WorldWideScience

Sample records for luminescent lanthanide nanoparticles

  1. Luminescence and host lattice structure of crystalline micro and nanoparticles co-doped with lanthanide ions

    International Nuclear Information System (INIS)

    Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte

    2012-01-01

    This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)

  2. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  3. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  4. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  5. Synthesis and characterization of lanthanide-based luminescent nanoparticles: toward new bio-labels

    International Nuclear Information System (INIS)

    Lechevallier, Severine

    2010-01-01

    This work deals with the development of luminescent nanoparticles (NPs) suitable as bio-labels. Inorganic NPs have been synthesized, in which luminescent ion (Eu 3+ in most of cases) is substituting ions of the oxide host matrix. NPs of Ln(OH)CO 3 :Eu 3+ (Ln = Y or Gd), Ln 2 O 3 :Eu 3+ , Ln 2 O 2 S:Eu 3+ and SiO 2 :Eu 3+ have been characterized by the way of TGA, WAXS-XRD, TEM, IR and photoluminescence (PL) techniques. The controlled precipitation using urea as precipitating agent is the way chosen and optimized to obtain spherical and monodispersed in size (150±15 nm) NPs. These particles of amorphous lanthanide hydroxycarbonate can directly be used as luminescent bio-labels or after their conversion in oxide or oxi-sulfide. For the silica particles, the synthesis by aerosol pyrolysis has been used. The obtained particles are spherical with a main diameter of 350 nm. In a second step, the surface of the inorganic NPs has been modified, in order to graft amino-reactive functions. Several modification ways have been explored: with APTES (aminopropyltriethoxysilane), with TEOS (tetra-ethoxysilane) and then APTES, or with a TEOS/APTES mixture. The same characterizations techniques have been applied to the modified particles, and chemical analysis, solid state NMR and XPS. DLS and ζ-potential of the NPs dispersed in water have also been measured. These analyses have been completed by the evaluation of the number of accessible amine functions by coupling with FITC (fluorescein isothiocyanate). The direct modification of oxides (Y 2 O 3 or Gd 2 O 3 ) with APTES is the best way, and an homogenous layer of 1 nm with a high number of accessible amine can be graft. Finally, to move toward luminescent bio-labelling in biological medium, the luminescence of the NPs has been observed and analyzed using: - A spectro-fluorimeter, after their dispersion in water; - A fluorescence microscope, on glass slides, under broad band excitation; - A confocal microscope, under laser

  6. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    Science.gov (United States)

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  7. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  8. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  9. Luminescent lanthanide reporters: new concepts for use in bioanalytical applications

    International Nuclear Information System (INIS)

    Vuojola, Johanna; Soukka, Tero

    2014-01-01

    Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and a large surface area for biomolecule immobilization. Lanthanide-based reporters, when properly shielded from the quenching effects of water, usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling time-gated luminescence detection. Because of these properties, lanthanide-based reporters have found widespread applications in various fields of life. This review focuses on the field of bioanalytical applications. Luminescent lanthanide reporters and assay formats utilizing these reporters pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications. (topical review)

  10. Lanthanide-doped luminescent ionogels

    OpenAIRE

    Lunstroot, Kyra; Driesen, Kris; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Görller-Walrand, Christiane; Binnemans, Koen; Bellayer, Séverine; Viau, Lydie; Le Bideau, Jean; Vioux, André

    2009-01-01

    Ionogels are solid oxide host networks confining at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving anthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C6mim][Ln(tta)4], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choli...

  11. Lanthanide-doped nanoparticles as the active optical medium in polymer-based devices

    NARCIS (Netherlands)

    Stouwdam, J.W.

    2004-01-01

    The luminescence of lanthanide ions in organic environment is greatly reduced compared to inorganic materials. This thesis describes the doping of the lanthanide ions in the core of inorganic nanoparticles that are soluble in organic solvents as a way to shield the lanthanide ions from the organic

  12. Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped fluorides (LaF3:Ce3+, Gd3+, Eu3+), obtained in the presence of different surfactants

    International Nuclear Information System (INIS)

    Runowski, Marcin; Lis, Stefan

    2014-01-01

    Highlights: • Synthesis of nanocrystalline lanthanide fluorides doped with Eu 3+ ions. • Inorganic nanomaterials exhibiting bright red luminescence. • Luminescence enhancement by energy transfer (ET) from Ce 3+ → Gd 3+ to Eu 3+ ions. • Decreased agglomeration and morphology control using organic modifiers/surfactants. • Absolute and relative quantum yield (QY) comparison. - Abstract: A series of nanomaterials composed of LaF 3 :Ce 3+ 10%, Gd 3+ 30%, Eu 3+ 1% was synthesized via a facile co-precipitation approach. The reaction between appropriate lanthanide (Ln 3+ ) and fluoride ions resulted in the formation of crystalline, Ln 3+ doped fluorides and was performed in the presence of a series of organic modifiers, acting as surfactants and anti-agglomeration agents. Modifiers such as polyacrylic acid (PAA), ethylenediaminetetraacetic acid (EDTA), citric acid and oleylamine most significantly influenced the morphology and spectroscopic properties of the products. The product obtained in the presence of PAA was composed of the smallest nanoparticles (ca. 5–6 nm), with narrow size/shape distribution. All fluorides synthesized exhibited intensive, bright red luminescence under UV irradiation (λ ex ≈ 250 nm), because of the presence of Eu 3+ ions in their structure. The efficient intensity of luminescence was a result of indirect excitation, via energy transfer (ET) phenomena occurring in the system (Ce 3+ → Gd 3+ → Eu 3+ ). The structure and morphology of the obtained nanomaterials were established by powder X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) measurements. Optical properties of the obtained compounds were studied and discussed on the basis of excitation emission spectra and luminescence decay curves. On the basis of the performed measurements, luminescence quantum yield (absolute and relative) and radiative lifetimes were calculated and analyzed. FT-IR spectroscopy was applied to examine the presence of molecules of

  13. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain.

    Science.gov (United States)

    Huang, Pengcheng; Wu, Fangying; Mao, Lanqun

    2015-07-07

    Copper ions (Cu(2+)) in the central nervous system play a crucial role in the physiological and pathological events, so simple, selective, and sensitive detection of cerebral Cu(2+) is of great importance. In this work, we report a facile yet effective fluorescent method for sensing of Cu(2+) in rat brain using one kind of lanthanide coordination polymer nanoparticle, adenosine monophosphate (AMP) and terbium ion (Tb(3+)), i.e., AMP-Tb, as the sensing platform. Initially, a cofactor ligand, 5-sulfosalicylic acid (SSA), as the sensitizer, was introduced into the nonluminescent AMP-Tb suspension, resulting in switching on the luminescence of AMP-Tb by the removal of coordinating water molecules and concomitant energy transfer from SSA to Tb(3+). The subsequent addition of Cu(2+) into the resulting SSA/AMP-Tb can strongly quench the fluorescence because the specific coordination interaction between SSA and Cu(2+) rendered energy transfer from SSA to Tb(3+) inefficient. The decrease ratio of the fluorescence intensities of SSA/AMP-Tb at 550 nm show a linear relationship for Cu(2+) within the concentration range from 1.5 to 24 μM with a detection limit of 300 nM. The method demonstrated here is highly selective and is free from the interference of metal ions, amino acids, and the biological species commonly existing in the brain such as dopamine, lactate, and glucose. Eventually, by combining the microdialysis technique, the present method has been successfully applied in the detection of cerebral Cu(2+) in rat brain with the basal dialysate level of 1.91 ± 0.40 μM (n = 3). This method is very promising to be used for investigating the physiological and pathological events that cerebral Cu(2+) participates in.

  14. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    Science.gov (United States)

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Buckley, Heather L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arnold, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  16. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  17. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  18. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  19. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  20. Assembly and luminescence properties of lanthanide-polyoxometalates/polyethyleneimine/SiO{sub 2} particles with core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: junwang924@yahoo.com.cn; Fan, Shaohua; Zhao, Weiqian; Zhang, Hongyan

    2013-01-01

    In this paper, two lanthanide-polyoxometalate (LnW{sub 10}) complexes were bonded on the surface of the polyethyleneimine (PEI)-modified silica nanoparticles with different sizes, resulting in the formation of LnW{sub 10}/PEI/SiO{sub 2} particles. The hybrid core–shell particles were characterized by infrared, luminescent spectra, scanning electronic microscope, and transmission electronic microscope. The particles obtained exhibit the fine spherical core–shell structure and the excellent luminescence properties. The luminescence spectra studies revealed that the formation of LnW{sub 10}/PEI/SiO{sub 2} particles and the size of particle have an influence on the luminescence properties of lanthanide ions. - Highlights: ► SiO{sub 2}/polyethyleneimine (PEI) shows the chemisorption for Ln-polyoxometalates (LnW{sub 10}). ► The core-shell LnW{sub 10}/PEI/SiO{sub 2} nanoparticles with different sizes were fabricated. ► The hybrid particles exhibit the excellent luminescence properties. ► The sizes of particles affect the luminescence properties of lanthanide ions.

  1. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates

    International Nuclear Information System (INIS)

    Puntus, L.N.; Zolin, V.F.; Babushkina, T.A.; Kutuza, I.B.

    2004-01-01

    The luminescence and PMR spectra of europium salts of six isomers of 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-pyridinedicarboxylic acids (PDA) had been studied. The distribution of the effective charge in the nearest surroundings of the Eu 3+ ion in these salts was evaluated from Stark splittings of electronic transitions. The values of relative integral intensities of electronic transitions 5 D 0 - 7 F J (J=0-4) in the luminescence spectra were reported. Compounds investigated were divided into three subgroups taking into account the details of the structure of the ligands and details of the luminescence spectra. The ligand coordination manners as well as the strength of interaction between lanthanide ion and ligands were confirmed by data of the PMR and IR spectroscopy

  2. Paper-based biodetection using luminescent nanoparticles.

    Science.gov (United States)

    Ju, Qiang; Noor, M Omair; Krull, Ulrich J

    2016-05-10

    Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer

  3. Ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy

    CERN Document Server

    Lee, Gang Ho

    2014-01-01

    Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be

  4. Highly Luminescent, Water-Soluble Lanthanide Fluorobenzoates: Syntheses, Structures and Photophysics, Part I: Lanthanide Pentafluorobenzoates.

    Science.gov (United States)

    Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Ananyev, Ivan V; Eremenko, Igor L; Volz, Daniel; Rönicke, Franziska; Schepers, Ute; Van Deun, Rik; Trigub, Alexander L; Zubavichus, Yan V; Kuzmina, Natalia P; Bräse, Stefan

    2015-12-01

    Highly luminescent, photostable, and soluble lanthanide pentafluorobenzoates have been synthesized and thoroughly characterized, with a focus on Eu(III) and Tb(III) complexes as visible emitters and Nd(III) , Er(III) , and Yb(III) complexes as infrared emitters. Investigation of the crystal structures of the complexes in powder form and as single crystals by using X-ray diffraction revealed five different structural types, including monomeric, dimeric, and polymeric. The local structure in different solutions was studied by using X-ray absorption spectroscopy. The photoluminescence quantum yields (PLQYs) of terbium and europium complexes were 39 and 15 %, respectively; the latter value was increased almost twice by using the heterometallic complex [Tb0.5 Eu0.5 (pfb)3 (H2 O)] (Hpfb=pentafluorobenzoic acid). Due to the effectively utilized sensitization strategy (pfb)(-) →Tb→Eu, a pure europium luminescence with a PLQY of 29 % was achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Refractive Index Tuning of Hybrid Materials for Highly Transmissive Luminescent Lanthanide Particle-Polymer Composites.

    Science.gov (United States)

    Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James

    2018-03-14

    High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.

  6. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan; Samuel, Amanda; Raymond, Kenneth

    2008-09-25

    Ligand-sensitized luminescent lanthanide(III) complexes are of considerable current interest due to their unique photophysical properties (micro- to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts), which make them well suited to serve as labels in fluorescence-based bioassays. The long-lived Ln(III) emission can be temporally resolved from scattered light and background fluorescence, resulting in vastly enhanced measurement sensitivity. One of the challenges in this field is the design of sensitizing ligands that provide highly emissive Ln(III) complexes that also possess sufficient stability and aqueous solubility required for practical applications. In this account we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time Resolved Fluorescence (HTRF) technology, the requirements and current use of which will be briefly discussed. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms as well as using multi-chromophore chelates to increase molar absorptivity compared to earlier examples that utilize a single pendant antenna chromophore. We have found that ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ca. 60%. Solution thermodynamic studies have indicated that these complexes are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM-chromophore, in conjunction with time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of

  7. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  8. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  9. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Gessner, Andre

    2010-12-01

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5 D 0 - 7 F 0 -transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are

  10. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    Directory of Open Access Journals (Sweden)

    Samantha Russell

    2015-11-01

    Full Text Available In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+ were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Several lanthanides-based MOF meeting these criteria were prepared according to different approaches, and they were further used as catalysts for the polymerization of isoprene. Stereoregular cis-polyisoprene was received, which in some cases exhibited luminescent properties in the UV-visible range.

  11. Lanthanide-Doped Ceria Nanoparticles as Backside Coaters to Improve Silicon Solar Cell Efficiency.

    Science.gov (United States)

    Hajjiah, Ali; Samir, Effat; Shehata, Nader; Salah, Mohamed

    2018-05-23

    This paper introduces lanthanide-doped ceria nanoparticles as silicon solar cell back-side coaters, showing their influence on the solar cell efficiency. Ceria nanoparticles can be synthesized to have formed oxygen vacancies (O-vacancies), which are associated with converting cerium ions from the Ce 4+ state ions to the Ce 3+ ones. These O-vacancies follow the rule of improving silicon solar cell conductivity through a hopping mechanism. Besides, under near-ultra violet (near-UV) excitation, the reduced trivalent cerium Ce 3+ ions are directly responsible for down converting the un-absorbed UV wavelengths to a resultant green photo-luminescence emission at ~520 nm, which is absorbed through the silicon solar cell’s active layer. Adding lanthanide elements such as Neodymium “Nd” as ceria nanoparticle dopants helps in forming extra oxygen vacancies (O-vacancies), followed by an increase in the number of Ce 4+ to Ce 3+ ion reductions, thus enhancing the conductivity and photoluminescence down conversion mechanisms. After introducing lanthanide-doped ceria nanoparticles on a silicon solar cell surface, a promising enhancement in the behavior of the solar cell current-voltage curve is observed, and the efficiency is improved by about 25% of its initial value due to the mutual impact of improving both electric conductivity and optical conversions.

  12. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  14. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  15. Luminescent hybrid materials functionalized with lanthanide ethylenodiaminotetraacetate complexes containing β-diketonate as antenna ligands

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Franklin P.; Costa, Israel F.; Espínola, José Geraldo P.; Faustino, Wagner M.; Moura, Jandeilson L. [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Brito, Hermi F.; Paolini, Tiago B. [Departamento de Química Fundamental-Instituto de Química da Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Felinto, Maria Cláudia F.C. [Instituto de Pesquisas energéticas e Nucleares-IPEN, 05508-900 São Paulo, SP (Brazil); Teotonio, Ercules E.S., E-mail: teotonioees@quimica.ufpb.br [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-02-15

    Three organic–inorganic hybrid materials based on silica gel functionalized with (3-aminopropyl)trimethoxysilane (APTS), [3-(2-aminoetilamino)-propil]-trimetoxissilano (DAPTS) and 3-[2-(2-aminoetilamino)etilamino] propiltrimetoxysilane (TAPTS) and subsequently modified with EDTA derivative were prepared by nonhomogeneous route and were then characterized. The resulting materials named SilXN-EDTA (X=1 for APTS, 2 for DAPTS and 3 for TAPTS) were used to obtain new lanthanide Ln{sup 3+}-β-diketonate (Ln{sup 3+}=Eu{sup 3+}, Gd{sup 3+} and Tb{sup 3+}) complexes covalently linked to the functionalized silica gel surfaces (named SilXN-EDTALn-dik, dik=tta, dbm, bzac and acac). The photophysical properties of the new luminescent materials were investigated and compared with those with similar system presenting water molecules coordinated to the lanthanide ions, SilXN-EDTALn-H{sub 2}O. The SilXN-EDTAEu-dik and SilXN-EDTATb-dik systems displayed characteristic red and green luminescence when excited by UV radiation. Furthermore, the quantitative results showed that the emission quantum efficiency (η), experimental intensity parameters Ω{sub 2} and Ω{sub 4}, and Einstein's emission coefficient (A{sub 0J}) of the SilXN-EDTAEu-dik materials were largely dependent on the ligands. Based on the luminescence data, the most efficient intramolecular energy transfer processes were found to the SilXN-EDTAEu-dik (dik: tta and dbm) and SilXN-EDTATb-acac materials, which exhibited more pure emission colors. These materials are promising red and green phosphors, respectively. - Highlights: • New highly luminescent hybrid materials containing lanthanide-EDTA complexes. • The effect of three silylanting agent on the adsorption and luminescent properties has been studied. • The luminescence sensitizing by different β-diketonate ligands have been investigated.

  16. Synthesis, characterization and luminescent properties of lanthanide complexes with an unsymmetrical tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yan Zhenzhong [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Tang Yu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)], E-mail: tangyu@lzu.edu.cn; Liu Weisheng; Tan Minyu [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2008-09-15

    Solid complexes of lanthanide nitrates with a new unsymmetrical tripodal ligand, bis[(2'-benzylaminoformyl)phenoxyl)ethyl](ethyl)amine (L) have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Sm(III), Eu(III), Tb(III) and Dy(III) nitrate complexes in solid state were also investigated. Under the excitation of UV light, these complexes exhibited characteristic emission of central metal ions.

  17. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    Science.gov (United States)

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cooperative loading of multisite receptors with lanthanide containers: an approach for organized luminescent metallopolymers.

    Science.gov (United States)

    Babel, Lucille; Guénée, Laure; Besnard, Céline; Eliseeva, Svetlana V; Petoud, Stéphane; Piguet, Claude

    2018-01-14

    Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems L k are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters: (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta - ) are selected for balancing the charge of the trivalent lanthanide cations, Ln 3+ , in six-coordinate [Ln(pbta) 3 ] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions twice as large as thermal energy at room temperature ( RT = 2.5 kJ mol -1 ). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

  19. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Directory of Open Access Journals (Sweden)

    Aleksandra Delplanque

    Full Text Available Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio probes in Förster Resonance Energy Transfer (FRET where trivalent lanthanide ions (La3+ act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5 modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+ and the acceptor (Cy5 with sensitivity at a nanometre scale.

  20. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Science.gov (United States)

    Delplanque, Aleksandra; Wawrzynczyk, Dominika; Jaworski, Pawel; Matczyszyn, Katarzyna; Pawlik, Krzysztof; Buckle, Malcolm; Nyk, Marcin; Nogues, Claude; Samoc, Marek

    2015-01-01

    Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio) probes in Förster Resonance Energy Transfer (FRET) where trivalent lanthanide ions (La3+) act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm) NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA) by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5) modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+) and the acceptor (Cy5) with sensitivity at a nanometre scale.

  1. Encapsulation-Stabilized, Europium Containing Nanoparticle as a Probe for Time-Resolved luminescence Detection of Cardiac Troponin I

    Directory of Open Access Journals (Sweden)

    Ka Ram Kim

    2017-10-01

    Full Text Available The use of a robust optical signaling probe with a high signal-to-noise ratio is important in the development of immunoassays. Lanthanide chelates are a promising material for this purpose, which provide time-resolved luminescence (TRL due to their large Stokes shift and long luminescence lifetime. From this, they have attracted considerable interest in the in vitro diagnostics field. However, the direct use of lanthanide chelates is limited because their luminescent signal can be easily affected by various quenchers. To overcome this drawback, strategies that rely on the entrapment of lanthanide chelates inside nanoparticles, thereby enabling the protection of the lanthanide chelate from water, have been reported. However, the poor stability of the lanthanide-entrapped nanoparticles results in a significant fluctuation in TRL signal intensity, and this still remains a challenging issue. To address this, we have developed a Lanthanide chelate-Encapsulated Silica Nano Particle (LESNP as a new immunosensing probe. In this approach, the lanthanide chelate is covalently crosslinked within the silane monomer during the silica nanoparticle formation. The resulting LESNP is physically stable and retains TRL properties of the parent lanthanide chelate. Using the probe, a highly sensitive, sandwich-based TRL immunoassay for the cardiac troponin I was conducted, exhibiting a limit of detection of 48 pg/mL. On the basis of the features of the LESNP such as TRL signaling capability, stability, and the ease of biofunctionalization, we expect that the LESNP can be widely applied in the development of TRL-based immunosensing.

  2. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  3. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    International Nuclear Information System (INIS)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln 2 (phen) 2 (SO 4 ) 3 (H 2 O) 2 ] n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)] n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO 4 2− anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic–inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature. - Graphical abstract: Lanthanide sulfates and lanthanide sulfonate-carboxylates have been hydrothermally synthesized. Interestingly, sulfate anions, 2-sulfobenzoate and benzoate ligands came from the in situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. - Highlights: • In situ oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. • The organic–inorganic hybrid lanthanide sulfates with one-dimensional column-like structure. • The dinuclear lanthanide sulfonate-carboxylates. • The emission spectra exhibit the characteristic transition of 5 D 0 → 7 F J (J=0–4) of the Eu(III)

  4. Polymetallic lanthanide (III) complexes for the design of new luminescent materials

    International Nuclear Information System (INIS)

    Marchal, C.

    2008-09-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecular chemistry and allows the combination of their nano-scopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecular lanthanide complexes quite challenging. In order to better understand the factors determining the assembly of lanthanide-based polymetallic arrays, we designed two different types of organic ligands, which favor, in one case, formation of infinite polymetallic complexes (coordination polymers), and in the case the assembly of discrete polymetallic architectures. Thus, we show that the use of flexible and multi-dentate picolinate-derivative ligands enables the formation of infinite and luminescent infinite frameworks which display very interesting luminescent properties. Geometry of the ligand has a great influence on the final network architecture. Particularly, implementation of four picolinate units within a tetrapodal ligand results in the controlled assembly of 1-D coordination polymers. Conversely to favor the controlled assembly of discrete polymetallic arrays we use dissymmetric ligands which displays low denticity. Complexation studies of a tridentate 8- hydroxyquinoline-derivative ligand as well as a tetradentate ligand possessing an oxazoline ring are presented. (author)

  5. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  6. Highly Luminescent Lanthanide Complexes of 1 Hydroxy-2-pyridinones

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence National Laboratory; Raymond, Kenneth; Moore, Evan G.; Xu, Jide; Jocher, Christoph J.; Castro-Rodriguez, Ingrid; Raymond, Kenneth N.

    2007-11-01

    The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III) and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission ({Phi}{sub tot}{sup Eu} {approx} 21.5%) with high stability (pEu {approx} 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure, and were found to agree with corresponding TD-DFT calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure.

  7. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  8. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    International Nuclear Information System (INIS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox) 0.5 (H 2 O)] n ·2n(H 2 O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H 2 sfpip)(ox)(H 2 O) 4 ] n ·2n(H 2 O) (Ln=Nd (8) Sm (9)), [H 2 ox=oxalic acid, H 3 sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H 3 sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox 2− anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  9. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  10. Responsive hybrid inorganic-organic system derived from lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Jiang, Lasheng; Yang, Jinglian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China)

    2016-05-15

    Highlights: • A novel covalent hybrid material was used to detect hemoglobin. • All the recognition experiments were performed in buffer solution. • Porous nano-structures was extensively studied for the recognition. - Abstract: Terbium ions were incorporated into new organic-inorganic matrices to achieve intense green emissions. Hemoglobin (HB) interactions lead to dramatic changes in the luminescence emission intensities. Infrared spectra, morphological studies and photoluminescence give information for the speciation and process of hemoglobin additions. The porous material has a large specific surface area of 351 cm{sup 2}/g and the detection limit for HB (0.7 μM) was much lower than its physical doped material (8 μM). This promising hybrid material will lead to the design of versatile optical probes that are efficiently responding to the external targets.

  11. Luminescent hybrid lanthanide sulfates and lanthanide sulfonate-carboxylates with 1,10-phenanthroline involving in-situ oxidation of 2-mercaptonbenzoic acid

    Science.gov (United States)

    Zhong, Jie-Cen; Wan, Fang; Sun, Yan-Qiong; Chen, Yi-Ping

    2015-01-01

    A series of lanthanide sulfates and lanthanide sulfonate-carboxylates, [Ln2(phen)2(SO4)3(H2O)2]n (I:Ln=Nd(1a), Sm(1b), Eu(1c), phen=1,10-phenanthroline) and [Ln(phen)(2-SBA)(BZA)]n (II: Ln=Sm(2a), Eu(2b), Dy(2c), 2-SBA=2-sulfobenzoate, BZA=benzoate) have been hydrothermally synthesized from lanthanide oxide, 2-mercaptonbenzoic acid with phen as auxiliary ligand and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra, TG analyses and luminescence spectroscopy. Interestingly, SO4 2 - anions in I came from the in situ deep oxidation of thiol groups of 2-mercaptonbenzoic acid while 2-sulfobenzoate and benzoate ligands in II from the middle oxidation and desulfuration reactions of 2-mercaptonbenzoic acid. Compounds I are organic-inorganic hybrid lanthanide sulfates, which have rare one-dimensional column-like structures. Complexes II are binuclear lanthanide sulfonate-carboxylates with 2-sulfobenzoate and benzoate as bridges and 1,10-phenanthroline as terminal. Photoluminescence studies reveal that complexes I and II exhibit strong lanthanide characteristic emission bands in the solid state at room temperature.

  12. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    International Nuclear Information System (INIS)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; Lill, Daniel T. de

    2015-01-01

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C 6 H 2 O 5 )(C 6 H 3 O 5 )(H 2 O)] n (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted

  13. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  14. An optical authentication system based on imaging of excitation-selected lanthanide luminescence.

    Science.gov (United States)

    Carro-Temboury, Miguel R; Arppe, Riikka; Vosch, Tom; Sørensen, Thomas Just

    2018-01-01

    Secure data encryption relies heavily on one-way functions, and copy protection relies on features that are difficult to reproduce. We present an optical authentication system based on lanthanide luminescence from physical one-way functions or physical unclonable functions (PUFs). They cannot be reproduced and thus enable unbreakable encryption. Further, PUFs will prevent counterfeiting if tags with unique PUFs are grafted onto products. We have developed an authentication system that comprises a hardware reader, image analysis, and authentication software and physical keys that we demonstrate as an anticounterfeiting system. The physical keys are PUFs made from random patterns of taggants in polymer films on glass that can be imaged following selected excitation of particular lanthanide(III) ions doped into the individual taggants. This form of excitation-selected imaging ensures that by using at least two lanthanide(III) ion dopants, the random patterns cannot be copied, because the excitation selection will fail when using any other emitter. With the developed reader and software, the random patterns are read and digitized, which allows a digital pattern to be stored. This digital pattern or digital key can be used to authenticate the physical key in anticounterfeiting or to encrypt any message. The PUF key was produced with a staggering nominal encoding capacity of 7 3600 . Although the encoding capacity of the realized authentication system reduces to 6 × 10 104 , it is more than sufficient to completely preclude counterfeiting of products.

  15. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Science.gov (United States)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  16. Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors

    Science.gov (United States)

    Kumar, Deepak; Verma, Kartikey; Verma, Shefali; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    NaYF4 is regarded as the best upconversion (UC) matrix owing to its low phonon energy, more chemical stability, and a superior refractive index. This review reports on the various synthesis techniques of lanthanide-doped NaYF4 phosphors for UC application. The UC intensity depends on different properties of the matrix and those are discussed in detail. Plasmon-enhanced luminescence UC of the lanthanide-doped NaYF4 core-shells structure is discussed based on a literature survey. The present review provides the information about how the UC intensity can be enhanced. The idea about the UC is then deliberately used for versatile applications such as luminescent materials, display devices, biomedical imaging and different security appliances. In addition, the present review demonstrates the recent trends of NaYF4 UC materials in solar cell devices. The role of NaYF4 phosphor to eradicate the spectral variance among the incident solar spectrum, semiconductor as well as the sub-band gap nature of the semiconductor materials is also discussed in detail. Considering the fact that the research status on NaYF4 phosphor for photovoltaic application is now growing, the present review is therefore very important to the researchers. More importantly, this may promote more interesting research platforms to investigate the realistic use of UC nanophosphors as spectral converters for solar cells.

  17. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    International Nuclear Information System (INIS)

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-01

    A new tetrapodal ligand 1,1,1-tetrakis{[(2'-(2-furfurylaminoformyl))phenoxyl]methyl}methane (L) has been prepared and their coordination chemistry with Ln III ions has been investigated. The structure of {[Ln 4 L 3 (NO 3 ) 12 ].H 2 O} ∞ (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8 6 ) 3 (8 3 ) 4 notation. [DyL(NO 3 ) 3 (H 2 O) 2 ].0.5CH 3 OH and [ErL(NO 3 ) 3 (H 2 O) (CH 3 OH)].CH 3 COCH 3 is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H 2 O) 6 ].3ClO 4 .3H 2 O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu III complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  18. Luminescence studies on Sb3+ co-doped Y2Sn2O7: Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    Pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their good thermal stability. Due to the higher symmetry around the A and B cations in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. One way to circumvent this problem is to incorporate ions like Sb 3+ or Bi 3+ in the lattice so that the lattice get distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterisation of Sb 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles prepared by the hydrolysis of Y 3+ , Sn 4+ , Tb 3+ and Sb 3+ in ethylene glycol medium followed by heating at 700 deg C for 4 hours. From XRD studies it is confirmed that as prepared sample is amorphous and heat treatment at 700 deg C results in the formation of highly crystalline Y 2 Sn 2 O 7 phase having pyrochlore structure

  19. Photocytotoxic lanthanide complexes

    Indian Academy of Sciences (India)

    Among many applications of lanthanides, gadolinium complexes are used as magnetic resonance imaging (MRI) contrast agents in clinical radiology and luminescent lanthanides for bioanalysis, imaging and sensing. The chemistry of photoactive lanthanide complexes showing biological applications is of recent origin.

  20. The best and the brightest: exploiting tryptophan-sensitized Tb(3+) luminescence to engineer lanthanide-binding tags.

    Science.gov (United States)

    Martin, Langdon J; Imperiali, Barbara

    2015-01-01

    Consider the lanthanide metals, comprising lanthanum through lutetium. Lanthanides form stable cations with a +3 charge, and these ions exhibit a variety of useful physical properties (long-lifetime luminescence, paramagnetism, anomalous X-ray scattering) that are amenable to studies of biomolecules. The absence of lanthanide ions in living systems means that background signals are generally a nonissue; however, to exploit the advantageous properties it is necessary to engineer a robust lanthanide-binding sequence that can be appended to any macromolecules of interest. To this end, the luminescence produced by tryptophan-sensitized Tb(3+) has been used as a selection marker for peptide sequences that avidly chelate these ions. A combinatorial split-and-pool library that uses two orthogonal linkers-one that is cleaved for selection and one that is cleaved for sequencing and characterization-has been used to develop lanthanide-binding tags (LBTs): peptides of 15-20 amino acids with low-nM affinity for Tb(3+). Further validating the success of this screen, knowledge about LBTs has enabled the introduction of a lanthanide-binding loop in place of one of the four native calcium-binding loops within the protein calcineurin B.

  1. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  2. Lanthanide ions doped Y2Sn2O7 nano-particles: low temperature synthesis and photoluminescence study

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    During the past decade, pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their higher thermal stability. Up to now, conventional solid-state reaction is the most commonly used synthetic method for preparation, of rare-earth pyrochlore oxides. This synthesis route employs a solid-state reaction of metal-oxide with appropriate rare-earth oxides at high temperature (>1200 deg C) for a long time (several days). However, in present work, Y 2 Sn 2 O 7 nanoparticles co-doped with lanthanide ions Tb 3+ and Ce 3+ were prepared based on the urea hydrolysis of Y 3+ , Sn 4+ , and Ln 3+ in ethylene glycol medium at 150 deg C followed by heating at 500, 700 and 900 deg C

  3. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in- situ formed lanthanide complexes

    Science.gov (United States)

    Wang, Yige; Wang, Li; Li, Huanrong; Liu, Peng; Qin, Dashan; Liu, Binyuan; Zhang, Wenjun; Deng, Ruiping; Zhang, Hongjie

    2008-03-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data.

  4. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    Science.gov (United States)

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  5. Hybrid silica luminescent materials based on lanthanide-containing lyotropic liquid crystal with polarized emission

    Energy Technology Data Exchange (ETDEWEB)

    Selivanova, N.M., E-mail: natsel@mail.ru [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation); Vandyukov, A.E.; Gubaidullin, A.T. [A.E. Arbuzov Institute of Organic and Physical Chemistry of the Kazan Scientific Center of the Russian Academy of Sciences, 8 Acad. Arbuzov Str., Kazan 420088 (Russian Federation); Galyametdinov, Y.G. [Kazan National Research Technological University, 68 Karl Marx Str., Kazan 420015 (Russian Federation)

    2014-11-14

    This paper represents the template method for synthesis of hybrid silica films based on Ln-containing lyotropic liquid crystal and characterized by efficient luminescence. Luminescence films were prepared in situ by the sol–gel processes. Lyotropic liquid crystal (LLC) mesophases C{sub 12}H{sub 25}O(CH{sub 2}CH{sub 2}O){sub 10}H/Ln(NO{sub 3}){sub 3}·6H{sub 2}O/H{sub 2}O containing Ln (III) ions (Dy, Tb, Eu) were used as template. Polarized optical microscopy, X-ray powder diffraction, and FT-IR-spectroscopy were used for characterization of liquid crystal mesophases and hybrid films. The morphology of composite films was studied by the atomic force microscopy method (AFM). The optical properties of the resulting materials were evaluated. It was found that hybrid silica films demonstrate significant increase of their lifetime in comparison with an LLC system. New effects of linearly polarized emission revealed for Ln-containing hybrid silica films. Polarization in lanthanide-containing hybrid composites indicates that silica precursor causes orientation of emitting ions. - Highlights: • We suggest a new simple approach for creating luminescence hybrid silica films. • Ln-containing hybrid silica films demonstrate yellow, green and red emissions. • Tb(III)-containing hybrid film have a high lifetime. • We report effects of linearly polarized emission in hybrid film.

  6. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character

    International Nuclear Information System (INIS)

    Zhou Ruisha; Cui Xiaobing; Song Jiangfeng; Xu Xiaoyu; Xu Jiqing; Wang Tiegang

    2008-01-01

    A series of lanthanide coordination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4), H 2 ip=isophthalic acid, im=imidazole] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been synthesized and characterized by elemental analyses, infrared (IR), ultraviolet-visible-near infrared (UV-Vis-NIR) and single-crystal X-ray diffraction analyses. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 2 and 3 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 4 shows sensitized luminescence of Dy(III) ions in visible region. - Graphical abstract: A series of lanthanide coodination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4)] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been reported. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 displays a 2-D network making of two kinds of quadruple-helical chains. Display Omitted

  7. Synthesis, Characterization, Luminescence and Biological Activity of Two Lanthanide Complexes Involving Mixed Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deyun; Guo, Haifu; Qin, Liang [Zhaoqing Univ., Zhaoqing (China); Xu, Jun [Jinan Univ., Guangzhou (China)

    2013-09-15

    Two new isostructural dinuclear complexes, Ln{sub 2}(4-cpa){sub 6}(bpy){sub 2} (Ln = Eu (1); Tb (2), 4-cpa = 4-chlorophenyl-acetate, bpy = 2,2'-bipyridine), have been hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis (TGA), powder X-ray diffraction and single-crystal X-ray diffraction. The lanthanide ions are bridged by two bidentate and two terdentate carboxylate groups to give centrosymmetric dimers with Ln···Ln separations of 3.967(2) and 3.956(3) A, respectively. Each metal atom is nine-coordinate and exhibits a distorted tricapped trigonal prismatic geometry. Three-dimensional fluorescence spectra show that both 1 and 2 emit bright red and green luminescence at room temperature, with long lifetimes of up to 0.369 ms (at 614 nm) and 0.432 ms (at 543 nm), respectively. Moreover, poor luminescence efficiency has been noted for complex 2. The 4-Hcpa ligand and complexes 1-2 have been screened for their phytogrowth-inhibitory activities against Brassica napus L. and Echinochloa crusgalli L., and the results are compared with the activity of quizalofop-P-ethyl.

  8. Unclonable Security Codes Designed from Multicolor Luminescent Lanthanide-Doped Y2O3 Nanorods for Anticounterfeiting.

    Science.gov (United States)

    Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar

    2017-04-26

    The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.

  9. Detection scheme for bioassays based on 2,6-pyridinedicarboxylic acid derivatives and enzyme-amplified lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, Tanja [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Karst, Uwe [Department of Chemical Analysis, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)]. E-mail: u.karst@utwente.nl

    2004-11-15

    2,6-Pyridinedicarboxylic acid (PDC) and its derivatives are introduced as a new sensitizer system for enzyme-amplified lanthanide luminescence (EALL), a detection scheme for bioassays, which combines enzymatic amplification with time-resolved luminescence measurements of lanthanide chelates. Various PDC esters have been synthesized as esterase substrates that are cleaved to PDC in the presence of the enzyme. PDC forms luminescent complexes with Tb(III) or Eu(III), and the evaluation of the reaction is used for the selective and sensitive detection of esterases. For an esterase from hog liver a limit of detection of 10{sup -3} u/mL (equivalent to 10{sup -9} mol/L) and a limit of quantification of 3 x 10{sup -3} u/mL (equivalent to 3 x 10{sup -9} mol/L) could be achieved. As a second model reaction, xanthine oxidase (XOD) catalyzes the oxidation of 2,6-pyridinedicarboxaldehyde to PDC. Here, the limit of detection was 3 x 10{sup -3} u/mL and the limit of quantification 10{sup -2} u/mL for XOD from microorganisms. Major advantage of the tridentate PDC ligand is the possibility to perform all steps of the assay within or close to the physiological pH range, while the established EALL schemes based on bidentate salicylates or bisphenols have to be carried out at strongly alkaline pH to ensure sufficient complexation with the lanthanides.

  10. LUMINESCENCE DIAGNOSTICS OF TUMORS WITH UPCONVERSION NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    V. V. Rocheva

    2016-01-01

    Full Text Available Background: To improve quality of surgery in oncology, it is necessary to completely remove the tumor, including its metastases, to minimize injury to normal tissues and to reduce duration of an intervention. Modern methods of detection based on radiological computerized tomography and magnetic resonance imaging can identify a tumor after its volume has become big enough, i.e. it contains more than 10 billion cells. Therefore, an improvement of sensitivity and resolution ability of diagnostic tools to identify early stages of malignant neoplasms seems of utmost importance. Aim: To demonstrate the potential of a new class of anti-Stokes luminescence nanoparticles for deep optical imaging with high contrast of malignant tumors. Materials and methods: Upconversion nanoparticles with narrow dispersion and a  size of 70 to 80  nm, with a  core/shell structure of NaYF4:Yb3+:Tm3+/NaYF4 were used in the study. The nanoparticles have an intensive band of anti-Stokes photoluminescence at a wavelength of 800  nm under irradiation with a  wavelength of 975  nm (both wavelengths are within the transparency window for biological tissues. The conversion coefficient of the excitation radiation into the anti-Stokes luminescence was 9%. To increase the time during which nanoparticles can circulate in blood flow of small animals, the nanoparticles were covered by a  biocompatible amphiphilic polymer shell. As a  tumor model we used Lewis epidermoid carcinoma transfected to mice. Results: We were able to obtain stable water colloids of nanoparticles covered with amphiphilic polymer that could preserve their initial size at least for one month. The use of upconversion nanoparticles with a  hydrophilic shell made of intermittent maleic anhydride and octadecene co-polymer with subsequent coating with diglycidyl polyethylene glycol ether allowed for reduction of non-specific reaction of nanoparticles with plasma proteins. In its turn, it resulted in an

  11. High-resolution light microscopy using luminescent nanoparticles.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Roy, Indrajit; Yong, Ken-Tye; Pudavar, Haridas E; Prasad, Paras N

    2010-01-01

    This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.

  12. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    Science.gov (United States)

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties

    International Nuclear Information System (INIS)

    Wang Haichao; Xue Min; Guo Qian; Zhao Jiongpeng; Liu Fuchen; Ribas, Joan

    2012-01-01

    Two new lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb for 1 and Tb for 2, isonic=isonicotinate), were obtained in hydrothermal condition. X-ray diffraction analysis indicated the two complexes are isomorphic chain structure in which the Ln III ions are mixed bridged by the azide anions, hydroxyl anions and carboxylate groups of the isonicotinate ligands. Further studies indicated weak antiferromagnetic interactions between the Ln III ions in 1 and 2, and complex 2 exhibit green sensitized Luminescent character of Tb III ion. - Graphical abstract: Two new 1D lanthanide-azide complexes, [Ln 2 (N 3 )(isonic) 2 (OH) 3 (Hisonic)(H 2 O)] n (Ln=Yb III for 1 and Tb III for 2, isonic=isonicotinate), were synthesized by hydrothermal reaction and exhibit interesting magnetism and fluorescence properties. Highlights: ► The research provided a new method for synthesizing lanthanide-azide complexes. ► The complexes have an interesting azide/hydroxyl/carboxylate mixed bridged1D chain structure. ► The antiferromagnetic coupling between the complexes and 2 displays green luminescence.

  14. Lanthanide-doped Sr2YF7 nanoparticles: controlled synthesis, optical spectroscopy and biodetection

    Science.gov (United States)

    Yang, Yuhan; Tu, Datao; Zheng, Wei; Liu, Yongsheng; Huang, Ping; Ma, En; Li, Renfu; Chen, Xueyuan

    2014-09-01

    Sr2YF7, as an important matrix for trivalent lanthanide (Ln3+) ions to fabricate upconversion (UC) or downshifting (DS) phosphors, has been rarely reported. Herein, monodisperse and size-controllable tetragonal-phase Ln3+-doped Sr2YF7 nanoparticles (NPs) were synthesized via a facile thermal decomposition method. Upon excitation at 980 nm, UC luminescence properties of Sr2YF7:Ln3+/Yb3+ (Ln = Tm, Er) NPs were systematically surveyed. Particularly, after coating an inert Sr2YF7 shell, the UC luminescence intensities of Sr2YF7:Tm3+/Yb3+ and Sr2YF7:Er3+/Yb3+ NPs were enhanced by ~22 and 4 times, respectively. Furthermore, intense multicolor DS luminescence was also achieved in Ce3+/Tb3+ or Eu3+ doped Sr2YF7 NPs, with absolute quantum yields of 55.1% (Tb3+) and 11.2% (Eu3+). The luminescence lifetimes of 5D4 (Tb3+) and 5D0 (Eu3+) were determined to be 3.7 and 8.1 ms, respectively. By utilizing the long-lived luminescence of Ln3+ in these Sr2YF7 NPs, we demonstrated their application as sensitive heterogeneous time-resolved photoluminescence bioprobes to detect the protein of avidin and the tumor marker of the carcinoembryonic antigen (CEA) with their limits of detection down to 40.6 and 94.9 pM, and thus reveal the great potential of these Sr2YF7:Ln3+ nanoprobes in cancer diagnosis.Sr2YF7, as an important matrix for trivalent lanthanide (Ln3+) ions to fabricate upconversion (UC) or downshifting (DS) phosphors, has been rarely reported. Herein, monodisperse and size-controllable tetragonal-phase Ln3+-doped Sr2YF7 nanoparticles (NPs) were synthesized via a facile thermal decomposition method. Upon excitation at 980 nm, UC luminescence properties of Sr2YF7:Ln3+/Yb3+ (Ln = Tm, Er) NPs were systematically surveyed. Particularly, after coating an inert Sr2YF7 shell, the UC luminescence intensities of Sr2YF7:Tm3+/Yb3+ and Sr2YF7:Er3+/Yb3+ NPs were enhanced by ~22 and 4 times, respectively. Furthermore, intense multicolor DS luminescence was also achieved in Ce3+/Tb3+ or Eu3

  15. Plasmon-Induced Selective Enhancement of Green Emission in Lanthanide-Doped Nanoparticles.

    Science.gov (United States)

    Zhang, Weina; Li, Juan; Lei, Hongxiang; Li, Baojun

    2017-12-13

    By introducing an 18 nm thick Au nanofilm, selective enhancement of green emission from lanthanide-doped (β-NaYF 4 :Yb 3+ /Er 3+ ) upconversion nanoparticles (UCNPs) is demonstrated. The Au nanofilm is deposited on a microfiber surface by the sputtering method and then covered with the UCNPs. The plasma on the surface of the Au nanofilm can be excited by launching a 980 nm wavelength laser beam into the microfiber, resulting in an enhancement of the local electric field and a strong thermal effect. A 36-fold luminescence intensity enhancement of the UCNPs at 523 nm is observed, with no obvious reduction in the photostability of the UCNPs. Further, the intensity ratios of the emissions at 523-545 nm and at 523-655 nm are enhanced with increasing pump power, which is attributed to the increasing plasmon-induced thermal effect. Therefore, the fabricated device is further demonstrated to exhibit an excellent ability in temperature sensing. By controlling the pump power and the UCNP concentration, a wide temperature range (325-811 K) and a high temperature resolution (0.035-0.046 K) are achieved in the fabricated device.

  16. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    International Nuclear Information System (INIS)

    Liu Mingjing; Ye Zhiqiang; Xin Chenglong; Yuan Jingli

    2013-01-01

    Highlights: ► A lanthanide complex-based ratiometric luminescent pH sensor was developed. ► The sensor can luminously respond to pH in weakly acidic to neutral media. ► The sensor can be used for monitoring pH with time-resolved luminescence mode. ► The sensor can be also used for monitoring pH with absorbance mode. ► The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu 3+ and Tb 3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu 3+ is strongly dependent on the pH values in weakly acidic to neutral media (pK a = 5.8, pH 4.8–7.5), while that of HTTA–Tb 3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu 3+ and HTTA–Tb 3+ (the HTTA–Eu 3+ /Tb 3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb 3+ emission at 540 nm to its Eu 3+ emission at 610 nm, I 540nm /I 610nm , as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu 3+ /Tb 3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A 290nm /A 325nm , as a signal. This feature enables the HTTA–Eu 3+ /Tb 3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the

  17. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    International Nuclear Information System (INIS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-01-01

    Rare earths orthovanadates (REVO 4 ) doped with luminescent lanthanide ions (Ln 3+ ) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu 3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO 4 3− groups to Eu 3+ ions. In the presented study, Fe 3 O 4 @SiO 2 @GdVO 4 :Eu 3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO 4 doped with Ln 3+ . Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells

  18. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Szczeszak, Agata [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Ekner-Grzyb, Anna [Adam Mickiewicz University, Department of Behavioural Ecology, Faculty of Biology (Poland); Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Mrówczyńska, Lucyna [Adam Mickiewicz University, Department of Cell Biology, Faculty of Biology (Poland); Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2015-03-15

    Rare earths orthovanadates (REVO{sub 4}) doped with luminescent lanthanide ions (Ln{sup 3+}) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu{sup 3+} ions is well known for its efficient and intense red emission, induced by energy transfer from the VO{sub 4}{sup 3−} groups to Eu{sup 3+} ions. In the presented study, Fe{sub 3}O{sub 4}@SiO{sub 2}@GdVO{sub 4}:Eu{sup 3+} 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO{sub 4} doped with Ln{sup 3+}. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  19. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Science.gov (United States)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  20. New strategies invonving upconverting nanoparticles for determining moderate temperatures by luminescence thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Savchuk, Ol.A. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Carvajal, J.J., E-mail: joanjosep.carvajal@urv.cat [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Pujol, M.C.; Massons, J. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Haro-González, P. [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Martínez, O.; Jiménez, J. [GdS-Optronlab, Departamento Física Materia Condensada, Universidad de Valladolid, Edificio I+D, Paseo de Belén 11, 47011 Valladolid (Spain); Aguiló, M.; Díaz, F. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain)

    2016-01-15

    Here we analyze alternative luminescence thermometry techniques to FIR, such as intensity ratio luminescence thermometry between the emission arising from two electronic levels that are not necessarily thermally coupled, but that show different evolutions with temperature, and lifetime luminescence nanothermometry in (Ho,Tm,Yb):KLu(WO{sub 4}){sub 2} and (Er,Yb):NaY{sub 2}F{sub 5}O nanoparticles. (Ho,Tm,Yb):KLu(WO{sub 4}){sub 2} nanoparticles exhibited a maximum relative sensitivity of 0.61% K{sup −1}, similar to that achievable in Er-doped systems, which are the upconverting systems presenting the highest sensitivity. From another side, (Er,Yb):NaY{sub 2}F{sub 5}O nanocrystals show great potentiality as thermal sensors at the nanoscale for moderate temperatures due to the incorporation of additional non-radiative relaxation mechanisms that shorten the emission lifetime generated by the oxygen present in the structure when compared to (Er,Yb):NaYF{sub 4} nanoparticles exhibiting the highest upconversion efficiency. We used those nanoparticles for ex-vivo temperature determination by laser induced heating in chicken breast using lifetime-based thermometry. The results obtained indicate that these techniques might constitute alternatives to FIR with potential applications for the determination of moderate temperatures, with sensitivities comparable to those that can be achieved by FIR or even higher. - Highlights: • Other nanothermometry techniques than FIR proposed with upconversion nanoparticles. • Energy transfer between different lanthanide ions can be used for thermometry. • Lifetime measurements can constitute also a tool for temperature determination.

  1. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  2. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes

    International Nuclear Information System (INIS)

    Monteiro, Jorge H.S.K.; Formiga, André L.B.; Sigoli, Fernando A.

    2014-01-01

    The lanthanides(III) complexes [Ln(bza) 3 (H 2 O) n ]·mH 2 O, [Ln(ppa) 3 (H 2 O) n ]·mH 2 O and [Ln(abse) 3 (H 2 O) n ]·mH 2 O where Ln=Eu 3+ , Gd 3+ or Tb 3+ were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ∼2000 cm −1 between them. The [Eu(abse) 3 (H 2 O)] complex shows the higher degree of covalence which was verified by the centroid of 5 D 0 → 7 F 0 transition (17,248 cm −1 ). On the other hand the [Ln(abse) 3 (H 2 O) n ]·mH 2 O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa) 3 (H 2 O) n ]·mH 2 O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa) 3 ] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza) 3 (H 2 O) 2 ]·3/2(H 2 O) and [Eu(abse) 3 (H 2 O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by changing the triplet state energy in the range of ∼2000 cm −1 . The changes in the energy transfer rates from triplet state to europium(III) levels are not

  3. Synthesis, structural and luminescence properties of Bi3+ co-doped Y2Sn2O7:Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, S.; Sudarsan, V.; Vatsa, R.K.

    2010-01-01

    Full text: In recent years, advanced materials derived from Pyrochlore-type oxides (A 2 B 2 O 7 ) have been of extensive scientific and technological interest. Chemical substitution of A or B sites of pyrochlore oxide by rare earth ions is a widely used approach to prepare thermally stable, lanthanide ion doped luminescent materials. Due to the higher symmetry around the A and B sites in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. This problem can be avoided by incorporating other ions like Bi 3+ in the lattice so that the lattice gets distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterization of Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles. For the preparation of Tb 3+ and Bi 3+ doped Y 2 Sn 2 O 7 nano-materials, Sn metal, Bi(NO 3 ) 3 , Tb 4 O 7 , Y 2 CO 3 , were used as starting materials. The solution containing Y 3+ , Sn 4+ ,and Bi 3+ -Tb 3+ in ethylene glycol medium was slowly heated up to 120 deg C and then subjected to urea hydrolysis. The obtained precipitate after washing was heated to 700 deg C. As prepared samples are amorphous in nature and 700 deg C heated sample showed well crystalline pyrochlore structure as revealed by the XRD studies. Average particles size is calculated from the width of the X-ray diffraction peaks and found to be ∼ 5 nm. TEM images of the nanoparticles obtained at 700 deg C shows very fine spherical particles having a diameter in the range of 2-5 nm. Luminescence measurements were carried out for as prepared and 700 deg C heated samples of 2.5%Tb doped Y 2 Sn 2 O 7 nanoparticles. Green emission characteristic 5 D 4 7 F 5 transition of Tb 3+ has been observed from as prepared sample but on heating to 700 deg C the emission characteristic of Tb 3+ ions got completely removed . However, there is a significant improvement in Tb 3+ emission from 2.5% Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb 3

  4. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Lang [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450002 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia)

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  5. Application of functionalized lanthanide-based nanoparticles for the detection of okadaic acid-specific immunoglobulin G.

    Science.gov (United States)

    Stipić, Filip; Pletikapić, Galja; Jakšić, Željko; Frkanec, Leo; Zgrablić, Goran; Burić, Petra; Lyons, Daniel M

    2015-01-29

    Marine biotoxins are widespread in the environment and impact human health via contaminated shellfish, causing diarrhetic, amnesic, paralytic, or neurotoxic poisoning. In spite of this, methods for determining if poisoning has occurred are limited. We show the development of a simple and sensitive luminescence resonance energy transfer (LRET)-based concept which allows the detection of anti-okadaic acid rabbit polyclonal IgG (mouse monoclonal IgG1) using functionalized lanthanide-based nanoparticles. Upon UV excitation, the functionalized nanoparticles were shown to undergo LRET with fluorophore-labeled anti-okadaic acid antibodies which had been captured and bound by okadaic acid-decorated nanoparticles. The linear dependence of fluorescence emission intensity with antigen-antibody binding events was recorded in the nanomolar to micromolar range, while essentially no LRET signal was detected in the absence of antibody. These results may find applications in new, cheap, and robust sensors for detecting not only immune responses to biotoxins but also a wide range of biomolecules based on antigen-antibody recognition systems. Further, as the system is based on solution chemistry it may be sufficiently simple and versatile to be applied at point-of-care.

  6. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  7. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  8. A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    International Nuclear Information System (INIS)

    Eliseeva, Svetlana V.; Golovach, Iurii P.; Liasotskyi, Valerii S.; Antonovich, Valery P.; Petoud, Stéphane; Meshkova, Svetlana B.

    2016-01-01

    Most of the existing optical methods for Cu II detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of Cu II ions based on both visible (Tb III , Eu III ) and near-infrared (Nd III , Yb III ) emission. Quantum yields of the characteristic Ln III emission signals increases by at least two-orders of magnitude upon addition of Cu II into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of Cu II ions does not significantly affect the energy positions of the singlet (32,260 cm −1 ) and triplet (25,640–25,970 cm −1 ) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce Cu II to Cu I has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards Cu II over other transition metal ions: the addition of divalent Zn II , Cd II , Pd II , Ni II , Co II or trivalent Fe III , Ga III , In III ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of Cu II results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the

  9. A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Eliseeva, Svetlana V., E-mail: svetlana.eliseeva@cnrs-orleans.fr [Centre de Biophysique Moléculaire CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2 (France); Le Studium, Loire Valley Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans (France); Golovach, Iurii P.; Liasotskyi, Valerii S. [I.I.Mechnikov Odessa National University, 2 Dvoryanska street, 65082 Odessa (Ukraine); Antonovich, Valery P. [A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine); Petoud, Stéphane, E-mail: stephane.petoud@inserm.fr [Centre de Biophysique Moléculaire CNRS UPR 4301, Rue Charles Sadron, 45071 Orléans Cedex 2 (France); Meshkova, Svetlana B., E-mail: s_meshkova@ukr.net [A.V. Bogatsky Physico-Chemical Institute of the National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odessa (Ukraine)

    2016-03-15

    Most of the existing optical methods for Cu{sup II} detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a 'turn-on' lanthanide(III)-based molecular probe for the specific detection of Cu{sup II} ions based on both visible (Tb{sup III}, Eu{sup III}) and near-infrared (Nd{sup III}, Yb{sup III}) emission. Quantum yields of the characteristic Ln{sup III} emission signals increases by at least two-orders of magnitude upon addition of Cu{sup II} into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of Cu{sup II} ions does not significantly affect the energy positions of the singlet (32,260 cm{sup −1}) and triplet (25,640–25,970 cm{sup −1}) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce Cu{sup II} to Cu{sup I} has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards Cu{sup II} over other transition metal ions: the addition of divalent Zn{sup II}, Cd{sup II}, Pd{sup II}, Ni{sup II}, Co{sup II} or trivalent Fe{sup III}, Ga{sup III}, In{sup III} ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of Cu{sup II} results in a 20- to 30-times

  10. Application of multi-step excitation schemes for detection of actinides and lanthanides in solutions by luminescence/chemiluminescence laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Izosimov, I. [Joint Institute for Nuclear Research, Joliot Curie 6, Dubna 141980 (Russian Federation)

    2016-07-01

    The use of laser radiation with tunable wavelength allows the selective excitation of actinide/lanthanide species with subsequent registration of luminescence/chemiluminescence for their detection. This work is devoted to applications of the time-resolved laser-induced luminescence spectroscopy and time-resolved laser-induced chemiluminescence spectroscopy for the detection of lanthanides and actinides. Results of the experiments on U, Eu, and Sm detection by TRLIF (Time Resolved Laser Induced Fluorescence) method in blood plasma and urine are presented. Data on luminol chemiluminescence in solutions containing Sm(III), U(IV), and Pu(IV) are analyzed. It is shown that appropriate selectivity of lanthanide/actinide detection can be reached when chemiluminescence is initiated by transitions within 4f- or 5f-electron shell of lanthanide/actinide ions corresponding to the visible spectral range. In this case chemiluminescence of chemiluminogen (luminol) arises when the ion of f element is excited by multi-quantum absorption of visible light. The multi-photon scheme of chemiluminescence excitation makes chemiluminescence not only a highly sensitive but also a highly selective tool for the detection of lanthanide/actinide species in solutions. (author)

  11. Synthesis, crystal structures, and luminescent properties of two series' of new lanthanide (III) amino-carboxylate-phosphonates.

    Science.gov (United States)

    Zhou, Tian-Hua; Yi, Fei-Yan; Li, Pei-Xin; Mao, Jiang-Gao

    2010-02-01

    Hydrothermal reactions of lanthanide(III) chlorides with 4-HOOC-C(6)H(4)-CH(2)NHCH(2)PO(3)H(2) (H(3)L) at different ligand-to-metal (L/M) ratios afforded nine new lanthanide(III) carboxylate-phosphonates with two types of 3D network structures, namely, LnCl(HL)(H(2)O)(2) (Ln = Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6) and [Ln(2)(HL)(H(2)L)(L)(H(2)O)(2)].4H(2)O (Ln = Nd, 7; Sm, 8; Eu, 9). Compounds 1-6 are isostructural and feature a 3D network in which the LnO(7)Cl polyhedra are interconnected by bridging CPO(3) tetrahedra into 2D inorganic layers parallel to the bc plane. These layers are further cross-linked by organic groups of the carboxylate-phosphonate ligands via the coordination of the carboxylate groups into a pillared-layered architecture. Compounds 7-9 are also isostructural and feature a 3D open-framework composed of 1D lanthanide(III) phosphonate inorganic slabs which are further bridged by organic groups of the carboxylate-phosphonate liagnds via the coordination of the carboxylate groups, forming large 1D tunnels along the b-axis which are filled by lattice water molecules. Luminescent measurements indicate that compounds 2, 4, and 5 show strong emission bands in red, green, and yellow light region, respectively. Magnetic properties of 2, 3, 5, and 7 have also been studied.

  12. Luminescent, magnetic and ferroelectric properties of noncentrosymmetric chain-like complexes composed of nine-coordinate lanthanide ions.

    Science.gov (United States)

    Li, Xi-Li; Chen, Chun-Lai; Xiao, Hong-Ping; Wang, Ai-Ling; Liu, Cai-Ming; Zheng, Xianjun; Gao, Li-Jun; Yang, Xiao-Gang; Fang, Shao-Ming

    2013-11-21

    Reaction of the chiral ligand (-)-4,5-pinenepyridyl-2-pyrazine (L) with Ln(hfac)3·2H2O precursors [hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate, Ln = Sm(3+) (1), Eu(3+) (2), Tb(3+) (3) and Dy(3+) (4)] in methanol solution led to the formation of four noncentrosymmetric lanthanide complexes with the general formula [Ln(hfac)3L]n·H2O. The single-crystal X-ray diffraction analyses revealed that they are isostructural and take a one-dimensional (1D) chain structure based on the Ln(hfac)3L repeating units, in which the nine-coordinate Ln(3+) ions reside in a tricapped trigonal prism (TTP) environment never reported in previous 1D chain lanthanide complexes. The investigations of their photophysical properties showed that complexes 1, and 3 exhibit characteristic emissions of Sm(3+), Eu(3+) and Tb(3+) ions with respective luminescent lifetime values of 0.065, 1.066 and 0.129 ms, while complex 4 does not display any emission. The different luminescent intensities and lifetimes among them were further discussed in detail. Moreover, the magnetic properties of complexes 1-4 were assessed with a special emphasis on the Dy(3+) complex 4. Alternating-current (ac) magnetic susceptibility measurements indicated that field-induced two-step slow magnetic relaxation processes were observed in 4, indicating the single-molecule magnet (SMM) behavior of 4. In addition, the noncentrosymmetric complexes 1-4 crystallizing in the same polar point group (Cs) exhibit both ferroelectric and nonlinear optical properties at room temperature. All these features make them multifunctional crystalline molecule materials.

  13. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  14. Antibody-based donor-acceptor spatial reconfiguration in decorated lanthanide-doped nanoparticle colloids for the quantification of okadaic acid biotoxin.

    Science.gov (United States)

    Stipić, Filip; Burić, Petra; Jakšić, Željko; Pletikapić, Galja; Dutour Sikirić, Maja; Zgrablić, Goran; Frkanec, Leo; Lyons, Daniel M

    2015-11-01

    With the increasing movement away from the mouse bioassay for the detection of toxins in commercially harvested shellfish, there is a growing demand for the development of new and potentially field-deployable tests in its place. In this direction we report the development of a simple and sensitive nanoparticle-based luminescence technique for the detection of the marine biotoxin okadaic acid. Photoluminescent lanthanide nanoparticles were conjugated with fluorophore-labelled anti-okadaic acid antibodies which, upon binding to okadaic acid, gave rise to luminescence resonance energy transfer from the nanoparticle to the organic fluorophore dye deriving from a reduction in distance between the two. The intensity ratio of the fluorophore: nanoparticle emission peaks was found to correlate with okadaic acid concentration, and the sensor showed a linear response in the 0.37-3.97 μM okadaic acid range with a limit of detection of 0.25 μM. This work may have important implications for the development of new, cheap, and versatile biosensors for a range of biomolecules and that are sufficiently simple to be applied in the field or at point-of-care. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis, characterisation and functionalisation of luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Labéguerie-Egéa, Jessica; McEvoy, Helen M.; McDonagh, Colette

    2011-01-01

    The synthesis of highly monodispersed, homogeneous and stable luminescent silica nanoparticles, synthesized using a process based on the Stöber method is reported here. These particles have been functionalised with the ruthenium and europium complexes: bis (2,2′-bipyridine)-(5-aminophenanthroline) Ru bis (hexafluorophosphate), abbreviated to (Ru(bpy) 2 (phen-5-NH 2 )(PF 6 )), and tris (dibenzoylmethane)-mono (5-aminophenanthroline) europium(III), abbreviated to (Eu:TDMAP). Both dyes have a free amino group available, facilitating the covalent conjugation of the dyes inside the silica matrix. Due to the covalent bond between the dyes and the silica, no dye leaching or nanoparticle diameter modification was observed. The generic and versatile nature of the synthesis process was demonstrated via the synthesis of both europium and ruthenium-functionalised nanoparticles. Following this, the main emphasis of the study was the characterisation of the luminescence of the ruthenium-functionalised silica nanoparticles, in particular, as a function of surface carboxyl or amino group functionalisation. It was demonstrated that the luminescence of the ruthenium dye is highly affected by the ionic environment at the surface of the nanoparticle, and that these effects can be counteracted by encapsulating the ruthenium-functionalised nanoparticles in a plain 15 nm silica layer. Moreover, the ruthenium-functionalised silica nanoparticles showed high relative brightness compared to the free dye in solution and efficient functionalisation with amino or carboxyl groups. Due to their ease of fabrication and attractive characteristics, the ruthenium-functionalised silica nanoparticles described here have the potential to be highly desirable fluorescent labels, particularly, for biological applications.

  16. Study of the luminescence of tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes covalently linked to 1,10-phenanthroline-functionalized hybrid sol-gel glasses

    International Nuclear Information System (INIS)

    Lenaerts, Philip; Ryckebosch, Eline; Driesen, Kris; Deun, Rik van; Nockemann, Peter; Goerller-Walrand, Christiane; Binnemans, Koen

    2005-01-01

    The solubility and uniform distribution of lanthanide complexes in sol-gel glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide β-diketonate complexes (Ln=Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(III) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured

  17. Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Vincent [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Rivolta, Ilaria [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Vincent, Julien [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Raccurt, Olivier [CEA Grenoble, Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN) (France); Rouzaud, Jean-Noel [Ecole Normale superieure de Paris, Laboratoire de Geologie (France); Miserrochi, Giuseppe [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Doris, Eric [CEA, Service de Chimie Bioorganique et de Marquage, iBiTecS (France); Reynaud, Cecile; Herlin-Boime, Nathalie, E-mail: nathalie.herlin@cea.fr [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France)

    2012-02-15

    This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core-shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core-shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.

  18. Luminescent properties of LuPO4-Pr and LuPO4-Eu nanoparticles

    International Nuclear Information System (INIS)

    Vistovskyy, V.; Malyi, T.; Vas’kiv, A.; Chylii, M.; Mitina, N.; Zaichenko, A.; Gektin, A.; Voloshinovskii, A.

    2016-01-01

    Spectral-luminescence parameters of LuPO 4 -Eu and LuPO 4 -Pr nanoparticles of different sizes are studied upon excitation by the synchrotron radiation with photon energies 4–40 eV. Influence of the nanoparticle size on Eu 3+ and Pr 3+ impurity luminescence is analyzed for intracenter and recombination excitation. It is shown that the luminescence intensity of impurities in the case of recombination excitation significantly stronger decreases with decreasing of nanoparticle size compared to intracenter excitation. This feature is explained by the influence of thermalization length to nanoparticle size ratio on the recombination luminescence. Electron recombination luminescence inherent for LuPO 4 -Eu nanoparticles shows a weaker dependence on the nanoparticle size than the hole one in LuPO 4 -Pr nanoparticles. The difference between energy states of praseodymium impurity ions in nanoparticles of different sizes is revealed.

  19. COMPLEXES POLYMETALLIQUES DE LANTHANIDES (III) POUR LE DEVELOPPEMENT DE NOUVEAUX MATERIAUX LUMINESCENTS

    OpenAIRE

    Marchal , Claire

    2008-01-01

    The incorporation of f elements in highly organized polymetallic complexes is of great interest in supramolecularchemistry and allows the combination of their nanoscopic size with the magnetic or optical properties of the metal ions. However due to the difficulty in controlling the coordination environment of these ions, the assembly of lanthanide-based polynuclear architectures has lagged behind that of other systems. These factors make the rational design for the construction of supramolecu...

  20. Polymer Assembly Encapsulation of Lanthanide Nanoparticles as Contrast Agents for In Vivo Micro-CT.

    Science.gov (United States)

    Cruje, Charmainne; Dunmore-Buyze, Joy; MacDonald, Jarret P; Holdsworth, David W; Drangova, Maria; Gillies, Elizabeth R

    2018-03-12

    Despite recent technological advancements in microcomputed tomography (micro-CT) and contrast agent development, preclinical contrast agents are still predominantly iodine-based. Higher contrast can be achieved when using elements with higher atomic numbers, such as lanthanides; lanthanides also have X-ray attenuation properties that are ideal for spectral CT. However, the formulation of lanthanide-based contrast agents at the high concentrations required for vascular imaging presents a significant challenge. In this work, we developed an erbium-based contrast agent that meets micro-CT imaging requirements, which include colloidal stability upon redispersion at high concentrations, evasion of rapid renal clearance, and circulation times of tens of minutes in small animals. Through systematic studies with poly(ethylene glycol) (PEG)-poly(propylene glycol), PEG-polycaprolactone, and PEG-poly(l-lactide) (PLA) block copolymers, the amphiphilic block copolymer PEG 114 -PLA 53 was identified to be ideal for encapsulating oleate-coated lanthanide-based nanoparticles for in vivo intravenous administration. We were able to synthesize a contrast agent containing 100 mg/mL of erbium that could be redispersed into colloidally stable particles in saline after lyophilization. Contrast enhancement of over 250 HU was achieved in the blood pool for up to an hour, thereby meeting the requirements of live animal micro-CT.

  1. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking

    International Nuclear Information System (INIS)

    Paganini, Paula Pinheiro

    2012-01-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stöber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  2. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  3. Paramagnetic Nanocrystals: Remarkable Lanthanide-Doped Nanoparticles with Varied Shape, Size, and Composition.

    Science.gov (United States)

    Holmberg, Rebecca J; Aharen, Tomoko; Murugesu, Muralee

    2012-12-20

    Magnetic nanoparticles have been developed in recent years with applications in unique and crucial areas such as biomedicine, data storage, environmental remediation, catalysis, and so forth. NaYF4 nanoparticles were synthesized and isolated with lanthanide dopant percentages, confirmed by ICP-OES measurements, of Er, Yb, Tb, Gd, and Dy that were in agreement with the targeted ratios. SEM images showed a distinct variation in particle size and shape with dopant type and percentage. HRTEM and XRD studies confirmed the particles to be crystalline, possessing both α and β phases. Magnetic measurements determined that all of the nanoparticles were paramagnetic and did not exhibit a blocking temperature from 2 to 300 K. The multifunctional properties of these nanoparticles make them suitable for many applications, such as multimodal imaging probes, up-conversion fluorescent markers, as well as MRI contrast agents.

  4. Structural investigation and luminescence of nanocrystalline lanthanide doped NaNbO{sub 3} and Na{sub 0.5}K{sub 0.5}NbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pin, Sonia [Paul Scherrer Institute, General Energy Research (ENE), Laboratory for Bioenergy and Catalysis, CH-5232 Villigen PSI (Switzerland); Piccinelli, Fabio [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37134 Verona (Italy); Upendra Kumar, Kagola [Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Universidade Federal de Alagoas (UFAL), Maceio-AL (Brazil); Enzo, Stefano [Dipartimento di Chimica, Universita di Sassari, 07100 Sassari (Italy); Ghigna, Paolo [Dipartimento di Chimica, Universita di Pavia, V.le Taramelli 16, I-27100 Pavia (Italy); Cannas, Carla; Musinu, Anna [Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria Monserrato, I-09042 Cagliari (Italy); Mariotto, Gino [Dipartimento di Informatica, Universita di Verona, Strada Le Grazie 15, I-37134 Verona (Italy); Bettinelli, Marco [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37134 Verona (Italy); Speghini, Adolfo, E-mail: adolfo.speghini@univr.it [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37134 Verona (Italy)

    2012-12-15

    Nd{sup 3+} and Eu{sup 3+} doped NaNbO{sub 3} and Na{sub 0.5}K{sub 0.5}NbO{sub 3} nanostructured multiferroics (nanoparticles or nanorods) were prepared by a sol-gel route. X-Ray powder diffraction results evidence that the sodium and mixed sodium-potassium niobates show orthorhombic (Pmc2{sub 1} space group), and monoclinic structure (Pm space group), respectively, confirmed by the Raman spectra. The local structure around the trivalent lanthanides was investigated with Extended X-ray Absorption Fine Structure spectroscopy at the Ln-K edge and luminescence spectroscopy. The Ln{sup 3+} ions enter the structure by substituting the alkali metals, with a 12-fold oxygen coordination, and inducing a large amount of static disorder. The visible emission bands of the Eu{sup 3+} ions indicate that multiple sites exist for the lanthanide ions, in agreement with the EXAFS results showing the largest amount of static disorder in these samples. A possible indication of clustering of oxygen vacancies around the Ln{sub Na} Double-Prime defect is obtained by VBS calculations. - Graphical Abstract: Ln{sup 3+} doped NaNbO{sub 3} and Na{sub 0.5}K{sub 0.5}NbO{sub 3} nanoparticles or nanorods can be prepared by a simple sol-gel procedure. The synergy of X-ray diffraction, EXAFS and luminescence spectroscopy gives important information on the Ln{sup 3+} local environment. Highlights: Black-Right-Pointing-Pointer Nd{sup 3+} and Eu{sup 3+} doped NaNbO{sub 3} and Na{sub 0.5}K{sub 0.5}NbO{sub 3} nanoparticles or nanorods are prepared by sol-gel. Black-Right-Pointing-Pointer EXAFS indicates that the Ln{sup 3+} ions substitutes the Na{sup +} and K{sup +} ions, inducing a large amount of static disorder. Black-Right-Pointing-Pointer The visible emission bands of the Eu{sup 3+} ions confirm that multiple sites exist for the lanthanide ions.

  5. Facile synthesis of upconversion nanoparticles with high purity using lanthanide oleate compounds

    Science.gov (United States)

    Kang, Ning; Ai, Chao-Chao; Zhou, Ya-Ming; Wang, Zuo; Ren, Lei

    2018-02-01

    A novel strategy for preparing highly pure NaYF4-based upconversion nanoparticles (UCNPs) was developed using lanthanide oleate compounds [Ln(OA)3] as the precursor, denoted as the Ln-OA preparation method. Compared to the conventional solvothermal method for synthesizing UCNPs using lanthanide chloride compounds (LnCl3) as the precursor (denoted as the Ln-Cl method), the Ln-OA strategy exhibited the merits of high purity, reduced purification process and a uniform size in preparing core and core-shell UCNPs excited by a 980 or 808 nm near infrared (NIR) laser. This work sheds new insight on the preparation of UCNPs and promotes their application in biomedical fields.

  6. Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence

    NARCIS (Netherlands)

    Klink, S.I.; Keizer, Henk; van Veggel, F.C.J.M.

    2000-01-01

    We thank Roel Fokkens and Nico Nibbering (University of Amsterdam) for recording and discussing the MALDI-TOF mass spectra. Martijn Werts (University of Amsterdam) is gratefully acknowledged for his support with the time-resolved luminescence measurements. This research has been financially

  7. Synthesis, structures, and luminescent properties of lanthanide complexes with triphenylphospine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yan; Xu, Shan; Wang, Xin; Li, Yue-Xue; Jin, Qiong-Hua [Department of Chemistry, Capital Normal University, Beijing (China); Liu, Min [The College of Materials Science and Engineering, Beijing University of Technology (China); Xin, Xiu-Lan [School of Food and Chemical Engineering, Beijing Technology and Business University (China)

    2017-07-03

    Seven lanthanide complexes [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}] (1-3) (OPPh{sub 3} = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh{sub 3}){sub 4}(NO{sub 3}){sub 2}](NO{sub 3}) (4), [Ln(OPPh{sub 3}){sub 3}(NO{sub 3}){sub 3}]{sub 2} (5-7) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh{sub 3} ligand in the air. These complexes were characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1-4 are mononuclear complexes formed by OPPh{sub 3} ligands and nitrates. The asymmetric units of complexes 5-7 consist of two crystallographic-separate molecules. Complex 1 is self-assembled to construct a 2D layer-structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain-like structure that was assembled by OPPh{sub 3} ligands and nitrate ions through C-H..O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb{sup 3+} (λ{sub em} = 480, 574 nm) and Eu{sup 3+} (λ{sub em} = 552, 593, 619, 668 nm). (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. A comparative study of the structure and luminescence of mono- and dinuclear crown-ether lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Keyla M.N. de [Departamento de Química, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, S/N – Dois Irmãos, 52171-900 Recife, Pernambuco (Brazil); Batista, Hélcio J., E-mail: helciojb@gmail.com [Departamento de Química, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, S/N – Dois Irmãos, 52171-900 Recife, Pernambuco (Brazil); Belian, Mônica F. [Departamento de Química, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, S/N – Dois Irmãos, 52171-900 Recife, Pernambuco (Brazil); Silva, Wagner E. [Unidade Acadêmica do Cabo de Santo Agostinho, Universidade Federal Rural de Pernambuco, 54510-000 Cabo de Santo Agostinho, Pernambuco (Brazil); Silva, Juliana A.B. da [Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru, Pernambuco (Brazil)

    2016-02-15

    Using as precursor the mononuclear lanthanide (Ln) macrocyclic complex, based on the 15-crown-5 ether (C) ligand and coordinated water (W) molecules, [LnCW{sub 4}]{sup 3+}, four novel analogous complexes for each of the three Ln(III) ions (Ln=Eu, Tb and Gd) were synthesized through systematic substitution of water molecules by the antenna-type ligands: 2,2′-dipyridyl (D), 1,10-phenanthroline (P) and 2,2′;6',2′′-terpyridine (T). The corresponding formulae of the complexes, obtained in a trichloride salt form, were the following: [LnCW{sub 4}]{sup 3+}, [LnCP{sub 2}]{sup 3+}, [LnCDW]{sup 3+}, [LnCDP]{sup 3+}, and [LnCT]{sup 3+}. The compounds were characterized by elemental analysis, UV and infrared spectroscopy and investigated through luminescence spectroscopy. For the Eu(III) and Tb(III) complex series, the most luminescent ones were [EuCDP]{sup 3+} and [TbCT]{sup 3+}, respectively. Motivated by this fact, two dinuclear analogous Eu(III) and Tb(III) complexes, based on the two-site coordinating macrocyclic ligand lariat-silacrown ether (S), as well as analogous Gd(III) complexes, were obtained as hexachloride salts with the following formulae: [Eu{sub 2}SD{sub 2}P{sub 2}]{sup 6+}, [Gd{sub 2}SD{sub 2}P{sub 2}]{sup 6+}, [Tb{sub 2}ST{sub 2}]{sup 6+} and [Gd{sub 2}ST{sub 2}]{sup 6+}. Also, [Eu{sub 2}SW{sub 8}]{sup 6+}, [Tb{sub 2}SW{sub 8}]{sup 6+} and [Gd{sub 2}SW{sub 8}]{sup 6+} complexes were prepared and used as reference non-antenna type dinuclear compounds. Comparing the luminescence between the antenna mononuclear complexes with the analogous dinuclear ones, for Eu(III) and Tb(III) ions, almost no change was observed. On the other hand, in the particular case of Eu(III), comparing the mono- and dinuclear non-antenna reference complexes [EuCW{sub 4}]{sup 3+} and [Eu{sub 2}SW{sub 8}]{sup 6+}, a surprisingly much higher luminescence intensity was observed for the dinuclear complex (~ one order of magnitude). The proposed cause for this behavior is the

  9. Hydrothermal synthesis, crystal structures, and luminescent properties of a series of new lanthanide oxalatophosphonates with a layer architecture.

    Science.gov (United States)

    Zhu, Yan-Yu; Sun, Zhen-Gang; Tong, Fei; Liu, Zhong-Min; Huang, Cui-Ying; Wang, Wei-Nan; Jiao, Cheng-Qi; Wang, Cheng-Lin; Li, Chao; Chen, Kai

    2011-05-28

    Eleven new lanthanide oxalatophosphonate hybrids with a 2D layered structures, namely, [Ln(H(3)L)(C(2)O(4))]·2H(2)O (Ln = La-Dy, Er and Y, H(4)L = C(6)H(5)CH(2)N(CH(2)PO(3)H(2))(2)), have been synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction, X-ray powder diffraction, infrared spectroscopy, elemental analysis and thermogravimetric analysis. Compounds 1-11 are isomorphous and they exhibit a 2D framework structure. Two {LnO(8)} polyhedra and four {CPO(3)} tetrahedra are interconnected into a unit via corner-sharing, and the so-built units are bridged by the oxalate anions into a layer. The result of connections in this manner is the formation of a 24-atom window. The thermal stabilities and guest desorption-sorption properties of compounds 1-11 have been investigated. The luminescent properties of compounds 5, 6, 8 and 9 have also been studied.

  10. A series of novel lanthanide carboxyphosphonates with a 3D framework structure: synthesis, structure, and luminescent and magnetic properties.

    Science.gov (United States)

    Chen, Kai; Dong, Da-Peng; Sun, Zhen-Gang; Jiao, Cheng-Qi; Li, Chao; Wang, Cheng-Lin; Zhu, Yan-Yu; Zhao, Yan; Zhu, Jiang; Sun, Shou-Hui; Zheng, Ming-Jing; Tian, Hui; Chu, Wei

    2012-08-28

    By introduction of 1,4-benzenedicarboxylic acid as the second organic ligand, a series of novel lanthanide carboxyphosphonates with a 3D framework structure, namely, [Ln(3)(H(2)L)(HL)(2)(bdc)(2)(H(2)O)]·7H(2)O (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8); H(3)L = H(2)O(3)PCH(2)NC(5)H(9)COOH; H(2)bdc = HOOCC(6)H(4)COOH) have been synthesized under hydrothermal conditions. Compounds are isostructural and feature a 3D framework in which Ln(III) polyhedra are interconnected by bridging {CPO(3)} tetrahedra into 2D inorganic layers parallel to the ab plane. The organic groups of H(2)L(-) are grafted on the two sides of the layer. These layers are further cross-linked by the bdc(2-) ligands from one layer to the Ln atoms from the other into a pillared-layered architecture with one-dimensional channel system along the a axis. The thermal stability of compounds has been investigated. Luminescent properties of compounds , and the magnetic properties of compound have also been studied.

  11. Luminescence and Electronic Spectral Studies of Some Synthesized Lanthanide Complexes Using Benzoic Acid Derivative and o-Phenanthroline.

    Science.gov (United States)

    Wankar, Sneha; Limaye, S N

    2015-07-01

    Lanthanide complexes of p-nitrobenzoic acid(p-NBA) and o-phenanthroline(o-phen) namely [Ln2(Phen)2(p-NBA)3(NO3)2].2H2O where, Ln = Sm(III),Tb(III),Dy(III) and [Eu2(Phen)2(p-NBA)3].4H2O were synthesized and further characterized by Elemental analysis, UV spectroscopy, IR spectroscopy, (1)HNMR spectroscopy. Luminescence measurements were performed on all compounds in ethanolic solution. These complexes have showed narrow emission indicating that the organic ligands are better energy absorber and capable of transferring energy to the Ln (III) ion. Furthermore, we reported electronic spectral studies on [Eu2 (Phen)2 (p-NBA)3].4H2O in order to calculate following parameters, viz: Oscillator strength (f), Judd-Ofelt parameters Ωλ (λ = 2,4,6) and Radiative parameters. [Eu2 (o-Phen)2 (p-NBA)3].4H2O showed the strongest emission at 613 nm corresponds to (5)D0→(7)F2 hypersensitive transition, this emission is very sensitive to the environment. However, the larger value of Ω2 supports the presence of the hypersensitive transition (5)D0→(7)F2 which strictly depends on the nature of ligand. All electronic spectral parameters were calculated systemically.

  12. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  13. Optical methods for the evaluation of lanthanide excited state thermal ionization barrier in luminescent materials

    Czech Academy of Sciences Publication Activity Database

    Fasoli, M.; Vedda, A.; Mihóková, Eva; Nikl, Martin

    2012-01-01

    Roč. 85, č. 8 (2012), "085127-1"-"085127-8" ISSN 1098-0121 R&D Projects: GA AV ČR KAN300100802; GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Lu 2 Si 2 O 7 * Pr-doped * luminescence * scintillator * excited state ionization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  14. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  15. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  16. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  17. Luminescence detection of phase transitions in crystals and nanoparticle inclusions

    International Nuclear Information System (INIS)

    Townsend, P. D.; Yang, B.; Wang, Y.

    2008-01-01

    Luminescence measurements are extremely sensitive to variations in structural environment and thus have the potential to probe distortions of fluorescence sites. Changes can be monitored via luminescence efficiency, emission spectra or excited state lifetimes and these factors are influenced by the local neighbourhood around the emission site, and therefore by structure, composition, pressure and temperature. A rarely exploited approach for condensed matter has been to use the changes in luminescence responses during heating or cooling of a material to provide a rapid survey to detect the presence of phase transitions. One can often differentiate between bulk and surface effects by contrasting results from radioluminescence for bulk responses, and cathodoluminescence or photoluminescence for surface effects. One expects that discontinuous changes in optical parameters occur during temperature changes through phase transitions of insulating materials. In practice, optical signals also exist from surface states of fullerenes and high temperature superconductors etc which identify the presence of structural or superconducting transitions. Numerous examples are cited which match standard documented transitions. Interestingly many examples show the host signals are strongly sensitive to impurity phase transitions from inclusions such as nanoparticles of water, N 2 , O 2 or CO 2 . Recent luminescence data reveal many examples of new transitions, hysteresis and irreversible changes. The signals equally respond to relaxations of a structure and surprisingly indicate that in some materials, such as SrTiO 3 or ZnO, ion implantation of the surface triggers relaxations and phase changes throughout the bulk of the material. Luminescence routes to detect phase transitions are powerful tools but have a tiny literature and so the subject is ideal for rapid exploitation and development. (Author)

  18. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    Science.gov (United States)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  19. Structural, luminescence and biological studies of trivalent lanthanide complexes with N,N Prime -bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine Schiff base ligand

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M. [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110 (Jordan); Al Momani, Waleed [Department of Allied Medical Sciences, Al Balqa Applied University (Jordan)

    2012-11-15

    New eight lanthanide metal complexes were prepared. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis ({sup 1}H NMR, FT-IR, UV-vis), luminescence and thermal gravimetric analysis. All Ln(III) complexes were 1:1 electrolytes as established by their molar conductivities. The microanalysis and spectroscopic analysis revealed eight-coordinated environments around lanthanide ions with two nitrate ligands behaving in a bidentate manner. The other four positions were found to be occupied with tetradentate L{sub III} ligand. Tb-L{sub III} and Sm-L{sub III} complexes exhibited characteristic luminescence emissions of the central metal ions and this was attributed to efficient energy transfer from the ligand to the metal center. The L{sub III} and Ln-L{sub III} complexes showed antibacterial activity against a number of pathogenic bacteria. - Highlights: Black-Right-Pointing-Pointer Ln(III) ion adopts an eight-coordinate geometry. Black-Right-Pointing-Pointer Luminescence spectra of Sm-L{sub III} and Tb-L{sub III} complexes display the metal centered line emission. Black-Right-Pointing-Pointer Energy transfer process from L{sub III} to Sm in Sm-L{sub III} complex is more efficient than to Tb in Tb-L{sub III} complex. Black-Right-Pointing-Pointer Ln(III) complexes may serve as models for biologically important species.

  20. Silica-coated upconversion lanthanide nanoparticles: the effect of crystal design on morphology, structure and optical properties

    Czech Academy of Sciences Publication Activity Database

    Kostiv, Uliana; Šlouf, Miroslav; Macková, Hana; Zhigunov, Alexander; Engstová, Hana; Smolková, Katarína; Ježek, Petr; Horák, Daniel

    2015-01-01

    Roč. 6, 03 Dec (2015), s. 2290-2299 ISSN 2190-4286 R&D Projects: GA ČR(CZ) GA15-01897S Institutional support: RVO:61389013 ; RVO:67985823 Keywords : lanthanide * nanoparticles * oleylamine Subject RIV: CD - Macromolecular Chemistry; BO - Biophysics (FGU-C) Impact factor: 2.778, year: 2015

  1. Photophysical investigation of energy transfer luminescence of lanthanide chelates with aromatic polyaminocarboxylate ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi; Saitoh, Takashi; Yotsuyanagi, Takao

    1995-01-01

    Some photophysical data including emission lifetimes (τ), total emission quantum yields (Φ), and ligand phosphorescence data are reported for the energy-transfer luminescence of the Eu(III) chelate of Quin 2 and the Tb(III) chelate of BAPTA: Quin 2 means 2-[(2-amino-5-methylphenoxy)methyl]-6-methoxy-8-aminoquinoline-N,N,N',N'-tetraacetic acid; BAPTA means 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. The energy diagrams for the ligand T 1 and the metal-center f-f levels are proposed. The τ values of Tb(III)-BAPTA chelates are 1.73 ms in H 2 O and 3.44 ms in D 2 O. The Eu(III)-Quin 2 chelate system shows a bi-exponential decay of emission; τ=0.048 and 0.20 ms in H 2 O and 0.066 and 1.44 ms in D 2 O. The Quin 2 chelate is kinetically inert, so that the interchange of these two conformer structures are very slow at room temperature. The number of water molecules in the primary coordination sphere is calculated from the lifetime data to be 1.9-2.4 for Eu-Quin 2 and 0.5 for Tb-BAPTA. The Φ values in aqueous solutions are rather small in these systems; 0.009 for Tb-BAPTA and 0.0023 for Eu-Quin 2, but these are enough counterbalanced by the large molar absorptivities giving the great sensitization factors for the ions; the sensitization factors against each aqua ion are 1380 for Eu-Quin 2 and 1600 for Tb-BAPTA. (author)

  2. Luminescent lanthanide complexes with 4-acetamidobenzoate: Synthesis, supramolecular assembly via hydrogen bonds, crystal structures and photoluminescence

    International Nuclear Information System (INIS)

    Yin Xia; Fan Jun; Wang Zhihong; Zheng Shengrun; Tan Jingbo; Zhang Weiguang

    2011-01-01

    Four new luminescent complexes, namely, [Eu(aba) 2 (NO 3 )(C 2 H 5 OH) 2 ] (1), [Eu(aba) 3 (H 2 O) 2 ].0.5 (4, 4'-bpy).2H 2 O (2), [Eu 2 (aba) 4 (2, 2'-bpy) 2 (NO 3 ) 2 ].4H 2 O (3) and [Tb 2 (aba) 4 (phen) 2 (NO 3 ) 2 ].2C 2 H 5 OH (4) were obtained by treating Ln(NO 3 ) 3 .6H 2 O and 4-acetamidobenzoic acid (Haba) with different coligands (4, 4'-bpy=4, 4'-bipyridine, 2, 2'-bpy=2, 2'-bipyridine, and phen=1, 10-phenanthroline). They exhibit 1D chains (1-2) and dimeric structures (3-4), respectively. This structural variation is mainly attributed to the change of coligands and various coordination modes of aba molecules. Moreover, the coordination units are further connected via hydrogen bonds to form 2D even 3D supramolecular networks. These complexes show characteristic emissions in the visible region at room temperature. In addition, thermal behaviors of four complexes have been investigated under air atmosphere. The relationship between the structures and physical properties has been discussed. - Graphical abstract: Structure variation of four complexes is attributed to the change of coligands and various coordination modes of aba molecules. Moreover, they show characteristic emissions in the visible region. Highlights: → Auxiliary ligands have played the crucial roles on the structures of the resulting complexes. → Isolated structure units are further assembled via H-bonds to form supramolecular networks. → These solid-state complexes exhibit strong, characteristic emissions in the visible region.

  3. Synthesis, characterization and luminescence study of Eu3+ doped Y2Sn2O7 nano-particles

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2011-01-01

    In recent years, advanced materials derived from Pyrochlore-type oxides (A 2 B 2 O 7 ), have been of extensive scientific and technological interest. Chemical substitution of A or B sites of pyrochlore oxide by rare earth ions is a widely used approach to prepare thermally stable, lanthanide ion doped luminescent materials. The present study deals with the synthesis and characterization of Eu 3+ doped Y 2 Sn 2 O 7 : nanoparticles prepared by the hydrolysis of Y 3+ , Sn 4+ , and Eu 3+ in ethylene glycol medium followed by heating at 700 deg C for 4 hours. As prepared samples are amorphous in nature and 700 deg C heated sample showed well crystalline pyrochlore structure in XRD studies. Average particle size is calculated from the width of the X-ray diffraction peaks and found to t be around 5 nm. Luminescence measurements were carried out for as prepared and 700 deg C heated samples. The undoped as prepared sample showed a broad emission peak around 420 nm after excitation at 285 nm. While for 700 deg C undoped heated sample, the peak maxima was shifted to 435 nm. The emission spectrum for doped as prepared samples is characterized by both host emission around 420 nm along with the characteristic Eu 3+ emission peaks in the visible region. However, very poor Eu 3+ emission from heated sample was observed

  4. Synthesis and magnetic properties of CoFe2O4 spinel ferrite nanoparticles doped with lanthanide ions

    International Nuclear Information System (INIS)

    Kahn, Myrtil L.; Zhang, Z. John

    2001-01-01

    Lanthanide ions have been doped into cobalt spinel ferrites using an oil-in-water micellar method to form CoLn 0.12 Fe 1.88 O 4 nanoparticles with Ln=Ce, Sm, Eu, Gd, Dy, or Er. Doping with lanthanide ions (Ln III ) modulates the magnetic properties of cobalt spinel ferrite nanoparticles. In particular cases of Gd 3+ or Dy 3+ ions, a dramatic increase in the blocking temperature and coercivity is observed. Indeed, the introduction of only 4% of Gd 3+ ions increases the blocking temperature ∼100 K and the coercivity 60%. Initial studies on the magnetic properties of these doped nanoparticles clearly demonstrate that the relationship between the modulation of magnetic properties and the nature of doped Ln III ions is interesting but very complex. [copyright] 2001 American Institute of Physics

  5. Luminescence properties of Si-containing porous matrix–PbS nanoparticle systems

    International Nuclear Information System (INIS)

    Tarasov, S. A.; Aleksandrova, O. A.; Lamkin, I. A.; Maksimov, A. I.; Maraeva, E. V.; Mikhailov, I. I.; Moshnikov, V. A.; Musikhin, S. F.; Nalimova, S. S.; Permyakov, N. V.; Spivak, Yu. M.; Travkin, P. G.

    2015-01-01

    The luminescence properties of systems that contain lead-sulfide nanoparticles deposited onto substrates fabricated from porous silicon, oxidized porous silicon, and porous (tin-oxide)–(silicon-oxide) layers are studied. It is shown that the structure and composition of the matrix induce a strong effect on the luminescence spectra of colloidal quantum dots, defining their emission wavelength

  6. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy; Neuartige Lanthanoid-dotierte mikro- und mesoporoese Feststoffe. Charakterisierung von Ion-Wirt-Wechselwirkungen, Speziesverteilung und Lumineszenzeigenschaften mittels zeitaufgeloester Lumineszenzspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Andre

    2010-12-15

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the {sup 5}D{sub 0}-{sup 7}F{sub 0}-transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the

  7. Luminescence and scintillation properties of LuPO4-Ce nanoparticles

    International Nuclear Information System (INIS)

    Vistovskyy, V.; Malyy, T.; Pushak, A.; Vas’kiv, A.; Shapoval, A.; Mitina, N.; Gektin, A.; Zaichenko, A.; Voloshinovskii, A.

    2014-01-01

    Study of the spectral-luminescence parameters of LuPO 4 -Ce nanoparticles upon the excitation by X-ray quanta and synchrotron radiation with photon energies of 4–25 eV was performed. Nanoparticles with mean size about a=35 nm and nanoparticles with size less than 12 nm reveal the different structures of cerium centers. Luminescence efficiency of LuPO 4 -Ce nanoparticles of a 4 -Ce nanoparticles studied using synchrotron and X-ray excitation. • Different structure of Ce 3+ -centers has been revealed for LuPO 4 -Ce nanoparticles. • Luminescence of LuPO 4 -Ce with size less than 12 nm is strongly quenched upon the X-ray excitation

  8. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO_3 nanoparticles

    International Nuclear Information System (INIS)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-01-01

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO_2 nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  9. One-pot synthesis of hollow structured upconversion luminescent β-NaYF4:Yb0.2Er0.02 nanoparticles

    International Nuclear Information System (INIS)

    Wu, Qinglong; Pei, Jianfeng; De, Gejihu

    2014-01-01

    Monodisperse, uniform, and hollow structured hexagonal sodium yttrium fluoride nanoparticles co-doped with Yb 3+ and Er 3+ (NaYF 4 :Yb 3+ , Er 3+ ) were successfully prepared by a facile one-pot thermal decomposition route. The crystal structure, morphology and upconversion spectra of the sample were investigated using X-ray powder diffractometer, transmission electron microscope, and fluorescence spectrophotometer with an external 980 nm single-wavelength diode laser. The synthesized nanoparticles were easily dispersed in nonpolar solvents, showed an extremely narrow particle distribution, and were determined to have a diameter about (14.3)±(1.1) nm. Moreover, the nanoparticles were dispersed in water via modification of the capping oleic acid ligand by HCl. To the synthesis of such monidisperse, water-soluble, hollow structured lanthanide-doped upconversion nanoparticles may lead to potential applications in drug delivery and bioimaging. - Highlights: • Hollow structured hexagonal NaYF 4 :Yb 0.2 Er 0.02 luminescent nanoparticles were prepared by a facile one-pot thermal decomposition route. • HCl was used to render the nanoparticles to water solubility. • The bright green light and transparent solution indicate that as-treated water-soluble nanoparticles may lead to potential applications in drug delivery and bioimaging

  10. Synthetic Smectite Colloids: Characterization of Nanoparticles after Co-Precipitation in the Presence of Lanthanides and Tetravalent Elements (Zr, Th

    Directory of Open Access Journals (Sweden)

    Muriel Bouby

    2015-09-01

    Full Text Available The magnesian smectite hectorite is a corrosion product frequently detected in nuclear waste glass alteration experiments. The structural incorporation of a single trivalent lanthanide was previously demonstrated. Hectorite was presently synthesized, for the first time, in the presence of several lanthanides (La, Eu, Yb following a multi-step synthesis protocol. The smallest-sized particles (nanoparticles, NPs were isolated by centrifugation and analyzed by asymmetrical flow field-flow fractionation (AsFlFFF coupled to ICP-MS, in order to obtain information on the elemental composition and distribution as a function of the size. Nanoparticles can be separated from the bulk smectite phase. The particles are able to accommodate even the larger-sized lanthanides such as La, however, with lower efficiency. We, therefore, assume that the incorporation proceeds by substitution for octahedral Mg accompanied by a concomitant lattice strain that increases with the size of the lanthanides. The presence of a mixture does not seem to affect the incorporation extent of any specific element. Furthermore, syntheses were performed where in addition the tetravalent zirconium or thorium elements were admixed, as this oxidation state may prevail for many actinide ions in a nuclear waste repository. The results show that they can be incorporated as well.

  11. X-ray excited luminescence of polystyrene composites loaded with SrF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Hevyk, V.B. [Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., 76019 Ivano-Frankivsk (Ukraine); Yakibchuk, P.M. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Ave, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine)

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF{sub 2} nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF{sub 2} nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF{sub 2} nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF{sub 2} nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF{sub 2} nanoparticles by polystyrene.

  12. Synthesis, crystal structure and luminescent properties of lanthanide extended structure with asymmetrical dinuclear units based on 2-(methylthio)benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiane K.; Souza, Viviane P. de; Luz, Leonis L. da [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Menezes Vicenti, Juliano R. de [Escola de Química e Alimento, FURG, 96203-900 Rio Grande, RS (Brazil); Burrow, Robert A. [Departamento de Química, UFSM, 97105-900 Santa Maria, RS (Brazil); Severino Alves; Longo, Ricardo L. [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil); Malvestiti, Ivani, E-mail: ivani@ufpe.br [Departamento de Química Fundamental, UFPE, 50.740-560 Recife, PE (Brazil)

    2016-02-15

    The extended structures [Ln{sub 2}(L){sub 6}(OH{sub 2}){sub 4}] with L=2-(methylthio)benzoato (2-CH{sub 3}S–C{sub 6}H{sub 4}COO{sup −}) and Ln=Tb (1), Eu (2) and Gd (3) were successfully synthesized and characterized. The single crystal structure of compound 1 was determined and showed an extended structure made up of asymmetrical dinuclear units with the formula catena-poly[{Tb(H_2O)_4}-(μ-L-1κO:2κO'){sub 2}-{Tb(L-κO,O')_2}-(μ-L-1κO:2κO'){sub 2}]. In the molecule of 1, there are two distinct metal sites. The Tb atom in site 1 is bound to four coordinated water molecules and four oxygen atoms from four different benzoate ligands, two of which bridge to site 2 Tb atoms on one side and two to site 2 Tb atoms on the other side. The site 2 Tb atom is bound to four oxygen atoms from two chelating benzoate ligands and four oxygen atoms from four different benzoate ligands, two of which bridge to site 1 Tb atoms on one side and two to site 1 Tb atoms on the other side. The bridging benzoate ligands extend the framework in one-dimension with alternating site 1/site 2 Tb atoms. The luminescent properties of these asymmetric dinuclear extended structures are quite peculiar and showed a single emitting lanthanide center. The quantum yields of 1 (ca. 50–55%) is practically independent of the excitation energy, whereas those of 2 are vanishing small (<1%) when excited at the ligand states and become sizable (ca. 10–20%) upon excitation at the intra-4f manifold. To reconcile these experimental observations in conjunction with the spectral data for compounds 1 and 3, a strong interaction between the lanthanide emitting states at sites 1 and 2 was proposed. For compound 1, the numerical solutions of the rate equations provided evidences that when the transition rates between the emitting states at both sites are larger than the highest decaying rate of these states, the system becomes an effective single emitter. This establishes, for the first time

  13. Study of Optical and Structural Characteristics of Ceria Nanoparticles Doped with Negative and Positive Association Lanthanide Elements

    Directory of Open Access Journals (Sweden)

    N. Shehata

    2014-01-01

    Full Text Available This paper studies the effect of adding lanthanides with negative association energy, such as holmium and erbium, to ceria nanoparticles doped with positive association energy lanthanides, such as neodymium and samarium. That is what we called mixed doped ceria nanoparticles (MDC NPs. In MDC NPs of grain size range around 6 nm, it is proved qualitatively that the conversion rate from Ce4+ to Ce3+ is reduced, compared to ceria doped only with positive association energy lanthanides. There are many pieces of evidence which confirm the obtained conclusion. These indications are an increase in the allowed direct band gap which is calculated from the absorbance dispersion measurements, a decrease in the emitted fluorescence intensity, and an increase in the size of nanoparticles, which is measured using both techniques: transmission electron microscope (TEM and X-ray diffractometer (XRD. That gives a novel conclusion that there are some trivalent dopants, such as holmium and erbium, which can suppress Ce3+ ionization states in ceria and consequently act as scavengers for active O-vacancies in MDC. This promising concept can develop applications which depend on the defects in ceria such as biomedicine, electronic devices, and gas sensors.

  14. Rare-earth organic frameworks involving three types of architecture tuned by the lanthanide contraction effect: hydrothermal syntheses, structures and luminescence.

    Science.gov (United States)

    Deng, Zhao-Peng; Kang, Wei; Huo, Li-Hua; Zhao, Hui; Gao, Shan

    2010-07-21

    The first example of rare-earth organic frameworks with 3-aminopyrazine-2-carboxylic acid (Hapca) was synthesized under hydrothermal conditions and characterized by elemental analysis, IR, PL, TG, powder and single-crystal X-ray diffraction. These ten complexes exhibit three different structure types with decreasing lanthanide radii: [La(apca)(3)](n) () for type I, {[Ln(apca)(ox)(H(2)O)(2)].H(2)O}(n) (Ln = Pr (2), Nd (3), ox = oxalate) for type II, and [Ln(2)(apca)(4)(OH)(2)(H(2)O)(2)](n) (Ln = Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Er (9), Y (10)) for type III. The structure of type I consists of 1D "snowflake" chains along a-axis, which are further interconnected by hydrogen bonds to produce a 3D sra net topology containing infinite (-C-O-La-)(n) rod-shaped SBU. Type II has 2D Ln-apca-ox 4(4)-net, in which a planar udud water tetramers (H(2)O)(4) are formed by coordinated and free water molecules. Type III also comprises of 2D 4(4)-layer network constructed from Ln-apca-OH. The structure diversity is mainly caused by the variation of coordinated ligand and lanthanide contraction effect. Remarkably, the oxalate in type II was in situ synthesized from 3-aminopyrazine-2-carboxylic acid through an oxidation-hydrolysis reaction. The luminescent investigations reveal that complex exhibits strong blue emission and complex exhibits characteristic luminescence of Eu(3+).

  15. A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Kennedy, Ian M

    2009-01-01

    A facile one-pot microemulsion method has been developed for the synthesis of spherical silver core-silica shell (Ag-SiO 2 ) nanoparticles with europium chelates doped in the shell through a silane agent. The method is significantly more straightforward than other extant methods. Measurements of the luminescent emissions from the Ag-SiO 2 nanoparticles, in comparison with control silica nanoparticles without silver cores, showed that the presence of the silver cores can increase the fluorescence intensity approximately 24-fold and decrease the luminescence lifetime. This enhancement offers a potential increase in overall particle detectability with increased fluorophore photostability.

  16. Luminescence induced by electrons outside zinc oxide nanoparticles driven by intense terahertz pulse trains

    International Nuclear Information System (INIS)

    Nagai, Masaya; Aono, Shingo; Ashida, Masaaki; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2017-01-01

    We investigated the behaviours of electrons from ZnO nanoparticles via a strong terahertz field. Luminescence from ZnO nanoparticles and surrounding nitrogen molecules was observed when the nanoparticles were irradiated with a terahertz free-electron laser (FEL). These excitations arose from the collision of electrons released via field electron emission with the ZnO nanoparticles and neighbouring nitrogen molecules. The strong excitation frequency dependence of the luminescence reflected the kinetic energy and trajectory of electrons outside the nanoparticles. We also observed spectral changes in the luminescence during macropulses of the FEL, even though the carrier lifetime of the nanoparticles was shorter than the interval between the micropulses. These changes were caused by the nanoparticles becoming charged due to electron emission, resulting in the electrons being re-emitted outside the nanoparticles. The electrons outside the nanoparticles were accelerated more efficiently by the terahertz field than the electrons inside the nanoparticles, and thus the motion of these exterior electrons provided a new excitation path. (paper)

  17. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    Science.gov (United States)

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  18. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine

    Science.gov (United States)

    Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.

    2018-06-01

    Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.

  19. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Donmez, Mert [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey); Yilmaz, M. Deniz, E-mail: deniz.yilmaz@gidatarim.edu.tr [Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, Konya 42080 (Turkey); Kilbas, Benan, E-mail: benankilbas@duzce.edu.tr [Department of Chemistry, Faculty of Art and Sciences, Duzce University, Duzce 81620 (Turkey)

    2017-02-15

    Highlights: • The nanosensors based on gold nanoparticles functionalized with lanthanide complexes were synthesized. • The nanosensors selectively and sensitively detected DPA, a biomarker of bacterial spores. • Ratiometric sensing of DPA by a ternary complex was achieved by ligand displacement strategy. - Abstract: Gold nanoparticles (GNPs) functionalized with ethylenediamine-lanthanide complexes (Eu-GNPs and Tb-GNPs) were used for the selective fluorescent detection of dipicolinic acid (DPA), a unique biomarker of bacterial spores, in water. Particles were characterized by transmission electron microscopy and zeta potential measurements. The coordination of DPA to the lanthanides resulted in the enhancement of the fluorescence. A selective response to DPA was observed over the nonselective binding of aromatic ligands. The ligand displacement strategy were also employed for the ratiometric fluorescent detection of DPA. 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedion (TFNB) was chosen as an antenna to synthesize ternary complexes. The addition of DPA on EuGNP:TFNB ternary complex quenched the initial emission of the complex at 615 nm and increased the TFNB emission at 450 nm when excited at 350 nm. The results demonstrated that the ratiometric fluorescent detection of DPA was achieved by ligand displacement strategy.

  20. Synthesis, density functional theory calculations and luminescence of lanthanide complexes with 2,6-bis[(3-methoxybenzylidene)hydrazinocarbonyl] pyridine Schiff base ligand.

    Science.gov (United States)

    Taha, Ziyad A; Ababneh, Taher S; Hijazi, Ahmed K; Abu-Salem, Qutaiba; Ajlouni, Abdulaziz M; Ebwany, Shroq

    2018-02-01

    A pyridine-diacylhydrazone Schiff base ligand, L = 2,6-bis[(3-methoxy benzylidene)hydrazinocarbonyl]pyridine was prepared and characterized by single crystal X-ray diffraction. Lanthanide complexes, Ln-L, {[LnL(NO 3 ) 2 ]NO 3 .xH 2 O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Er)} were prepared and characterized by elemental analysis, molar conductance, thermal analysis (TGA/DTGA), mass spectrometry (MS), Fourier transform infra-red (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. Ln-L complexes are isostructural with four binding sites provided by two nitro groups along with four coordination sites for L. Density functional theory (DFT) calculations on L and its cationic [LnL(NO 3 ) 2 ] + complexes were carried out at the B3LYP/6-31G(d) level of theory. The FT-IR vibrational wavenumbers were computed and compared with the experimentally values. The luminescence investigations of L and Ln-L indicated that Tb-L and Eu-L complexes showed the characteristic luminescence of Tb(III) and Eu(III) ions. Ln-L complexes show higher antioxidant activity than the parent L ligand. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Lanthanide metal-organic frameworks

    International Nuclear Information System (INIS)

    Cheng, Peng

    2015-01-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  2. Lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Peng (ed.) [Nankai Univ., Tianjin (China). Dept. of Chemistry

    2015-03-01

    This book contains the following nine chapters: lanthanide metal-organic frameworks: syntheses, properties, and potential applications (Stephen Fordham, Xuan Wang, Mathieu Bosch, Hong-Cai Zhou); 2. chiral lanthanide metal-organic frameworks (Weisheng Liu, Xiaoliang Tang); 3. Porous lanthanide metal-organic frameworks for gas storage and separation (Bin Li, Banglin Chen); 4. Luminescent lanthanide metal-organic frameworks (Xue-Zhi Song, Shu-Yan Song, Hong-Jie Zhang); 5. Metal-organic frameworks based on lanthanide clusters (Lian Chen, Feilong Jiang, Kang Zhou, Mingyan Wu, Maochun Hong); 6. metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism (Marilena Ferbinteanu, Fanica Cimpoesu, Stefania Tanase); 7. transition-lanthanide heterometal-organic frameworks: synthesis, structures, and properties (Wei Shi, Ke Liu, Peng Cheng); 8: MOFs of uranium and the actinides (Juan Su, Jiesheng Chen); 9. Nanostructured and/or nanoscale lanthanide metal-organic frameworks (Zhonghao Zhang, Zhiping Zheng).

  3. Lanthanide light for biology and medical diagnosis

    International Nuclear Information System (INIS)

    Bünzli, Jean-Claude G.

    2016-01-01

    Optical imaging emerges as a vital component of the various techniques needed to meet the stringent requirements of modern bioanalysis and bioimaging. Lanthanide luminescent bioprobes (LLBs) have greatly contributed to this field during the past 35 years because they have definite advantages such as little or no photobleaching and, thanks to time-gated detection, high sensitivity. The review summarizes the numerous tools offered by LLBs under their various forms, coordination compounds, nanoparticles, upconverting nanoparticles and their bioconjugates. It then focuses on biosensing, including point-of-care analysis, and then on both in vitro and in vivo bioimaging with visible and NIR light. The last section compares the performances of LLBs versus those of other commonly used bioprobes (organic dyes, quantum dots, and transition metal complexes). It is concluded that although LLBs will not replace all of existing bioprobes, they add invaluable new specific technologies to the biologist and medical doctor toolboxes. A good deal of improvements are achieved through nanotechnologies, which demonstrates that progresses in biosciences depend on the intersection of different disciplines, photophysics, chemistry, biochemistry, nanotechnology, and materials science. - Highlights: • Lanthanide luminescent bioprobes (LLBs) are indispensable tools in biosciences. • The tools provided by LLBs are summarized. • Main trends in biosensing and point-of-care analysis are presented. • Issues regarding optical bioimaging with visible and NIR light are described. • Characteristics of LLBs, including nanoparticles, are compared to other bioprobes.

  4. Lanthanide light for biology and medical diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Bünzli, Jean-Claude G., E-mail: jean-claude.bunzli@epfl.ch [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-02-15

    Optical imaging emerges as a vital component of the various techniques needed to meet the stringent requirements of modern bioanalysis and bioimaging. Lanthanide luminescent bioprobes (LLBs) have greatly contributed to this field during the past 35 years because they have definite advantages such as little or no photobleaching and, thanks to time-gated detection, high sensitivity. The review summarizes the numerous tools offered by LLBs under their various forms, coordination compounds, nanoparticles, upconverting nanoparticles and their bioconjugates. It then focuses on biosensing, including point-of-care analysis, and then on both in vitro and in vivo bioimaging with visible and NIR light. The last section compares the performances of LLBs versus those of other commonly used bioprobes (organic dyes, quantum dots, and transition metal complexes). It is concluded that although LLBs will not replace all of existing bioprobes, they add invaluable new specific technologies to the biologist and medical doctor toolboxes. A good deal of improvements are achieved through nanotechnologies, which demonstrates that progresses in biosciences depend on the intersection of different disciplines, photophysics, chemistry, biochemistry, nanotechnology, and materials science. - Highlights: • Lanthanide luminescent bioprobes (LLBs) are indispensable tools in biosciences. • The tools provided by LLBs are summarized. • Main trends in biosensing and point-of-care analysis are presented. • Issues regarding optical bioimaging with visible and NIR light are described. • Characteristics of LLBs, including nanoparticles, are compared to other bioprobes.

  5. Control of oxygen vacancies and Ce+3 concentrations in doped ceria nanoparticles via the selection of lanthanide element

    International Nuclear Information System (INIS)

    Shehata, N.; Meehan, K.; Hudait, M.; Jain, N.

    2012-01-01

    The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce +4 into Ce +3 and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

  6. Microwave assisted synthesis of luminescent carbonaceous nanoparticles from silk fibroin for bioimaging.

    Science.gov (United States)

    Gao, Hongzhi; Teng, Choon Peng; Huang, Donghong; Xu, Wanqing; Zheng, Chaohui; Chen, Yisong; Liu, Minghuan; Yang, Da-Peng; Lin, Ming; Li, Zibiao; Ye, Enyi

    2017-11-01

    Bombyx mori silk as a natural protein based biopolymer with high nitrogen content, is abundant and sustainable because of its mass product all over the world per year. In this study, we developed a facile and fast microwave-assisted synthesis of luminescent carbonaceous nanoparticles using Bombyx mori silk fibroin and silk solution as the precursors. As a result, the obtained carbonaceous nanoparticles exhibit a photoluminescence quantum yield of ~20%, high stability, low cytotoxicity, high biocompatibility. Most importantly, we successfully demonstrated bioimaging using these luminescent carbonaceous nanoparticles with excitation dependent luminescence. In addition, the microwave-assisted hydrothermal method can be extended to convert other biomass into functional nanomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  8. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques. The photo...... and lanthanide(III) centres in these molecules inhibits the efficient sensitisation of europium. We conclude that the intramolecular collisions required for efficient Dexter energy transfer from the sensitiser to the lanthanide(III) centre can be prevented by steric congestion....

  9. Synthesis of self-assembly plasmonic silver nanoparticles with tunable luminescence color

    International Nuclear Information System (INIS)

    Al-Ghamdi, Haifa S.; Mahmoud, Waleed E.

    2014-01-01

    Assembly is an elegant and effective bottom-up approach to prepare arrays of nanoparticles from nobel metals. Noble metal nanoparticles are perfect building blocks because they can be prepared with an adequate functionalization to allow their assembly and with controlled sizes. Herein, we report a novel recipe for the synthesis of self-assembled silver nanoparticles with tunable optical properties and sizes. The synthetic route followed here based on the covalent binding among silver nanoparticles by means of poly vinyl alcohol for the first time. The size of silver nanoparticle is governed by varying the amount of sodium borohydride. The as-synthesized nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, selected area electron diffraction and UV–vis spectroscopy. Results depicted that self-assembly of mono-dispersed silver nanoparticles with different sizes have been achieved. The silver nanostructure has a single crystalline faced centered cubic structure with growth orientation along (1 1 1) facet. These nanoparticles exhibited localized surface plasmon resonance at 403 nm. The luminescence peaks were red-sifted from violet to green due to the increase of the particle sizes. -- Highlights: • Self-assembled silver nanoparticles based PVA were synthesized. • NaBH 4 amount was found particle size dependent. • Silver nanoparticles strongly affected the surface plasmon resonance. • Highly symmetric luminescence emission band narrow width is obtained. • Dark field image showed a tunable color change from violet to green

  10. Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in Polyvinyl Alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep; Verma, R.K.; Rai, D.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India)

    2012-07-15

    Silver (Ag) nanoparticles (NPs) were prepared by laser ablation in water with an aim to enhance the luminescence of rare earth coordinated complex in polymer host. A fixed concentration of the complex containing Samarium (Sm), Salicylic acid (Sal) and 1, 10-phenanthroline (Phen) were combined with different concentrations of silver NPs in PolyVinyl Alcohol at room temperature. Absorption spectrum and XRD patterns of the sample show that the Sm(Sal){sub 3}Phen complex is accompanied by Ag NPs. The luminescence from the complex was recorded in the presence and absence of Ag NPs using two different excitation wavelengths viz. 400 and 355 nm. Of these, 400 nm radiation falls in the surface plasmon resonance of Ag NPs. It was found that the Ag NPs led to a significant enhancement in luminescence of the complex. Surprisingly, a high concentration of Ag NPs tends to quench the luminescence. - Highlights: Black-Right-Pointing-Pointer Sm complex with Ag nanoparticles in PVA was prepared at room temperature. Black-Right-Pointing-Pointer UV-vis absorption and XRD confirms the presence of Sm complex and Ag NPs. Black-Right-Pointing-Pointer Enhancement in luminescence of complex was observed with Ag NPs. Black-Right-Pointing-Pointer Coupling between radiative transitions of Sm and SPR of NPs enhances the emission. Black-Right-Pointing-Pointer The higher concentration of Ag NPs quenches the luminescence of the complex.

  11. Luminescence properties of Nd3+-doped Y2O3 nanoparticles in organic media

    International Nuclear Information System (INIS)

    Cui, Xiaoxia; Hou, Chaoqi; Lu, Jiabao; Gao, Chao; Wei, Wei; Peng, Bo

    2011-01-01

    Nd 3+ -doped yttrium oxide nanoparticles (Y 2 O 3 :Nd) with cubic phase were obtained successfully by a glycine-nitrate solution combustion method. The results of Fourier transform infrared spectra (FTIR) showed that the -OH groups residing on the nanoparticles surfaces were reduced effectively by modifying with capping agent. The modified Y 2 O 3 :Nd nanoparticles displayed good monodispersity and excellent luminescence in N,N-dimethylformamide (DMF) solvent. Some optical parameters were calculated by Judd-Ofelt analysis based on absorption and fluorescence spectra. A relative large stimulated emission cross section, 1.7 x 10 -20 cm 2 , of the 4 F 3/2 → 4 I 11/2 transition was calculated. Theses results show that the modified Y 2 O 3 :Nd nanoparticles display good luminescence behavior in organic media. (orig.)

  12. Using Lanthanide Nanoparticles as Isotopic Tags for Biomarker Detection by Mass Cytometry

    Science.gov (United States)

    Cao, Pengpeng

    The development of robust, versatile, and high-throughput biosensing techniques has widespread implications for early disease detection and accurate diagnosis. An innovative technology, mass cytometry, has been developed to use isotopically-labelled antibodies to simultaneously study multiple parameters of single cells. The current detection sensitivity of mass cytometry is limited by the number of copies of a given isotope that can be attached to a given antibody. This thesis describes research on the synthesis, characterization, and bioconjugation of a new class of nanoparticle-based labelling agents to be employed for the detection of low-abundance biomarkers by mass cytometry. Hydrophobic lanthanide nanoparticles (Ln NPs) have been prepared by the Winnik group. To render the NPs water-soluble for biological applications, we coated the NP surface with a first generation of multidentate poly(ethylene glycol) (PEG)-based ligands via ligand exchange. We measured the size, morphology, and polydispersity of these hydrophilic NPs by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The colloidal stability of the NPs was determined at various pH and in phosphate buffered saline (PBS) solutions. Tetradentate-PEG-coated NPs (Tetra-NPs) exhibited the best stability at pH 3 to 9, and in PBS. However, when cells were treated with Tetra-NPs in preliminary in vitro studies, significant undesirable non-specific binding (NSB) was observed. In order to tackle the NSB issue presented in the Tetra-NPs, we prepared a second generation of polymer-based ligands using ring-opening metathesis polymerization (ROMP). A small library of ROMP polymers was synthesized, characterized, and used to stabilize NPs in aqueous solutions. The ROMP-NPs were found to have significantly reduced NSB to cells by inductively coupled plasma-mass spectrometry (ICP-MS). To further modify the NPs, amine groups were introduced as functional handles to both the tetradentate-PEG and

  13. Amplification of light emission of chiral pyridine Eu(III) complex by copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata; Levchenko, Viktoria [Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904 (Israel); Piccinelli, Fabio; Bettinelli, Marco [Laboratorio Materiali Luminescenti, DB, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona (Italy)

    2016-02-15

    We outline the applications of lanthanides luminescence in a number of modern fields. The intensity of the luminescence of the expensive lanthanides can be increased by their interaction with nanoparticles of inexpensive copper. As a typical example the chiral pyridine-based Eu{sup 3+} complex was incorporated into amorphous films of polyvinyl alcohol with hydroxyethyl cellulose. The luminescence intensity of the complex is increased by three hundred percent by its interaction with copper nanoparticles. The synthesis and steady state spectroscopy of the materials are presented. - Highlights: • Nanoparticles of copper were for the first time synthesized at 80 °C. • Copper NPs were incorporated with a luminescent Eu{sup 3+} complex in a polymeric matrix. • The films produced were characterized by photoluminescence spectroscopy. • The luminescence of Eu{sup 3+} complex with Cu NPs is 3 times higher than the original one.

  14. Hydrothermal synthesis and upconversion luminescent properties of YVO4:Yb3+,Er3+ nanoparticles

    International Nuclear Information System (INIS)

    Liang, Yanjie; Chui, Pengfei; Sun, Xiaoning; Zhao, Yan; Cheng, Fuming; Sun, Kangning

    2013-01-01

    Graphical abstract: YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The PL intensity of the sample increases with the increase of annealing temperature and excitation power. Under the excitation of a 980 nm diode laser, the samples show bright green luminescence. Highlights: ► YVO 4 :Yb 3+ ,Er 3+ nanoparticles were prepared by a hydrothermal approach. ► Bright green luminescence is observed under the excitation of a 980 nm laser diode. ► The PL intensity increases with the increase of annealing temperature. ► Energy transfer properties between Yb 3+ ion and Er 3+ ion were analyzed. -- Abstract: In this paper, YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The nanostructures, morphologies and upconversion luminescent properties of the as-prepared YVO 4 :Yb 3+ ,Er 3+ upconverting nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescent (PL) spectra. XRD results indicate that all the diffraction peaks of samples can be well indexed to the tetragonal phase of YVO 4 . TEM images demonstrate that the samples synthesized hydrothermally consist of granular-like nanoparticles ranging in size from about 30 to 50 nm. After being calcined at 500–800 °C for 2 h, the grain sizes of nanoparticles increase slightly. Additionally, the as-prepared nanoparticles show bright green luminescence corresponding to the 2 H 11/2 → 4 I 15/2 and 4 S 3/2 → 4 I 15/2 transitions of Er 3+ ions under the excitation of a 980 nm diode laser, which might find potential applications in fields such as phosphor powders, infrared detection and display devices

  15. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  16. Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability.

    Science.gov (United States)

    Maldiney, Thomas; Byk, Gerardo; Wattier, Nicolas; Seguin, Johanne; Khandadash, Raz; Bessodes, Michel; Richard, Cyrille; Scherman, Daniel

    2012-02-14

    We have recently reported the design and use of inorganic nanoparticles with persistent luminescence properties. Such nanoparticles can be excited with a UV lamp for 2min and emit light in the near-infrared area for dozen of minutes without any further excitation. This property is of particular interest for small animal optical imaging, since it avoids the autofluorescence of endogenous fluorophores which is one major problem encountered when using fluorescent probes. We report herein the synthesis of persistent luminescence nanoparticles (PLNPs) and their functionalization with two small targeting molecules: biotin and Rak-2. We provide characterization of each PLNP as well as preliminary evidence of the ability of PLNP-PEG-Biotin to target streptavidin and PLNP-PEG-Rak-2 to bind prostate cancer cells in vitro. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Silver nanoparticles plasmonic effect on eosin and rhodamine 6G luminescence in various media

    Science.gov (United States)

    Samusev, Ilia G.; Tikhomirova, Nadezhda S.; Slezhkin, Vasiliy A.; Zyubin, Andrey Yu.; Bryukhanov, Valery V.; Tsibulnikova, Anna V.

    2016-11-01

    The plasmonic enhancement and quenching of phosphorescence and fluorescence of the anionic (eosin) and cationic (rhodamine 6G) dyes have been studied in various environments: silver nanoparticles of silver hydrosol citrate in water, in polymer films and on the surface of nanoporous silica in order to determine the kinetic and spectral effects on the dye luminescence. Depending on the silver nanoparticles concentration both the enhancement and quenching of the dyes phosphorescence and fluorescence have been detected. The mechanism of interaction between the excited molecules and silver nanoparticles has been discussed.

  18. Comparison of temperature sensing of the luminescent upconversion and ZnCdS nanoparticles

    Science.gov (United States)

    Yanina, I. Yu.; Volkova, E. K.; Sagaidachnaya, E. A.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2018-02-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) and ZnCdS nanoparticles (ZnCdSNPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the luminescence signal of UCNPs and ZnCdSNPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. The most likely that the multiple phase transitions are associated with the different components of fat cells, such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The results of phase transitions of lipids were observed as the changes in the slope of the temperature dependence of the intensity of luminescence of the film with nanoparticles embedded into tissue. The obtained results confirm a high sensitivity of the luminescent UCNPs and ZnCdSNPs to the temperature variations within thin tissue samples and show a strong potential for the controllable tissue thermolysis.

  19. Microemulsion mediated synthesis of triangular shape SnO{sub 2} nanoparticles: Luminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in

    2014-01-30

    The triangular prism shapes of SnO{sub 2}·xH{sub 2}O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO{sub 2} nanoparticles was studied. There is the quantum size effect in absorption study of SnO{sub 2} nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO{sub 2} nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO{sub 2} nanoparticles in both microemulsion and powder form. SnO{sub 2} nanoparticles show green emission due to oxygen vacancy. SnO{sub 2} nanoparticles when doped with Eu{sup 3+} ions give the enhanced luminescence of Eu{sup 3+} due to the surface mediated energy transfer from SnO{sub 2} to Eu{sup 3+} ion.

  20. Microemulsion mediated synthesis of triangular shape SnO2 nanoparticles: Luminescence application

    International Nuclear Information System (INIS)

    Luwang, Meitram Niraj

    2014-01-01

    The triangular prism shapes of SnO 2 ·xH 2 O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO 2 nanoparticles was studied. There is the quantum size effect in absorption study of SnO 2 nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO 2 nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO 2 nanoparticles in both microemulsion and powder form. SnO 2 nanoparticles show green emission due to oxygen vacancy. SnO 2 nanoparticles when doped with Eu 3+ ions give the enhanced luminescence of Eu 3+ due to the surface mediated energy transfer from SnO 2 to Eu 3+ ion.

  1. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke, E-mail: dnagao@tohoku.ac.jp; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-09-15

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO{sub 2} nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  2. Syntheses and luminescence properties of two novel lanthanide (III) perchlorate complexes with phenacyl p-tolyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shu-Yan [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Li, Wen-Xian, E-mail: nmglwx@163.com [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Yu-Shan [Inner Mongolia Autonomous Region Product Quality Inspection Institute, Hohhot 010070 (China); Xin, Xiao-Dong; Guo, Feng; Cao, Xiao-Fang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China)

    2015-06-15

    Two novel solid binary complexes of rare earth perchlorate with phenacyl p-tolyl sulfoxide were synthesized and characterized by elemental analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, {sup 1}HNMR and UV spectra. The results indicated that the composition of these complexes was REL{sub 7} (ClO{sub 4}){sub 3}·6H{sub 2}O (RE=Eu (III), Tb (III), L=C{sub 6}H{sub 5}COCH{sub 2}SOC{sub 6}H{sub 4}CH{sub 3}). The study on IR spectra and {sup 1}HNMR spectra revealed that phenacyl p-tolyl sulfoxide bonded with RE{sup 3+} ions by the oxygen atom in sulfinyl group. The emission spectra illustrated that both the Eu (III) and Tb (III) complexes displayed excellent luminescence in solid state, and The most intensive characteristic emission of the Eu(III) and Tb(III) complexes were 245,400 a.u. and 298,000 a.u. respectively. The slit with was 1 nm. By analysis luminescence and phosphorescence spectrum, it was found that the ligand had the advantage to absorb energy and transfer it to the Eu (III) and Tb (III) ions. The fluorescence lifetimes of the complexes were measured as well as the quantum yield of the Eu (III) complex.

  3. Effect of lanthanide on the microstructure and structure of LnMn0.5Fe0.5O3 nanoparticles with Ln=La, Pr, Nd, Sm and Gd prepared by the polymer precursor method

    International Nuclear Information System (INIS)

    Romero, Mariano; Faccio, Ricardo; Martínez, Javier; Pardo, Helena; Montenegro, Benjamín; Plá Cid, Cristiani Campos; Pasa, André A.

    2015-01-01

    The synthesis of LnMn 0.5 Fe 0.5 O 3 perovskite nanoparticles by the polymer precursor method showed a strong intrinsic dependence with different lanthanides (Ln=La, Pr, Nd, Sm and Gd). The polymerization level reached in the polymer precursor was proportional to the atomic number of lanthanide with exception of samarium, which showed the formation of a different precursor based in a citrate chelate with ethyleneglycol bonded as adduct. The increasing level of polymerization of the polymer precursors showed the formation of large-size perovskite nanoparticles after its calcination. SAXS and TEM analyses suggested that nanoparticles obtained, using this method, have a squared-like microstructure in connection with the polymer precursor microstructure. Structural analysis showed an orthorhombic structure with a slight decline in the Jahn–Teller distortion when the atomic number of lanthanide increases. Mössbauer spectroscopy showed the presence of a majority site in agreement with the Pbnm orthorhombic structure best fitted with Rietveld refinements and in some cases, a more distorted site attributed to local inhomogeneities and oxygen vacancies. - Highlights: • Precursor polymerization level is lower in the presence of lighter lanthanides. • Lighter lanthanide perovskite nanoparticles after calcination are lower-sized. • Nanoparticles obtained by this method have lamellae microstructure. • Jahn–Teller distortion declines for heavier lanthanide perovskites. • Oxygen vacancy phase was observed in lighter lanthanide perovskites

  4. Long term in vivo imaging with Cr{sup 3+} doped spinel nanoparticles exhibiting persistent luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Viana, B., E-mail: bruno.viana@chimie-paristech.fr [PSL Research University, Chimie ParisTech−CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Chimie-ParisTech, Paris cedex F-75231 (France); Sharma, S.K.; Gourier, D. [PSL Research University, Chimie ParisTech−CNRS, Institut de Recherche de Chimie Paris, 75005 Paris (France); Chimie-ParisTech, Paris cedex F-75231 (France); Maldiney, T.; Teston, E.; Scherman, D. [Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR 8258, INSERM U 1022, Paris cedex F-75270 (France); Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris cedex F-75270 (France); Chimie-ParisTech, Paris cedex F-75231 (France); Richard, C., E-mail: cyrille.richard@parisdescartes.fr [Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR 8258, INSERM U 1022, Paris cedex F-75270 (France); Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris cedex F-75270 (France); Chimie-ParisTech, Paris cedex F-75231 (France)

    2016-02-15

    Persistent luminescence is a singular property of some materials which are able to store the excitation or light irradiation energy at intrinsic traps or defects before slowly emitting lower energy photons within several hours. When such compounds are prepared as nanoparticles (NPs), when functionalization is realized to get colloidal materials well dispersed in aqueous medium, such nanoprobes open the use of the persistent luminescence for bioimaging applications. Recently, the numbers of in vivo applications increased with new modalities and new expectations. In this review, we focused our attention on the ZnGa{sub 2}O{sub 4}:Cr (ZGO:Cr) nanoparticles. When ZnGa{sub 2}O{sub 4} (ZGO), a normal spinel is doped with Cr{sup 3+} ions, a high brightness persistent luminescence material with an emission spectrum perfectly matching the transparency window of living tissues is obtained. It allows in vivo mouse imaging with an excellent target-to-background ratio. One interesting characteristic of ZGO:Cr lies in the fact that its persistent luminescence can be excited with orange/red light, well below its band gap energy and in the transparency window of living tissues. This important property allows multiple re-excitations to perform long term bioimaging. Antisite defects of the direct spinel structure are assumed to provide shallow traps which store the excitation light. Charge release by room temperature thermal excitation and recombination center, here trivalent chromium, are responsible for the persistent luminescence. Following a primary excitation (UV or visible), one also observed that trapped charges can be released under 977 nm light stimulation for several spinel gallate materials, therefore increasing the modalities and the materials envisioned for in vivo excitation of these NPs. - Highlights: • Review of the persistent luminescence for bio-imaging. • Long term bioimaging by in vivo excitation and photostimulation. • Challenges and main advances in the

  5. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    Directory of Open Access Journals (Sweden)

    Liping Wei

    2014-09-01

    Full Text Available Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies.

  6. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen

    International Nuclear Information System (INIS)

    Marín-Suárez, Marta; Arias-Martos, María C.; Fernández-Sánchez, Jorge F.; Fernández-Gutiérrez, Alberto; Galeano-Díaz, Teresa

    2013-01-01

    We report on a strategy to model both the size (d) and the polydispersity (PdI) of magnetic oxygen-sensitive nanoparticles with a typical size of 200 nm in order to increase the surface area. The strategy is based on experimental design and Response Surface Methodology. Nanoparticles were prepared by mini emulsion solvent evaporation of solutions of poly(styrene-co-maleic anhydride). Features of this strategy include (1) a quick selection of the most important variables that govern d and PdI; (2) a better understanding of the parameters that affect the performance of the polymer; and (3) optimized conditions for the synthesis of nanoparticles of targeted d and PdI. The results were used to produce nanoparticles in sizes that range from 100 to 300 nm and with small polydispersity. The addition of a platinum porphyrin complex that acts as a luminescent probe for oxygen and of magnetite (Fe 3 O 4 ) to the polymeric particles, did not affect d and PdI, thus demonstrating that this strategy simplifies their synthesis. The resulting luminescent and magnetic sensor nanoparticles respond to dissolved oxygen with sensitivity (Stern-Volmer constant) of around 35 bar −1 . (author)

  7. Blue shift in the luminescence spectra of MEH-PPV films containing ZnO nanoparticles

    International Nuclear Information System (INIS)

    Ton-That, Cuong; Phillips, Matthew R.; Nguyen, Thien-Phap

    2008-01-01

    Luminescence properties of nanocomposites consisting of ZnO nanoparticles in a conjugated polymer, poly [2-methoxy-5-(2'-ethyl hexyloxy)-phenylene vinylene] (MEH-PPV), were investigated. Photoluminescence measurements reveal a blue shift in the emission spectrum of MEH-PPV upon incorporation of ZnO nanoparticles into the polymer film while the emission is increasingly quenched with increasing ZnO concentration. In contrast, the structure of the polymer and its conjugation length are not affected by the presence of ZnO nanoparticles (up to 16 wt% ZnO) as revealed by Raman spectroscopy. The blue shift and photoluminescence quenching are explained by the separation of photogenerated electron-hole pairs at the MEH-PPV/ZnO interface and the charging of the nanoparticles

  8. Strategy for Enhanced Light Output from Luminescent Nanoparticles

    Science.gov (United States)

    2013-03-01

    Fabrication and scintillation response of rare earth doped transparent ceramics”, 2010 Glass & Optical Materials Division Annual Meeting of the...5 Self-assembled, almond-shaped colloidal GdVO4:Eu 3+ nanocrystals ~60 nm long and ~10 nm wide were synthesized in aqueous solutions. The as...t SiO2 =6nm) Core/Triple-shell (t SiO2 =17nm) Fig. 10 Nanocomposites (1 vol%) consisting of a silica core with a Gd2O3:Eu 3+ luminescent single

  9. Optical Properties of Lanthanides in Condensed Phase, Theory and Applications

    Directory of Open Access Journals (Sweden)

    Renata Reisfeld

    2015-04-01

    Full Text Available The basic theories of electronic levels and transition probabilities of lanthanides are summarized. Their interpretation allows practical preparation of new materials having application in lighting, solar energy utilization, optoelectronics, biological sensors, active waveguides and highly sensitive bioassays for in vitro detection in medical applications. The ways by which the weak fluorescence arising from electronic transition within the four f-configurations can be intensified will be discussed. This includes the intermixing of the four f-states with ligands of the host matrix, excitation to higher d-electronic states. Additional intensification of luminescence by plasmonic interaction with gold, silver and copper nanoparticles will be discussed. A short history of the time development of the research and the names of the scientists who made the major contribution of our understanding of lanthanides spectroscopy are presented.

  10. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Uzun, Lokman; Uzek, Recep; Şenel, Serap; Say, Ridvan; Denizli, Adil

    2013-01-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring

  11. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Uzek, Recep; Şenel, Serap [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Say, Ridvan [Anadolu University, Department of Chemistry, 26470, Eskisehir (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey)

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring.

  12. Highly luminescent material based on Alq3:Ag nanoparticles.

    Science.gov (United States)

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2013-09-01

    Tris (8-hydroxyquinoline) aluminum (Alq3) is an organic semiconductor molecule, widely used as an electron transport layer, light emitting layer in organic light-emitting diodes and a host for fluorescent and phosphorescent dyes. In this work thin films of pure and silver (Ag), cupper (Cu), terbium (Tb) doped Alq3 nanoparticles were synthesized using the physical vapor condensation method. They were fabricated on glass substrates and characterized by X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectroscopy, atomic force microscope (AFM), UV-visible absorption spectra and studied for their photoluminescence (PL) properties. SEM and AFM results show spherical nanoparticles with size around 70-80 nm. These nanoparticles have almost equal sizes and a homogeneous size distribution. The maximum absorption of Alq3 nanoparticles is observed at 300 nm, while the surface plasmon resonant band of Ag doped sample appears at 450 nm. The PL emission spectra of Tb, Cu and Ag doped Alq3 nanoparticles show a single broad band at around 515 nm, which is similar to that of the pure one, but with enhanced PL intensity. The sample doped with Ag at a concentration ratio of Alq3:Ag = 1:0.8 is found to have the highest PL intensity, which is around 2 times stronger than that of the pure one. This enhancement could be attributed to the surface plasmon resonance of Ag ions that might have increased the absorption and then the quantum yield. These remarkable result suggest that Alq3 nanoparticles incorporated with Ag ions might be quite useful for future nano-optoelectronic devices.

  13. Structure, luminescence, and dynamics of Eu2O3 nanoparticles in MCM-41

    International Nuclear Information System (INIS)

    Chen, Wei; Joly, Alan G.; Kowalchuk, George A.; Malm, Jan-Olle; Huang, Yining; Bovin, Jan-Olov

    2001-01-01

    The structure, luminescence spectroscopy, and lifetime decay dynamics of Eu2O3 nanoparticles formed in MCM-41 have been investigated. Both X-ray diffraction and high resolution transmission electron microscope observations indicate that Eu2O3 nanoparticles of monoclinic structure are formed inside channels of MCM-41 by heating at 140 C. However, heat treatment at 600 and 700 C causes migration of Eu2O3 from the MCM-41 channels forming nanoparticles of cubic structure outside of the MCM-41 channels. The feature of the hypersensitive 5D0? 7F2 emission profile of Eu3+ is used to follow the structural changes. Photoluminescence lifetimes show the existence of short (< 1 microsecond) and long (microsecond to millisecond) components for each sample. The fast decay is attributed to quenching by surface states of the nanoparticles or energy transfer to the MCM-41 while the longer time decays show the effects of concentration quenching. The monoclinic sample prepared at 140 C shows a higher luminescence intensity than the cubic samples or the bulk powder

  14. Water soluble (Ln3+) doped nanoparticle: Retention of strong luminescence

    Science.gov (United States)

    Attar, Tarannum Vahid; Khandpekar, Mahendra M.

    2018-04-01

    This paper deals with the synthesis of hexagonal nanoparticles of LaF3: Nd, Ho (LFNH) in the presence of LaCl3.7H2O and NH4F by precipitation method using deionized water as solvent. The nanoparticles have a nearly hexagonal shape with cell parameters, a = b = 7.0980 AU and c = 7.2300 AU and confirms with the JCPDS standard card (32-0483) of pure LaF3 crystals. The TEM results show that the average sizes of these nanoparticles are 15nm which is consistent with the sizes obtained from XRD measurements. The SEM image shows uniform size distribution of the nanoparticles. Detection of Second harmonic generation (SHG) signal together with the presence of wide transparency window (UV studies) makes LFNH suitable for optoelectronic applications. The Photoluminescence of the nanocrystals has been observed by excitation and emission spectra. The peak at 629nm indicates red up conversion fluorescence useful in applications like bioimaging and biolabelling.

  15. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  16. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies:a review

    Institute of Scientific and Technical Information of China (English)

    何立莹; 苏玉民; 蒋兰宏; 石士考

    2015-01-01

    Nanostructured cerium oxide (CeO2) commonly known as nanoceria is a rare earth metal oxide, which plays a technologi-cally important role due to its versatile applications as automobile exhaust catalysts, oxide ion conductors in solid oxide fuel cells, electrode materials for gas sensors, ultraviolet absorbents and glass-polishing materials. However, nanoceria has little or weak lumi-nescence, and therefore its uses in high-performance luminescent devices and biomedical areas are limited. In this review, we present the recent advances of nanoceria in the aspects of synthesis, luminescence and biomedical studies. The CeO2 nanoparticles can be synthesized by solution-based methods including co-precipitation, hydrothermal, microemulsion process, sol-gel techniques, combus-tion reaction and so on. Achieving controlled morphologies and enhanced luminescence efficiency of nanoceria particles are quite es-sential for its potential energy- and environment-related applications. Additionally, a new frontier for nanoceria particles in biomedi-cal research has also been opened, which involves low toxicity, retinopathy, biosensors and cancer therapy aspects. Finally, the sum-mary and outlook on the challenges and perspectives of the nanoceria particles are proposed.

  17. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    P R, Chithira; Theresa John, Teny, E-mail: teny@goa.bits-pilani.ac.in

    2017-05-15

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH{sup -}] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  18. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    International Nuclear Information System (INIS)

    P R, Chithira; Theresa John, Teny

    2017-01-01

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH - ] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  19. Synthesis, Characterization and Comparative Luminescence Studies of Rare-Earth-Doped Gd2O3 Nanoparticles

    Science.gov (United States)

    Pyngrope, D.; Singh, L. R.; Prasad, A. I.; Bora, A.

    2018-04-01

    A facile direct precipitation method was used for the synthesis of luminescence nanomaterial. Gd2O3 doped with rare earth element Eu3+ is synthesized by polyol route. The synthesized nanoparticles show their characteristic red emission. The nanoparticles are characterized by x-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and photoluminescence (PL) study. The synthesized nanoparticles are spherical particles with 30 nm size. The photoluminescence studies show the characteristic Eu3+ red emission. The PL study shows the intensity of the magnetic dipole transition ( 5 D0 \\to 7 F1 ) at 592 nm compared to that of the electronic dipole transition ( 5 D0 \\to 7 F2 ) at 615 nm. The nanomaterials can show significant application in various display devices and biomedical applications for tracking.

  20. Agglomeration of luminescent porous silicon nanoparticles in colloidal solutions

    Czech Academy of Sciences Publication Activity Database

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-01-01

    Roč. 11, Aug (2016), s. 1-5, č. článku 367. ISSN 1556-276X Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : nanocrystalline silicon * porous silicon * nanoparticles * colloids * agglomeration Subject RIV: BO - Biophysics Impact factor: 2.833, year: 2016

  1. Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe

    International Nuclear Information System (INIS)

    Doat, A.; Pelle, F.; Gardant, N.; Lebugle, A.

    2004-01-01

    A europium-doped apatitic calcium phosphate was synthesized at low temperature (37 degree sign C) in water-ethanol medium. This apatite was calcium-deficient, rich in hydrogen phosphate ions, and poorly crystallized with nanometric sized crystallites. It is similar to the mineral part of calcified tissues of living beings and is thus a biomimetic material. The substitution limit of Eu 3+ for Ca 2+ ions in this type of bioapatite ranged about 2-3%. The substitution at this temperature was facilitated by vacancies in the calcium-deficient apatite structure. As the luminescence of europium is photostable, the doped apatite could be employed as a biological probe. Internalization of these nanoparticles by human pancreatic cells in culture was observed by luminescence confocal microscopy

  2. Luminescence properties of calcium doped zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    El Mir, L., E-mail: Lassaad.ElMir@fsg.rnu.tn [Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Department of Physics, Riyadh 11623 (Saudi Arabia); Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Gabes University, Faculty of Sciences in Gabes, Gabes (Tunisia)

    2017-06-15

    Aerogel nanopowder of calcium-doped zinc oxide (ZnO:Ca) was synthesized by modified sol-gel method. In this process, hydrolyses was slowly released and followed by a thermal drying in supercritical conditions or ethyl alcohol. The obtained nanopowder was characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Cathodoluminescence (CL) and photoluminescence (PL). XRD data showed that Ca-doped ZnO sample has a hexagonal wurtzite structure with a slight distortion of ZnO lattice and no extra secondary phases, suggesting the substitution of Ca ions in the ZnO structure. SEM micrograph shows spherical microparticles having a rough porous fine-grained. From TEM micrograph, the samples are composed by single particles having an inhomogeneous size distribution, with most of them having a dimension in the range between 20 and 50 nm. This powder presents a strong photoluminescence band in the visible range. From photoluminescence excitation (PLE) the energy position of the obtained PL band depends on the wavelength of excitation. The luminescence results are also confirmed by cathodoluminescence technique and suggests the presence of photo-active centers in ZnO:Ca as deduced from new published works for visible photo-activated gas sensors and photo-catalysis of dyes degradation. We hope that this work provides some answers to the scientific community concerning the effect of doping in the creation of optical active centers in ZnO, promising for many technological applications.

  3. Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation

    Directory of Open Access Journals (Sweden)

    Abid Aamir D

    2013-01-01

    Full Text Available Abstract The deposition, clearance and translocation of europium-doped gadolinium oxide nanoparticles in a mouse lung were investigated experimentally. Nanoparticles were synthesized by spray flame pyrolysis. The particle size, crystallinity and surface properties were characterized. Following instillation, the concentrations of particles in organs were determined with inductively coupled plasma mass spectrometry. The protein corona coating the nanoparticles was found to be similar to the coating on more environmentally relevant nanoparticles such as iron oxide. Measurements of the solubility of the nanoparticles in surrogates of biological fluids indicated very little propensity for dissolution, and the elemental ratio of particle constituents did not change, adding further support to the contention that intact nanoparticles were measured. The particles were intratracheally instilled into the mouse lung. After 24 hours, the target organs were harvested, acid digested and the nanoparticle mass in each organ was measured by inductively coupled plasma mass spectrometry (ICP-MS. The nanoparticles were detected in all the studied organs at low ppb levels; 59% of the particles remained in the lung. A significant amount of particles was also detected in the feces, suggesting fast clearance mechanisms. The nanoparticle system used in this work is highly suitable for quantitatively determining deposition, transport and clearance of nanoparticles from the lung, providing a quantified measure of delivered dose.

  4. Preparation and luminescence properties of LaPO{sub 4}:Er,Yb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ha-Kyun [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of)]. E-mail: hakyun@krict.re.kr; Oh, Jae-Suk [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Seok, Sang-Il [Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. Box 107, Yuseong, Daejeon 305-600 (Korea, Republic of); Lee, Tack-Hyuck [Department of Chemistry, Paichai University, Daejeon 302-735 (Korea, Republic of)

    2005-09-15

    For possible applications as optical amplification materials in telecommunications, LaPO{sub 4}:Er,Yb nanoparticles were synthesized in a solution system and their properties were investigated by various spectroscopic techniques. The prepared nanoparticles are single-phased and present the monazite structure, the particle size being about 5 nm with a narrow size distribution. Also, it was confirmed by EA and FT-IR analyses that the surface of nanoparticles is coated with the solvent molecules used in the synthesis reaction, which possibly prevents them from agglomerating. In the NIR region, the emission of the LaPO{sub 4}:Er particles is very weak due to an efficient quenching of the {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2} emission by the hydroxyl groups adsorbed on the surface of the nanoparticles. On the other hand, the co-doping of Yb{sup 3+} as a sensitizer in the nanoparticles resulted in the increase of the emission intensity at 1539 nm due to the effective energy transfer from Yb{sup 3+} to Er{sup 3+}. In addition, the synthesized nanoparticles have exhibited good dispersibility into a polymer matrix and effective luminescence in the NIR region.

  5. ICP-MS Analysis of Lanthanide-Doped Nanoparticles as a Non-Radiative, Multiplex Approach to Quantify Biodistribution and Blood Clearance

    Science.gov (United States)

    Crayton, Samuel H.; Elias, Andrew; Al-Zaki, Ajlan; Cheng, Zhiliang; Tsourkas, Andrew

    2011-01-01

    Recent advances in material science and chemistry have led to the development of nanoparticles with diverse physicochemical properties, e.g. size, charge, shape, and surface chemistry. Evaluating which physicochemical properties are best for imaging and therapeutic studies is challenging not only because of the multitude of samples to evaluate, but also because of the large experimental variability associated with in vivo studies (e.g. differences in tumor size, injected dose, subject weight, etc.). To address this issue, we have developed a lanthanide-doped nanoparticle system and analytical method that allows for the quantitative comparison of multiple nanoparticle compositions simultaneously. Specifically, superparamagnetic iron oxide (SPIO) with a range of different sizes and charges were synthesized, each with a unique lanthanide dopant. Following the simultaneous injection of the various SPIO compositions into tumor-bearing mice, inductively coupled plasma mass spectroscopy (ICP-MS) was used to quantitatively and orthogonally assess the concentration of each SPIO composition in serial blood samples and the resected tumor and organs. The method proved generalizable to other nanoparticle platforms, including dendrimers, liposomes, and polymersomes. This approach provides a simple, cost-effective, and non-radiative method to quantitatively compare tumor localization, biodistribution, and blood clearance of more than 10 nanoparticle compositions simultaneously, removing subject-to-subject variability. PMID:22100983

  6. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    Science.gov (United States)

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synthesis, structure and luminescence properties of binary and ternary complexes of lanthanide (Eu{sup 3+}, Sm{sup 3+} and Tb{sup 3+}) with salicylic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen-Qi; Yan, Tian-Lu; Wang, Yi-Ting; Ye, Zi-Jun; Xu, Cun-Jin, E-mail: cjxu@hznu.edu.cn; Zhou, Wen-Jun

    2017-04-15

    A series of binary and ternary complexes of lanthanide (Eu{sup 3+}, Sm{sup 3+} and Tb{sup 3+}) with salicylic acid (Hsal) and 1,10-phenanthroline (phen) were synthesized, and characterized by element analysis, coordination titration analysis, IR, UV and TG-DTA. Their compositions were (NH{sub 4})[Ln(sal){sub 4}(H{sub 2}O){sub 2}] (Ln=Eu (1), Sm (2), Tb (3)) and (NH{sub 4})[Ln(sal){sub 4}(phen){sub 2}] (Ln=Eu (4), Sm (5), Tb (6)), respectively. In particular, the ternary complex of Eu{sup 3+}, 4, was characterized by X-ray diffraction, and luminescence intensities of binary and ternary complexes were compared. In case of Eu{sup 3+} and Sm{sup 3+} complexes, ternary complexes emitted stronger luminescence than corresponding binary complexes of salicylic acid and Ln{sup 3+}. On the other hand, the ternary Tb{sup 3+} complex had weaker luminescence than the binary complex because of back energy transfer from Tb{sup 3+} to phen. The CIE coordinates of 1–6 were calculated as (0.65, 0.35), (0.52, 0.48), (0.33, 0.59), (0.67, 0.33), (0.62, 0.38) and (0.36, 0.58), respectively, which enable these complexes to be promising candidates for red, green, or yellow component in OLEDs.

  8. Secret lanthanides.

    Science.gov (United States)

    Sturza, C M

    2014-09-15

    Lanthanides are a group of 15 chemical elements which, together with their salts, have come to be used in the last decade as homoeopathic remedies. The effective introduction of lanthanides and their salts into the clinical use, as homoeopathic remedies was based on the idea of Jan Scholten, MD to relate their physicochemical properties shown in the periodic table of elements to their homoeopathic potential. The lanthanides and their salts were prepared as homoeopathic remedies by Pharmacist Robert Münz.

  9. Low temperature synthesis and photoluminescence study of Y2Ti2O7:Eu nanoparticles

    International Nuclear Information System (INIS)

    Selvi, E.; Prasad, A.I.; Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2014-01-01

    Very small nanoparticles both undoped and doped Y 2 Ti 2 O 7 were prepared at a low temperature (700℃). The obtained undoped and doped Y 2 Ti 2 O 7 samples exhibit good crystallinity, smaller average crystallite size. Based on the detailed luminescence studies, it is confirmed that the lanthanide doped nano-materials have improved luminescence properties compared to the corresponding bulk samples. (author)

  10. Influence of Tb doping on the luminescence characteristics of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Sharma, A.; Dhar, S.; Singh, B. P.; Kundu, T.; Spasova, M.; Farle, M.

    2012-01-01

    Structural and optical properties of the Tb-doped ZnO nanoparticles with average diameter ≈4 nm have been systematically investigated. Our X-ray diffraction studies show a contraction of the ZnO lattice with the increase of the Tb mole-fraction x for x ≤ 0.02 and an expansion beyond x ≈ 0.02. The photoluminescence spectra are found to be comprised of a near band edge ultra violet luminescence (UVL) and a broad green luminescence (GL) band. Under the atmospheric condition, the intensity of the GL band is found to increase with the Tb mole-fraction over the entire doping range. On the other hand, under the vacuum condition, it has been observed that the GL intensity decreases with the increase of x up to x ≈ 0.02 but further increase of x leads to a gradual revival of the GL emission. Our study suggests that for x ≤ 0.02, GL results due to the physisorption of certain groups on the surface of the nanoparticles (GL-groups). It is also found that in this Tb mole-fraction regime, Tb incorporates mostly on the surface of the nanoparticles and affects the UVL to GL intensity ratio by influencing the attachment of the GL-groups. However, for x > 0.02, GL originates not only from the GL-groups but also from certain point defects, which are likely to be generated due to the incorporation of Tb in the core of the nanoparticles. A simple rate equation model is introduced to get a quantitative understanding about the variation of the density of the centers responsible for the GL emission as a function of x under the atmospheric and the vacuum conditions.

  11. Mn2+-ZnSe/ZnS@SiO2 Nanoparticles for Turn-on Luminescence Thiol Detection

    Directory of Open Access Journals (Sweden)

    Mohammad S. Yazdanparast

    2017-08-01

    Full Text Available Biological thiols are antioxidants essential for the prevention of disease. For example, low levels of the tripeptide glutathione are associated with heart disease, cancer, and dementia. Mn2+-doped wide bandgap semiconductor nanocrystals exhibit luminescence and magnetic properties that make them attractive for bimodal imaging. We found that these nanocrystals and silica-encapsulated nanoparticle derivatives exhibit enhanced luminescence in the presence of thiols in both organic solvent and aqueous solution. The key to using these nanocrystals as sensors is control over their surfaces. The addition of a ZnS barrier layer or shell produces more stable nanocrystals that are isolated from their surroundings, and luminescence enhancement is only observed with thinner, intermediate shells. Tunability is demonstrated with dodecanethiol and sensitivities decrease with thin, medium, and thick shells. Turn-on nanoprobe luminescence is also generated by several biological thiols, including glutathione, N-acetylcysteine, cysteine, and dithiothreitol. Nanoparticles prepared with different ZnS shell thicknesses demonstrated varying sensitivity to glutathione, which allows for the tuning of particle sensitivity without optimization. The small photoluminescence response to control amino acids and salts indicates selectivity for thiols. Preliminary magnetic measurements highlight the challenge of optimizing sensors for different imaging modalities. In this work, we assess the prospects of using these nanoparticles as luminescent turn-on thiol sensors and for MRI.

  12. Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry.

    Science.gov (United States)

    Marciniak, Lukasz; Pilch, Aleksandra; Arabasz, Sebastian; Jin, Dayong; Bednarkiewicz, Artur

    2017-06-22

    The current frontier in nanomaterials engineering is to intentionally design and fabricate heterogeneous nanoparticles with desirable morphology and composition, and to integrate multiple functionalities through highly controlled epitaxial growth. Here we show that heterogeneous doping of Nd 3+ ions following a core-shell design already allows three optical functions, namely efficient (η > 72%) light-to-heat conversion, bright NIR emission, and sensitive (S R > 0.1% K -1 ) localized temperature quantification, to be built within a single ca. 25 nm nanoparticle. Importantly, all these optical functions operate within the transparent biological window of the NIR spectral region (λ exc ∼ 800 nm, λ emi ∼ 860 nm), in which light scattering and absorption by tissues and water are minimal. We find NaNdF 4 as a core is efficient in absorbing and converting 808 nm light to heat, while NaYF 4 :1%Nd 3+ as a shell is a temperature sensor based on the ratio-metric luminescence reading but an intermediate inert spacer shell, e.g. NaYF 4 , is necessary to insulate the heat convertor and thermometer by preventing the possible Nd-Nd energy relaxation. Moreover, we notice that while temperature sensitivity and luminescence intensity are optically stable, increased excitation intensity to generate heat above room temperature may saturate the sensing capacity of temperature feedback. We therefore propose a dual beam photoexcitation scheme as a solution for possible light-induced hyperthermia treatment.

  13. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.

    Science.gov (United States)

    Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie

    2016-02-12

    Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Analysis of the shift of zero-phonon lines for f–d luminescence of lanthanides in relation to the Dorenbos model

    International Nuclear Information System (INIS)

    Zych, Aleksander; Ogieglo, Joanna; Ronda, Cees; Mello Donegá, Celso de; Meijerink, Andries

    2013-01-01

    The Dorenbos relation is an empirical model that relates the position of the lowest fd level of any lanthanide ion with that of Ce 3+ in the same host lattice. The relation is widely used to estimate the energy of fd levels of trivalent lanthanide ions in a given host lattice based on the peak position of the lowest fd level of at least one of the lanthanide ions in that host. The energy of fd levels is determined from peak maxima in excitation and emission spectra. In this work we use the position of zero-phonon lines (ZPLs) as input to investigate the accuracy of the Dorenbos relation. To this end, the ZPL positions of the fd bands for trivalent lanthanide ions in four different host lattices (CaF 2 , Y 3 Al 5 O 12 , LiYF 4 , and YPO 4 ) were obtained and used as input in the Dorenbos relation. The results are compared to those obtained through the standard procedure using band maxima. The data indicate that the ZPL approach gives more accurate estimates for the position of the lowest fd level with standard deviations that are 2–3 times smaller than those obtained for band maxima. The results confirm the concept of the Dorenbos model (constant energy difference between the fd levels of lanthanides) and show that the accuracy is even better than previously reported. The main cause for the larger deviation from positions of band maxima is related to a larger inaccuracy in determining band maxima compared to ZPLs. - Highlights: ► Zero-phonon lines were measured for the lanthanide series in different hosts. ► Values for the Dorenbos relation were revised for the zero-phonon line approach. ► Revised values are based on multiple materials where zero-phonon lines are observed.

  15. Structural and luminescent properties of Fe3+ doped PVA capped CdTe nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravindranadh K.

    2017-07-01

    Full Text Available During recent decades, magnetic and semiconductor nanoparticles have attracted significant attention of scientists in various fields of engineering, physics, chemistry, biology and medicine. Fe3+ doped PVA capped CdTe nanoparticles were prepared by co-precipitation method and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Fe3+ ions in the host lattice and the luminescent properties of prepared sample. Powder XRD data revealed that the crystal structure belongs to a cubic system and its lattice cell parameters were evaluated. The average crystallite size was estimated to be 8 nm. The morphology of prepared samples was analyzed by using SEM and TEM investigations. Functional groups of the prepared sample were observed in FT-IR spectra. Optical absorption and EPR studies have shown that on doping, Fe3+ ions enter the host lattice in octahedral site symmetry. PL studies of Fe3+ doped PVA capped CdTe nanoparticles revealed UV and blue emission bands. CIE chromaticity coordinates were also calculated from the emission spectrum of Fe3+ doped PVA capped CdTe nanoparticles.

  16. Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation

    International Nuclear Information System (INIS)

    Yang Huaming; Huang Chenghuan; Li Xianwei; Shi Rongrong; Zhang Ke

    2005-01-01

    Uniform cadmium sulfide (CdS) nanoparticles of about 6 nm in crystal size have been successfully synthesized via microwave irradiation. The as-prepared sample has a uniform morphology and high purity. The red photoluminescence spectrum of the CdS nanoparticles displays a strong peak at 602 nm by using a 300 nm excitation wavelength. The photocatalytic oxidation of methyl orange (MeO) in CdS suspensions under ultraviolet illumination was investigated. The results indicate that a low pH value (pH 2.0) and low reaction temperatures (20-30 deg. C) will facilitate the decolorization of the MeO solution. The photodegradation degree decreases with increasing the pH value and temperature of solution. The efficiency of the recycled CdS semiconductor becomes lower due to the deposit of elemental Cd on the CdS surface, which weakens the photocatalytic activity. The luminescent and photocatalytic mechanisms of the as-prepared CdS nanoparticles were primarily discussed. Microwave irradiation is proved to be a convenient, efficient and environmental-friendly one-step route to synthesize nanoparticles

  17. Charge transport along luminescent oxide layers containing Si and SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jambois, O. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)]. E-mail: ojambois@el.ub.es; Vila, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Pellegrino, P. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Carreras, J. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Perez-Rodriguez, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Garrido, B. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Bonafos, C. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France); BenAssayag, G. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France)

    2006-12-15

    The electrical conductivity of silicon oxides containing silicon and silicon-carbon nanoparticles has been investigated. By use of sequential Si{sup +} and C{sup +} ion implantations in silicon oxide followed by an annealing at 1100 deg. C, luminescent Si nanocrystals and SiC nanoparticles were precipitated. The characterization of the electrical transport has been carried out on two kinds of structures, allowing parallel or perpendicular transport, with respect to the substrate. The first type of samples were elaborated by means of a focus-ion-beam technique: electrical contacts to embedded nanoparticles were made by milling two nanotrenches on the sample surface until reaching the buried layer, then filling them with tungsten. The distance between the electrodes is about 100 nm. The second type of samples correspond to 40 nm thick typical MOS capacitors. The electron transport along the buried layer has shown a dramatic lowering of the electrical current, up to five orders of magnitude, when applying a sequence of voltages. It has been related to a progressive charge retention inside the nanoparticles, which, on its turn, suppresses the electrical conduction along the layer. On the other hand, the MOS capacitors show a reversible carrier charge and discharge effect that limits the current at low voltage, mostly due to the presence of C in the layers. A typical Fowler-Nordheim injection takes place at higher applied voltages, with a threshold voltage equal to 23 V.

  18. Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles.

    Science.gov (United States)

    Guarino, Gaetano; Rastrelli, Federico; Scrimin, Paolo; Mancin, Fabrizio

    2012-05-02

    Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization. © 2012 American Chemical Society

  19. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Lippy F. [Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20550-013 (Brazil); Correa, Charlane C. [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil); Ribeiro, Sidney J.L.; Santos, Molíria V. dos [Institute of Chemistry, São Paulo State University − UNESP, CP 355 Araraquara-SP 14801-970 Brazil (Brazil); Dutra, José Diogo L.; Freire, Ricardo O. [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Machado, Flávia C., E-mail: flavia.machado@ufjf.edu.br [Departamento de Química-ICE, Universidade Federal de Juiz de Fora, Juiz de Fora-MG, 36036-330 (Brazil)

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  20. Near Infrared-Emitting Cr3+/Eu3+ Co-doped Zinc Gallogermanate Persistence Luminescent Nanoparticles for Cell Imaging

    Science.gov (United States)

    Wang, Qiaoqiao; Zhang, Shuyun; Li, Zhiwei; Zhu, Qi

    2018-02-01

    Near infrared (NIR)-emitting persistent luminescent nanoparticles have been developed as potential agents for bioimaging. However, synthesizing uniform nanoparticles with long afterglow for long-term imaging is lacking. Here, we demonstrated the synthesis of spinel structured Zn3Ga2Ge2O10:Cr3+ (ZGGO:Cr3+) and Zn3Ga2Ge2O10:Cr3+,Eu3+ (ZGGO:Cr3+,Eu3+) nanoparticles by a sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The samples were investigated via detailed characterizations by combined techniques of XRD, TEM, STEM, selected area electron diffraction, photoluminescence excitation (PLE)/photoluminescence (PL) spectroscopy, and temperature-dependent PL analysis. The single-crystalline nanoparticles are homogeneous solid solution, possessing uniform cubic shape and lateral size of 80-100 nm. Upon UV excitation at 273 nm, ZGGO:Cr3+,Eu3+ exhibited a NIR emission band at 697 nm (2E → 4A2 transition of distorted Cr3+ ions in gallogermanate), in the absence of Eu3+ emission. NIR persistent luminescence of the sample can last longer than 7200 s and still hold intense intensity. Eu3+ incorporation increased the persistent luminescence intensity and the afterglow time of ZGGO:Cr3+, but it did not significantly affect the thermal stability. The obtained ZGGO:Cr3+,Eu3+-NH2 nanoparticles possessed an excellent imaging capacity for cells in vitro.

  1. Dynamic response of physisorbed hydrogen molecules on lanthanide-modified zirconia nanoparticles

    International Nuclear Information System (INIS)

    Loong, C.K.; Trouw, F.; Ozawa, Masakuni; Suzuki, Suguru

    1997-01-01

    Ultrafine lanthanide (Ln = Ce and Nd)-modified zirconia powders synthesized by a coprecipitation method exhibit high surface areas and adsorption sites that are essential for catalytic applications. We report a study of the surface chemistry of Ce 0.1 Zr 0.9 O 2 and Nd 0.1 Zr 0.9 O 1.95 powders. First, the specific surface area and porosity are characterized by nitrogen isotherm-adsorption measurements. Second, the motion of hydrogen molecules physisorbed on Ce- and Nd-doped zirconias is studied by inelastic neutron scattering. Nitrogen adsorption-desorption isotherm measurements yield a BET surface area (26.1 m 2 /g) and mesopore size (∼5 nm radius) in Ce 0.1 Zr 0.9 O 2 as compared to those (72.3 m 2 /g and ∼3 nm) in Nd 0.1 Zr 0.9 O 1.95 . The vibrational densities of states of H 2 on Ce 0.1 Zr 0.9 O 2 and Nd 0.1 Zr 0.9 O 1.95 were measured at 20 K over the 0-200 meV energy range for three hydrogen coverage. The spectra for both samples consist of two parts: a sharp peak at ∼14.5 meV and a broad component extending beyond 200 meV. The sharp peak corresponds to transitions from the J=0 to J=1 rotational states of bulk hydrogen molecules, and its intensity decreases with decreasing H 2 coverage. The broad component corresponds to overdamped motion of surface adsorbed hydrogen molecules. The major difference in the latter component between the Ce- and Nd-doped samples is an excess of intensities in the 5-14 meV region in Nd 0.1 Zr 0.9 O 1.95 . The confined motion of adsorbed H 2 on the different micropore and mesopore surfaces of Ce 0.1 Zr 0.9 O 2 and Nd 0.1 Zr 0.9 O 1.95 is discussed

  2. Luminescence resonance energy transfer (LRET) aptasensor for ochratoxin A detection using upconversion nanoparticles

    Science.gov (United States)

    Jo, Eun-Jung; Byun, Ju-Young; Mun, Hyoyoung; Kim, Min-Gon

    2017-07-01

    We report an aptasensor for homogeneous ochratoxin A (OTA) detection based on luminescence resonance energy transfer (LRET). This system uses upconversion nanoparticles (UCNPs), such as NaYF4:Yb3+, Er 3+, as the donor. The aptamer includes the optimum-length linker (5-mer-length DNA) and OTA-specific aptamer sequences. Black hole quencher 1 (BHQ1), as the acceptor, was modified at the 3' end of the aptamer sequence. BHQ1 plays as a quencher in LRET aptasensor and shows absorption at 543 nm, which overlaps with well the emission of the UCNPs. When OTA is added, the BHQ1-labeled OTA aptamer was folded due to the formation of the G-quadruplex-OTA complex, which induced the BHQ1 close to the UCNPs. Consequently, resonance energy transfer between UCNPs (donor) and BHQ1 (acceptor) enables quenching of upconversion luminescence signals under laser irradiation of 980 nm. Our results showed that the LRET-based aptasensor allows specific OTA analysis with a limit of detection of 0.03 ng/mL. These results demonstrated that the OTA in diverse foods can be detected specifically and sensitively in a homogeneous manner.

  3. Microwave synthesis of homogeneous and highly luminescent BCNO nanoparticles for the light emitting polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Hideharu [Battery Materials Laboratory, Kurashiki Research Center, Kuraray Co., Ltd., 2045-1, Sakazu, Kurashiki, Okayama 710-0801 (Japan); Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan); Ogi, Takashi, E-mail: ogit@hiroshima-u.ac.jp [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan); Iskandar, Ferry [Department of Physics, Institute of Technology Bandung, Ganesha 10, Bandung 40132, West Java (Indonesia); Aishima, Kana; Okuyama, Kikuo [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi Hiroshima 739 8527 (Japan)

    2015-10-15

    Nano-sized boron carbon oxynitride (BCNO) phosphors around 50 nm containing no rare earth metal and free from color heterogeneity were synthesized from mixtures of boric acid, urea, and citric acid by microwave heating with substantially shorter reaction times and lower temperatures than in the conventional BCNO preparation method such as electric-furnace heating. The emission wavelength of the phosphors varied with the mixing ratio of raw materials and it was found that lowering the proportion of urea to boric acid or citric acid tended to increase the internal quantum yield and shorten the emission wavelength under excitation at 365 nm. It was also found for the first time that a light-emitting polymer could be synthesized from a mixture of the prepared BCNO nanoparticles and a polyvinyl alcohol. This polymer composite exhibited uniform dispersion and stabilization of the luminescence and had a high internal quantum yield of 54%, which was higher than that of the phosphor alone. - Highlights: • Nano-sized BCNO phosphor was synthesized via microwave heating. • BCNO nanophosphor has homogeneous and high luminescence. • Emission wavelength was tunable by changing the ratio of precursor components. • BCNO nanophosphor can be easily dispersed in a polyvinyl alcohol. • BCNO–polymer composite exhibited uniform high internal quantum yield.

  4. Core shell structured nanoparticles of Eu3+ doped SnO2 with SiO2 shell: luminescence studies

    International Nuclear Information System (INIS)

    Ningthoujam, R.S.; Sudarsan, V.; Kulshreshtha, S.K.

    2005-01-01

    Re dispersible SnO 2 nanoparticles with and without Eu 3+ doping nanoparticles were prepared at 185 deg C by the urea hydrolysis of Sn 4+ in ethylene glycol medium. X-ray diffraction and 119 Sn MAS NMR studies of these particles revealed that these nanoparticles are crystalline with Cassiterite structure having an average crystallite size of 7 nm. Undoped SnO 2 gave a emission peak centered around 470 nm characteristic of the traps present in the nanoparticles. For Eu 3+ doped samples, emission around 590 and 615 nm was observed on both direct excitation as well as indirect excitation through traps, indicating that there is an energy transfer between the traps present in the nanoparticles and Eu 3+ ions. The asymmetric ratio of luminescence (relative intensity ratio of 590 to 615 nm transitions) has been found to be 1.2. For SnO 2 :Eu(5%)-SiO 2 nanoparticles, the asymmetric ratio of luminescence change significantly indicating the formation of nanoparticles with SnO 2 :Eu(5%) core covered with SiO 2 shell. (author)

  5. Synthesis and characterization of lanthanide based nanomaterials for radiation detection and biomedical applications

    Science.gov (United States)

    Yao, Mingzhen

    2011-12-01

    Lanthanide based nanomaterials have shown a great potential in various areas such as luminescence imaging, luminescent labels, and detection of cellular functions. Due to the f-f transitions of the metal ion, luminescence of lanthanide ions is characterized by sharp and narrow emissions. In this dissertation lanthanide based nanoparticles such as Ce3+, Eu3+ and other lanthanide ions doped LaF3 were synthesized, their characterization, encapsulation and embedding into hybrid matrix were investigated and some of their biomedical and radiological applications were studied. DMSO is a common solvent which has been used widely for biological applications. LaF3:Ce nanoparticles were synthesized in DMSO and it was found that their fluorescent emission originates from the metal-to-ligand charge-transfer excited states. After conjugation with PpIX and then encapsulation within PLGA, the particles show efficient uptake by cancer cells and great cytotoxicity, which is promising for applications in cancer treatments. However, the emission of Eu3+ in DMSO is totally different from LaF3:Ce, very strong characteristic luminescence is observed but no emissions from metal-to-ligand charge-transfer excited states as observed in LaF3:Ce in DMSO. Besides, it is very interesting to see that the coupling of Eu 3+ with O-H oscillations after water was introduced has an opposite effect on emission peaks at 617 nm and its shoulder peak at 613 nm. As a result, the intensity ratio of these two emissions has a nearly perfect linear dependence on increasing water concentration in Eu-DMSO, which provides a very convenient and valuable method for water determination in DMSO. Ce3+ has been well known as an emitter for radiation detection due to its very short decay lifetime. However, its emission range limited the environment in which the detection system works. Whereas, Quantum dots have high luminescence quantum efficiency but their low stopping power results in very weak scintillation

  6. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  7. ICP-MS analysis of lanthanide-doped nanoparticles: A quantitative and multiplexing approach to investigate biodistribution, blood clearance, and targeting

    Science.gov (United States)

    Crayton, Samuel

    The rapidly progressing field of nanotechnology promises to revolutionize healthcare in the 21st century, with applications in the prevention, diagnosis, and treatment of a wide range of diseases. However, before nanoparticulate agents can be brought into clinical use, they must first be developed, optimized, and evaluated in animal models. In the typical pre-clinical paradigm, almost all of the optimization is done at the in vitro level, with only a few select agents reaching the level of animal studies. Since only one experimental nanoparticle formulation can be investigated in a single animal, and in vivo experiments have relatively higher complexity, cost, and time requirements, it is not feasible to evaluate a very large number of agents at the in vivo stage. A major drawback of this approach, however, is that in vitro assays do not always accurately predict how a nanoparticle will perform in animal studies. Therefore, a method that allows many agents to be evaluated in a single animal subject would allow for much more efficient and predictive optimization of nanoparticles. We have found that by incorporating lanthanide tracer metals into nanoparticle formulations, we are successfully able to use inductively coupled plasma mass spectrometry (ICP-MS) to quantitatively determine a nanoparticle's blood clearance kinetics, biodistribution, and tumor delivery. This approach was applied to evaluate both passive and active tumor targeting, as well as metabolically directed targeting of nanoparticles to low pH tumor microenvironments. Importantly, we found that these in vivo measurements could be made for many nanoparticle formulations simultaneously, in single animals, due to the high-order multiplexing capability of mass spectrometry. This approach allowed for efficient and reproducible comparison of performance between different nanoparticle formulations, by eliminating the effects of subject-to-subject variability. In the future, we envision that this "higher

  8. Synthesis of in-situ luminescent ZnS nanoparticles facile with CTAB micelles and their properties study

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Vaishali [Centre for Nanoscience, Central University of Gujarat, Gandhinagar (India); Singh, Man [School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India Telephone: 079-23260210, fax: 079-23260076 (India)

    2016-04-13

    Currently, the development of micelles route is thrust area of research in nanoscience for the control particle size and remarkable properties through chemical co-precipitation method. A 0.9 mM aqueous CTAB micellar solution plays a role as capping agent in the homogeneous solution of 0.5 M ZnSO{sub 4} and 0.5 M Na{sub 2}S for synthesis, further precipitates purified with centrifugation in cold ethanol and millipore water to remove unreacted reagents and ionic salt particles. A resultant, white colored luminescent ZnS nanoparticle out with ∼95% yield is reported. The ZnS nanoparticles have been examined by their luminescence properties, optical properties and crystal structure. The mean particle size of ZnS nanoparticles is found to be ∼10 nm in various technical results and UV-absorption was 80 nm blue shifts moved from 345 nm (bulk material) to 265 nm, showing a quantum size impact. The X-ray diffraction (XRD) pattern shows the immaculate cubic phase. Photoluminescence (PL) investigates the recombination mechanism with blue emission from shallow electron traps at 490 nm in ZnS nanoparticles. An FTIR spectrum and Thermal gravimetric analysis (TGA) gives confirmation of CTAB – cationic surfactant on surface of ZnS nanoparticle as capping agent as well thermal stability of CTAB capped ZnS nanoparticles with respect to temperature.

  9. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    Science.gov (United States)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  10. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    Science.gov (United States)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  11. Comparison of Eu(NO3)3 and Eu(acac)3 precursors for doping luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Enrichi, F.; Ricco, R.; Scopece, P.; Parma, A.; Mazaheri, A. R.; Riello, P.; Benedetti, A.

    2010-01-01

    In this study, we report the comparison between Eu 3+ -doped silica nanoparticles synthesized by Stoeber method using Eu(NO 3 ) 3 or Eu(acac) 3 as precursors. The impact of different europium species on the properties of the final silica nanospheres is investigated in details in terms of size, morphology, reachable doping amount, and luminescence efficiency. Moreover, the results obtained for different thermal treatments are presented and discussed. It is shown that the organic complex modify the silica growing process, leading to bigger and irregular nanoparticles (500-800 nm) with respect to the perfectly spherical ones (400 nm) obtained by the nitrate salt, but their luminescence intensity and lifetime is significantly higher when 800-900 o C annealing is performed.

  12. Ratiometric luminescence thermometry with different combinations of emissions from Eu3+ doped Gd2Ti2O7 nanoparticles

    International Nuclear Information System (INIS)

    Lojpur, Vesna; Ćulubrk, Sanja; Dramićanin, Miroslav D.

    2016-01-01

    Herein, Eu 3+ doped Gd 2 Ti 2 O 7 nanoparticles were tested for application in ratiometric luminescence thermometry. It is shown that two combinations of emissions: one that uses two emissions of Eu 3+ ions and one that uses one emission of Eu 3+ ions and trap emission of Gd 2 Ti 2 O 7 provide thermometry over the 303–423 K temperature range with relative sensitivities between 0.14% K −1 and 0.95% K −1 . Thermometry based on two Eu 3+ emissions from 5 D 0 to 5 D 1 levels has a higher relative sensitivity, but lower absolute sensitivity than thermometry based on one Eu 3+ emission and trap emission of Gd 2 Ti 2 O 7 . The tested material is prepared by Pechini-type polymerized complex route and is composed of agglomerated nanoparticles of ~30–50 nm in size with pure-phase cubic structure (space group Fd-3m) as evidenced from electron microscopy and X-ray diffraction measurements. - Highlights: • Eu 3+ doped Gd 2 Ti 2 O 7 nanoparticles can serve as probes for luminescence thermometry. • Gd 2 Ti 2 O 7 trap emission is an excellent internal standard for luminescence thermometry. • Temperature is measured over 303–423 K range with sensitivity ranging 0.14–0.95% K −1 .

  13. Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet.

    Science.gov (United States)

    Fondo, Matilde; Corredoira-Vázquez, Julio; Herrera-Lanzós, Antía; García-Deibe, Ana M; Sanmartín-Matalobos, Jesús; Herrera, Juan Manuel; Colacio, Enrique; Nuñez, Cristina

    2017-12-12

    Mononuclear complexes of stoichiometry [Ln(H 3 L)(H 2 O)(NO 3 )](NO 3 ) 2 (Ln = Tb, 1; Dy, 2, Er, 3), which crystallise with different solvates, and the heterotrinuclear compound [Zn 2 Dy(L)(NO 3 ) 3 (OH)] (4) can be obtained with the same H 3 L compartmental ligand. The single X-ray crystal structure of the mononuclear complexes shows a LnO 9 core with a muffin-like disposition while the geometry of the DyO 9 core in 4 seems to be closer to spherical capped square antiprism. The analysis of the magnetic properties of all the complexes demonstrates that the mononuclear lanthanide compounds do not show slow relaxation of the magnetization, even when the samples are diluted with a diamagnetic matrix and subjected to a dc applied field of 1000 Oe. Nevertheless, the heterotrinuclear dysprosium complex 4·3H 2 O is a field-induced single ion magnet, with an estimated U eff barrier of 59 K. The luminescence characterisation of all the metal complexes in methanol solution at 298 K also shows a notable increase in the fluorescence emission of the heterotrinuclear complex with respect to the mononuclear ones, in such a way that 4 can be defined as a fluorescent single ion magnet.

  14. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO

    International Nuclear Information System (INIS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Elbaum, Danek; Koper, Kamil; Stępień, Piotr

    2013-01-01

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles’ green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell. (paper)

  15. Functionalization of luminescent YVO{sub 4}:Eu{sup 3+} nanoparticles by sol–gel

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Barbara A.; Ferreira, Natália H.; Oliveira, Pollyanna F.; Faria, Emerson H. de; Tavares, Denise C.; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2015-03-15

    Over the last decades, researchers have explored nanotechnological applications in different areas. The non-hydrolytic and hydrolytic sol–gel routes offer the ideal conditions to obtain materials with distinct compositions and multifunctionality, for use in such diverse areas as nanomedicine and technology. In this work, we used the modified hydrolytic sol–gel route to prepare YVO{sub 4} doped with Eu{sup 3+} ion. The YVO{sub 4}:Eu{sup 3+} nanoparticles were functionalized with 3-chloropropyltriethoxysilane using the hydrolytic sol–gel process; the drug cisplatin was then added to them. The final powder was characterized by thermal analysis, infrared spectroscopy, X-ray diffraction, and photoluminescence. The powder X-ray diffraction patterns of the samples obtained before and after functionalization revealed well defined peaks ascribed to the tetragonal structure of the YVO{sub 4} phase. The thermal analysis curves evidenced mass loss relative to 3-chloropropyltriethoxysilane and cisplatin decomposition. Infrared spectroscopy showed the peaks related to the CH and NH groups vibration modes, confirming YVO{sub 4} functionalization. The excitation and emission spectrum of the Eu{sup 3+} ion did not change upon its doping into the matrix functionalized with 3-chloropropyl and cisplatin. Cytotoxicity tests conducted on normal Chinese hamster (V79 cells) and murine melanoma (B16F10) cells attested that the matrix was not toxic. - Highlights: • Sol–gel methodology was used to obtain luminescent YVO{sub 4}. • Matrix was functionalized by alkoxide. • YVO{sub 4} matrix was not toxic. • YVO{sub 4}:Eu{sup 3+} nanoparticles existed in the cell cytoplasm and nucleus. • YVO{sub 4}:Eu{sup 3+} can function as a fluorescent label and drug delivery system.

  16. Brightly luminescent colloidal Ag–In–S nanoparticles stabilized in aqueous solutions by branched polyethyleneimine

    Energy Technology Data Exchange (ETDEWEB)

    Raevskaya, Alexandra E.; Ivanchenko, Maria V.; Skoryk, Mykola A.; Stroyuk, Oleksandr L., E-mail: alstroyuk@ukr.net

    2016-10-15

    Silver indium sulfide nanoparticles (NPs) stabilized in water by branched polyethyleneimine (PEI) were produced by a mild and direct synthesis. The Ag–In–S NPs exhibit relatively bright photoluminescence (PL) in the visible spectral range. The key parameters influencing color and intensity of PL are the Ag:In and Ag:S molar ratios and duration of the post-synthesis thermal treatment at ~100 °C. A maximal PL quantum yield, 20%, was observed for the Ag–In–S–PEI NPs produced at a molar Ag:In:S ratio of 1:5:5 and a thermal treatment at ~100 °C for 2 h. Such NPs are characterized by an average hydrodynamic size of around 100 nm. According to SEM each 100-nm globule comprises many smaller Ag–In–S NPs. Reasonably high PL quantum yield, variability of the emission color and self-aggregation of Ag–In–S–PEI NPs into polymer globules that do not scatter light makes such NPs promising for the luminescent bio-labeling applications. The PL band maximum energy of the Ag–In–S–PEI NPs produced in optimal conditions is very close to the band gap derived from the absorption spectra of colloidal solutions indicating that PL originates from the radiative recombination of delocalized or shallowly trapped charge carriers. - Highlights: • Ag–In–S nanoparticles (NPs) stabilized by polyethyleneimine in water were synthesized. • Ag–In–S NPs emit bright visible photoluminescence varying in color from green to red. • Maximal quantum yield of emission, ~20%, is observed at a Ag:In:S ratio of 1:5:5. • Separate Ag–In–S NPs are assembled into ~100-nm polyethyleneimine globules.

  17. Molecualr-scale multicoordinating ligands for coating luminescent QDs and gold nanoparticles

    Science.gov (United States)

    Zhan, Naiqian

    of three sets of compact zwitterionic ligands comprising either one or two lipoic acid (LA) groups chemically linked to a zwitterion moiety. These ligands are then combined with the photoligation strategy to promote the phase transfer of QDs to buffer media. The high compactness and the stability of the nanocrystals over a broad range of conditions have been discussed.This chapter also highlights the conjugation of mCherry to the QD surface via metal-histidine coordination, as a proof-of-concept, to develop FRET-based sensors. In chapter 4, we detail a versatile strategy to prepare a series of poly (ethylene glycol) containing multicoordinating ligands optimized for the surface-functionalization of luminescent QDs and gold nanoparticles (AuNPs) alike. Our chemical design relies on the modificationof chiral L-aspartic acid precursor, and the advantages of using aminoacid combined with lipoic acid and reactive PEG moieties have been discussed. Nonetheless, the two sets of ligands: bis(LA)-PEG-FN and LA-(PEG-FN)2 described here are compatible with photoligation strategy to yield hydrophilic, colloidally stable and reactive nanoparticles (QDs and AuNPs). In chapter 5, we discuss the preparation of hydrophilic QDs with intact azide (-N3) and aldehyde (-CHO) bio-orthorgonal functionalities on their surfaces. Strain promoted click chemistry and hydrazine ligation will be discussed to illustrate the orthogonality of two reactive groups, azide and aldehyde. Additionally, we demonstrate an optical method to extract the number of reactive -CHO groups per QD and finally estimate the total number of ligands bound to each QD for a few distinct size nanocrystals.

  18. Highly sensitive luminescent sensor for cyanide ion detection in aqueous solution based on PEG-coated ZnS nanoparticles.

    Science.gov (United States)

    Mehta, Surinder K; Salaria, Khushboo; Umar, Ahmad

    2013-03-15

    Using polyethylene glycol (PEG) coated ZnS nanoparticles (NPs), a novel and highly sensitive luminescent sensor for cyanide ion detection in aqueous solution has been presented. ZnS NPs have been used to develop efficient luminescence sensor which exhibits high reproducibility and stability with the lowest limit of detection of 1.29×10(-6) mol L(-1). The observed limit of detection of the fabricated sensor is ~6 times lower than maximum value of cyanide permitted by United States Environmental Protection Agency for drinking water (7.69×10(-6) mol L(-1)). The interfering studies show that the developed sensor possesses good selectivity for cyanide ion even in presence of other coexisting ions. Importantly, to the best of our knowledge, this is the first report which demonstrates the utilization of PEG- coated ZnS NPs for efficient luminescence sensor for cyanide ion detection in aqueous solution. This work demonstrates that rapidly synthesized ZnS NPs can be used to fabricate efficient luminescence sensor for cyanide ion detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Influence of surface functionalization on structural and photo-luminescence properties of CeF{sub 3}:Tb nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Anees A., E-mail: aneesaansari@gmail.com

    2017-07-01

    Graphical abstract: We designed highly aqueous dispersible CeF{sub 3}:Tb@LaF{sub 3}@SiO{sub 2} nanoparticles. The epitaxial growth of inert LaF{sub 3} shell and further amorphous silica, respectively, enhanced their optical and luminescence properties, which is highly usable for luminescent biolabeling, and optical bio-probe etc. - Abstract: Highly luminescent and aqueous soluble CeF{sub 3}:Tb (core),CeF{sub 3}:Tb@LaF{sub 3}(core/shell) and CeF{sub 3}:Tb@LaF{sub 3}@ SiO{sub 2} (core/shell/Si) nanoparticles(NPs) with mean particle size 12 nm were prepared by co-precipitation method at low temperature. X-ray diffraction pattern verified the phase purity, high crystallinity of hexagonal structure. The TEM image and SAED pattern revealed the single phase polycrystalline nature, well-dispersed irregular shaped hexagonal structure. FTIR spectra show the characteristic infrared peaks of silica, it suggests the successful silica surface coating around the core/shell NPs. The excitation and emission intensity of core/shell NPs were remarkably increased then their counterpart core NPs. It implies that a significant amount of nonradiative transition centers existing on the surface of core NPs has been eliminated due to the formation of passivated LaF{sub 3} layer. The silica surface modification over the core/shell NPs strikingly enhanced the solubility character in an aqueous environment.

  20. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  1. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles - structure and luminescence.

    Science.gov (United States)

    Ritter, Benjamin; Haida, Philipp; Fink, Friedrich; Krahl, Thoralf; Gawlitza, Kornelia; Rurack, Knut; Scholz, Gudrun; Kemnitz, Erhard

    2017-02-28

    A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu 3+ and Tb 3+ doped CaF 2 , SrF 2 and BaF 2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF 2 :Eu10 via SrF 2 :Eu10 to BaF 2 :Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce 3+ and Tb 3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce 3+ → Tb 3+ . In this case, the luminescence intensity is higher for CaF 2 than for SrF 2 , due to a lower spatial distance of the rare earth ions.

  2. Rare earth(III) complexes for the development of new magnetic and luminescent probes; Complexes de lanthanides(III) pour le developpement de nouvelles sondes magnetiques et luminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Nonat, A

    2007-10-15

    The simultaneous optimisation of the molecular parameters determining the relaxivity (number of coordinated water molecules, water-exchange, rotation dynamics of the whole complex, electronic relaxation, Gd(III)-proton distance) is essential to prepare efficient contrast agents. The aim of this work is on the one hand to design and study complexes with a high number of bound water molecules and to understand the influence of the coordination sphere on the stability and on the electronic relaxation and on the other hand, to use the ligand as a chromophore for the development of luminescent probes for biomedical imaging. We present the structure, the stability and the relaxivity of Gd(III) complexes of two series of tripodal ligands containing picolinate units based either on the 1,4,7-tri-aza-cyclononane ring or on a tertiary amine. These complexes show high relaxivity in water and in serum and can establish a non covalent interaction with serum albumin. The interpretation of the water proton relaxivity with the help of new relaxometric methods based on an auxiliary probe solute has allowed us to show that both the presence of the picolinate groups and the 1,4,7-tri-aza-cyclononane framework can lead to Gd(III) complexes with favourable electronic relaxation properties. This ligands have also been used for Eu(III) and Tb(III) complexation leading to strong luminescence in visible light. Other complexes derived from 8-hydroxyquinoline unit which display a very high luminescence in infrared are also studied. (author)

  3. Photodegradation of luminescence in organic-ligand-capped Eu3+:LaF3 nano-particles

    International Nuclear Information System (INIS)

    King, Gavin G. G.; Taylor, Luke R.; Longdell, Jevon J.; Clarke, David J.; Quilty, J. W.

    2014-01-01

    The luminescence from europium doped lanthanum trifluoride (Eu 3+ :LaF 3 ) nano-crystals can be greatly enhanced by capping with β-diketonate organic ligands. Here, we report on photo-stability measurements for the case of nano-crystals capped with thenoyltrifluroacetone (TTA) and compared with those capped with an inactive ligand, oleic acid. With exposure to UV pump light, we observed significant decrease in fluorescence and change in emission spectrum of the TTA-capped nano-particles whilst the fluorescence lifetime remained approximately constant. After a dose of order 70 kJ cm −2 , the luminescence level was similar to that of oleic acid capped nano-crystals. We discuss possible mechanisms

  4. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd{sub 2}O{sub 2}S nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xin; Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Cao, Xu; Zhan, Yonghua; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education and School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China); Kang, Fei; Wang, Jing [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Wu, Kaichun [Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2015-05-25

    Our previous study showed a great attenuation for the Cerenkov luminescence endoscope (CLE), resulting in relatively low detection sensitivity of radiotracers. Here, a kind of radioluminescence nanoparticles (RLNPs), terbium doped Gd{sub 2}O{sub 2}S was mixed with the radionuclide {sup 68}Ga to enhance the intensity of emitted luminescence, which finally improved the detection sensitivity of the CLE by using the radioluminescence imaging technique. With the in vitro and in vivo pseudotumor experiments, we showed that the use of RLNPs mixed with the radionuclide {sup 68}Ga enabled superior sensitivity compared with the radionuclide {sup 68}Ga only, with 50-fold improvement on detection sensitivity, which guaranteed meeting the demands of the clinical diagnosis of gastrointestinal tract tumors.

  5. Luminescence study on solvation of americium(III), curium(III) and several lanthanide(III) ions in nonaqueous and binary mixed solvents

    International Nuclear Information System (INIS)

    Kimura, T.; Nagaishi, R.; Kato, Y.; Yoshida, Z.

    2001-01-01

    The luminescence lifetimes of An(III) and Ln(III) ions [An=Am and Cm; Ln=Nd, Sm, Eu, Tb and Dy] were measured in dimethyl sulfoxide(DMSO), N,N-dimethylformamide(DMF), methanol(MeOH), water and their perdeuterated solvents. Nonradiative decay rates of the ions were in the order of H 2 O > MeOH > DMF > DMSO, indicating that O-H vibration is more effective quencher than C-H, C=O, and S=O vibrations in the solvent molecules. Maximal lifetime ratios τ D /τ H were observed for Eu(III) in H 2 O, for Sm(III) in MeOH and DMF, and for Sm(III) and Dy(III) in DMSO. The solvent composition in the first coordination sphere of Cm(III) and Ln(III) in binary mixed solvents was also studied by measuring the luminescence lifetime. Cm(III) and Ln(III) were preferentially solvated by DMSO in DMSO-H 2 O, by DMF in DMF-H 2 O, and by H 2 O in MeOH-H 2 O over the whole range of the solvent composition. The order of the preferential solvation, i.e., DMSO > DMF > H 2 O > MeOH, correlates with the relative basicity of these solvents. The Gibbs free energy of transfer of ions from water to nonaqueous solvents was further estimated from the degree of the preferential solvation. (orig.)

  6. Advances in highly doped upconversion nanoparticles.

    Science.gov (United States)

    Wen, Shihui; Zhou, Jiajia; Zheng, Kezhi; Bednarkiewicz, Artur; Liu, Xiaogang; Jin, Dayong

    2018-06-20

    Lanthanide-doped upconversion nanoparticles (UCNPs) are capable of converting near-infra-red excitation into visible and ultraviolet emission. Their unique optical properties have advanced a broad range of applications, such as fluorescent microscopy, deep-tissue bioimaging, nanomedicine, optogenetics, security labelling and volumetric display. However, the constraint of concentration quenching on upconversion luminescence has hampered the nanoscience community to develop bright UCNPs with a large number of dopants. This review surveys recent advances in developing highly doped UCNPs, highlights the strategies that bypass the concentration quenching effect, and discusses new optical properties as well as emerging applications enabled by these nanoparticles.

  7. Luminescence properties of erbium doped sodium barium borate glass with silver nanoparticles

    Science.gov (United States)

    Rajeshree Patwari, D.; Eraiah, B.

    2018-02-01

    Alteration in the absorption features of rare earth (RE) doped glasses with silver nanoparticles is ever-challenging in photonics. Erbium (Er3+) doped glasses with composition (60-x-y)B2O3-30Na2CO3-10BaO-xEr2O3-yAgCl where (x=0.5, 1.0 and y=1.0 mol %) are synthesized using melt-quenching method. The density is determined by Archimedes principle and molar volumes are calculated. Glass samples were characterized by XRD and UV-Visible spectroscopy. UV-Visible spectra shows eleven prominent absorption peaks centred around 366, 378, 408, 442, 452, 489, 521, 547, 652, 800 and 977 nm equivalent to the rare earth (Er3+) ion transitions. The sample without rare earth shows no peaks which specifies that rare earth ion plays a spirited role in the glass matrix. The glass samples with silver and without rare earth ion shows plasmon peak on heat treatment. The energy band gap values calculated for direct and indirect transitions are in the range of 3.126-3.440eV and 2.58-3.177eV respectively. The refractive indices and Urbach energies are also determined. Photoluminescence spectra are recorded and studied for excitation of the most intense peaks of wavelengths 378 and 521nm. The luminescence of erbium ion is enhanced by the presence of silver when the concentration of rare earth ion is less than that of silver.

  8. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light

    OpenAIRE

    Li, Lei; Sahi, Sunil K.; Peng, Mingying; Lee, Eric B.; Ma, Lun; Wojtowicz, Jennifer L.; Malin, John H.; Chen, Wei

    2016-01-01

    We developed new optic devices ? singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light ? for improvement of visual system functions. Tb3+ or Eu3+ singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542?nm or 613?nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals,...

  9. A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods

    International Nuclear Information System (INIS)

    Dai, Shaoliang; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2016-01-01

    The authors describe a turn-on luminescence resonance energy transfer (LRET) method for the detection of the mycotoxin Ochratoxin A (OTA). It utilizes upconversion nanoparticles (UCNPs) of the type NaYF_4: Yb, Er as the energy donor and gold nanorods (Au NRs) as the acceptor. Biotin-labeled OTA aptamers were bound to the surface of the avidin-functionalized UCNPs. The AuNRs, in turn, were modified with thiolated OTA aptamer cDNA via thiol chemistry. The emission band of the UCNPs under 980-nm laser excitation has a maximum peaking at 657 nm and overlaps the absorption band of the AuNRs which peaks at 660 nm. Quenching of luminescence occurs because the hybridization actions shorten the distance between UCNPs and AuNRs. If, however, OTA is added, the two kinds of particles separate again because of the high affinity between OTA and the OTA aptamer. As a result, luminescence is recovered. The calibration plot is linear in the 0.05 to 100 ng mL"−"1 OTA concentration range, and the limit of detection is 27 pg mL"−"1. The method was successfully applied to the determination of OTA in beer. (author)

  10. Highly luminescent colloidal Eu(3)+-doped KZnF(3) nanoparticles for the selective and sensitive detection of Cu(II) ions.

    Science.gov (United States)

    Sarkar, Shyam; Chatti, Manjunath; Mahalingam, Venkataramanan

    2014-03-17

    This article describes a green synthetic approach to prepare water dispersible perovskite-type Eu3+-doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 8C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90% of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+-doped KZnF3 nanoparticles could be used as a tool for bioimaging.

  11. Bifunctional Zn(II)Ln(III) dinuclear complexes combining field induced SMM behavior and luminescence: enhanced NIR lanthanide emission by 9-anthracene carboxylate bridging ligands.

    Science.gov (United States)

    Palacios, María A; Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Pope, Simon J A; Brechin, Euan K; Colacio, Enrique

    2014-02-03

    There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(μ-L)(μ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(μ-L)(μ-NO3)Er(NO3)2] (5), [Zn(H2O)(μ-L)Nd(NO3)3]·2CH3OH (6), [Zn(μ-L)(μ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(μ-L)(μ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(μ-L)(μ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(μ-L)(μ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(μ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials

  12. Synthesis of low-oxide blue luminescent alkyl-functionalized silicon nanoparticles with no nitrogen containing surfactant

    International Nuclear Information System (INIS)

    Thomas, Jason A.; Ashby, Shane P.; Huld, Frederik; Pennycook, Timothy J.; Chao, Yimin

    2015-01-01

    Of ever growing interest in the fields of physical chemistry and materials science, silicon nanoparticles show a great deal of potential. Methods for their synthesis are, however, often hazardous, expensive or otherwise impractical. In the literature, there is a safe, fast and cheap inverse micelle-based method for the production of alkyl-functionalized blue luminescent silicon nanoparticles, which nonetheless found limitations, due to undesirable Si-alkoxy and remaining Si–H functionalization. In the following work, these problems are addressed, whereby an optimisation of the reaction mechanism encourages more desirable capping, and the introduction of alcohol is replaced by the use of anhydrous copper (II) chloride. The resulting particles, when compared with their predecessors through a myriad of spectroscopic techniques, are shown to have greatly reduced levels of ‘undesirable’ capping, with a much lower surface oxide level; whilst also maintaining long-term air stability, strong photoluminescence and high yields

  13. Synthesis of low-oxide blue luminescent alkyl-functionalized silicon nanoparticles with no nitrogen containing surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jason A.; Ashby, Shane P.; Huld, Frederik [University of East Anglia, School of Chemistry (United Kingdom); Pennycook, Timothy J. [SuperSTEM Laboratory, STFC Daresbury Campus (United Kingdom); Chao, Yimin, E-mail: y.chao@uea.ac.uk [University of East Anglia, School of Chemistry (United Kingdom)

    2015-05-15

    Of ever growing interest in the fields of physical chemistry and materials science, silicon nanoparticles show a great deal of potential. Methods for their synthesis are, however, often hazardous, expensive or otherwise impractical. In the literature, there is a safe, fast and cheap inverse micelle-based method for the production of alkyl-functionalized blue luminescent silicon nanoparticles, which nonetheless found limitations, due to undesirable Si-alkoxy and remaining Si–H functionalization. In the following work, these problems are addressed, whereby an optimisation of the reaction mechanism encourages more desirable capping, and the introduction of alcohol is replaced by the use of anhydrous copper (II) chloride. The resulting particles, when compared with their predecessors through a myriad of spectroscopic techniques, are shown to have greatly reduced levels of ‘undesirable’ capping, with a much lower surface oxide level; whilst also maintaining long-term air stability, strong photoluminescence and high yields.

  14. Two series of reactant's ratio-dependent lanthanide organic frameworks derived from nicotinic acid N-oxide and oxalate: synthesis, crystal structures and luminescence properties.

    Science.gov (United States)

    Yu, Yanyan; Zhang, Lijuan; Zhou, Yunshan; Zuhra, Zareen

    2015-03-14

    Two series of lanthanide(III)–organic frameworks with the molecular formula [Ln2(NNO)2(OX)2(H2O)4]n (Ln = Eu 1, Tb 2, Sm 3, Dy 4, Gd 5) and [Ln2(NNO)4(OX)(H2O)2]n (Ln = Eu 6, Tb 7, Sm 8, Dy 9, Gd 10) were synthesized successfully under the same hydrothermal conditions with nicotinic N-oxide (HNNO) and oxalic acid (H2OX) as the mixed ligands merely through varying the molar ratio of the reactants. The compounds were characterized by IR, elemental analysis, UV, TG-DTA and powder X-ray diffraction (XRD). X-ray single-crystal diffraction analyses of compounds 1 and 7 selected as representatives and powder XRD analysis of the compounds revealed that both the series of compounds feature three-dimensional (3-D) open frameworks, and crystallize in the triclinic P1 space group while with different unit cell parameters. In compound 1, pairs of Eu(3+) ions and pairs of NNO(−) ligands connect with each other alternately to form a 1-D infinite Eu-NNO double chain, the adjacent 1-D double-chains are then joined together through OX(2−) ligands leading to a 2D layer, the 2-D layers are further ‘pillared’ by OX(2−) ligands resulting in a 3-D framework. In compound 7, the 1-D Tb-NNO infinite chain and its 2-D layer are formed in an almost similar fashion to that in compound 1. The difference between the structures of the two compounds 1 and 7 is that the adjacent 2-D layers in compound 7 are further connected by NNO(−) ligands resulting in a 3-D framework. The photoluminescence properties and energy transfer mechanism of the compounds were studied systematically. The energy level of the lowest triplet states of the HNNO ligand (23148 cm(−1)) was determined based on the phosphorescence spectrum of compound 5 at 77 K. The (5)D0 (Eu(3+)) and (5)D4 (Tb(3+)) emission lifetimes are 0.46 ms, 0.83 ms, 0.69 ms and 0.89 ms and overall quantum yields are 1.03%, 3.29%, 2.58% and 3.78% for the compounds 1, 2, 6 and 7, respectively.

  15. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    Science.gov (United States)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  16. Synthesis and characterization of Tin / Titanium mixed oxide nanoparticles doped with lanthanide for biomarking; Sintese e caracterizacao de nanoparticulas de oxido misto de estanho/titanio dopadas com lantanideos para marcacao biologica

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula Pinheiro

    2012-07-01

    This work presents the synthesis, characterization and photo luminescent study of tin and titanium mixed oxide nanoparticles doped with europium, terbium and neodymium to be used with luminescent markers on biological systems. The syntheses were done by co-precipitation, protein sol-gel and Pechini methods and the nanoparticles were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray diffraction and X-ray absorption spectroscopy. The photo luminescent properties studies were conducted for luminophores doped with europium, terbium and neodymium synthesized by coprecipitation method. For luminophore doped with europium it was possible to calculate the intensity parameters and quantum yield and it showed satisfactory results. In the case of biological system marking it was necessary the functionalization of these particles to allow them to bind to the biological part to be studied. So the nanoparticles were functionalized by microwave and Stoeber methods and characterized by infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction obtaining qualitative response of functionalization efficacy. The ninhydrin spectroscopic method was used for quantification of luminophores functionalization. The photo luminescent studies of functionalized particles demonstrate the potential applying of these luminophores as luminescent markers. (author)

  17. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-01-01

    lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large

  18. Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation

    International Nuclear Information System (INIS)

    Sun, Meng; Li, Zhan-Jun; Liu, Chun-Lin; Fu, Hai-Xia; Shen, Jiang-Shan; Zhang, Hong-Wu

    2014-01-01

    In order to realize super-long time (more than 3 days) in vivo imaging, SrAl 2 O 4 :Eu 2+ ,Dy 3+ (SAO) nanoparticles were employed as probes with in situ repeatable excitation capability. In our experiments, strontium aluminate nanoparticles were prepared. After surface modified with pyrophosphoric acid (PPA), grafted by PEG-5000-OCH 3 and irradiated with 365 nm UV light for 10 min, the afterglow signal can be observed in real time for more than 30 min in live mouse after intravenous injection. In order to monitor for a super-long time, the mouse was re-illuminated for 10 min by a white-light LED lamp and then the imaging signals were recovered and also persisted for 30 min again. The super-long time in vivo imaging was achieved by employing these repeatedly excited luminescent nanoprobes. -- Highlights: • The water-resistance and dispersity abilities of strontium aluminate nanoparticles were achieved by surface modification with pyrophosphoric acid and polyethylene glycol (PEG). • The synthesized nanoparticles were successfully employed in in vivo imaging. • A super-long time in vivo imaging was realized by the in situ re-excitation via a LED lamp

  19. Bright, water-soluble CeF{sub 3} photo-, cathodo-, and X-ray luminescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Sandhya; Deng, Wei; Drozdowicz-Tomsia, Krystyna; Liu, Deming [Macquarie University, Centre for Nanoscale BioPhotonics, Department of Physics and Astronomy (Australia); Zachreson, Cameron [University of Technology Sydney, School of Physics and Advanced Materials (Australia); Goldys, Ewa M., E-mail: ewa.goldys@mq.edu.au [Macquarie University, Centre for Nanoscale BioPhotonics, Department of Physics and Astronomy (Australia)

    2015-01-15

    Bright, water-soluble CeF{sub 3} nanoparticles with small size and narrow size distribution have been synthesized using a simple co-precipitation method without any ligands. Size control of nanoparticles from 13 ± 2 to 9 ± 2 nm was achieved by varying the reaction time. Colloidal properties have been found to vary with pH and, independently, with dilution. The photoluminescence of the as-synthesized nanoparticles shows a highly photostable UV/Visible fluorescence band due to allowed 5d–4f transitions, also observed in the X-ray luminescence spectrum. This band is suitable for X-ray excitation of a range of photosensitizers. The photoluminescence quantum yield of nanoparticles was also determined to be 31 %. Using the measured fluorescence decay time of 25 ns, the radiative lifetime of Ce in CeF{sub 3} was found to be 80.6 ns. Both photoluminescence and cathodoluminescence emission are affected by the reaction time and measurement temperature. Electron-beam-induced defect annealing is also observed.

  20. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles.

    Science.gov (United States)

    Zhan, Qiuqiang; Liu, Haichun; Wang, Baoju; Wu, Qiusheng; Pu, Rui; Zhou, Chao; Huang, Bingru; Peng, Xingyun; Ågren, Hans; He, Sailing

    2017-10-20

    Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.

  1. Modeling the influence of silver nanoparticles on the f–f luminescence of the EuEDTA complex in the polyvinylpirrolidone polymer

    Energy Technology Data Exchange (ETDEWEB)

    Couto dos Santos, M.A., E-mail: marcoscouto@ufs.br [Departamento de Física, Universidade Federal de Sergipe/CCET, São Cristóvão, SE 49100-000 (Brazil); Malta, O.L. [Departamento de Química Fundamental, Universidade Federalde Pernambuco/CCEN, Cidade Universitária, Recife, PE 50670-901 (Brazil); Reisfeld, R. [The Hebrew University of Jerusalem, Chemistry Institute, E. Safra Campus, 91904 Jerusalem (Israel)

    2016-02-15

    A theoretical analysis on experimental results previously obtained on the influence of silver nanoparticles in a polyvinylpirrolidone (PVP) polymer film containing a trivalent europium complex with EDTA ligand is made. Depending on the excitation source (at 393 nm with a xenon lamp or at 532 nm with a focused diode laser) the characteristic Eu{sup 3+} luminescence is observed to be enhanced by factors between 5 and 50. The theoretical analysis presumes a migration process of the EuEDTA complex units towards the silver nanoparticles, during the synthesis of the composite samples, and subsequently the treatment of the competition between local high field gradient effects and Eu{sup 3+} ion to the silver nanoparticles energy transfer successfully accounts for the observed luminescence enhancement factors. - Highlights: • Unusual luminescence enhancement of EuEDTA–silver nanoparticles–polyvinylpyrrolidone is treated theoretically. • A migration process of the EuEDTA complex units towards the silver nanoparticles is assumed. • The local high field gradient effects successfully accounts for the observed unusual luminescence enhancement factor of 50.

  2. Lanthanide-doped upconverting phosphors for bioassay and therapy

    Science.gov (United States)

    Guo, Huichen; Sun, Shiqi

    2012-10-01

    Lanthanide-doped fluorescent materials have gained increasing attention in recent years due to their unique luminescence properties which have led to their use in wide-ranging fields including those of biological applications. Aside from being used as agents for in vivo imaging, lanthanide-doped fluorescent materials also present many advantages for use in bioassays and therapy. In this review, we summarize the applications of lanthanide-doped up-converting phosphors (UCPs) in protein and gene detection, as well as in photodynamic and gene therapy in recent years, and outline their future potential in biological applications. The current report could serve as a reference for researchers in relevant fields.

  3. Magnetic nanosensor particles in luminescence upconversion capability.

    Science.gov (United States)

    Wilhelm, Stefan; Hirsch, Thomas; Scheucher, Elisabeth; Mayr, Torsten; Wolfbeis, Otto S

    2011-09-05

    Nanoparticles (NPs) exhibit interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be observed in their bulk counterparts. The synthesis of NPs (i.e., crystalline particles ranging in size from 1 to 100 nm) has been intensely studied in the past decades. Magnetic nanoparticles (MNPs) form a particularly attractive class of NPs and have found numerous applications such as in magnetic resonance imaging to visualize cancer, cardiovascular, neurological and other diseases. Other uses include drug targeting, tissue imaging, magnetic immobilization, hyperthermia, and magnetic resonance imaging. MNPs, due to their magnetic properties, can be easily separated from (often complex) matrices and manipulated by applying external magnetic field. Near-infrared to visible upconversion luminescent nanoparticles (UCLNPs) form another type of unusual nanoparticles. They are capable of emitting visible light upon NIR light excitation. Lanthanide-doped (Yb, Er) hexagonal NaYF₄ UCLNPs are the most efficient upconversion phosphors known up to now. The use of UCLNPs for in vitro imaging of cancer cells and in vivo imaging in tissues has been demonstrated. UCLNPs show great potential as a new class of luminophores for biological, biomedical, and sensor applications. We are reporting here on our first results on the combination of MNP and UCLNP technology within an ongoing project supported by the DFG and the FWF (Austria).

  4. Morphology and luminescence characteristics of combustion synthesized Y{sub 2}O{sub 3}: (Eu, Dy, Tb) nanoparticles with various amino-acid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S.; Sudarsan, V. [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sastry, P.U.; Patra, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-01-15

    Y{sub 2}O{sub 3} nanoparticles doped with Dy{sup 3+}, Eu{sup 3+} and Tb{sup 3+} together were prepared by the gel combustion method using a variety of amino acids namely, glycine, phenyl alanine, arginine, glutamic and aspartic acids. Number of carboxylate groups present in the amino acids used for combustion reaction was found to have strong influence on powder characteristics as well as luminescence from the samples. Based on small angle X-ray scattering studies, it is inferred that the nanoparticles prepared by using glycine and arginine as the fuels have smooth surface compared to those prepared using other amino acids. For the nanoparticles prepared using glutamic and aspartic acids, there exist a diffused pore-grain interface due to the lesser extent of heat generated in the reaction which leads to smaller particle size, poor crystallinity and improper burning of the organic materials. Lower surface area and smooth surface of the nanoparticles prepared using glycine leads to their improved luminescence properties. -- Highlights: • Surface smoothness of Y{sub 2}O{sub 3} (Dy, Eu, Tb) nanoparticles vary with amino acids. • Optimum luminescence intensity is observed when glycine is used as the fuel. • Diffused pore grain interface when glutamic and aspartic acids are used as fuels.

  5. Analytical chemistry of lanthanides

    International Nuclear Information System (INIS)

    Al-Sowdani, K.H.

    1986-12-01

    Candoluminescence of the lanthanides and the development of instruments for monitoring the phenomenon are described. The use of fluorescence spectroscopy, spectrofluorometry and spectrophotometry for the quantitative chemical analysis of the lanthanides is described. (U.K.)

  6. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    Science.gov (United States)

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  7. Defects induced luminescence and tuning of bandgap energy narrowing in ZnO nanoparticles doped with Li ions

    KAUST Repository

    Awan, Saif Ullah; Hasanain, S. K.; Hassnain Jaffari, G.; Anjum, Dalaver H.; Qurashi, Umar S.

    2014-01-01

    Microstructural and optical properties of Zn1-yLiyO (0.00 ≤y ≤0.10) nanoparticles are investigated. Li incorporation leads to substantial changes in the structural characterization. From micro-structural analysis, no secondary phases or clustering of Li was detected. Elemental maps confirmed homogeneous distribution of Li in ZnO. Sharp UV peak due to the recombination of free exciton and defects based luminescence broad visible band was observed. The transition from the conduction band to Zinc vacancy defect level in photoluminescence spectra is found at 518±2.5nm. The yellow luminescence was observed and attributed to Li related defects in doped samples. With increasing Li doping, a decrease in energy bandgap was observed in the range 3.26±0.014 to 3.17±0.018eV. The bandgap narrowing behavior is explained in terms of the band tailing effect due to structural disorder, carrier-impurities, carrier-carrier, and carrier-phonon interactions. Tuning of the bandgap energy in this class of wide bandgap semiconductor is very important for room temperature spintronics applications and optical devices. © 2014 AIP Publishing LLC.

  8. Defects induced luminescence and tuning of bandgap energy narrowing in ZnO nanoparticles doped with Li ions

    KAUST Repository

    Awan, Saif Ullah

    2014-08-28

    Microstructural and optical properties of Zn1-yLiyO (0.00 ≤y ≤0.10) nanoparticles are investigated. Li incorporation leads to substantial changes in the structural characterization. From micro-structural analysis, no secondary phases or clustering of Li was detected. Elemental maps confirmed homogeneous distribution of Li in ZnO. Sharp UV peak due to the recombination of free exciton and defects based luminescence broad visible band was observed. The transition from the conduction band to Zinc vacancy defect level in photoluminescence spectra is found at 518±2.5nm. The yellow luminescence was observed and attributed to Li related defects in doped samples. With increasing Li doping, a decrease in energy bandgap was observed in the range 3.26±0.014 to 3.17±0.018eV. The bandgap narrowing behavior is explained in terms of the band tailing effect due to structural disorder, carrier-impurities, carrier-carrier, and carrier-phonon interactions. Tuning of the bandgap energy in this class of wide bandgap semiconductor is very important for room temperature spintronics applications and optical devices. © 2014 AIP Publishing LLC.

  9. Luminescent GdVO4:Eu3+ functionalized mesoporous silica nanoparticles for magnetic resonance imaging and drug delivery.

    Science.gov (United States)

    Huang, Shanshan; Cheng, Ziyong; Ma, Ping'an; Kang, Xiaojiao; Dai, Yunlu; Lin, Jun

    2013-05-14

    Luminescent GdVO4:Eu(3+) nanophosphor functionalized mesoporous silica nanoparticles (MSN) were prepared (denoted as GdVO4:Eu(3+)@MSN). The in vitro cytotoxicity tests show that the sample has good biocompatibility, which indicates that the nanocomposite could be a promising candidate for drug delivery. Flow cytometry and confocal laser scanning microscopy (CLSM) confirm that the sample can be effectively taken up by SKOV3 ovarian cancer cells and A549 lung adenocarcinoma cells. It was also shown that the GdVO4:Eu(3+)@MSN brightened the T1-weighted images and enhanced the r1 relaxivity of water protons, which suggested that they could act as T1 contrast agents for magnetic resonance (MR) imaging. It was found that the carriers present a pH-dependent drug release behavior for doxorubicin (DOX). The composites show a red emission under UV irradiation due to the GdVO4:Eu(3+) nanophosphors. Furthermore, the PL intensity of the composite shows correlation with the cumulative release of DOX. These results suggest that the composite can potentially act as a multifunctional drug carrier system with luminescent tagging, MR imaging and pH-controlled release property for DOX.

  10. Preparation and characterization of bifunctional dendrimer modified Fe{sub 3}O{sub 4}/CdTe nanoparticles with both luminescent and superparamagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiuling, E-mail: wxling_self@163.com [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Gu, Yinjun; Dong, Shuling [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhao, Qin [School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019 (China); Liu, Yongjian [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-10-15

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe{sub 3}O{sub 4} were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe{sub 3}O{sub 4} nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g.

  11. Two-photon luminescence microscopy of field enhancement at gold nanoparticles

    DEFF Research Database (Denmark)

    Beermann, Jonas; Bozhevolnyi, Sergey I.

    2005-01-01

    Using a reflection scanning optical microscope detecting two-photon luminescence (TPL) we have imaged square gold bumps positioned in a periodic array either on a smooth gold film or directly on a glass substrate. The second-harmonic (SH) and TPL response from these structures show both...

  12. Using lanthanide chelates and uranyl compounds for diagnostic by fluoroimmunoassays

    International Nuclear Information System (INIS)

    Santos, Elen G.; Tomiyama, Claudia S.; Kodaira, Claudia A.; Felinto, Maria C.F.C.; Lourenco, Ana V. S.; Brito, Hermi F.

    2009-01-01

    The importance of the luminescence of lanthanide ions and UO 2 2+ is related to its peculiar characteristics, e.g. long lifetime and line-like emission bands in the visible, which make these ions unique among the species that are known to luminescence. Recent developments in the field of supramolecular chemistry have allowed the design of ligands capable of encapsulating lanthanide ions, thus forming kinetically inert complexes. By introduction of chromophoric groups in these ligands, an intense luminescence of the ion can be obtained via the 'antenna effect', defined as a light conversion process involving distinct absorbing (ligand) and emitting (metal ion) components. In such a process, the quantities that contribute to the luminescence intensity are the efficiency of the absorption, the efficiency of the ligand-metal energy transfer, and the efficiency of the metal luminescence. Encapsulation of lanthanide ions with suitable ligands may therefore give rise to 'molecular devices' capable to emit strong, long-lived luminescence. Besides the intrinsic interest in their excited state properties, compounds of lanthanide ions, in particular of the Eu 3+ and Tb 3+ ions, and now UO 2 2+ are important for their potential use as luminescent labels for biological species in fluoroimmunoassays (FIAs). This is most interesting because fluorimetric labeling represents an alternative method to the use of radioactive labels, which has long been the most common way of quantifying immunoreactions. In this article we report information about luminescent materials, which gave a good signal to quantify biological molecules by TR-FIA, DELFIA , DSLFIA, RIA and FRET. (author)

  13. Optical and Luminescence Properties of β-NaFeO2 Nanoparticles

    Science.gov (United States)

    Singh, Sarbjit; Tangra, Ankush Kumar; Lotey, Gurmeet Singh

    2018-05-01

    β-NaFeO2 nanoparticles have been synthesized by sol-gel method and their morphological, structural and optical properties investigated. Transmission electron microscope study reveals that the size of the synthesis nanoparticles is 37 nm and they are possessing spherical symmetry. X-ray diffraction pattern shows the orthorhombic crystal structure of nanoparticles with space group Pn21 a. UV-visible spectra of β-NaFeO2 divulges that these nanoparticles have direct band gap 2.35 eV. The observed Fourier transform infrared spectroscopy spectra confirms the presence of Fe-Na bonding at 1074 cm-1. The photoluminescence study of these nanoparticles shows that these nanoparticles possesses various transition in the visible spectrum.

  14. Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles.

    Science.gov (United States)

    Liu, Jinshui; Vellaisamy, Kasipandi; Yang, Guanjun; Leung, Chung-Hang; Ma, Dik-Lung

    2017-06-15

    A novel luminescent turn-on detection method for Hg(II) was developed. The method was based on the silver nanoparticle (AgNP)-mediated quenching of Ir(III) complex 1. The addition of Hg(II) ions causes the luminescence of complex 1 to be recovered due to the oxidation of AgNPs by Hg(II) ions to form Ag(I) and Ag/Hg amalgam. The luminescence intensity of 1 increased in accord with an increased Hg(II) concentration ranging from 0 nM to 180 nM, with the detection limit of 5 nM. This approach offers an innovative method for the quantification of Hg(II).

  15. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging.

    Science.gov (United States)

    Yang, Yang; Sun, Yun; Cao, Tianye; Peng, Juanjuan; Liu, Ying; Wu, Yongquan; Feng, Wei; Zhang, Yingjian; Li, Fuyou

    2013-01-01

    Upconversion luminescence (UCL) properties and radioactivity have been integrated into NaLuF(4):(153)Sm,Yb,Tm nanoparticles by a facile one-step hydrothermal method, making these nanoparticles potential candidates for UCL and single-photon emission computed tomography (SPECT) dual-modal bioimaging in vivo. The introduction of small amount of radioactive (153)Sm(3+) can hardly vary the upconversion luminescence properties of the nanoparticles. The as-designed nanoparticles showed very low cytotoxicity, no obvious tissue damage in 7 days, and excellent in vitro and in vivo performances in dual-modal bioimaging. By means of a combination of UCL and SPECT imaging in vivo, the distribution of the nanoparticles in living animals has been studied, and the results indicated that these particles were mainly accumulated in the liver and spleen. Therefore, the concept of (153)Sm(3+)/Yb(3+)/Tm(3+) co-doped NaLuF(4) nanoparticles for UCL and SPECT dual-modality imaging in vivo of whole-body animals may serve as a platform for next-generation probes for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. It also introduces an easy methodology to quantify in vivo biodistribution of nanomaterials which still needs further understanding as a community. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Luminescent ultra-small gold nanoparticles obtained by ion implantation in silica

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, T., E-mail: tiziana.cesca@unipd.it [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Maurizio, C.; Kalinic, B.; Scian, C. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Trave, E.; Battaglin, G. [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Dorsoduro 2137, I-30123 Venice (Italy); Mazzoldi, P.; Mattei, G. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy)

    2014-05-01

    The room temperature photoluminescence properties of ultra-small Au nanoclusters (made by 5–10 atoms) obtained by ion implantation in silica are presented. The results show a broad and intense luminescent emission in three different spectral regions around 750 nm, 980 nm and 1150 nm. The luminescence properties of the molecule-like Au clusters have been also correlated to the energy-transfer process to Er{sup 3+} ions in Au–Er co-implanted silica samples. A partial quenching of the 980 nm component is observed due to the Er{sup 3+} absorption level at 980 nm that acts as a de-excitation channel through which the photon energy is transferred from the Au nanoclusters to the Er ions, eventually producing the Er-related emission at 1.5 microns.

  17. Strongly luminescent InP/ZnS core-shell nanoparticles.

    Science.gov (United States)

    Haubold, S; Haase, M; Kornowski, A; Weller, H

    2001-05-18

    The wide-bandgap semiconducting material, zinc sulfide, has been coated on indium phosphide nanoclusters to a 1-2-Å thickness. The resulting InP-ZnS core-shell particle (as shown in the TEM image; scale 1 cm=5 nm) exhibits bright luminescence at room temperature with quantum efficiencies as high as 23 %. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  18. Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection.

    Science.gov (United States)

    Ai, Yu; Tu, Datao; Zheng, Wei; Liu, Yongsheng; Kong, Jintao; Hu, Ping; Chen, Zhuo; Huang, Mingdong; Chen, Xueyuan

    2013-07-21

    Trivalent lanthanide ions (Ln(3+))-doped inorganic nanoparticles (NPs) as potential luminescent bioprobes have been attracting tremendous interest because of their unique upconversion (UC) and downconversion (DC) luminescence properties. NaScF4, as an important host material, has been rarely reported and its crystal structure remains unclear. Herein, based on the single crystal X-ray diffraction, the space group of NaScF4 crystals was determined to be P31 containing multiple sites of Sc(3+) with crystallographic site symmetry of C1, which was verified by high-resolution photoluminescence spectroscopy of Eu(3+) at low temperature (10 K). Furthermore, monodisperse and size-controllable NaScF4:Ln(3+) NPs were synthesized via a facile thermal decomposition method. The biotinylated NaScF4:Er(3+)/Yb(3+) NPs were demonstrated for their applications as a heterogeneous UC luminescence bioprobe to detect avidin with a detection limit of 180 pM. After bioconjugation with amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), NaScF4:Ln(3+) NPs also exhibited specific recognition of cancer cells overexpressed with uPA receptor (uPAR, an important marker of tumor biology and metastasis), showing great potentials in tumor-targeted bioimaging.

  19. Silica- and silylated europium-based luminescent hybrids: new analysis tools for biological environments

    International Nuclear Information System (INIS)

    Pereira Duarte, Adriana

    2012-01-01

    The association of the very interesting luminescence properties of the lanthanide chelates with the physicochemical properties of inorganic matrix such as silica is a promising way to obtain new probes or luminescent markers for biology analyses. In this idea, this work focuses on the preparation of new hybrid materials based on the grafting of new europium(III) complexes on silica nanoparticles. These europium complexes were developed in our group using bifunctional ligands containing both complexing and grafting sites. Intrinsic characteristic of the ligands gives us the ability to make a covalent bond between the material surface and the complex. Two different methodologies were used; the first one is the direct grafting reaction involving the complex and silica nanoparticles (i.e. dense or meso-porous particles). The second one is the Stoeber reaction, where the SiO 2 nanoparticles were prepared in presence of the europium complex. The last methodology has an additional difficult, because of the presence of silylated europium complex, it needs a closer control of the physicochemical conditions. The new organic-inorganic hybrid materials, obtained in this work, present an interesting luminescence behavior and this one is depending on the localization of the europium complex, i.e. on the surface or within the nanoparticles. In addition, the obtained hybrids present the nano-metric dimension and the complex is not leachable. Analyses were realized to describe the luminescence properties, beyond surface and structural characteristics. Initial results show that the new hybrids are promising candidates for luminescent bio-markers, particularly for the time-resolved analysis. (author) [fr

  20. Structural and luminescence properties of europium(III)-doped zirconium carbonates and silica-supported Eu3+-doped zirconium carbonate nanoparticles

    International Nuclear Information System (INIS)

    Sivestrini, S.; Riello, P.; Freris, I.; Cristofori, D.; Enrichi, F.; Benedetti, A.

    2010-01-01

    The synthesis, morphology and luminescence properties of europium(III)-doped zirconium carbonates prepared as bulk materials and as silica-supported nanoparticles with differing calcination treatments are reported. Transmission electron microscopy and X-ray diffraction analyses have, respectively, been used to study the morphology and to quantify the atomic amount of europium present in the optically active phases of the variously prepared nanomaterials. Rietveld analysis was used to quantify the constituting phases and to determinate the europium content. Silica particles with an approximate size of 30 nm were coated with 2 nm carbonate nanoparticles, prepared in situ on the surface of the silica core. Luminescence measurements revealed the role of different preparation methods and of europium-doping quantities on the optical properties observed.

  1. Hybrid silica nanoparticles for sequestration and luminescence detection of trivalent rare-earth ions (Dy3+ and Nd3+) in solution

    Science.gov (United States)

    Topel, Seda Demirel; Legaria, Elizabeth Polido; Tiseanu, Carmen; Rocha, João; Nedelec, Jean-Marie; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2014-12-01

    New hybrid material-based adsorbents acting also as luminescent probes upon uptake of trivalent rare-earth (RE) ions Nd3+ and Dy3+ have been developed. SiO2 NPs functionalized by three different organic ligands, N-aminopropylen-amido-iminodiacetic acid (L1), pyridine-α,β-dicarboxylic acid bis(propylenamide) (L2), and N-propylen-iminodiacetic acid (L3), have been produced and fully characterized by 13C, 1H, and 29Si solid-state NMR, FTIR, TGA, XRD, TEM, nitrogen gas adsorption, and also by NTA and DLS in solution. The synthesized hybrid materials are well dispersible and stable in aqueous solutions according to NTA and consist of spheres with diameters less than 100 nm. Their affinities to the lanthanide ions Dy3+ and Nd3+ have been investigated in aqueous solution and characterized by SEM-EDS and complexometric titration, demonstrating that they can be successfully used as adsorbents for sequestration of trivalent RE ions. The adsorbed RE ions can efficiently be desorbed from saturated nanoadsorbents by addition of hydrochloric acid. The produced nanomaterials may also be used as luminescent probes for Dy3+ and Nd3+ ions in solution.

  2. Langmuir–Blodgett films based on poly(p-phenylene vinylene) and protein-stabilised palladium nanoparticles: Implications in luminescent and conducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Thiago E.; Sakai, Andrei [Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP 09972-270 (Brazil); Iost, Rodrigo M. [Institute of Chemistry of de São Carlos, University of São Paulo, São Carlos, SP 13560-970 (Brazil); Silva, Welter C. [Center of Nature Sciences, Federal University of Piauí, Teresina, PI 64049-550 (Brazil); Crespilho, Frank N. [Institute of Chemistry of de São Carlos, University of São Paulo, São Carlos, SP 13560-970 (Brazil); Péres, Laura O. [Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP 09972-270 (Brazil); Caseli, Luciano, E-mail: lcaseli@unifesp.br [Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP 09972-270 (Brazil)

    2013-07-01

    In this paper, poly(p-phenylene vinylene) block copolymers (PPV) were immobilised in stearic acid (HSt) Langmuir–Blodgett (LB) films, and their conducting and luminescent properties were enhanced by the incorporation of palladium nanoparticles stabilised by glucose oxidase (GOx-PdNPs). The nanobiocomposite, based on HSt, PPV, and GOx-PdNPs, was transferred from the air-water interface onto solid supports using the LB technique. The films were characterised by surface pressure–area isotherms, polarisation modulation infrared reflection–absorption spectroscopy, fluorescence spectroscopy, and conductivity measurements. The results indicated that the incorporation of GOx-PdNPs in PPV-HSt LB films enhances the luminescence and conducting properties of the PPV. Based on the higher conductivity and emission obtained with the hybrid LB films and the ability to tune the molecular-level interactions between the film components by changing the experimental conditions, thus allowing for further optimisation, one may envisage applications for these films in optical and electronic devices, such as organic light-emitting diodes. - Highlights: • Palladium nanoparticles were introduced in conducting polymer-fatty acid monolayers. • Hybrid films were characterised with tensiometry and infrared spectroscopy. • Films were transferred to solid supports with the Langmuir–Blodgett technique. • Nanoparticles enhanced luminescence and conducting properties.

  3. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    El-Bashir, S.M., E-mail: elbashireg@yahoo.com [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia); Department of Physics Faculty of Science, Benha University (Egypt); Barakat, F.M.; AlSalhi, M.S. [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia)

    2013-11-15

    Poly(methyl methacrylate) (PMMA) nanocomposite films doped with mixed coumarin dyestuffs and noble metal nanoparticles (60 nm silver and 100 nm gold) were prepared by spin coating technique. The effect of silver and gold nanoparticles on the film properties was studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis absorption and fluorescence spectroscopy measurements. DSC measurements indicated the increase of the glass transition temperature of the films by increasing nanogold concentration, recommending their promising thermal stability towards hot climates. It was found that the fluorescence signals of the mixed coumarin dyes were amplified by 5.4 and 7.15 folds as a result of metal enhanced fluorescence (MEF). The research outcomes offered a potential application of these films in solar energy conversion by plasmonic thin film luminescent solar concentrator (PTLSC). -- Graphical abstract: Plasmonic thin film luminescent solar concentrators. Highlights: • Metal enhanced fluorescence was achieved for mixed coumarin dyes doped in PMMA nanocomposite films. • The amplification of the fluorescence signals is dependent on the concentration of silver and gold nanoparticles. • These films is considered as potential candidates for plasmonic thin film luminescent solar concentrators (PTLSCs)

  4. Spectral luminescent properties of bacteriochlorin and aluminum phthalocyanine nanoparticles as hydroxyapatite implant surface coating

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The development and the spectral research of unique coating as crystalline nanoparticles of IR photosensitizers were performed for the creation of hydroxyapatite implants with photobactericidal properties. It has been proved that by the interaction of nanoparticles covering implant with the polar solvent, which simulates the interaction of the implant with the biocomponents in vivo (fast proliferating and with immunocompetent cells, photosensitizers nanoparticles change the spectroscopic properties, becoming fluorescent and phototoxic. Thus, the developed coating based on crystalline photosensitizer nanoparticles with studied specific properties should have antibacterial, anti-inflammatory effect by the photodynamic treatment in the near implant area. This research opens the prospect of the local prevention of inflammatory and autoimmune reactions in the area of implantation. The results of the study suggest a promising this technology in order to create implants with photobactericidal properties.

  5. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles.

    Science.gov (United States)

    Gu, Luo; Hall, David J; Qin, Zhengtao; Anglin, Emily; Joo, Jinmyoung; Mooney, David J; Howell, Stephen B; Sailor, Michael J

    2013-01-01

    Fluorescence imaging is one of the most versatile and widely used visualization methods in biomedical research. However, tissue autofluorescence is a major obstacle confounding interpretation of in vivo fluorescence images. The unusually long emission lifetime (5-13 μs) of photoluminescent porous silicon nanoparticles can allow the time-gated imaging of tissues in vivo, completely eliminating shorter-lived (50-fold in vitro and by >20-fold in vivo when imaging porous silicon nanoparticles. Time-gated imaging of porous silicon nanoparticles accumulated in a human ovarian cancer xenograft following intravenous injection is demonstrated in a live mouse. The potential for multiplexing of images in the time domain by using separate porous silicon nanoparticles engineered with different excited state lifetimes is discussed.

  6. Preparation of a novel fluorescence probe of terbium-europium co-luminescence composite nanoparticles and its application in the determination of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gao Feng [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: summit8848cn@hotmail.com; Luo Fabao; Tang Lijuan; Dai Lu [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China); Wang Lun [College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, Anhui Normal University, Wuhu 241000 (China)], E-mail: wanglun@mail.ahnu.edu.cn

    2008-03-15

    Terbium-europium Tb-Eu/acetylacetone(acac)/poly(acrylamide) (PAM) co-luminescence composite nanoparticles were successfully prepared using the ultrasonic approach. The as-prepared composite nanoparticles show the characteristic emission spectra of Tb{sup 3+}, located at 496 and 549 nm. Furthermore, the nanoparticles are water soluble, stable and have extremely narrow emission bands and high internal fluorescence quantum yield due to the co-luminescence effect. Further studies indicate that proteins can interact with the nanoparticles and induce the fluorescence quenching of the nanoparticles. Based on the fluorescence quenching of nanopaticles in the presence of proteins, a novel method for the sensitive determination of trace amounts of proteins was proposed. Under the optimal experimental conditions, the linear ranges of calibration curves are 0-3.5 {mu}g mL{sup -1} for human serum albumin (HSA) and 0-4.0 {mu}g mL{sup -1} for {gamma}-globulin ({gamma}-IgG), respectively. The limits of detection are 7.1 for HSA and 6.7ng mL{sup -1} for {gamma}-IgG, respectively. The method was applied to the quantification of proteins in synthetic samples and actual human serum samples with satisfactory results. This proposed method is sensitive, simple and has potential application in the clinical assay of proteins.

  7. Effect of silver nanoparticles on the spectral luminescent properties of a gelatin film

    International Nuclear Information System (INIS)

    Ehfendiev, T.Sh.; Kruchenok, Yu.V.; Rubinov, A.N.

    2013-01-01

    We studied the absorption and fluorescence spectra of a rhodamine 6G-activated gelatin film of thickness 10 μm, with and without silver nanoparticles.We observed that doping the film with nanoparticles of diameter 5 nm leads to an increase in the intensity of the absorption spectrum by a factor of 1.17 and its short-wavelength shift (~1.5 nm), while the intensity of the fluorescence spectrum increases by a factor of ~2. (author)

  8. Effect of silver nanoparticles on the spectral luminescent properties of a gelatin film

    Science.gov (United States)

    Efendiev, T. Sh.; Kruchenok, J. V.; Rubinov, A. N.

    2013-03-01

    We studied the absorption and fluorescence spectra of a rhodamine 6G-activated gelatin film of thickness 10 μm, with and without silver nanoparticles. We observed that doping the film with nanoparticles of diameter 5 nm leads to an increase in the intensity of the absorption spectrum by a factor of 1.17 and its short-wavelength shift (~1.5 nm), while the intensity of the fluorescence spectrum increases by a factor of ~2.

  9. Enhanced luminescence from silver nanoparticles integrated Er{sup 3+}-doped boro-tellurite glasses: Impact of annealing temperature

    Energy Technology Data Exchange (ETDEWEB)

    Said Mahraz, Zahra Ashur; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    2015-11-15

    Considerable enhancement of rare earth ions luminescence intensity stimulated via metal nanoparticles (NPs) inclusion inside inorganic glass matrix opened a new avenue to achieving efficient lasing glass media. Tuning the localised surface plasmon resonance (LSPR) band of noble metal NPs through their precise size manipulation is demonstrated to be the key for such accomplishment. We report the influences of annealing (heat treatment) temperature (AT) on the down-conversion luminescence features of erbium (Er{sup 3+}) doped zinc-boro-tellurite (ZBT) glasses containing silver NPs. The AT dependent (between 390 and 450 °C) variations in refractive index and density are ascribed to the generation of non-bridging oxygen (NBO) ions. X-ray diffraction pattern confirmed the amorphous nature of the melt-quenched synthesized glass samples. TEM micrograph revealed the nucleation of Ag NPs inside the glass matrix having average diameter between 8.4 (un-annealed sample) to 11.8 nm (annealed). The UV–Vis spectra exhibited seven absorption bands corresponding to {sup 4}f–{sup 4}f transitions of Er{sup 3+} ions. Annealed samples displayed a red shift of SPR bands positioned at 550 and 580 nm. Judd–Ofelt theory is used to evaluate the intensity parameters for radiative transitions within 4f{sup n} configuration of Er{sup 3+} ion. Annealing up to 410 °C is found to stimulate the plasmonic effect through the enlargement of NPs. Consequently, the PL intensity is enhanced by a factor of 3.23 ({sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}), 4.10 ({sup 4}S{sub 3/2} → {sup 4}I{sub 15/2}), and 3.79 ({sup 4}F{sub 9/2} → {sup 4}I{sub 15/2}). This achieved excellent down-conversion luminescence efficiency of proposed glasses shows their potential implementation in photonic devices and solid state lasers. - Highlights: • The changes in the physical properties are ascribed to the generation of NBO. • TEM images confirmed the presence of Ag NPs in the glass matrix. • The achieved

  10. Investigation on the effect of Tb(dbm)3phen on the luminescent properties of Eu(dbm)3phen-containing mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Moretti, E.; Bellotto, L.; Basile, M.; Malba, C.; Enrichi, F.; Benedetti, A.; Polizzi, S.

    2013-01-01

    Eu(dbm) 3 phen and Tb(dbm) 3 phen complexes (tris(dibenzoylmethane) mono(1,10-phenantroline) Ln(III)) were impregnated in ordered mesoporous silica nanoparticles (MSNs) with an average size of 50–70 nm and a pore diameter centred at 2.8 nm, with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as down-shifter for multi-crystalline solar cells. The morphological, structural, textural and luminescent properties of the synthesized samples were characterized by N 2 adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–visible spectroscopy and photoluminescence measurements. It is demonstrated that inclusion in the MSNs allows one to use much higher loadings (23 wt%) of the Eu-complex than in other matrices, and that co-doping with Tb(dbm) 3 phen improves luminescence for samples with Eu(dbm) 3 phen content lower than about 10 wt%. Results are interpreted by using a simple sphere of action model adapted to the case of a pore-limited system. - Graphical abstract: Sensitization of the antenna effect (down-conversion of UV radiation to red light) by the presence of Tb(dbm) 3 phen in the cavities of mesoporous silica nanoparticles containing Eu(dbm) 3 phen. - Highlights: • Detailed study of Eu(dbm) 3 phen-doped mesoporous silica nanoparticles luminescence. • Inclusion of up to 23 wt% of Eu(dbm) 3 phen without concentration quenching. • Detailed study of the role of the Tb(dbm) 3 phen co-dopant. • Co-doping effective for Eu 3+ (dbm) 3 phen loadings lower than about 10 wt%

  11. Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe3O4/SiO2/NH2/PAA/LnF3)

    International Nuclear Information System (INIS)

    Runowski, Marcin; Lis, Stefan

    2016-01-01

    The synthesized magnetite nanoparticles (10–15 nm) were successfully coated with amine modified silica nanoshell, which led to the formation of core/shell type nanostructures (30–50 nm). The as-prepared nanoparticles were surface modified with polyacrylic acid (PAA) via electrostatic interactions of –NH 2 and –COOH groups. Afterwards, the surface PAA molecules acted as complexing agents of the introduced lanthanide (Ln 3+ ) ions. Subsequently, the as-prepared nanostructures were surface decorated with luminescent LnF 3 nanoparticles, forming Eu 3+ or Tb 3+ doped Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3 nanomaterials (50–100 nm). The obtained luminescent–magnetic products exhibited simultaneously bright red or green emission under UV lamp irradiation (λ ex =254 nm), and a response for the applied magnetic field (strong magnet attracts the colloidal particles, dispersed in aqueous medium). After the synthesis, properties of the nanomaterials were investigated by powder X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), infrared spectroscopy (IR) and spectrofluorometry (analysis of excitation/emission spectra and luminescence decay curves). Such advanced nanomaterials can be potentially used in multimodal imaging, targeted therapies and as multifunctional contrast agents, novel luminescent–magnetic tracers, protection of documents, etc. - Highlights: • Luminescent–magnetic nanomaterials Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3 were synthesized. • Core/shell nanostructures were obtained by surface modification of nanoparticles. • Luminescent lanthanide fluoride nanoparticles doped with Eu 3+ and Tb 3+ ions. • Multifunctional core/shell nanostructures exhibited red or green emission. • Nanomaterials formed stable aqueous colloids.

  12. Hydrophilic luminescent silicon nanoparticles in steric colloidal solutions: Their size, agglomeration, and toxicity

    Czech Academy of Sciences Publication Activity Database

    Herynková, Kateřina; Šimáková, Petra; Cibulka, Ondřej; Fučíková, Anna; Kalbáčová, M.H.

    2017-01-01

    Roč. 14, č. 12 (2017), s. 1-4, č. článku 1700195. ISSN 1862-6351 Grant - others:AV ČR(CZ) DAAD-16-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : silicon nanoparticles * agglomeration * toxicity Subject RIV: BO - Biophysics OBOR OECD: Biophysics

  13. Sol-gel synthesis and luminescence studies of MgO: Ln3+ (Ln3+= Eu3+ and Tb3+) nanophosphors

    International Nuclear Information System (INIS)

    Rastogi, Chandresh Kumar; Jitendra Kumar; Sivakumar, Sri

    2012-01-01

    Lanthanide-doped nanostructures have been extensively studied in recent years because of their excellent luminescent properties. These materials find potential applications in display devices, fluorescent lamps and lasers. Very few reports are available on the luminescence studies of lanthanide-doped magnesium oxide (MgO) nanocrystals

  14. Effect of EDTA on luminescence property of Eu+3 doped YPO4 nanoparticles

    International Nuclear Information System (INIS)

    Parchur, A.K.; Okram, G.S.; Singh, R.A.; Tewari, R.; Pradhan, Lina; Vatsa, R.K.; Ningthoujan, R.S.

    2010-01-01

    Nanoparticles of Eu 3+ doped YPO 4 have been prepared using ethylene glycol (EG). Ethylene diamine tetra acetic acid (EDTA) is used as a complexing agent. X-ray diffraction results show that the nanoparticles are crystalline in tetragonal structure. Based on William-Hall relation, the effective crystallite size and strain developed in lattice are found to be 28 nm and 0.002, respectively. With the addition of EDTA, there is a slight shift towards the lower wavelength in emission peaks. Asymmetric ratio of electric to magnetic dipole transition intensities are found to decrease with addition of EDTA. Emission intensity decreases with EDTA because of decrease of particle size as well as decrease of number of Eu 3+ activators per unit volume. These materials are dispersible in water, which may have potential biological applications. (author)

  15. Effect Of EDTA On Luminescence Property Of Eu+3 Doped YPO4 Nanoparticles

    International Nuclear Information System (INIS)

    Parchur, A. K.; Okram, G. S.; Singh, R. A.; Tewari, R.; Pradhan, Lina; Vatsa, R. K.; Ningthoujam, R. S.

    2010-01-01

    Nanoparticles of Eu 3+ doped YPO 4 have been prepared using ethylene glycol (EG). Ethylene diamine tetra acetic acid (EDTA) is used as a complexing agent. X-ray diffraction results show that the nanoparticles are crystalline in tetragonal structure. Based on William-Hall relation, the effective crystallite size and strain developed in lattice are found to be 28 nm and 0.002, respectively. With the addition of EDTA, there is a slight shift towards the lower wavelength in emission peaks. Asymmetric ratio of electric to magnetic dipole transition intensities are found to decrease with addition of EDTA. Emission intensity decreases with EDTA because of decrease of particle size as well as decrease of number of Eu 3+ activators per unit volume. These materials are dispersible in water, which may have potential biological applications.

  16. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films

    Science.gov (United States)

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M.

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

  17. Tailoring luminescence properties of TiO2 nanoparticles by Mn doping

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.

    2013-01-01

    TiO 2 nanoparticles are doped with three different concentrations of Mn, 2%, 4% and 6% respectively. Absorption edge of TiO 2 is shifted from UV to visible region on amplification of Mn content. Room temperature photoluminescence spectra, excited at 320 nm, exhibit band edge and visible emission peaks associated with self trapped excitons, oxygen defects, etc. Doping of Mn increases the width and decreases the intensity of the UV emission peak. Potential fluctuations of impurities increase the width and auger type non-radiative recombination decreases the intensity of the UV emission peak. The intensity ratio of the UV to defect emission band decreases on doping, indicating degradation of structural quality. Excitation of pure and doped nanoparticles at 390 nm results in Mn 2+ emission peaks at 525 nm and 585 nm respectively. Photoluminescence excitation spectra also indicate the presence of Mn 2+ in the crystalline environment of TiO 2 . The oxygen defects and Mn related impurities act as efficient trap centers and increases the lifetime of the charge carriers. -- Highlights: ► Doping of Mn increases the d-spacing of TiO 2 nanoparticles. ► Characteristic d–d electronic transition of Mn 2+ is observed in the absorption spectra. ► Doping of Mn quenches the UV and visible emission peaks of TiO 2 . ► Photoexcitation at 390 nm generates emission peaks of Mn 2+

  18. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng; Deng, Renren; Wang, Juan; Wang, Qingxiao; Han, Yu; Zhu, Haomiao; Chen, Xueyuan; Liu, Xiaogang

    2011-01-01

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  19. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  20. Gold nanoparticles assisted surface enhanced Raman scattering and luminescence of Er{sup 3+} doped zinc–sodium tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, S.K.; Awang, Asmahani, E-mail: asmahani_awang@yahoo.com; Sahar, M.R.; Arifin, R.

    2015-03-15

    Significant enhancements in Er{sup 3+} luminescence and Raman intensity mediated via surface plasmon resonance (SPR) of gold (Au) nanoparticles (NPs) embedded zinc–sodium tellurite glass are reported. The observed modifications in the physical and spectroscopic properties are ascribed to the alterations in the glass network. XRD pattern confirms the amorphous nature of prepared glass sample. UV–vis-NIR spectra reveal seven absorption bands. Surface plasmon band is evidenced around 626–630 nm. TEM images manifest the growth of non-spherical Au NPs with average diameter between ∼7.2 nm and 8.6 nm. The visible up-conversion (UC) emission for all samples under 779 nm excitation exhibits three bands centered at 503 nm (green), 546 (green) and 637 nm (red) ascribed to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions. Glass sample with 0.4 mol% Au displaying the highest luminescence intensity with enhancement factor of 3.85 and 3.56 for green bands, and 7.61 for the red band is ascribed to the NPs local field enhancement and energy transfer between rare earth (RE) ions and NPs. FTIR spectra show the vibration of ZnO{sub 4} bonds, Te-O bond in TeO{sub 3} (tp) and TeO{sub 4} (tbp) units and the hydroxyl groups. Raman spectra demonstrate the presence of Er-O and Zn-O bond, anti-symmetric vibrations of Te-O-Te bonds and stretching modes of non-bonded oxygen exists in TeO{sub 3} and TeO{sub 3+1} unit. The amplifications in Raman signals by a factor of 1.62, 1.58, 1.64, 1.68 and 1.69 corresponding to the peak centered at 262 cm{sup −1}, 382 cm{sup −1}, 521 cm{sup −1}, 670 cm{sup −1} and 725 cm{sup −1} are attributed to the contribution of a surface plasmon generating a strong, localized and secondary field. We assert that our glass compositions offer favorable potential to develop solid state lasers and other versatile nanophotonic devices. - Highlights: • Gold

  1. The Lanthanide Contraction Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Oliver, Allen G.; Raymond, Kenneth N.

    2007-04-19

    A complete, isostructural series of lanthanide complexes (except Pm) with the ligand TREN-1,2-HOIQO has been synthesized and structurally characterized by means of single-crystal X-ray analysis. All complexes are 1D-polymeric species in the solid state, with the lanthanide being in an eight-coordinate, distorted trigonal-dodecahedral environment with a donor set of eight unique oxygen atoms. This series constitutes the first complete set of isostructural lanthanide complexes with a ligand of denticity greater than two. The geometric arrangement of the chelating moieties slightly deviates across the lanthanide series, as analyzed by a shape parameter metric based on the comparison of the dihedral angles along all edges of the coordination polyhedron. The apparent lanthanide contraction in the individual Ln-O bond lengths deviates considerably from the expected quadratic decrease that was found previously in a number of complexes with ligands of low denticity. The sum of all bond lengths around the trivalent metal cation, however, is more regular, showing an almost ideal quadratic behavior across the entire series. The quadratic nature of the lanthanide contraction is derived theoretically from Slater's model for the calculation of ionic radii. In addition, the sum of all distances along the edges of the coordination polyhedron show exactly the same quadratic dependency as the Ln-X bond lengths. The universal validity of this coordination sphere contraction, concomitant with the quadratic decrease in Ln-X bond lengths, was confirmed by reexamination of four other, previously published, almost complete series of lanthanide complexes. Due to the importance of multidentate ligands for the chelation of rare-earth metals, this result provides a significant advance for the prediction and rationalization of the geometric features of the corresponding lanthanide complexes, with great potential impact for all aspects of lanthanide coordination.

  2. The effect of interaction between surface plasmons of gold nanoparticles and optical active centers on luminescence of Eu3+- doped Zn2SnO4 nanocrystals

    Science.gov (United States)

    Thien, Nguyen Duy; Vu, Le Van; Long, Nguyen Ngoc

    2018-04-01

    The enhancement and quenching of Eu3+ ion emission were investigated in Zn2SnO4:Eu3+@Au (ZTO:Eu3+@Au) nanocomposites. Under 361 nm excitation we revealed the extinction of the intrinsic defect emission and the enhancement of Eu3+ ion emission when Au content in samples is increased, but under excitation wavelength of 394 nm we observed only the suppression of Eu3+ ion emission. The cause of the observed PL behavior is related to the interaction between surface plasmon induced by gold nanoparticles and luminescence centers in the samples.

  3. Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory

    Science.gov (United States)

    Zatsepin, D. A.; Boukhvalov, D. W.; Zatsepin, A. F.; Kuznetsova, Yu. A.; Mashkovtsev, M. A.; Rychkov, V. N.; Shur, V. Ya.; Esin, A. A.; Kurmaev, E. Z.

    2018-04-01

    The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ∼21 nm in size plus a cubic phase admixture of only 2 at.% composed of primary edge-boundary nanoparticles ∼15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd…Osbnd OH] and [Gd…Osbnd O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5р - O 2s core-like levels in the valence band structures. The origin of [Gd…Osbnd OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.

  4. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers.

    Science.gov (United States)

    Cheng, Ziyong; Lin, Jun

    2015-05-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have been an emerging and exciting research field in recent years due to their unique luminescent properties of converting near-infrared light to shorter wavelength radiation. UCNPs offer excellent prospects in luminescent labeling, displays, bioimaging, bioassays, drug delivery, sensors, and anticounterfeiting applications. Along with the abundant studies and rapid progress in this area, UCNPs are promising to be a new class of luminescent probe owing to their special advantages over the conventional organic dyes and quantum dots. Among them, polymers play an important role to improve properties or endow new function of UCNPs such as for matrix materials, water solubility, linking active targeting molecules, biocompatibility, and stimuli-responsive behavior. This article briefly reviews the compositions, optical mechanisms, architectures of upconversion nanocrystals and highlights the works on various functional UCNPs/polymer nanohybrids as well as many new interesting fruits in applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows

    NARCIS (Netherlands)

    Cortelletti, P.; Skripka, A.; Facciotti, C.; Pedroni, M.; Caputo, G.; Pinna, N.; Quintanilla, M.; Benayas, A.; Vetrone, F.; Speghini, A.

    2018-01-01

    Lanthanide-activated SrF2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd3+ and Yb3+) NIR emissions was applied to investigate the

  6. Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors.

    Science.gov (United States)

    Zheng, Shuhong; Chen, Weibo; Tan, Dezhi; Zhou, Jiajia; Guo, Qiangbing; Jiang, Wei; Xu, Cheng; Liu, Xiaofeng; Qiu, Jianrong

    2014-06-07

    We report that non-contact self-referencing temperature sensors can be realized with the use of core-shell nanostructures. These lanthanide-based nanothermometers (NaGdF4:Yb(3+)/Tm(3+)@Tb(3+)/Eu(3+)) exhibit higher sensitivity in a wide range from 125 to 300 K based on two emissions of Tb(3+) at 545 nm and Eu(3+) at 615 nm under near-infrared laser excitation.

  7. Lanthanide complexes that respond to changes in cyanide concentration in water

    International Nuclear Information System (INIS)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen; Kenwright, Alan M.

    2017-01-01

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Luminescence of polyethylene glycol coated CdSeTe/ZnS and InP/ZnS nanoparticles in the presence of copper cations.

    Science.gov (United States)

    Beaune, Grégory; Tamang, Sudarsan; Bernardin, Aude; Bayle-Guillemaud, Pascale; Fenel, Daphna; Schoehn, Guy; Vinet, Françoise; Reiss, Peter; Texier, Isabelle

    2011-08-22

    The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne-azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy-filtered transmission electron microscopy (EF-TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic-core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper-induced PL quenching can be interesting for the design of sensitive cation sensors, copper-free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  11. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  12. Recovery of lanthanides

    International Nuclear Information System (INIS)

    Tilley, G.L.; Doyle, W.E.

    1990-01-01

    This paper discusses a method for recovering a lanthanide and thorium from a material containing a fluorine compound and the lanthanide and thorium. It comprises a. obtaining the material from a roasted, acid-leached bastnasite ore; b. forming a mixture of the material with at least about ten weight percent of silica; c. contacting the mixture with sulfuric acid; d. heating the mixture and sulfuric acid to a temperature of at least about 150 degrees C for at least about 3 hours to cause most of the fluorine to be released as a volatile material containing silicon and fluorine; e. contacting the reacted mixture with an aqueous medium consisting essentially of water to solubilize the lanthanide and thorium while leaving an insoluble residue; and f. separating the aqueous solution of the lanthanide and thorium from the insoluble residue

  13. Lanthanide mixed ligand chelates for DNA profiling and latent fingerprint detection

    Science.gov (United States)

    Menzel, E. R.; Allred, Clay

    1997-02-01

    It is our aim to develop a universally applicable latent fingerprint detection method using lanthanide (rare-earth) complexes as a source of luminescence. Use of these lanthanide complexes offers advantages on several fronts, including benefits from large Stokes shifts, long luminescence lifetimes, narrow emissions, ability of sequential assembly of complexes, and chemical variability of the ligands. Proper exploitation of these advantages would lead to a latent fingerprint detection method superior to any currently available. These same characteristics also lend themselves to many of the problems associated with DNA processing in the forensic science context.

  14. Heavy-ion-induced luminescence of amorphous SiO2 during nanoparticle formation

    International Nuclear Information System (INIS)

    Bandourko, Vassili; Umeda, Naoki; Plaksin, Oleg; Kishimoto, Naoki

    2005-01-01

    Silica glass was implanted with negative 60 keV Cu ions at an ion flux from 5 to 75 μA/cm 2 up to a fluence of 1 x 10 17 ions/cm 2 at initial sample temperatures of 300, 573 and 773 K. Spectra of ion-induced photon emission (IIPE) were collected in situ in the range from 250 to 850 nm. Optical absorption spectra of implanted specimens were ex situ measured in the range from 190 to 2500 nm. IIPE spectra showed a broad band centered around 560 nm (2.2 eV) that was assigned to Cu + solutes. The band appeared at the onset of irradiation, increased in intensity up to a fluence of about 5 x 10 15 ions/cm 2 and then gradually decreased indicating three stage of the ion beam synthesis of nanoclusters: accumulation of implants, nucleation and growth nanoclusters. The IIPE intensity normalized on the ion flux is independent on the ion flux below 20 μA/cm 2 at higher fluences. The intensity of the band increased with increasing samples temperature, when optical absorption spectra reveal the increase of Cu nanoparticles size

  15. Perylene Derivative Dyes Luminescence in Polysiloxane Matrix in Presence of Gold Nanoparticles.

    Science.gov (United States)

    Mantel, Artur; Shautenbaeva, Nazerke; Irgibaeva, Irina; Aldongarov, Anuar; Lang, Albina; Barashkov, Nikolay; Mukatayev, Iskander

    2016-11-01

    Four perylene derivatives, including commercially available dyes Lumogen Red and Lumogen Orange, as well as 1,6,7,12-tetrachlоrоperylene-3,4,9,10-tetradicarboxydianhydride (Dye I) and 3,4:9,10-bis(1,2-benzimidazole)- 1,6,7,12-tetra(4-tert-octylphenoxy) perylene (syn/ anti-isomers) (Dye III, which was prepared from dye I through intermediate 3,4:9,10-bis(1,2-benzimidazole)-1,6,7,12-tetrachloro perylene (Dye II)) were used for preparation of polysiloxane samples (PSi) containing different concentrations of gold nanoparticles (GN). Dyes I and III demonstrate significant fluorescence intensity increase upon addition of GN independent on excitation energy. For Lumogen Red composition in PSi some increase of fluorescence intensity was observed upon addition of small concentrations of GN, while further increase of GN concentration quenches fluorescence. The increase of Lumogen Red emission intensity, which depends on energy of excitation, is probably due to the increase of radiation decay rate since excitation rate decreases. Effect of GN on Lumogen Orange provided quenching of fluorescence even at small concentrations of GN. Calculations at DFT level of approximation for dye III suggest location of GN in plane of perylene core for increase of fluorescence intensity.

  16. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2 +-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods

    Science.gov (United States)

    Cheng, Keyi; Zhang, Jianguo; Zhang, Liping; Wang, Lun; Chen, Hongqi

    2017-01-01

    A highly sensitive luminescent bioassay for the detection of Salmonella typhimurium was fabricated using Mn2 +-doped NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) as the donor and gold nanorods (Au NRs) as the acceptor and utilizing an energy transfer (LET) system. Mn2 +-doped NaYF4:Yb,Tm UCNPs with a strong emission peak at 807 nm were obtained by changing the doped ion ratio. Carboxyl-terminated Mn2 +-doped NaYF4:Yb,Tm UCNPs were coupled with S. typhimurium aptamers, which were employed to capture and concentrate S. typhimurium. The electrostatic interactions shorten the distance between the negatively charged donor and the positively charged acceptor, which results in luminescence quenching. The added S. typhimurium leads to the restoration of luminescence due to the formation of UCNPs-aptamers-S. typhimurium, which repels the UCNPs-aptamers from the Au NRs. The LET system does not occur because of the nonexistence of the luminescence emission band of Mn2 +-doped NaYF4:Yb,Tm UCNPs, which had large spectral overlap with the absorption band of Au NRs. Under optimal conditions, the linear range of detecting S. typhimurium was 12 to 5 × 105 cfu/mL (R = 0.99). The limit of detection for S. typhimurium was as low as 11 cfu/mL in an aqueous buffer. The measurement of S. typhimurium in milk samples was satisfied in accordance with the plate-counting method, suggesting that the proposed method was of practical value in the application of food security.

  17. Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin; Lis, Stefan, E-mail: blis@amu.edu.pl

    2016-02-15

    The synthesized magnetite nanoparticles (10–15 nm) were successfully coated with amine modified silica nanoshell, which led to the formation of core/shell type nanostructures (30–50 nm). The as-prepared nanoparticles were surface modified with polyacrylic acid (PAA) via electrostatic interactions of –NH{sub 2} and –COOH groups. Afterwards, the surface PAA molecules acted as complexing agents of the introduced lanthanide (Ln{sup 3+}) ions. Subsequently, the as-prepared nanostructures were surface decorated with luminescent LnF{sub 3} nanoparticles, forming Eu{sup 3+} or Tb{sup 3+} doped Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3} nanomaterials (50–100 nm). The obtained luminescent–magnetic products exhibited simultaneously bright red or green emission under UV lamp irradiation (λ{sub ex}=254 nm), and a response for the applied magnetic field (strong magnet attracts the colloidal particles, dispersed in aqueous medium). After the synthesis, properties of the nanomaterials were investigated by powder X-ray diffraction (XRD) technique, transmission electron microscopy (TEM), infrared spectroscopy (IR) and spectrofluorometry (analysis of excitation/emission spectra and luminescence decay curves). Such advanced nanomaterials can be potentially used in multimodal imaging, targeted therapies and as multifunctional contrast agents, novel luminescent–magnetic tracers, protection of documents, etc. - Highlights: • Luminescent–magnetic nanomaterials Fe{sub 3}O{sub 4}/SiO{sub 2}/NH{sub 2}/PAA/LnF{sub 3} were synthesized. • Core/shell nanostructures were obtained by surface modification of nanoparticles. • Luminescent lanthanide fluoride nanoparticles doped with Eu{sup 3+} and Tb{sup 3+} ions. • Multifunctional core/shell nanostructures exhibited red or green emission. • Nanomaterials formed stable aqueous colloids.

  18. Thermodynamic properties of britholites CaxLay(SiO4)6-u(PO4)uOt, study of the properties of diffusion and fixation of lanthanide and trans-uranian ions in britholites: application in the field of luminescent materials and of storage of nuclear wastes

    International Nuclear Information System (INIS)

    El Ouenzerfi, R.

    2003-02-01

    This work deals in particular with the synthesis and the characterization of the apatitic oxy-silico-phosphates. In a first part is studied the quaternary system: CaO-La 2 O 3 -SiO 2 P 2 O 5 in order to determine the range in which the pure phospho-silicated apatites exist. Then, the obtained phases have been identified and characterized by chemical analysis methods, electron microprobe analysis, X-ray diffraction, infrared and Raman spectroscopies. The study of the uranium solubilization and diffusion in apatitic matrices has been carried out from the determination of the substitution limit, of the oxidation degree and of the diffusion coefficient of uranium in a phospho-silicated apatite. In a second part, the luminescence properties of the Eu 3+ and Ce 3+ ions in phospho-silicated apatites have been studied. This work allows to have a wider vision of the oxy-silico-phosphated apatites and of their synthesis conditions. The study of the physical and chemical properties of britholites doped with actinides or lanthanides ions will be useful to the study of the optical properties of these matrices. (O.M.)

  19. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    KAUST Repository

    Han, Sanyang

    2016-10-04

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  20. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Du, Pei-Yao [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liao, Sheng-Yun [Department of Applied Chemistry, Tianjin University of Technology, Tianjin 300384 (China); Gu, Wen, E-mail: guwen68@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liu, Xin, E-mail: liuxin64@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China)

    2016-12-15

    A 3D lanthanide MOF with formula [Sm{sub 2}(abtc){sub 1.5}(H{sub 2}O){sub 3}(DMA)]·H{sub 2}O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  1. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    International Nuclear Information System (INIS)

    Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen; Liu, Xin

    2016-01-01

    A 3D lanthanide MOF with formula [Sm 2 (abtc) 1.5 (H 2 O) 3 (DMA)]·H 2 O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  2. Solution chemistry of lanthanide complexes

    International Nuclear Information System (INIS)

    Brittain, H.G.

    1979-01-01

    Intermolecular energy transfer from Tb 3+ to Eu 3+ , luminescence intensity measurements, potentiometric titrations, differential absorption spectroscopy, and spectroscopic titrations were all used to study the binding of lanthanide ions by serine and threonine. At low pH (3.0 to 6.0) the complexes are mononuclear and ligand is only weakly bound. In the pH interval of 6.0 to 8.5 stronger interaction takes place between the ligand and the metal (with possible coordination of the undissociated hydroxyl group), and self-association of complexes becomes important. Above pH 8.5, base hydrolysis of the complexes leads to highly associated species in solution and shortly above this pH an insoluble precipitate is formed. It was found that energy could be transferred from Tb 3+ to Eu 3+ more efficiently among complexes prepared from racemic ligands than in complexes made from resolved ligand, but this stereoselectivity was only observed at pH values greater than 6.5 and in solutions having a 1:10 ratio of metal-to-ligand. No stereoselectivity was found in solutions having 1:5 ratios, and this observation was explained by the existence of 1:2 metal-ligand complexes existing in solutions having the higher ratio of metal-to-ligand (only 1:1 complexes are then found at lower ratios of metal-to-ligand). (author)

  3. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    that nanoparticles have cylindrical shape and crystalline nature of nanoparticles was confirmed by SAED patterns. Down- conversion (DC) luminescent properties of doped NaLaF4 were also .... Figure 1 shows the XRPD patterns of undoped NaLaF4 and .... which can be assigned to the transitions from the 7F6 ground.

  4. Effect of annealing on luminescence of Eu{sup 3+}- and Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Medić, Mina; Antić, Željka; Đorđević, Vesna [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Ahrenkiel, Phillip S. [South Dakota School of Mines & Technology, Rapid City, SD (United States); Marinović-Cincović, Milena [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia); Dramićanin, Miroslav D., E-mail: dramican@vinca.rs [University of Belgrade, Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade (Serbia)

    2016-02-15

    This work explores the influence of annealing temperature on the structure and luminescence of 2 at% Eu{sup 3+} and 1 at% Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanopowders produced via Pechini-type polymerized complex route. Mg{sub 2}TiO{sub 4} samples were annealed at 7 different temperatures (400 °C, 450 °C, 500 °C, 550 °C, 600 °C, 650 °C and 700 °C) to determine the temperature range in which cubic inverse spinel structure is stable and to follow the changes of material luminescence properties. X-ray diffraction revealed that crystallization of both Eu{sup 3+} and Sm{sup 3+}-doped Mg{sub 2}TiO{sub 4} nanopowders starts at 400 °C, and that Sm{sup 3+} doped Mg{sub 2}TiO{sub 4} starts to decompose at 650 °C, while Eu{sup 3+} doped Mg{sub 2}TiO{sub 4} starts to decompose at 700 °C. Samples annealed at higher temperatures show higher crystallinity and larger crystallite size. Mg{sub 2}TiO{sub 4} powder annealed at 600 °C is composed of ~5 nm size nanoparticles agglomerated in micron-size and dense chunks. The emission spectra of nanoparticles are composed of emissions from defects in Mg{sub 2}TiO{sub 4} host and characteristic emissions of Eu{sup 3+} ({sup 5}D{sub 0}→{sup 7}F{sub J}) and Sm{sup 3+} ({sup 4}G{sub 5/2}→{sup 6}H{sub J}) ions. The stronger emission and longer emission decays are observed with samples annealed at high temperatures. In the case of the Eu{sup 3+} ions emission intensity increased one order of magnitude between samples annealed at 400 °C and 650 °C. - Highlights: • Mg{sub 2}TiO{sub 4} nanoparticles of 5–10 nm in size are prepared by polymerized complex route. • Emission spectra and decays of Eu{sup 3+} and Sm{sup 3+} doped Mg{sub 2}TiO{sub 4} nanoparticles are shown. • Eu{sup 3+}(Sm{sup 3+}) doped Mg{sub 2}TiO{sub 4} can be annealed at temperatures <700 °C (650 °C). • Emission intensity of nanoparticles increases with increase of annealing temperature.

  5. Detection of phosphorylation states by intermolecular sensitization of lanthanide-peptide conjugates.

    Science.gov (United States)

    Pazos, Elena; Goličnik, Marko; Mascareñas, José L; Vázquez, M Eugenio

    2012-10-04

    The luminescence of a designed peptide equipped with a coordinatively-unsaturated lanthanide complex is modulated by the phosphorylation state of a serine residue in the sequence. While the phosphorylated state is weakly emissive, even in the presence of an external antenna, removal of the phosphate allows coordination of the sensitizer to the metal, yielding a highly emissive supramolecular complex.

  6. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates-LaPO4/YPO4:Yb3+-Tm3.

    Science.gov (United States)

    Runowski, Marcin; Shyichuk, Andrii; Tymiński, Artur; Grzyb, Tomasz; Lavín, Víctor; Lis, Stefan

    2018-05-23

    Upconversion luminescence of nano-sized Yb 3+ and Tm 3+ codoped rare earth phosphates, that is, LaPO 4 and YPO 4 , has been investigated under high-pressure (HP, up to ∼25 GPa) and high-temperature (293-773 K) conditions. The pressure-dependent luminescence properties of the nanocrystals, that is, energy red shift of the band centroids, changes of the band ratios, shortening of upconversion lifetimes, and so forth, make the studied nanomaterials suitable for optical pressure sensing in nanomanometry. Furthermore, thanks to the large energy difference (∼1800 cm -1 ), the thermalized states of Tm 3+ ions are spectrally well-separated, providing high-temperature resolution, required in optical nanothermometry. The temperature of the system containing such active nanomaterials can be determined on the basis of the thermally induced changes of the Tm 3+ band ratio ( 3 F 2,3 → 3 H 6 / 3 H 4 → 3 H 6 ), observed in the emission spectra. The advantage of such upconverting optical sensors is the use of near-infrared light, which is highly penetrable for many materials. The investigated nanomanometers/nanothermometers have been successfully applied, as a proof-of-concept of a novel bimodal optical gauge, for the determination of the temperature of the heated system (473 K), which was simultaneously compressed under HP (1.5 and 5 GPa).

  7. Comparative studies of upconversion luminescence characteristics and cell bioimaging based on one-step synthesized upconversion nanoparticles capped with different functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ming-Kiu [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Chan, Chi-Fai; Wong, Ka-Leung [Department of Chemistry, Hong Kong Baptist University (Hong Kong); Hao, Jianhua, E-mail: jh.hao@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-01-15

    Herein, three types of upconverting NaGdF{sub 4}:Yb/Er nanoparticles (UCNPs) have been synthesized via one-step hydrothermal synthesis with polyethylene glycol (PEG), polyethylenimine (PEI) and 6-aminocapronic acid (6AA) functionalization. To evident the presence of these groups, FTIR spectra and ζ-potentials were measured to support the successful capping of PEG, PEI and 6AA on the UCNPs. The regular morphology and cubic phase of these functionalized UCNPs were attributed to the capping effect of the surfactants. Tunable upconversion luminescence (UCL) from red to green were observed under 980 nm laser excitation and the UCL tuning was attributed to the presence of various surface ligands. Moreover, surface group dependent UCL bioimaging was performed in HeLa cells. The enhanced UCL bioimaging demonstrated by PEI functionalized UCNPs evident high cell uptake. The significant cell uptake is explained by the electrostatic attraction between the amino groups (–NH{sub 2}) and the cell membrane. Moreover, the functionalized UCNPs demonstrated low cytotoxicity in MTT assay. Additional, paramagnetic property was presented by these UCNPs under magnetic field. - Highlights: • Tunable upconversion emission by capped functional groups under fixed composition. • Surface dependent upconversion luminescence bioimaging in HeLa cells. • Low cytotoxicity. • Additional paramagnetic property due to Gd{sup 3+} ions.

  8. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles.

    Science.gov (United States)

    Wang, Zhijiang; Wu, Lina; Shen, Baozhong; Jiang, Zhaohua

    2013-09-30

    Fluorescent detection is an attractive method for the detection of toxic chemicals. However, most chemosensors that are currently utilized in fluorescent detection are based on organic dyes or quantum dots, which suffer from instability, high background noise and interference from organic impurities in solution, which can also be excited by UV radiation. In the present research, we developed a novel NaYF4:Yb,Ho/Au nanocomposite-based chemosensor with high sensitivity (10 ppb) and selectivity over competing analytes for the detection of the insecticide cartap. This nanosensor is excited with a 970-nm laser instead of UV radiation to give an emission peak at 541 nm. In the presence of cartap, the nanocomposites aggregate, resulting in enhanced luminescence resonance energy transfer between the NaYF4:Yb,Ho nanocrystals and the gold nanoparticles, which decreases the emission intensity at 541 nm. The relative luminescence intensity at 541 nm has a linear relationship with the concentration of cartap in the solution. Based on this behavior, the developed nanosensor successfully detected cartap in farm produce and water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Colloidal Nanoparticles of Ln3+-Doped LaVO4: Energy Transfer to Visible- and Near-Infrared-Emitting Lanthanide Ions

    NARCIS (Netherlands)

    Stouwdam, J.W.; Raudsepp, Mati; van Veggel, F.C.J.M.

    2005-01-01

    Colloidal, organic solvent-soluble Ln3+-doped LaVO4 nanoparticles have been synthesized by a precipitation reaction in the presence of (C18H37O)2PS2- as ligand, that coordinates to the surface of the nanoparticles. The materials are well soluble in chlorinated solvent such as chloroform. Energy

  10. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  11. Basic TRLFS data of some lanthanides using a tunable laser system and a red-optimized detection system

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Anne [Dresden Technische Univ. (Germany). Inst. for Zoology, Molecular Cell Physiology and Endocrinology; Barkleit, Astrid [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements; Geipel, Gerhard [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Biogeochemistry

    2016-07-01

    Lanthanides are crucial raw materials for modern high-tech products and used in medicine, especially as contrast enhancing agents for magnetic resonance imaging [1]. To study their interactions in the geo- and biosphere, Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which is a non-invasive, very sensitive, and versatile state of the art method, is used. Up to now, TRLFS is well established for actinides but only some lanthanides (especially Eu and Tb). To extent this scope, we investigate the basic luminescence properties of all lanthanide elements.

  12. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  13. Synthesis and characterization of metal soaps of lanthanides (III)

    International Nuclear Information System (INIS)

    Payolla, Filipe Boccato; Ribeiro, Sidney Jose Lima; Massbni, Antonio Carlos

    2015-01-01

    The present study describes synthesis and partial characterization of Eu"3"+, Nd"3"+, Dy"3"+, Tb"3"+ and Yb"3"+ behenate complexes. The compounds were analyzed using IR-Spectroscopy, TG-DTG, DSC, elemental analysis, XRD, luminescence and SEM. The results show the purity of the compounds. The XRD analysis and the SEM images show the high crystallinity of the complexes. TG-DTG and DSC analyses do not show a liquid crystal behavior, as occurs with other lanthanide metallic soaps. The mass loses until 1000° C show that the compounds lose ligand fragments at specific temperatures. XRD of the residues are compatible with the respective lanthanide oxides. The luminescence analysis shows that the Eu"3"+, Nd"3"+ and Tb"3"+ complexes presents appreciable emission. The Judd-Ofelt parameters obtained are compatible with the values found in the literature. It was not possible to obtain the complexes in a glass-form because it is difficult to prevent the crystallization of the complexes even using liquid nitrogen. The XDR data indicate that one of the complexes axis has 52 Å of length, agreeing with a structure containing behenate-lanthanide ion-behenate. The structures of the complexes were not fully elucidated and more analyses are necessary. The complexes presented a molar ratio of 3:1 (L:M) and were formulated as Bh_3Eu, Bh_3Nd, Bh_3Dy, Bh_3Tb e Bh_3Yb (Bh = behenate anion). (author)

  14. Laser-induced luminescence lifetime measurement as an analytical probe for speciation of poly carboxylates in aqueous solutions

    International Nuclear Information System (INIS)

    Yoshio Takahashi; Takaumi Kimura; Yoshiharu Kato; Yoshitaka Minai

    2001-01-01

    Luminescence from lanthanide or actinide ion is influenced by hydration structure of the ion in aqueous solution system. In particular lifetime of the luminescence has been regarded as a measure of hydration number of the lanthanide or the actinide ion based on the studies on lifetime measurement of the ion in solid and solution system. Compared with other technique like NMR to determine the hydration number, laser induced lifetime measurement is advantageous in sensitivity and selectivity. This allows us to apply this method to determining the hydration number of lanthanide or actinide ion even at low concentration. (authors)

  15. Deposition of silica protected luminescent layers of Eu:GdVO_4 nanoparticles assisted by atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Moretti, Elisa; Pizzol, Giorgia; Fantin, Marina; Enrichi, Francesco; Scopece, Paolo; Nuñez, Nuria O.; Ocaña, Manuel; Benedetti, Alvise; Polizzi, Stefano

    2016-01-01

    Eu:GdVO_4 nanophosphors with an average size of 60 nm, synthesized by a facile solvothermal method, were deposited on monocrystalline silicon wafers by a spray-coating technique with artworks anti-counterfeiting applications in mind. Atmospheric pressure plasma jet (APPJ) was used to deposit a silica-based layer on top of the nanometric luminescent layer, in order to improve its adhesion to the substrate and to protect it from the environment. The nanophosphors were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Coating composition was investigated by Fourier transform infrared spectroscopy (FT-IR) and its morphology was characterized by scanning electron microscopy (FEG-SEM). The film thickness was evaluated by means of ellipsometry and adhesion was estimated by a peeling test. Luminescent properties of the nanophosphors deposited and fixed on silicon wafers were also measured. The whole layer resulted well-adhered to the silicon substrate, transparent and undetectable in the presence of visible light, but easily activated by UV light source. - Highlights: • Luminescent films were obtained by spray deposition of Eu:GdVO_4 nanophosphors. • Plasma jet deposition of SiO_2 fixed the nanophosphors on the substrate. • Optical properties of nanophosphors were preserved after deposition-fixing process. • Films well-adhered to the substrate, even after a scotch tape peeling test and a scratch test.

  16. Deposition of silica protected luminescent layers of Eu:GdVO{sub 4} nanoparticles assisted by atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Moretti, Elisa, E-mail: elisa.moretti@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Pizzol, Giorgia [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Fantin, Marina; Enrichi, Francesco; Scopece, Paolo [Nanofab-Veneto Nanotech, Via delle Industrie 5, 30175 Marghera, Venezia (Italy); Nuñez, Nuria O.; Ocaña, Manuel [Instituto de Ciencia de Materiales de Sevilla, CSIC-US, Americo Vespucio 49, 41092, Isla de la Cartuja, Sevilla (Spain); Benedetti, Alvise [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Polizzi, Stefano [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, INSTM Venice Research Unit, Via Torino 155/B, 30172 Mestre, Venezia (Italy); Centro di Microscopia Elettronica “Giovanni Stevanato”, Università Ca' Foscari Venezia, Via Torino 155/B, 30172 Mestre, Venezia (Italy)

    2016-01-01

    Eu:GdVO{sub 4} nanophosphors with an average size of 60 nm, synthesized by a facile solvothermal method, were deposited on monocrystalline silicon wafers by a spray-coating technique with artworks anti-counterfeiting applications in mind. Atmospheric pressure plasma jet (APPJ) was used to deposit a silica-based layer on top of the nanometric luminescent layer, in order to improve its adhesion to the substrate and to protect it from the environment. The nanophosphors were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Coating composition was investigated by Fourier transform infrared spectroscopy (FT-IR) and its morphology was characterized by scanning electron microscopy (FEG-SEM). The film thickness was evaluated by means of ellipsometry and adhesion was estimated by a peeling test. Luminescent properties of the nanophosphors deposited and fixed on silicon wafers were also measured. The whole layer resulted well-adhered to the silicon substrate, transparent and undetectable in the presence of visible light, but easily activated by UV light source. - Highlights: • Luminescent films were obtained by spray deposition of Eu:GdVO{sub 4} nanophosphors. • Plasma jet deposition of SiO{sub 2} fixed the nanophosphors on the substrate. • Optical properties of nanophosphors were preserved after deposition-fixing process. • Films well-adhered to the substrate, even after a scotch tape peeling test and a scratch test.

  17. Scandium, yttrium and the lanthanides

    International Nuclear Information System (INIS)

    Hart, F.A.

    1987-01-01

    This chapter on the chemistry of the coordination complexes of scandium, yttrium and the lanthanides includes sections on the nitrogen and oxygen donor ligands and complex halides of scandium, and the phosphorus and sulfur donor ligands of yttrium and the lanthanides. Complexes with the macrocylic ligands and with halides are also discussed. Sections on the NMR and electronic spectra of the lanthanides are also included. (UK)

  18. Valencies of the lanthanides

    OpenAIRE

    Johnson, David A.; Nelson, Peter G.

    2018-01-01

    The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed.

  19. Color-tunable up-conversion emission of luminescent-plasmonic, core/shell nanomaterials – KY{sub 3}F{sub 10}:Yb{sup 3+},Tm{sup 3+}/SiO{sub 2}-NH{sub 2}/Au

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin, E-mail: runowski@amu.edu.pl

    2017-06-15

    Multifunctional luminescent-plasmonic KY{sub 3}F{sub 10}:Yb{sup 3+},Tm{sup 3+}/SiO{sub 2}-NH{sub 2}/Au nanomaterials were successfully obtained. The lanthanide-doped fluoride nanoparticles (NPs), synthesized under hydrothermal conditions exhibited bright blue up-conversion luminescence (λ{sub ex}=980 nm). Such lanthanide nanocrystals (20–40 nm) were coated with amine modified silica shell, forming core/shell nanostructures. Their surface was further uniformly covered with ultra-small gold NPs (4–7 nm). The as-prepared luminescent-plasmonic core/shell nanomaterials exhibited tunable up-conversion emission, due to the interactions between plasmonic and luminescent phases. The emission of Tm{sup 3+} ion was affected by the surface Au NPs, which exhibited strong plasmonic absorption in the visible range (450–650 nm). The increasing amount of the surface Au NPs, led to the significant alterations in a ratio of the Tm{sup 3+} emission bands. The NIR band ({sup 3}H{sub 4}→{sup 3}H{sub 6}) was unchanged, whereas the ratio and relative intensity of the bands in a visible range ({sup 1}G{sub 4}→{sup 3}H{sub 6} and {sup 1}G{sub 4}→{sup 3}F{sub 4}) was altered. This led to the significant change of the emission spectra shape and influenced color of emission, tuning it from bright blue to blue-violet. The products obtained were characterized by transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), UV–vis absorption spectroscopy and luminescence spectroscopy (excitation/emission spectra and luminescence decay curves).

  20. Surface grafting of zwitterionic polymers onto dye doped AIE-active luminescent silica nanoparticles through surface-initiated ATRP for biological imaging applications

    Science.gov (United States)

    Mao, Liucheng; Liu, Xinhua; Liu, Meiying; Huang, Long; Xu, Dazhuang; Jiang, Ruming; Huang, Qiang; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-10-01

    Aggregation-induced emission (AIE) dyes have recently been intensively explored for biological imaging applications owing to their outstanding optical feature as compared with conventional organic dyes. The AIE-active luminescent silica nanoparticles (LSNPs) are expected to combine the advantages both of silica nanoparticles and AIE-active dyes. Although the AIE-active LSNPs have been prepared previously, surface modification of these AIE-active LSNPs with functional polymers has not been reported thus far. In this work, we reported a rather facile and general strategy for preparation of polymers functionalized AIE-active LSNPs through the surface-initiated atom transfer radical polymerization (ATRP). The AIE-active LSNPs were fabricated via direct encapsulation of AIE-active dye into silica nanoparticles through a non-covalent modified Stöber method. The ATRP initiator was subsequently immobilized onto these AIE-active LSNPs through amidation reaction between 3-aminopropyl-triethoxy-silane and 2-bromoisobutyryl bromide. Finally, the zwitterionic 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) was selected as model monomer and grafted onto MSNs through ATRP. The characterization results suggested that LSNPs can be successfully modified with poly(MPC) through surface-initiated ATRP. The biological evaluation results demonstrated that the final SNPs-AIE-pMPC composites possess low cytotoxicity, desirable optical properties and great potential for biological imaging. Taken together, we demonstrated that AIE-active LSNPs can be fabricated and surface modified with functional polymers to endow novel functions and better performance for biomedical applications. More importantly, this strategy developed in this work could also be extended for fabrication of many other LSNPs polymer composites owing to the good monomer adoptability of ATRP.

  1. Crystal structure and luminescence of complexes of Eu(III) and Tb(III) with furan-2,5-dicarboxylate

    NARCIS (Netherlands)

    Akerboom, S.; Fu, W.T.; Lutz, M.; Bouwman, E.

    2012-01-01

    Four new Ln(III) complexes (Ln = Eu, Tb) with furan-2,5-dicarboxylic acid (H2FDA) as a ligand have been synthesized and characterized in the solid state. Luminescence studies indicate that the compounds exhibit line-like luminescence characteristic of the lanthanide centre upon excitation in the

  2. Luminescence quenching versus enhancement in WO3-NaPO3 glasses doped with trivalent rare earth ions and containing silver nanoparticles

    Science.gov (United States)

    Dousti, M. Reza; Poirier, Gael Y.; Amjad, Raja J.; de Camargo, Andrea S. S.

    2016-10-01

    We report on the influence of silver nanoparticles (NPs) on the luminescence behavior of trivalent rare earth (RE) ion doped tungsten-phosphate glasses. In order to induce the growth of NPs, the as-prepared glass samples containing silver atoms, are exposed to heat-treatment above the glass transition temperature. The surface plasmon resonance band of the Ag NPs is observed in the visible range around 420 and 537 nm in the glasses with low and high tungsten content, respectively. Such difference in spectral shift of the plasmon band is attributed to the difference in the refractive index of the two studied glass compositions. Heat-treatment results in the general increase in number of NPs, while in the case of glasses with low tungsten content, it also imposes a shift to the Ag plasmon band. The NPs size distribution (4-10 nm) was determined in good agreement with the values obtained by using Mie theory and by transmission electron microscopy. The observed quenching in the visible luminescence of glasses doped with Eu3+, Tb3+ or Er3+is attributed to energy transfer from the RE ions to Ag species, while an enhanced near-infrared emission in Er3+ doped glasses is discussed in terms of the chemical contribution of silver, rather than the most commonly claimed enhancement of localized field or energy transfer from silver species to Er3+. The results are supported by the lifetime measurements. We believe that this study gives further insight and in-depth exploration of the somewhat controversial discussions on the influence of metallic NPs plasmonic effects in RE-doped glasses.

  3. Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake

    Science.gov (United States)

    Zampiva, Rúbia Young Sun; Acauan, Luiz Henrique; Venturini, Janio; Garcia, Jose Augusto Martins; da Silva, Diego Silverio; Han, Zhaohong; Kassab, Luciana Reyes Pires; Wetter, Niklaus Ursus; Agarwal, Anuradha; Alves, Annelise Kopp; Bergmann, Carlos Pérez

    2018-02-01

    Nanoparticles represent a promising platform for diagnostics and therapy of human diseases. For biomedical applications, these nanoparticles are usually coated with photosensitizers regularly activated in a spectral window of 530-700 nm. The emissions at 530 nm (green) and 660 nm (red) are of particular interest for imaging and photodynamic therapy, respectively. This work presents the Mg2SiO4:Er3+ system, produced by reverse strike co-precipitation, with up to 10% dopant and no secondary phase formation. These nanoparticles when excited at 985 nm show upconversion emission with peaks around 530 and 660 nm, although excitation at 808 nm leads to only a single emission peak at around 530 nm. The direct upconversion of this biomaterial without a co-dopant, and its tunability by the excitation source, renders Mg2SiO4:Er3+ nanoparticles a promising system for biomedical applications.

  4. How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence

    International Nuclear Information System (INIS)

    Barbillon, G; Faure, A C; Kork, N El; Moretti, P; Roux, S; Tillement, O; Ou, M G; Descamps, A; Perriat, P; Vial, A; Bijeon, J-L; Marquette, C A; Jacquier, B

    2008-01-01

    The paper shows how polysiloxane particles encapsulating fluorophores can be successfully used to detect biotin-streptavidin binding by two types of technique. After functionalization of the particles by streptavidin, the fixation of the biomolecule can indeed be detected by a shift of the localized surface plasmon resonance of the biotinylated gold dots used as substrate and by the luminescence of the fluorophores evidenced by scanning near-field optical microscopy. The development of particles allowing such a double detection opens a route for increasing the reliability of biological detection and for multi-labelling strategies crossing both detection principles

  5. How nanoparticles encapsulating fluorophores allow a double detection of biomolecules by localized surface plasmon resonance and luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Barbillon, G; Faure, A C; Kork, N El; Moretti, P [Universite de Lyon, Universite Lyon 1, CNRS UMR 5620, Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), Domaine Scientifique de La Doua, Bat Kastler, 10 rue Andre Marie Ampere 69622 Villeurbanne Cedex (France); Roux, S; Tillement, O [Universite de Lyon, Universite Lyon 1, CNRS UMR 5620, Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), Domaine Scientifique de La Doua, Bat Kastler, 10 rue Andre Marie Ampere 69622 Villeurbanne Cedex (France); Ou, M G; Descamps, A; Perriat, P [Materiaux, Ingenierie et Sciences (MATEIS), CNRS UMR 5510, Universite de Lyon, INSA-Lyon, Domaine Scientifique de La Doua, 7 avenue Jean Capelle 69621 Villeurbanne Cedex (France); Vial, A; Bijeon, J-L [Institut Charles Delaunay, CNRS FRE 2848, Laboratoire de Nanotechnologie et d' Instrumentation Optique (LNIO), Universite de Technologie de Troyes, 12 rue Marie Curie BP 2060 10010 Troyes Cedex (France); Marquette, C A [Laboratoire de Genie Enzymatique et Biomoleculaire, UMR 5246 CNRS-ICBMS, Universite de Lyon, Universite Lyon 1, 69622 Villeurbanne Cedex (France); Jacquier, B [Universite de Lyon, Universite Lyon 1, CNRS UMR 5620, Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), Domaine Scientifique de La Doua, Bat Kastler, 10 rue Andre Marie Ampere 69622 Villeurbanne Cedex (France)

    2008-01-23

    The paper shows how polysiloxane particles encapsulating fluorophores can be successfully used to detect biotin-streptavidin binding by two types of technique. After functionalization of the particles by streptavidin, the fixation of the biomolecule can indeed be detected by a shift of the localized surface plasmon resonance of the biotinylated gold dots used as substrate and by the luminescence of the fluorophores evidenced by scanning near-field optical microscopy. The development of particles allowing such a double detection opens a route for increasing the reliability of biological detection and for multi-labelling strategies crossing both detection principles.

  6. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  7. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  8. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  9. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  10. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  11. Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals

    Science.gov (United States)

    Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.

    2017-01-31

    Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.

  12. Determination of DNA by solid substrate room temperature phosphorescence enhancing method based on the Morin.SiO2 luminescent nanoparticles-Pd system as a phosphorescence probe

    International Nuclear Information System (INIS)

    Liu Jiaming; Yang Tianlong; Gao Fei; Hu Lixiang; He Hangxia; Liu Qinying; Liu Zhenbo; Huang Xiaomei; Zhu Guohui

    2006-01-01

    Sodium carbonate (Na 2 SiO 3 ) as the precursor, was mixed with Morin organic dye to synthesize silicon dioxide luminescent nanoparticles containing Morin (Morin.SiO 2 ) by sol-gel method. The particle sizes of SiO 2 .nH 2 O and Morin.SiO 2 were both 50 nm, measured with TEM (transmission electron microscope). Morin.SiO 2 modified by HS-CH 2 COOH could be dissolved by water. In the HMTA (hexamethylenetetramine)-HCl buffer solution, Pd 2+ could coordinate with Morin in Morin.SiO 2 to form complex Pd 2+ -Morin.SiO 2 , which could emit phosphorescence on polyamide membrane. And DNA (deoxyribonucleic acid) could cause a sharp enhancement of the room temperature phosphorescence (RTP) intensity of complex Pd 2+ -Morin.SiO 2 . Thus a new method of solid substrate room temperature phosphorescence (SS-RTP) enhancing for the determination of DNA was established based on the Morin.SiO 2 luminescent nanoparticles-Pd system as a phosphorescence probe. The ΔIp is directly proportional to the content of DNA in the range of 4.00-1000.0 fg spot -1 (corresponding concentration: 0.010-2.50 ng ml -1 ). The regression equation of working curve was ΔIp = 21.13 + 0.2076m DNA (fg spot -1 ) (r = 0.9990) and the detection limit was 0.61 fg spot -1 (corresponding concentration: 1.5 pg ml -1 ). This method had a wide linear range, high sensitivity, convenience, rapidity and only a little sample was needed. Samples containing 0.10 and 25.0 ng ml -1 DNA were measured repeatedly for 11 times and RSDs were 3.2 and 4.1% (n = 11), respectively, which indicated that the method had a good repeatability. Disturbance of common ions, such as Mg 2+ , K + , and Ca 2+ , was small, and there was no disturbance in the presence of protein and RNA. This method has been applied to the determination of DNA in nectar successfully

  13. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    Science.gov (United States)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  14. Lanthanide co-ordination frameworks: Opportunities and diversity

    International Nuclear Information System (INIS)

    Hill, Robert J.; Long, De-Liang; Hubberstey, Peter; Schroeder, Martin; Champness, Neil R.

    2005-01-01

    Significant successes have been made over recent years in preparing co-ordination framework polymers that show macroscopic material properties, but in the vast majority of cases this has been achieved with d-block metal-based systems. Lanthanide co-ordination frameworks also offer attractive properties in terms of their potential applications as luminescent, non-linear optical and porous materials. However, lanthanide-based systems have been far less studied to date than their d-block counterparts. One possible reason for this is that the co-ordination spheres of lanthanide cations are more difficult to control and, in the absence of design strategies for lanthanide co-ordination frameworks, it is significantly more difficult to target materials with specific properties. However, this article highlights some of the exciting possibilities that have emerged from the earliest investigations in this field with new topological families of compounds being discovered from relatively simple framework components, including unusual eight, seven and five-connected framework systems. Our own research, as well as others, is leading to a much greater appreciation of the factors that control framework formation and the resultant observed topologies of these polymers. As this understanding develops targeting particular framework types will become more straightforward and the development of designed polyfunctional materials more accessible. Thus, it can be seen that lanthanide co-ordination frameworks have the potential to open up previously unexplored directions for materials chemistry. This article focuses on the underlying concepts for the construction of these enticing and potentially highly important materials

  15. A single-source solid-precursor method for making eco-friendly doped semiconductor nanoparticles emitting multi-color luminescence.

    Science.gov (United States)

    Manzoor, K; Aditya, V; Vadera, S R; Kumar, N; Kutty, T R N

    2007-02-01

    A novel synthesis method is presented for the preparation of eco-friendly, doped semiconductor nanocrystals encapsulated within oxide-shells, both formed sequentially from a single-source solid-precursor. Highly luminescent ZnS nanoparticles, in situ doped with Cu(+)-Al3+ pairs and encapsulated with ZnO shells are prepared by the thermal decomposition of a solid-precursor compound, zinc sulfato-thiourea-oxyhydroxide, showing layered crystal structure. The precursor compound is prepared by an aqueous wet-chemical reaction involving necessary chemical reagents required for the precipitation, doping and inorganic surface capping of the nanoparticles. The elemental analysis (C, H, N, S, O, Zn), quantitative estimation of different chemical groups (SO4(2-) and NH4(-)) and infrared studies suggested that the precursor compound is formed by the intercalation of thiourea, and/or its derivatives thiocarbamate (CSNH2(-)), dithiocarbamate (CS2NH2(-)), etc., and ammonia into the gallery space of zinc-sulfato-oxyhydroxide corbel where the Zn(II) ions are both in the octahedral as well as tetrahedral coordination in the ratio 3 : 2 and the dopant ions are incorporated within octahedral voids. The powder X-ray diffraction of precursor compound shows high intensity basal reflection corresponding to the large lattice-plane spacing of d = 11.23 angstroms and the Rietveld analysis suggested orthorhombic structure with a = 9.71 angstroms, b = 12.48 angstroms, c = 26.43 angstroms, and beta = 90 degrees. Transmission electron microscopy studies show the presence of micrometer sized acicular monocrystallites with prismatic platy morphology. Controlled thermolysis of the solid-precursor at 70-110 degrees C leads to the collapse of layered structure due to the hydrolysis of interlayer thiourea molecules or its derivatives and the S2- ions liberated thereby reacts with the tetrahedral Zn(II) atoms leading to the precipitation of ZnS nanoparticles at the gallery space. During this process

  16. Persistent luminescence nanothermometers

    Science.gov (United States)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  17. Formation mechanism of CdS nanoparticles with tunable luminescence via a non-ionic microemulsion route

    International Nuclear Information System (INIS)

    Angelescu, Daniel G.; Munteanu, Gabriel; Anghel, Dan F.; Peretz, Sandu; Maraloiu, Adrian V.; Teodorescu, Valentin S.

    2013-01-01

    We investigated the synthesis of CdS nanoparticles via an optimized water-in-oil microemulsion route that used the non-ionic surfactant-based system H 2 O–n-octane–Brij30/1-octanol. For that purpose, a microemulsion that contained Cd(II) ions (μe1) and another microemulsion that contained S 2− ions (μe2) were combined. To investigate the ways in which the non-ionic microemulsion characteristics controlled the size and emission properties of colloidal CdS quantum dots, μe1 and μe2 with tunable and robust similar structure were prepared. This requirement was fulfilled by matching the water emulsification failure boundary (wefb) of the two microemulsions and carrying out synthesis along this boundary. Dynamic light scattering and fluorescence probe techniques were used to investigate the size and interfacial organization of the microemulsion water droplets, and the CdS nanoparticles were characterized by UV–Vis and static fluorescence spectrometry, TEM and HRTEM. Nanoparticles of diameter 4.5–5.5 nm exhibiting enhanced band edge emission were produced by increasing the water content of the precursor microemulsions. The experimental results were combined with a Monte Carlo simulation approach to demonstrate that growth via coagulation of seed nuclei represented the driving mechanism for the CdS nanoparticle formation in the water-in-oil microemulsion.

  18. Formation mechanism of CdS nanoparticles with tunable luminescence via a non-ionic microemulsion route

    Energy Technology Data Exchange (ETDEWEB)

    Angelescu, Daniel G., E-mail: dangelescu@hotmail.com; Munteanu, Gabriel [Quantum Chemistry and Molecular Structure Laboratory, Romanian Academy, ' Ilie Murgulescu' Institute of Physical Chemistry (Romania); Anghel, Dan F.; Peretz, Sandu [Romanian Academy, ' Ilie Murgulescu' Institute of Physical Chemistry, Colloidal Laboratory (Romania); Maraloiu, Adrian V.; Teodorescu, Valentin S. [National Institute of Materials Physics, Institute of Atomic Physics (Romania)

    2013-01-15

    We investigated the synthesis of CdS nanoparticles via an optimized water-in-oil microemulsion route that used the non-ionic surfactant-based system H{sub 2}O-n-octane-Brij30/1-octanol. For that purpose, a microemulsion that contained Cd(II) ions ({mu}e1) and another microemulsion that contained S{sup 2-} ions ({mu}e2) were combined. To investigate the ways in which the non-ionic microemulsion characteristics controlled the size and emission properties of colloidal CdS quantum dots, {mu}e1 and {mu}e2 with tunable and robust similar structure were prepared. This requirement was fulfilled by matching the water emulsification failure boundary (wefb) of the two microemulsions and carrying out synthesis along this boundary. Dynamic light scattering and fluorescence probe techniques were used to investigate the size and interfacial organization of the microemulsion water droplets, and the CdS nanoparticles were characterized by UV-Vis and static fluorescence spectrometry, TEM and HRTEM. Nanoparticles of diameter 4.5-5.5 nm exhibiting enhanced band edge emission were produced by increasing the water content of the precursor microemulsions. The experimental results were combined with a Monte Carlo simulation approach to demonstrate that growth via coagulation of seed nuclei represented the driving mechanism for the CdS nanoparticle formation in the water-in-oil microemulsion.

  19. Greatly enhanced Raman scattering and upconversion luminescence of Au–NaYF{sub 4} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Li, Junpeng [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics,College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun, E-mail: zhoujun@nbu.edu.cn [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-12-15

    Novel dual function Au–NaYF{sub 4} nanocomposites were prepared by a facile wet chemical method. Hexagonal NaYF{sub 4} nanocrystals (NCs) were first produced by a hydrothermal method. Then, these NaYF{sub 4} NCs were decorated with gold nanoparticles (NPs) to form hybrid nanostructures. In this dual mode probe, surface enhanced Raman scattering (SERS) and field enhanced fluorescence can be generated independently by using different excitation wavelengths. It was found that the attached gold NPs on the rough surfaces of NaYF{sub 4} NCs might generate high density localized electric fields, which could lead to both efficient Raman scattering signal and upconversion (UC) luminescence. The enhancement factors of SERS signals from Au–NaYF{sub 4} nanocomposites were investigated using 4-mercaptobenzoic acid. The mechanism of enhanced UC luminescence from the nanocomposites was also discussed based on the population and photoluminescence processes of doped trivalent lanthanide ions. These dual mode nanocomposites may find potential applications in biological detection, imaging, and sensing. - Highlights: • Novel dual function Au–NaYF{sub 4} nanocomposites were successfully fulfilled by a facial wet chemical method. • Field enhanced fluorescence and SERS can be generated independently by using different excitation wavelengths. • The EF value of this Au–NaYF{sub 4} substrate was as high as 8.17×10{sup 7}. • The largest ER of UC emissions from Gd{sup 3+} ion in Au–NaYF{sub 4} nanocomposites appeared to be 76.

  20. A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer.

    Science.gov (United States)

    Zhou, Feng; Noor, M Omair; Krull, Ulrich J

    2015-09-24

    Bioassays based on cellulose paper substrates are gaining increasing popularity for the development of field portable and low-cost diagnostic applications. Herein, we report a paper-based nucleic acid hybridization assay using immobilized upconversion nanoparticles (UCNPs) as donors in luminescence resonance energy transfer (LRET). UCNPs with intense green emission served as donors with Cy3 dye as the acceptor. The avidin functionalized UCNPs were immobilized on cellulose paper and subsequently bioconjugated to biotinylated oligonucleotide probes. Introduction of unlabeled oligonucleotide targets resulted in a formation of probe-target duplexes. A subsequent hybridization of Cy3 labeled reporter with the remaining single stranded portion of target brought the Cy3 dye in close proximity to the UCNPs to trigger a LRET-sensitized emission from the acceptor dye. The hybridization assays provided a limit of detection (LOD) of 146.0 fmol and exhibited selectivity for one base pair mismatch discrimination. The assay was functional even in undiluted serum samples. This work embodies important progress in developing DNA hybridization assays on paper. Detection of unlabeled targets is achieved using UCNPs as LRET donors, with minimization of background signal from paper substrates owing to the implementation of low energy near-infrared (NIR) excitation.

  1. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    International Nuclear Information System (INIS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-01-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  2. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sojka, Bartlomiej [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Liskova, Aurelia; Kuricova, Miroslava [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Banski, Mateusz; Misiewicz, Jan [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Dusinska, Maria [Norwegian Institute for Air Research, Health Effects Laboratory, Department of Environmental Chemistry (Norway); Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia); Rollerova, Eva [Slovak Medical University, Faculty of Public Health, Department of Toxicology (Slovakia); Podhorodecki, Artur, E-mail: artur.p.podhorodecki@pwr.edu.pl [Wroclaw University of Science and Technology, Department of Experimental Physics (Poland); Tulinska, Jana, E-mail: jana.tulinska@szu.sk [Slovak Medical University, Medical Faculty, Department of Immunology and Immunotoxicology (Slovakia)

    2017-02-15

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood (n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  3. One-Step Protein Conjugation to Upconversion Nanoparticles.

    Science.gov (United States)

    Lu, Jie; Chen, Yinghui; Liu, Deming; Ren, Wei; Lu, Yiqing; Shi, Yu; Piper, James; Paulsen, Ian; Jin, Dayong

    2015-10-20

    The emerging upconversion nanoparticles offer a fascinating library of ultrasensitive luminescent probes for a range of biotechnology applications from biomarker discovery to single molecule tracking, early disease diagnosis, deep tissue imaging, and drug delivery and therapies. The effective bioconjugation of inorganic nanoparticles to the molecule-specific proteins, free of agglomeration, nonspecific binding, or biomolecule deactivation, is crucial for molecular recognition of target molecules or cells. The current available protocols require multiple steps which can lead to low probe stability, specificity, and reproducibility. Here we report a simple and rapid protein bioconjugation method based on a one-step ligand exchange using the DNAs as the linker. Our method benefits from the robust DNA-protein conjugates as well as from multiple ions binding capability. Protein can be preconjugated via an amino group at the 3' end of a synthetic DNA molecule, so that the 5' end phosphoric acid group and multiple phosphate oxygen atoms in the phosphodiester bonds are exposed to replace the oleic acid ligands on the surface of upconversion nanoparticles due to their stronger chelating capability to lanthanides. We demonstrated that our method can efficiently pull out the upconversion nanoparticles from organic solvent into an aqueous phase. The upconversion nanoparticles then become hydrophilic, stable, and specific biomolecules recognition. This allows us to successfully functionalize the upconversion nanoparticles with horseradish peroxidise (HRP) for catalytic colorimetric assay and for streptavidin (SA)-biotin immunoassays.

  4. Lanthanide complexation in aqueous solutions

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1984-01-01

    The lanthanide elements form an extended series of cations with the same charge, slightly varying radii and useful magnetic and spectroscopic properties. Their use in technology is growing rapidly as their properties are more fully explored. The lanthanides also offer scientists valuable and often unique probes for investigating a variety of chemical and physical phenomena. This review has attempted to call attention to these latter uses without trying to provide a thorough discussion of all the relevant literature. Hopefully, awareness of the more interesting facets of present studies of lanthanide complexes in aqueous solution will spur even more advances in the use of these elements. (Auth.)

  5. PALS investigations of matrix Vycor glass doped with molecules of luminescent dye and silver nanoparticles. Discrepancies from the ETE model

    Directory of Open Access Journals (Sweden)

    Gorgol Marek

    2015-12-01

    Full Text Available A thermal stability of three materials: undoped reference Vycor glass, glass filled with ROT-305 red dye, and silver nanoparticles was investigated by positron annihilation lifetime spectroscopy (PALS in a broad temperature range (from 93 to 473 K. The attempt of pore size calculations from the ortho-positronium lifetime data was performed using the extended Tao-Eldrup (ETE model. Below room temperature, a significant decrease in lifetime values of the longest-lived component was found for all the samples. This effect could not be explained by thermal shrinkage of the material and is probably caused by interaction of o-Ps with a Vycor glass matrix. The greatest discrepancy from the ETE model predictions was observed for the reference glass. Doping the base material with dye molecules and silver nanoparticles resulted in similar small decrease in this discrepancy. After reheating the samples to the room temperature, the PALS components returned to the initial values. In the temperature range of 293–473 K, quite good agreement between PALS results and the ETE model predictions was observed for the reference glass and the glass incorporated with dye molecules. The observed small discrepancy in this range could possibly be partly explained by thermal expansion of the material. For the glass doped with silver nanoparticles, a significant change in PALS parameters was observed in the temperature range from 403 to 473 K.

  6. Holographic patterning of luminescent photopolymer nanocomposites

    International Nuclear Information System (INIS)

    Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim

    2008-01-01

    Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated

  7. Lanthanide Cofactors for Triphosphorylation Ribozymes

    Science.gov (United States)

    Sweeney, K. J.; Müller, U. F.

    2017-07-01

    RNA world organisms could have used trimetaphosphate as energy source for thermodynamically unfavorable RNA polymerization. Using in vitro selection we show here that Lanthanides can serve as cofactors for ribozyme-catalyzed RNA triphosphorylation.

  8. Lanthanide/Actinide Opacities

    Science.gov (United States)

    Hungerford, Aimee; Fontes, Christopher J.

    2018-06-01

    Gravitational wave observations benefit from accompanying electromagnetic signals in order to accurately determine the sky positions of the sources. The ejecta of neutron star mergers are expected to produce such electromagnetic transients, called macronovae (e.g. the recent and unprecedented observation of GW170817). Characteristics of the ejecta include large velocity gradients and the presence of heavy r-process elements, which pose significant challenges to the accurate calculation of radiative opacities and radiation transport. Opacities include a dense forest of bound-bound features arising from near-neutral lanthanide and actinide elements. Here we present an overview of current theoretical opacity determinations that are used by neutron star merger light curve modelers. We will touch on atomic physics and plasma modeling codes that are used to generate these opacities, as well as the limited body of laboratory experiments that may serve as points of validation for these complex atomic physics calculations.

  9. Development of a fluorescent label tool based on lanthanide nanophosphors for viral biomedical application

    International Nuclear Information System (INIS)

    Le, Quoc Minh; Tran, Thu Huong; Nguyen, Thanh Huong; Hoang, Thi Khuyen; Nguyen, Thanh Binh; Do, Khanh Tung; Tran, Kim Anh; Nguyen, Dang Hien; Le, Thi Luan; Nguyen, Thi Quy; Dang, Mai Dung; Thu Nguyen, Nu Anh; Nguyen, Van Man

    2012-01-01

    We report for the first time the preparation of luminescent lanthanide nanomaterial (LLN) linked bioconjugates and their application as a label tool for recognizing virus in the processing line of vaccine industrial fabrication. Several LLNs with the nanostructure forms of particles or rods/wires with europium (III) and terbium (III) ions in lattices of vanadate, phosphate and metal organic complex were prepared to develop novel fluorescent conjugates able to be applied as labels in fluorescence immunoassay analysis of virus/vaccine. With regard to the LLNs, we have successfully synthesized nanoparticles around 10 nm of YVO 4 :Eu(III), with high emission in the red spectral region, nanorod and nanowire of TbPO 4 ·H 2 O and Eu 1-x Tb x PO 4 ·H 2 O, width 5–7 nm and length 300 nm, showing very bright luminescence in green, and core/shell nanosized Eu(III) and Tb(III)/Eu(III) complexes with naphthoyl trifluoroacetone and tri-n-octylphosphineoxide (Eu.NTA.TOPO-PVP, Eu X Tb 1-X .NTA.TOPO). The appropriated core/shell structures can play a double role, one for enhancing luminescence efficiency and another for providing nanophosphors with better stability in water media for facilitating the penetration of nanophosphor core into a biomedical environment. The organic functionalizations of the obtained LLNs were done through their surface encapsulation with a functional polysiloxane including active groups such as amine (NH 2 ), thiocyanate (SCN) or mecarpto (SH). The properties of functional sol-gel matrix have great influence on the luminescence properties, especially luminescence intensity of YVO 4 :Eu(III), Eu.NTA.TOPO-PVP, TbPO 4 ·H 2 O and Eu x Tb 1-x PO 4 ·H 2 O. Bioconjugation processes of the functionalized LLNs have been studied with some bioactive molecules such as biotin, protein immunoglobulin G (IgG) or bovine serum albumin (BSA). The results of LLN-bioconjugate linking with IgG for recognizing virus (vaccine) will be presented in brief. It is consistent

  10. Investigation of the photoluminescence properties of composite optical resins containing high lanthanide content

    International Nuclear Information System (INIS)

    Wang Dongmei; Wang Fuxiang; Peng Weixian

    2012-01-01

    Novel composite optical resins with high lanthanide content have been synthesized through a free radical copolymerization of methacrylic acid (MA), styrene (St) and Eu(DBM) 3 ·H 2 O nanocrystals. We characterized the structure, the thermal properties, dimensions and photoluminescence properties of Eu(DBM) 3 ·H 2 O nanocrystals. Our results indicated that the diameters of the Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. These materials exhibited characteristic europium ion luminescence. The europium-bearing nanocrystals and were then incorporated into the copolymer systems of MA/St and luminescence functional optical resins with high lanthanide content (50 wt%) were obtained. The combination of these particles and optical resins is facile because the diameter of Eu(DBM) 3 ·H 2 O is decreased. These copolymer-based optical resins not only possess good transparency and mechanical performance, but also exhibit an intense narrow band emission of lanthanide complexes and longer fluorescence lifetimes under UV excitation at room temperature. - Highlights: ► Novel composite optical resins with high lanthanide content have been synthesized. ► The Eu(DBM) 3 ·H 2 O nanocrystals were within the range of 30 to 300 nm. ► Fluorescent resins with high lanthanide content (50 wt%) were obtained. ► Resins exhibit intense emission of lanthanide and longer fluorescence lifetimes. ► Variety properties of Eu(DBM) 3 ·H 2 O nanocrystals were characterized.

  11. Enhanced electric dipole transition in lanthanide complex with organometallic ruthenocene units.

    Science.gov (United States)

    Hasegawa, Yasuchika; Sato, Nao; Hirai, Yuichi; Nakanishi, Takayuki; Kitagawa, Yuichi; Kobayashi, Atsushi; Kato, Masako; Seki, Tomohiro; Ito, Hajime; Fushimi, Koji

    2015-05-21

    Enhanced luminescence of a lanthanide complex with dynamic polarization of the excited state and molecular motion is introduced. The luminescent lanthanide complex is composed of one Eu(hfa)3 (hfa, hexafluoroacetylacetonate) and two phosphine oxide ligands with ruthenocenyl units Rc, [Eu(hfa)3(RcPO)2] (RcPO = diphenylphosphorylruthenocene). The ruthenocenyl units in the phosphine oxide ligands play an important role of switching for dynamic molecular polarization and motion in liquid media. The oxidation states of the ruthenocenyl unit (Rc(1+)/Rc(1+)) are controlled by potentiostatic polarization. Eu(III) complexes attached with bidentate phosphine oxide ligands containing ruthenocenyl units, [Eu(hfa)3(RcBPO)] (RcBPO = 1,1'-bis(diphenylphosphoryl)ruthenocene), and with bidentate phosphine oxide ligands, [Eu(hfa)3(BIPHEPO)] (BIPHEPO =1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide), were also prepared as references. The coordination structures and electrochemical properties were analyzed using single crystal X-ray analysis, cyclic voltammetry, and absorption spectroscopy measurements. The luminescence properties were estimated using an optoelectrochemical cell. Under potentiostatic polarization, a significant enhancement of luminescence was successfully observed for [Eu(hfa)3(RcPO)2], while no spectral change was observed for [Eu(hfa)3(RcBPO)]. In this study, the remarkable enhanced luminescence phenomena of Eu(III) complex based on the dynamic molecular motion under potentiostatic polarization have been performed.

  12. Synthesis and application of luminescent single CdS quantum dot encapsulated silica nanoparticles directed for precision optical bioimaging

    Directory of Open Access Journals (Sweden)

    Veeranarayanan S

    2012-07-01

    Full Text Available Srivani Veeranarayanan, Aby Cheruvathoor Poulose, M Sheikh Mohamed, Yutaka Nagaoka, Seiki Iwai, Yuya Nakagame, Shosaku Kashiwada, Yasuhiko Yoshida, Toru Maekawa, D Sakthi KumarBio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, JapanAbstract: This paper presents the synthesis of aqueous cadmium sulfide (CdS quantum dots (QDs and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials' high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such

  13. Spectroscopy and energy level location of the trivalent lanthanides in LiYP4O12

    International Nuclear Information System (INIS)

    Dorenbos, P.; Shalapska, T.; Stryganyuk, G.; Gektin, A.; Voloshinovskii, A.

    2011-01-01

    The excitation and emission properties of the lanthanides Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Tb 3+ , Er 3+ , Tm 3+ , and Yb 3+ in LiYP 4 O 12 were studied by vacuum ultra-violet spectroscopy at 10 K. It provides information on the energies of 4f-5d excitation and emission bands. In the case of Er 3+ spin forbidden emission was observed. Charge transfer excitation bands were identified for Eu 3+ , Sm 3+ , Tm 3+ , and Yb 3+ , and in the case of Yb 3+ charge transfer luminescence is observed. All data appear to be consistent with each other and have been used to construct a level scheme showing the location of the energy levels of all trivalent and divalent lanthanides in LiYP 4 O 12 . - Research Highlights: → The spectroscopy of most of the trivalent lanthanides in LiYP 4 O 12 is presented for the first time. → Charge transfer luminescence of Yb3+ is reported. → We demonstrate that the energy of the first 4f-5d transition and the charge transfer band agree with predictive models. → For the first time a scheme with the location of all lanthanide states (divalent and trivalent ) w.r.t. de-valence and conduction band of LIP 4 O 12 is presented.

  14. Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles

    International Nuclear Information System (INIS)

    Sodzel, Dzmitry; Kolesneva, Ekaterina; Dubovskaya, Lyudmila; Volotovski, Igor; Khranovskyy, Volodymyr; Eriksson, Martin O.; Holtz, Per-Olof; Yakimova, Rositsa; Beni, Valerio; Turner, Anthony P. F.; Ubelis, Arnolds; Smyntyna, Valentyn; Viter, Roman; Janot, Jean-Marc; Bechelany, Mikhael; Balme, Sebastien

    2015-01-01

    We report on an indirect optical method for the determination of glucose via the detection of hydrogen peroxide (H 2 O 2 ) that is generated during the glucose oxidase (GOx) catalyzed oxidation of glucose. It is based on the finding that the ultraviolet (∼374 nm) and visible (∼525 nm) photoluminescence of pristine zinc oxide (ZnO) nanoparticles strongly depends on the concentration of H 2 O 2 in water solution. Photoluminescence is quenched by up to 90 % at a 100 mM level of H 2 O 2 . The sensor constructed by immobilizing GOx on ZnO nanoparticles enabled glucose to be continuously monitored in the 10 mM to 130 mM concentration range, and the limit of detection is 10 mM. This enzymatic sensing scheme is supposed to be applicable to monitoring glucose in the food, beverage and fermentation industries. It has a wide scope in that it may be extended to numerous other substrate or enzyme activity assays based on the formation of H 2 O 2 , and of assays based on the consumption of H 2 O 2 by peroxidases. (author)

  15. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra.

    Science.gov (United States)

    Sun, Ling-Dong; Wang, Ye-Fu; Yan, Chun-Hua

    2014-04-15

    Rare earth (RE) materials, which are excited in the ultraviolet and emit in the visible light spectrum, are widely used as phosphors for lamps and displays. In the 1960's, researchers reported an abnormal emission phenomenon where photons emitted from a RE element carried more energy than those absorbed, owing to the sequential energy transfer between two RE ions--Yb(3+)-sensitized Er(3+) or Tm(3+)--in the solid state. After further study, researchers named this abnormal emission phenomenon upconversion (UC) emission. More recent approaches take advantage of solution-based synthesis, which allows creation of homogenous RE nanoparticles (NPs) with controlled size and structure that are capable of UC emission. Such nanoparticles are useful for many applications, especially in biology. For these applications, researchers seek small NPs with high upconversion emission intensity. These UCNPs have the potential to have multicolor and tunable emissions via various activators. A vast potential for future development remains by developing molecular antennas and energy transfer within RE ions. We expect UCNPs with optimized spectra behavior to meet the increasing demand of potential applications in bioimaging, biological detection, and light conversion. This Account focuses on efforts to control the size and modulate the spectra of UCNPs. We first review efforts in size control. One method is careful control of the synthesis conditions to manipulate particle nucleation and growth, but more recently researchers have learned that the doping conditions can affect the size of UCNPs. In addition, constructing homogeneous core/shell structures can control nanoparticle size by adjusting the shell thickness. After reviewing size control, we consider how diverse applications impose different requirements on excitation and/or emission photons and review recent developments on tuning of UC spectral profiles, especially the extension of excitation/emission wavelengths and the adjustment

  16. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    International Nuclear Information System (INIS)

    Wang, Yu; Li, Shunbo; Wen, Weijia; Cao, Wenbin

    2016-01-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF 4 :Yb 3+ , Er 3+ upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited

  17. The influence of Co content on the luminescence properties of Co-doped ZnO nanoparticles

    Science.gov (United States)

    Guo, Shuxia; Jiang, Haitao

    2018-04-01

    Co-doped ZnO nanoparticles have been synthesized by co-precipitation technique. Photoluminescence spectra change in the range from 350 nm to 600 nm and remain unchanged at about 690 nm with the Co content increase. The UV emission is assigned to exciton emission. The density of band-edge states increases with Co content. The blue emission could be ascribed to the recombination of electrons in Co+ ions and holes in the valence band, whose relative intensity and full-width at half-maximum (FWHM) increase with the increase of cobalt concentration. The red emission results from the intra-d-shell emission at Co, which is independent of Co content. The relative density and energy-level position of green emission centers are also influenced by Co content.

  18. Ru(II)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents.

    Science.gov (United States)

    Martínez-Calvo, Miguel; Orange, Kim N; Elmes, Robert B P; la Cour Poulsen, Bjørn; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2016-01-07

    The development of Ru(II) functionalized gold nanoparticles 1–3·AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1–3·AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1–3·AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.

  19. Use of lanthanide catalysts in air electrodes

    International Nuclear Information System (INIS)

    Souza Parente, L.T. de

    1982-01-01

    A review on the lanthanide catalysts suitable for the reduction catalysis of oxygen in air electrodes is presented. The kinds of lanthanide indicated to be used as catalysts of oxygen reduction are shown. (A.R.H.) [pt

  20. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  1. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    Science.gov (United States)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  2. luminescence properties

    Indian Academy of Sciences (India)

    1Faculty of Science and Arts, Department of Chemistry, Bozok University, Yozgat 66900, Turkey. 2Faculty of Science, Department of Chemistry, Erciyes ... synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) ...

  3. Extraction chromatography of lanthanides, ch. 8

    International Nuclear Information System (INIS)

    Siekierski, S.; Fidelis, I.

    1975-01-01

    The extraction of lanthanides by chelate formation with acidic organophosphorous extractants, by solvation of salts, and in the form of ion pairs is reviewed. The double-double effect and its significance for the lanthanide as well as the actinide separation is discussed. A short survey of the existing data on the enthalpies of lanthanide extraction and on the influence of temperature on their separation factor is given. The resolution ability of columns used for the separation of lanthanides is briefly surveyed

  4. Sub-ppb level detection of uranium using ligand sensitized luminescence

    International Nuclear Information System (INIS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-01-01

    Uranyl ion (UO 2 2+ ) is known to exhibit weak luminescence in aqueous medium due to poor molar absorptivity and low quantum yield. In order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HClO 4 have been widely used. Like lanthanides, uranyl luminescence can also be sensitized by using some organic ligands. Pyridine 2,6-dicarboxylic acid (PDA) has shown enhancement of luminescence of uranyl in aqueous medium. Enhancement in intensity is due to sensitization of uranyl luminescence by PDA. In order to see the effect of non-aqueous medium, in this work, luminescence of uranyl-PDA complex has been studied in acetonitrile medium. More than one order luminescence enhancement has been observed compared to UO 2 2+ - PDA complex in aqueous medium. The lifetime of uranyl luminescence of the complex in acetonitrile medium is 90 μs which is very high compared to 10 μs in aqueous medium, suggesting that the luminescence enhancement is a result of reduction in non-radiative decay channels in acetonitrile medium. The large enhancement of uranyl luminescence of uranyl-PDA complex in acetonitrile medium can be used for ultra-trace level detection of uranium. Linearity in the luminescence intensity has been observed over the uranium concentration range of 5 to 80 ppb and the detection limit calculated using the criterion of 3 σ is ~ 0.2 ppb. (author)

  5. Effect of structure, particle size and relative concentration of Eu3+ and Tb3+ ions on the luminescence properties of Eu3+ co-doped Y2O3:Tb nanoparticles

    International Nuclear Information System (INIS)

    Mukherjee, S; Sudarsan, V; Vatsa, R K; Tyagi, A K; Godbole, S V; Kadam, R M; Bhatta, U M

    2008-01-01

    Eu 3+ co-doped Y 2 O 3 :Tb nanoparticles were prepared by the combustion method and characterized for their structural and luminescence properties as a function of annealing temperatures and relative concentration of Eu 3+ and Tb 3+ ions. For Y 2 O 3 :Eu,Tb nanoparticles annealed at 600 and 1200 deg. C, variation in the relative intensity of excitation transitions between the 7 F 6 ground state and low spin and high spin 4f 7 5d 1 excited states of Tb 3+ is explained due to the combined effect of distortion around Y 3+ /Tb 3+ in YO 6 /TbO 6 polyhedra and the size of the nanoparticles. Increase in relative intensity of the 285 nm peak (spin-allowed transition denoted as peak B) with respect to the 310 nm peak (spin-forbidden transition denoted as peak A) with decrease of Tb 3+ concentration in the Y 2 O 3 :Eu,Tb nanoparticles heated at 1200 deg. C is explained based on two competing effects, namely energy transfer from Tb 3+ to Eu 3+ ions and quenching among the Tb 3+ ions. Back energy transfer from Tb 3+ to Eu 3+ in these nanoparticles is found to be very poor

  6. A near-infrared luminescent Mn2+-doped NaYF4:Yb,Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA.

    Science.gov (United States)

    Zhang, Liping; Ling, Bo; Wang, Lun; Chen, Hongqi

    2017-09-01

    An upconversion luminescence method was developed for the determination of glutathione (GSH), L-cysteine (Cys) or L-ascorbic acid (AA) based on redox reaction. We synthesized poly(acrylic acid) (PAA)-modified Mn 2+ -doped NaYF 4 :Yb,Tm upconversion nanoparticles (UCNPs), and the luminescence of these UCNPs was effectively quenched due to their carboxyl groups coordinating with Fe 3+ to form a UCNPs/Fe 3+ system. GSH, Cys or AA reduced Fe 3+ to Fe 2+ , which induced the luminescence recovery of the UCNPs. Under the optimized conditions, wide linear concentration ranges from 0.25-300μM for GSH, 0.5-875μM for Cys and 0.5-350μM for AA were found, and the detection limits (3S/K) were 0.2μM, 0.5μM and 0.2μM, respectively. Thus, the UCNPs/Fe 3+ system was successfully applied for sensing GSH, Cys or AA. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effect of intentional potassium co-doping on the luminescent properties of Yb3+ and Tm3+ doped α-NaYF4 core and core–shell nanoparticles

    International Nuclear Information System (INIS)

    Misiak, Małgorzata; Stręk, Wiesław; Arabasz, Sebastian; Bednarkiewicz, Artur

    2016-01-01

    Simple and effective ways to circumvent limited luminescence efficiency of up-converting nanoparticles (UCNPs) are sought. One of the methods relays on distorting the crystallographic structure of host material by co-doping the nanocrystals with optically inactive co-dopants. Here we study the influence of K + doping and surface passivation on the up-converting properties of the α-NaYF 4 nanocrystals co-doped with 20% Yb 3+ and 0.1 or 2% Tm 3+ . The intentionally chosen concentrations of K + ions, which were meant to replaced sodium ions were fixed to 0, 5, 10, 20 to 30%. Potassium ions modified the spectroscopic properties of both core and core–shell NPs, but the differences were noticed between samples doped with 0.1% Tm 3+ and 2% Tm 3+ ions. Replacement of sodium by potassium ions decreased up-conversion luminescence intensity as well as shortened thulium excited states lifetimes in the samples doped with 0.1% Tm 3+ , while the opposite behavior was found in the samples co-doped with higher 2% thulium concentration. - Highlights: • We studied the influence of K + doping on luminescent properties of α-NaYF 4 :YbTm. • The 0.1 and 2% Tm doped core and core–shell samples were investigated. • K + -doping influence on UC properties was different in low and highly Tm doped NPs. • The explanations of the observed variations were proposed.

  8. Facile and high spatial resolution ratio-metric luminescence thermal mapping in microfluidics by near infrared excited upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Li, Shunbo; Wen, Weijia, E-mail: phwen@ust.hk [Department of Physics, KAUST-HKUST Joint Micro/Nanofluidic Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Cao, Wenbin [Nano Science and Technology Program, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2016-02-01

    A local area temperature monitor is important for precise control of chemical and biological processes in microfluidics. In this work, we developed a facile method to realize micron spatial resolution of temperature mapping in a microfluidic channel quickly and cost effectively. Based on the temperature dependent fluorescence emission of NaYF{sub 4}:Yb{sup 3+}, Er{sup 3+} upconversion nanoparticles (UCNPs) under near-infrared irradiation, ratio-metric imaging of UCNPs doped polydimethylsiloxane can map detailed temperature distribution in the channel. Unlike some reported strategies that utilize temperature sensitive organic dye (such as Rhodamine) to achieve thermal sensing, our method is highly chemically inert and physically stable without any performance degradation in long term operation. Moreover, this method can be easily scaled up or down, since the spatial and temperature resolution is determined by an optical imaging system. Our method supplied a simple and efficient solution for temperature mapping on a heterogeneous surface where usage of an infrared thermal camera was limited.

  9. Luminescent Ag-doped In{sub 2}S{sub 3} nanoparticles stabilized by mercaptoacetate in water and glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Raevskaya, Alexandra E.; Ivanchenko, Maria V.; Stroyuk, Oleksandr L., E-mail: alstroyuk@ukr.net, E-mail: stroyuk@inphyschem-nas.kiev.ua; Kuchmiy, Stepan Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Department of Photochemistry (Ukraine); Plyusnin, Victor F. [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences (Russian Federation)

    2015-03-15

    Colloidal nanoparticles (NPs) of tetragonal β-In{sub 2}S{sub 3} were stabilized in water and glycerol by mercaptoacetate anions. Doping of In{sub 2}S{sub 3} NPs with Ag{sup I} cations at the time of the synthesis imparts the NPs with the photoluminescence (PL) in the visible part of the spectrum. The doping results also in a shift of the absorption threshold and the PL band maximum to longer wavelengths proportional to the Ag{sup I} content. The PL band maximum of Ag{sup I}-doped In{sub 2}S{sub 3} NPs can be varied from 575–580 to 760–765 nm by augmenting the silver(I) amount and the duration and temperature of the post-synthesis aging. The average radiative life-time of Ag{sup I}-doped In{sub 2}S{sub 3} NPs also depends on the silver(I) content and reaches the maximal value, 960 ns, at a molar Ag:In ratio of 1:4. The maximal quantum yield of stationary PL, 12 %, is observed at this Ag:In ratio as well. Deposition of a ZnS “shell” on the surface of Ag{sup I}-doped In{sub 2}S{sub 3} NPs results in an increase of the PL quantum yield to ∼30 %.

  10. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Science.gov (United States)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  11. Synthesis and characterization of rare earth molybdates nanoparticles for detection of specific prostatic cancer (PSA)

    International Nuclear Information System (INIS)

    Dias, Clarissa Lombardi

    2013-01-01

    The interest in using rare earths to investigate the properties and functions of biochemical systems as well as to determinate biological substances has increased in several fields, including biomarkers in immunology (fluoro immunoassays). Nowadays the use of lanthanides in the diagnosis of various diseases have become more important through the development of commercial diagnostic kits. As main feature, these rare earths can show a long lifetime, photo stability and emission bands of atomic like behavior and well defined, in the visible region, demonstrating unique advantages when compared to other luminescent species. The present work had as its goal to synthesize rare earth molybdates by the co-precipitation method as well as to characterize these materials by X-ray diffraction, near infrared spectroscopy, thermogravimetric analysis, scanning electronic microscopy, transmission electronic microscopy and luminescent studies. In this work, three different studied were developed: the influence of the vortex speed variation during co-precipitation in the structure of the final product, morphology and luminescence properties; the influence of the annealing temperature also in the structure, morphology and luminescence properties; and the influence of concentration of the doping in the luminescence properties. Another important step of this work was the functionalization of nanoparticles using an organosilane (APTES) to coat and establish points for binding the particles to biological species. It was proved that this process was very efficient by the characterization results and the silica incorporation was well succeeded. Specific prostatic cancer (PSA) was then linked to the functionalized nanoparticles to diagnostic prostatic cancer by fluoroimmunoassay and levels for detection were established. (author)

  12. Silica-modified monodisperse hexagonal lanthanide nanocrystals: synthesis and biological properties

    Czech Academy of Sciences Publication Activity Database

    Kostiv, Uliana; Janoušková, Olga; Šlouf, Miroslav; Kotov, Nikolay; Engstová, Hana; Smolková, Katarína; Ježek, Petr; Horák, Daniel

    2015-01-01

    Roč. 7, č. 43 (2015), s. 18096-18104 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-01897S Institutional support: RVO:61389013 ; RVO:67985823 Keywords : upconverting * nanoparticles * lanthanide Subject RIV: CD - Macromolecular Chemistry; FD - Oncology ; Hematology (FGU-C) Impact factor: 7.760, year: 2015

  13. Separation of lanthanides through hydroxyapatite

    International Nuclear Information System (INIS)

    Garcia M, F.G.

    2006-01-01

    With the objective of obtaining from an independent way to each one of the lanthanides 151 Pm, 161 Tb, 166 Ho and 177 Lu free of carrier and with high specific activities starting from the indirect irradiation via, it intends in this work to determine the viability of separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu, by means of ion exchange column chromatography, using hydroxyapatite (HAp) and fluorite like absorbent material in complexing media. It is important to mention that have registered separation studies among lanthanides of the heavy group with those of the slight group, using the same mass and, in comparison with this work, quantities different from the father were used and of the son, also, that the separation studies were carried out among neighboring lanthanides. In this investigation, it was determined the effect that its have the complexing media: KSCN, sodium tartrate, sodium citrate, EDTA and aluminon, their pH and concentration, in the adsorption of the lanthanides in both minerals, in order to determine the chromatographic conditions for separation of the couples Nd/Pm, Dy/Ho, Gd/Tb and Yb/Lu. The work consists of five chapters, in the first one they are presented a theoretical introduction of the characteristics more important of the lanthanides, the hydroxyapatite and the fluorite; in the second, it is deepened in the ion exchange, as well as the two techniques (XRD and High Vacuum Electron Microscopy) to make the characterization of LnCI 3 (Ln = Nd, Gd, Dy or Yb) synthesized. The third chapter, it describes the methodology continued in our experimental work; in the room, its are presented the obtained results of the static and dynamic method to determine the viability of separation of neighboring lanthanides; and finally, the five chapter shows the conclusions. In this study, it is concludes that the separation among neighboring lanthanides cannot be carried out in the minerals and used media; because practically these lanthanides

  14. Silver nanoparticles enhanced luminescence properties of Er³⁺ doped tellurite glasses: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fares, Hssen; Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Department of Physics, Sciences Faculty of Tunis, University Tunis ElManar 2092 (Tunisia); Gelloz, Bernard [Graduate School of Engineering, Nagoya University, 2-24-16 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2014-09-28

    Tellurite glasses doped Er³⁺ ions and containing Silver nanoparticles (Ag NPs) are prepared using melt quenching technique. The nucleation and growth of Ag NPs were controlled by a thermal annealing process. The X-ray diffraction pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from transmission electron microscopy micrograph. Absorption spectra show typical surface plasmon resonance (SPR) band of Ag NPs within the 510–550 nm range in addition to the distinctive absorption peaks of Er³⁺ ions. The Judd-Ofelt (J-O) intensity parameters, oscillator strengths, spontaneous transition probabilities, branching ratios, and radiative lifetimes were successfully calculated based on the experimental absorption spectrum and the J-O theory. It was found that the presence of silver NPs nucleated and grown during the heat annealing process improves both of the photoluminescence (PL) intensity and the PL lifetime relative to the ⁴I13/2 → ⁴I15/2 transition. Optimum PL enhancement was obtained after 10 h of heat-treatment. Such enhancements are mainly attributed to the strong local electric field induced by SPR of silver NPs and also to energy transfer from the surface of silver NPs to Er³⁺ ions, whereas the quenching is ascribed to the energy transfer from Er³⁺ ions to silver NPs. Using the Mc Cumber method, absorption cross-section, calculated emission cross-section, and gain cross-section for the ⁴I13/2 → ⁴I15/2 transition were determined and compared for the doped and co-doped glasses. The present results indicate that the glass heat-treated for 10 h has good prospect as a gain medium applied for 1.53 μm band broad and high-gain erbium-doped fiber amplifiers.

  15. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Arppe, Riikka, E-mail: riikka.arppe@utu.fi; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamaeki, Terhi; Soukka, Tero [University of Turku, Department of Biotechnology (Finland)

    2013-09-15

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF{sub 4}: Yb{sup 3+}, Er{sup 3+}-nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them.

  16. High gradient magnetic separation of upconverting lanthanide nanophosphors based on their intrinsic paramagnetism

    International Nuclear Information System (INIS)

    Arppe, Riikka; Salovaara, Oskari; Mattsson, Leena; Lahtinen, Satu; Valta, Timo; Riuttamäki, Terhi; Soukka, Tero

    2013-01-01

    Photon upconverting nanophosphors (UCNPs) have the unique luminescent property of converting low-energy infrared light into visible emission which can be widely utilized in nanoreporter and imaging applications. For the use as reporters in these applications, the UCNPs must undergo a series of surface modification and bioconjugation reactions. Efficient purification methods are required to remove the excess reagents and biomolecules from the nanophosphor solution after each step to yield highly responsive reporters for sensitive bioanalytical assays. However, as the particle size of the UCNPs approaches the size of biomolecules, the handling of these reporters becomes cumbersome with traditional purification methods such as centrifugation. Here we introduce a novel approach for purification of bioconjugated 32-nm NaYF 4 : Yb 3+ , Er 3+ -nanophosphors from excess unbound biomolecules utilizing high gradient magnetic separation (HGMS)-system constructed from permanent super magnets which produce magnetic gradients in a magnetizable steel wool matrix amplifying the magnetic field. The non-magnetic biomolecules flowed straight through the magnetized HGMS-column while the UCNPs were eluted only after the magnetic field was removed. In the UCNPs the luminescent centers, i.e., lanthanide-ion dopants are responsible for the strong upconversion luminescence, but in addition they are also paramagnetic. In this study we have shown that the presence of these weakly paramagnetic luminescent lanthanides actually also enables the use of HGMS to capture the UCNPs without incorporating additional optically inactive magnetic core into them

  17. Preparation, characterization and luminescence of nanocrystalline Y2O3:Ho

    International Nuclear Information System (INIS)

    Biljan, Tomislav; Gajovic, Andreja; Meic, Zlatko; Mestrovic, Ernest

    2007-01-01

    Nanocrystalline Y 2 O 3 :Ho was synthesized by solution combustion method with ethylene glycol as fuel. Material was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties were studied using Raman spectrometers with excitation in near infrared (NIR) and visible regions. The visible and NIR luminescence spectra of nanocrystalline Y 2 O 3 :Ho show some important differences from those of bulk material. The convenience of using Raman instruments for studying luminescence of lanthanide ions is demonstrated

  18. Luminescent properties of europium different-ligand complexes with cyclic. beta. -diketones and diantipyrylalkanes

    Energy Technology Data Exchange (ETDEWEB)

    Ul' yanova, T M; Gerasimenko, G N; Tishchenko, M A; Vitkun, R A [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1983-03-01

    Using luminescence method different-ligand complexing of europium ions with diantipyrylalkanes and cyclic ..beta..-diketones: 2-acetyl- and 2-benzoyl-1.3-indandions, has been studied. The optimum conditions of the formation of different-ligand complexes and the ratio of components in it are determined. Effect of alien lanthanides and diantipyrylmethane derivatives on the luminescence intensity of europium complexes is clarified. A correlation between the ratio of the luminescence intensity bands of europium complexes and the values of oscillator strengths of supersensitive transitions of neodymium and erbium absorption bands is established.

  19. Controllable synthesis and crystal structure determined upconversion luminescence properties of Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} and NaYbF{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China); Qin, Weiping, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhou, Jun [Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211 (China)

    2014-04-01

    Graphical abstract: - Highlights: • The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by hydrothermal method. • The phase and morphology of products were adjusted by changing the hydrothermal conditions. • Relatively enhanced ultraviolet upconversion emissions were observed in YbF{sub 3} nanocrystals. • The crystalline phase impact on the upconversion luminescence was systematically studied. - Abstract: The synthesis of YbF{sub 3} and NaYbF{sub 4} crystals was successfully fulfilled by a facial hydrothermal method. The phase and morphology of the products were adjusted by changing the surfactant additive and fluorine source and tuning the pH value of the initial solution. The products with various morphologies range from octahedral nanoparticles, corn-like nanobundles, nanospheres, microrods, and hollow microprisms were prepared at different conditions. The growth mechanism of these products has been systematically studied. Impressively, relatively enhanced high order ultraviolet (UV) upconversion (UC) luminescence was observed in Tm{sup 3+} (Er{sup 3+}) ions doped YbF{sub 3} nanocrystals (NCs) compared with NaYbF{sub 4} microcrystals under the excitation of 980 nm infrared laser. The investigation results reveal that the crystal symmetry of matrix has significant effect on the spectra and lifetimes of the doping lanthanide ions. The simply synthesized water soluble YbF{sub 3} NCs with efficient UV UC luminescence may find potential application in biochemistry.

  20. Biological toxicity of lanthanide elements on algae.

    Science.gov (United States)

    Tai, Peidong; Zhao, Qing; Su, Dan; Li, Peijun; Stagnitti, Frank

    2010-08-01

    The biological toxicity of lanthanides on marine monocellular algae was investigated. The specific objective of this research was to establish the relationship between the abundance in the seawater of lanthanides and their biological toxicities on marine monocellular algae. The results showed that all single lanthanides had similar toxic effects on Skeletonema costatum. High concentrations of lanthanides (29.04+/-0.61 micromol L(-1)) resulted in 50% reduction in growth of algae compared to the controls (0 micromol L(-1)) after 96 h (96 h-EC50). The biological toxicity of 13 lanthanides on marine monocellular algae was unrelated with the abundance of different lanthanide elements in nature, and the "Harkins rule" was not appropriate for the lanthanides. A mixed solution that contained equivalent concentrations of each lanthanide element had the same inhibition effect on algae cells as each individual lanthanide element at the same total concentration. This phenomenon is unique compared to the groups of other elements in the periodic table. Hence, we speculate that the monocellular organisms might not be able to sufficiently differentiate between the almost chemically identical lanthanide elements. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  2. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  3. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  4. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Science.gov (United States)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  5. Lanthanide and actinide ion phytoextraction: investigations of biosorption chemistry

    International Nuclear Information System (INIS)

    Rayson, Gary D.; Serna, Debbie D.; Moore, Jessica L.

    2009-01-01

    Investigations of the chemical interactions responsible for passive biosorption of a lanthanide (Eu (III)) and an actinide (U (VI)) metal ion is described. Spectroscopic methods for the elucidation of chemical functionalities on cultured anther cell walls from the plant Datura innoxia include metal ion luminescence measurements. These have revealed the presence of distinctly different binding environments involving one, two, and three carboxylate moieties for Eu (III) and UO 2 2+ binding and sulfonates (or sulfates) and phosphates for sequestration of Eu (III) on the uranyl ion, respectively. Additional investigations of the apparent affinities of these metals to this material have revealed the presence of both low and high affinity sites for the binding of Eu (III) with weak electrostatic attractions proposed for binding at high metal concentrations (i.e., low affinities) and surface coordination interactions responsible for higher affinities. Conversely, total uranyl ion binding revealed only a single distribution of interactions based on apparent affinities. (author)

  6. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I).

    Science.gov (United States)

    Hanna, Jill R; Allan, Christopher; Lawrence, Charlotte; Meyer, Odile; Wilson, Neil D; Hulme, Alison N

    2017-05-14

    The CuAAC 'click' reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III)-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I). This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible 'turn-on' catalytic sensors for the detection of ligand-bound copper(I).

  7. Optimizing the Readout of Lanthanide-DOTA Complexes for the Detection of Ligand-Bound Copper(I

    Directory of Open Access Journals (Sweden)

    Jill R. Hanna

    2017-05-01

    Full Text Available The CuAAC ‘click’ reaction was used to couple alkyne-functionalized lanthanide-DOTA complexes to a range of fluorescent antennae. Screening of the antenna components was aided by comparison of the luminescent output of the resultant sensors using data normalized to account for reaction conversion as assessed by IR. A maximum 82-fold enhanced signal:background luminescence output was achieved using a Eu(III-DOTA complex coupled to a coumarin-azide, in a reaction which is specific to the presence of copper(I. This optimized complex provides a new lead design for lanthanide-DOTA complexes which can act as irreversible ‘turn-on’ catalytic sensors for the detection of ligand-bound copper(I.

  8. Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells.

    Science.gov (United States)

    Singh, Laishram Priyobarta; Singh, Ningthoujam Premananda; Srivastava, Sri Krishna

    2015-04-14

    SnO2:5Tb (SnO2 doped with 5 at% Tb(3+)) nanoparticles were synthesised by a polyol method and their luminescence properties at different annealing temperatures were studied. Characterization of nanomaterials was done by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD studies indicate that the prepared nanoparticles were of tetragonal structures. Upon Tb(3+) ion incorporation into SnO2, Sn(4+) changes to Sn(2+) and, on annealing again at higher temperature, Sn(2+) changes to Sn(4+). The prepared nanoparticles were spherical in shape. Sn-O vibrations were found from the FTIR studies. In photoluminescence studies, the intensity of the emission peaks of Tb(3+) ions increases with the increase of annealing temperature, and emission spectra lie in the region of white emission in the CIE diagram. CCT calculations show that the SnO2:5Tb emission lies in cold white emission. Quantum yields up to 38% can be obtained for 900 °C annealed samples. SnO2:5Tb nanoparticles were well incorporated into the PVA polymer and such a material incorporated into the polymer can be used for display devices. The SnO2:5Tb/Fe3O4 nanohybrid was prepared and investigated for hyperthermia applications at different concentrations of the nanohybrid. This achieves a hyperthermia temperature (42 °C) under an AC magnetic field. The hybrid nanomaterial SnO2:5Tb/Fe3O4 was found to exhibit biocompatibility with HeLa cells (human cervical cancer cells) at concentrations up to 74% for 100 μg L(-1). Also, this nanohybrid shows green emission and thus it will be helpful in tracing magnetic nanoparticles through optical imaging in vivo and in vitro application.

  9. Upconversion luminescence and blackbody radiation in tetragonal YSZ co-doped with Tm(3+) and Yb(3+).

    Science.gov (United States)

    Soares, M R N; Ferro, M; Costa, F M; Monteiro, T

    2015-12-21

    Lanthanide doped inorganic nanoparticles with upconversion luminescence are of utmost importance for biomedical applications, solid state lighting and photovoltaics. In this work we studied the downshifted luminescence, upconversion luminescence (UCL) and blackbody radiation of tetragonal yttrium stabilized zirconia co-doped with Tm(3+) and Yb(3+) single crystals and nanoparticles produced by laser floating zone and laser ablation in liquids, respectively. The photoluminescence (PL) and PL excitation (PLE) were investigated at room temperature (RT). PL spectra exhibit the characteristic lines in UV, blue/green, red and NIR regions of the Tm(3+) (4f(12)) under resonant excitation into the high energy (2S+1)LJ multiplets. Under NIR excitation (980 nm), the samples placed in air display an intense NIR at ∼800 nm due to the (1)G4→(3)H5/(3)H4→(3)H6 transitions. Additionally, red, blue/green and ultraviolet UCL is observed arising from higher excited (1)G4 and (1)D2 multiplets. The power excitation dependence of the UCL intensity indicated that 2-3 low energy absorbed photons are involved in the UCL for low power levels, while for high powers, the identified saturation is dependent on the material size with a enhanced effect on the NPs. The temperature dependence of the UCL was investigated for single crystals and targets used in the ablation. An overall increase of the integrated intensity was found to occur between 12 K and the RT. The thermally activated process is described by activation energies of 10 meV and 30 meV for single crystals and targets, respectively. For the NPs, the UCL was found to be strongly sensitive to pressure conditions. Under vacuum conditions, instead of the narrow lines of the Tm(3+), a wide blackbody radiation was detected, responsible for the change in the emission colour from blue to orange. This phenomenon is totally reversible when the NPs are placed at ambient pressure. The UCL/blackbody radiation in the nanosized material exhibits

  10. Room temperature synthesis of hydrophilic Ln(3+)-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: energy transfer, size-dependent and color-tunable luminescence properties.

    Science.gov (United States)

    Yang, Dongmei; Li, Guogang; Kang, Xiaojiao; Cheng, Ziyong; Ma, Ping'an; Peng, Chong; Lian, Hongzhou; Li, Chunxia; Lin, Jun

    2012-06-07

    In this paper, we demonstrate a simple, template-free, reproducible and one-step synthesis of hydrophilic KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) nanoparticles (NPs) via a solution-based route at room temperature. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and cathodoluminescence (CL) spectra are used to characterize the samples. The results indicate that the use of water-diethyleneglycol (DEG) solvent mixture as the reaction medium not only allows facile particle size control but also endows the as-prepared samples with good water-solubility. In particular, the mean size of NPs is monotonously reduced with the increase of DEG content, from 215 to 40 nm. The luminescence intensity and absolute quantum yields for KGdF(4): Ce(3+), Tb(3+) NPs increase remarkably with particle sizes ranging from 40 to 215 nm. Additionally, we systematically investigate the magnetic and luminescence properties of KGdF(4): Ln(3+) (Ln = Ce, Eu, Tb and Dy) NPs. They display paramagnetic and superparamagnetic properties with mass magnetic susceptibility values of 1.03 × 10(-4) emu g(-1)·Oe and 3.09 × 10(-3) emu g(-1)·Oe at 300 K and 2 K, respectively, and multicolor emissions due to the energy transfer (ET) process Ce(3+)→ Gd(3+)→ (Gd(3+))(n)→ Ln(3+), in which Gd(3+) ions play an intermediate role in this process. Representatively, it is shown that the energy transfer from Ce(3+) to Tb(3+) occurs mainly via the dipole-quadrupole interaction by comparison of the theoretical calculation and experimental results. This kind of magnetic/luminescent dual-function materials may have promising applications in multiple biolabels and MR imaging.

  11. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows.

    Science.gov (United States)

    Cortelletti, P; Skripka, A; Facciotti, C; Pedroni, M; Caputo, G; Pinna, N; Quintanilla, M; Benayas, A; Vetrone, F; Speghini, A

    2018-02-01

    Lanthanide-activated SrF 2 nanoparticles with a multishell architecture were investigated as optical thermometers in the biological windows. A ratiometric approach based on the relative changes in the intensities of different lanthanide (Nd 3+ and Yb 3+ ) NIR emissions was applied to investigate the thermometric properties of the nanoparticles. It was found that an appropriate doping with Er 3+ ions can increase the thermometric properties of the Nd 3+ -Yb 3+ coupled systems. In addition, a core containing Yb 3+ and Tm 3+ can generate light in the visible and UV regions upon near-infrared (NIR) laser excitation at 980 nm. The multishell structure combined with the rational choice of dopants proves to be particularly important to control and enhance the performance of nanoparticles as NIR nanothermometers.

  12. Synthesis of 5-Fluorouracil conjugated LaF3:Tb3+/PEG-COOH nanoparticles and its studies on the interaction with bovine serum albumin: spectroscopic approach

    International Nuclear Information System (INIS)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Aruna, Prakasarao; Ganesan, Singaravelu

    2015-01-01

    The luminescent lanthanide-doped nanoparticles have gathered considerable attention in many fields especially in biomedicine. In this work, the lanthanum fluoride-doped terbium nanoparticles (LaF 3 :Tb 3+ NPs) via simple chemical precipitation method has been synthesized and functionalized with polyethylene glycol. The size and the shape of the nanoparticles are confirmed using X-ray diffraction and transmission electron microscopy. The conjugation of 5-Fluorouracil (5-FU) and thus synthesized nanoparticles (NPs) were confirmed using various spectroscopic methods such as UV–Visible spectroscopy, fluorescence steady state, and excited state spectroscopy studies. The enhancement in fluorescence emission (λ = 543 nm) of drug-conjugated nanoparticles confirms the Vander Waals force of attraction due to F–F bonding between the drug and the nanoparticles. Further, the effects of 5FU-NPs in carrier protein were investigated using bovine serum albumin as a protein model. The 5FU–LaF 3 :Tb 3+ nanoparticles binding is illustrated with binding constant and number of binding sites. The structural change of bovine serum albumin has been studied using circular dichroism and Fourier transform infrared spectroscopy analysis.

  13. Polyol-synthesized Zn{sub 0.9}Mn{sub 0.1}S nanoparticles as potential luminescent and magnetic bimodal imaging probes: synthesis, characterization, and toxicity study

    Energy Technology Data Exchange (ETDEWEB)

    Gaceur, M.; Giraud, M., E-mail: marion.giraud@univ-paris-diderot.fr; Hemadi, M.; Nowak, S. [ITODYS, Universite Paris Diderot, Sorbonne Paris Cite (France); Menguy, N. [IMPMC, Universite Pierre et Marie Curie (France); Quisefit, J. P. [LISA, Universite Paris Diderot, Universite Paris Est Creteil (France); David, K. [Universite de Cergy-Pontoise, ERRMECe EA1391, Institut des Materiaux (France); Jahanbin, T.; Benderbous, S. [INSERM U-825, Pavillon Baudot (France); Boissiere, M. [Universite de Cergy-Pontoise, ERRMECe EA1391, Institut des Materiaux (France); Ammar, S., E-mail: ammarmer@univ-paris-diderot.fr [ITODYS, Universite Paris Diderot, Sorbonne Paris Cite (France)

    2012-07-15

    We report here the synthesis, by the polyol method, of Mn-doped ZnS nanocrystals with the zinc blende structure. Phase transfer of the as-produced quantum dots from organic solvent into water was achieved by surface complexation with mercaptoacetate ligands. The magnetic and optical properties of the powders and aqueous colloids obtained were evaluated by SQUID magnetometry as well as electronic absorption and emission spectroscopies, to test their potential as magnetic and luminescent bimodal probes for medical imaging. With a 10 % concentration of Mn{sup 2+}, the nanoparticles are paramagnetic at body temperature, and the aqueous colloids they form have high relaxivity with a r{sub 1} value of 20 mM{sup -1} s{sup -1} at 3 T. They are highly luminescent with a blue-green emission on 405-nm excitation. Viability assays and genotoxicity tests on Chinese hamster ovarian cells revealed neither acute cellular death, nor cell toxicity, nor damage to the nucleus after exposure for 24 h to particle doses of up to 100 {mu}g mL{sup -1}.

  14. Re-dispersion and film formation of GdVO4 :  Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: particle size and luminescence studies.

    Science.gov (United States)

    Shanta Singh, N; Ningthoujam, R S; Phaomei, Ganngam; Singh, S Dorendrajit; Vinu, A; Vatsa, R K

    2012-04-21

    GdVO(4) : Ln(3+) (Ln(3+) = Dy(3+), Eu(3+), Sm(3+), Tm(3+)) nanoparticles are prepared by a simple chemical route at 140 °C. The crystallite size can be tuned by varying the pH of the reaction medium. Interestingly, the crystallite size is found to increase significantly when pH increases from 6 to 12. This is related to slower nucleation of the GdVO(4) formation with increase of VO(4)(3-) present in solution. The luminescence study shows an efficient energy transfer from vanadate absorption of GdVO(4) to Ln(3+) and thereby enhanced emissions are obtained. A possible reaction mechanism at different pH values is suggested in this study. As-prepared samples are well dispersed in ethanol, methanol and water, and can be incorporated into polymer films. Luminescence and its decay lifetime studies confirm the decrease in non-radiative transition probability with the increase of heat treatment temperature. Re-dispersed particles will be useful in potential applications of life science and the film will be useful in display devices.

  15. The upconversion luminescence and magnetism in Yb3+/Ho3+ co-doped LaF3 nanocrystals for potential bimodal imaging

    Science.gov (United States)

    Syamchand, Sasidharanpillai S.; George, Sony

    2016-12-01

    Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity ( r 1) of 0.12 s-1 mM-1 and transverse relaxivity ( r 2) of 28.18 s-1 mM-1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential

  16. The upconversion luminescence and magnetism in Yb{sup 3+}/Ho{sup 3+} co-doped LaF{sub 3} nanocrystals for potential bimodal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, Sasidharanpillai S., E-mail: syamchand.ss@gmail.com; George, Sony, E-mail: emailtosony@gmail.com [University of Kerala, Department of Chemistry (India)

    2016-12-15

    Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb{sup 3+} and Ho{sup 3+}) doped LaF{sub 3} nanocrystals (LaF{sub 3} Yb{sup 3+}/Ho{sup 3+}) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF{sub 3} nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb{sup 3+} and Ho{sup 3+} as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to {sup 5}S{sub 2} → {sup 5}I{sub 8} and {sup 5}F{sub 5} → {sup 5}I{sub 8} transitions of Ho{sup 3+}, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho{sup 3+} and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity (r{sub 1}) of 0.12 s{sup −1} mM{sup −1} and transverse relaxivity (r{sub 2}) of 28.18 s{sup −1} mM{sup −1}, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF{sub 3} Yb{sup 3+}/Ho{sup 3+} nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as

  17. Electronic structure of lanthanide scandates

    Science.gov (United States)

    Mizzi, Christopher A.; Koirala, Pratik; Marks, Laurence D.

    2018-02-01

    X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and density functional theory calculations were used to study the electronic structure of three lanthanide scandates: GdSc O3,TbSc O3 , and DySc O3 . X-ray photoelectron spectra simulated from first-principles calculations using a combination of on-site hybrid and GGA +U methods were found to be in good agreement with experimental x-ray photoelectron spectra. The hybrid method was used to model the ground state electronic structure and the GGA +U method accounted for the shift of valence state energies due to photoelectron emission via a Slater-Janak transition state approach. From these results, the lanthanide scandate valence bands were determined to be composed of Ln 4 f ,O 2 p , and Sc 3 d states, in agreement with previous work. However, contrary to previous work the minority Ln 4 f states were found to be located closer to, and in some cases at, the valence band maximum. This suggests that minority Ln 4 f electrons may play a larger role in lanthanide scandate properties than previously thought.

  18. 2. Intermetallic compounds with lanthanides

    International Nuclear Information System (INIS)

    Elemans, J.B.A.A.

    1975-01-01

    Theoretical considerations are given concerning the structures of intermetallic compounds of the lanthanides and thorium (R) on the one hand, and with Fe, Co or Ni (M) on the other. They all derive from the parent composition RM 5 with the CaCu 5 hexagonal structure. This consists of alternate layers in which the M atoms are distinguished as M 1 and M 2 . The other compounds whose structures are studied are obtained by systematic replacement of R by M, or vice versa. In the first type, every third R is replaced by two M's yielding R 2 M 17 compounds. The substitution may be truly random or structured in two ways: so that either the hexagonal structure is maintained or that it is converted into a rhombihedral one. In the second type, one M (in a M 1 position) out of every five is replaced by one R, giving rise to RM 2 compounds which form Laves phases. In the third type, the M 1 's are replaced by R's, resulting in compounds RM 3 . In the fourth type, every third M is replaced by R, yielding R 2 M 7 compounds. With M = Co and R a light lanthanide, the compounds are ferromagnets; with R yttrium, thorium, or a heavy lanthanide, they are ferrimagnets. The preparation of the compounds in an arc-melting apparatus under an Ar-atmosphere followed by annealing is described

  19. Lanthanide-binding peptides with two pendant aminodiacetate arms: impact of the sequence on chelation.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Gateau, Christelle; Delangle, Pascale

    2012-03-21

    Lanthanide complexes with a series of hexapeptides-incorporating two unnatural chelating amino acids with aminodiacetate groups, Ada(1) and Ada(2)-have been examined in terms of their speciation, structure, stability and luminescence properties. Whereas Ada(2) acts as a tridentate donor in all cases, Ada(1) may act as a tetradentate donor thanks to the coordination of the amide carbonyl function assisted by the formation of a six-membered chelate ring. The position of the Ada(1) residue in the sequence is demonstrated to be critical for the lanthanide complex speciation and structure. Ada(1) promotes the coordination of the backbone amide function to afford a highly dehydrated Ln complex and an S-shape structure of the peptide backbone, only when found in position 2.

  20. Broadband Ce(III)-Sensitized Quantum Cutting in Core-Shell Nanoparticles: Mechanistic Investigation and Photovoltaic Application.

    Science.gov (United States)

    Sun, Tianying; Chen, Xian; Jin, Limin; Li, Ho-Wa; Chen, Bing; Fan, Bo; Moine, Bernard; Qiao, Xvsheng; Fan, Xianping; Tsang, Sai-Wing; Yu, Siu Fung; Wang, Feng

    2017-10-19

    Quantum cutting in lanthanide-doped luminescent materials is promising for applications such as solar cells, mercury-free lamps, and plasma panel displays because of the ability to emit multiple photons for each absorbed higher-energy photon. Herein, a broadband Ce 3+ -sensitized quantum cutting process in Nd 3+ ions is reported though gadolinium sublattice-mediated energy migration in a NaGdF 4 :Ce@NaGdF 4 :Nd@NaYF 4 nanostructure. The Nd 3+ ions show downconversion of one ultraviolet photon through two successive energy transitions, resulting in one visible photon and one near-infrared (NIR) photon. A class of NaGdF 4 :Ce@NaGdF 4 :Nd/Yb@NaYF 4 nanoparticles is further developed to expand the spectrum of quantum cutting in the NIR. When the quantum cutting nanoparticles are incorporated into a hybrid crystalline silicon (c-Si) solar cell, a 1.2-fold increase in short-circuit current and a 1.4-fold increase in power conversion efficiency is demonstrated under short-wavelength ultraviolet irradiation. These insights should enhance our ability to control and utilize spectral downconversion with lanthanide ions.

  1. Photo-reactive charge trapping memory based on lanthanide complex

    Science.gov (United States)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  2. Lanthanides, thorium, iodine in terrestrail invertebrates

    International Nuclear Information System (INIS)

    Zhulidov, A.V.; Pokarzhevskij, A.D.; Katargin, N.V.; AN SSSR, Moscow

    1991-01-01

    It is shown that among examined terrestrial invertebrates the highest levels on lanthanide and thorium concentration are typical for animals, feeding on plant tissues - earthworms, molluscs, diploid. It is shown that there are no reasons to hope, that regularities of migration of transuranium elements and lanthanides in tropic chains are identical

  3. A sensitive fluorescent sensor of lanthanide ions

    CERN Document Server

    Bekiari, V; Lianos, P

    2003-01-01

    A fluorescent probe bearing a diazostilbene chromophore and a benzo-15-crown-5 ether moiety is a very efficient sensor of lanthanide ions. The ligand emits strong fluorescence only in the presence of specific ions, namely lanthanide ions, while the emission wavelength is associated with a particular ion providing high sensitivity and resolution.

  4. Near infra red light emitting Y2Sn2O7: Yb-Er nanoparticles

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2011-01-01

    There is an increasing interest in erbium doped nanomaterials host, since they emit in the near-infrared region and are potential candidates for optical telecommunication, high-power and infrared lasers. Further, erbium-ytterbium-co-doped matrices have been particularly investigated as Yb 3+ ions play the role of sensitizers. In the present work, Y 2 Sn 2 O 7 nanoparticles co-doped with lanthanide ions Yb 3+ and Er 3+ were prepared based on the urea hydrolysis of Y 3+ , Sn 4+ , and Ln 3+ in ethylene glycol medium at 150 deg C followed by heating at 700 deg C. As prepared samples are amorphous in nature, and the sample heated at 700 deg C showed well crystalline pyrochlore structure. Based on TEM studies, it has been established that nano-particles are highly crystalline, with size range in the range of 2-5 nm. Luminescence measurements were carried out for the as prepared samples and those heated at 700 deg C. As prepared sampled showed very poor luminescence. However on heating to 700 deg C, strong emission in the NIR region was observed upon UV-excitation as can be seen. The peak observed around 1530 nm has been attributed to 4 I 13/2 → 4 I 15/2 transition of Er 3+ and the peak around 980 nm is due to 2 F 5/2 → 2 F 7/2 transition of Yb 3+ . (author)

  5. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    Science.gov (United States)

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb 3+ ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H + is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb 3+ . The long luminescence lifetime of Tb 3+ allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H + in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoxia [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Huang, Yankai [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Xu; Hao, Yuanqiang [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Ding, Yujie [College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wei, Wei; Wang, Qi [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Qu, Peng, E-mail: qupeng0212@163.com [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xu, Maotian, E-mail: xumaotian@sqnc.edu.cn [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg{sup 2+} detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb{sup 3+} from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg{sup 2+} into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg{sup 2+}. As a kind of Hg{sup 2+} nanosensor, the probe exhibited excellent selectivity for Hg{sup 2+} and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg{sup 2+} in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg{sup 2+} was achieved based on time-resolved spectroscopy.

  7. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    International Nuclear Information System (INIS)

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-01-01

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg"2"+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb"3"+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg"2"+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg"2"+. As a kind of Hg"2"+ nanosensor, the probe exhibited excellent selectivity for Hg"2"+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg"2"+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg"2"+ was achieved based on time-resolved spectroscopy.

  8. Scandium, yttrium and the lanthanide metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The hydroxide and oxide phases that exist for scandium(III) include scandium hydroxide, which likely has both amorphous and crystalline forms, ScOOH(s), and scandium oxide. This chapter presents the data selected for the stability constants of the polymeric hydrolysis species of scandium at zero ionic strength. The behaviour of yttrium, and the lanthanide metals, in the environment is largely dependent on their solution equilibria. Hydrolysis and other complexation reactions of yttrium and the lanthanide metals are important in the disposal of nuclear waste. The trivalent lanthanide metals include lanthanum(III) through lutetium(III). A number of studies have reported a tetrad effect for the geochemical behaviour of the lanthanide series, including stability constants and distribution coefficients. The solubility of many of the lanthanide hydroxide phases has been studied at fixed ionic strength. In studying the hydrolysis of cerium(IV), a number of studies have utilised oxidation-reduction reactions in determining the relevant stability constants.

  9. Laser-excited luminescence of trace Nd3+ impurity in LaBr3 revealed by Raman spectroscopy

    Science.gov (United States)

    Yu, Jinqiu; Cui, Lei; He, Huaqiang; Hu, Yunsheng; Wu, Hao; Zeng, Jia; Liu, Yuzhu

    2012-10-01

    Unexpected additional bands with obvious non-vibrational features were observed in Raman spectra of LaBr3. Extensive study was carried out to reveal the origin of these bands. Results indicate that the additional bands correspond to laser-excited luminescence of trace Nd3+ impurity unintentionally introduced from the La2O3 raw material, which was further confirmed by Raman spectra of specially prepared Nd3+-doped LaBr3 and LaOBr samples. The luminescence properties of Nd3+ in different matrix were compared and discussed. The ultrasensitivity of Raman spectroscopy in detecting trace luminescent lanthanide ions shows good potential for analytical applications.

  10. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  11. DFTB{sup +} and lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Hourahine, B [Department of Physics, SUPA, University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG (United Kingdom); Aradi, B; Frauenheim, T, E-mail: benjamin.hourahine@strath.ac.u [BCCMS, Universitaet Bremen, Am Fallturm 1, 28359 Bremen (Germany)

    2010-07-01

    DFTB{sup +} is a recent general purpose implementation of density-functional based tight binding. One of the early motivators to develop this code was to investigate lanthanide impurities in nitride semiconductors, leading to a series of successful studies into structure and electrical properties of these systems. Here we describe our general framework to treat the physical effects needed for these problematic impurities within a tight-binding formalism, additionally discussing forces and stresses in DFTB. We also present an approach to evaluate the general case of Slater-Koster transforms and all of their derivatives in Cartesian coordinates. These developments are illustrated by simulating isolated Gd impurities in GaN.

  12. 1,3-thiazole as suitable antenna ligand for lanthanide photoluminescence in [LnCl{sub 3}(thz){sub 4}].0.5thz, Ln = Sm, Eu, Gd, Tb, Dy

    Energy Technology Data Exchange (ETDEWEB)

    Dannenbauer, Nicole; Mueller-Buschbaum, Klaus [Wuerzburg Univ. (Germany). Inst. for Inorganic Chemistry; Kuzmanoski, Ana; Feldmann, Claus [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Inorganic Chemistry

    2014-02-15

    The series of luminescent monomeric lanthanide thiazole complexes [LnCl{sub 3}(thz){sub 4}].0.5thz (Ln = Sm, Eu, Gd, Tb, Dy; thz = 1,3-thiazole) has been synthesised and characterised by powder and single-crystal X-ray diffraction, IR and photoluminescence spectroscopy, DTA/TG as well as elemental analysis. The colourless compounds exhibit photoluminescence in the visible region with varying quantum efficiencies up to QY = 48 % for [LnCl{sub 3}(thz){sub 4}].0.5thz. Both, the lanthanide ions as well as the thiazole ligand contribute to the luminescence. Excitation can be achieved via intra-4f transitions and by exciting the ligand, emission is observed mainly from the lanthanide ions again by 4f transitions. Thiazole can transfer energy to the lanthanide ions, which further feeds the lanthanide emission by an efficient antenna effect even at room temperature. The lanthanide ions show pentagonal-bipyramidal coordination by three chloride anions and four N atoms of 1,3-thiazole, which leads to a strong {sup 5}D{sub 0} → {sup 7}F{sub 4} transition for europium. Significant differences arise as compared to thiophene complexes because no sulphur atom is involved in the metal coordination, as the thiazole ligand is solely coordinated via its nitrogen function. (orig.)

  13. Synthesis and characterization of rare earth molybdates nanoparticles for detection of specific prostatic cancer (PSA); Preparacao e caracterizacao de nanoparticulas de molibdatos de terras raras para deteccao do antigeno especifico da prostata (PSA)

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Clarissa Lombardi

    2013-07-01

    The interest in using rare earths to investigate the properties and functions of biochemical systems as well as to determinate biological substances has increased in several fields, including biomarkers in immunology (fluoro immunoassays). Nowadays the use of lanthanides in the diagnosis of various diseases have become more important through the development of commercial diagnostic kits. As main feature, these rare earths can show a long lifetime, photo stability and emission bands of atomic like behavior and well defined, in the visible region, demonstrating unique advantages when compared to other luminescent species. The present work had as its goal to synthesize rare earth molybdates by the co-precipitation method as well as to characterize these materials by X-ray diffraction, near infrared spectroscopy, thermogravimetric analysis, scanning electronic microscopy, transmission electronic microscopy and luminescent studies. In this work, three different studied were developed: the influence of the vortex speed variation during co-precipitation in the structure of the final product, morphology and luminescence properties; the influence of the annealing temperature also in the structure, morphology and luminescence properties; and the influence of concentration of the doping in the luminescence properties. Another important step of this work was the functionalization of nanoparticles using an organosilane (APTES) to coat and establish points for binding the particles to biological species. It was proved that this process was very efficient by the characterization results and the silica incorporation was well succeeded. Specific prostatic cancer (PSA) was then linked to the functionalized nanoparticles to diagnostic prostatic cancer by fluoroimmunoassay and levels for detection were established. (author)

  14. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  15. Determination of DNA by solid substrate room temperature phosphorescence enhancing method based on the Morin.SiO{sub 2} luminescent nanoparticles-Pd system as a phosphorescence probe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jiaming [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China)]. E-mail: zzsyliujiaming@163.com; Yang Tianlong [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Gao Fei [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Hu Lixiang [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); He Hangxia [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Liu Qinying [Department of Chemistry, Zhangzhou Normal College, Zhangzhou 363000 (China); Liu Zhenbo [Department of Orthopedics and Traumatology, Fujian College of Chinese Medicine, Fuzhou 350003 (China); Huang Xiaomei [Department of Food and Chemical Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China); Zhu Guohui [Department of Food and Chemical Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000 (China)

    2006-03-02

    Sodium carbonate (Na{sub 2}SiO{sub 3}) as the precursor, was mixed with Morin organic dye to synthesize silicon dioxide luminescent nanoparticles containing Morin (Morin.SiO{sub 2}) by sol-gel method. The particle sizes of SiO{sub 2}.nH{sub 2}O and Morin.SiO{sub 2} were both 50 nm, measured with TEM (transmission electron microscope). Morin.SiO{sub 2} modified by HS-CH{sub 2}COOH could be dissolved by water. In the HMTA (hexamethylenetetramine)-HCl buffer solution, Pd{sup 2+} could coordinate with Morin in Morin.SiO{sub 2} to form complex Pd{sup 2+}-Morin.SiO{sub 2}, which could emit phosphorescence on polyamide membrane. And DNA (deoxyribonucleic acid) could cause a sharp enhancement of the room temperature phosphorescence (RTP) intensity of complex Pd{sup 2+}-Morin.SiO{sub 2}. Thus a new method of solid substrate room temperature phosphorescence (SS-RTP) enhancing for the determination of DNA was established based on the Morin.SiO{sub 2} luminescent nanoparticles-Pd system as a phosphorescence probe. The {delta}Ip is directly proportional to the content of DNA in the range of 4.00-1000.0 fg spot{sup -1} (corresponding concentration: 0.010-2.50 ng ml{sup -1}). The regression equation of working curve was {delta}Ip = 21.13 + 0.2076m{sub DNA} (fg spot{sup -1}) (r = 0.9990) and the detection limit was 0.61 fg spot{sup -1} (corresponding concentration: 1.5 pg ml{sup -1}). This method had a wide linear range, high sensitivity, convenience, rapidity and only a little sample was needed. Samples containing 0.10 and 25.0 ng ml{sup -1} DNA were measured repeatedly for 11 times and RSDs were 3.2 and 4.1% (n = 11), respectively, which indicated that the method had a good repeatability. Disturbance of common ions, such as Mg{sup 2+}, K{sup +}, and Ca{sup 2+}, was small, and there was no disturbance in the presence of protein and RNA. This method has been applied to the determination of DNA in nectar successfully.

  16. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.; Clercx, H. J. H.; Heijst, G. J. F. van [Applied Physics Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Maes, N. C. J.; Sweep, A. M.; Dam, N. J. [Mechanical Engineering Department, Eindhoven University of Technology, 5612 AZ Eindhoven (Netherlands); Lamberts, T. [Institute of Theoretical Chemistry, University of Stuttgart, D-70569 Stuttgart (Germany)

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  17. Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol

    International Nuclear Information System (INIS)

    Kokko, Leena; Sandberg, Kaisa; Loevgren, Timo; Soukka, Tero

    2004-01-01

    Nanoparticles containing thousands of fluorescent europium(III) chelates have a very high specific activity compared to traditional lanthanide chelate labels. It can be assumed that if these particles are used in a homogeneous assay as donors, multiple chelates can excite a single acceptor in turns and the energy transfer to the acceptor is increased. The principle was employed in an immunoassay using luminescent resonance energy transfer from a long lifetime europium(III) chelate-dyed nanoparticle to a short lifetime, near-infrared fluorescent molecule. Due to energy transfer fluorescence lifetime of the sensitised emission was prolonged and fluorescence could be measured using a time-resolved detection. A competitive homogeneous immunoassay for estradiol was created using 92 nm europium(III) chelate-dyed nanoparticle coated with 17β-estradiol specific recombinant antibody Fab fragments as a donor and estradiol conjugated with near-infrared dye AlexaFluor 680 as an acceptor. The density of Fab fragments on the surface of the particle influenced the sensitivity of the immunoassay. The optimal Fab density was reached when the entire surface of the particle participated in the energy transfer, but the areas where the energy was transferred to a single acceptor, did not overlap. We were able to detect estradiol concentrations down to 70 pmol l -1 (3xSD of a standard containing 0 nmol l -1 of E2) using a 96-well platform. In this study we demonstrated that nanoparticles containing lanthanide chelates could be used as efficient donors in homogeneous assays

  18. Lanthanum fluoride upconverting nanoparticles for photo-biomodulation of cell function

    Science.gov (United States)

    Tek, Sumeyra; Vincent, Brandy K.; Mimun, L. Christopher; Tran, Ashley N.; Shrestha, Binita; Tang, Liang; Nash, Kelly L.

    2017-02-01

    Inorganic fluorescent nanoprobes have been widely used as passive agents for intracellular imaging for decades. An emerging field of research is the development of these contrast agents and using them actively in a way that they respond to external stimulation by inducing photo-chemical, thermal or mechanical actions that enable control and modulation over cell function. To achieve such control, methods which are remote, non-invasive and with low-thermal means of stimulation is preferable. Among a large variety of candidates, lanthanide doped upconverting nanoparticles (UCNPs) are one of the most interesting class of fluorescent materials. Non-scattering, low energy near infrared (NIR) light can be used for excitation of UCNPs as on-demand light sources resulting in emission peaks throughout the near-UV and visible wavelengths. Towards this goal, we developed nano-size, hydrophilic, non-toxic and biocompatible core-shell nanoparticles with enhanced upconversion intensity for photo-biomodulation studies. Under this approach, un-doped LaF3 (inert) shell and Yb3+ doped LaF3 (active) shell are grown on core LaF3:20% Yb, 2% Tm upconverting nanoparticles for enhanced luminescence for the first time with rapid microwave-assisted synthesis method that employs Polyvinylpyrrolidone (PVP) as biocompatible surfactant. The as-synthesized high efficiency UCNPs are analyzed through XRD, TEM, HRTEM, and Photoluminescence spectrum that is acquired under 980 nm laser excitation. Confocal microscopy is used to visualize nanoparticles in cells. The cellular response to NIR irradiation and upconverted light are visualized by luminescence microscopy.

  19. Printable luminescent down shifter for enhancing efficiency and stability of organic photovoltaics

    OpenAIRE

    Kettle, J.; Bristow, N.; Gethin, D.T.; Tehrani, Z.; Moudam, O.; Li, B.; Katz, E.A.; Benatto, Gisele Alves dos Reis; Krebs, Frederik C

    2016-01-01

    The proof of concept of using luminescent down shifting (LDS) layers as alternative UV filters for P3HT:PCBM OPVs is demonstrated using a lanthanide-based metal complex. The results are verified using a combination of indoor light soaking, with single cell devices, and outdoor performance monitoring, using a 16-cell monolithically connected OPV module. By applying the LDS layer, a ~5% relative enhancement in photocurrent is observed for both sets of devices. More significantly, indoor light s...

  20. Lanthanide-based fluorescent tracers in complex media

    International Nuclear Information System (INIS)

    Brichart, Thomas

    2014-01-01

    Tracers are objects allowing the determination of the position or the distribution of a product; tracers are currently used in a great variety of domains. Despite the fact that each field has it's own specifications, it is possible to find tracers in medicine (contrast agents), anti-counterfeiting or geological exploration. We have developed lanthanide complex tracers for oil field injection waters. Those tracers, derived from the DOTA, have been detected at concentration lower than 1 ppb, thanks to a simple and compact apparatus. This detection has been made possible by the use of time-resolved fluorescence spectroscopy, this technique allows us to get rid of the background noise created by the intrinsic fluorescence of oil residues that are present in production waters. We also demonstrated how we can, through a reverse microemulsion synthesis, encapsulate several different dyes inside a single nanoparticle composed of a gold core and a silica shell. We showed as well, how those particles can be used as smart tracers to gather data, such as temperature, pH, solvents, etc. inside the well. Finally the use of lanthanides and scale inhibitors properties allowed us to create a simple and fast dosing protocol of such scale inhibitors in injection waters. This dosage will then allow the quick adjustment of their concentration inside each well. (author) [fr

  1. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

    KAUST Repository

    Wang, Feng

    2010-02-25

    Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase, modifying electronic properties, modulating magnetism as well as tuning emission properties. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF 4 nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF 4 upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels to volumetric three-dimensional displays. © 2010 Macmillan Publishers Limited. All rights reserved.

  2. Luminescence and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blasse, G; Bleijenberg, K C; Powell, R C

    1980-01-01

    This paper deals with the luminescence of uranate centres in solids. The luminescence properties are influenced by the coordination number of the hexavalent uranium ion and by the crystallographic surroundings of the uranate centre. Transitions playing a role in the luminescence processes within the octahedral UO/sub 6//sup 6 -/ group are discussed using the results from both theoretical and experimental studies on another octahedral uranium complex: UF/sub 6/. The luminescence of the octahedral uranate group in oxidic compounds is discussed. Attention is paid to the vibrational structure, which is observed in the luminescence spectra at low temperatures and to the temperature quenching of the luminescence. The temperature quenching of the uranate luminescence in uranium-doped tungstates with ordered perovskite structure can be described in terms of a three state single configurational coordinate diagram. The complicated luminescence spectra of uranium-activated sodium fluoride (NaF-U) crystals have been unraveled using chemical variation of the crystal compositions and using site selective laser excitation techniques. Four different luminescent uranate centres have been observed in NaF-U. A model for the configurations of the luminescent centres has been deduced using the results from ionic conductivity experiments.

  3. Luminescent Study of the Binding Interaction on 1,4-Dihydroxy-2,3-Dimethyl-9,10-Anthraquinone with Titanium Dioxide Nanoparticles

    Science.gov (United States)

    Pushpam, S.; Yamini, D.; Ramakrishnan, V.

    2014-07-01

    The photophysical properties of 1,4-dihydroxy-2,3-dimethyl-9,10-anthroquinone (DHDMAQ) in the absence and presence of titanium dioxide (TiO2) nanoparticles have been studied using UV-visible absorption spectroscopy and steady-state fluorescence spectroscopy. The fluorescence intensity of the DHDMAQ decreases as the concentration of TiO2 nanoparticles increases. The quenching is characterized by a Stern-Volmer plot, which displays a positive deviation from linearity. This could be explained by static quenching models. The Stern-Volmer quenching constant, association constant, and binding constant have been calculated. The distance between DHDMAQ and TiO2 nanoparticles has also been evaluated using Forster's theory of non-radiative energy transfer.

  4. Effect of applied hydrostatic pressure on the quenching kinetics, and electronic and molecular structure of eight and nine-coordinate lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Maupin, C.L.; Riehl, J.P.

    1998-01-01

    Full text: Applied hydrostatic pressure may be used as a probe of the reaction mechanism for various solution reactions involving lanthanide ions. In this work we report on the use of high pressure to probe the mechanism of enantioselective quenching between racemic luminescent lanthanide complexes containing Dy(III) Tb(III) and Eu(III), and optically active transition metal complexes as quenchers. Diastereomeric rate constants are obtained from a biexponential fit of the luminescence decay. Particular attention will be given to solvation effects on the measured diastereomeric rate constants. The source of chirality is ascribed to a enantioselective rearrangement step within a bimolecular 'encounter' complex yielding a intermolecular geometry in which the energy transfer is efficient. The effect of high pressure on the molecular and electronic structure of these complexes will also be discussed

  5. Polymerization of lanthanide acrylonitrile complexes.

    Science.gov (United States)

    el-Mossalamy, El-Sayed H; Khalil, Ahmed A

    2002-01-01

    The molecular complexes of some lanthanides scandium (Sc3+), yttrium (Y3+), lanthanum (La3+), gadolinium (Gd3+), cerium (Ce3+) and ytterbium (Yb3) have been studies in dimethyl formamide (DMF) spectrophtometrically equilibrium constants (K), molar extintion coefficient (epsilon), energy of transition (E) and free energy (delta G*) were calculated. The polymerization of acrylonitrile has been studied and investigated in the presence of Sc3+, Y3+, La3+, Gd3+, Ce3+, and Yb3+ ions. The IR spectra of the formed AN-M (III) Br3 polymer complexes show the absence of the C identical to N band and the presence of two new bands corresponding to NH2 and OH groups. Magnetic moment values and the thermal stabilities of homopolymer and the polymer complexes were studied by means of thermogravimetric analysis and the activation energies for degradation were calculated.

  6. The Luminescence of CH3 NH3 PbBr3 Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced.

    Science.gov (United States)

    Gonzalez-Carrero, Soranyel; Francés-Soriano, Laura; González-Béjar, María; Agouram, Saïd; Galian, Raquel E; Pérez-Prieto, Julia

    2016-10-01

    CH 3 NH 3 PbBr 3 perovskite nanoparticles (P AD ) are prepared with a photoluminescence quantum yield of ≈100% in air atmosphere by using the quasi-spherical shaped 2-adamantylammonium bromide (ADBr) as the only capping ligand. The photostability under wet conditions of this kind of nanoparticles is enhanced by using cucurbit[7]uril-adamantylammonium (AD@CB) host-guest complexes as the capping ligand. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectral tuning via multi-phonon-assisted stokes and anti-stokes excitations in LaF{sub 3}: Tm{sup 3+} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dangli, E-mail: gaodangli@163.com [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Shaanxi Key Laboratory of Nano Materials and Technology, Xi' an, Shaanxi 710055 (China); Tian, Dongping, E-mail: dptian@xauat.edu.cn [School of Materials & Mineral Resources, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Chong, Bo; Li, Long [College of Science, Xi' an University of Architecture and Technology, Xi' an, Shaanxi 710055 (China); Zhang, Xiangyu [College of Science, Chang' an University, Xi' an, Shaanxi 710064 (China)

    2016-09-05

    We present a facile and highly effective method to tailor upconversion (UC) emission from LaF{sub 3}: Tm{sup 3+} nanoparticles (NPs) by adjusting ambient temperature from 20 K to 400 K accompanied with the pulse laser excitation. Spectral tuning mechanism controlled by ambient temperature at pulse laser excitation is revealed, and a mechanism based on the modification on multi-phonon relaxation rates for the rapid population of intermediate level {sup 3}H{sub 4} and multi-phonon-assisted excited state absorption is proposed. Based on multi-phonon relaxation theory and time-resolved photoluminescence studies, it is reasonable that UC luminescence under short-pulse laser excitation mainly originates from the ions at/near the surface of NPs. These exciting findings in ambient temperature accompanied with the short-pulse excitation dependent UC selectivity offer a general approach to tailoring lanthanide related UC emissions, which will benefit multicolor displays and imaging. - Graphical abstract: An effective method to tailor upconversion from LaF{sub 3}: Tm{sup 3+} nanoparticles by adjusting ambient temperature accompanied with the short-pulse laser excitation is presented and the spectral tuning mechanism based the modification on multi-phonon relaxation rate and multi-phonon-assisted excited state absorption is also revealed. - Highlights: • The luminescence switching is controlled by temperature and pulse duration. • The mechanism based on the multi-phonon-assisted excitations is proposed. • Blue luminescence under short-pulse excitation originates from the surface ions. • Temperature has a big effect on luminescence color output.

  8. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia

    2007-01-01

    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  9. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  10. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  11. Luminescence detection of shellfish

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Spencer, J.Q.; Naylor, J.D.

    1996-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) has been active in the development and application of luminescence techniques in the detection of irradiated foods, in support of UK legislation. Thermoluminescence (TL), photostimulated luminescence (PSL) and photo-transfer luminescence (PTTL) are radiation-specific phenomena which arise due to energy stored by trapped charge carriers following irradiation. The energy released following stimulation is accompanied by detectable luminescence. The TL method involves preparation of pure silicate extracts from the sample and subsequent TL analysis, whereas PSL uses stimulation by electromagnetic radiation (visible, or near visible wavelengths) thus avoiding heating the sample. (author)

  12. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  13. Tb3+ and Eu3+ luminescence in imidazolium ionic liquids

    International Nuclear Information System (INIS)

    Hopkins, Todd; Goldey, Matt

    2009-01-01

    The luminescence properties of Tb 3+ and Eu 3+ dissolved in ionic liquids are studied. Solutes in this study include simple lanthanide compounds (e.g., EuBr 3 , TbCl 3 ) and lanthanide complexes (e.g., Eu(dpa) 3 3- where dpa = 2,6 pyridine dicarboxylate dianion) dissolved in a 1-butyl-3-methylimidazolium bromide(BMIBr)/water mixture. Emission, excitation, and time-resolved emission measurements are utilized to characterize the spectroscopic properties. It is well established in the literature that the solubility and spectroscopic properties of lanthanides in ionic liquids are highly dependent upon environmental factors including purity, and water content [K. Binnemans, Chemical Reviews (2007); I. Billard, S. Mekki, C. Gaillard, P. Hesemann, C. Mariet, G. Moutiers, A. Labet, J.-C.G. Buenzli, European Journal of Inorganic Chemistry 6 (2004) 1190-1197; S. Samikkanu, K. Mellem, M. Berry, P.S. May, Inorganic Chemistry 46 (2007) 7121-7128]. The water in this ionic liquid system acts as a co-solvent to facilitate solubility of Tb 3+ and Eu 3+ compounds. The observed spectroscopic properties of Eu 3+ and Tb 3+ salts are expectedly impacted by the high water content, but unexpectedly impacted by the BMIBr ionic liquid. However, the spectroscopy of Eu(dpa) 3 3- is unaffected by the presence of BMIBr.

  14. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Directory of Open Access Journals (Sweden)

    Florian Mayer

    2018-01-01

    Full Text Available Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth. We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  15. Systematic development of new thermoluminescence and optically stimulated luminescence materials

    Energy Technology Data Exchange (ETDEWEB)

    Yukihara, E.G., E-mail: eduardo.yukihara@okstate.edu [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Milliken, E.D.; Oliveira, L.C. [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Orante-Barron, V.R. [Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico (Mexico); Jacobsohn, L.G. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, SC (United States); Blair, M.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-01-15

    This paper presents an overview of a systematic study to develop new thermoluminescence (TL) and optically stimulated luminescence (OSL) materials using solution combustion synthesis (SCS) for applications such as personal OSL dosimetry, 2D dose mapping, and temperature sensing. A discussion on the material requirements for these applications is included. We present X-ray diffraction (XRD) data on single phase materials obtained with SCS, as well as radioluminescence (RL), TL and OSL data of lanthanide-doped materials. The results demonstrate the possibility of producing TL and OSL materials with sensitivity similar to or approaching those of commercial TL and OSL materials used in dosimetry (e.g., LiF:Mg,Ti and Al{sub 2}O{sub 3}:C) using SCS. The results also show that the luminescence properties can be improved by Li co-doping and annealing. The presence of an atypical TL background and anomalous fading are discussed and deserve attention in future investigations. We hope that these preliminary results on the use of SCS for production of TL and OSL materials are helpful to guide future efforts towards the development of new luminescence materials for different applications. - Highlights: Black-Right-Pointing-Pointer TL and OSL material produced with sensitivity similar to commercial materials. Black-Right-Pointing-Pointer Luminescence properties improved by Li co-doping and annealing. Black-Right-Pointing-Pointer The presence of atypical TL background and anomalous fading observed.

  16. Biocombatibility and in vivo toxicity assessment of multilayered polymer encapsulated lanthanide doped particles

    International Nuclear Information System (INIS)

    Dhanya, C.R.; Sri Sivakumar; Jaishree, J.; Abraham, Annie

    2013-01-01

    Layer-by-layer (LbL) deposition technique has led to the development of multilayered multifunctional nanoparticles that can prove to be promising system for directed drug delivery. Recently, surface functionalized Lanthanide doped nanoparticles have been explored as a candidate for biomedical applications like bio-detection, fluorescence imaging and drug delivery. The toxicity behaviors of biomedical devices proposed for therapeutic use in human must be checked for their toxicity behaviors in animal models. Here, we have presented an initial systematic animal toxicity study of polymer encapsulated lanthanide doped particle in Swiss Albino mice. Polymer coated LNPs with concentration of 100 nM in PBS was administered intravenously through tail vein according to body weight (4μl/g). Animal behavior, survival and animal mass, were monitored and evaluated over short-term (one week) and long-term (one month) periods, after which animals were euthanized. Blood was collected for evaluating clinical biochemistry (SGOT and SGPT) and hematological parameters, and tissues (liver and kidney) for organ histology. Results demonstrated normal serum clinical biochemistry in animals for both short and long time exposure. Histological examination of LNP treated mice also showed normal histology of liver and kidney even after one month of administration. Similar results were obtained for hematological evaluation. Results exhibited the systemic nontoxic nature of the polymer encapsulated lanthanide particles and their suitability as a tool for tumor targeted drug delivery. (author)

  17. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications.

    Science.gov (United States)

    Gu, Zhanjun; Yan, Liang; Tian, Gan; Li, Shoujian; Chai, Zhifang; Zhao, Yuliang

    2013-07-26

    Lanthanide (Ln) doped upconversion nanoparticles (UCNPs) have attracted enormous attention in the recent years due to their unique upconversion luminescent properties that enable the conversion of low-energy photons (near infrared photons) into high-energy photons (visible to ultraviolet photons) via the multiphoton processes. This feature makes them ideal for bioimaging applications with attractive advantages such as no autofluorescence from biotissues and a large penetration depth. In addition, by incorporating advanced features, such as specific targeting, multimodality imaging and therapeutic delivery, the application of UCNPs has been dramatically expanded. In this review, we first summarize the recent developments in the fabrication strategies of UCNPs with the desired size, enhanced and tunable upconversion luminescence, as well as the combined multifunctionality. We then discuss the chemical methods applied for UCNPs surface functionalization to make these UCNPs biocompatible and water-soluble, and further highlight some representative examples of using UCNPs for in vivo bioimaging, NIR-triggered drug/gene delivery applications and photodynamic therapy. In the perspectives, we discuss the need of systematically nanotoxicology data for rational designs of UCNPs materials, their surface chemistry in safer biomedical applications. The UCNPs can actually provide an ideal multifunctionalized platform for solutions to many key issues in the front of medical sciences such as theranostics, individualized therapeutics, multimodality medicine, etc. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. New Lanthanide Alkynylamidinates and Diiminophosphinates

    Directory of Open Access Journals (Sweden)

    Farid M. Sroor

    2015-11-01

    Full Text Available This contribution reports the synthesis and structural characterization of several new lithium and lanthanide alkynylamidinate complexes. Treatment of PhC≡CLi with N,N′-diorganocarbodiimides, R–N=C=N–R (R = iPr, Cy (cyclohexyl, in THF or diethyl ether solution afforded the lithium-propiolamidinates Li[Ph–C≡C–C(NCy2] S (1: R = iPr, S = THF; 2: R = Cy, S = THF; 3: R = Cy, S = Et2O. Single-crystal X-ray diffraction studies of 1 and 2 showed the presence of typical ladder-type dimeric structures in the solid state. Reactions of anhydrous LnCl3 (Ln = Ce, Nd, Sm or Ho with 2 in a 1:3 molar ratio in THF afforded a series of new homoleptic lanthanide tris(propiolamidinate complexes, [Ph–C≡C–C(NCy2]3Ln (4: Ln = Ce; 5: Ln = Nd; 6: Ln = Sm; 7: Ln = Ho. The products were isolated in moderate to high yields (61%–89% as brightly colored, crystalline solids. The chloro-functional neodymium(III bis(cyclopropylethynylamidinate complex [{c-C3H5–C≡C–C(NiPr2}2Ln(µ-Cl(THF]2 (8 was prepared from NdCl3 and two equiv. of Li[c-C3H5–C≡C–C(NiPr2] in THF and structurally characterized. A new monomeric Ce(III-diiminophosphinate complex, [Ph2P(NSiMe32]2Ce(µ-Cl2Li(THF2 (9, has also been synthesized in a similar manner from CeCl3 and two equiv. of Li[Ph2P(NSiMe32]. Structurally, this complex resembles the well-known “ate” complexes (C5Me52Ln(µ-Cl2Li(THF2. Attempts to oxidize compound 9 using trityl chloride or phenyliodine(III dichloride did not lead to an isolable cerium(IV species.

  19. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  20. Lanthanides in the frame of Molecular Magnetism

    Directory of Open Access Journals (Sweden)

    Gatteschi D.

    2014-07-01

    Full Text Available Molecular magnetism is producing new types of materials which cover up to date aspects of basic science together with possible applications. This article highlights recent results from the point of view of lanthanides which are now intensively used to produce single molecule magnets, single chain and single ion magnets. After a short introduction reminding the main steps of development of molecular magnetism, the basic properties of lanthanides will be covered highlighting important features which are enhanced by the electronic structure of lanthanides, like spin frustration and chirality, anisotropy and non collinear axes in zero and one dimensional materials. A paragraph of conclusions will discuss what has been done and theperspectives to be expected.

  1. Curvature of the Lanthanide Contraction: An Explanation

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Kenneth; Wellman, Daniel; Sgarlata, Carmelo; Hill, Aru

    2009-12-21

    A number of studies have shown that for isostructural series of the lanthanides (elements La through Lu), a plot of equivalent metal-ligand bond lengths versus atomic number differs significantly from linearity and can be better fit as a quadratic equation. However, for hydrogen type wave functions, it is the inverse of the average distance of the electron from the nucleus (an estimate of size) that varies linearly with effective nuclear charge. This generates an apparent quadratic dependence of radius with atomic number. Plotting the inverse of lanthanide ion radii (the observed distance minus the ligand size) as a function of effective nuclear charge gives very good linear fits for a variety of lanthanide complexes and materials. Parameters obtained from this fit are in excellent agreement with the calculated Slater shielding constant, k.

  2. Tunable luminescent emission characterization of type-I and type-II systems in CdS-ZnSe core-shell nanoparticles: Raman and photoluminescence study.

    Science.gov (United States)

    Ca, Nguyen Xuan; Lien, V T K; Nghia, N X; Chi, T T K; Phan, The-Long

    2015-11-06

    We used wet chemical methods to synthesize core-shell nanocrystalline samples CdS(d)/ZnSe N , where d = 3-6 nm and N = 1-5 are the size of CdS cores and the number of monolayers grown on the cores, respectively. By annealing typical CdS(d)/ZnSe N samples (with d = 3 and 6 nm and N = 2) at 300 °C for various times t an = 10-600 min, we created an intermediate layer composed of Zn1-x Cd x Se and Cd1-x Zn x S alloys with various thicknesses. The formation of core-shell structures and intermediate layers was monitored by Raman scattering and UV-vis absorption spectrometers. Careful photoluminescence studies revealed that the as-prepared CdS(d)/ZnSe N samples with d = 5 nm and N = 2-4, and the annealed samples CdS(3 nm)/ZnSe2 with t an ≤ 60 min and CdS(6 nm)/ZnSe2 with t an ≤ 180 min, show the emission characteristics of type-II systems. Meanwhile, the other samples show the emission characteristics of type-I systems. These results prove that the partial separation of photoexcited carriers between the core and shell is dependent strongly on the engineered core-shell nanostructures, meaning the sizes of the core, shell, and intermediate layers. With the tunable luminescence properties, CdS-ZnSe-based core-shell materials are considered as promising candidates for multiple-exciton generation and single-photon sources.

  3. Optimization of the radio lanthanides separation device

    International Nuclear Information System (INIS)

    Vera T, A. L.

    2009-01-01

    At present, cancer is a major cause of mortality in our country, therefore, its prevention, diagnosis and treatment are vital to health systems. The cancer treatment and other diseases, from monoclonal antibodies, peptides, or amino macro aggregates marked with beta particle emitting radionuclides, is a highly promising field. The radioactive lanthanides: Pm, Tb, Ho, and Lu are beta emitters, which possess nuclear and chemical properties, which have shown their feasibility as radioisotopes of radiotherapeutic use. However, these radioisotopes are not available commercially in this connection, the Research Laboratory of Radioactive Materials of the National Institute of Nuclear Research, has developed the methodology of production of these radioisotopes and based on this work is designed, constructed and installed the radio lanthanides separation device for the radioisotopes production routinely. This device is part of the cell, , which has and auxiliary air service, an extraction system and is protected with a 10 cm of lead shielding. The radio lanthanides separation device is manual and easy to handle. The main function of this equipment is the radio lanthanides separation from extractive chromatography through packed columns with a commercial resin (Ln SPS) and coated on the top and bottom by fiberglass. The radio lanthanides separation device comprises a main carrousel where the separation columns and elution containers are mounted. It also has a system of open irradiation vials, carrier samples for columns and glassware. This paper presents a detailed description of the radio lanthanides separation device and its management, which allows the radioisotopes production Pm, Tb, Ho, and Lu from the separation of its parents Nd, Dy, Gd, and Yb respectively. (Author)

  4. Gamma ray induced decomposition of lanthanide nitrates

    International Nuclear Information System (INIS)

    Joshi, N.G.; Garg, A.N.

    1992-01-01

    Gamma ray induced decomposition of the lanthanide nitrates, Ln(NO 3 ) 3 .xH 2 O where Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm and Yb has been studied at different absorbed doses up to 600 kGy. G(NO 2 - ) values depend on the absorbed dose and the nature of the outer cation. It has been observed that those lanthanides which exhibit variable valency (Ce and Eu) show lower G-values. An attempt has been made to correlate thermal and radiolytic decomposition processes. (author). 20 refs., 3 figs., 1 tab

  5. Factors in the complexation of lanthanides

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The lanthanide cations are classified as hard acids and thus will coordinate strongly with oxygen and fluorine donor atoms. The electrostatic model is applied to lanthanide complexes with the dielectric constant as a parameter; the plot of ΔG vs sum of ionic radii confirm the ionic nature of the bonding. The enthalpy and entropy changes are shown to compensate each other to produce an almost linear variation in the free energy of complexation. Outer-sphere and inner-sphere complexation is discussed

  6. Effect of polyethylene glycol in preparation of Eu3+ doped SnO2 nanoparticles using ethylene glycol and luminescence properties

    International Nuclear Information System (INIS)

    Singh, L.J.; Singh, R.K.H.; Ningthoujam, R.S.; Vatsa, R.K.

    2010-01-01

    Full text: Eu 3+ doped SnO 2 nanoparticles have been prepared by urea hydrolysis. The two different capping agents such as ethylene glycol (EG) and polyethylene glycol (PEG) are used. Particles prepared in EG shows the crystalline nature while in the presence of PEG, crystallinity decreases. In TEM study of 5 at.% Eu doped SnO 2 sample prepared in presence of EG and PEG, there is a particle size distribution from 2.5 to 5.5 nm and average particle size is found to be 4 nm. In order to see the particle morphology for small particles, HRTEM images are also recorded and average crystallite region is found to be 2.7 nm. From this, we can conclude that 4 nm smaller particle has crystallite region of 2.7 nm and surface region of 1.3 nm. Thus, with decrease of particle size, the contribution of surface to bulk increases. This reflects the broad peak in XRD pattern of samples prepared in EG-PEG. The excitation spectra of SnO 2 nanoparticles (prepared in EG-PEG) doped with 2, 5 and 10 at.% Eu 3+ monitoring emission at 614 nm is shown. The excitation peaks at 250, 325 and 395 nm are observed. The peak at 250 nm is due to Eu-O charge transfer. The broad peak centered at 325 nm is due to exciton formation from SnO 2 and the last peak at 395 nm due to Eu 3+ ( 7 F 0 → 5 L 6 ). The relative peak intensity of Eu 3+ (peak at 395 nm) with respect to SnO 2 (peak at 325 nm) decreases with increase of Eu 3+ content/dopant in SnO 2 . This suggests that energy transfer from SnO 2 to Eu 3+ increases with Eu 3+ content/dopant in SnO 2 . The emission spectra of SnO 2 nanoparticles doped with 5 at.% Eu 3+ (prepared in EG-PEG) after excitation at different wavelengths (250, 300, 320, 330, 340 and 395 nm) is also shown. The main emission peaks at 425 (broad), 578 (weak), 591 (sharp) and 614 nm (sharp) are observed

  7. The geochemistry and mobility of the lanthanides in marine sediments

    International Nuclear Information System (INIS)

    Elderfield, H.

    1988-07-01

    A study has been made to evaluate lanthanide mobility in sediments directly by measuring concentrations of 10 lanthanide elements in sediments and pore waters. Due to the very low concentrations of the lanthanides in sea water relative to marine sediments, evidence of lanthanide mobilization is usually difficult to detect from studies of solid-phase geochemistry. Results show that the lanthanides can be extremely mobile. Concentrations in pore waters up to 100 times sea water concentrations have been measured. The conclusions are tentative but the present data suggest that the lanthanides are mobilized during oxidation of organic-rich sediments and are relocated in part in association with secondary Fe-rich phases. The behaviour of Ce is, predictably, somewhat different from the other lanthanides and may be more mobile as a consequence of its redox chemistry. (author)

  8. An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Velazquez, D. Y., E-mail: dyolotzin@correo.azc.uam.mx; Alejandre-Zuniga, B. Y.; Loera-Serna, S.; Ortiz, E. M. [Universidad Autónoma Metropolitana-Azcapotzalco, División de Ciencias Básicas e Ingeniería (Mexico); Morales-Ramirez, A. de J. [CIITEC IPN, Instituto Politécnico Nacional (Mexico); Garfias-Garcia, E. [Universidad Autónoma Metropolitana-Azcapotzalco, División de Ciencias Básicas e Ingeniería (Mexico); Garcia-Murillo, A. [CIITEC IPN, Instituto Politécnico Nacional (Mexico); Falcony, C. [Centro de Investigación y Estudios Avanzados, Departamento de Física (Mexico)

    2016-12-15

    The increasing demand for optoelectronic devices requires the development of luminescent materials with high luminescence efficiency and low energy demands, and the metalorganic frameworks (MOFs) with lanthanides ions offer great potential in this area. The metalorganic materials provide properties of flexibility, low density, low-cost methods of synthesis, and insolubility in water, which gives them an advantage over traditional phosphors. In this study, a benzenetricarboxylate ligand (BTC) with a Eu{sup 3+} MOF was synthesized, and its structural and luminescent properties were measured. The metalorganic compound was generated in a one-pot reaction from europium nitrate and trimesic acid precursors. Through characterization by X-ray diffraction powder, infrared spectroscopy, SEM structural characterization, and luminescent spectroscopy, the formation of Europium benzenetricarboxylate (Eu-BTC) MOF nanorods was tested and the calculated value was in the range of 30–60 nm. A red luminescent emission with high intensity was observed for all the procedures.

  9. Self-assembled coordination nanoparticles from nucleotides and lanthanide ions with doped-boronic acid-fluorescein for detection of cyanide in the presence of Cu2+ in water.

    Science.gov (United States)

    Kulchat, Sirinan; Chaicham, Anusak; Ekgasit, Sanong; Tumcharern, Gamolwan; Tuntulani, Thawatchai; Tomapatanaget, Boosayarat

    2012-01-30

    The sensor molecule, F-oBOH, containing boronic acid-linked hydrazide and fluorescein moieties was synthesized. For anion sensing applications, F-oBOH was studied in aqueous media. Unfortunately, F-oBOH was found to be hydrolyzed in water. Therefore, a new strategy was developed to prevent the hydrolysis of F-oBOH by applying self-assembly coordination nanoparticles network (F-oBOH-AMP/Gd(3+) CNPs). Interestingly, the nanoparticles network displayed the enhancement of fluorescent signal after adding Cu(2+) following by CN(-). The network, therefore, possessed a high selectivity for detection of CN(-) compared to other competitive anions in the presence of Cu(2+). Cyanide ion could promote the Cu(2+) binding to F-oBOH incorporated in AMP/Gd(3+) CNPs to give the opened-ring form of spirolactam resulting in the fourfold of fluorescence enhancement compared to Cu(2+) complexation without CN(-). Additionally, the log K value of F-oBOH-AMP/Gd(3+) CNPs⊂Cu(2+) toward CN(-) was 3.97 and the detection limits obtained from naked-eye and spectrofluorometry detections were 20μM and 4.03μM, respectively. The proposed method was demonstrated to detect CN(-) in drinking water with high accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Highly Selective and Ultrasensitive Turn-On Luminescence Chemosensor for Mercury (II) Determination Based on the Rhodamine 6G Derivative FC1 and Au Nanoparticles

    Science.gov (United States)

    Brasca, Romina; Onaindia, María C.; Goicoechea, Héctor C.; Muñoz de la Peña, Arsenio; Culzoni, María J.

    2016-01-01

    A method for the detection and quantitation of Hg2+ in aqueous samples by fluorescence spectroscopy is presented. It consists of a turn-on sensor developed by coupling Gold nanoparticles (AuNPs) with the rhodamine 6G derivative FC1, in which the response is generated by a mercury-induced ring-opening reaction. The AuNPs were included in order to improve the sensitivity of the method towards the analyte, maintaining its high selectivity. The method was validated in terms of linearity, precision and accuracy, and applied to the quantitation of Hg2+ in Milli-Q and tap water with and without spiked analyte. The limit of detection and quantitation were 0.15 μg·L−1 and 0.43 μg·L−1, respectively, constituting a substantial improvement of sensitivity in comparison with the previously reported detection of Hg2+ with free FC1. PMID:27782059

  11. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  12. nanoparticles

    Science.gov (United States)

    Andreu-Cabedo, Patricia; Mondragon, Rosa; Hernandez, Leonor; Martinez-Cuenca, Raul; Cabedo, Luis; Julia, J. Enrique

    2014-10-01

    Thermal energy storage (TES) is extremely important in concentrated solar power (CSP) plants since it represents the main difference and advantage of CSP plants with respect to other renewable energy sources such as wind, photovoltaic, etc. CSP represents a low-carbon emission renewable source of energy, and TES allows CSP plants to have energy availability and dispatchability using available industrial technologies. Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 500°C. Their main drawbacks are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve thermal properties of fluids is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. In this work, solar salt used in CSP plants (60% NaNO3 + 40% KNO3) was doped with silica nanoparticles at different solid mass concentrations (from 0.5% to 2%). Specific heat was measured by means of differential scanning calorimetry (DSC). A maximum increase of 25.03% was found at an optimal concentration of 1 wt.% of nanoparticles. The size distribution of nanoparticle clusters present in the salt at each concentration was evaluated by means of scanning electron microscopy (SEM) and image processing, as well as by means of dynamic light scattering (DLS). The cluster size and the specific surface available depended on the solid content, and a relationship between the specific heat increment and the available particle surface area was obtained. It was proved that the mechanism involved in the specific heat increment is based on a surface phenomenon. Stability of samples was tested for several thermal cycles and thermogravimetric analysis at high temperature was carried out, the samples being stable.

  13. Studies of Lanthanide Transport in Metallic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo; Taylor, Christopher

    2018-04-02

    Metallic nuclear fuels were tested in fast reactor programs and performed well. However, metallic fuels have shown the phenomenon of FCCI that are due to deleterious reactions between lanthanide fission products and cladding material. As the burnup is increased, lanthanide fission products that contact with the cladding could react with cladding constituents such as iron and chrome. These reactions produce higher-melting intermetallic compounds and low-melting alloys, and weaken the mechanical integrity. The lanthanide interaction with clad in metallic fuels is recognized as a long-term, high-burnup cause of the clad failures. Therefore, one of the key concerns of using metallic fuels is the redistribution of lanthanide fission products and migration to the fuel surface. It is believed that lanthanide migration is in part due to the thermal gradient between the center and the fuel-cladding interface, but also largely in part due to the low solubility of lanthanides within the uranium-based metal fuel. PIE of EBR-II fuels shows that lanthanides precipitate directly and do not dissolve to an appreciable extent in the fuel matrix. Based on the PIE data from EBR-II, a recent study recommended a so-called “liquid-like” transport mechanism for lanthanides and certain other species. The liquid-like transport model readily accounts for redistribution of Ln, noble metal fission products, and cladding components in the fuel matrix. According to the novel mechanism, fission products can transport as solutes in liquid metals, such as liquid cesium or liquid cesium–sodium, and on pore surfaces and fracture surfaces for metals near their melting temperatures. Transport in such solutions is expected to be much more rapid than solid-state diffusion. The mechanism could explain the Ln migration to the fuel slug peripheral surface and their deposition with a sludge-like form. Lanthanides have high solubility in liquid cesium but have low solubility in liquid sodium. As a

  14. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  15. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Investigation of complexing of vitamine B-6 with rare earth ions by PMR and luminescent spectroscopy

    International Nuclear Information System (INIS)

    Buiklinskij, V.D.; Zelenov, V.I.; Zolin, V.F.; Koreneva, L.G.; Panyushkin, V.T.

    1981-01-01

    To investigate the complexing of pyridoxine (P), pyridoxal (PL) and pyridoxamine (PM) with lanthanide ions the changes of PMR spectra of ligands in the presence of cerium, praseodymium, neodymium, europium, gadolinium ions, as well as luminescence and absorption spectra of europium in the presence of ligands are used. Using the optical spectroscopy it has been shown that the PL and PM complexes do not have axial symmetry. The values of parameters of the crystalline field of the second order, determining the anisotropy of magnetic susceptibility of europium complexes are evaluated. With an aid of PMR and luminescence spectroscopy it is shown that lanthanide ions coordinate the hydroxy groups of ligands. In the case of P and especially PL oxygen of the substituent in position 4 takes part in the coordination. Using the PMR spectroscopy the difference of the substituent location near C4 in the PM complex from its location in the P and PL complexes as well as the difference in the position of lanthanide ion in the complexes of all the three ligands are detected. The reasons for the differences above are discussed [ru

  17. Nanoparticles as multimodal photon transducers of ionizing radiation

    Science.gov (United States)

    Pratt, Edwin C.; Shaffer, Travis M.; Zhang, Qize; Drain, Charles Michael; Grimm, Jan

    2018-05-01

    In biomedical imaging, nanoparticles combined with radionuclides that generate Cerenkov luminescence are used in diagnostic imaging, photon-induced therapies and as activatable probes. In these applications, the nanoparticle is often viewed as a carrier inert to ionizing radiation from the radionuclide. However, certain phenomena such as enhanced nanoparticle luminescence and generation of reactive oxygen species cannot be completely explained by Cerenkov luminescence interactions with nanoparticles. Herein, we report methods to examine the mechanisms of nanoparticle excitation by radionuclides, including interactions with Cerenkov luminescence, β particles and γ radiation. We demonstrate that β-scintillation contributes appreciably to excitation and reactivity in certain nanoparticle systems, and that excitation by radionuclides of nanoparticles composed of large atomic number atoms generates X-rays, enabling multiplexed imaging through single photon emission computed tomography. These findings demonstrate practical optical imaging and therapy using radionuclides with emission energies below the Cerenkov threshold, thereby expanding the list of applicable radionuclides.

  18. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    International Nuclear Information System (INIS)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-01-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln 2 (Hpdc) 2 (C 2 O 4 )(H 2 O) 4 ] n ·2nH 2 O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H 3 pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H 3 pdc was decomposed into (ox) 2− with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2 1 /c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H 3 pdc was decomposed into (ox) 2− with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence

  20. Security printing of covert quick response codes using upconverting nanoparticle inks

    Science.gov (United States)

    Meruga, Jeevan M.; Cross, William M.; May, P. Stanley; Luu, QuocAnh; Crawford, Grant A.; Kellar, Jon J.

    2012-10-01

    Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF4 nanoparticles for security printing applications. Inks comprised of Yb3+/Er3+ and Yb3+/Tm3+ doped β-NaYF4 nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting®. The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er3+/Yb3+ and Tm3+/Yb3+, respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates.

  1. Security printing of covert quick response codes using upconverting nanoparticle inks

    International Nuclear Information System (INIS)

    Meruga, Jeevan M; Cross, William M; Crawford, Grant A; Kellar, Jon J; Stanley May, P; Luu, QuocAnh

    2012-01-01

    Counterfeiting costs governments and private industries billions of dollars annually due to loss of value in currency and other printed items. This research involves using lanthanide doped β-NaYF 4 nanoparticles for security printing applications. Inks comprised of Yb 3+ /Er 3+ and Yb 3+ /Tm 3+ doped β-NaYF 4 nanoparticles with oleic acid as the capping agent in toluene and methyl benzoate with poly(methyl methacrylate) (PMMA) as the binding agent were used to print quick response (QR) codes. The QR codes were made using an AutoCAD file and printed with Optomec direct-write aerosol jetting ® . The printed QR codes are invisible under ambient lighting conditions, but are readable using a near-IR laser, and were successfully scanned using a smart phone. This research demonstrates that QR codes, which have been used primarily for information sharing applications, can also be used for security purposes. Higher levels of security were achieved by printing both green and blue upconverting inks, based on combinations of Er 3+ /Yb 3+ and Tm 3+ /Yb 3+ , respectively, in a single QR code. The near-infrared (NIR)-to-visible upconversion luminescence properties of the two-ink QR codes were analyzed, including the influence of NIR excitation power density on perceived color, in term of the CIE 1931 chromaticity index. It was also shown that this security ink can be optimized for line width, thickness and stability on different substrates. (paper)

  2. Controlling lanthanide exchange in triple-stranded helicates. A way to optimize molecular light-upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Davood; Nozary, Homayoun; Piguet, Claude [Department of Inorganic, Analytical and Applied Chemistry, University of Geneva (Switzerland); Suffren, Yan; Hauser, Andreas [Department of Physical Chemistry, University of Geneva (Switzerland)

    2017-11-13

    The kinetic lability of hexadentate gallium-based tripods is sufficient to ensure thermodynamic self-assembly of luminescent heterodimetallic [GaLn(L3){sub 3}]{sup 6+} helicates on the hour time scale, where Ln is a trivalent 4f-block cation. The inertness is, however, large enough for preserving the triple-helical structure when [GaLn(L3){sub 3}]{sup 6+} is exposed to lanthanide exchange. The connection of a second gallium-based tripod further slows down the exchange processes to such an extent that spectroscopically active [CrErCr(L4){sub 3}]{sup 9+} can be diluted into closed-shell [GaYGa(L4){sub 3}]{sup 9+} matrices without metal scrambling. This feature is exploited for pushing molecular-based energy-transfer upconversion (ETU) at room temperature. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)