens requiring a liquid environment. Interfaces are the 'faces of action' and nanoscale materials science will be, to a great extent, 'interface science'. There is no need to change the name; attentive awareness suffices.Material growth at given nano positionsThis is the second central challenge in nanoscale materials science, but maybe still a futuristic one. We have heard much about the extraordinary properties of carbon nanotubes. They do a great job in certain applications, like tips of scanning tunneling and atomic force microscopes or nanoinjection needles or as bundles for electron emission or electron transport. As single

  20. Towards Safer Nanomaterials

    DEFF Research Database (Denmark)

    Hjorth, Rune; Baun, Anders

    2014-01-01

    As nanomaterials become more widespread in everything from industrial processes to consumer products, concerns about human and environmental safety are being taken increasingly more seriously. In our research we are working with minimizing the impact and risks of engineered nanomaterials by looking...... or the exposure and optimally both. Examples include the 5 SAFER principles (Morose, 2010) or screenings of early warning signs (Hansen et al., 2013). Taking the full life cycle of nanomaterials into account, the principles of Green chemistry and Green engineering could also prove useful to reduce...... the environmental impact of nanomaterials (Eckelman et al., 2008). Our research interests include the feasibility of “safer-­‐by-­‐design” approaches, the production of greener nanomaterials and operationalization, adaption and creation of frameworks to facilitate safety engineering. Research and insight...

  1. Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities.

    Science.gov (United States)

    Kreider, Marisa L; Cyrs, William D; Tosiano, Melissa A; Panko, Julie M

    2015-11-01

    Current recommendations for nanomaterial-specific exposure assessment require adaptation in order to be applied to complicated manufacturing settings, where a variety of particle types may contribute to the potential exposure. The purpose of this work was to evaluate a method that would allow for exposure assessment of nanostructured materials by chemical composition and size in a mixed dust setting, using carbon black (CB) and amorphous silica (AS) from tire manufacturing as an example. This method combined air sampling with a low pressure cascade impactor with analysis of elemental composition by size to quantitatively assess potential exposures in the workplace. This method was first pilot-tested in one tire manufacturing facility; air samples were collected with a Dekati Low Pressure Impactor (DLPI) during mixing where either CB or AS were used as the primary filler. Air samples were analyzed via scanning transmission electron microscopy (STEM) coupled with energy dispersive spectroscopy (EDS) to identify what fraction of particles were CB, AS, or 'other'. From this pilot study, it was determined that ~95% of all nanoscale particles were identified as CB or AS. Subsequent samples were collected with the Dekati Electrical Low Pressure Impactor (ELPI) at two tire manufacturing facilities and analyzed using the same methodology to quantify exposure to these materials. This analysis confirmed that CB and AS were the predominant nanoscale particle types in the mixing area at both facilities. Air concentrations of CB and AS ranged from ~8900 to 77600 and 400 to 22200 particles cm(-3), respectively. This method offers the potential to provide quantitative estimates of worker exposure to nanoparticles of specific materials in a mixed dust environment. With pending development of occupational exposure limits for nanomaterials, this methodology will allow occupational health and safety practitioners to estimate worker exposures to specific materials, even in scenarios

  2. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    Science.gov (United States)

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  4. Techniques for physicochemical characterization of nanomaterials

    Science.gov (United States)

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  5. Luminescence properties of Sm"3"+ doped YPO_4: Effect of solvent, heat-treatment, Ca"2"+/W"6"+-co-doping and its hyperthermia application

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Ningthoujam, R. S.; Tyagi, A. K.

    2012-01-01

    Sm"3"+ doped YPO_4 spherical nanoparticles are prepared by wet chemical route. Pure YPO_4 shows the tetragonal phase, which is stable up to 900 °C, whereas pure SmPO_4 shows the phase transition from hexagonal to monoclinic when heated above 800 °C. The (2-10 at.%) Sm"3"+ doped YPO_4 shows the mixture of phases of tetragonal and hexagonal, which transform to the tetragonal phase above 800 °C. Infra-red study could distinguish confined water in the pore of hexagonal phase from water present on the surface of particles. Luminescence intensities of Sm"3"+ at 564, 601 and 645 nm are weak in case of as-prepared samples because of high non-radiative rate arising from the H_2O molecules present in pores of hexagonal lattice. The intensities increase for samples heated up to 900 °C because of increase of extent of radiative rate. Luminescence lifetime increases with increase of heat-treatment up to 900 °C. When solvent of as-prepared sample was changed from the H_2O to D_2O, 5 times enhancement in luminescence intensity is observed, which can be ascribed to the lower vibration energy of D-O over H-O, which is near to Sm"3"+. When Y"3"+ and P"5"+ ions are substituted by Ca"3"+ and W"3"+ up to 3 at.%, there is an enhancement of luminescence. In order to use them as bio-labeling in drug delivery for hyperthermia applications, hybrid of Fe_3O_4@YPO_4:7Sm is prepared and heating up to 45 °C is observed under AC magnetic field.

  6. Potential applications of luminescent molecular rotors in food science and engineering.

    Science.gov (United States)

    Alhassawi, Fatemah M; Corradini, Maria G; Rogers, Michael A; Ludescher, Richard D

    2017-06-29

    Fluorescent molecular rotors (MRs) are compounds whose emission is modulated by segmental mobility; photoexcitation generates a locally excited (LE), planar state that can relax either by radiative decay (emission of a photon) or by formation of a twisted intramolecular charge transfer (TICT) state that can relax nonradiatively due to internal rotation. If the local environment around the probe allows for rapid internal rotation in the excited state, fast non-radiative decay can either effectively quench the fluorescence or generate a second, red-shifted emission band. Conversely, any environmental restriction to twisting in the excited state due to free volume, crowding or viscosity, slows rotational relaxation and promotes fluorescence emission from the LE state. The environmental sensitivity of MRs has been exploited extensively in biological applications to sense microviscosity in biofluids, the stability and physical state of biomembranes, and conformational changes in macromolecules. The application of MRs in food research, however, has been only marginally explored. In this review, we summarize the main characteristics of fluorescent MRs, their current applications in biological research and their current and potential applications as sensors of physical properties in food science and engineering.

  7. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  8. FOREWORD Nanomaterials science Nanomaterials science

    Science.gov (United States)

    Rohrer, Heinrich

    2010-10-01

    daring research proposal, even if it interprets 'nano' somewhat too generously. After all, we want to promote top-class research and not average research just for the sake of 'nano'. Interfaces, material growth at given nano positions, shaping materials to a given nanosize and form, and bistability are key elements for functionalizing materials. InterfacesThe role of interfaces is rapidly increasing in science and technology. The number of interfaces increases with the square of the number of phases of materials. Even if the majority of them are impractical or useless, they are still much more abundant than the materials themselves, and they are the key to new functions. Think of the simple 'mechanical' interface responsible for the lotus effect where wetting is prevented by the rapidly changing surface curvature due to nanoparticles. Think of all the connections of a nanometer-sized area between very different materials, for example, for electron or spin transport. Think of the delicate interfaces that protect nanofunctional units from the environment but allow for communication of various types with other nanocomponents or with the macroscopic world. The solid-liquid interface plays a special role here. For me, it is the interface of the future, both for local growth and removal of nm3 quantities and for working with biological specimens requiring a liquid environment. Interfaces are the 'faces of action' and nanoscale materials science will be, to a great extent, 'interface science'. There is no need to change the name; attentive awareness suffices. Material growth at given nano positionsThis is the second central challenge in nanoscale materials science, but maybe still a futuristic one. We have heard much about the extraordinary properties of carbon nanotubes. They do a great job in certain applications, like tips of scanning tunneling and atomic force microscopes or nanoinjection needles or as bundles for electron emission or electron transport. As single carbon

  9. Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application.

    Science.gov (United States)

    Chen, Yameng; Zhou, Yang; Zhao, Qing; Zhang, Junying; Ma, Ju-Ping; Xuan, Tong-Tong; Guo, Shao-Qiang; Yong, Zi-Jun; Wang, Jing; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Sun, Hong-Tao

    2018-04-18

    All-inorganic perovskites have emerged as a new class of phosphor materials owing to their outstanding optical properties. Zero-dimensional inorganic perovskites, in particular the Cs4PbBr6-related systems, are inspiring intensive research owing to the high photoluminescence quantum yield (PLQY) and good stability. However, synthesizing such perovskites with high PLQYs through an enviromentally friendly, cost-effective, scalable, and high-yield approach remains challenging, and their luminescence mechanisms has been elusive. Here, we report a simple, scalable, room-temperature self-assembly strategy for the synthesis of Cs4PbBr6/CsPbBr3 perovskite composites with near-unity PLQY (95%), high product yield (71%) and good stability, using low-cost, low-toxicity chemicals as precursors. A broad range of experimental and theoretical characterizations suggest that the high-efficiency PL originates from CsPbBr3 nanocrystals well passivated by the zero-dimensional Cs4PbBr6 matrix that forms based on a dissolution-crystallization process. These findings underscore the importance in accurately identifying the phase purity of zero-dimensional perovskites by synchrotron X-ray technique to gain deep insights into the structure-property relationship. Additionally, we demonstrate that green-emitting Cs4PbBr6/CsPbBr3, combined with red-emitting K2SiF6:Mn4+, can be used for the construction of WLEDs. Our work may pave the way for the use of such composite perovskites as highly luminescent emitters in various applications such as lighting, displays, and other optoelectronic and photonic devices.

  10. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  11. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  12. Sensors As Tools for Quantitation, Nanotoxicity and Nanomonitoring Assessment of Engineered Nanomaterials

    Science.gov (United States)

    The discovery of fullerenes in 1985 has ushered in an explosive growth in the applications of engineered nanomaterials and consumer products. Nanotechnology and engineered nanomaterials (ENMs) are being incorporated into a range of commercial products such as consumer electronic...

  13. Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications

    Directory of Open Access Journals (Sweden)

    P.K. Jisha

    2017-12-01

    Full Text Available A novel green light emitting GdAlO3:Tb3+ (1–11 mol% nanophosphor has been synthesized by the solution combustion method and the final products were characterized. The energy band gap of the samples was estimated in the range of 5.13–5.88 eV from diffuse reflectance spectra. The effect of the added Tb3+ ions on the electronic structure was considered based on the absolute electronegativity. The characteristic photoluminescence emission corresponding to the transition 5D4→7Fj (j = 6, 5, 4, 3 of the Tb3+ ions was observed in the wavelength range of 500–650 nm, and assigned due to the f–f transitions upon the 378 nm excitation. The optimized nanophosphor was found suitable for applications in the latent fingerprint detection. The photometric characterization has revealed the excellent color chromaticity coordinates and the correlated color temperature levels. They are on the same level of commercial phosphors and quite useful for green WLEDs, solid state displays and forensic applications as well.

  14. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  15. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications

    Directory of Open Access Journals (Sweden)

    Yunxiang Gao

    2018-02-01

    Full Text Available Magnetic resonance imaging (MRI is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical properties, versatile functionalization chemistry, as well as excellent biological compatibility. Researchers have employed various carbon nano-allotropes to develop hybrid MRI contrast agents for improved sensitivity. This review summarizes the new research progresses in carbon-based hybrid MRI contrast agents, especially those reported in the past five years. The review will only focus on T2-weighted MRI agents and will be categorized by the different carbon allotrope types and magnetic components. Considering the strong trend in recent bio-nanotechnology research towards multifunctional diagnosis and therapy, carbon-based MRI contrast agents integrated with other imaging modalities or therapeutic functions are also covered.

  16. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation.

    Science.gov (United States)

    Corsi, I; Winther-Nielsen, M; Sethi, R; Punta, C; Della Torre, C; Libralato, G; Lofrano, G; Sabatini, L; Aiello, M; Fiordi, L; Cinuzzi, F; Caneschi, A; Pellegrini, D; Buttino, I

    2018-06-15

    The use of engineered nanomaterials (ENMs) for environmental remediation, known as nanoremediation, represents a challenging and innovative solution, ensuring a quick and efficient removal of pollutants from contaminated sites. Although the growing interest in nanotechnological solutions for pollution remediation, with significant economic investment worldwide, environmental and human risk assessment associated with the use of ENMs is still a matter of debate and nanoremediation is seen yet as an emerging technology. Innovative nanotechnologies applied to water and soil remediation suffer for a proper environmental impact scenario which is limiting the development of specific regulatory measures and the exploitation at European level. The present paper summarizes the findings from the workshop: "Ecofriendly Nanotechnology: state of the art, future perspectives and ecotoxicological evaluation of nanoremediation applied to contaminated sediments and soils" convened during the Biannual ECOtoxicology Meeting 2016 (BECOME) held in Livorno (Italy). Several topics have been discussed and, starting from current state of the art of nanoremediation, which represents a breakthrough in pollution control, the following recommendations have been proposed: (i) ecosafety has to be a priority feature of ENMs intended for nanoremediation; ii) predictive safety assessment of ENMs for environmental remediation is mandatory; (iii) greener, sustainable and innovative nano-structured materials should be further supported; (iii) those ENMs that meet the highest standards of environmental safety will support industrial competitiveness, innovation and sustainability. The workshop aims to favour environmental safety and industrial competitiveness by providing tools and modus operandi for the valorization of public and private investments. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Health and safety implications of occupational exposure to engineered nanomaterials.

    Science.gov (United States)

    Stebounova, Larissa V; Morgan, Hallie; Grassian, Vicki H; Brenner, Sara

    2012-01-01

    The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials. Copyright © 2011 Wiley Periodicals, Inc.

  18. Nanomaterials as stationary phases and supports in liquid chromatography.

    Science.gov (United States)

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Safe use of nanomaterials

    CERN Multimedia

    2013-01-01

    The use of nanomaterials  is on the increase worldwide, including at CERN. The HSE Unit has established a safety guideline to inform you of the main requirements for the safe handling and disposal of nanomaterials at CERN.   A risk assessment tool has also been developed which guides the user through the process of evaluating the risk for his or her activity. Based on the calculated risk level, the tool provides a list of recommended control measures.   We would therefore like to draw your attention to: Safety Guideline C-0-0-5 - Safe handling and disposal of nanomaterials; and Safety Form C-0-0-2 - Nanomaterial Risk Assessment   You can consult all of CERN’s safety rules and guidelines here. Please contact the HSE Unit for any questions you may have.   The HSE Unit

  20. Center for Functional Nanomaterials

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Functional Nanomaterials (CFN) explores the unique properties of materials and processes at the nanoscale. The CFN is a user-oriented research center...

  1. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  2. Luminescence and energy transfer studies on Sm3+/Tb3+codoped telluroborate glasses for WLED applications

    Science.gov (United States)

    Uma, V.; Vijayakumar, M.; Marimuthu, K.; Muralidharan, G.

    2018-01-01

    A new series of Sm3+/Tb3+ codoped telluroborate glasses have been prepared by conventional melt quenching technique with the chemical composition (40-x-y)B2O3+15TeO2+15Li2O+15LiF+15NaF+xTb2O3+ySm2O3 (where x = 0, 0.5; y = 0, 0.05, 0.1, 0.25, 0.5, 1 and 2 wt%). The structural and optical behaviour of the prepared glasses were investigated through Fourier transform infrared spectroscopy (FTIR), optical absorption, photoluminescence and lifetime measurements. The fundamental vibrational units of the borate and tellurite network have been identified through FTIR spectra. Nephelauxetic ratio (βbar) and bonding parameter (δ) values indicate that the Smsbnd O bonds are ionic in nature. The characteristic emissions of terbium (543 nm, green) and samarium (645 nm, orange-red) were observed while exciting the Tb3+ ions. Higher magnitude of asymmetric intensity ratio (AIR) values confirms the higher asymmetry around the Sm3+ ion site. Decay profiles of Tb3+ ions (5D4 state) and Sm3+ ions (4G9/2 state) exhibit double exponential nature. The nature of interaction between the donor (Tb3+) and acceptor (Sm3+) has been analyzed through Inokuti-Hirayama (IH) model. Energy transfer from Tb3+ to Sm3+ ions is dominated by dipole-dipole type interaction. TBLT0.5S glass possess the better colour coordinates (0.41, 0.45) and colour correlated temperature (CCT) value (3524 K) and the same is suggested for eye safe warm white light emitting applications.

  3. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications.

    Science.gov (United States)

    Liu, Xiaofeng; Qiu, Jianrong

    2015-12-07

    Transfer of energy occurs endlessly in our universe by means of radiation. Compared to energy transfer (ET) in free space, in solid state materials the transfer of energy occurs in a rather confined manner, which is usually mediated by real or virtual particles, including not only photons, but also electrons, phonons, and excitons. In the present review, we discuss the recent advances in optical ET by resonance mediated with photons in solid materials as well as their nanoscale counterparts, with focus on the photoluminescence behavior pertaining to ET between optically active centers, such as rare earth (RE) ions. This review begins with a brief discussion on the classification of optical ET together with an overview of the theoretical formulations and experimental method for the examination of ET. We will then present a comprehensive discussion on the ET in practical systems in which normal photoluminescence, upconversion and quantum cutting resulted from ET involving metal ions, QDs, organic species, 2D materials and plasmonic nanostructures. Diverse ET systems are therefore simply categorized into cases of ion-ion interactions and non-ion interactions. Special attention has been paid to the progress in the manipulation of spatially confined ET in nanostructured systems including core-shell structures, as well as the ET in multiple exciton generation found in QDs and organic molecules, which behave quite similarly to resonance ET between metal ion centers. Afterwards, we will discuss the broad spectrum of applications of ET in the aforementioned systems, including solid state lighting, solar energy utilization, bio-imaging and diagnosis, and sensing. In the closing part, along with a short summary, we discuss further research focus regarding the problems and possible future directions of optical ET in solids.

  4. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  5. Antibacterial properties and toxicity from metallic nanomaterials

    Directory of Open Access Journals (Sweden)

    Vimbela GV

    2017-05-01

    Full Text Available Gina V Vimbela,1,* Sang M Ngo,2,* Carolyn Fraze,3 Lei Yang,4,5 David A Stout5–7 1Department of Chemical Engineering, 2Department of Electrical Engineering, California State University, Long Beach, CA, 3Brigham Young University Idaho, Rexburg, ID, USA; 4Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital, 5International Research Center for Translational Orthopaedics (IRCTO, Soochow University, Suzhou, Jiangsu, People’s Republic of China; 6Department of Mechanical and Aerospace Engineering, 7Department of Biomedical Engineering, California State University, Long Beach, CA, USA *These authors contributed equally to this work Abstract: The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. Keywords

  6. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  7. Applications of a table-top time-resolved luminescence spectrometer with nanosecond soft X-ray pulse excitation

    Czech Academy of Sciences Publication Activity Database

    Brůža, P.; Pánek, D.; Fidler, V.; Benedikt, P.; Čuba, V.; Gbur, T.; Boháček, Pavel; Nikl, Martin

    2014-01-01

    Roč. 61, č. 1 (2014), s. 448-451 ISSN 0018-9499 R&D Projects: GA ČR GA13-09876S Institutional support: RVO:68378271 Keywords : LiCaAlF 6 * luminescence * scintillators * soft x-ray * SrHfO 3 * time-resolved spectroscopy * ZnO :Ga Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2014

  8. The temperature-sensitive luminescence of (Y,Gd)VO{sub 4}:Bi{sup 3+},Eu{sup 3+} and its application for stealth anti-counterfeiting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lei; Zhang, Yao; Luo, Anqi; Liu, Fayong; Jiang, Yang; Hu, Qingzhuo [School of Materials Science and Engineering, Hefei University of Technology (China); Chen, Shifu [Department of Chemistry, Huaibei Normal University (China); Liu, Ru-Shi [Department of Chemistry, National Taiwan University, Taipei (China)

    2012-07-15

    Anti-counterfeiting technologies are desired to protect products far away from the violation of dummy, fake and shoddy goods. The phosphor of (Y,Gd)VO{sub 4}:Bi{sup 3+},Eu{sup 3+} was synthesized for the application of this purpose. Its photoluminescence was investigated by exciting with different wavelengths at variant temperatures. Wide emission color ranged from green through yellow to orange was tuned up by tailor-ing Bi{sup 3+} and Eu{sup 3+} concentrations. The temperature dependent luminescence and wavelength selective excitation of (Y,Gd)VO{sub 4}:Bi{sup 3+},Eu{sup 3+} were observed, which provide different encryptions in anti-counterfeiting. To verify the feasibility in application, two anti-counterfeiting patterns were fabricated practically and excellent performance was obtained. Moreover, the physical mechanisms for the different phenomena of luminescence were elucidated from excitation spectra combining with the configuration coordinate model. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. 4th International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2017-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engineering and medical applications Co...

  10. Production of nanomaterials: physical and chemical technologies

    International Nuclear Information System (INIS)

    Giorgi, Leonardo; Salernitano, Elena

    2015-01-01

    Are define nanomaterials those materials which have at least one dimension in the range between 1 and 100 nm. By the term nanotechnology refers, instead, to the study of phenomena and manipulation of materials at the atomic and molecular level. The materials brought to the nanometric dimensions take particular chemical-physical properties different from the corresponding conventional macro materials. Speaking about the structure of nanoscale, you can check some basic properties materials (eg. Melting temperature, magnetic and electrical properties) without changing its chemical composition. In this perspective are crucial knowledge and control of production processes in order to design and get the nanomaterial more suitable for a specific application. For this purpose, it describes a series of processes of production of nanomaterials with application examples. [it

  11. The application of retrospective luminescence dosimetry in areas affected by fallout from the semipalatinsk nuclear test site: an evaluation of potential.

    Science.gov (United States)

    Bailiff, I K; Stepanenko, V F; Göksu, H Y; Jungner, H; Balmukhanov, S B; Balmukhanov, T S; Khamidova, L G; Kisilev, V I; Kolyado, I B; Kolizshenkov, T V; Shoikhet, Y N; Tsyb, A F

    2004-12-01

    Luminescence retrospective dosimetry techniques have been applied with ceramic bricks to determine the cumulative external gamma dose due to fallout, primarily from the 1949 test, in populated regions lying NE of the Semipalatinsk Nuclear Test Site in Altai, Russia, and the Semipalatinsk region, Kazakhstan. As part of a pilot study, nine settlements were examined, three within the regions of highest predicted dose (Dolon in Kazakshstan; Laptev Log and Leshoz Topolinskiy in Russia) and the remainder of lower predicted dose (Akkol, Bolshaya Vladimrovka, Kanonerka, and Izvestka in Kazakshstan; Rubtsovsk and Kuria in Russia) within the lateral regions of the fallout trace due to the 1949 test. The settlement of Kainar, mainly affected by the 24 September 1951 nuclear test, was also examined. The bricks from this region were found to be generally suitable for use with the luminescence method. Estimates of cumulative absorbed dose in air due to fallout for Dolon and Kanonerka in Kazakshstan and Leshoz Topolinskiy were 475 +/- 110 mGy, 240 +/- 60 mGy, and 230 +/- 70 mGy, respectively. The result obtained in Dolon village is in agreement with published calculated estimates of dose normalized to Cs concentration in soil. At all the other locations (except Kainar) the experimental values of cumulative absorbed dose obtained indicated no significant dose due to fallout that could be detected within a margin of about 25 mGy. The results demonstrate the potential suitability of the luminescence method to map variations in cumulative dose within the relatively narrow corridor of fallout distribution from the 1949 test. Such work is needed to provide the basis for accurate dose reconstruction in settlements since the predominance of short-lived radionuclides in the fallout and a high degree of heterogeneity in the distribution of fallout are problematic for the application of conventional dosimetry techniques.

  12. Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials

    Directory of Open Access Journals (Sweden)

    Andrew Williams

    2015-12-01

    Full Text Available Background: The presence of diverse types of nanomaterials (NMs in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2, carbon black (CB or carbon nanotubes (CNTs to determine the disease significance of these data-driven gene sets.Results: Biclusters representing inflammation (chemokine activity, DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032. The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles.Conclusion: The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several

  13. Nanomaterials for membrane fouling control: accomplishments and challenges.

    Science.gov (United States)

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  14. 2D nanomaterials assembled from sequence-defined molecules

    International Nuclear Information System (INIS)

    Mu, Peng; State University of New York; Zhou, Guangwen; Chen, Chun-Long

    2017-01-01

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges and opportunities in this new field.

  15. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  16. Preparation of a novel fluorescence probe of terbium-europium co-luminescence composite nanoparticles and its application in the determination of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gao Feng [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: summit8848cn@hotmail.com; Luo Fabao; Tang Lijuan; Dai Lu [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China); Wang Lun [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: wanglun@mail.ahnu.edu.cn

    2008-03-15

    Terbium-europium Tb-Eu/acetylacetone(acac)/poly(acrylamide) (PAM) co-luminescence composite nanoparticles were successfully prepared using the ultrasonic approach. The as-prepared composite nanoparticles show the characteristic emission spectra of Tb{sup 3+}, located at 496 and 549 nm. Furthermore, the nanoparticles are water soluble, stable and have extremely narrow emission bands and high internal fluorescence quantum yield due to the co-luminescence effect. Further studies indicate that proteins can interact with the nanoparticles and induce the fluorescence quenching of the nanoparticles. Based on the fluorescence quenching of nanopaticles in the presence of proteins, a novel method for the sensitive determination of trace amounts of proteins was proposed. Under the optimal experimental conditions, the linear ranges of calibration curves are 0-3.5 {mu}g mL{sup -1} for human serum albumin (HSA) and 0-4.0 {mu}g mL{sup -1} for {gamma}-globulin ({gamma}-IgG), respectively. The limits of detection are 7.1 for HSA and 6.7ng mL{sup -1} for {gamma}-IgG, respectively. The method was applied to the quantification of proteins in synthetic samples and actual human serum samples with satisfactory results. This proposed method is sensitive, simple and has potential application in the clinical assay of proteins.

  17. Application of multi-step excitation schemes for detection of actinides and lanthanides in solutions by luminescence/chemiluminescence laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation)

    2016-07-01

    The use of laser radiation with tunable wavelength allows the selective excitation of actinide/lanthanide species with subsequent registration of luminescence/chemiluminescence for their detection. This work is devoted to applications of the time-resolved laser-induced luminescence spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for the detection of lanthanides and actinides. Results of the experiments on U, Eu, and Sm detection by TRLIF (Time Resolved Laser Induced Fluorescence) method in blood plasma and urine are presented. Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are analyzed. It is shown that appropriate selectivity of lanthanide/actinide detection can be reached when chemiluminescence is initiated by transitions within 4f- or 5f-electron shell of lanthanide/actinide ions corresponding to the visible spectral range. In this case chemiluminescence of chemiluminogen (luminol) arises when the ion of f element is excited by multi-quantum absorption of visible light. The multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanide/actinide species in solutions. (author)

  18. Carbon Nanomaterials for Breast Cancer Treatment

    Directory of Open Access Journals (Sweden)

    M. L. Casais-Molina

    2018-01-01

    Full Text Available Currently, breast cancer is considered as a health problem worldwide. Furthermore, current treatments neither are capable of stopping its propagation and/or recurrence nor are specific for cancer cells. Therefore, side effects on healthy tissues and cells are common. An increase in the efficiency of treatments, along with a reduction in their toxicity, is desirable to improve the life quality of patients affected by breast cancer. Nanotechnology offers new alternatives for the design and synthesis of nanomaterials that can be used in the identification, diagnosis, and treatment of cancer and has now become a very promising tool for its use against this disease. Among the wide variety of nanomaterials, the scientific community is particularly interested in carbon nanomaterials (fullerenes, nanotubes, and graphene due to their physical properties, versatile chemical functionalization, and biocompatibility. Recent scientific evidence shows the potential uses of carbon nanomaterials as therapeutic agents, systems for selective and controlled drug release, and contrast agents for diagnosing and locating tumors. This generates new possibilities for the development of innovative systems to treat breast cancer and can be used to detect this disease at much earlier stages. Thus, applications of carbon nanomaterials in breast cancer treatment are discussed in this article.

  19. Electron accelerators and nanomaterials - a symbiosis

    International Nuclear Information System (INIS)

    Dixit, Kavita P.; Mittal, K.C.

    2011-01-01

    Electron Accelerators and Nanomaterials share a symbiotic relationship. While electron accelerators are fast emerging as popular tools in the field of nanomaterials, use of nanomaterials so developed for sub-systems of accelerators is being explored. Material damage studies, surface modification and lithography in the nanometre scale are some of the areas in which electron accelerators are being extensively used. New methods to characterize the structure of nanoparticles use intense X-ray sources, generated from electron accelerators. Enhancement of field emission properties of carbon nanotubes using electron accelerators is another important area that is being investigated. Research on nanomaterials for use in the field of accelerators is still in the laboratory stage. Yet, new trends and emerging technologies can effectively produce materials which can be of significant use in accelerators. Properties such as enhanced field emission can be put to use in cathodes of electron guns. Superconducting properties some materials may also be useful in accelerators. This paper focusses on the electron accelerators used for synthesis, characterization and property-enhancement of nanomaterials. The details of electron accelerators used for these applications will be highlighted. Some light will be thrown on properties of nano materials which can have potential use in accelerators. (author)

  20. Studies and Development of Radiation Processed Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree [Radiation Technology Development Section, Bhabha Atomic Research Centre, Mumbai (India)

    2009-07-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  1. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  2. 3rd International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  3. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  4. Studies and Development of Radiation Processed Nanomaterials

    International Nuclear Information System (INIS)

    Varshney, Lalit; Sabharwal, Sunil; Francis, Sanju; Biswal, Jayashree

    2009-01-01

    Nanotechnology is the emerging technology that deals with processing, manipulating and manufacturing devices and products at the microscopic scale of molecules or atoms with structures smaller than 100 nanometers. Realizing its potential, Government of India spending on R&D in nanotechnology has gone up by an order of magnitude in last 5 years through various national and international programs. High energy gamma radiation and electron beams could be a useful tool to create innovative and newer nano-materials for various applications in medical field for treatment and detection purposes. Considering its certain advantage for producing nano-materials, radiation technology will play a crucial role in development of such materials. Research and development in the area of nano--particles on polymer films, hydrogels, silica particles and their nano-clusters using radiation technology could be a possible route for development of new functional nano-materials. (author)

  5. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  6. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  7. Luminescence and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blasse, G; Bleijenberg, K C; Powell, R C

    1980-01-01

    This paper deals with the luminescence of uranate centres in solids. The luminescence properties are influenced by the coordination number of the hexavalent uranium ion and by the crystallographic surroundings of the uranate centre. Transitions playing a role in the luminescence processes within the octahedral UO/sub 6//sup 6 -/ group are discussed using the results from both theoretical and experimental studies on another octahedral uranium complex: UF/sub 6/. The luminescence of the octahedral uranate group in oxidic compounds is discussed. Attention is paid to the vibrational structure, which is observed in the luminescence spectra at low temperatures and to the temperature quenching of the luminescence. The temperature quenching of the uranate luminescence in uranium-doped tungstates with ordered perovskite structure can be described in terms of a three state single configurational coordinate diagram. The complicated luminescence spectra of uranium-activated sodium fluoride (NaF-U) crystals have been unraveled using chemical variation of the crystal compositions and using site selective laser excitation techniques. Four different luminescent uranate centres have been observed in NaF-U. A model for the configurations of the luminescent centres has been deduced using the results from ionic conductivity experiments.

  8. Luminescence studies on Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses for WLED applications

    Science.gov (United States)

    Vijayakumar, M.; Uma, V.; Arunkumar, S.; Marimuthu, K.

    2015-06-01

    Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses have been prepared and optically characterized using absorption, luminescence and decay measurements. The Nephelauxetic ratios (β), Bonding parameters (δ) and Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were calculated to study the nature of the environment around the RE3+ ions in the prepared glasses. The yellow to blue (Y/B) intensity ratio and the chromaticity color coordinates were calculated from the luminescence measurements. The lifetimes of the 4F9/2 excited level were measured using decay curves and is found to decrease in the Dy3+:Eu3+ co-doped glass due to the occurrence of resonant energy transfer between Dy3+-Eu3+ ions and the non-exponential decay rates have been fitted with Inokuti-Hirayama (IH) model. The decay curves are well fitted for S= 6 suggesting that the interaction between active ions for the energy transfer is of dipole-dipole nature.

  9. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    Science.gov (United States)

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  10. NanoRisk - A Conceptual Decision Support Tool for Nanomaterials

    DEFF Research Database (Denmark)

    Hansen, Steffen Foss; Baun, Anders; Alstrup Jensen, K.

    2011-01-01

    Only a few risk assessment methodologies and approaches are useful for assessing the risk for professional end-users, consumers and the environment. We have developed a generic framework (NanoRiskCat) that can be used by companies and risk assessors to categorize nanomaterials considering existing...... environmental, health and safety information and known uncertainties. In NanoRiskCat’s simplest form, the final evaluation outcome for a specific nanomaterial in a given application will be communicated in the form of a short title (e.g. TiO2 in sunscreen) describing the use of the nanomaterial. This short...... to the exposure and hazard potential are green , yellow corresponding to none, possible, expected and unknown, respectively. The exposure potential was evaluated based on 1) the location of the nanomaterial and 2) a judgment of the potential of nanomaterial exposure based on the description and explanation...

  11. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  12. Biological interactions of carbon-based nanomaterials: From coronation to degradation.

    Science.gov (United States)

    Bhattacharya, Kunal; Mukherjee, Sourav P; Gallud, Audrey; Burkert, Seth C; Bistarelli, Silvia; Bellucci, Stefano; Bottini, Massimo; Star, Alexander; Fadeel, Bengt

    2016-02-01

    Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The extended Beer-Lambert theory for ray tracing modeling of LED chip-scaled packaging application with multiple luminescence materials

    Science.gov (United States)

    Yuan, Cadmus C. A.

    2015-12-01

    Optical ray tracing modeling applied Beer-Lambert method in the single luminescence material system to model the white light pattern from blue LED light source. This paper extends such algorithm to a mixed multiple luminescence material system by introducing the equivalent excitation and emission spectrum of individual luminescence materials. The quantum efficiency numbers of individual material and self-absorption of the multiple luminescence material system are considered as well. By this combination, researchers are able to model the luminescence characteristics of LED chip-scaled packaging (CSP), which provides simple process steps and the freedom of the luminescence material geometrical dimension. The method will be first validated by the experimental results. Afterward, a further parametric investigation has been then conducted.

  14. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  15. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  16. Roles of Direct and Indirect Light-Induced Transformations of Carbon Nanomaterials in Exposures in Aquatic Systems

    Science.gov (United States)

    Carbon nanomaterials (CNMs) such as fullerenes, carbon nanotubes and graphene-based nanomaterials have a variety of useful characteristics such as extraordinary electron and heat conducting abilities, optical absorption and mechanical properties, and potential applications in tra...

  17. Application of a DNA-based luminescence switch-on method for the detection of mercury(II) ions in water samples from Hong Kong

    Science.gov (United States)

    He, Hong-Zhang; Leung, Ka-Ho; Fu, Wai-Chung; Shiu-Hin Chan, Daniel; Leung, Chung-Hang; Ma, Dik-Lung

    2012-12-01

    Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.

  18. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging

    Directory of Open Access Journals (Sweden)

    Veeranarayanan S

    2012-07-01

    Full Text Available Srivani Veeranarayanan, Aby Cheruvathoor Poulose, M Sheikh Mohamed, Yutaka Nagaoka, Seiki Iwai, Yuya Nakagame, Shosaku Kashiwada, Yasuhiko Yoshida, Toru Maekawa, D Sakthi KumarBio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, JapanAbstract: This paper presents the synthesis of aqueous cadmium sulfide (CdS quantum dots (QDs and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials' high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such

  19. NaKnowBaseTM: The EPA Nanomaterials Research Database

    Science.gov (United States)

    The ability to predict the environmental and health implications of engineered nanomaterials is an important research priority due to the exponential rate at which nanotechnology is being incorporated into consumer, industrial and biomedical applications. To address this need and...

  20. Characterization of Carbon Onion Nanomaterials for Environmental Remediation

    Science.gov (United States)

    The unique properties of carbonaceous nanomaterials, including small particle size, high surface area, and manipulatable surface chemistry, provide high potential for their application to environmental remediation. While research has devoted to develop nanotechnology for environm...

  1. Thermo-luminescent dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Reither, M; Schorn, B; Schneider, E

    1981-01-01

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber. The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field.

  2. Persistent luminescence nanothermometers

    Science.gov (United States)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  3. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    Science.gov (United States)

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  4. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  5. Nanomaterials for Electronics and Optoelectronics

    Science.gov (United States)

    Koehne, Jessica E.; Meyyappan, M.

    2011-01-01

    Nanomaterials such as carbon nanotubes(CNTs), graphene, and inorganic nanowires(INWs) have shown interesting electronic, mechanical, optical, thermal, and other properties and therefore have been pursued for a variety of applications by the nanotechnology community ranging from electronics to nanocomposites. While the first two are carbon-based materials, the INWs in the literature include silicon, germanium, III-V, II-VI, a variety of oxides, nitrides, antimonides and others. In this talk, first an overview of growth of these three classes of materials by CVD and PECVD will be presented along with results from characterization. Then applications in development of chemical sensors, biosensors, energy storage devices and novel memory architectures will be discussed.

  6. Luminescence at the end of the tunnelling - Investigating charge transfer mechanisms and luminescence dating methods for feldspar minerals

    NARCIS (Netherlands)

    Kars, R.H.

    2014-01-01

    This thesis comprises analyses of mineral physics with an application in geology and archeology. The thesis contributes to the development of feldspar luminescence dating methods in order to extend the applicable age range of feldspar luminescence dating in the Quaternary (last 2.6 Ma). The research

  7. LCA as an environmental technology development performance indicator of engineered nano-materials and their application in polymers

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Olsen, Stig Irving; Hauschild, Michael Zwicky

    Engineered nano‐material (ENM) application in products has in recent years developed to an important market segment but with rising environmental concerns, as the environmental life cycle impacts, especially toxicity of nanoparticles, are not assessed. Life cycle assessment (LCA) is a holistic tool...... project is aimed to be holistic and thereby include the entire life cycle of the nano‐polymer products and not be like the current frequently applied nano‐material LCA case study approaches where the life cycle is reduced and system boundaries substantially limited. In order to perform accurate...

  8. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  9. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  10. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  11. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Zhenyu, E-mail: liaozy08@163.com [Tianjin Product Quality Inspection Technology Research Institute, The National Center of Supervision and Inspection for Quality of Food (China); Zhang, Ying [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China); Su, Lin [Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry and Ophthalmology (China); Chang, Jin; Wang, Hanjie, E-mail: wanghj@tju.edu.cn [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China)

    2017-02-15

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  12. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    International Nuclear Information System (INIS)

    Liao, Zhenyu; Zhang, Ying; Su, Lin; Chang, Jin; Wang, Hanjie

    2017-01-01

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe_3O_4 nanoparticles (Fe_3O_4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  13. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes.

    Science.gov (United States)

    Kim, Sungwoo; Kim, Taehoon; Kang, Meejae; Kwak, Seong Kwon; Yoo, Tae Wook; Park, Lee Soon; Yang, Ilseung; Hwang, Sunjin; Lee, Jung Eun; Kim, Seong Keun; Kim, Sang-Wook

    2012-02-29

    Highly stable and luminescent InP/GaP/ZnS QDs with a maximum quantum yield of 85% were synthesized by in situ method. The GaP shell rendered passivation of the surface and removed the traps. TCSPC data showed an evidence for the GaP shell. InP/GaP/ZnS QDs show better stability than InP/ZnS. We studied the optical properties of white QD-LEDs corresponding to various QD concentrations. Among various concentrations, the white QD-LEDs with 0.5 mL of QDs exhibited a luminous efficiency of 54.71 lm/W, Ra of 80.56, and CCT of 7864 K. © 2012 American Chemical Society

  14. Black Titanium Dioxide Nanomaterials in Photocatalysis

    Directory of Open Access Journals (Sweden)

    Xiaodong Yan

    2017-01-01

    Full Text Available Titanium dioxide (TiO2 nanomaterials are widely considered to be state-of-the-art photocatalysts for environmental protection and energy conversion. However, the low photocatalytic efficiency caused by large bandgap and rapid recombination of photo-excited electrons and holes is a challenging issue that needs to be settled for their practical applications. Structure engineering has been demonstrated to be a highly promising approach to engineer the optical and electronic properties of the existing materials or even endow them with unexpected properties. Surface structure engineering has witnessed the breakthrough in increasing the photocatalytic efficiency of TiO2 nanomaterials by creating a defect-rich or amorphous surface layer with black color and extension of optical absorption to the whole visible spectrum, along with markedly enhanced photocatalytic activities. In this review, the recent progress in the development of black TiO2 nanomaterials is reviewed to gain a better understanding of the structure-property relationship with the consideration of preparation methods and to project new insights into the future development of black TiO2 nanomaterials in photocatalytic applications.

  15. Safety Aspects of Bio-Based Nanomaterials.

    Science.gov (United States)

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  16. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  17. Safety Aspects of Bio-Based Nanomaterials

    Directory of Open Access Journals (Sweden)

    Julia Catalán

    2017-12-01

    Full Text Available Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi­cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  18. Layered rare-earth hydroxide (LRH, R = Tb, Y) composites with fluorescein: delamination, tunable luminescence and application in chemosensoring for detecting Fe(iii) ions.

    Science.gov (United States)

    Su, Feifei; Guo, Rong; Yu, Zihuan; Li, Jian; Liang, Zupei; Shi, Keren; Ma, Shulan; Sun, Genban; Li, Huifeng

    2018-04-17

    We demonstrate a novel example of tunable luminescence and the application of the delaminated FLN/OS-LRH composites (LRHs are layered rare-earth hydroxides, R = Tb, Y; FLN is the fluorescein named 2-(6-hydroxy-3-oxo-(3H)-xanthen-9-yl)benzoic acid; OS is the anionic surfactant 1-octane sulfonic acid sodium) in detecting Fe(iii) ions. The FLNxOS1-x species (x = 0.02, 0.05, 0.10, and 0.20) are intercalated into the LTbyY1-yH layers (y = 1, 0.9, 0.7, 0.5, 0.3, 0.1 and 0) by ion exchange reactions to yield the composites FLNxOS1-x-LTbyY1-yH. In the solid state, the LYH composites display green emission (564 nm) arising from the organic FLN, while in LTbH composites, the luminescence of the Tb3+ in the layers (545 nm) and the FLN in the interlayers is co-quenched. In the delaminated state in formamide (FM), FLNxOS1-x-LTbH composites display green to yellowish-green luminescence (540-574 nm) following the increasing FLN/OS ratio; while the FLN0.02OS0.98-LTbyY1-yH composites show green emission at ∼540 nm. The fluorescence lifetimes of the composites (4.22-4.63 ns) are comparable to the free FLN-Na, and the quantum yields (31.62-78.70%) of the composites especially that (78.70%) of the FLN0.02OS0.98-LYH are much higher than that (28.40%) of free FLN-Na. The recognition ability of the FLN0.02OS0.98-LYH composite for metal cations is researched. The delaminated FLN0.02OS0.98-LYH colloidal suspension exhibits high selectivity for Fe3+ over other ions (Mg2+, Al3+, Ni2+, Co2+, Cu2+, Zn2+, Mn2+, Pb2+, and Cd2+) with fluorescence quenching, which can work as a kind of turn-off fluorescence sensor for the detection of Fe3+. The detection limit of Fe3+ is determined to be 2.58 × 10-8 M and the quenching constant (Ksv) is 1.70 × 103 M-1. This is the first work on LRH materials working as a chemosensor for recognising metal cations. It provides a new approach for the design of LRH materials to be applied in fluorescence chemosensing.

  19. LCA as an environmental technology development performance indicator of engineered nano-materials and their application in polymers

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Olsen, Stig Irving; Hauschild, Michael Zwicky

    project is aimed to be holistic and thereby include the entire life cycle of the nano‐polymer products and not be like the current frequently applied nano‐material LCA case study approaches where the life cycle is reduced and system boundaries substantially limited. In order to perform accurate......Engineered nano‐material (ENM) application in products has in recent years developed to an important market segment but with rising environmental concerns, as the environmental life cycle impacts, especially toxicity of nanoparticles, are not assessed. Life cycle assessment (LCA) is a holistic tool...... to the conventional ways of attaining these in the polymer product industry. To assure environmental sustainability LCA will be performed within the MINANO project and more precisely comparing the new ENM technology and the conventional technology approach to attain the same functionalities. The LCA in the MINANO...

  20. An overview of nanomaterials applied for removing dyes from wastewater.

    Science.gov (United States)

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  1. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  2. Nanomaterials in the environment

    Science.gov (United States)

    Mrowiec, Bozena

    2017-11-01

    This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.

  3. Nanomaterials for fresh-keeping and sterilization in food preservation.

    Science.gov (United States)

    Liu, Dongfang; Gu, Ning

    2009-06-01

    Food sterilizing and antistaling technologies are very important to the public's health and safety and have been attracting more and more attentions. In the past several years, new development chance was created by the introduction of nanomaterials to this critical field. Nanomaterials possess lots of outstanding properties, such as unique quantum size effect, large surface area and catalytic properties, which jointly facilitate high effective fresh-keeping, and thus were considered as promising materials in food sterilization and antistale. This review article focuses on the patented applications of nanomaterials as food biocidal agents, bacteriostatic agents, catalysts and carriers for antistaling agents.

  4. Nanomaterials environmental risks and recycling: Actual issues

    Directory of Open Access Journals (Sweden)

    Živković Dragana

    2014-01-01

    Full Text Available Nanotechnologies are being spoken of as the driving force behind a new industrial revolution. Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. The size of nanoparticles allows them to interact strongly with biological structures, so they present potential human and environmental health risk. Nanometer size presents also a problem for separation, recovery, and reuse of the particulate matter. Therefore, industrial-scale manufacturing and use of nanomaterials could have strong impact on human health and the environment or the problematic of nanomaterials recycling. The catch-all term ''nanotechnology' is not sufficiently precise for risk governance and risk management purposes. The estimation of possible risks depends on a consideration of the life cycle of the material being produced, which involves understanding the processes and materials used in manufacture, the likely interactions between the product and individuals or the environment during its manufacture and useful life, and the methods used in its eventual disposal. From a risk-control point of view it will be necessary to systematically identify those critical issues, which should be looked at in more detail. Brief review of actual trends in nanomaterials environmental risks and recycling is given in this paper.

  5. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    Science.gov (United States)

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  6. Review of present trends in luminescence research

    International Nuclear Information System (INIS)

    Williams, F.; Delaware Univ., Newark

    1981-01-01

    The difficulties of a comprehensive review of the broad and diverse branches of molecular and solid-state luminescence research are noted. This review is thus limited to selective topics. Some general concepts and trends are then introduced, including: luminescence excitation as a collective excitation of a many-body problem, encompassing in some cases the source and probe in its formulation; continuing trends towards extremal conditions of experiments and towards inhomogeneous and structured materials, from man-made superlattices to biological materials; and increased attention to applications of luminescence research to lamps, displays, solar devices and biological research. Representative recent and new specific research areas include: site selection spectroscopy and 'hole burning'; picosecond delayed coherent anti-Stokes Raman scattering; computer simulation of dynamical processes in luminescence; electron-hole expansion from the Fermi pressure of e-h plasmas; and hot electron phenomena and hot luminescence. Finally some pending problems in luminescence research, such as reconciling the configuration coordinate model and the electronic band theory and clarifying multi-phonon non-radiative processes, are discussed. (orig.)

  7. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  8. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  9. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  10. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    Science.gov (United States)

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Artful and multifaceted applications of carbon dot in biomedicine.

    Science.gov (United States)

    Jaleel, Jumana Abdul; Pramod, K

    2018-01-10

    Carbon dots (C-dots) are luminescent carbon nanomaterial having good biocompatibility and low toxicity. The characteristic fluorescence emission property of C-dots establishes their role in optical imaging. C-dots which are superior to fluorescent dyes and semiconductor quantum dots act as a safer in vivo imaging probe. Apart from their bioimaging application, other applications in biomedicine such as drug delivery, cancer therapy, and gene delivery were studied. In this review, we present multifaceted applications of C-dots along with their synthesis, surface passivation, doping, and toxicity profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Center for Functional Nanomaterials (CFN)

    Data.gov (United States)

    Federal Laboratory Consortium — The CFN at Brookhaven National Laboratory focuses on understanding the chemical and physical response of nanomaterials to make functional materials such as sensors,...

  13. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mishra, Varun [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Swart, H.C., E-mail: swarthc.sci@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2010-01-01

    Green luminescence and degradation of Ce{sup 3+} doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 {mu}A electron beam in an O{sub 2} environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 {+-} 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce{sup 3+} nanocrystalline phosphors during electron bombardment in an O{sub 2} environment. The effect of different oxygen pressures ranging from 1 x 10{sup -8} to 1 x 10{sup -6} Torr on the CL intensity was also investigated. A CaSO{sub 4} layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10{sup -6} Torr oxygen pressure after an electron dose of 50 C/cm{sup 2}. The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  14. Electron beam induced green luminescence and degradation study of CaS:Ce nanocrystalline phosphors for FED applications

    International Nuclear Information System (INIS)

    Kumar, Vinay; Mishra, Varun; Biggs, M.M.; Nagpure, I.M.; Ntwaeaborwa, O.M.; Terblans, J.J.; Swart, H.C.

    2010-01-01

    Green luminescence and degradation of Ce 3+ doped CaS nanocrystalline phosphors were studied with a 2 keV, 10 μA electron beam in an O 2 environment. The nanophosphors were synthesized by the co-precipitation method. The samples were characterized using X-ray diffraction, Transmission electron microscopy, Scanning electron microscopy/electron dispersive X-ray spectroscopy and Photoluminescence (PL) spectroscopy. Cubic CaS with an average particle size of 42 ± 2 nm was obtained. PL emission was observed at 507 nm and a shoulder at 560 nm with an excitation wavelength of 460 nm. Auger electron spectroscopy and Cathodoluminescence (CL) were used to monitor the changes in the surface composition of the CaS:Ce 3+ nanocrystalline phosphors during electron bombardment in an O 2 environment. The effect of different oxygen pressures ranging from 1 x 10 -8 to 1 x 10 -6 Torr on the CL intensity was also investigated. A CaSO 4 layer was observed on the surface after the electron beam degradation. The CL intensity was found to decrease up to 30% of its original intensity at 1 x 10 -6 Torr oxygen pressure after an electron dose of 50 C/cm 2 . The formation of oxygen defects during electron bombardment may also be responsible for the decrease in CL intensity.

  15. Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample

    International Nuclear Information System (INIS)

    Denby, P.M.; Botter-Jensen, L.; Murray, A.S.; Thomsen, K.J.; Moska, P.

    2006-01-01

    It is known that the pulsed optically stimulated luminescence (OSL) characteristics of quartz and feldspars are very different. These differences can be used to preferentially discriminate against the feldspar signal in mixed quartz-bar feldspar mineral assemblages, or in separated quartz contaminated with a feldspar signal. We have developed instrumentation for the study of high-speed pulse stimulated OSL. Our system uses the standard blue/IR LED stimulation unit of a Riso reader (allowing stimulation pulses down to 1-2μs duration) and can thus be applied to the routine analysis of samples. Using this stimulation source, and high-speed photon timing, the OSL yield can be monitored throughout the pulsing cycle and subsequent OSL decay. It is found that the total photon yield per unit stimulation power in pulsed mode is, for quartz, twice and, for feldspar, nearly four times, that in continuous wave mode. Observation of this OSL signal, between stimulation pulses, is seen to be characteristic of the mineral being examined, and has been used to preferentially discriminate against feldspar contamination in a mixed quartz/feldspar sample. Simple implementation of this technique by gating the counting period, so that counts are only accumulated during a windowed period, reduces the feldspar signal to 1.6% of its original value relative to that of the quartz

  16. High-energy X-ray detection using organic luminescent materials: a novel application for radiation therapy

    International Nuclear Information System (INIS)

    Schimitberger, Thiago; Ferreira, Giovana Ribeiro; Silva, Mariana de Melo; Saraiva, M.F.; Bianchi, Rodrigo Fernando

    2010-01-01

    In this work, it is presented the characterization and fabrication of a novel ionizing radiation sensor for high energy X-ray (6 MeV). It is used organic luminescent materials usually applied in light-emitting and nanostructure device, but still few explored in radiation dosimetry. Organic solutions of tris(8-hydroxyquinolinato) aluminum - Alq_3 and poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] - MEH-PPV were prepared to better study the impact of spectral overlap between the Alq_3 emission and MEH-PPV absorption. It is observed a blue-shift on the photoluminescence of the MEH-PPV/Alq_3 solution system from red-orange (λ_m_a_x = 598 nm) to green (λ_m_a_x = 545 nm) when the radiation dose changes from 0 to 100 Gy. This effect is attributed to the photooxidation process of MEH-PPV and was employed to design dose accumulation sensors in order to represent easily the radiation dose for cancer treatment. (author)

  17. Metal-enhanced luminescence: Current trend and future perspectives- A review

    International Nuclear Information System (INIS)

    Ranjan, Rajeev; Esimbekova, Elena N.; Kirillova, Maria A.; Kratasyuk, Valentina A.

    2017-01-01

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  18. Metal-enhanced luminescence: Current trend and future perspectives- A review

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Rajeev [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Esimbekova, Elena N., E-mail: esimbekova@yandex.ru [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation); Kirillova, Maria A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Kratasyuk, Valentina A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation)

    2017-06-08

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  19. Carbon Nanomaterials in Biological Studies and Biomedicine.

    Science.gov (United States)

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Methods of producing luminescent images

    International Nuclear Information System (INIS)

    Broadhead, P.; Newman, G.A.

    1977-01-01

    A method is described for producing a luminescent image in a layer of a binding material in which is dispersed a thermoluminescent material. The layer is heated uniformly to a temperature of 80 to 300 0 C and is exposed to luminescence inducing radiation whilst so heated. The preferred exposing radiation is X-rays and preferably the thermoluminescent material is insensitive to electromagnetic radiation of wavelength longer than 300 mm. Information concerning preparation of the luminescent material is given in BP 1,347,672; this material has the advantage that at elevated temperatures it shows increased sensitivity compared with room temperature. At temperatures in the range 80 to 150 0 C the thermoluminescent material exhibits 'afterglow', allowing the image to persist for several seconds after the X-radiation has ceased, thus allowing the image to be retained for visual inspection in this temperature range. At higher temperatures, however, there is negligible 'afterglow'. The thermoluminescent layers so produced are particularly useful as fluoroscopic screens. The preferred method of heating the thermoluminescent material is described in BP 1,354,149. An example is given of the application of the method. (U.K.)

  1. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids

    Science.gov (United States)

    Brites, Carlos D. S.; Lima, Patrícia P.; Silva, Nuno J. O.; Millán, Angel; Amaral, Vitor S.; Palacio, Fernando; Carlos, Luís D.

    2013-07-01

    There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu3+ and Tb3+ chelates. The design of the hybrid host and chelate ligands permits the working of the nanothermometers in a nanofluid at 293-320 K with an emission quantum yield of 0.38 +/- 0.04, a maximum relative sensitivity of 1.5% K-1 at 293 K and a spatio-temporal resolution (constrained by the experimental setup) of 64 × 10-6 m/150 × 10-3 s (to move out of 0.4 K - the temperature uncertainty). The heat propagation velocity in the nanofluid, (2.2 +/- 0.1) × 10-3 m s-1, was determined at 294 K using the nanothermometers' Eu3+/Tb3+ steady-state spectra. There is no precedent of such an experimental measurement in a thermographic nanofluid, where the propagation velocity is measured from the same nanoparticles used to measure the temperature.There is an increasing demand for accurate, non-invasive and self-reference temperature measurements as technology progresses into the nanoscale. This is particularly so in micro- and nanofluidics where the comprehension of heat transfer and thermal conductivity mechanisms can play a crucial role in areas as diverse as energy transfer and cell physiology. Here we present two luminescent ratiometric nanothermometers based on a magnetic core coated with an organosilica shell co-doped with Eu3+ and Tb3+ chelates. The design of the hybrid host and chelate ligands permits the working of the nanothermometers in a nanofluid at 293-320 K with an emission quantum yield of 0.38 +/- 0.04, a maximum relative sensitivity of 1.5% K-1 at 293 K and a spatio

  2. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    OpenAIRE

    Saleem, Amin M.; Desmaris, Vincent; Enoksson, Peter

    2016-01-01

    Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor) due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million), can give energy density higher than parallel plate capacitor and power ...

  3. Biosensors based on nanomaterials and nanodevices

    CERN Document Server

    Li, Jun

    2013-01-01

    Biosensors Based on Nanomaterials and Nanodevices links interdisciplinary research from leading experts to provide graduate students, academics, researchers, and industry professionals alike with a comprehensive source for key advancements and future trends in nanostructured biosensor development. It describes the concepts, principles, materials, device fabrications, functions, system integrations, and applications of various types of biosensors based on signal transduction mechanisms, including fluorescence, photonic crystal, surface-enhanced Raman scattering, electrochemistry, electro-lumine

  4. Carbon Nanomaterials for Road Construction

    Directory of Open Access Journals (Sweden)

    Zaporotskova Irina Vladimirovna

    2015-05-01

    Full Text Available The requirement of developing and modernizing the roads in Russia and in the Volgograd region in particular, is based on need of expanding the directions of scientific research on road and transport complexes. They have to be aimed at the development of the theory of transport streams, traffic safety increase, and, first of all, at the application of original methods of road development and modernization, introduction of modern technologies and road-building materials.On the basis of the analysis of the plans for transportation sphere development in the Volgograd region assuming the need to apply the new technologies allowing to create qualitative paving, the authors propose the technology of creating a heavy-duty paving with the use of carbon nanomaterial. The knowledge on strengthening the characteristics of carbon nanotubes is a unique material for nanotechnology development which allowed to assume the analysis of general information about asphalt concrete. The analysis showed that carbon nanotubes can be used for improvement of operational characteristics of asphalt concrete, and it is possible to carry out additives of nanotubes in hot as well as in cold bitumen. The article contains the basic principles of creation of the new road material received by means of bitumen reinforcing by carbon nanotubes. The structures received by the offered technique binding on the basis of the bitumens modified by carbon nanomaterial can be used for coverings and bases on highways of all categories in all road and climatic zones of Russia. The technical result consists in increasing the durability and elasticity of the received asphalt covering, and also the increase of water resistance, heat resistance and frost resistance, the expansion of temperature range of its laying in the field of negative temperatures.

  5. Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Guillén, G. García [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); Universidad Autónoma de Nuevo León-CIIDIT, Apodaca, Nuevo León, México (Mexico); Palma, M. I. Mendivil [Centro de Investigación en Materiales Avanzados (CIMAV), Unidad Monterrey, PIIT, Apodaca, Nuevo León, México (Mexico); Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León 66455, México (Mexico); and others

    2017-05-31

    Highlights: • Highlights • TiO{sub 2} nanomaterials were prepared by PLALM. • Characterized these nanomaterials using TEM, XPS, XRD, optical and luminescence measurements. • Morphology of these nanomaterials were dependent on ablation wavelength, fluence and post-irradiation time. • Laser post irradiation modified the size, morphology and structure of these TiO{sub 2} nanomaterials. - Abstract: Nanomaterials of titanium oxide were prepared by pulsed laser ablation of a titanium metal target in distilled water. The ablation was performed at different laser energy (fluence) using a nanosecond pulsed Nd:YAG laser output of 1064 and 532 nm. A post-irradiation of titanium oxide nanocolloids obtained by ablation using 532 nm was carried out to explore its effects on the structure and properties. Analysis of morphology, crystalline phase, elemental composition, chemical state, optical and luminescent properties were performed using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), UV–-vis absorption spectroscopy and room temperature photoluminescence spectroscopy. It was found that titanium oxide nanomaterial morphologies and optical properties were determined by ablation wavelength and fluence. Further, nanocolloids prepared by 532 nm ablation showed a crystalline phase change by laser post-irradiation. The results showed that pulsed laser ablation in liquid as well as post-irradiation were effective in modifying the final structure and properties of titanium oxide nanocolloids.

  6. Effects of ablation energy and post-irradiation on the structure and properties of titanium dioxide nanomaterials

    International Nuclear Information System (INIS)

    Guillén, G. García; Shaji, S.; Palma, M. I. Mendivil; Avellaneda, D.; Castillo, G.A.; Roy, T.K. Das

    2017-01-01

    Highlights: • Highlights • TiO_2 nanomaterials were prepared by PLALM. • Characterized these nanomaterials using TEM, XPS, XRD, optical and luminescence measurements. • Morphology of these nanomaterials were dependent on ablation wavelength, fluence and post-irradiation time. • Laser post irradiation modified the size, morphology and structure of these TiO_2 nanomaterials. - Abstract: Nanomaterials of titanium oxide were prepared by pulsed laser ablation of a titanium metal target in distilled water. The ablation was performed at different laser energy (fluence) using a nanosecond pulsed Nd:YAG laser output of 1064 and 532 nm. A post-irradiation of titanium oxide nanocolloids obtained by ablation using 532 nm was carried out to explore its effects on the structure and properties. Analysis of morphology, crystalline phase, elemental composition, chemical state, optical and luminescent properties were performed using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), UV–-vis absorption spectroscopy and room temperature photoluminescence spectroscopy. It was found that titanium oxide nanomaterial morphologies and optical properties were determined by ablation wavelength and fluence. Further, nanocolloids prepared by 532 nm ablation showed a crystalline phase change by laser post-irradiation. The results showed that pulsed laser ablation in liquid as well as post-irradiation were effective in modifying the final structure and properties of titanium oxide nanocolloids.

  7. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  8. Nanomaterials and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar BASU

    2011-11-01

    Full Text Available Nanomaterials and nanosensors are two most important iconic words of the modern science & Technology. Though nano technology is relatively a new area of research & development it will soon be included in the most modern electronic circuitry used for advanced computing systems. Since it will provide the potential link between the nanotechnology and the macroscopic world the development is primarily directed towards exploitation of nanotechnology to computer chip miniaturization and vast storage capacity. However, for implementation in the consumer products the present high cost of production must be overcome. There are different ways to make nanosensors e.g. top-down lithography, bottom-up assembly, and self molecular assembly. Consequently, nanomaterials & nanosensors have to be made compatible with the consumer technologies. The progress in detecting and sensing different chemical species with increased accuracy may transform the human society from uncertainty and inaccuracy to more precise and definite world of information. For example, extremely low concentrations of air pollutants or toxic materials in air & water around us can be accurately and economically detected in no time to save the human beings from the serious illnesses. Also, the medical sensors will help in diagnoses of the diseases, their treatment and in predicting the future profile of the individual so that the health insurance companies may exploit the opportunity to grant or to deny the health coverage. Other social issues like privacy invasion and security may be best monitored by the widespread use of the surveillance devices using nanosensors.

  9. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  10. Nanomaterials in the field of design ergonomics: present status.

    Science.gov (United States)

    Chowdhury, Anirban; Sanjog, J; Reddy, Swathi Matta; Karmakar, Sougata

    2012-01-01

    Application of nanotechnology and nanomaterials is not new in the field of design, but a recent trend of extensive use of nanomaterials in product and/or workplace design is drawing attention of design researchers all over the world. In the present paper, an attempt has been made to describe the diverse use of nanomaterials in product and workplace design with special emphasis on ergonomics (occupational health and safety; thermo-regulation and work efficiency, cognitive interface design; maintenance of workplace, etc.) to popularise the new discipline 'nanoergonomics' among designers, design users and design researchers. Nanoergonomics for sustainable product and workplace design by minimising occupational health risks has been felt by the authors to be an emerging research area in coming years. Use of nanomaterials in the field of design ergonomics is less explored till date. In the present review, an attempt has been made to extend general awareness among ergonomists/designers about applications of nanomaterials/nanotechnology in the field of design ergonomics and about health implications of nanomaterials during their use.

  11. A carbon fiber-ZnS nanocomposite for dual application as an efficient cold cathode as well as a luminescent anode for display technology

    Science.gov (United States)

    Jha, Arunava; Sarkar, Sudipta Kumar; Sen, Dipayan; Chattopadhyay, K. K.

    2015-01-01

    In the current work we present a simple technique to develop a carbon nanofiber (CNF)/zinc sulfide (ZnS) composite material for excellent FED application. CNFs and ZnS microspheres were synthesized by following a simple thermal chemical vapor deposition and hydrothermal procedure, respectively. A rigorous chemical mixture of CNF and ZnS was prepared to produce the CNF-ZnS composite material. The cathodo-luminescence intensity of the composite improved immensely compared to pure ZnS, also the composite material showed better field emission than pure CNFs. For pure CNF the turn-on field was found to be 2.1 V μm-1 whereas for the CNF-ZnS composite it reduced to a value of 1.72 V μm-1. Altogether the composite happened to be an ideal element for both the anode and cathode of a FED system. Furthermore, simulation of our CNF-ZnS composite system using the finite element modeling method also ensured the betterment of field emission from CNF after surface attachment of ZnS nanoclusters.

  12. Synthesis and luminescence behavior of SrGd1.76Eu0.24O4 host for display and dosimetric applications

    Science.gov (United States)

    Singh, Jyoti; Manam, J.; Singh, Fouran

    2018-05-01

    Novel SrGd1.76Eu0.24O4 materials were synthesized by conventional high-temperature solid-state reaction method in air ambiance. The structural and luminescence properties of as-prepared phosphors were explored by XRD, FESEM, TEM, PL and TL techniques. The confirmation of orthorhombic phase formation was obtained by XRD studies. The agglomerated ginger-like morphology of as-synthesized SrGd1.76Eu0.24O4 samples was unfolded by FESEM and TEM studies. Upon 276 and 395 nm UV excitation, SrGd1.76Eu0.24O4 phosphors showed intense red emission. The TL glow curve of SrGd1.76Eu0.24O4 irradiated with γ-rays exhibits two well-resolved peaks at 393 K and 598 K having a shoulder at 537 K. Linearity in a wide dose range 500 Gy-3 kGy are observed in the as-formed SrGd1.76Eu0.24O4 samples. Intense red emission, linear dose response and high reproducibility of SrGd1.76Eu0.24O4 samples broadly indicated its suitability for display and TL dosimetry applications.

  13. Luminescent properties of Tb3+- doped TeO2-WO3-GeO2 glasses for green laser applications

    Science.gov (United States)

    Subrahmanyam, T.; Rama Gopal, K.; Padma Suvarna, R.; Jamalaiah, B. C.; Vijaya Kumar, M. V.

    2018-06-01

    Different concentrations of Tb3+ -doped oxyfluoro tellurite (TWGTb) glasses were prepared by conventional melt quenching technique and characterized for green laser applications. The Judd-Ofelt theory was applied to evaluate various spectroscopic and radiative parameters. The TWGTb glasses exhibit 5D3 → 7F5-3 and 5D4 → 7F6-0 transitions when excited at 316 nm radiation. The variation of intensity of 5D4 → 7F5 (Green) and 5D3 → 7F4 (Blue) transitions and the green to blue (IG/IB) intensity ratios were studied as a function of Tb3+ ions concentration. The laser characteristic parameters such as effective bandwidth (Δλeff), stimulated emission cross-section (σe), gain bandwidth (σe × Δλeff) and optical gain (σe × τR) were determined using the three phenomenological Judd-Ofelt intensity parameters. The fluorescence decay profiles of 5D4 metastable level exhibit single-exponential nature for all the samples. Based on the experimental results we suggest that the 1.0 mol% of Tb3+ -doped TWGTb glass could be a suitable laser host material to emit intense green luminescence at 545 nm.

  14. Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units.

    Science.gov (United States)

    Li, Yilin; Li, Zhipeng; Ablekim, Tursunjan; Ren, Tianhui; Dong, Wen-Ji

    2014-12-21

    A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.

  15. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  16. Learning from nature: binary cooperative complementary nanomaterials.

    Science.gov (United States)

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  18. Toxicology of Nanomaterials: Permanent interactive learning

    Directory of Open Access Journals (Sweden)

    Castranova Vince

    2009-10-01

    Full Text Available Abstract Particle and Fibre Toxicology wants to play a decisive role in a time where particle research is challenged and driven by the developments and applications of nanomaterials. This aim is not merely quantitative in publishing a given number of papers on nanomaterials, but also qualitatively since the field of nanotoxicology is rapidly emerging and benchmarks for good science are needed. Since then a number of things have happened that merit further analysis. The interactive learning issue is best shown by report and communications on the toxicology of multi-wall carbon nanotubes (CNT. A special workshop on the CNT has now been organized twice in Nagano (Japan and this editorial contains a summary of the most important outcomes. Finally, we take the opportunity discuss some recent reports from the nanotech literature, and more specifically a Chinese study that claims severe consequences of nanoparticle exposure.

  19. Electrochromism: basis and application of nanomaterials in development of high performance electrodes; Eletrocromismo: fundamentos e a aplicacao de nanomateriais no desenvolvimento de eletrodos de alto desempenho

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilha, Ronaldo C.; Rocha, Igor; Vichessi, Raquel B.; Lucht, Emili; Naidek, Karine; Winnischofer, Herbert; Vidotti, Marcio [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Quimica

    2014-07-01

    This review deals with the basis and novel trends in electrochromism, describing the basic aspects and methodologies employed for the construction and analyses of different modified electrodes. The work presents the classic materials used for the construction of electrochromic electrodes, such as WO{sub 3} and a view on the basic concepts of chromaticity as a useful approach for analyzing colorimetric results. The report also addresses how the incorporation of nanomaterials and the consequent novel modification of electrodes have furthered this area of science, producing electrochromic electrodes with high performance, high efficiency and low response times. (author)

  20. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  1. Luminescent polymethyl methacrylate modified by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Guilherme F. [Faculdade de Tecnologia de Sao Paulo (FATEC-ZL), Sao Paulo, SP (Brazil); Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C{sub 2}F{sub 4}) in closed reactor for 48 hours. A second part was reacted with C{sub 2}F{sub 4} after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  2. Luminescent polymethyl methacrylate modified by gamma radiation

    International Nuclear Information System (INIS)

    Morais, Guilherme F.; Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F.

    2011-01-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C 2 F 4 ) in closed reactor for 48 hours. A second part was reacted with C 2 F 4 after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  3. Plasma processing of nanomaterials

    CERN Document Server

    Sankaran, R Mohan

    2014-01-01

    CRC Press author R. Mohan Sankaran is the winner of the 2011 Peter Mark Memorial Award "… for the development of a tandem plasma synthesis method to grow carbon nanotubes with unprecedented control over the nanotube properties and chirality." -2011 AVS Awards Committee"Readers who want to learn about how nanomaterials are processed, using the most recent methods, will benefit greatly from this book. It contains very recent technical details on plasma processing and synthesis methods used by current researchers developing new nano-based materials, with all the major plasma-based processing techniques used today being thoroughly discussed."-John J. Shea, IEEE Electrical Insulation Magazine, May/June 2013, Vol. 29, No. 3.

  4. Nanomaterials: a challenge for toxicological risk assessment?

    Science.gov (United States)

    Haase, Andrea; Tentschert, Jutta; Luch, Andreas

    2012-01-01

    Nanotechnology has emerged as one of the central technologies in the twenty-first century. This judgment becomes apparent by considering the increasing numbers of people employed in this area; the numbers of patents, of scientific publications, of products on the market; and the amounts of money invested in R&D. Prospects originating from different fields of nanoapplication seem unlimited. However, nanotechnology certainly will not be able to meet all of the ambitious expectations communicated, yet has high potential to heavily affect our daily life in the years to come. This might occur in particular in the field of consumer products, for example, by introducing nanomaterials in cosmetics, textiles, or food contact materials. Another promising area is the application of nanotechnology in medicine fueling hopes to significantly improve diagnosis and treatment of all kinds of diseases. In addition, novel technologies applying nanomaterials are expected to be instrumental in waste remediation and in the production of efficient energy storage devices and thus may help to overcome world's energy problems or to revolutionize computer and data storage technologies. In this chapter, we will focus on nanomaterials. After a brief historic and general overview, current proposals of how to define nanomaterials will be summarized. Due to general limitations, there is still no single, internationally accepted definition of the term "nanomaterial." After elaborating on the status quo and the scope of nanoanalytics and its shortcomings, the current thinking about possible hazards resulting from nanoparticulate exposures, there will be an emphasis on the requirements to be fulfilled for appropriate health risk assessment and regulation of nanomaterials. With regard to reliable risk assessments, until now there is still the remaining issue to be resolved of whether or not specific challenges and unique features exist on the nanoscale that have to be tackled and distinctively

  5. Environmental effects of engineered nanomaterials

    DEFF Research Database (Denmark)

    Lützhøft, Hans-Christian Holten; Hartmann, Nanna B.; Brinch, Anna

    This report presents ecotoxicological data and Predicted No-Effect Concentrations (PNECs) for nine selected nanomaterials which are considered to be environmentally relevant due to high usage or how they are used. These data will together with data from other reports/projects be used in an overall...... assessment of the environmental risk of nanomaterials in Denmark. The nine investigated nanomaterials are: Titanium Dioxide, Zinc Oxide, Silver, Carbon Nanotubes, Copper Oxide, Nano Zero Valent Iron, Cerium Dioxide, Quantum Dots and Carbon Black. To support the assessment of the data found in the peer...

  6. Process for obtaining luminescent glass layers

    International Nuclear Information System (INIS)

    Heindi, R.; Robert, A.

    1984-01-01

    Process for obtaining luminescent glass layers, application to the production of devices provided with said layers and to the construction of photoscintillators. The process comprises projecting onto a support, by cathodic sputtering, the material of at least one target, each target including silica and at least one chemical compound able to give luminescent centers, such as a cerium oxide, so as to form at least one luminescent glass layer of the said support. The layer or layers formed preferably undergo a heat treatment such as annealing in order to increase the luminous efficiency thereof. It is in this way possible to form a scintillating glass layer on the previously frosted entrance window of a photomultiplier in order to obtain an integrated photoscintillator

  7. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    Science.gov (United States)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  8. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    Science.gov (United States)

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  9. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.

    Science.gov (United States)

    Vilardi, Giorgio; Mpouras, Thanasis; Dermatas, Dimitris; Verdone, Nicola; Polydera, Angeliki; Di Palma, Luca

    2018-06-01

    Carbon Nanotubes (CNTs) and nano Zero-Valent Iron (nZVI) particles, as well as two nanocomposites based on these novel nanomaterials, were employed as nano-adsorbents for the removal of hexavalent chromium, selenium and cobalt, from aqueous solutions. Nanomaterials characterization included the determination of their point of zero charge and particle size distribution. CNTs were further analyzed using scanning electron microscopy, thermogravimetric analysis and Raman spectroscopy to determine their morphology and structural properties. Batch experiments were carried out to investigate the removal efficiency and the possible competitive interactions among metal ions. Adsorption was found to be the main removal mechanism, except for Cr(VI) treatment by nZVI, where reduction was the predominant mechanism. The removal efficiency was estimated in decreasing order as CNTs-nZVI > nZVI > CNTs > CNTs-nZVI* independently upon the tested heavy metal. In the case of competitive adsorption, Cr(VI) exhibited the highest affinity for every adsorbent. The preferable Cr(VI) removal was also observed using binary systems of the tested metals by means of the CNTs-nZVI nanocomposite. Single species adsorption was better described by the non-linear Sips model, whilst competitive adsorption followed the modified Langmuir model. The CNTs-nZVI nanocomposite was tested for its reusability, and showed high adsorption efficiency (the q max values decreased less than 50% with respect to the first use) even after three cycles of use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  11. Nanomaterials for practical functional uses

    International Nuclear Information System (INIS)

    Lines, M.G.

    2008-01-01

    The term nanotechnology, which enjoys wide public use, is a concept that covers a wide range of developments in the field of nanoscale electronic components, along with its decades-old application in nanocarbon-black particles or silicates manufactured using the sol-gel process. When we refer to nanotechnology today, the term is limited to dealing with particles or assemblies whose dimensions range in size from a few nanometres up to around 100 nm. Intensive development work is now being carried out in new fields in many industrial and university research facilities, with the help of nanoscale particles or subassemblies. Along with the already familiar items, this applications-oriented research has covered such new developments as carbon nanotubes or electronic circuits. All materials are composed of grains, which consist of many atoms. Grains of conventional materials vary in size from tens of microns to one or more millimetres. Nanomaterials are no longer merely a laboratory curiosity and have now reached the stage of commercialization being lead by activity, often government supported, in the USA, UK, Japan, Singapore, Malaysia, Taiwan, Korea, Germany and in recent years China and Australia. This is the opening of a whole new science in some respects, and the usefulness to our everyday lives will become increasingly apparent. The potential of nanominerals, as just one sector of nanomaterials technology have some very real and useful outcomes: ·Production of materials and products with new properties. ·Contribution to solutions of environmental problems. ·Improvement of existing technologies and development of new applications. ·Optimisation of primary conditions for practical applications. These materials are revolutionizing the functionality of material systems. Due to the materials very small size, they have some remarkable, and in some cases, novel properties. Significant enhancement of optical, mechanical, electrical, structural and magnetic properties

  12. One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints

    Science.gov (United States)

    Li, Feng; Li, Hongren; Cui, Tianfang

    2017-11-01

    Fluorescent carbon-based nanomaterials(CNs) with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. Despite the successes in preparing strongly fluorescent CNs, preserving the luminescence in solid materials is still challenging because of the serious emission quenching of CNs in solid state materials. In this work, fluorescent carbon and silica nanohybrids (SiCNHs) were synthesized via a simple one-step hydrothermal approach by carbonizing sodium citrate and (3-aminopropyl)triethoxysilane(APTES), and hydrolysis of tetraethyl orthosilicate(TEOS). The resultant SiCNs were characterized through X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The SiCNs exhibited strong fluorescence in both aqueous and solid states. The luminescent solid state SiCNs power were successfully used as a fluorescent labeling material for enhanced imaging of latent fingerprints(LFPs) on single background colour and multi-coloured surfaces substrates in forensic science for individual identification.

  13. Optical Properties of Hybrid Nanomaterials

    Indian Academy of Sciences (India)

    owner

    K. George Thomas. Photosciences & Photonics Group. National Institute for Interdisciplinary. Science and Technology (NIIST), CSIR,. Trivandrum- 695 019, INDIA. (kgt@vsnl.com). Optical Properties of Hybrid. Nanomaterials ...

  14. Environmental Risk Assessment of Nanomaterials

    Science.gov (United States)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  15. Carbon nanomaterials in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Pu Chun Ke [Laboratory of Single-Molecule Biophysics and Polymer Physics, Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Qiao Rui [Department of Mechanical Engineering, Clemson University, Clemson, SC 29634 (United States)

    2007-09-19

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  16. Carbon nanomaterials in biological systems

    International Nuclear Information System (INIS)

    Pu Chun Ke; Qiao Rui

    2007-01-01

    This paper intends to reflect, from the biophysical viewpoint, our current understanding on interfacing nanomaterials, such as carbon nanotubes and fullerenes, with biological systems. Strategies for improving the solubility, and therefore, the bioavailability of nanomaterials in aqueous solutions are summarized. In particular, the underlining mechanisms of attaching biomacromolecules (DNA, RNA, proteins) and lysophospholipids onto carbon nanotubes and gallic acids onto fullerenes are analyzed. The diffusion and the cellular delivery of RNA-coated carbon nanotubes are characterized using fluorescence microscopy. The translocation of fullerenes across cell membranes is simulated using molecular dynamics to offer new insight into the complex issue of nanotoxicity. To assess the fate of nanomaterials in the environment, the biomodification of lipid-coated carbon nanotubes by the aquatic organism Daphnia magna is discussed. The aim of this paper is to illuminate the need for adopting multidisciplinary approaches in the field study of nanomaterials in biological systems and in the environment. (topical review)

  17. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3

  18. Plasma nanofabrication and nanomaterials safety

    International Nuclear Information System (INIS)

    Han, Z J; Levchenko, I; Kumar, S; Yajadda, M M A; Yick, S; Seo, D H; Martin, P J; Ostrikov, K; Peel, S; Kuncic, Z

    2011-01-01

    The fast advances in nanotechnology have raised increasing concerns related to the safety of nanomaterials when exposed to humans, animals and the environment. However, despite several years of research, the nanomaterials safety field is still in its infancy owing to the complexities of structural and surface properties of these nanomaterials and organism-specific responses to them. Recently, plasma-based technology has been demonstrated as a versatile and effective way for nanofabrication, yet its health and environment-benign nature has not been widely recognized. Here we address the environmental and occupational health and safety effects of various zero- and one-dimensional nanomaterials and elaborate the advantages of using plasmas as a safe nanofabrication tool. These advantages include but are not limited to the production of substrate-bound nanomaterials, the isolation of humans from harmful nanomaterials, and the effective reforming of toxic and flammable gases. It is concluded that plasma nanofabrication can minimize the hazards in the workplace and represents a safe way for future nanofabrication technologies.

  19. Nanomaterials for In Vivo Imaging.

    Science.gov (United States)

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce c