WorldWideScience

Sample records for luminescent concentrators

  1. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  2. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  3. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  4. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  5. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.

  6. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Zhang, Yi; Sun, Song; Kang, Rui; Zhang, Jun; Zhang, Ningning; Yan, Wenhao; Xie, Wei; Ding, Jianjun; Bao, Jun; Gao, Chen

    2015-01-01

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  7. Luminescent Solar Concentrators with Fibre Geometry

    NARCIS (Netherlands)

    Edelenbosch, O.Y.; Fisher, M.; Patrignani, L.; Sark, W.G.J.H.M. van; Chatten, A.J.

    2013-01-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear

  8. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  9. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency

    NARCIS (Netherlands)

    Desmet, L.; Ras, A.J.M.; Boer, de D.K.G.; Debije, M.G.

    2012-01-01

    We report conversion efficiencies of experimental single and dual light guide luminescent solar concentrators. We have built several 5¿¿cm×5¿¿cm and 10¿¿cm×10¿¿cm luminescent solar concentrator (LSC) demonstrators consisting of c-Si photovoltaic cells attached to luminescent light guides of Lumogen

  10. Multistate Luminescent Solar Concentrator "Smart" Windows

    NARCIS (Netherlands)

    Sol, Jeroen A.H.P.; Timmermans, Gilles H.; Breugel, van Abraham J.; Schenning, Albertus P.H.J.; Debije, Michael G.

    2018-01-01

    A supertwist liquid crystalline luminescent solar concentrator (LSC) "smart" window is fabricated which can be switched electrically between three states: one designed for increased light absorption and electrical generation (the "dark" state), one for transparency (the "light" state), and one for

  11. Concentration depolarization of luminescence of Eu3+-doped glasses

    International Nuclear Information System (INIS)

    Bodunov, E.N.; Lebedev, V.P.; Malyshev, V.A.; Przheuskij, A.K.

    1989-01-01

    Experimental study of concentrational depolarization luminescence (CDL) of phosphate and germanate glasses, containing Eu 3+ ions, has been carried out. On the basis of three-body self-consistent approximation the theory of CDL is conceived, which takes into account Eu-Eu interaction of higher multipolarities. By comparing the theory with the experiment energy transfer radii for Eu-Eu dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions are determined. The attempt to discriminate Eu-Eu interaction types in the studied range of Eu 3+ ion concentration change has failed owing to law accuracy of luminescence emittance anisotropy measurement

  12. Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration

    NARCIS (Netherlands)

    Krumer, Zachar; van Sark, Wilfried G.J.H.M.; Schropp, Ruud E.I.; de Mello Donegá, Celso

    2017-01-01

    Self-absorption in luminophores is considered a major obstacle on the way towards efficient luminescent solar concentrators (LSCs). It is commonly expected that upon increasing luminophore concentration in an LSC the absorption of the luminophores increases as well and therefore self-absorption

  13. Luminescent solar concentrators with fiber geometry.

    Science.gov (United States)

    Edelenbosch, Oreane Y; Fisher, Martyn; Patrignani, Luca; van Sark, Wilfried G J H M; Chatten, Amanda J

    2013-05-06

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5 g spectrum up to 1100 nm at normal incidence by ~35 x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.

  14. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    Science.gov (United States)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  15. Organic wavelength selective mirrors for luminescent solar concentrators

    NARCIS (Netherlands)

    Verbunt, P.P.C.; Debije, M.G.; Broer, D.J.; Bastiaansen, C.W.M.; Boer, de D.K.G.; Wehrspohn, R.; Gombert, A.

    2012-01-01

    Organic polymeric chiral nematic liquid crystalline (cholesteric) wavelength selective mirrors can increase the efficiency of luminescent solar concentrators (LSCs) when they are illuminated with direct sunlight normal to the device. However, due to the angular dependence of the reflection band, at

  16. Nonimaging optics in luminescent solar concentration.

    Science.gov (United States)

    Markman, B D; Ranade, R R; Giebink, N C

    2012-09-10

    Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.

  17. Suppression of concentration quenching of Er-related luminescence in Er-doped GaN

    International Nuclear Information System (INIS)

    Chen Shaoqiang; Tomita, Shigeo; Kudo, Hiroshi; Akimoto, Katsuhiro; Dierre, Benjamin; Lee, Woong; Sekiguchi, Takashi

    2010-01-01

    Erbium-doped GaN with different doping concentrations were grown by ammonia-source molecular beam epitaxy. The intra-4f-shell transitions related green luminescence were observed by both photoluminescence (PL) and cathodoluminescence (CL) measurements. It was found that concentration quenching of Er-related luminescence was observed in PL measurements while not in CL measurements. The different excitation and relaxation processes are suggested as the cause of the concentration quenching characteristics between PL and CL. The strong Er-related CL intensity in highly doped GaN demonstrates that high energy excitation is a promising approach to suppress the concentration quenching in Er-doped GaN.

  18. Patterned dye structures limit reabsorption in luminescent solar concentrators

    NARCIS (Netherlands)

    Tsoi, S.; Broer, D.J.; Bastiaansen, C.W.M.; Debije, M.G.

    2010-01-01

    This work describes a method for limiting internal losses of a luminescent solar concentrator (LSC) due to reabsorption through patterning the fluorescent dye doped coating of the LSC. By engineering the dye coating into regular line patterns with fill factors ranging from 20 - 80%, the surface

  19. Leaf Roof - Designing Luminescent Solar Concentrating PV Roof Tiles

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Doudart de la Gree, G.; Papadopoulos, A..; Rosemann, A.; Debije, M.G.; Cox, M.; Krumer, Zachar

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology [1] has resulted in a functional prototype. The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs [2]. This paper outlines

  20. Concentration characteristics and cell arrangement in luminescent concentrator PV modules; Keiko shukogata taiyo denchi module no cell haichi to shuko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, A [Science University of Tokyo, Tokyo (Japan); Sakuta, K [Electrotechnical Laboratory, Tsukuba (Japan)

    1997-11-25

    A luminescent concentrator PV module requires no tracking equipment and can use scattered light. A mini PV module was prepared from a luminescent plate of 100times100times3mm, and a single-crystalline PV cell of 100times20mm. Characteristics of various prototype modules with different PV cell areas and cell arrangements were also measured. Four kinds of edge reflecting materials with different reflectances by various white coating were applied to Al sashes for module frames, and each sash was fixed on one edge of the luminescent plate. In experiment, 3 other edges were covered with black tapes to reduce each reflectance to 0%. Although PV module output was affected by reflectance of edges, the output was satisfactory at 90% or more in reflectance showing no difference in output. A concentrating efficiency decreased with an increase in luminescent plate (concentrator) area, while it was improved by cell arrangement with short optical pass length, and cell arrangement hardly affected by edge reflection. 4 refs., 7 figs.

  1. The effects of Tb 3+ doping concentration on luminescence ...

    Indian Academy of Sciences (India)

    BaF2 phosphor; crystal structure; luminescence properties; X-ray diffraction; concentration quenching. 1. Introduction ... reported that the particle size, shape, crystallinity, etc., sig- nificantly ... Figure 3 shows the excitation and emission spectra of sam- ple with 4 ... gies obtained earlier.9,10 The ground term of the Tb3+ ion is.

  2. Study of carrier concentration in single InP nanowires by luminescence and Hall measurements

    International Nuclear Information System (INIS)

    Lindgren, David; Hultin, Olof; Heurlin, Magnus; Storm, Kristian; Borgström, Magnus T; Samuelson, Lars; Gustafsson, Anders

    2015-01-01

    The free electron carrier concentrations in single InP core–shell nanowires are determined by micro-photoluminescence, cathodoluminescence (CL) and Hall effect measurements. The results from luminescence measurements were obtained by solving the Fermi–Dirac integral, as well as by analyzing the peak full width at half maximum (FWHM). Furthermore, the platform used for Hall effect measurements, combined with spot mode CL spectroscopy, is used to determine the carrier concentrations at specific positions along single nanowires. The results obtained via luminescence measurements provide an accurate and rapid feedback technique for the epitaxial development of doping incorporation in nanowires. The technique has been employed on several series of samples in which growth parameters, such as V/III-ratio, temperature and dopant flows, were investigated in an optimization procedure. The correlation between the Hall effect and luminescence measurements for extracting the carrier concentration of different samples were in excellent agreement. (paper)

  3. Leaf Roof – designing luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Reinders, A.H.M.E.; Doudart de la Grée, G.C.H.; Papadopoulos, A.; Rosemann, A.L.P.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.

    2016-01-01

    The Leaf Roof project on the design features of PV roof tiles using Luminescent Solar Concentrator (LSC) technology has resulted in a functional prototype . The results are presented in the context of industrial product design with a focus on the aesthetic aspects of LSCs. This paper outlines the

  4. What is the origin of concentration quenching of Cu"+ luminescence in glass?

    International Nuclear Information System (INIS)

    Jiménez, José A.

    2016-01-01

    Monovalent copper-doped luminescent glasses are attractive materials for white light-emitting devices, photonic waveguides, and solar spectral conversion in photovoltaic cells. However, the occurrence of concentration quenching in such is not fully understood at present. In this work, calcium-phosphate glasses with high concentrations of luminescent Cu"+ ions have been prepared by a simple melt-quench method via CuO and SnO co-doping. The aim is to elucidate the origin of concentration quenching of Cu"+ light emission. A spectroscopic characterization was carried out by optical absorption and photoluminescence (PL) spectroscopy including emission decay dynamics. The concentrations of both CuO and SnO dopants were varied as 5, 10 and 15 mol%. Monovalent copper content is estimated in the CuO/SnO-containing glasses following the assessment of the concentration dependence of Cu"2"+ absorption in the visible for CuO singly-doped glasses. Contrary to the conventionally acknowledged direct Cu"+→Cu"2"+ transfer, the data supports a Cu"+–Cu"+ energy migration channel at the origin of the PL quenching.

  5. A new design for luminescent solar concentrating PV roof tiles

    NARCIS (Netherlands)

    Doudart de la Gree, G.C.H.; Papadopoulos, A.; Debije, M.G.; Cox, M.G.D.M.; Krumer, Z.; Reinders, A.H.M.E.; Rosemann, A.L.P.

    2015-01-01

    In our paper we explore the opportunity of combining luminescent solar concentrating (LSC) materials and crystalline PV solar cells in a new design for a roof tile by design-driven research on the energy performance of various configurations of the LSC PV device and on the aesthetic appeal in a roof

  6. Effect of concentrating and exposing the bioluminescent bacteria to the non-luminescent allo-bacterial extracellular products on their luminescence

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Priya, G.G.; Kannapiran, E.

    of cell-cell physical contact will be high. In this study, the physical proximity was artificially enhanced between cells and the effect on luminescence in the concentrated cells in the normal culture medium and in the presence of other non-bacterial cell...

  7. What is the origin of concentration quenching of Cu{sup +} luminescence in glass?

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, José A., E-mail: jimenez.materials@gmail.com

    2016-10-01

    Monovalent copper-doped luminescent glasses are attractive materials for white light-emitting devices, photonic waveguides, and solar spectral conversion in photovoltaic cells. However, the occurrence of concentration quenching in such is not fully understood at present. In this work, calcium-phosphate glasses with high concentrations of luminescent Cu{sup +} ions have been prepared by a simple melt-quench method via CuO and SnO co-doping. The aim is to elucidate the origin of concentration quenching of Cu{sup +} light emission. A spectroscopic characterization was carried out by optical absorption and photoluminescence (PL) spectroscopy including emission decay dynamics. The concentrations of both CuO and SnO dopants were varied as 5, 10 and 15 mol%. Monovalent copper content is estimated in the CuO/SnO-containing glasses following the assessment of the concentration dependence of Cu{sup 2+} absorption in the visible for CuO singly-doped glasses. Contrary to the conventionally acknowledged direct Cu{sup +}→Cu{sup 2+} transfer, the data supports a Cu{sup +}–Cu{sup +} energy migration channel at the origin of the PL quenching.

  8. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    Science.gov (United States)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  9. Progress in luminescent solar concentrator research: solar energy for the built environment

    NARCIS (Netherlands)

    Verbunt, P.P.C.; Debije, M.G.

    2011-01-01

    This paper presents a concise review of recent research on the luminescent solar concentrator (LSC). The topics covered will include studies of novel luminophores and attempts to limit the losses in the devices, both surface and internal. These efforts include application of organic and

  10. Measured efficiency of a luminescent solar concentrator PV module called Leaf Roof

    NARCIS (Netherlands)

    Reinders, Angèle H.M.E; Debije, Michael G.; Rosemann, Alexander

    2017-01-01

    A functional prototype of a luminescent solar concentrator photovoltaic (LSC PV) module, called Leaf Roof, aims at demonstrating the design features of LSC PV technologies such as coloring, transparency, and flexibility in physical shape. In this paper, the prototype is presented and the first

  11. A comparison of performance of flat and bent photovoltaic luminescent solar concentrators

    NARCIS (Netherlands)

    Vishwanathan, B.; Reinders, A. H.M.E.; de Boer, D.K.G.; Desmet, L.; Ras, A. J.M.; Zahn, F. H.; Debije, M.G.

    2015-01-01

    To employ new solar photovoltaic technologies in products and buildings, many systems need to be adapted. Inspired by the cylindrical shape, in this work we have evaluated the performance of luminescent solar concentrator photovoltaic (LSC-PV) elements with narrow PV cell strips that could be

  12. Luminescent solar concentrators utilizing stimulated emission.

    Science.gov (United States)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  13. Thin-film luminescent concentrators for integrated devices: a cookbook.

    Science.gov (United States)

    Evenson, S A; Rawicz, A H

    1995-11-01

    A luminescent concentrator (LC) is a nonimaging optical device used for collecting light energy. As a result of its unique properties, a LC also offers the possibility of separating different portions of the spectrum and concentrating them at the same time. Hence, LC's can be applied to a whole range of problems requiring the collection, manipulation, and distribution or measurement of light. Further-more, as described in our previous research, thin-film LC elements can be deposited directly over sensor and processing electronics in the form of integrated LC devices. As an aid to further research, the materials and technology required to fabricate these thin-film LC elements through the use of an ultraviolet-curable photopolymer are documented in detail.

  14. Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model

    NARCIS (Netherlands)

    Krumer, Z.; van Sark, W.G.J.H.M.; de Mello Donegá, C.; Schropp, R.E.I.; Plesniak, A.P.

    2013-01-01

    Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species

  15. Study of plant pigment concentration using synchronous luminescence spectroscopy

    International Nuclear Information System (INIS)

    Pawar, B.H.; Raghuvanshi, F.C.; Mahalle, N.S.; Munde, B.S.; Devhade, S.K.; Arsad, S.S.; Kadam, K.P.; Pachkawade, A.P.; Hiswankar, S.U.

    2006-01-01

    We have recorded the SL (Synchronous Luminescence) spectra emitted by several plant leaves. We investigate in detail SL spectra emitted by the leaf of the plants like Hibiscus Schizopetalus, Ficus Benghalensis, Ficus Religiosa and Ficus Glomerata and study the concentration of the pigments in the plant leaves and the mechanism of photosynthesis process taking place in the leaves. The SL spectra have several features which may help in revealing the density and structure of the molecules present in the samples. The SL spectra exhibit two, three, four and five peaked structure. The peak appear at different wavelengths and their spectral widths are also different. The chlorophyll, xanthophyll and carotene concentration may be obtained from the study of the spectra. The plant species may be identified from the study of SL spectroscopy. (author)

  16. Every photon counts : understanding and optimizing photon paths in luminescent solar concentrator-based photomicroreactors (LSCPMs)

    NARCIS (Netherlands)

    Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T.

    2017-01-01

    Luminescent solar concentrator-based photomicroreactors (LSC-PMs) have been recently proposed for sustainable and energy-efficient photochemical reactions. Herein, a Monte Carlo ray tracing algorithm to simulate photon paths within LSC-PMs was developed and experimentally validated. The simulation

  17. Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: Towards plasmonic thin-film luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    El-Bashir, S.M., E-mail: elbashireg@yahoo.com [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia); Department of Physics Faculty of Science, Benha University (Egypt); Barakat, F.M.; AlSalhi, M.S. [Department of Physics and Astronomy, Science College, King Saud University, Riyadh, KSA (Saudi Arabia)

    2013-11-15

    Poly(methyl methacrylate) (PMMA) nanocomposite films doped with mixed coumarin dyestuffs and noble metal nanoparticles (60 nm silver and 100 nm gold) were prepared by spin coating technique. The effect of silver and gold nanoparticles on the film properties was studied by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV–vis absorption and fluorescence spectroscopy measurements. DSC measurements indicated the increase of the glass transition temperature of the films by increasing nanogold concentration, recommending their promising thermal stability towards hot climates. It was found that the fluorescence signals of the mixed coumarin dyes were amplified by 5.4 and 7.15 folds as a result of metal enhanced fluorescence (MEF). The research outcomes offered a potential application of these films in solar energy conversion by plasmonic thin film luminescent solar concentrator (PTLSC). -- Graphical abstract: Plasmonic thin film luminescent solar concentrators. Highlights: • Metal enhanced fluorescence was achieved for mixed coumarin dyes doped in PMMA nanocomposite films. • The amplification of the fluorescence signals is dependent on the concentration of silver and gold nanoparticles. • These films is considered as potential candidates for plasmonic thin film luminescent solar concentrators (PTLSCs)

  18. Defect-induced luminescence in sol-gel silica samples doped with Co(II) at different concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Sandoval, S. [Centro de Investigacion y Estudios Avanzados, Queretaro, Apdo. Postal 1-798, Queretaro, Qro. 76001 (Mexico); Estevez, M. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Pacheco, S. [Instituto Mexicano del Petroleo, Av. 100 metros (Mexico); Vargas, S. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico); Rodriguez, R. [Fisica Aplicada y Tecnologia Avanzada, UNAM, Apdo. Postal 1-1010, Queretaro, Qro. 76000 (Mexico)], E-mail: rogelior@servidor.unam.mx

    2007-12-20

    The defect-induced luminescence properties of silica samples prepared by the sol-gel method and doped with Co(II) are reported. Silica monoliths doped with different concentrations of Co(II) were laser irradiated (He-Ne 632.8 nm) producing fluorescence. However, this fluorescence is exponentially reduced with the irradiation time, to practically disappear. The rate the fluorescence decays can be well modeled with a double exponential function of the irradiation time, containing two different relaxation times; a baseline is also required to take into account some residual fluorescence. The characteristic times involved in this luminescence quenching process are in the range of seconds. This luminescence suppression can be associated to the local heating produced by the laser irradiation when focused in a small area (2 {mu}m in diameter) on the sample. This heating process reduces physical (grain boundaries, surface states) and chemical (oxygen vacancies produced by the dopant) defects in the sample.

  19. Role of oxygen concentration distribution and microstructure in luminescent properties of laser-irradiated silicon

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Xiaohong; Li, Guoqiang; Xie, Changxin; Qiu, Rong; Li, Jiawen; Huang, Wenhao

    2015-01-01

    Graphical abstract: Photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses was studied. The visible blue luminescence is observed both from the deionized water and air. The position and shape of emission luminescence peaks in the visible range are same at 330 nm. The PL is confirmed to be not merely induced by the oxygen defects or quantum confinement effects, but is commonly decided by the concentration distribution of SiO x and the depth of the surface microstructure. The PL gets strongest only when depth of the surface microstructure is not deeper and the distribution of the shallow SiO x is more intensive. - Highlights: • Different morphologies and compositions of the surface microstructures are formed. • The SiO x concentration and surface microstructure depth commonly decide the PL. • The PL intensity can be controlled by changing the experimental conditions. - Abstract: We study the photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses in different environments (deionized water and air) and energy intensities. The fluorescence spectroscopy measurement results indicate that the visible blue luminescence is observed both from the silicon surfaces ablated in the deionized water and air. The more interesting phenomenon is that the position and shape of the emission luminescence peaks in the visible range are substantially the same at the same excitation wavelength 330 nm. Compared with the granular-like microstructure generated on the silicon surface in air, the smaller and stripe-like microstructure is formed in the deionized water as the field emission scanning electron microscope (FESEM) measures. The results of the energy dispersive spectroscopy (EDS) show that silicon and oxygen is the main elemental composition on laser-induced silicon surfaces, and the oxygen content on the sample surfaces formed in air is nearly four times more than that in the deionized water. The studies confirm

  20. [A study on the concentration quenching of Tm3+ upconversion luminescence].

    Science.gov (United States)

    Chen, B; Wang, H; Huang, S

    2001-06-01

    In this work, we have a designation and preparation of MFT glasses for upconversion, the glasses consisted of TeO2 and fluoride: PbF2, AlF3, BaF2, NaF and the impurity Tm2O3. In this glass system the oxide improve forming ability, the fluorides improve the microscopic environment around RE ions in glasses. In this glass host the content of Tm2O3 achieves to 4% mol and crystallization no occurred. A detail study on the concentration quenching of upconversion luminescence for 1G4-->3H6 and 1D2-->3H4 transitions was completed. The experimental results directed that the quenching concentration was 0.6 mol.% and higher 3 times than in other glasses materials. The cross relaxation and mechanism of concentration quenching were discussed.

  1. Highly luminescent nanostructures of CdS and ZnS prepared by microwaves heating: effect of sulphide concentration

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Samuel; Gomez, Idalia; Elizondo, Perla [Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, C.P. 66450 San Nicolas de los Garza (Mexico); Cavazos, Jose [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad s/n, C.P. 66450 San Nicolas de los Garza (Mexico)

    2010-11-15

    Nearly monodisperse and highly luminescent ZnS and CdS NPs were obtained by microwave irradiation. The ZnS and CdS NPs solutions were prepared by adding freshly prepared ZnSO{sub 4} or CdSO{sub 4} solution to a thioacetamide solution at pH 8 in the presence of sodium citrate in solution used as stabilizer. The precursors concentration were such that the sulphide ion concentrations were 3 x 10{sup -2} M, 6 x 10{sup -2} M and 8 x 10{sup -2} M, for each of these [S] concentrations the [Zn] or [Cd] content were fixed at 3 x 10{sup -2} M. NPs were prepared under microwave irradiation for 1 min at 905 W of power. The NPs samples were taken when the temperature descended to ambient temperature for further analysis. Effect of concentration of Cd and Zn ions were studied in the luminescence property. RXD, AFM, TEM and UV-Vis were used too as analytical equipment for characterization. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Luminescent Solar Concentrators in the Algal Industry

    Science.gov (United States)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  3. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  4. Photodegradation in multiple-dye luminescent solar concentrators

    International Nuclear Information System (INIS)

    Mooney, Alex M.; Warner, Kathryn E.; Fontecchio, Paul J.; Zhang, Yu-Zhong; Wittmershaus, Bruce P.

    2013-01-01

    Combining multiple organic dyes to form a fluorescence resonance energy transfer (FRET) network is a useful strategy for extending the spectral range of sunlight absorbed by a luminescent solar concentrator (LSC). Excitation transfer out of the higher energy level dyes in the transfer series competes effectively with their photodegradation rates. Improvements in photostability up to a factor of 18 are observed for the first dye in the FRET series. FRET networks are shown to be a viable means of decreasing the rate of photodegradation of organic dyes used in LSCs. This comes at the expense of the final dye in the network; the depository of most of the excitations created by absorbing sunlight. The photostability and performance of an efficient FRET LSC rest heavily on the photostability and fluorescence quantum yield of the final dye. -- Highlights: • Photodegradation kinetics of multiple-dye FRET LSCs are reported. • The FRET network decreased the first dye's photodegradation rate by a factor of 18. • The final dye in the FRET LSC protects other dyes at its own expense. • The final dye must have excellent photostability and fluorescence quantum yield

  5. Luminescent solar concentrators for building-integrated photovoltaics

    Science.gov (United States)

    Meinardi, Francesco; Bruni, Francesco; Brovelli, Sergio

    2017-12-01

    The transition to fully energetically sustainable architecture through the realization of so-called net zero-energy buildings is currently in progress in areas with low population density. However, this is not yet true in cities, where the cost of land for the installation of ground photovoltaic (PV) is prohibitively high and the rooftop space is too scarce to accommodate the PV modules necessary for sustaining the electrical requirements of tall buildings. Thus, new technologies are being investigated to integrate solar-harvesting devices into building façades in the form of PV windows or envelope elements. Luminescent solar concentrators (LSCs) are the most promising technology for semi-transparent, electrodeless PV glazing systems that can be integrated 'invisibly' into the built environment without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. After 40 years of research, recent breakthroughs in the realization of reabsorption-free emitters with broadband absorption have boosted the performance of LSCs to such a degree that they might be commercialized in the near future. In this Perspective, we explore the successful strategies that have allowed this change of pace, examining and comparing the different types of chromophores and waveguide materials, and discuss the issues that remain to be investigated for further progress.

  6. A new hybrid algorithm using thermodynamic and backward ray-tracing approaches for modeling luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Ch. K.; Lim, Y. S.; Tan, S. G.; Rahman, F. A. [Faculty of Engineering and Science, University Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur (Malaysia)

    2010-12-15

    A Luminescent Solar Concentrator (LSC) is a transparent plate containing luminescent material with photovoltaic (PV) cells attached to its edges. Sunlight entering the plate is absorbed by the luminescent material, which in turn emits light. The emitted light propagates through the plate and arrives at the PV cells through total internal reflection. The ratio of the area of the relatively cheap polymer plate to that of the expensive PV cells is increased, and the cost per unit of solar electricity can be reduced by 75%. To improve the emission performance of LSCs, simulation modeling of LSCs becomes essential. Ray-tracing modeling is a popular approach for simulating LSCs due to its great ability of modeling various LSC structures under direct and diffuse sunlight. However, this approach requires substantial amount of measurement input data. Also, the simulation time is enormous because it is a forward-ray tracing method that traces all the rays propagating from the light source to the concentrator. On the other hand, the thermodynamic approach requires substantially less input parameters and simulation time, but it can only be used to model simple LSC designs with direct sunlight. Therefore, a new hybrid model was developed to perform various simulation studies effectively without facing the issues arisen from the existing ray-tracing and thermodynamic models. The simulation results show that at least 60% of the total output irradiance of a LSC is contributed by the light trapped and channeled by the LSC. The novelty of this hybrid model is the concept of integrating the thermodynamic model with a well-developed Radiance ray-tracing model, hence making this model as a fast, powerful and cost-effective tool for the design of LSCs. (authors)

  7. Scintillation and optical stimulated luminescence of Ce-doped CaF2

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi; Fukuda, Kentaro; Kawaguchi, Noriaki; Miyamoto, Yuka; Nanto, Hidehito

    2014-01-01

    Scintillation and optical stimulated luminescence of Ce 0.1–20% doped CaF 2 crystals prepared by Tokuyama Corp. were investigated. In X-ray induced scintillation spectra, luminescence due to Ce 3+ 5d–4f transition appeared around 320 nm with typically 40 ns decay time. By 241 Am 5.5 MeV α-ray irradiation, 0.1% doped one showed the highest scintillation light yield and the light yield monotonically decreased with Ce concentrations. Optically stimulated luminescence after X-ray irradiation was observed around 320 nm under 550 or 830 nm stimulation in all samples. As a result, intensities of optically stimulated luminescence were proportional to Ce concentrations. Consequently, scintillation and optically stimulated luminescence resulted to have a complementary relation in Ce-doped CaF 2 system. - Highlights: • Optical, scintillation, and OSL properties of Ce 0.1–20% doped CaF 2 were studied. • Scintillation light yield exhibited inverse proportionality to Ce concentrations. • OSL intensities showed proportionality to Ce concentrations. • Complementary relation of scintillation and OSL was experimentally confirmed

  8. Luminescent solar concentrators with a bottom-mounted photovoltaic cell: performance optimization and power gain analysis

    Institute of Scientific and Technical Information of China (English)

    Ningning Zhang; Yi Zhang; Jun Bao; Feng Zhang; Sen Yan; Song Sun; Chen Gao

    2017-01-01

    Polymethyl methacrylate (PMMA) plate luminescent solar concentrators with a bottom-mounted (BM-LSCs) photovoltaic (PV) cell are fabricated by using a mixture of Lumogen Red 305 and Yellow 083 fluorescent dyes and a commercial monocrystalline silicon cell.The fabricated LSC with dye concentrations of 40 ppm has the highest power gain of 1.50,which is the highest value reported for the dye-doped PMMA plate LSCs.The power gain of the LSC comes from three parts:the waveguide light,the transmitted light,and the reflected light from a white reflector,and their contributions are analyzed quantitatively.The results suggest that the BM-LSCs have great potential for future low-cost PV devices in building integrated PV applications.

  9. Luminescence dating at Rose cottage cave: a progress report

    CSIR Research Space (South Africa)

    Woodborne, S

    1997-10-01

    Full Text Available Deal with infrared-stimulated luminescence and thermoluminescence dates from Rose Cottage Cave in South Africa. Discrepancy between luminescence and radiocarbon dates; Concentration of radioactive elements in sediments before and after leaching...

  10. Hormesis response of marine and freshwater luminescent bacteria to metal exposure

    Directory of Open Access Journals (Sweden)

    KAILI SHEN

    2009-01-01

    Full Text Available The stimulatory effect of low concentrations of toxic chemicals on organismal metabolism, referred to as hormesis, has been found to be common in the widely used luminescence bioassay. This paper aims to study the hormesis phenomenon in both marine and freshwater luminescent bacteria, named Photobacterium phosphorem and Vibrio qinghaiensis. The effects of Cu (II, Zn (II, Cd (II and Cr (VI on luminescence of these two bacteria were studied for 0 to 75 minutes exposure by establishing dose- and time-response curves. A clear hormesis phenomenon was observed in all four testing metals at low concentrations under the condition of luminescence assays.

  11. Kinetic study of Tb/sup 3 +/(/sup 5/D/sub 3/) luminescence in phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, V.A.; Dmitryuk, A.V.; Karapetyan, G.O.

    1986-01-01

    This paper presents precise determinations of the kinetics of terbium luminescence over a broad dynamic range, in order to refine the mechanism of concentration quenching of the Tb/sup 3 +/(/sup 5/D/sub 3/) luminescence in glasses. After establishing the mechanism of Tb/sup 3 +/(/sup 5/D/sub 3/) luminescence quenching by the iteration method, the authors determine the value of the parameter for an arbitrary concentration of the activator. Results of this study show that the mechanism of concentration quenching of luminescence is static dipole-dipole interaction of terbium ions.

  12. Doping the dots: doped quantum dots for luminescent solar concentrators

    NARCIS (Netherlands)

    Eilers, J.J.

    2015-01-01

    In this thesis, synthesis methods for luminescent organically capped colloidal ZnSe QDs of different sizes, ranging from 4.0 to 7.5 nm are reported. These QDs are analyzed using TEM, absorption spectroscopy, photoluminescence measurements and temperature dependent photoluminescence decay

  13. Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in Polyvinyl Alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep; Verma, R.K.; Rai, D.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India)

    2012-07-15

    Silver (Ag) nanoparticles (NPs) were prepared by laser ablation in water with an aim to enhance the luminescence of rare earth coordinated complex in polymer host. A fixed concentration of the complex containing Samarium (Sm), Salicylic acid (Sal) and 1, 10-phenanthroline (Phen) were combined with different concentrations of silver NPs in PolyVinyl Alcohol at room temperature. Absorption spectrum and XRD patterns of the sample show that the Sm(Sal){sub 3}Phen complex is accompanied by Ag NPs. The luminescence from the complex was recorded in the presence and absence of Ag NPs using two different excitation wavelengths viz. 400 and 355 nm. Of these, 400 nm radiation falls in the surface plasmon resonance of Ag NPs. It was found that the Ag NPs led to a significant enhancement in luminescence of the complex. Surprisingly, a high concentration of Ag NPs tends to quench the luminescence. - Highlights: Black-Right-Pointing-Pointer Sm complex with Ag nanoparticles in PVA was prepared at room temperature. Black-Right-Pointing-Pointer UV-vis absorption and XRD confirms the presence of Sm complex and Ag NPs. Black-Right-Pointing-Pointer Enhancement in luminescence of complex was observed with Ag NPs. Black-Right-Pointing-Pointer Coupling between radiative transitions of Sm and SPR of NPs enhances the emission. Black-Right-Pointing-Pointer The higher concentration of Ag NPs quenches the luminescence of the complex.

  14. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  15. Utilizing Diffuse Reflection to Increase the Efficiency of Luminescent Solar Concentrators

    Science.gov (United States)

    Bowser, Seth; Weible, Seth; Solomon, Joel; Schrecengost, Jonathan; Wittmershaus, Bruce

    A luminescent solar concentrator (LSC) consists of a high index solid plate containing a fluorescent material that converts sunlight into fluorescence. Utilizing total internal reflection, the LSC collects and concentrates the fluorescence at the plate's edges where it is converted into electricity via photovoltaic solar cells. The lower production costs of LSCs make them an attractive alternative to photovoltaic solar cells. To optimize an LSC's efficiency, a white diffusive surface (background) is positioned behind it. The background allows sunlight transmitted in the first pass to be reflected back through the LSC providing a second chance for absorption. Our research examines how the LSC's performance is affected by changing the distance between the white background and the LSC. An automated linear motion apparatus was engineered to precisely measure this distance and the LSC's electrical current, simultaneously. LSC plates, with and without the presence of fluorescent material and in an isolated environment, showed a maximum current at a distance greater than zero. Further experimentation has proved that the optimal distance results from the background's optical properties and how the reflected light enters the LSC. This material is based upon work supported by the National Science Foundation under Grant Number NSF-ECCS-1306157.

  16. Temperature-Responsive Luminescent Solar Concentrators: Tuning Energy Transfer in a Liquid Crystalline Matrix.

    Science.gov (United States)

    Sol, Jeroen A H P; Dehm, Volker; Hecht, Reinhard; Würthner, Frank; Schenning, Albertus P H J; Debije, Michael G

    2018-01-22

    Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor-acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Laser-Excited Luminescent Tracers for Planar Concentration Measurements in Gaseous Jets

    Science.gov (United States)

    Lozano, Antonio

    Tracers currently used in planar laser-induced fluorescence concentration measurements are not ideal for some experimental conditions, e.g., non-reacting turbulent gaseous flows at standard temperature and pressure. In this work, a number of chemicals have been evaluated, through consideration of their physical and photophysical properties, for use as luminescent concentration markers in turbulent gaseous flows. Two selected substances, biacetyl and acetone, have been studied in more detail. Acetone PLIF concentration images have been acquired in a non-reacting air jet, and the results have been compared to similar images obtained seeding with biacetyl. Acetone has proven to be a superior tracer when imaging fluorescence emission. Acetone has also been used as a fuel marker in hydrogen and methane diffusion flames. This single -laser technique enables simultaneous recording of the acetone and OH fluorescence emissions, as well as Mie scattering from ambient air dust particles. Acetone-sensitized, collisionally-induced biacetyl phosphorescence has been used to visualize molecular mixing in gaseous flows. Initial attempts to produce quantitative results with this method through simultaneous imaging of acetone fluorescence and collisionally-induced biacetyl emission, are described. Using laser-induced biacetyl phosphorescence imaging, a data set of cross-cut concentration images has been acquired in a nitrogen coflowing jet (Re = 5,000). The images have been statistically analyzed. Very simple models of the instantaneous concentration profile have been compared to the experimental data. Of all the tested models, a paraboloid has resulted to be the best approximation to the instantaneous 2-D profile. Finally, an experiment to study jet mixing in crossflow using acetone PLIF imaging has been designed. The flow facility has been constructed, and preliminary images obtained with a high quantum efficiency, thinned CCD detector have revealed the presence of jet structures

  18. Sensitive luminescent determination of DNA using the terbium(III)-difloxacin complex

    International Nuclear Information System (INIS)

    Yegorova, Alla V.; Scripinets, Yulia V.; Duerkop, Axel; Karasyov, Alexander A.; Antonovich, Valery P.; Wolfbeis, Otto S.

    2007-01-01

    The interaction of the terbium-difloxacin complex (Tb-DFX) with DNA has been examined by using UV-vis absorption and luminescence spectroscopy. The Tb-DFX complex shows an up to 85-fold enhancement of luminescence intensity upon titration with DNA. The long decay times allow additional detection schemes like time-resolved measurements in microplate readers to enhance sensitivity by off-gating short-lived background luminescence. Optimal conditions are found at equimolar concentrations of Tb 3+ and DFX (0.1 or 1 μM) at pH 7.4. Under these conditions, the luminescence intensity is linearly dependent on the concentration of ds-DNAs and ss-DNA between 1-1500 ng mL -1 and 4.5-270 ng mL -1 , respectively. The detection limit is 0.5 ng mL -1 for ds-DNAs and 2 ng mL -1 for ss-DNA. The mechanism for the luminescence enhancement was also studied

  19. Spectral study of the luminescence produced by the excitation of noble gases by alpha-rays; Etude spectrale de la luminescence due a l'excitation des gaz rares par les rayons alpha

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Luminescence spectra of the noble gases He, A, Kr and Xe are studied under excitation by {alpha} rays. It is shown that the energy is transferred from excited levels of these gases to Hg and N{sub 2} impurities for impurity concentrations respectively less than 10{sup 6} and 10{sup 4}. These results confirm previous measurements concerning the period of luminescence and its variations versus nitrogen concentration in noble gases. (author) [French] On etudie les spectres de luminescence des gaz rares, He, A, Kr et Xe excites par une source intense de rayons {alpha}. Le transfert d'energie des etats excites des gaz rares sur les impuretes mercure et azote pour des concentrations respectives de ces impuretes inferieures a 1 ppm et 100 ppm est demontre. Ces resultats confirment les mesures anterieures concernant la duree de luminescence et ses variations avec la concentration d'azote dans les gaz rares. (auteur)

  20. The solar noise barrier project : 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype

    NARCIS (Netherlands)

    Debije, M.G.; Tzikas, C.; Rajkumar, V.A.; de Jong, M.

    2017-01-01

    Noise barriers have been used worldwide to reduce the impact of sound generated from traffic on nearby areas. A common feature to appear on these noise barriers are all manner of graffiti and street art. In this work we describe the relative performance of a large area luminescent solar concentrator

  1. Photoluminescence, reddish orange long persistent luminescence and photostimulated luminescence properties of praseodymium doped CdGeO3 phosphor

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Chen, Li; Fu, Yinrong; Mu, Zhongfei; Wang, Tao; Lin, Jun

    2014-01-01

    Highlights: • A novel phosphor CdGeO 3 :Pr 3+ was synthesized successfully. • The persistent luminescence properties of CdGeO 3 :Pr 3+ were studied. • The photostimulated luminescence properties of CdGeO 3 :Pr 3+ were investigated. • The persistent and photostimulated luminescence mechanisms were discussed in detail. - Abstract: Praseodymium doped CdGeO 3 phosphors were prepared successfully by a conventional high temperature solid-state reaction method. It showed reddish orange long persistent luminescence (LPL) after the short UV-irradiation. The reddish orange photostimulated luminescence (PSL) was also observed upon near infrared stimulation at 980 nm after per-exposure into UV light. The origin of LPL and PSL was identified with the emission from Pr 3+ ions with the aid of traps in host lattice. The optimal concentration of Pr 3+ ions for the brightest photoluminescence (PL) emission and the best LPL characteristic were experimentally to be about 3% and 0.5 mol%, respectively. The trapping and de-trapping processes of charge carriers between shallower and deep traps were illustrated. A model was proposed on the basis of experimental results to study the mechanisms of LPL and PSL

  2. Holographic patterning of luminescent photopolymer nanocomposites

    International Nuclear Information System (INIS)

    Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim

    2008-01-01

    Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated

  3. New polymers containing BF2-benzoylacetonate groups. Synthesis, luminescence, excimer and exciplex formation

    International Nuclear Information System (INIS)

    Fedorenko, Elena V.; Mirochnik, Anatolii G.; Beloliptsev, Anton Yu.

    2017-01-01

    In the present study, a new synthetic method for the functionalization of polystyrene (PS) and (styrene-methyl methacrylate) copolymer has been developed. Using the new method, polymers containing BF 2 -benzoylacetonate groups have been obtained through double acylation by acetic anhydride with boron trifluoride. Luminescence of the produced polymers in solutions and films has been studied. Quantum yields of polymer solution luminescence are significantly higher than those of the low-molecular-weight analog – boron difluoride benzoylacetonate. For the polymer, in which styrene fragments are separated by methyl methacrylate groups, at low concentrations of the polymer in solution one observes the monomer luminescence of BF 2 -benzoylacetonate groups, while at high concentrations – the excimer luminescence. In case of PS-based polymers, in which BF 2 -benzoylacetonate groups and phenyl rings are not separated, in diluted solutions one observes the fluorescence of the intramolecular exciplexes, while at the concentration increase – the luminescence of intermolecular exciplexes. The ability of excimer formation is responsible for the increased photostability of the produced polymers. - Highlights: •Polymers containing BF 2 -benzoylacetonate groups have been synthesized. •Luminescence of the produced polymers in solutions and films has been studied. •Formation of excimers and exciplexes in solution has been revealed. •Formation of excimers in films increases their photostability.

  4. Effects of Er3+ concentration on UV/blue upconverted luminescence and a three-photon process in the cubic nanocrystalline Y2O3:Er3+

    International Nuclear Information System (INIS)

    Wang Xin; Shan Guiye; Chao Kefu; Zhang Youlin; Liu Ruilin; Feng Liyun; Zeng Qinghui; Sun Yajuan; Liu Yichun; Kong Xianggui

    2006-01-01

    Ultraviolet (UV)/blue upconverted luminescent properties of the cubic Y 2 O 3 :Er 3+ nanocrystals as a function of the erbium concentration were investigated upon 488 nm Ar + laser excitation. The remarkable decrease of upconverted emission intensity and the quenching of the 2 P 3/2 → 4 I 11/2 / 4 I 13/2 transitions were observed in the Y 2 O 3 nanocrystals with high erbium concentration. The emission spectra and the exciting power dependence of upconverted luminescent intensities reveal that the possible upconversion mechanisms are excited-state absorption (ESA) and energy transfer (ET). Moreover, a UV/violet upconverted emission spectrum of nanocrystalline Y 2 O 3 :Er 3+ upon 980 nm light excitation was also observed and a three-photon process made a contribution to this upconverted emission

  5. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine

    Science.gov (United States)

    Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.

    2018-06-01

    Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.

  6. Sub-ppb level detection of uranium using ligand sensitized luminescence

    International Nuclear Information System (INIS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-01-01

    Uranyl ion (UO 2 2+ ) is known to exhibit weak luminescence in aqueous medium due to poor molar absorptivity and low quantum yield. In order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HClO 4 have been widely used. Like lanthanides, uranyl luminescence can also be sensitized by using some organic ligands. Pyridine 2,6-dicarboxylic acid (PDA) has shown enhancement of luminescence of uranyl in aqueous medium. Enhancement in intensity is due to sensitization of uranyl luminescence by PDA. In order to see the effect of non-aqueous medium, in this work, luminescence of uranyl-PDA complex has been studied in acetonitrile medium. More than one order luminescence enhancement has been observed compared to UO 2 2+ - PDA complex in aqueous medium. The lifetime of uranyl luminescence of the complex in acetonitrile medium is 90 μs which is very high compared to 10 μs in aqueous medium, suggesting that the luminescence enhancement is a result of reduction in non-radiative decay channels in acetonitrile medium. The large enhancement of uranyl luminescence of uranyl-PDA complex in acetonitrile medium can be used for ultra-trace level detection of uranium. Linearity in the luminescence intensity has been observed over the uranium concentration range of 5 to 80 ppb and the detection limit calculated using the criterion of 3 σ is ~ 0.2 ppb. (author)

  7. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  8. The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier

    NARCIS (Netherlands)

    Kanellis, M.; de Jong, M.; Slooff, L.H.; Debije, M.G.

    2017-01-01

    In this work we describe the relative performance of the largest luminescent solar concentrator (LSC) constructed to date. Comparisons are made for performance of North/South and East/West facing panels during a sunny day. It is shown that the East/West panels display much more varied performance

  9. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.; Papakonstantinou, Ioannis, E-mail: i.papakonstantinou@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is not a hindrance for this design.

  10. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    Science.gov (United States)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance

  11. Thermally stimulated luminescence in ZnMoO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V.Ya.; Kogut, Ya.P.; Moroz, I.M. [Kyiv National Taras Shevchenko University, MSP 03680 Kyiv (Ukraine); Danevich, F.A. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine)

    2017-03-15

    Thermally stimulated luminescence in ZnMoO{sub 4} crystals after X-ray irradiation at temperatures 8 K, 85 K and 295 K was studied. A theoretical model of crystal phosphor with three types of traps (shallow, phosphorescent and deep) is proposed. Simple analytic solutions of the kinetic equations system describing localized electrons on the traps and holes on recombination centres were obtained by using approximations accepted in the classic theories of crystal phosphors. Analytical curves describing thermally stimulated luminescence were obtained. A substantial effect of the different traps concentrations ratios on the thermally stimulated luminescence and conductivity peaks shapes is shown. A good agreement of the theoretical curves with the experimental data for the thermally stimulated luminescence peak at 114 K is obtained.

  12. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  13. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  14. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  15. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  16. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  17. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Science.gov (United States)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  18. New polymers containing BF{sub 2}-benzoylacetonate groups. Synthesis, luminescence, excimer and exciplex formation

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Elena V., E-mail: gev@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Mirochnik, Anatolii G.; Beloliptsev, Anton Yu. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2017-05-15

    In the present study, a new synthetic method for the functionalization of polystyrene (PS) and (styrene-methyl methacrylate) copolymer has been developed. Using the new method, polymers containing BF{sub 2}-benzoylacetonate groups have been obtained through double acylation by acetic anhydride with boron trifluoride. Luminescence of the produced polymers in solutions and films has been studied. Quantum yields of polymer solution luminescence are significantly higher than those of the low-molecular-weight analog – boron difluoride benzoylacetonate. For the polymer, in which styrene fragments are separated by methyl methacrylate groups, at low concentrations of the polymer in solution one observes the monomer luminescence of BF{sub 2}-benzoylacetonate groups, while at high concentrations – the excimer luminescence. In case of PS-based polymers, in which BF{sub 2}-benzoylacetonate groups and phenyl rings are not separated, in diluted solutions one observes the fluorescence of the intramolecular exciplexes, while at the concentration increase – the luminescence of intermolecular exciplexes. The ability of excimer formation is responsible for the increased photostability of the produced polymers. - Highlights: •Polymers containing BF{sub 2}-benzoylacetonate groups have been synthesized. •Luminescence of the produced polymers in solutions and films has been studied. •Formation of excimers and exciplexes in solution has been revealed. •Formation of excimers in films increases their photostability.

  19. Luminescence and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blasse, G; Bleijenberg, K C; Powell, R C

    1980-01-01

    This paper deals with the luminescence of uranate centres in solids. The luminescence properties are influenced by the coordination number of the hexavalent uranium ion and by the crystallographic surroundings of the uranate centre. Transitions playing a role in the luminescence processes within the octahedral UO/sub 6//sup 6 -/ group are discussed using the results from both theoretical and experimental studies on another octahedral uranium complex: UF/sub 6/. The luminescence of the octahedral uranate group in oxidic compounds is discussed. Attention is paid to the vibrational structure, which is observed in the luminescence spectra at low temperatures and to the temperature quenching of the luminescence. The temperature quenching of the uranate luminescence in uranium-doped tungstates with ordered perovskite structure can be described in terms of a three state single configurational coordinate diagram. The complicated luminescence spectra of uranium-activated sodium fluoride (NaF-U) crystals have been unraveled using chemical variation of the crystal compositions and using site selective laser excitation techniques. Four different luminescent uranate centres have been observed in NaF-U. A model for the configurations of the luminescent centres has been deduced using the results from ionic conductivity experiments.

  20. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    Science.gov (United States)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  1. Exploration of parameters influencing the self-absorption losses in luminescent solar concentrators with an experimentally validated combined ray-tracing/Monte-Carlo model

    Science.gov (United States)

    Krumer, Zachar; van Sark, Wilfried G. J. H. M.; de Mello Donegá, Celso; Schropp, Ruud E. I.

    2013-09-01

    Luminescent solar concentrators (LSCs) are low cost photovoltaic devices, which reduce the amount of necessary semiconductor material per unit area of a photovoltaic solar energy converter by means of concentration. The device is comprised of a thin plastic plate in which luminescent species (fluorophores) have been incorporated.The fluorophores absorb the solar light and radiatively re-emit a part of the energy. Total internal reflection traps most of the emitted light inside the plate and wave-guides it to a narrow side facet with a solar cell attached, where conversion into electricity occurs. The eciency of such devices is as yet rather low, due to several loss mechanisms, of which self-absorption is of high importance. Combined ray-tracing and Monte-Carlosimulations is a widely used tool for efficiency estimations of LSC-devices prior to manufacturing. We have applied this method to a model experiment, in which we analysed the impact of self-absorption onto LSC-efficiency of fluorophores with different absorption/emission-spectral overlap (Stokes-shift): several organic dyes and semiconductor quantum dots (single compound and core/shell of type-II). These results are compared with the ones obtained experimentally demonstrating a good agreement. The validated model is used to investigate systematically the influence of spectral separation and luminescence quantum efficiency on the intensity loss inconsequence of increased self-absorption. The results are used to adopt a quantity called the self-absorption cross-section and establish it as reliable criterion for self-absorption properties of materials that can be obtained from fundamental data and has a more universal scope of application, than the currently used Stokes-shift.

  2. Direct and indirect dating of gypsum occurrences in deserts using luminescence methods

    International Nuclear Information System (INIS)

    Nagar, Y.C.; Juyal, N.; Singhyi, A.K.; Kocurek, G.; Wadhawan, S.K.

    2005-01-01

    In the present study we have made an attempt to directly date gypsum or provide indirect age estimate for gypsum formation through dating the associated sediments (quartz) using the luminescence dating technique. In the direct dating of gypsum, we explored the Optically Stimulated Luminescence (OSL) and Thermally Stimulated Luminescence (TL) behaviour of gypsum. The associated sediments (indirect dating) were dated using the traces of quartz extract from gypsum (concentration 0.1% ) and the underlying and overlying quartz sand in playa

  3. The exploration and characterization of an orange emitting long persistent luminescence phosphor LiSr4(BO3)3:Eu2+

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Wu, Haoyi; Chen, Li; Wang, Xiaojuan

    2016-01-01

    An orange emitting long persistent phosphor LiSr 4 (BO 3 ) 3 :Eu 2+ was prepared successfully using a conventional solid state reaction method. The luminescent and persistent luminescence properties were studied using fluorescence spectra, decay curves, persistent luminescence spectra and thermoluminescence (TL) glow curves. The effects on the fluorescence and persistent luminescence properties by the dosage of Li 2 CO 3 were explored. The relationship between the Eu 2+ contents and persistent luminescence properties were studied. The optimal doping concentration of Eu 2+ was experimentally to be 1 mol%. The detailed processes and a possible mechanism were also discussed. - Highlights: • Li 2 CO 3 plays a critical role in producing persistent luminescence. • 40 % excess of Li 2 CO 3 makes the largest enhancement on persistent luminescence. • The optimal doping concentration of Eu 2+ was experimentally to be 1mol %. • Possible mechanism for persistent luminescence was discussed.

  4. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Directory of Open Access Journals (Sweden)

    Florian Mayer

    2018-01-01

    Full Text Available Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth. We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  5. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    Science.gov (United States)

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  6. Luminescence properties of tetravalent uranium in aqueous solution

    International Nuclear Information System (INIS)

    Kirishima, A.; Kimura, T.; Nagaishi, R.; Tochiyama, O.

    2004-01-01

    The luminescence spectra of U 4+ in aqueous solutions were observed in the UV-VIS region at ambient and liquid nitrogen temperatures. The excitation spectrum indicates that the luminescence is arising from the deexcitation of a 5f electron at the 1 S 0 level and no other emissions of U 4+ in aqueous solutions were detected for other f-f transitions. All the luminescence peaks were assigned to the transitions from 1 S 0 to lower 5f levels. To estimate the luminescence lifetime, luminescence decay curves were measured using time-resolved laser-induced fluorescence spectroscopy. At room temperature, the decay curve indicated that the lifetime was shorter than 20 ns. On the other hand, the frozen sample of U 4+ in aqueous solution at liquid nitrogen temperature showed the same emission spectrum as at room temperature and its lifetime was 149 ns in H 2 O system and 198 ns in D 2 O system. The longer lifetime at liquid nitrogen temperature made it possible to measure the spectrum of U 4+ at the concentration as low as 10 -6 M. The difference in the anion species (ClO 4 - , Cl - , SO 4 2- ) affected the structure of the emission spectrum to some extent. (orig.)

  7. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N T

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  8. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  9. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  10. The nature of unusual luminescence in natural calcite, CaCO3

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Panczer, G.; Waychunas, G.; Porat, N.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms, accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.

  11. Low-cost photovoltaics: Luminescent solar concentrators and colloidal quantum dot solar cells

    Science.gov (United States)

    Leow, Shin Woei

    Solar energy has long been lauded as an inexhaustible fuel source with more energy reaching the earth's surface in one hour than the global consumption for a year. Although capable of satisfying the world's energy requirements, solar energy remains an expensive technology that has yet to attain grid parity. Another drawback is that existing solar farms require large quantities of land in order to generate power at useful rates. In this work, we look to luminescent solar concentrator systems and quantum dot technology as viable solutions to lowering the cost of solar electricity production with the flexibility to integrate such technologies into buildings to achieve dual land use. Luminescent solar concentrator (LSC) windows with front-facing photovoltaic (PV) cells were built and their gain and power efficiency were investigated. Conventional LSCs employ a photovoltaic (PV) cell that is placed on the edge of the LSC, facing inward. This work describes a new design with the PV cells on the front-face allowing them to receive both direct solar irradiation and wave-guided photons emitted from a dye embedded in an acrylic sheet, which is optically coupled to the PV cells. Parameters investigated include the thickness of the waveguide, edge treatment of the window, cell width, and cell placement. The data allowed us to make projections that aided in designing windows for maximized overall efficiency. A gain in power of 2.2x over the PV cells alone was obtained with PV cell coverage of 5%, and a power conversion efficiency as high as 6.8% was obtained with a PV cell coverage of 31%. Balancing the trade-offs between gain and efficiency, the design with the lowest cost per watt attained a power efficiency of 3.8% and a gain of 1.6x. With the viability of the LSC demonstrated, a weighted Monte-Carlo Ray Tracing program was developed to study the transport of photons and loss mechanisms in the LSC to aid in design optimization. The program imports measured absorption

  12. Renewable energy : better luminescent solar panels in prospect

    NARCIS (Netherlands)

    Debije, M.G.

    2015-01-01

    Devices known as luminescent solar concentrators could find use as renewable-energy generators, but have so far been plagued by a major light-reabsorption effect. A new study offers a promising route to tackling this problem

  13. Peculiarities of the determination of shallow impurity concentrations in semiconductors from the analysis of exciton luminescence spectra

    CERN Document Server

    Glinchuk, K D

    2002-01-01

    An analysis was made of the applicability limits of the method for the determination of the content of shallow acceptors and donors in semiconductors from the ratio of the low-temperature (T = 1.8-4.2 K) luminescence intensities of exciton bands, in particular, induces by radiative annihilation of excitons bound to acceptors (donors) and free excitons. It is shown that correct data about the concentrations of shallow acceptors and donors as well as data on changes in their content as a result of various treatments may be obtained if the occupancy of the defects in question by holes and electrons does not depend on the excitation intensity or external treatments. A way to check the fulfillment of criteria for the method application is suggested. An example is given is given of the method application for determination of thermally stimulated changes in the concentration of shallow acceptors and donors in gallium arsenide

  14. The solar noise barrier project 3. The effects of seasonal spectral variation, cloud cover and heat distribution on the performance of full-scale luminescent solar concentrator panels

    NARCIS (Netherlands)

    Debije, M.G.; Tzikas, C.; de Jong, M.; Kanellis, M.; Slooff, L.H.

    We report on the relative performances of two large-scale luminescent solar concentrator (LSC) noise barriers placed in an outdoor environment monitored for over a year. Comparisons are made for the performances of a number of attached photovoltaic cells with changing spectral illumination, cloud

  15. Study of Polymeric Luminescent Blend (PC/PMMA) Doped with Europium Complex under Gamma-Iradiation

    International Nuclear Information System (INIS)

    Parra, D. F.

    2006-01-01

    Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with europium in organic complex were studied. Polymeric luminescent blends are potential materials for many applications; however, little information has been reported concerning the stability under thermal and radiation conditions. Luminescent films were synthesized from europium thenoyltrifluoroacetonate at different concentrations doped in PC/PMMA blends. Films produced of the luminescent polymer blend were irradiated in a 60 C o source. Their luminescent properties, in the solid state, as well as, the thermal oxidative resistance after gamma irradiation was investigated. These systems were characterized by elemental analysis, thermogravimetry (TGA), differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). Based on TGA data, the thermal stability of PC/PMMA:(tta)3 system is higher than the polymer blend. The DSC results indicated that those new systems are chemically stables. The emission spectra of the Eu 3 +-tta complex doped in the PC/PMMA recorded at 298 and 77 K exhibited the characteristic bands arising from the 5 D 0 →7 F J transitions (J = 0-6). The luminescence intensity decreases with increasing of precursor concentration in the doped polymer obtained by chemical reaction. This result is different from that of samples obtained by physical method in melting doping. The blend was irradiated under ionizing radiation of 60 C o source. After irradiation of the luminescent films the physical properties of luminescence, thermal and oxidative stability were evaluated.(Fapesp and Cnpq financial support)

  16. Europium concentration effect on characteristics and luminescent properties of hydroxyapatite nanocrystalline powders

    Science.gov (United States)

    Nikolaev, Anton; Kolesnikov, Ilya; Frank-Kamenetskaya, Olga; Kuz'mina, Maria

    2017-12-01

    Series of Eu-apatites were synthesized by precipitation from aqueous solutions with the Eu/Ca atomic ratio from 0.5% to 5% at T = 90 °C. Resulting precipitates were studied using different experimental techniques including X-ray powder diffraction, infrared and raman spectroscopy, scanning elecrton microscopy, EDX and photoluminescent spectroscopy. Eu-doped Ca-deficit nanosized non-stoichiometric hydroxyapatite with high water content has been obtained throughout the experiment. Europium content in the synthesized apatites reaches 0.24 apfu (Eu/Ca = 2.5%). Relations between Eu content is the solution and precipitate have been established. It was shown that Eu-monacite starts to precipitate as secondary phase at Eu/Ca ratio in starting solution 1% or higher. Maximum luminescence is observed in apatite with ∼2% Eu/Ca ratio (which equals to ∼0.2 apfu and corresponds to 3% Eu/Ca ratio in the starting solution). As an important and brand-new result, apatite with 2% Eu/Ca ratio can be considered as the most appropriate material for the producing biolabels for luminescent research in medicine and biology.

  17. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  18. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  19. Investigation of the yield process by deformation luminescence of X-ray irradiated KCl:Ca2+

    International Nuclear Information System (INIS)

    Nakamura, S.; Ida, K.; Ohgaku, T.

    2011-01-01

    It is found that deformation luminescence gives us information about the microscopic yield process of X-ray irradiated KCl:Ca 2+ . The stress-strain curve has a macroscopic yield point. But we find that luminescence appears to start before the macroscopic yield. This means that dislocation begin to move before the macroscopic yield because deformation luminescence is attributed to radiation-induced dislocation motion. The beginning of luminescence is considered to be the microscopic yield. Investigating the dependence of microscopic yield stress on strain rate and impurity concentration gives us additional information. The activation volume obtained from the dependence of microscopic yield stress on strain rate is comparable to the value estimated from the concentration of impurity. Then the dislocation starts to move overcoming impurity-vacancy dipoles as obstacles to dislocation motion. The dislocation density starts to increase at the microscopic yield point and then sharply increases to the macroscopic yield.

  20. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  1. Luminescent properties of Al2O3: Tb powders

    International Nuclear Information System (INIS)

    Esparza G, A.E.; Garcia, M.; Falcony, C.; Azorin N, J.

    2000-01-01

    In this work the photo luminescent and cathode luminescent characteristics of aluminium oxide (Al 2 O 3 ) powders impurified with terbium (Tb) were studied for their use in dosimetry. The optical, structural, morphological characteristics of the powders as function of variation in the impurity concentration and the annealing temperature will be presented. As regards the optical properties of powders (photoluminescence and cathode luminescence) it was observed a characteristic emission associated with radiative transitions between electron energy levels of terbium, the spectra associated with this emission consists of several peaks associated with such transitions. In the structural and morphological characterization (X-ray diffraction and scanning electron microscopy) it was appreciated that in accordance the annealing temperature of powders is augmented it is evident the apparition of certain crystalline phases. The results show that this is a promissory material for radiation dosimetry. (Author)

  2. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect.

    Science.gov (United States)

    Wang, Meng; Guo, Lin; Cao, Dapeng

    2018-03-06

    Rapid and selective sensing of sulfur dioxide (SO 2 ) gas has attracted more and more attention because SO 2 not only causes environmental pollution but also severely affects the health of human beings. Here we report an amino-functionalized luminescent metal-organic framework (MOF) material (i.e., MOF-5-NH 2 ) and further investigate its sensing property for SO 2 gas and its derivatives as a luminescent probe. The results indicate that the MOF-5-NH 2 probe can selectively and sensitively sense SO 2 derivatives (i.e., SO 3 2- ) in real time by a luminescence turn-on effect with a lower detection limit of 0.168 ppm and a response time of less than 15 s. Importantly, the luminescence turn-on phenomenon can be observed by the naked eye. We also assembled MOF-5-NH 2 into a test paper to achieve the aim of portable detection, and the lower-limit concentration of the test paper for sensing SO 2 in real time was found to be about 0.05 ppm. Moreover, MOF-5-NH 2 also shows good anti-interference ability, strong luminescence stability, and reusability, which means that this material is an excellent sensing candidate. The amino functionalization may also provide a modification strategy to design luminescent sensors for other atmospheric pollutants.

  3. LUMINESCENCE DETERMINATION OF ETODOLAC

    Directory of Open Access Journals (Sweden)

    A. V. Yegorova

    2015-02-01

    Full Text Available A highly sensitive, simple and rapid method for determination of non-steroidal anti- inflammatory drug – etodolac (Et in washings from surfaces of pharmaceutical equipment have been proposed. The intensity of native luminescence of water-n-propanol solutions of etodolac (λex= 274 nm; λlum= 350 nm was used as the analytical signal. The calibration graph is linear in the concentration range 0.014-2.3 μg/ml, the limit of detection is 0.5 ng/ml.

  4. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...

  5. Luminescence detection of shellfish

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Spencer, J.Q.; Naylor, J.D.

    1996-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) has been active in the development and application of luminescence techniques in the detection of irradiated foods, in support of UK legislation. Thermoluminescence (TL), photostimulated luminescence (PSL) and photo-transfer luminescence (PTTL) are radiation-specific phenomena which arise due to energy stored by trapped charge carriers following irradiation. The energy released following stimulation is accompanied by detectable luminescence. The TL method involves preparation of pure silicate extracts from the sample and subsequent TL analysis, whereas PSL uses stimulation by electromagnetic radiation (visible, or near visible wavelengths) thus avoiding heating the sample. (author)

  6. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals.

    Science.gov (United States)

    Jiménez-Solano, Alberto; Delgado-Sánchez, José-Maria; Calvo, Mauricio E; Miranda-Muñoz, José M; Lozano, Gabriel; Sancho, Diego; Sánchez-Cortezón, Emilio; Míguez, Hernán

    2015-12-01

    Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one-dimensional photonic crystals and in-plane CuInGaSe 2 (CIGS) solar cells. Highly uniform and wide-area nanostructured multilayers with photonic crystal properties were deposited by a cost-efficient and scalable liquid processing amenable to large-scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in-plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long-term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.

  7. Design and realization of transparent solar modules based on luminescent solar concentrators integrating nanostructured photonic crystals

    Science.gov (United States)

    Jiménez‐Solano, Alberto; Delgado‐Sánchez, José‐Maria; Calvo, Mauricio E.; Miranda‐Muñoz, José M.; Lozano, Gabriel; Sancho, Diego; Sánchez‐Cortezón, Emilio

    2015-01-01

    Abstract Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. PMID:27656090

  8. Preparation and up-conversion luminescence of SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Zhang, Wei; Feng, Zhiqing; Tang, Dongxin; Na, Liyan [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2014-03-05

    Graphical abstract: The SrAlF{sub 5} nanorods co-doped with various Yb{sup 3+}/Er{sup 3+} concentrations was synthetized via a microemulsion-hydrothermal process for the first time. It was found that the optimum doping concentration of Yb{sup 3+} and Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence. Highlights: • SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods were synthesized via a microemulsion-hydrothermal process. • Crystal structure and morphology were characterized by using XRD and FESEM. • The upconversion luminescence intensity depend on LD working current was studied. • The post heat-treatment could greatly improve upconversion luminescence. -- Abstract: Yb{sup 3+} and Er{sup 3+} co-doped SrAlF{sub 5} nanorods with average diameter of 35 nm and average length of 400 nm were synthesized via a microemulsion-hydrothermal process, and their crystal structure and morphology were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The optimum doping concentration of Yb{sup 3+}/Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. The upconversion luminescence intensity dependence on the laser diode (LD) working current was studied and the possible upconversion mechanism was analyzed. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence.

  9. PROPERTIES OF Eu3+ LUMINESCENCE IN THE MONOCLINIC Ba2MgSi2O7

    Directory of Open Access Journals (Sweden)

    Shansh an Yao

    2011-09-01

    Full Text Available Red-emitting phosphors Ba2-xMgSi2O7: Eux3+ was prepared by combustion-assisted synthesis method and an efficient red emission under near-ultraviolet (UV was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometer. The emission spectrum shows that the most intense peak is located at 614 nm, which corresponds to the 5D0 → 7F2 transitions of Eu3+. The phosphor has two main excitation peaks located at 394 and 465 nm, which match the emission of UV and blue light-emitting diodes, respectively. The effect of Eu3+ concentration on the emission spectrum of Ba2MgSi2O7:Eu3+ phosphor was studied. The results showed that the emission intensity increased with increasing Eu3+ concentration, and then decreased because of concentration quenching. The critical quenching concentration of Eu3+ in Ba2MgSi2O7: Eu3+ phosphor is about 0.05 mol. The mechanism of concentration quenching of Ba2MgSi2O7: Eu3+ luminescence is energy transfer between Eu3+ ions casued by the dipole-dipole interaction.

  10. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  11. Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment)

    Science.gov (United States)

    Vaisburd, D. I.; Kharitonova, S. V.

    1997-11-01

    A short high-power pulse of ionizing radiation creates a high concentration of nonequilibrium electrons and holes in a dielectric. They quickly lose their energy, generating a multiplicity of secondary quasiparticles: electron—hole pairs, excitons, plasmons, phonons of all types, and others. When the kinetic energy of an electron becomes less that some value EΔ≈(1.3-2)Eg it loses the ability to perform collisional ionization and electron excitations of the dielectric medium. Such an electron is said to be ionization-passive. It relaxes to the bottom of the lower conduction band by emitting phonons. Similarly a hole becomes ionization-passive when it “floats up” above some level EH and loses the ability for Auger ionization of the dielectric medium. It continues to float upward to the ceiling of the upper valance band only by emitting phonons. The concentrations of ionization-passive electrons and holes are larger by several orders of magnitude than those of the active electrons and holes and consequently make of a far larger contribution to many kinetic processes such as luminescence. Intraband and interband quantum transitions make the greatest contribution to the fundamental (independent of impurities and intrinsic defects) electromagnetic radiation of ionization-passive electrons and holes. Consequently the brightest types of purely fundamental luminescence of strongly nonequilibrium electrons and holes are intraband and interband luminescence. These forms of luminescence, discovered relatively recently, carry valuable information on the high-energy states of the electrons in the conduction band and of the holes in the valence band of a dielectric. Experimental investigations of these types of luminescence were made, mainly on alkali halide crystals which were excited by nanoseconal pulses of high-current-density electrons and by two-photon absorption of the ultraviolet harmonics of pulsed laser radiation beams of nanosecond and picosecond duration. The

  12. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  13. Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators.

    Science.gov (United States)

    Kaysir, Md Rejvi; Fleming, Simon; Argyros, Alexander

    2018-04-01

    Luminescent solar concentrators (LSCs) utilizing stimulated emission by a seed laser are a promising approach to overcome the limitations of conventional LSCs, with a significant reduction of the photovoltaic material. In our previous work, we demonstrated the principle of a stimulated LSC (s-LSC) and correspondingly developed a model for quantifying the output power of such a system, taking into account different important physical parameters. The model suggested Perylene Red (PR) dye as a potential candidate for s-LSCs. Here, we experimentally investigate the gain of PR-doped polymethyl methacrylate (PMMA) required for s-LSCs using a single pump wavelength (instead of the solar spectrum) as a proof of principle. The results found from the experiment are well matched with the previously developed numerical model except for gain saturation, which occurs at a comparatively small seed laser signal power. To investigate the gain saturation, two approaches were taken: investigating (i) spectral hole burning and (ii) triplet state absorption. Experimental investigation of spectral hole burning with PR dyes showed a small effect on the gain saturation. We developed a general state model considering triplet state absorption of the PR dyes for the second approach. The state model suggests that the PR dyes suffer from significant triplet state absorption loss, which obstructs the normal operation of the PR-based s-LSC system.

  14. Scale-up of a Luminescent Solar Concentrator-Based Photomicroreactor via Numbering-up.

    Science.gov (United States)

    Zhao, Fang; Cambié, Dario; Janse, Jeroen; Wieland, Eric W; Kuijpers, Koen P L; Hessel, Volker; Debije, Michael G; Noël, Timothy

    2018-01-02

    The use of solar energy to power chemical reactions is a long-standing dream of the chemical community. Recently, visible-light-mediated photoredox catalysis has been recognized as the ideal catalytic transformation to convert solar energy into chemical bonds. However, scaling photochemical transformations has been extremely challenging due to Bouguer-Lambert-Beer law. Recently, we have pioneered the development of luminescent solar concentrator photomicroreactors (LSC-PMs), which display an excellent energy efficiency. These devices harvest solar energy, convert the broad solar energy spectrum to a narrow-wavelength region, and subsequently waveguide the re-emitted photons to the reaction channels. Herein, we report on the scalability of such LSC-PMs via a numbering-up strategy. Paramount in our work was the use of molds that were fabricated via 3D printing. This allowed us to rapidly produce many different prototypes and to optimize experimentally key design aspects in a time-efficient fashion. Reactors up to 32 parallel channels have been fabricated that display an excellent flow distribution using a bifurcated flow distributor (standard deviations below 10%). This excellent flow distribution was crucial to scale up a model reaction efficiently, displaying yields comparable to those obtained in a single-channel device. We also found that interchannel spacing is an important and unique design parameter for numbered-up LSC-PMs, which influences greatly the photon flux experienced within the reaction channels.

  15. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  16. Real-time luminescence from Al2O3 fiber dosimeters

    International Nuclear Information System (INIS)

    Polf, J.C.; Yukihara, E.G.; Akselrod, M.S.; McKeever, S.W.S.

    2004-01-01

    The real-time luminescence signal from Al 2 O 3 single crystal fibers, monitored during simultaneous irradiation and optical stimulation, was investigated using computer simulations and experimental measurements. Both radioluminescence (RL) and optically stimulated luminescence (OSL) signals were studied. The simulations were performed initially using a simple one-trap/one-recombination-center energy band model, and then extended to include shallow and deep electron traps as well. Real-time luminescence experiments were performed for different radiation dose rates and optical stimulation powers using periodic laser stimulation of the samples through a fiber optic cable, and the experimental results were compared with the predictions from the computer simulations. The luminescence signal was observed, both theoretically and experimentally, to increase from its initial value to a steady-state level. The steady-state RL and OSL levels were found to be dependent on dose rate, the steady-state level of the real-time OSL being independent of laser power. It was also shown that the total integrated absorbed dose throughout the irradiation period can be determined by correcting the real-time OSL signal for depletion caused by each laser stimulation pulse. The effects of the shallow and deep traps on the time-dependence of the real-time luminescence signal were studied comparing the experimental data from several Al 2 O 3 fibers known to have different trapping state concentrations. The additional traps were found to slow the response of the real-time luminescence such that the time to reach steady state was increased as the additional traps were added

  17. The application of time-resolved luminescence spectroscopy to a remote uranyl sensor

    International Nuclear Information System (INIS)

    Varineau, P.T.; Duesing, R.; Wangen, L.E.

    1991-01-01

    Time resolved luminescence spectroscopy is an effective method for the determination of a wide range of uranyl concentrations in aqueous samples. We have applied this technique to the development of a remote sensing device using fiber optic cables coupled with a micro flow cell in order to probe for uranyl in aqueous samples. This sensor incorporates a Nafion membrane through which UO 2 2+ can diffuse in to a reaction/analysis chamber which holds phosphoric acid, a reagent which enhances the uranyl luminescence intensity and lifetime. With this device, anionic and fluorescing organic interferences could be eliminated, allowing for the determination of uranyl over a concentration range of 10 4 to 10 -9 M. 17 refs., 5 figs

  18. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  19. The effect of copper concentration on the virulence of pathogenic Vibrio harveyi.

    Science.gov (United States)

    Nakayama, T; Nomura, N; Matsumura, M

    2007-05-01

    To demonstrate the influence of copper on luminescence and toxin production in Vibrio harveyi. The effect of copper concentration on the expression of both luminescence and toxin of V. harveyi was investigated. Copper concentration of less than 40 ppm had no effect on the growth. While V. harveyi cultured with 40 ppm copper concentration showed decreased luminescence as measured by spectrofluorophotometer and as observed. LuxD gene, which is related to luminescence expression, was monitored using real-time RT-PCR. Result showed that the concentration of cDNA coding for luxD was lower in V. harveyi with copper. Toxic activity against both HeLa cells and shrimp haemocytes was also lower in the culture supernatant of V. harveyi grown with 40 ppm copper concentration. Moreover, V. harveyi extracellular proteins were analysed using SDS-PAGE. Results showed that culture supernatant from V. harveyi grown without copper had thicker band indicating a higher concentration of the putative cysteine protease, one of the major toxin of V. harveyi. This study proved that both luminescence and toxin were repressed by copper. The current study demonstrated that copper inhibited expression of phenotype of V. harveyi. Furthermore, it may inhibit quorum sensing of V. harveyi.

  20. Novel Luminescent Probe Based on a Terbium(III) Complex for Hemoglobin Determination

    Science.gov (United States)

    Yegorova, A. V.; Leonenko, I. I.; Aleksandrova, D. I.; Scrypynets, Yu. V.; Antonovich, V. P.; Ukrainets, I. V.

    2014-09-01

    We have studied the spectral luminescent properties of Tb(III) and Eu(III) complexes with a number of novel derivatives of oxoquinoline-3-carboxylic acid amides (L1-L5 ). We have observed quenching of the luminescence of 1:1 Tb(III)-L1-5 complexes by hemoglobin (Hb), which is explained by resonance energy transfer of electronic excitation from the donor (Tb(III)-L1-5 ) to the acceptor (Hb). Using the novel luminescent probe Tb(III)-L1, we have developed a method for determining Hb in human blood. The calibration Stern-Volmer plot is linear in the Hb concentration range 0.6-36.0 μg/mL, detection limit 0.2 μg/mL (3·10-9 mol/L).

  1. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  2. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  3. The luminescence of CaWO4: Bi single crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Pashkovsky, M.; Voloshinovskii, A.; Kuklinski, B.; Grinberg, M.

    2006-01-01

    Influence of doping with Bi 3+ ions and Bi 3+ -Na + or Bi 3+ -Li + ions pairs on luminescence, emission kinetics and light yield of CaWO 4 crystals has been investigated. It has been shown that under excitation in the A-band at 272 and 287nm, related to the Bi 3+ ions absorption, the luminescence peaked at 468nm decaying with time τ=0.41μs is observed. For bismuth concentration 50-500ppm and the equimolar concentrations of the Bi 3+ ions accompanied by Na + or Li + ions compensators the significant suppression of the phosphorescence peaked at 520nm, related to the defect WO 3 -V O complex, and an improvement of scintillation characteristics of the CaWO 4 are noticed. Energy transfer from the defect WO 3 -V O and regular WO 4 2- oxy-anions to Bi 3+ ions have been observed at room temperatures and discussed

  4. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  5. Luminescence of yttrium niobium-tantalate doubly activated by europium and/or terbium under X-ray and electron beam excitation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, I.D., E-mail: arellano@utp.edu.co [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Nazarov, M.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Republic of Moldova (Moldova, Republic of); School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Cortes, J.A. [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Ahmad Fauzi, M.N [School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-09-15

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O{sub 4} activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. The influence of these rare earth ions on the luminescence of yttrium niobium-tantalate phosphors was investigated. The luminescent properties were studied under X-ray and electron beam excitations. Under these excitations, the emission centers of the rare earth activators (Eu{sup 3+},Tb{sup 3+}) were found to contribute efficiently to the overall luminescence. Changing the mol concentration of the incorporated activators resulted in a broad variation of visible photoluminescence. Color cathodoluminescence images showed clearly the dependence of chromaticity on the different activators. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing a broad variation of visible photoluminescence from blue to red. - Highlights: Black-Right-Pointing-Pointer The Y(Ta,Nb)O{sub 4} phosphors were activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. Black-Right-Pointing-Pointer The phosphors were studied under X-ray and electron beam excitations. Black-Right-Pointing-Pointer The emission centers contribute efficiently to the overall luminescence. Black-Right-Pointing-Pointer Changing the concentration of the activators resulted in a broad luminescence.

  6. Dosimetry based on thermally and optically stimulated luminescence

    International Nuclear Information System (INIS)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and α-Al 2 O 3 have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in α-Al 2 O 3 :C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of αAl 2 O 3 :C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for γ-irradiated αAl 2 O 3 :C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au)

  7. Mechanical, spectral, and luminescence properties of ZnS:Mn doped PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Fontenot, Ross S. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Allison, Stephen W., E-mail: steve.allison@emergingmeasurements.com [Emerging Measurements, Collierville, TN 38017 (United States); Lynch, Kyle J, E-mail: kjlynch@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Hollerman, William A. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Sabri, Firouzeh, E-mail: fsabri@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States)

    2016-02-15

    Zinc sulfide doped with manganese (ZnS:Mn) is one of the brightest triboluminescent materials known and has been studied for a variety of applications. The powder form of this material restricts its safe handling and utilization, which limits the range of applications that can take advantage of its unique properties. In this study, the tribo- and photo-luminescent properties as well as the mechanical properties of ZnS:Mn encapsulated in an inert and optically transparent elastomer – Sylgard 184, have been investigated and fully characterized. ZnS:Mn particles of 8.5 µm diameter were incorporated into the Sylgard 184 polymer matrix prior to the curing stage with increasing amounts targeting a final (mass) concentration of 5%, 15%, and 50%. Additionally, the effect of the ZnS:Mn particles on the overall surface properties of the encapsulating elastomer was investigated and reported here. It was observed that the triboluminescent emission from impact scales with phosphor concentration and was not affected by the encapsulating medium. - Highlights: • Polymer encapsulation effects on the luminescent properties of ZnS:Mn was investigated. • Sylgard 184 encapsulated with ZnS:Mn (5, 15, 50 wt%) were characterized. • The triboluminescent emission from impact, scales with phosphor concentration. • Effect of the elastomeric medium on luminescent properties of ZnS:Mn was determined. • The work presented here demonstrates the feasibility of ZnS:Mn-based flexible sensors.

  8. Influence of Er3+/Yb3+ concentration ratio on the down-conversion and up-conversion luminescence and lifetime in GdVO4:Er3+/Yb3+ microcrystals

    Directory of Open Access Journals (Sweden)

    Gavrilović T.V.

    2015-01-01

    Full Text Available In this paper, we studied the effects of Er3+/Yb3+ concentration ratio on structural, morphological and luminescence properties of GdVO4:Er3+/Yb3+ green phosphors prepared by a high-temperature solid state method. The samples with different concentrations (between 0.5 to 2 mol% of dopant Er3+ emitting ions and different concentrations (between 5 to 20 mol% of sensitizer ions (Yb3+ were studied. The phosphors were characterized by the X-ray diffraction (XRD, scanning electron microscopy (SEM and photoluminescence spectroscopy. For all samples, XRD diffraction patterns confirmed a formation of a pure GdVO4 phase, while the SEM showed that the materials are comprised of chunks of deformed particles with an average diameter ranging from approximately 2 μm to 8 μm. Both, down-conversion and up-conversion emission spectra of GdVO4:Er3+/Yb3+ samples, under near UV and IR excitations, exhibit two strong emission bands in the green spectral region at 525 nm and 552 nm wavelengths corresponding to 2H11/2 →4I15/2 and 4S3/2 → 4I15/2 electronic transitions of Er3+ ions. The intensity of the green emission was changed by changing the Er3+/Yb3+ concentration ratio. This dual-mode luminescence makes these materials ideal as green phosphors for a wide variety of applications in the fields of bioanalysis and biomedical. [Projekat Ministarstva nauke Republike Srbije, br. 45020 i br. 172056

  9. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    Science.gov (United States)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  10. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    Science.gov (United States)

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    Science.gov (United States)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.

  12. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters.

    Science.gov (United States)

    Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T

    2017-09-15

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

  13. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  14. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  15. High-Performance CuInS 2 Quantum Dot Laminated Glass Luminescent Solar Concentrators for Windows

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Matthew R. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Makarov, Nikolay S. [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Ramasamy, Karthik [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Jackson, Aaron [UbiQD, Inc., Los Alamos, New Mexico 87544, United States; Guglielmetti, Rob [National Renewable Energy Laboratory, Golden, Colorado 80401, United States; McDaniel, Hunter [UbiQD, Inc., Los Alamos, New Mexico 87544, United States

    2018-01-30

    Building-integrated sunlight harvesting utilizing laminated glass luminescent solar concentrators (LSCs) is proposed. By incorporating high quantum yield (>90%), NIR-emitting CuInS2/ZnS quantum dots into the polymer interlayer between two sheets of low-iron float glass, a record optical efficiency of 8.1% is demonstrated for a 10 cm x 10 cm device that transmits ~44% visible light. After completing prototypes by attaching silicon solar cells along the perimeter of the device, the electrical power conversion efficiency was certified at 2.2% with a black background and at 2.9% using a reflective substrate. This 'drop-in' LSC solution is particularly attractive because it fits within the existing glazing industry value chain with only modest changes to typical glazing products. Performance modeling predicts >1 GWh annual electricity production for a typical urban skyscraper in most major U.S. cities, enabling significant energy cost savings and potentially 'net-zero' buildings.

  16. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  17. Analytical expressions for time-resolved optically stimulated luminescence experiments in quartz

    International Nuclear Information System (INIS)

    Pagonis, V.; Lawless, J.; Chen, R.; Chithambo, M.L.

    2011-01-01

    Optically stimulated luminescence (OSL) signals can be obtained using a time-resolved optical stimulation (TR-OSL) method, also known as pulsed OSL. During TR-OSL measurements, the stimulation and emission of luminescence are experimentally separated in time using short light pulses. This paper presents analytical expressions for the TR-OSL intensity observed during and after such a pulse in quartz experiments. The analytical expressions are derived using a recently published kinetic model which describes thermal quenching phenomena in quartz samples. In addition, analytical expressions are derived for the concentration of electrons in the conduction band during and after the TR-OSL pulse, and for the maximum signals attained during optical stimulation of the samples. The relevance of the model for dosimetric applications is examined, by studying the dependence of the maximum TR-OSL signals on the degree of initial trap filling, and also on the probability of electron retrapping into the dosimetric trap. Analytical expressions are derived for two characteristic times of the TR-OSL mechanism; these times are the relaxation time for electrons in the conduction band, and the corresponding relaxation time for the radiative transition within the luminescence center. The former relaxation time is found to depend on several experimental parameters, while the latter relaxation time depends only on internal parameters characteristic of the recombination center. These differences between the two relaxation times can be explained by the presence of localized and delocalized transitions in the quartz sample. The analytical expressions in this paper are shown to be equivalent to previous analytical expressions derived using a different mathematical approach. A description of thermal quenching processes in quartz based on AlO 4 - /AlO 4 defects is presented, which illustrates the connection between the different descriptions of the luminescence process found in the literature

  18. Dosimetry based on thermally and optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and {alpha}-Al{sub 2}O{sub 3} have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in {alpha}-Al{sub 2}O{sub 3}:C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of {alpha}Al{sub 2}O{sub 3}:C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for {gamma}-irradiated {alpha}Al{sub 2}O{sub 3}:C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au) 8 tabs., 59 ills., 90 refs.

  19. Luminescence sensitivity changes in quartz

    CERN Document Server

    Wintle, A G

    1999-01-01

    In the luminescence dating of sedimentary or heated quartz, some heat treatment is usually applied to the sample immediately prior to the measurement of the optically stimulated luminescence. In this paper we report experiments on a 30,000-year-old sedimentary quartz, in which we use the luminescence response to a test dose to monitor the changes in sensitivity that are caused by holding the quartz at temperatures from 160 to 280 deg. C for times from 10 s to 22 h. For an optically bleached sample, the monitoring is by both optically stimulated luminescence and the 110 deg. C TL peak; both luminescence signals are shown to have the same sensitisation (i.e. activation energy) characteristics. For natural or laboratory irradiated samples only the 110 deg. C TL peak can be used; sensitivity increases of up to a factor of 1.3 and 3 are observed for the natural and laboratory irradiated aliquots, respectively. Up to four exponential components are used to deconvolve the sensitivity change data; the dominant compon...

  20. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  1. Silver-induced reconstruction of an adeninate-based metal-organic framework for encapsulation of luminescent adenine-stabilized silver clusters.

    Science.gov (United States)

    Jonckheere, Dries; Coutino-Gonzalez, Eduardo; Baekelant, Wouter; Bueken, Bart; Reinsch, Helge; Stassen, Ivo; Fenwick, Oliver; Richard, Fanny; Samorì, Paolo; Ameloot, Rob; Hofkens, Johan; Roeffaers, Maarten B J; De Vos, Dirk E

    2016-05-21

    Bright luminescent silver-adenine species were successfully stabilized in the pores of the MOF-69A (zinc biphenyldicarboxylate) metal-organic framework, starting from the intrinsically blue luminescent bio-MOF-1 (zinc adeninate 4,4'-biphenyldicarboxylate). Bio-MOF-1 is transformed to the MOF-69A framework by selectively leaching structural adenine linkers from the original framework using silver nitrate solutions in aqueous ethanol. Simultaneously, bright blue-green luminescent silver-adenine clusters are formed inside the pores of the recrystallized MOF-69A matrix in high local concentrations. The structural transition and concurrent changes in optical properties were characterized using a range of structural, physicochemical and spectroscopic techniques (steady-state and time-resolved luminescence, quantum yield determination, fluorescence microscopy). The presented results open new avenues for exploring the use of MOFs containing luminescent silver clusters for solid-state lighting and sensor applications.

  2. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    Science.gov (United States)

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  3. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  4. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  5. Luminescence (IRSL) dating of Yeni Rabat church in Artvin, Turkey

    Science.gov (United States)

    Şahiner, Eren; Meriç, Niyazi; Uygun, Selda

    2013-05-01

    Luminescence dating is a chronological method that has been used extensively in terrestrial materials. In this study, we present Infrared Stimulated Luminescence (IRSL) dating results obtained for sediment and pottery samples taken from Yeni Rabat Church, Ardanuç, Artvin, Turkey. For this purpose, equivalent dose (ED) and annual dose rate (AD) of samples were measured. For annual dose rate, concentrations of radioactive isotopes (U, Th, K) were determined by using a high-purity germanium detector. For the equivalent dose, polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used. The optimal preheat temperature was determined for sediment and pottery samples. Ages were calculated by Aitken's luminescence age calculation method, which found 710±190 years for the pottery sample and 1450±370 years, 1390±420 years, 1430±310 years, 2210±520 years and 1640±390 years for different sediment samples, respectively. These estimated age ranges support the theory that Yeni Rabat Church could have been constructed in medieval times.

  6. Luminescence of LiH(D):Ru monocrystals

    International Nuclear Information System (INIS)

    Sabirzyanov, A.A.; Oparin, D.V.; Pilipenko, G.I.; Gavrilov, F.F.

    1993-01-01

    Luminescence of lithium hydride (deuteride) activated by ruthenium is recorded for the first time. The features connected with the structure and oscillations of the basic lattice are detected in luminescence spectrum. The qualitative model of luminescence spectrum is suggested

  7. Luminescence (IRSL) dating of Yeni Rabat church in Artvin, Turkey

    International Nuclear Information System (INIS)

    Şahiner, Eren; Meriç, Niyazi; Uygun, Selda

    2013-01-01

    Luminescence dating is a chronological method that has been used extensively in terrestrial materials. In this study, we present Infrared Stimulated Luminescence (IRSL) dating results obtained for sediment and pottery samples taken from Yeni Rabat Church, Ardanuç, Artvin, Turkey. For this purpose, equivalent dose (ED) and annual dose rate (AD) of samples were measured. For annual dose rate, concentrations of radioactive isotopes (U, Th, K) were determined by using a high-purity germanium detector. For the equivalent dose, polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used. The optimal preheat temperature was determined for sediment and pottery samples. Ages were calculated by Aitken's luminescence age calculation method, which found 710±190 years for the pottery sample and 1450±370 years, 1390±420 years, 1430±310 years, 2210±520 years and 1640±390 years for different sediment samples, respectively. These estimated age ranges support the theory that Yeni Rabat Church could have been constructed in medieval times. - Highlights: ► The luminescence (IRSL) ages of the samples, taken from in Yeni Rabat church in Artvin-Turkey were found. ► Equivalent doses and annual doses were determined. ► Polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used

  8. Luminescence and scintillation of Ce.sup.3+./sup.-doped oxide glass with high Gd.sub.2./sub.O.sub.3./sub. concentration

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, W.; He, X.; Chen, D.; Shen, Y.; Sheng, Q.; Yu, B.; Nikl, Martin; Kučerková, Romana; Beitlerová, Alena; Wanarak, C.; Phunpueok, A.

    2011-01-01

    Roč. 208, č. 12 (2011), s. 2830-2832 ISSN 1862-6300 R&D Projects: GA MŠk(CZ) ME10084 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ce 3+ * light yield * luminescence * oxide glasses * scintillation * time-resolved luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.463, year: 2011

  9. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  10. Luminescence properties of the Sm-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2015-01-01

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 compositions were investigated and analysed. The Li 2 B 4 O 7 :Sm, LiKB 4 O 7 :Sm, CaB 4 O 7 :Sm, and LiCaBO 3 :Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm 3+ (4f 5 , 6 H 5/2 ) ions, exclusively. All observed 4f – 4f transitions of the Sm 3+ centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm 3+ ions peaked about 598 nm ( 4 G 5/2 → 6 H 7/2 transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm 3+ luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm 3+ centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce 3+ non-controlled impurity and intrinsic luminescence centres to the Sm 3+ centres has been observed. Peculiarities of the Sm 3+ local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 glasses of high quality were obtained. • EPR, optical absorption and luminescence spectra of Sm 3+ ions in obtained glasses were

  11. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A., E-mail: azab2@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Duerkop, Axel [Institute of Analytical Chemistry, Chemo and Biosensors, Regensburg University, D-93040 Regensburg (Germany); Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. Black-Right-Pointing-Pointer Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. Black-Right-Pointing-Pointer A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. Black-Right-Pointing-Pointer The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA){sub 2} probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 {mu}M. The detection limits were 0.24-0.55 {mu}M for P3, P4, and P1 and 2.5 {mu}M for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA){sub 2} were evaluated. Positive and negative values of entropy ({Delta}S) and enthalpy ({Delta}H) changes for Eu(III)-(PDCA){sub 2}-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  12. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    Science.gov (United States)

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  13. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    Directory of Open Access Journals (Sweden)

    Guang-Wei Zhang

    2013-11-01

    Full Text Available Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR and dynamic light scattering (DLS. The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  14. Luminescence and structural study of porous silicon films

    Science.gov (United States)

    Xie, Y. H.; Wilson, W. L.; Ross, F. M.; Mucha, J. A.; Fitzgerald, E. A.; Macaulay, J. M.; Harris, T. D.

    1992-03-01

    A combination of photoluminescence, TEM, and Fourier transform IR spectroscopy is used to investigate the luminescence properties of 3-micron thick, strongly emitting, and highly porous silicon films. TEMs indicate that these samples have structures of predominantly 6-7-nm size clusters. In the as-prepared films, there is a significant concentration of Si-H bonds which is gradually replaced by Si-O bonds during prolonged aging in air. Upon optical excitation these films exhibit strong visible emission, peaking at about 690 nm. The excitation edge is shown to be emission-wavelength dependent, revealing the inhomogeneous nature of both the initially photoexcited and luminescing species. The correlation of the spectral and structural information suggest that the source of the large blue shift of the visible emission compared to the bulk Si bandgap energy is due to quantum confinement in the nanometer-size Si clusters.

  15. Freestanding silicon quantum dots: origin of red and blue luminescence.

    Science.gov (United States)

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  16. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan [Indira Ghandi Centre for Atomic Research, Tamil Nadu (India). Materials Chemistry Div.

    2017-10-01

    Luminescence from UO{sub 2}{sup 2+} (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y{sup 3+}; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  17. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    International Nuclear Information System (INIS)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan

    2017-01-01

    Luminescence from UO_2"2"+ (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y"3"+; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  18. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  19. Reflection measurements for luminescent powders

    Science.gov (United States)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  20. Near-Infrared Quantum Cutting Long Persistent Luminescence

    OpenAIRE

    Zou, Zehua; Feng, Lin; Cao, Cheng; Zhang, Jiachi; Wang, Yuhua

    2016-01-01

    By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called ?near-infrared quantum cutting long persistent luminescence (NQPL)?, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Guided by the NQPL concept, we fabricate the first NQPL phosphor Ca2Ga2GeO7:Pr3+,Yb3+. It reveals that both the two-step energy transfer of model (I) and the one-step energy ...

  1. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  2. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  3. A luminescent metal-organic framework for sensing methanol in ethanol solution.

    Science.gov (United States)

    Jin, Zhao; He, Hongming; Zhao, Huanyu; Borjigin, Tsolmon; Sun, Fuxing; Zhang, Daming; Zhu, Guangshan

    2013-10-07

    A new luminescent Zn-MOF has been synthesized under hydrothermal condition using a semi-rigid ligand H3pcoip (4-(2-carboxyphenoxy)isophthalic acid) is reported. The luminescence properties of 1 in methanol, ethanol, and water have been investigated. Interestingly, compound 1 has a unique response to methanol compared to ethanol and water. Moreover, 1 displays a turn-on switching property triggered by methanol solvent molecules and a high sensitivity towards methanol concentration as low as 2 × 10(-7) (V(MeOH)/V(total)) in ethanol solution. The results indicate that the Zn-MOF has potential application as a sensor for detecting methanol in ethanol solution with excellent selectivity and high sensitivity.

  4. A CMOS Luminescence Intensity and Lifetime Dual Sensor Based on Multicycle Charge Modulation.

    Science.gov (United States)

    Fu, Guoqing; Sonkusale, Sameer R

    2018-06-01

    Luminescence plays an important role in many scientific and industrial applications. This paper proposes a novel complementary metal-oxide-semiconductor (CMOS) sensor chip that can realize both luminescence intensity and lifetime sensing. To enable high sensitivity, we propose parasitic insensitive multicycle charge modulation scheme for low-light lifetime extraction benefiting from simplicity, accuracy, and compatibility with deeply scaled CMOS process. The designed in-pixel capacitive transimpedance amplifier (CTIA) based structure is able to capture the weak luminescence-induced voltage signal by accumulating photon-generated charges in 25 discrete gated 10-ms time windows and 10-μs pulsewidth. A pinned photodiode on chip with 1.04 pA dark current is utilized for luminescence detection. The proposed CTIA-based circuitry can achieve 2.1-mV/(nW/cm 2 ) responsivity and 4.38-nW/cm 2 resolution at 630 nm wavelength for intensity measurement and 45-ns resolution for lifetime measurement. The sensor chip is employed for measuring time constants and luminescence lifetimes of an InGaN-based white light-emitting diode at different wavelengths. In addition, we demonstrate accurate measurement of the lifetime of an oxygen sensitive chromophore with sensitivity to oxygen concentration of 7.5%/ppm and 6%/ppm in both intensity and lifetime domain. This CMOS-enabled oxygen sensor was then employed to test water quality from different sources (tap water, lakes, and rivers).

  5. Luminescence dating of Netherland's sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we revity: 1) the development of the methodology, 2) tests of the reliability of luminescence dating on Netherlands' sediments;

  6. Luminescence and Luminescence Quenching of K2Bi(PO4)(MoO4):Eu3+ Phosphors with Efficiencies Close to Unity.

    Science.gov (United States)

    Grigorjevaite, Julija; Katelnikovas, Arturas

    2016-11-23

    A very good light emitting diode (LED) phosphor must have strong absorption, high quantum efficiency, high color purity, and high quenching temperature. Our synthesized K 2 Bi(PO 4 )(MoO 4 ):Eu 3+ phosphors possess all of the mentioned properties. The excitation of these phosphors with the near-UV or blue radiation results in a bright red luminescence dominated by the 5 D 0 → 7 F 2 transition at ∼615 nm. Color coordinates are very stable when changing Eu 3+ concentration or temperature in the range of 77-500 K. Furthermore, samples doped with 50% and 75% Eu 3+ showed quantum efficiencies close to 100% which is a huge benefit for practical application. Temperature dependent luminescence measurements showed that phosphor performance increases with increasing Eu 3+ concentration. K 2 Eu(PO 4 )(MoO 4 ) sample at 400 K lost only 20% of the initial intensity at 77 K and would lose half of the intensity only at 578 K. Besides, the ceramic disks with thicknesses of 0.33 and 0.89 mm were prepared from K 2 Eu(PO 4 )(MoO 4 ) powder, and it turned out that they efficiently converted the radiation of 375 nm LED to the red light. The conversion of 400 nm LED radiation to the red light was not complete; thus, the light sources with various tints of purple color were obtained. The combination of ceramic disks with 455 nm LED yielded the light sources with tints of blue color due to the low absorption of ceramic disk in this spectral range. In addition, these phosphors possess a very unique emission spectra; thus, they could also be applied in luminescent security pigments.

  7. Discuss on luminescence dose data analysis technology

    International Nuclear Information System (INIS)

    Ma Xinhua; Xiao Wuyun; Ai Xianyun; Shi Zhilan; Liu Ying

    2009-01-01

    This article describes the development of luminescence dose data measurement and processing technology. General design planning of luminescence dose data measurement and processing technology is put forward with the diverse demands. The emphasis is focused on dose data processing method, luminescence curve analysis method, using of network, mechanics of communication among computers, data base management system of individual dose in this paper. The main methods and skills used in this technology as well as their advantages are also discussed. And it offers general design references for development luminescence dose data processing software. (authors)

  8. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  9. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  10. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)–pyridine-2,6-dicarboxylic acid probe

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Duerkop, Axel; Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek

    2013-01-01

    Highlights: ► Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. ► Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. ► A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. ► The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)–pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol–water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)–(PDCA) 2 probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)–pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0–35.0 μM. The detection limits were 0.24–0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)–(PDCA) 2 were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)–(PDCA) 2 –P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  11. Review of present trends in luminescence research

    International Nuclear Information System (INIS)

    Williams, F.; Delaware Univ., Newark

    1981-01-01

    The difficulties of a comprehensive review of the broad and diverse branches of molecular and solid-state luminescence research are noted. This review is thus limited to selective topics. Some general concepts and trends are then introduced, including: luminescence excitation as a collective excitation of a many-body problem, encompassing in some cases the source and probe in its formulation; continuing trends towards extremal conditions of experiments and towards inhomogeneous and structured materials, from man-made superlattices to biological materials; and increased attention to applications of luminescence research to lamps, displays, solar devices and biological research. Representative recent and new specific research areas include: site selection spectroscopy and 'hole burning'; picosecond delayed coherent anti-Stokes Raman scattering; computer simulation of dynamical processes in luminescence; electron-hole expansion from the Fermi pressure of e-h plasmas; and hot electron phenomena and hot luminescence. Finally some pending problems in luminescence research, such as reconciling the configuration coordinate model and the electronic band theory and clarifying multi-phonon non-radiative processes, are discussed. (orig.)

  12. The thermoluminescence and optically stimulated luminescence properties of Cr-doped alpha alumina transparent ceramics

    International Nuclear Information System (INIS)

    Liu, Qiang; Yang, Qiu Hong; Zhao, Guang Gen; Lu, Shen Zhou; Zhang, Hao Jia

    2013-01-01

    Highlights: •Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were obtained with vacuum sintering method. •The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was studied. •It had a main peak at 503 K of very high intensity and linear concentration dependence up to high concentration. •It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals. -- Abstract: Polycrystalline Cr:α-Al 2 O 3 transparent ceramics were fabricated by conventional solid-state processing under vacuum condition. The SEM microstructure photographs of Cr:α-Al 2 O 3 transparent ceramics doped with different content of Cr 2 O 3 were investigated. The absorption, emission spectra, thermoluminescence and optical stimulated luminescence of Cr:α-Al 2 O 3 transparent ceramics were comparable to those of Cr:α-Al 2 O 3 crystals. The influence of different concentration of Cr 2 O 3 on the thermoluminescence and optical stimulated luminescence properties of Cr:α-Al 2 O 3 transparent ceramics was discussed. It showed so interesting results with high TL sensitivity and high stability of OSL signal that Cr:α-Al 2 O 3 transparent ceramics might be a promising material in TL dosimetry and replace Cr:α-Al 2 O 3 crystals

  13. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  14. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  15. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  16. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  17. Concentration quenching and photostability in Eu(dbm)3phen embedded in mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Moretti, Elisa; Talon, Aldo; Storaro, Loretta; Le Donne, Alessia; Binetti, Simona; Benedetti, Alvise; Polizzi, Stefano

    2014-01-01

    Ordered mesoporous silica nanoparticles (MSNs) were impregnated with different loadings of the luminescent complex tris(dibenzoylmethane) mono(1,10-phenanthroline)europium(III) (Eu(dbm) 3 phen), with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as spectral converter for multi-crystalline silicon solar cells. The morphological, structural and luminescence properties of the impregnated silica nanoparticles were characterized by N 2 physisorption, X-ray diffraction, transmission electron microscopy, infrared spectroscopy, UV–visible spectroscopy and photoluminescence excitation and emission measurements. Photostability was tested under 1 sun (1000 W/m 2 ) illumination for 24 h and the related effects were inspected by UV–visible and photoluminescence spectroscopies. Impregnation of the complex into 50–70 nm MSNs with pore size tailored around 2.9 nm depressed concentration quenching and allowed the use of complex loadings as high as 23 wt%. Sunlight irradiation caused a marked increase in the luminescence intensity. -- Highlights: • Mesoporous silica nanoparticles tailored to the size of Eu 3+ (dbm) 3 phen molecules. • Concentration quenching avoided up to 23 wt% of Eu 3+ (dbm) 3 phen/silica. • Sun irradiation increased luminescence intensity by two order of magnitudes

  18. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists.

    Science.gov (United States)

    Manefield, M; Harris, L; Rice, S A; de Nys, R; Kjelleberg, S

    2000-05-01

    Expression of luminescence in the Penaeus monodon pathogen Vibrio harveyi is regulated by an intercellular quorum sensing mechanism involving the synthesis and detection of two signaling molecules, one of which is N-hydroxy butanoyl-L-homoserine lactone and the other of which is uncharacterized. Indirect evidence has suggested that virulence, associated with a toxic extracellular protein, and luminescence in V. harveyi are coregulated. In this study the effects of an acylated homoserine lactone antagonist produced by the marine alga Delisea pulchra on luminescence and toxin production in a virulent strain of V. harveyi were analyzed. Luminescence and toxin production were both inhibited by the signal antagonist at concentrations that had no impact on growth. Toxin production was found to be prematurely induced in V. harveyi cultures incubated in a 10% conditioned medium. Additionally, a significant reduction in the toxicity of concentrated supernatant extracts from V. harveyi cultures incubated in the presence of the signal antagonist, as measured by in vivo toxicity assays in mice and prawns, was observed. These results suggest that intercellular signaling antagonists have potential utility in the control of V. harveyi prawn infections.

  19. Inhibition of Luminescence and Virulence in the Black Tiger Prawn (Penaeus monodon) Pathogen Vibrio harveyi by Intercellular Signal Antagonists

    Science.gov (United States)

    Manefield, Michael; Harris, Lachlan; Rice, Scott A.; de Nys, Rocky; Kjelleberg, Staffan

    2000-01-01

    Expression of luminescence in the Penaeus monodon pathogen Vibrio harveyi is regulated by an intercellular quorum sensing mechanism involving the synthesis and detection of two signaling molecules, one of which is N-hydroxy butanoyl-l-homoserine lactone and the other of which is uncharacterized. Indirect evidence has suggested that virulence, associated with a toxic extracellular protein, and luminescence in V. harveyi are coregulated. In this study the effects of an acylated homoserine lactone antagonist produced by the marine alga Delisea pulchra on luminescence and toxin production in a virulent strain of V. harveyi were analyzed. Luminescence and toxin production were both inhibited by the signal antagonist at concentrations that had no impact on growth. Toxin production was found to be prematurely induced in V. harveyi cultures incubated in a 10% conditioned medium. Additionally, a significant reduction in the toxicity of concentrated supernatant extracts from V. harveyi cultures incubated in the presence of the signal antagonist, as measured by in vivo toxicity assays in mice and prawns, was observed. These results suggest that intercellular signaling antagonists have potential utility in the control of V. harveyi prawn infections. PMID:10788385

  20. Luminescent amine sensor based on europium(III) chelate.

    Science.gov (United States)

    Petrochenkova, Nataliya V; Mirochnik, Anatolii G; Emelina, Tatyana B; Sergeev, Alexander A; Leonov, Andrei A; Voznesenskii, Sergey S

    2018-07-05

    The effect of methylamine vapor on luminescence of Eu(III) tris-benzoylacetonate (I) immobilized in thin-layer chromatography plates has been investigated. It has been revealed that interaction of I with analyte vapor results in increase of the intensity of Eu(III) luminescence. The mechanism of the effect of methylamine vapors on intensification of the Eu(III) luminescence has been suggested using the data of IR spectroscopy and quantum chemistry calculations. The mechanism of luminescence sensitization consists in bonding of an analyte molecule with a water molecule into the coordination sphere of Eu(III). As a result, the bond of a water molecule with the luminescence centre weakens, rigid structural fragment including europium ion, water and methylamine molecules forms. The presence of such fragment must naturally promote decrease of influence of OH-vibrations on luminescence of the complex I. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  2. Variables and potential models for the bleaching of luminescence signals in fluvial environments

    Science.gov (United States)

    Gray, Harrison J.; Mahan, Shannon

    2015-01-01

    Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.

  3. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  4. Uranyl(VI) luminescence spectroscopy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Steudtner, Robin; Franzen, Carola; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Haubitz, Toni [Brandenburg Univ. of Technology, Cottbus-Senftenberg (Germany)

    2016-07-01

    We studied the influence of temperature and ionic strength on the luminescence characteristics (band position, decay time and intensity) of the free uranyl ion (UO{sub 2}{sup 2+}) in acidic aqueous solution. Under the chosen conditions an increasing temperature reduced both intensity and luminescence decay time of the UO{sub 2}{sup 2+} luminescence, but the individual U(VI) emission bands did not change.

  5. A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements

    International Nuclear Information System (INIS)

    Cywiński, Piotr J.; Olejko, Lydia; Löhmannsröben, Hans-Gerd

    2015-01-01

    L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10–500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA). - Highlights: • Tb-based FRET assay with aptamers toward a protein is presented for the first time. • L-selectin can be detected in concentrations relevant for the Alzheimer's Disease. • The assay can be realized in one hour with the LOD equal to 10 ng/ml

  6. A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements

    Energy Technology Data Exchange (ETDEWEB)

    Cywiński, Piotr J., E-mail: piotr.cywinski@iap.fraunhofer.de [Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research, Geiselberstr.69, 14476 Potsdam-Golm (Germany); Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm (Germany); Olejko, Lydia; Löhmannsröben, Hans-Gerd [Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm (Germany)

    2015-08-05

    L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Förster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10–500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA). - Highlights: • Tb-based FRET assay with aptamers toward a protein is presented for the first time. • L-selectin can be detected in concentrations relevant for the Alzheimer's Disease. • The assay can be realized in one hour with the LOD equal to 10 ng/ml.

  7. Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses

    Science.gov (United States)

    Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  8. Synthesis and luminescence properties of novel LiSrPO{sub 4}:Dy{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayue, E-mail: jiayue_sun@126.com [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Zhang, Xiangyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Xia, Zhiguo, E-mail: xiazg426@yahoo.com.cn [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Du, Haiyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China)

    2011-11-15

    Graphical abstract: Novel LiSrPO4:Dy{sup 3+} phosphors were synthesized by solid-state reaction, and Dy{sup 3+}-doped concentration dependent luminescence properties, concentration quenching effect and the decay times were investigated in detail. Highlights: {yields} LiSrPO{sub 4}:Dy{sup 3+} could be excited by UV light and exhibited blue and yellow emission. {yields} Concentration quenching effect of LiSrPO{sub 4}:Dy{sup 3+} samples were investigated in detail. {yields} Decay times are estimated to be 0.57-0.89 ms for Dy{sup 3+} in LiSrPO{sub 4} host. -- Abstract: Novel LiSrPO{sub 4}:Dy{sup 3+} phosphors for white light-emitting diodes (w-LEDs) were synthesized by the conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation of LiSrPO{sub 4}:Dy{sup 3+} materials. Luminescence properties results showed that the phosphor could be efficiently excited by the UV-vis light region from 250 to 460 nm, and it exhibited blue (483 nm) and yellow (574 nm) emission corresponding to {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2} transitions and {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 13}/{sub 2} transitions, respectively. The luminescence intensity of LiSrPO{sub 4}:xDy{sup 3+} phosphor firstly increased and then decreased with increasing Dy{sup 3+} concentration, and reached the maximum at x = 0.03. It was found that concentration quenching occurred as a result of dipole-dipole interaction according to the Dexter's theory. The decay time was also determined for various concentrations of Dy{sup 3+} in LiSrPO{sub 4}.

  9. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.

    Science.gov (United States)

    Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2015-11-15

    In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Luminescent properties of praseodymium in some fluorides

    International Nuclear Information System (INIS)

    Potapov, A.S.; Rodnyj, P.A.; Mikhrin, S.B.; Magunov, I.R.

    2005-01-01

    Influence of diverse factors on efficiency of the Pr 3+ cascade emission in BaF 2 : Pr and SrAlF 5 : Pr. The effect of the environment of the luminescence center on the mutual position of the lowest 5d and the 4f level 1 S 0 of Pr 3+ ion is considered. PrF 3 clustering in BaF 2 is observed at a high praseodymium concentration. The promising potential of magnesium as a charge compensator for praseodymium in SrAlF 5 is demonstrated [ru

  11. Luminescence properties of Y3Al5O12:Ce nanoceramics

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Voznyak, T.; Gorbenko, V.; Zych, E.; Nizankovski, S.; Dan'ko, A.; Puzikov, V.

    2011-01-01

    Comparative analysis of the luminescent properties of Y 3 Al 5 O 12 :Ce (YAG:Ce) transparent optical ceramics (OS) with those of single crystal (SC) and single crystalline film (SCF) analogues has been performed under excitation by pulsed synchrotron radiation in the fundamental absorption range of YAG host. It has been shown that the properties of YAG:Ce OC are closer to the properties of the SCF counterpart, where Y Al antisite defects are completely absent, rather than to the properties of SC of this garnet with large concentration of Y Al antisite defects. At the same time, the luminescence spectra of YAG:Ce OC show weak emission bands in the 200-470 nm range related to Y Al antisite defects and charged oxygen vacancies (F + and F centers). YAG:Ce OS also possesses significantly larger contribution of slow components in the Ce 3+ luminescence decay under high-energy excitation in comparison with SC and SCF of this garnet due to the involvement of antisite defects, charged oxygen vacancies as well as boundaries of grains in the energy transfer processes from the host to the Ce 3+ ions.

  12. Apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Sante Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  13. Analyte-triggered luminescence of Eu{sup 3+} ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, Rocío, E-mail: raguilar@ifuap.buap.mx [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Zelocualtecatl-Montiel, Iván [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Gálvez-Vázquez, María de Jesús [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico); Silva-González, Rutilo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico)

    2017-04-15

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu{sup 3+} ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu{sup 3+} ions inserted in Nafion membranes (Naf/Eu{sup 3+}) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu{sup 3+} luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu{sup 3+} membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu{sup 3+} ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  14. Optically stimulated luminescence (OSL) and some other luminescence images from granite slices exposed with radiations

    International Nuclear Information System (INIS)

    Hashimoto, T.; Notoya, S.; Ojima, T.; Hoteida, M.

    1995-01-01

    Optically stimulated luminescence (OSL) images of some X- and γ-irradiated granite slices were obtained using photon detection through a 570 nm bandpass filter with diode-laser excitation of 910 nm. Alternative photo-induced phosphorescence (PIP) images, which were colour photographed immediately after the sunlight exposure of slice samples, were also found to be helpful in the observation of the luminescence properties and to filter selection for OSL measurements. These OSL and PIP images were compared with some other colour luminescence images, including thermoluminescence images (TLCI) and after-glow images (AGCI). It was obvious that there exists a variety of coloured emissions derived mainly from feldspar constituents and these were found to be dependent on the geological history or metamorphism of the granites. (Author)

  15. Up-conversion luminescence of Er3+/Yb3+/Nd3+-codoped tellurite glasses

    International Nuclear Information System (INIS)

    Lu Longjun; Nie Qiuhua; Xu Tiefeng; Dai Shixun; Shen Xiang; Zhang Xianghua

    2007-01-01

    Up-conversion luminescence and energy transfer (ET) processes in Nd 3+ -Yb 3+ -Er 3+ triply doped TeO 2 -ZnO-Na 2 O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er 3+ : 4 S 3/2 →4 I 15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er 3+ singly doped and Er 3+ -Yb 3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb 2 O 3 -concentration and Nd 2 O 3 -concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd 3+ , Yb 3+ and Er 3+ . And a possible up-conversion mechanism based on sequential ET from Nd 3+ to Er 3+ through Yb 3+ is proposed for green and red up-conversion emission processes

  16. Highly Sensitive Luminescence Assessment of Bile Acid Using a Balofloxacin-Europium(III) Probe in Micellar Medium

    International Nuclear Information System (INIS)

    Cai, Huan; Zhao, Fang; Si, Hailin; Zhang, Shuaishuai; Wang, Chunchun; Qi, Peirong

    2012-01-01

    A novel and simple method of luminescence enhancement effect for the determination of trace amounts of bile acid was proposed. The procedure was based on the luminescence intensity of the balofloxacin-europium(III) complex that could be strongly enhanced by bile acid in the presence of sodium dodecyl benzene sulfonate (SDBS). Under the optimum conditions, the enhanced luminescence intensity of the system exhibited a good linear relationship with the bile acid concentration in the range 5.0 Χ 10 -9 - 7.0 Χ 10 -7 mol L -1 with a detection limit of 1.3 Χ 10 -9 mol L.1 (3σ). The relative standard deviation (RSD) was 1.7% (n = 11) for 5.0 Χ 10 -8 mol L -1 bile acid. The applicability of the method to the determination of bile acid was demonstrated by investigating the effect of potential interferences and by analyzing human serum and urine samples. The possible enhancement mechanism of luminescence intensity in balofloxacin-europium(III)-bile acid-SDBS system was also discussed briefly

  17. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  18. Luminescence enhancement in irradiated polyethylene

    International Nuclear Information System (INIS)

    Charlesby, A.; Owen, G.P.

    1976-01-01

    Results are presented for the luminescence decay in polyethylene following irradiation at liquid nitrogen temperature and its enhancement on application of an electric field. It is found that both the luminescence enhancement and its subsequent decay may be described by a model involving electron tunnelling from a monoenergetic trap distribution to the parent positive ion. The possible nature of the trap is briefly discussed. (author)

  19. Temperature dependence of the luminescence lifetime of a europium complex immobilized in different polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Bharathi Bai J. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)], E-mail: bharathi@css.nal.res.in; Vasantharajan, N. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560017 (India)

    2008-10-15

    The temperature dependence of the luminescence lifetime of temperature sensor films based on europium (III) thenoyltrifluoroacetonate (EuTTA) as sensor dye in various polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA), polyurethane (PU) and model airplane dope was studied and compared. The luminescence lifetime of EuTTA was found to depend on the polymer matrix. The temperature sensitivity of lifetime was maximum for EuTTA-PS coating in the temperature range of 10-60 deg. C. The effect of concentration of the sensor dye in the polymer on the lifetime and temperature sensitivity was also studied.

  20. Luminescence properties of pure and Eu-doped SrI{sub 2} crystals purified by a “Liquinert” process and grown by vertical Bridgman method

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Sakuragi, Shiro; Hashimoto, Satoshi [Union Materials Inc. 1640 Oshido, Tone-machi, Ibaraki 300-1602 (Japan)

    2016-08-15

    We have prepared high quality crystals of pure SrI{sub 2} and Eu-doped SrI{sub 2} by our original “Liquinert” process and investigated their luminescence properties. Under the excitation with the 193 nm light of an ArF excimer laser, which corresponds to the wavelength above the bandgap of SrI{sub 2} bulk crystals, the pure and Eu doped SrI{sub 2} crystals exhibit no luminescence band related to defects or impurities around 560 nm. This fact indicates that the crystals prepared by the “Liquinert” process contain lower defects and/or impurities. When the Eu-doped SrI{sub 2} crystals are excited with the 325 nm light of a He–Cd laser, only the luminescence band due to the 5d→4f transition in the Eu{sup 2+} ions is observed around 425 nm. The 425 nm band observed at a forward configuration exhibits the shift to the longer wavelength side and the decrease of the luminescence intensity with increasing Eu concentration. The Eu concentration dependences of the peak wavelength and luminescence intensity are simulated on the basis of a simple self-absorption model. - Highlights: • Our original “Liquinert” process allows us to prepare high quality crystals of SrI{sub 2}. • No luminescence band related with impurities and/or defects is observed. • The 425 nm luminescence bands due to Eu{sup 2+} ions are affected by a self-absorption. • A simple self-absorption model reproduces the changes of the 425 nm bands.

  1. Luminescence and luminescence quenching of Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Mikalauskaite, I.; Raudonyte-Svirbutaviciene, E. [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Linkeviciute, A. [State Research Institute, Centre for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius (Lithuania); Urbonas, M. [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, A., E-mail: arturas.katelnikovas@chf.vu.lt [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2017-04-15

    A series of near-UV to blue emitting Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors were prepared by a solid state reaction. The optical properties of synthesized phosphors were investigated as a function of Ce{sup 3+} concentration and temperature. These luminescent materials strongly absorb UV radiation shorter than 360 nm. The optimal Ce{sup 3+} concentration was 0.1% (external quantum efficiency ca. 45%). Temperature dependent measurements showed that Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors possess good thermal stability and loses only about 40% to 50% of initial intensity in the temperature range of 77–500 K depending on activator concentration.

  2. Cleavage Luminescence from Cleaved Indium Phosphide

    International Nuclear Information System (INIS)

    Dong-Guang, Li

    2008-01-01

    We outline the experiments performed to gain further information about the structure and properties of cleaved InP surfaces. The experiments involved detecting the luminescence produced after cleaving thin InP plates within a high vacuum, by a process of converting the luminescence to an electrical signal which could be amplified and measured accurately. The experimental results show that the detected luminescence durations from cleaved InP are usually only about 10μs. It is believed that this time represents the time of travel of the crack with the actual recombination time being much shorter. Strong signals could also be picked up from cleaved InP in air

  3. Time-gated luminescence assay using nonmetal probes for determination of protein kinase activity-based disease markers.

    Science.gov (United States)

    Kasari, Marje; Padrik, Peeter; Vaasa, Angela; Saar, Kristi; Leppik, Krista; Soplepmann, Jaan; Uri, Asko

    2012-03-15

    A novel nonmetal optical probe ARC-1063 whose long-lifetime luminescence is induced by association with the target protein kinase is used for the measurement of the concentration of catalytic subunit of protein kinase A (PKAc) in complicated biological solutions. High affinity (K(D) = 10 pM toward PKAc) and unique optical properties of the probe enable its application for the measurement of picomolar concentrations of PKAc in the presence of high concentrations of other proteins. The described assay is applicable in the high-throughput format with the instrument setups designed for lanthanide-based time-gated (time-resolved) luminescence methods. The assay is used for demonstration that extracellular PKAc (ECPKA) is present in plasma samples of all healthy persons and cancer patients but great care must be taken for procedures of treatment of blood samples to avoid disruption, damage, or activation of platelets in the course of plasma (or serum) preparation and conservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Luminescent converter of neodymium laser radiation

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Golab, S.

    1992-01-01

    The new luminescent converter of neodymium laser radiation has been worked out. Activated inorganic compounds of ytterbium and erbium ions has been used as luminescent agent. The multi-component inorganic glass containing tellurium oxide as well as boron, sodium, magnesium and zinc oxides has been applied as a converter matrix

  5. The effect of crystal size on tunneling phenomena in luminescent nanodosimetric materials

    Science.gov (United States)

    Pagonis, Vasilis; Bernier, Shannon; Vieira, Francisco Marques dos Santos; Steele, Shane

    2017-12-01

    The study of luminescence signals from nanodosimetric materials is an active research area, due to the many possible practical applications of such materials. In several of these materials it has been shown that quantum tunneling is a dominant mechanism for recombination processes associated with luminescence phenomena. This paper examines the effect of crystal size on quantum tunneling phenomena in nanocrystals, based on the assumption of a random distribution of electrons and positive ions. The behavior of such random distributions is determined by three characteristic lengths: the radius of the crystal R, the tunneling length a, and the initial average distance 〈d〉 between electrons and positive ions (which is directly related to the density of charges in the material). Two different cases are examined, depending on the relative concentrations of electrons and ions. In the first case the concentration of electrons is assumed to be much smaller than the concentration of positive ions. Examination of a previously derived analytical equation demonstrates two different types of crystal size effects. When the tunneling length a is much smaller than both R and 〈d〉, the analytical equations show that smaller crystals exhibit a faster tunneling recombination rate. However, when the tunneling length a is of the same order of magnitude as both R and 〈d〉, the opposite effect is observed, with smaller crystals exhibiting a slower tunneling recombination rate. As the crystal size increases, the rate of tunneling in both cases reaches the limit expected for bulk materials. In the second case we examine the situation where the concentrations of electrons and positive ions are equal at all times. In this situation there is no analytical equation available to describe the process, and the crystal size effects are simulated by using Monte Carlo (MC) techniques. The two opposite behaviors as a function of the crystal size are also observed in these MC simulations. The

  6. Magnetic and luminescent properties of vanadium-doped ZnSe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Radevici, Ivan, E-mail: ivarad@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Nedeoglo, Natalia; Sushkevich, Konstantin [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Huhtinen, Hannu [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland); Nedeoglo, Dmitrii [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., MD-2009 Chisinau (Moldova, Republic of); Paturi, Petriina [Wihuri Physical Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)

    2016-12-15

    Magnetic and photoluminescence properties of vanadium-doped ZnSe crystals with impurity concentrations varied by changing the V amount in the source material from 0.03 to 0.30 at% are studied in 5–300 K temperature range. Investigation of magnetic properties shows that the studied concentrations of vanadium impurity that should not disturb crystal lattice are insignificant for observing ferromagnetic behaviour even at low temperatures. The contribution of V impurity to edge emission and its influence on infra-red emission are discussed. Similarities of magnetic and luminescent properties induced by vanadium and other transition metal impurities are discussed.

  7. Luminescence spectroscopy with synchrotron radiation: History, highlights, future

    International Nuclear Information System (INIS)

    Zimmerer, Georg

    2006-01-01

    Luminescence spectroscopy and the investigation of dynamical processes with synchrotron radiation (SR) started about 35 years ago in nearly all SR laboratories existing at that time. In the present paper, the pioneering experiments are particularly emphasized. The exciting development is illustrated presenting highlights for the whole period from the beginning to the present day. The highlights are taken from fields like exciton self-trapping, inelastic electron-electron scattering, optically stimulated desorption, cross luminescence, or probing of cluster properties with luminescence spectroscopic methods. More technological aspects play a role in present day's experiments, like quantum cutting in rare-earth-doped insulators. Promising two-photon excitation and light amplification experiments with SR will be included, as well as the first results obtained in a luminescence experiment with selective Vaccum ultraviolet-free electron laser excitation. Finally, a few ideas concerning the future development of luminescence spectroscopy with SR will be sketched

  8. Chemisorptive luminescence on γ-irradiated magnesium oxide

    International Nuclear Information System (INIS)

    Breakspere, R.J.; Read, R.L.

    1976-01-01

    The intensity of a chemisorptive luminescence produced on MgO by oxygen at room temperature is increased by prior γ-irradiation of the MgO, under vacuum, before adsorption. This enhancement of the luminescence increases with radiation dose up to 1.9 x 10 6 rad and is attributed to the interaction between the F + sub (s) centres produced by the radiation and oxygen molecules arriving at the surface from the gas phase. In this work, the spectrum of the emitted luminescence could not be measured. (author)

  9. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  10. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  11. luminescence properties

    Indian Academy of Sciences (India)

    1Faculty of Science and Arts, Department of Chemistry, Bozok University, Yozgat 66900, Turkey. 2Faculty of Science, Department of Chemistry, Erciyes ... synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) ...

  12. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  13. Luminescent polymethyl methacrylate modified by gamma radiation

    International Nuclear Information System (INIS)

    Morais, Guilherme F.; Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F.

    2011-01-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C 2 F 4 ) in closed reactor for 48 hours. A second part was reacted with C 2 F 4 after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  14. Cathode and ion-luminescence of Eu:ZnO thin films prepared by reactive magnetron sputtering and plasma decomposition of non-volatile precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Rostra, Jorge [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain); Ferrer, Francisco J. [Centro Nacional de Aceleradores, CSIC, Univ. Sevilla, Av. Thomas A. Edison 7, E-41092 Sevilla (Spain); Martín, Inocencio R. [Departamento de Física Fundamental y Experimental, Electrónica y Sistemas, U. La Laguna, C/Astrofísico Francisco Sánchez s/n, E-38206 La Laguna, Santa Cruz de Tenerife (Spain); González-Elipe, Agustín R.; Yubero, Francisco [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, C/Américo Vespucio 49, E-41092 Sevilla (Spain)

    2016-10-15

    This paper reports the luminescent behavior of Eu:ZnO thin films prepared by an one-step procedure that combines reactive magnetron sputtering deposition of ZnO with the plasma activated decomposition of a non-volatile acetylacetonate precursor of Eu sublimated in an effusion cell. Chemical composition and microstructure of the Eu:ZnO thin films have been characterized by several methods and their photo-, cathode- and ion-luminescent properties studied as a function of Eu concentration. The high transparency and well controlled optical properties of the films have demonstrated to be ideal for the development of cathode- and ion- luminescence sensors.

  15. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  16. Characterization and Luminescence Properties of Color-Tunable Dy3+-Doped BaY2ZnO5 Nanophosphors

    Science.gov (United States)

    Sonika; Khatkar, S. P.; Khatkar, Avni; Kumar, Rajesh; Taxak, V. B.

    2015-01-01

    Dy3+-doped BaY2ZnO5 nanophosphors were successfully synthesized by use of a solution combustion process. The effects of sintering temperature and dysprosium concentration on the structural and luminescence characteristics of the phosphors were investigated. X-ray diffraction (XRD) analysis confirmed the formation of pure orthorhombic BaY2ZnO5 with the space group Pbnm at 1100°C. Morphological investigation revealed spherical nanoparticles with smooth surfaces. The luminescence features of the nanophosphor were studied by use of photoluminescence excitation (PLE) and photoluminescence emission (PL), with luminescence decay curves and color ( x, y) coordinates. On excitation at 355 nm, BaY2ZnO5 nanophosphor doped with trivalent dysprosium ion emits white light as a mixture of blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emission. Concentration quenching is explained on the basis of cross-relaxation between intermediate Dy3+ states. Thus, BaY2ZnO5:Dy3+ nanophosphor may be suitable for producing efficient white light for ultraviolet-light-emitting diodes (UV-LEDs), fluorescent lamps, and a variety of optical display panels.

  17. Oxide/polymer nanocomposites as new luminescent materials

    Science.gov (United States)

    Vollath, D.; Szabó, D. V.; Schlabach, S.

    2004-06-01

    It is demonstrated that nanocomposites, consisting of an electrically insulating oxide core and PMMA coating exhibit strong luminescence. This luminescence is connected to the interface, where PMMA is bond via a carboxylate bonding to the surface. In this case, luminescence is originated at the carbonyl group of the coating polymer. With decreasing particle size, this emission shows a blue shift, following a law inversely the ones found for quantum confinement systems. For semi-conducting oxides, such as ZnO, this interface related emission is found additionally to quantum confinement phenomena.

  18. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far ...

  19. Facile synthesis of luminescent and amorphous La2O3-ZrO2:Eu3+ nanofibrous membranes with robust softness

    Science.gov (United States)

    Han, Weidong; Ding, Bin; Park, Mira; Cui, Fuhai; Ghouri, Zafar Khan; Saud, Prem Singh; Kim, Hak-Yong

    2015-08-01

    Novel luminescent and amorphous La2O3-ZrO2:Eu3+ (LZE) nanofibrous membranes with robust softness are fabricated for the first time via a facile electrospinning technique. By incorporating zirconium oxide, the as-prepared lanthanum oxide nanofibrous membranes can be dramatically changed from extreme fragility to robust softness. Meanwhile, the softness and luminescent performance of LZE nanofibrous membranes can be finely controlled by regulating the doping concentration of zirconium oxide and europium in lanthanum oxide nanofibers. Additionally, the crystal structure analysis using X-ray diffractometer and high resolution transmission electron microscopy measurements have confirmed the correlation between the amorphous structure and softness. Furthermore, LZE membranes show the characteristic emission of Eu3+ corresponding to 5D0, 1, 2-7F0, 1, 2, 3, 4 transitions due to an efficient energy transfer from O2- to Eu3+. The LZE nanofibrous membranes with the optimum doping Eu3+ concentration of 3 mol% exhibit excellent softness and luminescent properties, which make the materials to have potential applications in fluorescent lamps and field emission displays.Novel luminescent and amorphous La2O3-ZrO2:Eu3+ (LZE) nanofibrous membranes with robust softness are fabricated for the first time via a facile electrospinning technique. By incorporating zirconium oxide, the as-prepared lanthanum oxide nanofibrous membranes can be dramatically changed from extreme fragility to robust softness. Meanwhile, the softness and luminescent performance of LZE nanofibrous membranes can be finely controlled by regulating the doping concentration of zirconium oxide and europium in lanthanum oxide nanofibers. Additionally, the crystal structure analysis using X-ray diffractometer and high resolution transmission electron microscopy measurements have confirmed the correlation between the amorphous structure and softness. Furthermore, LZE membranes show the characteristic emission of Eu3

  20. Spectra of luminescence due to microdischarges on an aluminum valve anode

    International Nuclear Information System (INIS)

    Sizikov, A.M.; Vol'f, V.G.; Bugaenko, L.T.

    1995-01-01

    The spectrum of visible and near-UV luminescence due to a microdischarge on an AMg-6 aluminum alloy was studied under conditions of valve anodization in solutions of sodium carbonate and other electrolytes. It was shown that emission spectra exhibit lines that characterize anodic (aluminum and magnesium) and electrolytic (sodium) components. The dependence of the temperature of the microdischarge on the electrolyte concentration and composition is discussed

  1. Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles.

    Science.gov (United States)

    Liu, Jinshui; Vellaisamy, Kasipandi; Yang, Guanjun; Leung, Chung-Hang; Ma, Dik-Lung

    2017-06-15

    A novel luminescent turn-on detection method for Hg(II) was developed. The method was based on the silver nanoparticle (AgNP)-mediated quenching of Ir(III) complex 1. The addition of Hg(II) ions causes the luminescence of complex 1 to be recovered due to the oxidation of AgNPs by Hg(II) ions to form Ag(I) and Ag/Hg amalgam. The luminescence intensity of 1 increased in accord with an increased Hg(II) concentration ranging from 0 nM to 180 nM, with the detection limit of 5 nM. This approach offers an innovative method for the quantification of Hg(II).

  2. Luminescence at the end of the tunnelling - Investigating charge transfer mechanisms and luminescence dating methods for feldspar minerals

    NARCIS (Netherlands)

    Kars, R.H.

    2014-01-01

    This thesis comprises analyses of mineral physics with an application in geology and archeology. The thesis contributes to the development of feldspar luminescence dating methods in order to extend the applicable age range of feldspar luminescence dating in the Quaternary (last 2.6 Ma). The research

  3. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  4. Growth and luminescence properties of Pr3+-doped single crystalline films of garnets and perovskites

    International Nuclear Information System (INIS)

    Gorbenko, V.; Zorenko, Yu.; Savchyn, V.; Zorenko, T.; Pedan, A.; Shkliarskyi, V.

    2010-01-01

    Peculiarities of growth of single crystalline films (SCF) of Pr 3+ doped Y 3 Al 5 O 12 and Lu 3 Al 5 O 12 garnets and YAlO 3 and LuAlO 3 perovskites by the liquid phase epitaxy method from melt-solutions based on PbO-B 2 O 3 flux as well as luminescent and scintillation properties of these SCFs were studied in this work. Dependence the intensity of the Pr 3+ d-f and f-f-luminescence on the activator concentration and influence of Pb 2+ flux dopant on the light yield of SCFs of the mentioned garnets and perovskites were analyzed.

  5. Novel Mechano-Luminescent Sensors Based on Piezoelectric/Electroluminescent Composites

    Directory of Open Access Journals (Sweden)

    Yunzhang Fang

    2011-04-01

    Full Text Available A high-sensitivity mechano-luminescent sensor was fabricated on the basis of piezoelectric/electroluminescent composites. The working principle of this mechano-luminescent sensor was elucidated by analyzing the relationship between the piezoelectric-induced charges and the electroluminescent effects. When a stress is applied on the piezoelectric layer, electrical charges will be induced at both the top and bottom sides of the piezoelectric layer. The induced electrical charges will lead to a light output from the electroluminescent layer, thus producing a mechano-luminescence effect. By increasing the vibration strength or frequency applied, the mechano-luminescence output can be obviously enhanced. Mechano-luminescence sensors have potential in smart stress-to-light devices, such as foot-stress-distribution-diagnosis systems and dynamic-load-monitors for bridge hanging cables.

  6. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  7. Luminescence and circularly polarized luminescence of macrocyclic Eu(III) and Tb(III) complexes embedded in xerogel and sol-gel SiO2 glasses

    International Nuclear Information System (INIS)

    Morita, M.; Rau, D.; Kai, T.

    2002-01-01

    Luminescence, time-resolved luminescence, circularly polarized luminescence (CPL) and decay profiles of Ln(III)(15-crownether-5) (Ln=Ce, Sm, Eu, Tb) and Tb(III)-(R),(S)-cyclen derivative complexes doped in xerogel and sol-gel silica glasses are measured at temperatures down to 10 K to characterize luminescence properties and the electronic structure in the excited states. Luminescence spectral profiles and calculation of crystal field parameters (B 0 (2) ,B 2 (2) ) in the 5 D 0 → 7 F J (J=1,2) transition give evidence of the fact that the pentagonal and planar structure of Eu(III) (15-crownether-5) does hold in xerogel and sol-gel glasses prepared at temperatures below 100 deg. C. As annealing temperatures are increased from 80 deg. C to 750 deg. C, Eu(III) complexes in sol-gel glasses are found to decompose gradually to SiO 2 :Eu 3+ . Tb(III)-(R) and (S)-cyclen derivative complexes in xerogel reveal at room temperature and 10 K sharp CPL spectra with luminescence dissymmetry factors g lum =-0.1 and 0.1, respectively. These complexes doped in sol-gel glasses represent luminescence characteristics of rare earth ions encapsulated in the nano-porous host

  8. Structural and luminescence studies on Dy{sup 3+} doped lead boro–telluro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvi, S. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Arunkumar, S.; Muralidharan, G. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy{sup 3+}doped lead boro−telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B−O vibrations, P−O−P symmetric vibrations and Te−O stretching modes of TeO{sub 3} and TeO{sub 6} units. The metal–ligand bond was identified through UV−vis−NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd−Ofelt (JO) intensity parameters (Ω{sub 2}, Ω{sub 4} and Ω{sub 6}), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σ{sub P}{sup E}) and branching ratio (β{sub R}) for the transitions that include {sup 4}F{sub 9/2}→{sup 6}H{sub 11/2}, {sup 6}H{sub 13/2} and {sup 6}H{sub 15/2} bands. The effect of Dy{sup 3+} ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the {sup 4}F{sub 9/2} level of the title glasses has been found to decrease with the increase in Dy{sup 3+} ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  9. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  10. Process for obtaining luminescent glass layers

    International Nuclear Information System (INIS)

    Heindi, R.; Robert, A.

    1984-01-01

    Process for obtaining luminescent glass layers, application to the production of devices provided with said layers and to the construction of photoscintillators. The process comprises projecting onto a support, by cathodic sputtering, the material of at least one target, each target including silica and at least one chemical compound able to give luminescent centers, such as a cerium oxide, so as to form at least one luminescent glass layer of the said support. The layer or layers formed preferably undergo a heat treatment such as annealing in order to increase the luminous efficiency thereof. It is in this way possible to form a scintillating glass layer on the previously frosted entrance window of a photomultiplier in order to obtain an integrated photoscintillator

  11. NaCl samples for optical luminescence dosimetry

    International Nuclear Information System (INIS)

    Catli, S.

    2005-01-01

    Optically stimulated luminescence (OSL) have been used broadly for luminescence dosimetry and dating. In many cases, it has been pointed out that the decay of the OSL do not generally behave according to a simple exponential function. In this study the Infra-red stimulated luminescence (IRSL) intensity from NaCl samples were experimentally measured. The decay curves for this sample were fitted to some functions and it is in good agreement with the function y = α + b exp(-cx). The IRSL decay curves from NaCl using different β-doses have been obtained and investigated their dose response

  12. Luminescent polymethyl methacrylate modified by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Guilherme F. [Faculdade de Tecnologia de Sao Paulo (FATEC-ZL), Sao Paulo, SP (Brazil); Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C{sub 2}F{sub 4}) in closed reactor for 48 hours. A second part was reacted with C{sub 2}F{sub 4} after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  13. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    Science.gov (United States)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  14. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  15. On luminescence lifetimes in quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Galloway, R.B.

    2000-01-01

    In this paper we present results of investigations concerning the time dependence of luminescence emission relative to the time of stimulation in quartz. Measurements of time-resolved spectra were performed on a new versatile pulsed light emitting diode system using 525 nm stimulation, an 11 μs duration pulse, a repetition rate of 11 kHz and a 64 μs dynamic range. Effects on luminescence lifetime resulting from sample treatments such as optical stimulation, irradiation, and preheating, are reported

  16. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    Science.gov (United States)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  17. Study on fast luminescence component induced by gamma-rays in Ce doped LiCaAlF6 scintillators

    International Nuclear Information System (INIS)

    Watanabe, Kenichi; Kondo, Yoshiyuki; Yamazaki, Atsushi; Uritani, Akira; Iguchi, Tetsuo; Kawaguchi, Noriaki; Fukuda, Kentaro; Ishizu, Sumito; Yanagida, Takayuki; Fujimoto, Yutaka; Yoshikawa, Akira

    2014-01-01

    We discuss the origin of the fast luminescence component induced by fast electrons generated in gamma-ray interactions in Ce doped LiCaAlF 6 scintillators. Although the slow luminescence component induced by Ce 3+ emissions depends on the Ce concentration in the LiCaAlF 6 scintillator, the fast component is independent. The fast component is suggested to be generated in the host matrix of the LiCaAlF 6 crystal. From quantitative considerations based on Frank–Tamm equation, which shows the light yield of the Cherenkov radiation, the Cherenkov radiation was determined as the origin of the fast component. We, additionally, found that the slow rise time of main Ce 3+ emissions in the Ce:LiCaAlF 6 scintillator plays an important role to perform the pulse shape discrimination. - Highlights: • The fast luminescence in Ce:LiCaAlF 6 scintillator is generated in the host matrix. • The origin of the fast luminescence is determined as the Cherenkov radiation. • The slow rise time also plays an important role to perform PSD

  18. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Gessner, Andre

    2010-12-01

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5 D 0 - 7 F 0 -transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are

  19. Luminescent properties of BaCl2-Eu microcrystals embedded in a CsI matrix

    International Nuclear Information System (INIS)

    Pushak, A.; Vistovskyy, V.; Voloshinovskii, A.; Savchyn, P.; Antonyak, O.; Demkiv, T.; Dacyuk, Yu.; Myagkota, S.; Gektin, A.

    2013-01-01

    The spectral-luminescent properties of CsI-BaCl 2 (1 mol%)-Eu(0.02 mol%) crystalline system are studied. Europium ion doped BaCl 2 microcrystals embedded in a CsI matrix are revealed on CsI-BaCl 2 (1 mol%)-Eu(0.02 mol%) freshly cleaved surface by the scanning electron microscopy. The size of microcrystals is shown to be within 0.5–5 microns. The luminescent parameters of the BaCl 2 -Eu 2+ microcrystals are shown to be similar to ones of a single crystal analogue. The 4f → 5d absorption transitions in europium ions and the reabsorption of the intrinsic emission of the CsI host are the main excitation mechanisms of europium luminescence in the BaCl 2 microcrystals. -- Highlights: ► The formation of chloride BaCl 2 :Eu microcrystals in the case of BaCl 2 doped CsI crystal has been revealed. ► The observed size of microcrystals at BaCl 2 concentration of 1% is about 0.5–5 μm. ► Majority of Eu 2+ ions in CsI-BaCl 2 -EuCl 3 crystalline system enters into BaCl 2 microcrystals. ► The luminescent parameters of the BaCl 2 :Eu 2+ microcrystals and its bulk analogue are similar

  20. Luminescence properties of Yb:Nd:Tm:KY3F10 nanophosphor and thermal treatment effects

    International Nuclear Information System (INIS)

    Gomes, Laércio; Linhares, Horácio Marconi da Silva M.D.; Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego; Ranieri, Izilda Marcia

    2015-01-01

    In this work, we present the spectroscopic properties of KY 3 F 10 (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates 1 G 4 (Tm 3+ ) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd 3+ to Tm 3+ ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the 1 G 4 level luminescence kinetic of Tm 3+ in Yb/Nd/Tm system revealed that the luminescence efficiency ( 1 G 4 ) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up 1 ) and (Nd×Yb×Tm) (Up 2 ) upconversion processes to the 1 G 4 luminescence are 33% (Up 1 ) and 67% for Up 2 . Up 2 process represented by Nd 3+ ( 4 F 3/2 )→Yb 3+ ( 2 F 7/2 ) followed by Yb 3+ ( 2 F 5/2 )→Tm ( 3 H 4 )→Tm 3+ ( 1 G 4 ) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF 4 and KY 3 F 10 bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the 1 G 4 luminescence efficiency strongly increases from 0.38% (T=25 °C) to 12% (T=400 °C). Results shown that the Nd 3+ ions distribution has a concentration

  1. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  2. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  3. Luminescence and radiocarbon dating of raised beach sediments, Bunger Hills, East Antarctica

    International Nuclear Information System (INIS)

    Augustinus, P.C.; Duller, G.A.T.

    2002-01-01

    Luminescence and radiocarbon dating of raised marine sediments from the Bunger Hills, East Antarctica, demonstrates that luminescence methods can be applied to such poorly bleached sediments as long as the luminescence behaviour of the sediments is understood. This is essential as the complete zeroing of the luminescence signal due to light exposure is required to allow an accurate age for the sediment accumulation. Unfortunately, independent checks on the luminescence ages are rare. In the present study, some independent age control is provided by AMS radiocarbon ages from shell obtained from and adjacent to the luminescence dated horizons, although the radiocarbon ages may suffer to some degree from variability in the marine reservoir effect. Application of the single aliquot luminescence technique to feldspar grains from the marine sediments demonstrated that the luminescence behaviour of the sediments was complex. For each sample, 18 replicate paleodose estimates were used to demonstrate whether the sediments were well bleached before deposition. Optically, well-bleached samples give younger luminescence ages, whilst poorly bleached samples often give excessively old ages compared to the associated radiocarbon-dated material. (author)

  4. Laser-induced luminescence lifetime measurement as an analytical probe for speciation of poly carboxylates in aqueous solutions

    International Nuclear Information System (INIS)

    Yoshio Takahashi; Takaumi Kimura; Yoshiharu Kato; Yoshitaka Minai

    2001-01-01

    Luminescence from lanthanide or actinide ion is influenced by hydration structure of the ion in aqueous solution system. In particular lifetime of the luminescence has been regarded as a measure of hydration number of the lanthanide or the actinide ion based on the studies on lifetime measurement of the ion in solid and solution system. Compared with other technique like NMR to determine the hydration number, laser induced lifetime measurement is advantageous in sensitivity and selectivity. This allows us to apply this method to determining the hydration number of lanthanide or actinide ion even at low concentration. (authors)

  5. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  6. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR...

  7. Growth-morphology-luminescence correlation in ZnO-containing nanostructures synthesized in different media

    Energy Technology Data Exchange (ETDEWEB)

    Japic, Dajana [Laboratory for the Spectroscopy of the Materials, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana (Slovenia); Antonio Paramo, J. [Department of Physics and Astronomy Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Marinsek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva cesta 5, 1000 Ljubljana (Slovenia); Strzhemechny, Yuri M., E-mail: Y.Strzhemechny@tcu.edu [Department of Physics and Astronomy Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Crnjak Orel, Zorica, E-mail: zorica.crnjak.orel@ki.si [Laboratory for the Spectroscopy of the Materials, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana (Slovenia); Centre of Excellence Polimat, Tehnoloski Park 24, 1000 Ljubljana (Slovenia)

    2012-06-15

    Zinc hydroxide particles were prepared by a two-step process employing zinc nitrate hexahydrate, urea, ethylene glycol, water and p-toluene-sulfonic acid monohydrate (p-TSA). We used different concentrations of the reactants as well as different volume ratios of the solvents. ZnO particles were obtained by thermal treatment of the reaction products at two different temperatures: 350 Degree-Sign C and 500 Degree-Sign C. The samples were characterized by scanning field emission electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy, BET analysis, thermogravimetry (TG) analysis and photoluminescence (PL) spectroscopy. It was found that after the thermal treatment particles become smaller, with the p-TSA concentration strongly affecting the morphology of the particles. Luminescence properties of the samples probed by PL at 8 K and room temperature exhibited a remarkable correlation with specimens Prime nanomorphology. Luminescent features at {approx}2.0-2.2 eV, {approx}2.4-2.5 eV, {approx}2.65 eV, {approx}2.9 eV, {approx}3.0-3.1 eV and {approx}3.3 eV were observed in most specimens, although their relative intensity and temperature dependence were specific to an individual group of samples vis-a-vis their growth history and morphology. - Highlights: Black-Right-Pointing-Pointer ZnO-containing nanostructures grown by precipitation were investigated. Black-Right-Pointing-Pointer Samples' morphology can be carefully tailored via growth control parameters. Black-Right-Pointing-Pointer Strong dependence of optoelectronic properties on specimens' morphology was observed. Black-Right-Pointing-Pointer Efficient control of composition, morphology and luminescence via synthesis parameters.

  8. Growth-morphology-luminescence correlation in ZnO-containing nanostructures synthesized in different media

    International Nuclear Information System (INIS)

    Japic, Dajana; Antonio Paramo, J.; Marinsek, Marjan; Strzhemechny, Yuri M.; Crnjak Orel, Zorica

    2012-01-01

    Zinc hydroxide particles were prepared by a two-step process employing zinc nitrate hexahydrate, urea, ethylene glycol, water and p-toluene-sulfonic acid monohydrate (p-TSA). We used different concentrations of the reactants as well as different volume ratios of the solvents. ZnO particles were obtained by thermal treatment of the reaction products at two different temperatures: 350 °C and 500 °C. The samples were characterized by scanning field emission electron microscopy (SEM), X-ray diffraction (XRD) spectroscopy, BET analysis, thermogravimetry (TG) analysis and photoluminescence (PL) spectroscopy. It was found that after the thermal treatment particles become smaller, with the p-TSA concentration strongly affecting the morphology of the particles. Luminescence properties of the samples probed by PL at 8 K and room temperature exhibited a remarkable correlation with specimens′ nanomorphology. Luminescent features at ∼2.0–2.2 eV, ∼2.4–2.5 eV, ∼2.65 eV, ∼2.9 eV, ∼3.0–3.1 eV and ∼3.3 eV were observed in most specimens, although their relative intensity and temperature dependence were specific to an individual group of samples vis-à-vis their growth history and morphology. - Highlights: ► ZnO-containing nanostructures grown by precipitation were investigated. ► Samples' morphology can be carefully tailored via growth control parameters. ► Strong dependence of optoelectronic properties on specimens' morphology was observed. ► Efficient control of composition, morphology and luminescence via synthesis parameters.

  9. Microprobe analysis, iono- and photo-luminescence of Mn2+ activated ZnGa2O4 fibres

    International Nuclear Information System (INIS)

    Santos, N.F.; Fernandes, A.J.S.; Alves, L.C.; Sobolev, N.A.; Alves, E.; Lorenz, K.; Costa, F.M.; Monteiro, T.

    2013-01-01

    Cubic ZnGa 2 O 4 fibres have been grown by the laser floating zone technique with different pulling rates. In fibres activated with manganese ions, the room temperature photo- and iono-luminescence is dominated by an intense green emission which is observed by the naked eye. The green band is due to an overlap of the 4 T 1 → 6 A 1 intraionic transitions of the Mn 2+ ions in different sites in the gallate host. The fibres’ photoluminescence spectra have been found to be dependent on the excitation energy. Additionally, the intensity of the green photo- and iono-luminescence is strongly sensitive to the measurement temperature and proton irradiation time. Micro PIXE analysis was used in order to verify the homogeneous distribution of the Mn luminescence activators and determine its concentration as well as for verification of impurity contents that may have been incorporated during the fibres growth. The potential of ionoluminescence measurements for characterization of optical materials is discussed

  10. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  11. Luminescent properties in films of ZrO2: Dy

    International Nuclear Information System (INIS)

    Martinez, R. C.; Guzman, J.; Rivera, T.; Ceron, P.; Montes, E.; Guzman, D.; Garcia H, M.; Falcony, C.; Azorin, J.

    2014-08-01

    In this work the luminescent characterization of zirconium oxide (ZrO 2 ) films impure with dysprosium (Dy +3 ) is reported, obtained by means of the ultrasonics spray pyrolysis technique. The films were deposited on glass substrates (Corning), in a temperatures interval of 400 to 550 grades C, using as precursor elements Zirconium oxide chloride octahydrate (ZrOCl 2 ·8H 2 O) and Dysprosium tri-chloride (DyCl 3 ), dissolved in deionized water, varying the concentration of the contaminated from the 1 to 20 atomic % with relationship to the zirconium in solution. The luminescent characterization was analyzed by means of photoluminescence and thermoluminescence. The photoluminescence results showed a spectrum with three maxima which correspond to the electronic transitions 4 F 9/2 - 6 H 15/2 , 4 F 9/2 - 6 H 13/2 and 4 F 9/2 - 6 H 11/2 characteristics of the Dy 3+ ion. The thermoluminescence (Tl) response when being exposed to a monochrome UV beam in 240 nm showed a wide curve that exhibits a maxim centered in 200 grades C. The Tl response of ZrO 2 :Dy in function of the dose was shown lineal in the interval of 24 mJ/cm 2 to 432 mJ/cm 2 . A study of the repeatability and dissipation of the ZrO 2 :Dy Tl response is included. Considering the shown previous results we can conclude that the ZrO 2 in film form obtained by spray pyrolysis has luminescent properties in 240 nm. (Author)

  12. Exciton luminescence in CdxMn1-xTe compounds

    International Nuclear Information System (INIS)

    Caraman, M.; Gashin, P.; Metelitsa, Snejana; Nicorici, Valentina; Nicorici, A.

    2002-01-01

    The Cd x Mn 1-x Te (0.5 7 W/cm 2 . The luminescence spectra were observed at 78 K. The results of the study had shown that the presence of relatively narrow luminescence peaks localized in the region of the fundamental absorption edge is characteristic for these spectra and for the majority of the crystals a wide maximum in the long wavelength region is observed. The luminescence maxima with an accuracy of ∼ 5 meV correspond to the resonance energy of the excitons of the state with n=1 determined from the absorption spectra. Hence, these maxima can be considered as exciton luminescence stimulated either by the excitons of the state n=1 or bounded to the exciton ionization centers. From the analysis of the absorption and exciton luminescence spectra one can make a conclusion about the fact that the homogeneity extent of the crystals decreases from CdTe to the compounds with x= 0.8 - 0.7 and slightly increases at the x decrease to 0.5. The exciton luminescence lines in CdTe and Cd 0.99 Mn 0.01 Te crystals is shifting by 7 - 10 meV relatively to the lines of free excitons absorption. This fact is explained by the fact that in these crystals, probably, excitons bounding to the lattice inherited defects with the binding energy of 7 - 10 meV participate in the luminescence. In the long wavelength region a wide peak is observed on which the impurity lines are not displayed. In the luminescence spectra of CdTe with 0.1%. As crystals three maxima at 1.51 eV, 1.46 eV and 1.42 eV are revealed. For pure CdTe the maximum at 1.4 eV is also revealed. These maxima are explained by the luminescence through the recombination levels localized at 0.46 eV. (authors)

  13. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Rusu, Mircea; Stere, Oana; Haiduc, Maria; Caramete, Laurentiu

    2004-01-01

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  14. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays.

    Science.gov (United States)

    Yao, Lei; Yung, Ka Yi; Khan, Rifat; Chodavarapu, Vamsy P; Bright, Frank V

    2010-12-01

    We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O 2 ) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O 2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp) 3 ] 2+ and ([Ru(bpy) 3 ] 2+ ) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.

  15. Flight testing of a luminescent surface pressure sensor

    Science.gov (United States)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  16. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  17. Optimizing concentration of shifter additive for plastic scintillators of different size

    Science.gov (United States)

    Adadurov, A. F.; Zhmurin, P. N.; Lebedev, V. N.; Titskaya, V. D.

    2009-02-01

    This paper concerns the influence of wavelength shifting (secondary) luminescent additive (LA 2) on the light yield of polystyrene-based plastic scintillator (PS) taking self-absorption into account. Calculations of light yield dependence on concentration of 1.4-bis(2-(5-phenyloxazolyl)-benzene (POPOP) as LA 2 were made for various path lengths of photons in PS. It is shown that there is an optimal POPOP concentration ( Copt), which provides a maximum light yield for a given path length. This optimal concentration is determined by the competition of luminescence and self-reflection processes. Copt values were calculated for PS of different dimensions. For small PS, Copt≈0.02%, which agree with a common (standard) value of POPOP concentration. For higher PS dimensions, the optimal POPOP concentration is decreased (to Copt≈0.006% for 320×30×2 cm sample), reducing the light yield from PS by almost 35%.

  18. Ag2O dependent up-conversion luminescence properties in Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses

    International Nuclear Information System (INIS)

    Hu, Yuebo; Qiu, Jianbei; Song, Zhiguo; Zhou, Dacheng

    2014-01-01

    Up-conversion (UC) luminescence properties of Ag/Tm 3+ /Er 3+ /Yb 3+ co-doped oxyfluorogermanate glasses have been studied to assess the effective role of silver nanoparticles as a sensitizer for Tm 3+ and Er 3+ ions. The X-ray diffraction patterns obtained in this work do not reveal any crystalline phase in the glass. However, the absorption spectra reveal that surface plasmons resonance band of Ag undergoes a distinct split with two maxima and a very broad absorption peak with a background that extends toward the near infrared (NIR) with the increasing of Ag 2 O added concentration. Transmission electron microscope images confirm that silver nanoparticles have been precipitated from matrix glasses and show their distribution, size, and shapes. In addition, changes in UC luminescence intensity of four emission bands 476, 524, 546, and 658 nm corresponding to 1 G 4 → 3 H 6 (Tm 3+ ), ( 2 H 11/2 , 4 S 3/2 ) → 4 I 15/2 (Er 3+ ), and 4 F 9/2 → 4 I 15/2 (Er 3+ ) transitions, respectively, as a function of silver addition to the base composition have been measured under 980 nm excitation. It is confirmed that Ag 2 O added concentration plays an important role in increasing the UC luminescence intensity; however, further increase in Ag 2 O added concentration reduces the intensity

  19. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  20. Luminescence dependence of Pr3+ activated SiO2 nanophosphor on Pr3+ concentration, temperature, and ZnO incorporation

    CSIR Research Space (South Africa)

    Mhlongo, GH

    2011-08-01

    Full Text Available Green-emitting ZnO nanoparticles were successfully embedded in Pr3+-doped SiO2 by a sol–gel method resulting in a red-emitting ZnO·SiO2:Pr3+ nanocomposite phosphor. The particle morphology and luminescent properties of SiO2:Pr3+ phosphor powders...

  1. Determination of uranium by luminescent method (tablet variant)

    International Nuclear Information System (INIS)

    Sergeev, A.N.; Yufa, B.Ya.

    1985-01-01

    A new tablet variant of luminescent determination of uranium in rocks is developed. The analytical process includes the following operations: sample decomposition, uranium separation from luminescence quencher impurities, preparation of luminescent sample (tablet), photometry of the tablet. The method has two variants developed: the first one is characterized by a more hard decomposition, sample mass being 0.2 g; the second variant has a better detection limit (5x10 -6 %), the sample mass being 0.2-1 g. Procedures of the sample preparation for both variants of analysis are described

  2. Direct determination of graphene quantum dots based on terbium-sensitized luminescence

    Science.gov (United States)

    Llorent-Martínez, Eulogio J.; Molina-García, Lucía; Durán, Gema M.; Ruiz-Medina, Antonio; Ríos, Ángel

    2018-06-01

    Graphene quantum dots (GQD) were determined in water samples using terbium-sensitized luminescence (TSL). Terbium ions complex with GQD due to the carboxylic groups that are usually present in these nanomaterials, increasing the luminescence signal of terbium. In Tb(III)-GQD complexes, GQD absorb energy at their characteristic excitation wavelength and transfer it to terbium ion, which emits at its particular emission wavelength. The analytical signal, measured at λexc = 257 nm and λem = 545 nm, increases proportionally to GQD concentration between 50 and 500 μg L-1. Under optimum conditions, the proposed method presents a detection limit of 15 μg L-1 and is selective to GQD in the presence of other nanomaterials of similar size. As GQD are highly water-soluble, they are potential contaminants in environmental or drinking waters water samples, and hence the method was applied to the analysis of different drinking waters which were the target samples for the application of the developed method.

  3. Fabrication and Spectral Properties of Wood-Based Luminescent Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xianjun Li

    2014-01-01

    Full Text Available Pressure impregnation pretreatment is a conventional method to fabricate wood-based nanocomposites. In this paper, the wood-based luminescent nanocomposites were fabricated with the method and its spectral properties were investigated. The results show that it is feasible to fabricate wood-based luminescent nanocomposites using microwave modified wood and nanophosphor powders. The luminescent strength is in positive correlation with the amount of phosphor powders dispersed in urea-formaldehyde resin. Phosphors absorb UV and blue light efficiently in the range of 400–470 nm and show a broad band of bluish-green emission centered at 500 nm, which makes them good candidates for potential blue-green luminescent materials.

  4. Luminescent and scintillation properties of Bi{sup 3+} doped Y{sub 2}SiO{sub 5} and Lu{sub 2}SiO{sub 5} single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu., E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials (LOM), Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Malinowski, P. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Jary, V.; Kucerkova, R.; Beitlerova, A.; Mares, J.A.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Fedorov, A. [Institute for Single Crystals NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv (Ukraine)

    2014-10-15

    In this paper we report our follow-up research on the Bi{sup 3+} luminescence in orthosilicate compounds, focusing on absorption, luminescent and scintillation properties of YSO:Bi and LSO:Bi SCFs with the Bi concentration ranging from 0.05 to 0.18 at%. For purpose of this research, single crystalline films (SCF) of Y{sub 2}SiO{sub 5}:Bi and Lu{sub 2}SiO{sub 5}:Bi have been grown by the LPE method onto YSO and LSO substrates from the melt-solution based on Bi{sub 2}O{sub 3} flux. - Highlights: • YSO:Bi and LSO:Bi films have been grown by liquid phase epitaxy. • Bi{sup 3+} absorption and luminescence depends on Bi concentration. • Scintillation properties of YSO:Bi and LSO:Bi films have been studied.

  5. Visible luminescence from highly textured Tb{sup 3+} doped RF sputtered zinc oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, R. Sreeja; Krishnan, R. Reshmi; Bose, R. Jolly; Kavitha, V.S.; Suresh, S. [Department of Optoelectronics, University of Kerala, Thiruvananthapuram 695581, Kerala (India); Vinodkumar, R. [Department of Optoelectronics, University of Kerala, Thiruvananthapuram 695581, Kerala (India); Department of Physics, University College, Thiruvananthapuram, Kerala (India); Sudheer, S.K. [Department of Optoelectronics, University of Kerala, Thiruvananthapuram 695581, Kerala (India); Pillai, V.P. Mahadevan, E-mail: vpmpillai9@gmail.com [Department of Optoelectronics, University of Kerala, Thiruvananthapuram 695581, Kerala (India)

    2017-04-15

    Highly transparent, luminescent, c-axis oriented Tb{sup 3+} doped ZnO films are prepared by RF magnetron sputtering technique. The structural, morphological, optical and luminescence properties of these films are investigated as a function of Tb{sup 3+} doping concentration by X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), spectroscopic ellipsometry, UV-Visible spectroscopy and photoluminescence spectroscopy. The as-deposited films are found to be highly crystalline with wurtzite hexagonal phase of ZnO. The characteristic features of hexagonal wurtzite structure of ZnO, particularly the appearance of non-polar E{sub 2} modes are easily identified from the Raman spectra of the films. The surface morphology of the films revealed by FESEM and AFM images present a dense distribution of grains. The elemental analysis carried out using energy dispersive X-ray (EDX) spectra confirms the incorporation of Tb{sup 3+} ions in the ZnO lattice. The films are highly transparent in the visible region. Using ellipsometric analysis, the variation of refractive index, dielectric constant and thickness of the films are studied as a function of Tb{sup 3+} doping concentration. The photoluminescence spectra of the Tb{sup 3+} doped ZnO films recorded using an excitation radiation of wavelength 325 nm from a He-Cd laser exhibit visible luminescence ~430, 490, 516 and 542 nm. The origin of visible emissions ~490 and 542 nm in the doped films can be attributed to 5D{sub 4}→7F{sub 6} and 5D{sub 4}→7F{sub 5} transition of Tb{sup 3+} ion respectively. The intensity of the emission at 542 nm is found to be decreasing at higher doping concentration due to concentration quenching effect. The blue emission in the films can be attributed to the electron transition from shallow donor level formed by interstitial Zn atoms to the top of the valence band. The origin of the visible emission ~516 nm is attributed

  6. K2SO4 and LiKSO4 crystals luminescence

    International Nuclear Information System (INIS)

    Charapiev, B.; Nurakhmetov, T.N.

    2002-01-01

    In the paper a nature of X-ray and tunnel luminescence in LiKSO 4 and Li 2 SO 4 ·H 2 O crystals are discussed. It is shown, that X-ray luminescence and Li 2 SO 4 ·H 2 O and LiKSO 4 appeals in the result of electrons recombination with auto-localized holes (SO 4 - ), and tunnel luminescence appeals at electrons transfer from ground state of electron center into hole center capture ground state. Under heating of irradiated crystal de-localized holes at recombination moment with electron capture centers are forming auto-localized excitons, which are disintegrating with photon emitting, and so X-ray luminescence spectrum and thermally induces luminescence peaks are coinciding. Nature of radiation appealing in LiKSO 4 at ultraviolet excitation is discussing

  7. Enhancement of blue upconversion luminescence in hexagonal NaYF{sub 4}:Yb,Tm by using K and Sc ions

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Vishal, E-mail: vishal.kale@utu.fi; Soukka, Tero [University of Turku, Department of Biochemistry and Food Chemistry/Biotechnology (Finland); Hoelsae, Jorma; Lastusaari, Mika [University of Turku, Department of Chemistry (Finland)

    2013-08-15

    Hexagonal ({beta})-NaYF{sub 4} is recognized as one of the most efficient hosts for NIR to blue and green upconversion (UC). A new method to tune the blue UC emission in {beta}-NaYF{sub 4}:Yb,Tm nanocrystals through the possible substitution of the host material with different concentrations of K{sup +} and Sc{sup 3+} ions was investigated in detail. In this work, Na{sub 1-x}K{sub x}YF{sub 4}:Yb,Tm and NaY{sub 1-x}Sc{sub x}F{sub 4}:Yb,Tm nanocrystals were synthesized with varying Na:K and Y:Sc ratios. X-ray diffraction, transmission electron microscopy, and UC luminescence spectroscopy showed that size, morphology, and UC luminescence intensity were affected by the addition of K{sup +} and Sc{sup 3+} ions. Substituted ions disturbed the local symmetry and also resulted in changes in the crystal field. The distance between Yb{sup 3+} and Tm{sup 3+} was affected by different concentration of K{sup +} and Sc{sup 3+} ions, and those differences in the distance are responsible for tuning UC luminescence. This study revealed that when the concentration of K{sup +} and Sc{sup 3+} ions were nominally increased from 20 to 100 mol% during synthesis, hexagonal NaYF{sub 4} changed to structurally different KYF{sub 4} and Na{sub 3}ScF{sub 6} so that the solid solubility became difficult. We also demonstrate that the added K{sup +} does not enter into the NaYF{sub 4} lattice, but it still plays an important role by controlling the Na/R ratio. K{sup +} and Sc{sup 3+} ion concentration of 20 mol% during the synthesis was found to result in materials with size 30-35 nm, and shows ca. four times brighter UC emission than the previously reported lanthanide based nanocrystals. The enhancement in UC luminescence intensity makes upconversion nanophosphors versatile imaging tools for diagnosis.Graphical Abstract.

  8. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  9. Up conversion luminescence of Yb3+–Er3+ codoped CeO2 nanocrystals with imaging applications

    International Nuclear Information System (INIS)

    Cho, Jung-Hyun; Bass, Michael; Babu, Suresh; Dowding, Janet M.; Self, William T.; Seal, Sudipta

    2012-01-01

    The effects of Yb 3+ doping on up conversion in Yb 3+ –Er 3+ co-doped cerium oxide nanocrystals are reported. Green emission around 545 and 560 nm attributed to the 2 H 11/2 , 4 S 3/2 → 4 I 15/2 transitions and red emission around 660 and 680 nm due to 4 F 9/2 → 4 I 15/2 transitions under 975 nm excitation were studied at room temperature. Both green and red emission intensities increase as the Yb 3+ concentration increases from 0%. Emission strength starts to decrease after the Yb 3+ concentration exceeds a critical amount. The green emission strength peaks around 1% Yb 3+ concentration while the red emission strength peaks around 4%. An explanation of competition between different decay mechanisms is presented to account for the luminescence dependence on Yb 3+ concentration. Also, the application of up converting nanoparticles in biomedical imaging is demonstrated. - Highlights: ► Up conversion in Yb 3+ –Er 3+ co-doped cerium oxide nanocrystals. ► Different decay mechanisms determine luminescence efficiency. ► Up converting nanoparticles in biomedical imaging is demonstrated.

  10. Luminescence properties of some food dye-stuffs

    International Nuclear Information System (INIS)

    Astanov, S.Kh.; Muminova, Z.A.; Urunov, R.G.

    2004-01-01

    The luminescence properties of the natural food dye-stuffs and vitamins in temperature range of 300-5.2 K are studied. On the basis of experimental data on quantum yields of the fluorescence, trans-cis-isomerization and luminescence of the molecular oxygen the main ways of the inactivation of electronic excitations in researching compounds have been defined. (author)

  11. Method and apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Santa Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  12. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  13. Concentration dependent luminescence quenching of Er{sup 3+}-doped zinc boro-tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Said Mahraz, Zahra Ashur; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.; Reza Dousti, M.

    2013-12-15

    Understanding the mechanism of luminescence quenching in rare earth doped tellurite glass is an important issue. The Er{sup 3+}-doped boro-tellurite glasses with compositions 30B{sub 2}O{sub 3}+10ZnO+(60−x)TeO{sub 2}+xEr{sub 2}O{sub 3} (where x=0, 0.5, 1, 1.5 and 2 mol%) were prepared by melt quenching method. Structural and optical properties of the proposed glasses were characterized using XRD, FTIR, density, UV–vis-IR absorption and PL spectroscopy. The amorphous nature of these glasses was confirmed by XRD technique. The IR-spectrum reveals five absorption bands assigned to different B–O and Te–O vibrational groups. UV–vis-IR absorption spectrum exhibits seven absorption bands at 6553, 10,244, 12,547, 15,360, 19,230, 20,661 and 22,522 cm{sup −1} corresponding to {sup 4}I{sub 13/2}, {sup 4}I{sub 11/2}, {sup 4}I{sub 9/2}, {sup 4}F{sub 9/2}, {sup 2}H{sub 11/2}, {sup 4}F{sub 7/2} and {sup 4}F{sub 3/2} excited states of Er{sup 3+} ion respectively. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions decreased, while the Urbach energy and cut-off wavelengths are increased by the introduction of Er{sup 3+} ions. The refractive index, density and phonon cut-off edge of the samples are increased and the molar volume decreased with the further addition of dopants. The Judd–Ofelt parameter (Ω{sub 2}) decreased from 5.73 to 3.13×10{sup −20} cm{sup 2} with the increase of erbium ions concentration from 0.5 to 2 mol%. The PL spectra show green emissions for the transition from {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} excited states to {sup 4}I{sub 15/2} ground state, which show strong quenching due to the addition of Er{sup 3+} ions. -- Highlights: • Er{sup 3+}-doped zinc boro-tellurite glass has been synthesized by melt quench method. • Spectroscopic properties dependent concentration is analyzed by different techniques. • Judd–Ofelt intensity parameter (Ω{sub 2}) decreased by increase in erbium

  14. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, S., E-mail: stanislav.stanek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Oswald, J. [Institute of Physics, Academy of Science of the Czech Republic, Cukrovarnicka 10/112, 162 00 Prague (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 40096 Usti nad Labem (Czech Republic); Spirkova, J. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic)

    2016-03-15

    A set of zinc-silicate glasses with different ratios of erbium and ytterbium was fabricated. To achieve Ag-rich thin films in a sub-surface layer, ion-implantation technique at an energy of 1.2 MeV and 1.7 MeV with a fluence of 1 × 10{sup 16} cm{sup −2} was used. Post-implantation annealing was also applied. Changes in the spectroscopic and lasing properties of erbium ions as a function of implantation fluence of silver were studied with the aim to assess the positive effect of silver as a sensitiser of erbium luminescence. Therefore, absorption spectra in the visible range as well as luminescence spectra in the near-infrared range were measured and partially also the {sup 4}I{sub 11/2}–{sup 4}I{sub 15/2} transition of the erbium ion was studied. The results showed that silver positively influenced luminescence intensity at 1530 nm by increasing it almost three times. The biggest increase was achieved in glass with the highest concentration of erbium. Luminescence lifetime was not significantly influenced by the presence of silver and still remained around 10 ms.

  15. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  16. Cerium luminescence in nd0 perovskites

    International Nuclear Information System (INIS)

    Setlur, A.A.; Happek, U.

    2010-01-01

    The luminescence of Ce 3+ in perovskite (ABO 3 ) hosts with nd 0 B-site cations, specifically Ca(Hf,Zr)O 3 and (La,Gd)ScO 3 , is investigated in this report. The energy position of the Ce 3+ excitation and emission bands in these perovskites is compared to those of typical Al 3+ perovskites; we find a Ce 3+ 5d 1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al 3+ perovskites. It is also shown that Ce 3+ luminescence quenching is due to Ce 3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce 3+ luminescence quenching, the energy position of the Ce 3+ 5d 1 excited state with respect to the host conduction band, and the host composition. - Graphical abstract: Ce 3+ decay times versus temperature for perovskites with nd 0 B-site cations.

  17. Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi.

    Science.gov (United States)

    Bassler, B L; Wright, M; Silverman, M R

    1994-05-01

    Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of extracellular signal molecules (autoinducers) in the culture medium. A recombinant clone that restored function to one class of spontaneous dim mutants was found to encode a function required for the density-dependent response. Transposon Tn5 insertions in the recombinant clone were isolated, and the mutations were transferred to the genome of V. harveyi for examination of mutant phenotypes. Expression of luminescence in V. harveyi strains with transposon insertions in one locus, luxO, was independent of the density of the culture and was similar in intensity to the maximal level observed in wild-type bacteria. Sequence analysis of luxO revealed one open reading frame that encoded a protein, LuxO, similar in amino acid sequence to the response regulator domain of the family of two-component, signal transduction proteins. The constitutive phenotype of LuxO- mutants indicates that LuxO acts negatively to control expression of luminescence, and relief of repression by LuxO in the wild type could result from interactions with other components in the Lux signalling system.

  18. Paper-based biodetection using luminescent nanoparticles.

    Science.gov (United States)

    Ju, Qiang; Noor, M Omair; Krull, Ulrich J

    2016-05-10

    Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer

  19. Determination of Glucose Concentration in Yeast Culture Medium

    Science.gov (United States)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  20. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    Science.gov (United States)

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  1. Optimizing concentration of shifter additive for plastic scintillators of different size

    Energy Technology Data Exchange (ETDEWEB)

    Adadurov, A.F. [Institute for Scintillating materials, NPC Institute for Single Crystals, NAN of Ukraine, Lenin Avenue 61, 61001 Kharkov (Ukraine)], E-mail: adadurov@isma.kharkov.ua; Zhmurin, P.N.; Lebedev, V.N.; Titskaya, V.D. [Institute for Scintillating materials, NPC Institute for Single Crystals, NAN of Ukraine, Lenin Avenue 61, 61001 Kharkov (Ukraine)

    2009-02-11

    This paper concerns the influence of wavelength shifting (secondary) luminescent additive (LA{sub 2}) on the light yield of polystyrene-based plastic scintillator (PS) taking self-absorption into account. Calculations of light yield dependence on concentration of 1.4-bis(2-(5-phenyloxazolyl)-benzene (POPOP) as LA{sub 2} were made for various path lengths of photons in PS. It is shown that there is an optimal POPOP concentration (C{sub opt}), which provides a maximum light yield for a given path length. This optimal concentration is determined by the competition of luminescence and self-reflection processes. C{sub opt} values were calculated for PS of different dimensions. For small PS, C{sub opt}{approx}0.02%, which agree with a common (standard) value of POPOP concentration. For higher PS dimensions, the optimal POPOP concentration is decreased (to C{sub opt}{approx}0.006% for 320x30x2 cm sample), reducing the light yield from PS by almost 35%.

  2. [Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria].

    Science.gov (United States)

    Boiandin, A N; Kalacheva, G S; Rodicheva, E K; Volova, T G

    2008-01-01

    The ability of marine luminescent bacteria to synthesize polyesters of hydroxycarboxylic acids (polyhydroxyalkanoates, PHA) as reserve macromolecules was studied. Twenty strains from the collection of the luminescent bacteria CCIBSO (WDSM839) of the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, assigned to different taxa (Photobacterium leiognathi, Ph. phosphoreum, Vibrio harveyi, and V. fischeri) were analyzed. The most productive strains were identified, and the conditions ensuring high polymer yields in batch culture (40-70% of the cell dry mass weight) were determined. The capacity of synthesizing two- and three-component polymers containing hydroxybutyric acid as the main monomer and hydroxyvaleric and hydroxyhexanoic acids was revealed in Ph. leiognathi and V. harveyi strains. The results allow luminescent microorganisms to be regarded as new producers of multicomponent polyhydroxyalkanoates.

  3. Bright white upconversion luminescence from Er3+/Tm3+/Yb3+-doped titanate-based glasses prepared by aerodynamic levitation method

    Science.gov (United States)

    Zhang, Minghui; Yu, Jianding; Jiang, Wan; Liu, Yan; Ai, Fei; Wen, Haiqin; Jiang, Meng; Yu, Huimei; Pan, Xiuhong; Tang, Meibo; Gai, Lijun

    2017-10-01

    Aerodynamic levitation method was employed to prepare Er3+/Tm3+/Yb3+-doped titanate-based glasses. DTA results show that the glass performs high thermal stability with the glass transition temperature of 799 °C. The interaction among rare earth ions has been discussed by adjusting the relative concentration. Er3+ ions can quench the upconversion luminescence of Tm3+ ions. Tm3+ ions play a strong role in quenching the emissions of Er3+ and Tm3+ when the content of Tm3+ ions is greater than or equal 0.05. From the view of the ratio of red emission to green emission, Tm3+ ions can improve the red emission of Er3+ ions to some extent in contrast with the green emissions of Er3+ ions. 980 nm incident laser can be efficiently absorbed by Yb3+ ions. The relative intensity of red, green, and blue upconversion luminescence has been tuned to obtain white light. The composition with white upconversion luminescence of the color coordinate (0.291, 0.3292) has been found. Moreover, white upconversion luminescence mechanism is a two-photon process of ET, ESA, and cooperative sensitization. Rare earth ions doped titanate-based glasses with bright upconversion luminescence perform potential applications in color display, back light, et al.

  4. Analysis of structure origin and luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glass.

    Science.gov (United States)

    Chen, Fangze; Jing, Xufeng; Wei, Tao; Wang, Fengchao; Tian, Ying; Xu, Shiqing

    2014-08-14

    The near infrared luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glasses have been investigated. The various effects on structure and 1.53 μm emission were analyzed as a function of Yb(3+) concentration. The energy transfer mechanism was proposed. High measured lifetime (10.75 ms), large effective full widths at half maximum (73.71 nm) and large gain per unit length (62.8 × 10(-)(24)cm(2)s) have been achieved in prepared glass. The present glass co-doped with 6mol% YbF3 and 2 mol% ErF3 showed magnificent luminescence properties for telecommunication application. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. On the correlation between annealing and variabilities in pulsed-luminescence from quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2006-01-01

    Properties of luminescence lifetimes in quartz related to annealing between 500 and 900 deg. C have been investigated. The luminescence was pulse-stimulated at 470nm from sets of granular quartz annealed at 500, 600, 700, 800, and 900 deg. C. The lifetimes decrease with annealing temperature from about 42 to 33μs when the annealing temperature is increased from 500 to 900 deg. C. Luminescence lifetimes are most sensitive to duration of annealing at 600 deg. C, decreasing from 40.2+/-0.7μs by as much as 7μs when the duration of annealing is changed from 10 to 60min. However, at 800-900 deg. C lifetimes are essentially independent of annealing temperature at about 33μs. Increasing the exciting beta dose causes an increase in the lifetimes of the stimulated luminescence in the sample annealed at 800 deg. C but not in those annealed at either 500 or 600 deg. C. The temperature-resolved distribution of luminescence lifetimes is affected by thermal quenching of luminescence. These features may be accounted for with reference to two principal luminescence centres involved in the luminescence emission process

  6. Luminescence characteristics of dental ceramics for retrospective dosimetry: a preliminary study

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Correcher, V.; Delgado, A.; Goksu, Y.; Huebner, S.

    2002-01-01

    Ceramic materials that are widely employed in dental prosthetics and repairs exhibit luminescent properties. Because of their use in the body, these materials are potentially of interest in situations where retrospective dosimetry for individuals is required but where monitoring was not planned. The luminescent properties of dental ceramics obtained in Germany, Spain and the UK were examined. Linear dose-response characteristics were obtained in the range <100 mGy to 10 Gy using thermoluminescence (TL), optically stimulated luminescence and infrared-stimulated luminescence measurement techniques. Measurements of time-resolved luminescence were also performed to examine the nature of the luminescence recombination under visible (470 nm) and IR (855 nm) stimulation. The results obtained by TL and optically stimulated techniques suggest that there may be deeper traps than previously observed in certain types of dental ceramic. Such traps may be less susceptible to optical and athermal fading than was reported in earlier studies. (author)

  7. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  8. Lanthanum lead boro-tellurite glasses doped with samarium trioxide for luminescent devices application

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Boro-tellurite based glasses (10La2O3-(20-x) TeO2-30PbO-40B2O3-xSm2O3) (x = 0, 0.5, 1.0 and 2.0 mol %) doped with different concentrations of Sm3+ ions has been investigated. The optical properties have been studied through spectroscopic measurements such as absorption and luminescence. Absorption spectra reveals nine peaks due to 6H5/2→6P3/2, 4I3/2+4F5/2+4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2, and 6H13/2 transitions. Luminescence spectra under the excitation of 403 nm display four emission bands due to 4G5/2→6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of Sm3+ ions. Among them 6H7/2 bright orange -red is more intense which proves that the present glasses are potential candidates for luminescent device applications in visible range as well as optical fibre communication since its refractive index is 1.65 high compared to other glasses.

  9. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Ankjærgaard, Christina [Soil Geography and Landscape Group & Netherlands Centre for Luminescence dating, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Jain, Mayank [Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Roskilde (Denmark); Chithambo, Makaiko L. [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa)

    2016-09-15

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IRSL signals, both during and after short infrared stimulation pulses. The equations are developed using a recently proposed kinetic model, which describes localized electronic recombination via tunneling between trapped electrons and recombination centers in luminescent materials. Recombination is assumed to take place from the excited state of the trapped electron to the nearest-neighbor center within a random distribution of luminescence recombination centers. Different possibilities are examined within the model, depending on the relative importance of electron de-excitation and recombination. The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results.

  10. Luminescence basic concepts, applications and instrumentation

    CERN Document Server

    Virk, Hardev Singh

    2014-01-01

    The word luminescence was first used by a German physicist, Eilhardt Wiedemann, in 1888. He also classified luminescence into six kinds according to the method of excitation. No better basis of classification is available today. He recognized photoluminescence, thermoluminescence, electroluminescence, crystalloluminescence, triboluminescence, and chemiluminescence. The designations are obvious, characterized by the prefix. This Volume consists of 9 Chapters, including 8 Review Papers and one Case Study. The first two papers are based on OLEDs. Organic light emitting diodes (OLEDs) have been th

  11. Application of X-ray luminescence separation to preliminary enrichment of lean scheelite-containing ores

    International Nuclear Information System (INIS)

    Zhaboev, M.N.; Semochkin, G.A.; Blinov, Yu.I.; Dzhambaev, F.M.; Novikov, V.V.; Tereshchenko, S.V.

    1987-01-01

    Investigations of preliminary enrichment of lean ores of amphibole hornfels by the method of X-ray luminescence separation was conducted. Pile and enriched products with different WO 3 content were obtained from these ores; WO 3 content in pile products was 2-2.5 times lower as compared to factory tailing products. WO 3 content in separator concentrate corresponds in all cases to the requirements for the ore designated for flotation enrichment. Carbonate modulus decreases 2.5-4 times in separation concentrate, simplifying the conditions of flotation

  12. Defect-Induced Luminescence of a Self-Activated Borophosphate Phosphor

    Science.gov (United States)

    Han, Bing; Liu, Beibei; Dai, Yazhou; Zhang, Jie

    2018-05-01

    A self-activated borophosphate phosphor Ba3BPO7 was prepared via typical solid-state reaction in thermal-carbon reduction atmosphere. The structural and luminescence properties were investigated using x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. Upon excitation with ultraviolet (UV) light, the as-prepared phosphor shows bright greenish-yellow emission with a microsecond-level fluorescence lifetime, which could result from the oxygen vacancies produced in the process of solid-state synthesis. The possible luminescence mechanism is proposed. Through the introduction of defects in the host, this work realizes visible luminescence in a pure borophosphate compound that does not contain any rare earth or transition metal activators, so it is helpful to develop defect-related luminescent materials in view of energy conservation and environmental protection for sustainable development.

  13. Luminescent properties of terbium complex with phenylanthranilic acid

    International Nuclear Information System (INIS)

    Alakaeva, L.A.; Kalazhokova, I.A.; Naurzhanova, F.Kh.

    1990-01-01

    Existence of terbium luminescence reaction in complex with phenanthranilic acid (FAA) is ascertained. The optimal conditions of terbium complexing with FAA are found. The ratio of components in the complex is 1:1. The influence of foreign rare earth in terbium luminescence intensity in complex with FAA is studied

  14. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  15. Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host.

    Science.gov (United States)

    Kuznetsov, A S; Tikhomirov, V K; Moshchalkov, V V

    2012-09-10

    A mechanism for white luminescence of Ag nanoclusters dispersed in oxyfluoride glass host has been revealed by studying a temperature dependence of its polarization memory. The spectral dependence of the polarization memory indicates the presence of a variety of Ag nanoclusters, particularly emitting in the blue, green and red. Temperature activated intercluster energy transfer has been found responsible for white luminescence. The means for increasing luminescence quantum yield have been suggested. This efficient white luminescence may be used in highly demanded devices, such as luminescent lamps, displays, color phosphors for LEDs, photovoltaic devices based on down shifting of solar spectrum.

  16. Morphology-controllable growth of GdVO4:Eu3+ nano/microstructures for an optimum red luminescence

    Science.gov (United States)

    Yang, Liusai; Li, Guangshe; Zhao, Minglei; Zheng, Jing; Guan, Xiangfeng; Li, Liping

    2012-06-01

    Chemically tailoring microstructures for an optimum red luminescence is a subject at the forefront of many disciplines, which still remains a challenge due to a poor knowledge about the roles of defects in structures. In this work, GdVO4 :Eu3+ nano/microstructures of different morphologies, including tomato-like, cookie-circle-like, and ellipsoidal-like nanoparticles, and microspheroids were synthesized via a simple hydrothermal route using trisodium citrate as a capping agent. During the growth processes, the types of vanadyl ions were adjusted by varying pH value to control the morphologies and nano/microstructures with the help of trisodium citrate. The possible mechanisms for the growth processes into diverse morphologies are presented. Further, a systematic study on defect characteristics pertinent to these diverse morphologies has been explored to achieve an optimum red luminescence. The ability is clearly shown to generate different nano/microstructures of diverse morphologies and varied defect concentrations, which provides a great opportunity for morphological control in tailoring the red luminescence property for many technological applications.

  17. Principal and secondary luminescence lifetime components in annealed natural quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Ogundare, F.O.; Feathers, J.

    2008-01-01

    Time-resolved luminescence spectra from quartz can be separated into components with distinct principal and secondary lifetimes depending on certain combinations of annealing and measurement temperature. The influence of annealing on properties of the lifetimes related to irradiation dose and temperature of measurement has been investigated in sedimentary quartz annealed at various temperatures up to 900 deg. C. Time-resolved luminescence for use in the analysis was pulse stimulated from samples at 470 nm between 20 and 200 deg. C. Luminescence lifetimes decrease with measurement temperature due to increasing thermal effect on the associated luminescence with an activation energy of thermal quenching equal to 0.68±0.01eV for the secondary lifetime but only qualitatively so for the principal lifetime component. Concerning the influence of annealing temperature, luminescence lifetimes measured at 20 deg. C are constant at about 33μs for annealing temperatures up to 600 0 C but decrease to about 29μs when the annealing temperature is increased to 900 deg. C. In addition, it was found that lifetime components in samples annealed at 800 deg. C are independent of radiation dose in the range 85-1340 Gy investigated. The dependence of lifetimes on both the annealing temperature and magnitude of radiation dose is described as being due to the increasing importance of a particular recombination centre in the luminescence emission process as a result of dynamic hole transfer between non-radiative and radiative luminescence centres

  18. Optical and luminescence properties of Dy3+ doped sodium silicate glass

    Science.gov (United States)

    Srisittipokakun, N.; Kaewkhao, J.

    2017-07-01

    The aim of the present work is to study the optical and luminescence properties of Dy2O3 doped Na2O-BaO-Bi2O3-SiO2 glasses. The Dy3+ ion is chosen as dopant because it emits three visible bands, blue (470-485 nm; 4F9/2→6H15/2), yellow (570-580 nm; 4F9/2→6H13/2) and red (640-655 nm; 4F9/2→6H11/2) luminescence and finds its applications in the fields of laser, white LEDs, telecommunication technology and display devices. NaBaBiSiDy glasses with the compositions of (30-x)SiO2: 10Bi2O3: 30Na2O: 30BaO: xDy2O3 where x=0.0, 0.1, 0.5, 1.0, 1.5 and 2.0 mol% were prepared by melt-quenching technique and characterized by using density, optical absorption photoluminescence (PL) and decay rate measurements as function of different concentrations. The density (ρ), molar volume (VM) and refractive index obtained were found to increase with increase in the concentration of Dy2O3 in the glass matrix. The chromaticity coordinates were calculated from emission spectra and analyzed with CIE color diagram and appear in the white light region under ultraviolet excitation.

  19. Luminescence and photosensitivity of PbI2 crystals

    International Nuclear Information System (INIS)

    Novosad, S.S.; Novosad, I.S.; Matviishin, I.M.

    2002-01-01

    One studied effect of temperature treatment and storage conditions on spectra features of PbI 2 crystals grown by the Bridgman-Stockbarger method from salt additionally purified by directed crystallization. Spectra of X-ray luminescence, photoluminescence and thermostimulated luminescence were investigated within 85-295 K temperature range under stationary X-ray excitation and emission of N 2 -laser. One studied photoelectret properties of those crystals under 85 K. Luminescence of PbI 2 crystals with maximum within 595 nm region observed following their thermal annealing under 475-495 K temperature and typical for near-the-surface section of specimens may be caused by oxygen-containing centres [ru

  20. A luminescence imaging system based on a CCD camera

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Markey, B.G.

    1997-01-01

    Stimulated luminescence arising from naturally occurring minerals is likely to be spatially heterogeneous. Standard luminescence detection systems are unable to resolve this variability. Several research groups have attempted to use imaging photon detectors, or image intensifiers linked...... to photographic systems, in order to obtain spatially resolved data. However, the former option is extremely expensive and it is difficult to obtain quantitative data from the latter. This paper describes the use of a CCD camera for imaging both thermoluminescence and optically stimulated luminescence. The system...

  1. Luminescent microporous metal–organic framework with functional Lewis basic sites on the pore surface: Quantifiable evaluation of luminescent sensing mechanisms towards Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Cheng [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012 (China); Guo, Rui-Li; Zhang, Wen-Yan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Jiang, Chen [Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012 (China); Wang, Yao-Yu, E-mail: wyaoyu@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China)

    2016-11-15

    A systematic study has been conducted on a novel luminescent metal-organic framework, ([Zn(bpyp)(L-OH)]·DMF·2H{sub 2}O){sub n} (1), to explore its sensing mechanisms to Fe{sup 3+}. Structure analyses show that compound 1 exist pyridine N atoms and -OH groups on the pore surface for specific sensing of metal ions via Lewis acid-base interactions. On this consideration, the quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. This work not only achieves the quantitative evaluation of the luminescence quenching but also provides certain insights into the quenching process, and the possible mechanisms explored in this work may inspire future research and design of target luminescent metal-organic frameworks (LMOFs) with specific functions. - Graphical abstract: A systematic study has been conducted on a novel luminescent metal-organic framework to explore its sensing mechanisms to Fe{sup 3+}. The quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. - Highlights: • A novel porous luminescent MOF containing uncoordinated groups in interlayer channels was successfully synthesized. • The compound 1 can exhibit significant luminescent sensitivity to Fe{sup 3+}, which make its good candidate as luminescent sensor. • The corresponding dynamic and static quenching constants are calculated, achieving the quantification evaluation of the quenching process.

  2. Methods of producing luminescent images

    International Nuclear Information System (INIS)

    Broadhead, P.; Newman, G.A.

    1977-01-01

    A method is described for producing a luminescent image in a layer of a binding material in which is dispersed a thermoluminescent material. The layer is heated uniformly to a temperature of 80 to 300 0 C and is exposed to luminescence inducing radiation whilst so heated. The preferred exposing radiation is X-rays and preferably the thermoluminescent material is insensitive to electromagnetic radiation of wavelength longer than 300 mm. Information concerning preparation of the luminescent material is given in BP 1,347,672; this material has the advantage that at elevated temperatures it shows increased sensitivity compared with room temperature. At temperatures in the range 80 to 150 0 C the thermoluminescent material exhibits 'afterglow', allowing the image to persist for several seconds after the X-radiation has ceased, thus allowing the image to be retained for visual inspection in this temperature range. At higher temperatures, however, there is negligible 'afterglow'. The thermoluminescent layers so produced are particularly useful as fluoroscopic screens. The preferred method of heating the thermoluminescent material is described in BP 1,354,149. An example is given of the application of the method. (U.K.)

  3. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  4. Luminescence centers in bismuth orthogermanate

    International Nuclear Information System (INIS)

    Bordun, O.M.

    2001-01-01

    The luminescence and photoexcitation spectra of single crystals,ceramics,and thin films of Bi 4 Ce 3 O 1 2 are studied.The decomposition of the luminescence spectra into elementary components by the Alentsev-Fock method showed that they consist of three bands with maxima at 2.7,2.4,and 2.05 eV.The bands with maxima at 2.7 and 2.4 eV are assigned to the emission of self-trapped Frenkel excitons describing the excited state of a (BiO 6 ) 9- molecular ion. Emission bands with maxima at 2.0 5 eV are assigned to recombination on traps caused by structural defects

  5. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR....... The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results....

  6. A Radiation Dosimetry Method Using Pulsed Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Akselrod, M.S.; McKeever, S.W.S.

    1999-01-01

    A method for the determination of absorbed radiation dose is described based on pulsed optically stimulated luminescence (POSL). The method relies upon the stimulation of an irradiated sample with a train of light pulses from a suitable light source (e.g. a laser) using a wavelength which is within the range of wavelengths corresponding to the radiation-induced optical absorption in the irradiated sample. The subsequent emitted light, due to the detrapping of trapped charges and their subsequent recombination with charge of the opposite sign, is synchronously detected in the period between each stimulation pulse. The total luminescence is summed over the desired number of stimulation pulses and this forms the measured POSL signal. By monitoring the emitted light only in the period between stimulation pulses one can reduce the optical filtering required to discriminate between the stimulation light and the emission light; in this way a high measurement efficiency, and, therefore, a high radiation sensitivity (luminescence intensity per unit absorbed dose) is achieved. Key parameters in the method are the intrinsic luminescence lifetime for the material being used as the luminescent detector, the width of the optical stimulation pulse, and the period between pulses. For optimum operation the measurement parameters should be such that both the pulse width and the time between pulses are much less than the luminescence lifetime. By appropriate choice of the power of the optical stimulation, the frequency of the stimulation pulses, and the total stimulation period, one can also re-measure the absorbed dose several times. In this way, a re-read capability is available with the procedure. The method is illustrated using light from a 2nd-harmonic Nd:YAG laser, with irradiated, anion-deficient aluminium oxide as the luminescent detector material. (author)

  7. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  8. Study on the relationship of protease production and luminescence in Vibrio harveyi.

    Science.gov (United States)

    Nakayama, T; Nomura, N; Matsumura, M

    2006-07-01

    To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.

  9. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    Science.gov (United States)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  10. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  11. Luminescent Afterglow Behavior in the M2Si5N8: Eu Family (M = Ca, Sr, Ba

    Directory of Open Access Journals (Sweden)

    Koen Van den Eeckhout

    2011-05-01

    Full Text Available Persistent luminescent materials are able to emit light for hours after being excited. The majority of persistent phosphors emit in the blue or green region of the visible spectrum. Orange- or red-emitting phosphors, strongly desired for emergency signage and medical imaging, are scarce. We prepared the nitrido-silicates Ca2Si5N8:Eu (orange, Sr2Si5N8:Eu (reddish, Ba2Si5N8:Eu (yellowish orange, and their rare-earth codoped variants (R = Nd, Dy, Sm, Tm through a solid state reaction, and investigated their luminescence and afterglow properties. In this paper, we describe how the persistent luminescence is affected by the type of codopant and the choice and ratio of the starting products. All the materials exhibit some form of persistent luminescence, but for Sr2Si5N8:Eu,R this is very weak. In Ba2Si5N8:Eu the afterglow remains visible for about 400 s, and Ca2Si5N8:Eu,Tm shows the brightest and longest afterglow, lasting about 2,500 s. For optimal persistent luminescence, the dopant and codopant should be added in their fluoride form, in concentrations below 1 mol%. A Ca3N2 deficiency of about 5% triples the afterglow intensity. Our results show that Ba2Si5N8:Eu(,R and Ca2Si5N8:Eu(,R are promising persistent phosphors for applications requiring orange or red light.

  12. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    Science.gov (United States)

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Quantitative study of luminescence optical tomography. Application to sources localisation in molecular imaging

    International Nuclear Information System (INIS)

    Boffety, Matthieu

    2010-01-01

    Molecular imaging is a major modality in the field of preclinical research. Among the existing methods, techniques based on optical detection of visible or near infrared radiation are the most recent and are mainly represented by luminescence optical tomography techniques. These methods allow for 3D characterization of a biological medium by reconstructing maps of concentration or localisation of luminescent beacons sensitive to biological and chemical processes at the molecular or cellular scale. Luminescence optical tomography is based on a model of light propagation in tissues, a protocol for acquiring surface signal and a numerical inversion procedure used to reconstruct the parameters of interest. This thesis is structured around these three axes and provides an answer to each problem. The main objective of this study is to introduce and present the tools to evaluate the theoretical performances of optical tomography methods. One of its major outcomes is the realisation of experimental tomographic reconstructions from images acquired by an optical imager designed for 2D planar imaging and developed by the company Quidd. In a first step we develop the theory of transport in scattering medium to establish the concept on which our work will rely. We present two different propagation models as well as resolution methods and theoretical difficulties associated with them. In a second part we introduce the statistical tools used to characterise tomographic systems. We define and apply a procedure to simple situations in luminescence optical tomography. The last part of this work presents the development of an inversion procedure. After introducing the theoretical framework we validate the procedure from numerical data before successfully applying it to experimental measurements. (author) [fr

  14. NMR and luminescence spectroscopy study of formation of mixed β-diketonate europium complexes

    International Nuclear Information System (INIS)

    Kavun, V.Ya.; Kalinovskaya, I.V.; Karasev, V.E.; Chernyshov, B.N.; Steblevskaya, N.I.

    1987-01-01

    Methods of NMR ('H, 19 F) and luminescent spectroscopy were applied to study ligand substitution in Eu(β-dik) 3 phen-CDCl 3 -(β-dik)' systems, where β-dik-acetylacetone (AA) and hexafluoroacetyl-acetone (HFAA), phen-1.10-phenathroline at different mole ratio (m) of competing ligands (m=AA/HFAA). Formation of mixed Eu(AA) 2 (HFAA)phen and Eu(AA)(HFAA) 2 phen complexes is proved; calculation of the stark structure of 5 D 0 - 7 F j (j=0,1,2) transitions in low-temperature luminescence spectra is conducted for these complexes. It is stated that at minimum HFAA concentration in the solution the latter replaces AA from europium coordination sphere. It is shown that depending on the value in substitution of acidoligands proceeds successfully by the equations Eu(AA) 3 phen+(NHFAA) n → Eu(AA) 3-n → (HFAA) n phen+(NAA) n ; (n=1,2,3)

  15. Concentration Dependence of Luminescent Properties for Sr2TiO4:Eu3+ Red Phosphor and Its Charge Compensation

    Directory of Open Access Journals (Sweden)

    Zhou Lu

    2012-01-01

    Full Text Available Sr2TiO4:Eu3+ phosphors using M+ (M = Li+, Na+, and K+ as charge compensators were prepared by the solid-state reaction. The powders were investigated by powder X-ray diffraction (XRD and photoluminescence spectra (PL to study the phase composition, structure, and luminescent properties. The results showed that Li+ ion was the best charge compensator. The phase was Sr2TiO4 when the doping concentration was small (x≤10.0%. When x reached 15.0%, the phase turned into Sr3Ti3O7 because of the structure damage. The phosphor could be effectively excited by ultraviolet (365, 395 nm and blue light (465 nm, and thenitemitted intense red light that peaked at around 620 nm (5D0→7F2. In addition, the emission of 700 nm (5D0→7F4 enhanced the red light color purity. The CIE chromaticity coordinates of samples with the higher red emission were between (0.650, 0.344 and (0.635, 0.352. Doped layered titanate Sr2TiO4:Eu3+ is a promising candidate red phosphor for white LEDs which can be suited for both near-UV LED chip and blue LED chip.

  16. Thermal dependence of luminescence lifetimes and radioluminescence in quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, V., E-mail: vpagonis@mcdaniel.edu [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Chithambo, M.L. [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Chen, R. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Chruścińska, A. [Institute of Physics, Nicholas Copernicus University, 87-100 Toruń (Poland); Fasoli, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Li, S.H. [Department of Earth Sciences, The University of Hong Kong (Hong Kong); Martini, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Ramseyer, K. [Institut für Geologie, Baltzerstrasse 1-3, 3012 Bern (Switzerland)

    2014-01-15

    During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers L{sub H} and L{sub L} in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers L{sub H} and L{sub L}, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was

  17. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  18. Terbium and dysprosium complexes luminescence at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meshkova, S B; Kravchenko, T B; Kononenko, L.I.; Poluehktov, N S [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1979-01-01

    The variation is studied of the luminescence intensity of terbium and dysprosium complexes used in the analysis as solutions are cooled down to the liquid nitrogen temperature. Three groups of methods have been studied: observation of fluorescence of aqueous solutions, precipitate and extract suspensions in organic solvents. The brightest luminescence and greatest increase in luminescence intensity are observed at freezing of complex solvents with 1,2-dioxybenzene-3,5-disulfonic acid (DBSA) and iminodiacetic acid (IDA) and DBSA+EDTA, as well as in the case of benzene extracting of complexes with phenanthroline and salicylic acid. Otherwise the intensity increases 2-14-fold and for the complex of terbium with acetoacetic ester 36-fold.

  19. Tetranuclear cluster-based Pb(II)-MOF: Synthesis, crystal structure and luminescence sensing for CS2

    Science.gov (United States)

    Dong, Yanli

    2018-05-01

    A new Pb(II) coordination polymer, namely [Pb2(bptc)(DMA)]n (1, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, DMA = N, N‧- dimethylacetamide), has been synthesized by the combination of H4bptc with Pb(NO3)2 under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D framework based on tetranuclear [Pb4(COO)6] subunits, and topological analysis revealed that compound represents a binodal (4, 8)-connected scu-type topological network with the point symbol of {416,612}{44,62}2. Luminescence studies indicated that 1 and 1' (1‧ represents the desolvated samples) showed intense yellow emissions. Significantly, 1‧ exhibited sensitive luminescence sensing for CS2 solvent molecules at a low concentration.

  20. WellReader: a MATLAB program for the analysis of fluorescence and luminescence reporter gene data.

    Science.gov (United States)

    Boyer, Frédéric; Besson, Bruno; Baptist, Guillaume; Izard, Jérôme; Pinel, Corinne; Ropers, Delphine; Geiselmann, Johannes; de Jong, Hidde

    2010-05-01

    Fluorescent and luminescent reporter gene systems in combination with automated microplate readers allow real-time monitoring of gene expression on the population level at high precision and sampling density. This generates large amounts of data for the analysis of which computer tools are missing to date. We have developed WellReader, a MATLAB program for the analysis of fluorescent and luminescent reporter gene data. WellReader allows the user to load the output files of microplate readers, remove outliers, correct for background effects and smooth and fit the data. Moreover, it computes biologically relevant quantities from the measured signals, notably promoter activities and protein concentrations, and compares the resulting expression profiles of different genes under different conditions. WellReader is available under a LGPL licence at http://prabi1.inrialpes.fr/trac/wellreader.

  1. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    Science.gov (United States)

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  2. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  3. Luminescence and luminescence quenching of Eu{sub 2}Mo{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Janulevicius, Matas; Grigorjevaite, Julija; Merkininkaite, Greta [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Sakirzanovas, Simas [Department of Applied Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, Arturas, E-mail: arturas.katelnikovas@chf.vu.lt [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2016-11-15

    A polycrystalline Eu{sub 2}Mo{sub 4}O{sub 15} phosphor sample was prepared by high temperature solid state reaction. Phase purity and morphological features of the phosphor were investigated by X-ray diffraction and scanning electron microscopy, respectively. Reflectance spectra showed that the optical band gap of Eu{sub 2}Mo{sub 4}O{sub 15} is 2.95 eV. Phosphor emits intensive red light when excited with 394 and 465 nm radiation. Temperature dependent emission and luminescence lifetime measurements revealed that external and internal quantum yields decrease at the same rate and that luminescence quenches due to photoionization. The calculated external quantum yields for 394 and 465 nm excitation were 7.8% and 53.5%, respectively.

  4. A New, Sensitive Marine Microalgal Recombinant Biosensor Using Luminescence Monitoring for Toxicity Testing of Antifouling Biocides

    Science.gov (United States)

    Sanchez-Ferandin, Sophie; Leroy, Fanny; Bouget, François-Yves

    2013-01-01

    In this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O. tauri (based on genes involved in photosynthesis, cell cycle, and circadian clock) were compared using 96-well culture microplates and a luminometer to automatically measure luminescence over 3 days. This was compared to growth inhibition of O. tauri wild type under the same conditions. Luminescence appeared to be more sensitive than growth inhibition as an indicator of toxicity. Cyclin-dependent kinase (CDKA), a protein involved in the cell cycle, fused to luciferase (CDKA-Luc) was found to be the most sensitive of the biosensors, allowing an accurate determination of the 50% effective concentration (EC50) after only 2 days (diuron, 5.65 ± 0.44 μg/liter; Irgarol 1015, 0.76 ± 0.10 μg/liter). The effects of the antifoulants on the CDKA-Luc biosensor were then compared to growth inhibition in natural marine phytoplankton. The effective concentrations of diuron and Irgarol 1051 were found to be similar, indicating that this biosensor would be suitable as a reliable ecotoxicological test. The advantage of this biosensor over cell growth inhibition testing is that the process can be easily automated and could provide a high-throughput laboratory approach to perform short-term toxicity tests. The ability to genetically transform and culture recombinant O. tauri gives it huge potential for screening many other toxic compounds. PMID:23144143

  5. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4:Eu2+

    International Nuclear Information System (INIS)

    Wei, Yongbin; Wu, Zheng; Jia, Yanmin; Liu, Yongsheng

    2015-01-01

    Piezoelectrically-induced stress-luminescence in the CaAl 2 O 4 :Eu 2+ was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl 2 O 4 :Eu 2+ arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl 2 O 4 :Eu 2+ ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl 2 O 4 :Eu 2+ was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors

  6. Highly sensitive sorption-luminescence determination of trace europium with preconcentration on silica chemically modified with iminodiacetic acid

    International Nuclear Information System (INIS)

    Voronina, R.D.; Zorov, N.B.

    2007-01-01

    Features of a sorption-luminescence method for the determination of trace europium were studied. The method includes the preliminary sorption of europium at pH 7.1 from solutions with silica chemically modified with iminodiacetic acid, the subsequent treatment of the sorbent with 2-thenoyltrifluoroacetone at pH 8.0, and the measurement of the intensity of luminescence of the surface three-component europium complex at 613 nm. The effect of moisture as the quencher of luminescence of the surface europium complex was studied, and techniques for its removal were proposed. Sorption in the static mode provides the detection limit of europium of 7 x 10 -5 g/ml. The calibration plot is linear in the range of two orders of magnitude of europium concentration in solutions. The relative standard deviation in the determination of 1.5 x 10 -2 μg/ml europium is 5%. In the dynamic mode of sorption from 1000 ml of an analyzed solution with the use of sorption-desorption, the detection limit of europium of 8 x 10 -7 μg/ml was attained [ru

  7. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation

    Science.gov (United States)

    Serazetdinov, A. R.; Smirnov, A. A.; Pustovarov, V. A.; Isaenko, L. I.

    2017-09-01

    Er3+ doped double lead halide crystals incorporate a number of properties making them interesting for practical use in light conducting materials. X-ray excited luminescence (XRL) spectra, photoluminescence (PL) spectra in region of 1.5-3.5 eV, photoluminescence excitation (PLE) spectra (2.75-5 eV) and anti-stokes luminescence (ASL) spectra were measured at room temperature in KPb2Cl5 (KPC) and RbPb2Br5 (RPB) matrices doped with Er3+ (1%) ions and in KPC doped with Er3++ Yb3+ ions(1:3 ratio concentration). Intraconfigurational f→f transitions are observed in Er3+ ions in most of the cases. The concrete spectrum form is strongly dependent on the excitation energy. Under 980 nm excitation upper Er3+ levels are excited, showing upconversional processes. In case of 313 nm (UV) and 365 nm (VIS) excitation self trapped exciton luminescence was detected in RPB crystal. Additional Yb3+ doping ions strongly increase quantum yield under 980 nm excitation and this doping cause insignificant influence on quantum yield under VIS or UV excitation.

  8. Determination of Silver Ions Toxicity in Short-Term and Long-Term Experiments Using a Luminescent Recombinant Strain of E. coli

    Directory of Open Access Journals (Sweden)

    Tatiana P. Yudina

    2013-01-01

    Full Text Available The effects of silver ions on the luminescent recombinant strain of Escherichia coli carrying luxCDABE operon of Vibrio fischeri were investigated. The toxicity of silver ions was determined in 30 minutes and in chronic 24 hours experiments. Changes in the luminescence intensity and in the growth rate of bacteria were considered as a measure of silver ions toxicity within the range of concentrations applied. The effect of silver ions was demonstrated to be strongly dependent on the concentration of bacteria and on the medium composition. EC50 values were 0.018 mg/l after 30 min exposure and 0.014 mg/l after 10 hours of bacterial growth. Comparison of two modifications of the experiment showed that silver ions have a strong non-specific toxicity, as well as a specific effect on bacterial cells

  9. Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication

    Science.gov (United States)

    Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-Yan

    2014-03-01

    Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on. Electronic supplementary information (ESI) available: Details of FTIR, XRD and DLS of CDF, optical properties of CDF, TEM images of other obtained products, luminescent spectra of CDF at different temperatures, and the optical photographs of CDF inks and silica glasses with different concentrations

  10. Metal-enhanced luminescence: Current trend and future perspectives- A review

    International Nuclear Information System (INIS)

    Ranjan, Rajeev; Esimbekova, Elena N.; Kirillova, Maria A.; Kratasyuk, Valentina A.

    2017-01-01

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  11. Metal-enhanced luminescence: Current trend and future perspectives- A review

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Rajeev [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Esimbekova, Elena N., E-mail: esimbekova@yandex.ru [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation); Kirillova, Maria A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Kratasyuk, Valentina A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation)

    2017-06-08

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  12. The role of FRET in solar concentrator efficiency and color tunability

    Energy Technology Data Exchange (ETDEWEB)

    Balaban, Benjamin, E-mail: bbalaban@ucsc.edu; Doshay, Sage; Osborn, Melissa; Rodriguez, Yvonne; Carter, Sue A., E-mail: sacarter@ucsc.edu

    2014-02-15

    We demonstrate concentration-dependent Förster-type energy transfer in a luminescent solar concentrator (LSC) material containing two high quantum yield laser dyes in a PMMA matrix. FRET heterotransfer is shown to be approximately 50% efficient in the regime of 2×10{sup −3}molal acceptor dye by weight in the host polymer. The two dyes used have been well studied for solar concentrator applications: BASF's Lumogen Red 305, and Exciton Chemical Company's DCM both demonstrate desirable stability, quantum yield, and complementary absorption spectra. We demonstrate how multiple-dye LSC devices employing FRET increase the absorption of air mass 1.5 solar irradiance without affecting the self-absorption properties of the film. Color tunability may be achieved through the addition of additional absorbers while minimizing the impact on waveguide efficiency. -- Highlights: • Förster Resonance Energy Transfer is demonstrated in a two-dye luminescent solar concentrator. • Donor-acceptor pair distance is related to the dye concentration in PMMA. • FRET's benefit to waveguide transport losses and color tunability is discussed.

  13. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  14. Luminescence imaging of water during proton-beam irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2015-01-01

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy

  15. Influence of sample oxidation on the nature of optical luminescence from porous silicon

    International Nuclear Information System (INIS)

    Coulthard, I.; Antel, W. J. Jr.; Freeland, J. W.; Sham, T. K.; Naftel, S. J.; Zhang, P.

    2000-01-01

    Site-selective luminescence experiments were performed upon porous-silicon samples exposed to varying degrees of oxidation. The source of different luminescence bands was determined to be due to either quantum confinement in nanocrystalline silicon or defective silicon oxide. Of particular interest is the defective silicon-oxide luminescence band found at 2.1 eV, which was found to frequently overlap with a luminescence band from nanocrystalline silicon. Some of the historical confusion and debate with regards to the source of luminescence from porous silicon can be attributed to this overlap. (c) 2000 American Institute of Physics

  16. Luminescence properties of Yb:Nd:Tm:KY{sub 3}F{sub 10} nanophosphor and thermal treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Laércio, E-mail: lgomes@ipen.br [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Linhares, Horácio Marconi da Silva M.D. [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego [Departamento de Ciências dos Materiais, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Ranieri, Izilda Marcia [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil)

    2015-01-15

    {sup 1}G{sub 4} luminescence efficiency strongly increases from 0.38% (T=25 °C) to 12% (T=400 °C). Results shown that the Nd{sup 3+} ions distribution has a concentration gradient increasing towards the nanoparticle surface allowing the direct (Nd×Tm) (Up{sub 1}) (78%) in competition with the (Nd×Yb×Tm) (Up{sub 2}) (22%) upconversions for the synthesized nanocrystals (11 nm). - Highlights: • This paper analyses the blue luminescence of Yb:Nd:Tm:KY{sub 3}F{sub 10} nanocrystals. • A strong dependence of the luminescence efficiency with thermal treatment is observed. • Luminescence effects are due to Nd ion distribution modification induced by thermal treatments.

  17. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V.; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  18. Quantum Dot-Based Luminescent Oxygen Channeling Assay for Potential Application in Homogeneous Bioassays.

    Science.gov (United States)

    Zhuang, Si-Hui; Guo, Xin-Xin; Wu, Ying-Song; Chen, Zhen-Hua; Chen, Yao; Ren, Zhi-Qi; Liu, Tian-Cai

    2016-01-01

    The unique photoproperties of quantum dots are promising for potential application in bioassays. In the present study, quantum dots were applied to a luminescent oxygen channeling assay. The reaction system developed in this study was based on interaction of biotin with streptavidin. Carboxyl-modified polystyrene microspheres doped with quantum dots were biotinylated and used as acceptors. Photosensitizer-doped carboxyl-modified polystyrene microspheres were conjugated with streptavidin and used as donors. The results indicated that the singlet oxygen that was released from the donor beads diffused into the acceptor beads. The acceptor beads were then exited via thioxene, and were subsequently fluoresced. To avoid generating false positives, a high concentration (0.01 mg/mL) of quantum dots is required for application in homogeneous immunoassays. Compared to a conventional luminescent oxygen channeling assay, this quantum dots-based technique requires less time, and would be easier to automate and miniaturize because it requires no washing to remove excess labels.

  19. Optimizing white light luminescence in Dy3+-doped Lu3Ga5O12 nano-garnets

    International Nuclear Information System (INIS)

    Haritha, P.; Linganna, K.; Venkatramu, V.; Martín, I. R.; Monteseguro, V.; Rodríguez-Mendoza, U. R.; Babu, P.; León-Luis, S. F.; Jayasankar, C. K.; Lavín, V.

    2014-01-01

    Trivalent dysprosium-doped Lu 3 Ga 5 O 12 nano-garnets have been prepared by sol-gel method and characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and laser excited spectroscopy. Under a cw 457 nm laser excitation, the white luminescence properties of Lu 3 Ga 5 O 12 nano-garnets have been studied as a function of the optically active Dy 3+ ion concentration and at low temperature. Decay curves for the 4 F 9/2 level of Dy 3+ ion exhibit non-exponential nature for all the Dy 3+ concentrations, which have been well-fitted to a generalized energy transfer model for a quadrupole-quadrupole interaction between Dy 3+ ions without diffusion. From these data, a simple rate-equations model can be applied to predict that intense white luminescence could be obtained from 1.8 mol% Dy 3+ ions-doped nano-garnets, which is in good agreement with experimental results. Chromaticity color coordinates and correlated color temperatures have been determined as a function of temperature and are found to be within the white light region for all Dy 3+ concentrations. These results indicate that 2.0 mol% Dy 3+ ions doped nano-garnet could be useful for white light emitting device applications

  20. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah

    2014-01-01

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  1. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  2. Luminescence imaging of water during carbon-ion irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-01-01

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  3. Luminescence study of spodumene

    International Nuclear Information System (INIS)

    Isotani, S.; Fujii, A.T.; Antonini, R.; Pontuschka, W.M.; Rabani, S.R.; Furtado, W.W.

    1990-02-01

    A comparative study is made of the luminescence of five kinds of spodumene from Minas Gerais, Brazil, studied previously by optical absorption spectroscopy. Natural gemstones are used which, in the course of the experiments, were irradiated with X-rays. (L.C.) [pt

  4. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  5. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  6. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Klimczak, M., E-mail: m.klimczak@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Sarnecki, J. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland)

    2009-12-15

    In this work, we investigate visible emission properties of dysprosium-doped yttrium aluminum garnet (YAG) waveguides prepared by the liquid phase epitaxy (LPE) method, which allowed obtaining samples of activator concentrations ranging from 0.2 at% up to ca. 18 at%. This unique set of Dy:YAG/YAG waveguides has been carefully examined by means of highly resolved laser spectroscopy to explore the luminescence properties in the visible (yellow-blue) part of spectrum. In particular, the low-temperature absorption spectra have been recorded and analyzed, giving a more detailed information on energy levels' positions in these crystals. The concentration-dependant emission spectra and fluorescence dynamics profiles have been collected under direct excitation, enabling analysis of multi-ion processes responsible for concentration quenching. This, in turn, enabled optimization of activator concentration with respect to yellow emission efficiency. Additionally, the possible IR to visible up-conversion pathways have been discussed, giving a starting point for further investigations.

  7. On the effect of optical and isothermal treatments on luminescence signals from feldspars

    International Nuclear Information System (INIS)

    Pagonis, Vasilis; Polymeris, George; Kitis, George

    2015-01-01

    During luminescence dosimetry and luminescence dating applications it is often necessary to precondition the geological samples by applying a thermal or optical treatment before measuring the luminescence signal. In luminescence applications using apatites or feldspars, measurement of continuous-wave infrared or optically stimulated signals (CW-IRSL and CW-OSL) are customarily preceded by either an isothermal heating of the samples at a fixed temperature for a short time interval, or alternatively by optically bleaching the samples using light from LEDs with the appropriate wavelength. This paper presents new analytical equations which can be used to describe these commonly employed double experimental procedures. The equations are based on a recently published model which assumes that tunneling processes are taking place in random distributions of donor–acceptor pairs. The concentration of charge carriers during the CW-IRSL or CW-OSL experiment is expressed in terms of the parameters of the preceding thermal or optical bleaching procedure, and depends also on the distribution of distances between electron and hole pairs. The analytical equations in this paper are compared with experimental data from a feldspar sample which undergoes an isothermal procedure followed by measurement of the CW-IRSL signal. Additional comparisons with experiment are provided using a feldspar sample which undergoes an infrared bleaching process, followed by measurement of the CW-OSL signal. These results and conditions under which the equations can be used are discussed within the framework of the model. - Highlights: • CW-IRSL and CW-OSL measurements are preceded by heating or optical bleaching. • New analytical equations are derived to describe these double experimental procedures. • Equations are compared with data from a feldspar sample following isothermal procedure. • Equations are compared with data from a feldspar sample following optical bleaching.

  8. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    International Nuclear Information System (INIS)

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-01-01

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  9. Splitting of the luminescent excited state of the uranyl ion

    International Nuclear Information System (INIS)

    Flint, C.D.; Sharma, P.; Tanner, P.A.

    1982-01-01

    The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds

  10. Luminescent Enhancement of Na+ and Sm3+ Co-doping Reddish Orange SrCa3Si2O8 Phosphors

    Science.gov (United States)

    Chun, Fengjun; Zhang, Binbin; Li, Wen; Liu, Honggang; Deng, Wen; Chu, Xiang; Osman, Hanan; Zhang, Haitao; Yang, Weiqing

    2018-04-01

    Reddish orange SrCa3Si2O8 phosphors, prepared by the facile solid state reaction method, are a luminescent enhancement of Na+ and Sm3+ co-doping luminescent material. Na+ was designed to compensate the charge imbalance of Sm3+ ion substituting for the Sr2+ ion of orthorhombic SrCa3Si2O8 crystals. The results suggest that Na+ can effectively enhance the luminescent intensity of the reddish orange light peaked at about 562 nm (4 G 5/2 → 6 H 5/2), 600 nm (4 G 5/2 → 6 H 7/2) and 645 nm (4 G 5/2 → 6 H 9/2) excited by the near ultraviolet excited light 404 nm (4 L 13/2 → 6 H 5/2). The energy transfer has been further verified by the florescence lifetime. Additionally, the luminescent lifetime τ of as-grown phosphors was separated into two parts, a rapid lifetime and a slow lifetime. The average lifetime results ranged from 2.098 to 1.329 ms which were influenced by the concentration of Sm3+ doping. The systematic researches of as-grown phosphors have clearly suggested a potential application for white-light-emitting diodes ( w-LEDs).

  11. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles - structure and luminescence.

    Science.gov (United States)

    Ritter, Benjamin; Haida, Philipp; Fink, Friedrich; Krahl, Thoralf; Gawlitza, Kornelia; Rurack, Knut; Scholz, Gudrun; Kemnitz, Erhard

    2017-02-28

    A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu 3+ and Tb 3+ doped CaF 2 , SrF 2 and BaF 2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF 2 :Eu10 via SrF 2 :Eu10 to BaF 2 :Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce 3+ and Tb 3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce 3+ → Tb 3+ . In this case, the luminescence intensity is higher for CaF 2 than for SrF 2 , due to a lower spatial distance of the rare earth ions.

  12. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  13. Luminescent properties of complexly substituted oxides Ме2Ln8 (XO46O2 (Me=Sr, Ca; Ln=La, Gd, Eu; X= Si, P

    Directory of Open Access Journals (Sweden)

    A. A. Vasin

    2014-11-01

    Full Text Available In the current work it is established that the maximum intensity of a luminescence of crystalline phosphors with structure silicate-apatite of general formulae: Ca2Eu8Si6(1-xP6xO26, Sr2Gd7.2Eu0.8Si6(1-xP6xO26 and Ca2La8(1-xEu8xSi6O26 is reached at concentration of europium equal 0,15. The maximum intensity of a luminescence of these substances, at replacement in an anion sublattice of tetrahedrons [SiO4]4- on tetrahedrons [PO4]3- takes place at concentration of phosphorus 0,05.

  14. Development and measurement of luminescence properties of Ce-doped Cs2LiGdBr6 crystals irradiated with X-ray, γ-ray and proton beam

    Science.gov (United States)

    Jang, Jonghun; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2017-12-01

    The effect of higher Ce-concentration on the luminescence and scintillation properties of Cs2LiGdBr6 single crystals are studied. We used the Bridgman method for the growth of Ce-doped Cs2LiGdBr6 single crystals. Luminescence properties of the grown crystals are measured by X-ray and proton excitations. We measured the pulse height and fluorescence decay time spectra of Cs2LiGdBr6:Ce3+ with a bi-alkali photo multiplier tube (PMT) under γ-ray excitation from 137Cs source. Improvements in the scintillation properties are observed with the increase of Ce-concentration in the lattice. Detailed procedure of the crystal growth is also discussed.

  15. Influence of Tm-doping on microstructure and luminescence behavior of barium strontium titanate thick films

    International Nuclear Information System (INIS)

    Wang Jingyang; Zhang Tianjin; Pan Ruikun; Ma Zhijun; Wang Jinzhao

    2012-01-01

    Tm-doped Ba 0.8 Sr 0.2 TiO 3 thick films were prepared by the screen-printing technique on the alumina substrate. The microstructure of the Tm-doped BST thick films was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy, respectively. All the samples showed a typical perovskite polycrystalline structure when sintered at 1260 °C. The substitution behavior of Tm 3+ ion in BST was found to change with increasing the Tm 3+ concentration. The observed Tm-related red emission reaches the maximum at 0.2 mol% Tm 3+ concentration. The effects of concentration quenching on the luminescence intensity were discussed.

  16. Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea.

    Science.gov (United States)

    Mohseni, Mojtaba; Abbaszadeh, Jaber; Maghool, Shima-Sadat; Chaichi, Mohammad-Javad

    2018-02-01

    Monitoring and assessing toxic materials which are being released into the environment along with wastewater is a growing concern in many industries. The current research describes a highly sensitive and rapid method for the detection of toxic concentrations of heavy metals in aquatic environments. Water samples were collected from southern coasts of the Caspian Sea followed by screening of luminescent bacteria. Phylogenetic analysis, including gene sequence of 16S rRNA, and biochemical tests were performed for identification of the isolate. Luminescence activity was tested and measured after treatment of the isolate with different concentrations of heavy metals and reported as EC 50 value for each metal. A luminous, gram negative bacterium with the shape of a curved rod was isolated from the Caspian Sea. Biochemical tests and 16S rRNA gene sequence analysis indicated that the isolate MM1 had more than 99% similarity to Vibrio campbellii. The novel isolate is able to emit high levels of light. Bioluminescence inhibitory assay showed that the Vibrio sp. MM1 had the highest sensitivity to zinc and the lowest sensitivity to cadmium; EC 50 values were 0.97mgl -1 and 14.54mgl -1 , respectively. The current research shows that even low concentrations of heavy metals can cause a detectable decline in luminescence activity of the novel bacterium Vibrio sp. MM1; hence, it makes a good choice for commercial kits for the purpose of monitoring toxic materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of solution composition on determination of uranium (6) microquantities by laser-induced luminescence method

    International Nuclear Information System (INIS)

    Romanovskaya, G.I.; Zakharova, G.V.; Chibisova, A.K.

    1984-01-01

    The effect of cation and anion composition of natural waters (sea water, ground water, etc.) on the uranium (6) determination in the form of uranyl complexes with Na 2 O3SiO 2 using the laser-induced luminescence method with the determination limit 2x10 -11 g/ml, has been studied. The dependence of the luminescence intensity of uranyl polysilicate complexes on the inorganic ion concentration has been measured. The measurement results permitted to determine the maximum permissible concentrations (MAC) of ions, the values of which are presented. The results reproducibility is characterized by a relative standard deveation within 0.01-0.05. It follows from the data analysis that the MPC of impurities vary from 10 -8 to 10 -2 g/ml. The MPCs of uranium as determined in the form of polysilicate complexes, are shown to be close to the values obtained during uranium determination in the form of complexes with fluoran for the CO 3 2- , Ni, Cu ions and they are by an order higher for the Na, K, Cl - , SO 4 2- , HPO 4 2- , Mn ions

  18. Luminescence characteristic of YVO{sub 4}:Eu{sup 3+} thin film phosphors by Li doping

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Kyoung; Shim, Kyoo Sung; Moon, Byung Kee; Choi, Byung Chun [Department of Physics, Pukyong National University, Busan 608-737, Republic Korea (Korea, Republic of); Jeong, Jung Hyun [Department of Physics, Pukyong National University, Busan 608-737, Republic Korea (Korea, Republic of)], E-mail: jhjeong@pknu.ac.kr; Yi, Soung Soo [Department of Electronic Materials Engineering, Silla University, Busan 608-736, Republic Korea (Korea, Republic of); Kim, Jung Hwan [Department of Physics, Dong Eui University, Busan 614-714, Republic Korea (Korea, Republic of)

    2008-06-30

    YVO{sub 4}:Eu{sup 3+} and Li-doped YVO{sub 4}:Eu{sup 3+} thin film phosphors have been deposited on Al{sub 2}O{sub 3} (0001) substrate using a pulsed laser deposition technique. The Li{sup +} ions concentration was varied from 0 to 3 wt.% and Li{sup +} doping influenced crystallinity and surface morphology of YVO{sub 4}:Eu{sup 3+} films.. As Li{sup +} content increases from 0 wt.% to 2 wt.%, not only crystallinity was improved, but also the shape of grains was rounded. However, Li{sup +} content, increases further to 3 wt.% the shape of grains was changed to elliptical. The emitted radiation was dominated by a red emission peak at 619 nm radiated from the {sup 5}D{sub 0}-{sup 7}F{sub 2} transition of Eu{sup 3+} ions. In particular, the incorporation of Li{sup +} ions into YVO{sub 4} lattice could induce an increase of photoluminescence. The enhanced luminescence results not only from the improved crystallinity but also from the enhanced surface roughness. The luminescent intensity and surface roughness exhibited similar behavior as a function of Li{sup +} ions concentration.

  19. AgesGalore-A software program for evaluating spatially resolved luminescence data

    International Nuclear Information System (INIS)

    Greilich, S.; Harney, H.-L.; Woda, C.; Wagner, G.A.

    2006-01-01

    Low-light luminescence is usually recorded by photomultiplier tubes (PMTs) yielding integrated photon-number data. Highly sensitive CCD (charged coupled device) detectors allow for the spatially resolved recording of luminescence. The resulting two-dimensional images require suitable software for data processing. We present a recently developed software program specially designed for equivalent-dose evaluation in the framework of optically stimulated luminescence (OSL) dating. The software is capable of appropriate CCD data handling, parameter estimation using a Bayesian approach, and the pixel-wise fitting of functions for time and dose dependencies to the luminescence signal. The results of the fitting procedure and the equivalent-dose evaluation can be presented and analyzed both as spatial and as frequency distributions

  20. Dating Last Interglacial Coastal Systems Using New Feldspar Luminescence Technologies

    Science.gov (United States)

    Lamothe, M.

    2017-12-01

    The recent explosion in new luminescence dating technologies offers new opportunities to explore Quaternary marine coastal facies and landforms. However, tectonic and climatic processes controlling the development of Pleistocene coastal lithosomes are commonly obscured by their poorly constrained geological age. Luminescence dating of feldspar probes one order of magnitude deeper into geological time than radiocarbon and more than 5 times the current age range of quartz optically-stimulated luminescence, routinely used in luminescence dating. However, feldspar luminescence stimulated by infrared photons (eg IRSL) is hampered by anomalous fading. Successful correction methods developed by us over the last 15 years did produce sound chronologies but the fading-corrected ages carried large uncertainties. New approaches initiated by other laboratories, mainly in Europe, have isolated high temperature post-IRSL luminescence as this signal seems to be only slightly affected by fading. However, the gain in stability seems to be lessened due to bleachibility issues, generating age overestimations. We developed a novel protocol known as post-isothermal IRSL dating (Pit-IR) that focuses on a dual system of luminescence signals, probing low (50C) and medium (225C) temperature IRSL signals following isothermal treatments of various intensities. These protocols have been tested on Last interglacial coastal sediments in strikingly different GIA contexts along the Atlantic coastal areas of SE USA as well as from Morocco, Brazil and LIG sites in the Mediterranean basin. A systematic analysis of these results would suggest that a) falling-stages sequences are more commonly preserved as the OSL/IRSL ages are preferentially dating from the end of the MIS5e high stand and b) MIS5a marine sediments may be detectable away from areas generally thought to be affected by peripheral bulge collapse.

  1. Luminescence from Ce in sol-gel SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Seed Ahmed, H.A.A.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Koao, L.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Nagpure, I.M.; Gusowski, M.A. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa)

    2012-05-15

    The sol-gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce{sup 4+} ions capture electrons to form excited Ce{sup 3+} ions from which the luminescence originates.

  2. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  3. X-ray micro-modulated luminescence tomography (XMLT)

    Science.gov (United States)

    Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge

    2014-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898

  4. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates

    International Nuclear Information System (INIS)

    Puntus, L.N.; Zolin, V.F.; Babushkina, T.A.; Kutuza, I.B.

    2004-01-01

    The luminescence and PMR spectra of europium salts of six isomers of 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-pyridinedicarboxylic acids (PDA) had been studied. The distribution of the effective charge in the nearest surroundings of the Eu 3+ ion in these salts was evaluated from Stark splittings of electronic transitions. The values of relative integral intensities of electronic transitions 5 D 0 - 7 F J (J=0-4) in the luminescence spectra were reported. Compounds investigated were divided into three subgroups taking into account the details of the structure of the ligands and details of the luminescence spectra. The ligand coordination manners as well as the strength of interaction between lanthanide ion and ligands were confirmed by data of the PMR and IR spectroscopy

  5. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  6. Luminescence from potassium feldspars stimulated by infrared and green light

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.

    1993-01-01

    A series of experiments are reported which investigate stimulated luminescence from potassium feldspar. The aim is to provide a basic phenomenological description of the response of the material to stimulation by heat, infrared radiation (875 DELTA 80 nm) and a green light wavelength band from 5 15...... to 560 nm. Two conclusions are drawn: firstly it is suggested that the majority of the trapped charge responsible for the infrared stimulated luminescence signal does not give rise to a thermoluminescence signal, and secondly that a large traction of the two optically stimulated luminescence signals...

  7. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    Science.gov (United States)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of

  8. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  9. Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mirnajafizadeh, Fatemeh; Ramsey, Deborah; McAlpine, Shelli [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Fan; Reece, Peter [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Stride, John Arron, E-mail: j.stride@unsw.edu.au [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2016-07-01

    Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1). The QDs exhibited a high degree of crystallinity, with a strong blue photoluminescence at up to 29% quantum yield relative to 4′,6-diamidino-2-phenylindole (DAPI) without post-synthetic UV-irradiation. Confocal microscopy images obtained of HCT-116 cells after incubation with the QDs highlighted the stability of the particles in cell media. Cytotoxicity studies showed that both HCT-116 and WS1 cells retain 100% viability after treatment with the QDs at concentrations up to 0.5 g/L, which makes them of potential use in biological imaging applications. - Highlights: • Highly luminescent ZnSe(S) QDs were synthesized using a simple, one-step hydrothermal method. • The as-synthesized QDs were found to be nontoxic in the presence of biological cells. • The QDs were stable in biological media with identical emission profile to that in water.

  10. The research of characteristic difference of selected frequency luminescence for desert sand

    International Nuclear Information System (INIS)

    Liu Chao; Wei Mingjian; Li Huhou

    2011-01-01

    The characters of selected frequency luminescence of four groups of samples from Badain Jaran desert are measured by BG2003 luminescence spectrograph. The measurement subjects include selected frequency optical stimulate luminescence spectrum, selected frequency thermoluminescence spectrum and the dose response curve. A double-peak map is obtained by the result from all groups of data and spectrum. The difference is emerged between each group. The optical stimulate luminescence and thermoluminescence is applied in the measurement process. The dispersion of photon count on every response wavelength is analyzed. Based on the analysis, a better result can be gained by selected frequency thermoluminescence. (authors)

  11. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    , which display very different behaviour. The first involves the internal transitions of common transition metal ions. The second is typical of centres not displaying excited states within the band gap that are likely to arise from direct recombination between the conduction band and the ground state......The technique of optically stimulated luminescence has important uses in the dose evaluation of irradiated feldspars. The luminescence process involves the eviction of electrons from donor traps, charge transfer through the conduction band, and recombination at acceptor sites; each...

  12. A luminescence lifetime assisted ratiometric fluorimeter for biological applications

    Science.gov (United States)

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-12-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.

  13. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  14. Concentration quenching of F{sub a}(II) emission in KCl:Li

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Giovenale, E. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Grassano, U.M. [Rome Univ. `Tor Vergata` (Italy); Scacco, A. [Rome Univ. `La Sapienza` (Italy)

    1996-12-01

    The concentration quenching of luminescence is a well known phenomenon for the F centers in alkali halides. On the contrary very little is known on this subject for F{sub A} centers which are a class of axial color centers still of some importance both in basic and applied research, for instance as color center laser sources. The authors have studied carefully the optical properties of the F{sub A}(II) centers, especially in KCl:Li in extreme physical conditions, such as high F{sub A} concentration, high optical pumping, low temperatures and high magnetic fields, and, among other results, a new weak luminescence has been found at 1.4 {mu}m. At moment is not yet clear whether this emission is related to the concentration quenching itself or to more complex color centers, among them F{sub A}(I) centers. However, general hypothesis and reliable measurements are proposed in order to clarify the still unknown microscopic mechanisms which reduces the emission intensity of the F{sub A}(II) centers when they are highly concentrated.

  15. Characterization and luminescent properties of thermally annealed olivines

    International Nuclear Information System (INIS)

    Colin-Garcia, Maria; Correcher, Virgilio; Garcia-Guinea, Javier; Heredia-Barbero, Alejandro; Roman-Lopez, Jesus; Ortega-Gutierrez, Fernando; Negron-Mendoza, Alicia; Ramos-Bernal, Sergio

    2013-01-01

    Olivine is an iron-magnesium solid solution silicate (Mg,Fe) 2 SiO 4 and it is probably one of the most abundant mineral phase in the Solar System, it is present in the primitive carbonaceous meteorites (i.e Allende), and in ordinary chondritic meteorite, comets or terrestrial planets. The olivine grains in those bodies have been exposed to different radiation sources like UV, electrons, cosmic radiation, etc. Here, we explore the effect of ionizing and non ionizing radiation on the luminescence emission of the two well-characterised olivine samples from Mexico and Spain by means of cathodoluminescence and thermoluminescence. The analyses by X-ray dispersive energies in the scanning electron microscopy show differences between the samples in the amount of iron and magnesium and also show traces of rare elements. Olivine exhibits spectral cathodoluminescence emissions of low intensity, explained for the quenching of the luminescence of the iron, and sharp signals assigned as impurities. Cathodoluminescence and thermoluminescence glow curves of the natural, and UV induced olivine samples were obtained. Our results show that thermal treatments at 1100 °C change the mineral molecular structure and the luminescence properties of this mineral phase. These results confirm an active participation of physical factors influencing the luminescent properties of olivine. -- Highlights: ► Luminescent properties of two olivines samples (Mexican and Spanish) were explored. ► EDS show different iron and magnesium content and traces of rare elements on both. ► Olivine exhibits spectral CL emissions of low intensity due to the quenching of iron. ► Treatments at 1100 °C change the mineral structure and its response to UV radiation

  16. Possibility of RGB emission by Eu2+ ion doped MIIMIIIMVI phosphors for color inorganic electro- luminescent displays

    International Nuclear Information System (INIS)

    Jabbarov, R.B.; Tagiev, B.G.; Tagiev, O.B.; Musaeva, N.N.; Benalloul, P.; Barthou, C.

    2004-01-01

    Full text: Eu 2+ ion give broad-band emission due to f-d transitions. The 5d orbital are not shelled from the host lattice by any occupied orbital. Therefore the wavelength positions of the emission bands depend on host and change from hear UV to red. With increasing crystal field strength, the emission bands shift to longer wavelength. The broad band absorption and luminescence of Eu 2+ is parity-and spin-allowed and lifetime is sub-microseconds. In resent years, many efforts have been devoted to luminescence studies of thio gallates and thio-aluminates doped with rare-earth ions because of their chemical stability in ambient environments. In ternary compounds both the ligand field at the divalent cation site and the nephelauxetic effect are reduced by the presence of trivalent or tetravalent ions. This effect is more pronounced with Al than with Ga. In a same family of compounds, the emission band generally shifts to shorter wavelengths with increasing M II /M IV or M VI /M III ratio. In this paper we revisited the luminescence of the phosphors CaGa 2 S 4 , BaGa 2 S 4 , BaAl 2 S 4 activated by Eu 2+ ion. Influence of temperature and Eu 2+ concentration on the luminescence characteristics of these phosphors are studied. These dates will be useful to evaluate the quality oi the powder or thin films prepared for devices

  17. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  18. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  19. The effect of thermal oxidation on the luminescence properties of nanostructured silicon.

    Science.gov (United States)

    Liu, Lijia; Sham, Tsun-Kong

    2012-08-06

    Herein is reported a detailed study of the luminescence properties of nanostructured Si using X-ray excited optical luminescence (XEOL) in combination with X-ray absorption near-edge structures (XANES). P-type Si nanowires synthesized via electroless chemical etching from Si wafers of different doping levels and porous Si synthesized using electrochemical method are examined under X-ray excitation across the Si K-, L(3,2) -, and O K-edges. It is found that while as-prepared Si nanostructures are weak light emitters, intense visible luminescence is observed from thermally oxidized Si nanowires and porous Si. The luminescence mechanism of Si upon oxidation is investigated by oxidizing nanostructured Si at different temperatures. Interestingly, the two luminescence bands observed show different response with the variation of absorption coefficient upon Si and O core-electron excitation in elemental silicon and silicon oxide. A correlation between luminescence properties and electronic structures is thus established. The implications of the finding are discussed in terms of the behavior of the oxygen deficient center (OCD) and non-bridging oxygen hole center (NBOHC). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A study of luminescence and absorption spectra of GaP

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Abdel Wahab, S.M.

    1994-08-01

    Experimental luminescence and absorption spectra of GaP at room temperature are presented. A theoretical analysis has been performed on the luminescence and absorption spectra in GaP. The experimental data are in good agreement with the theoretical results. (author). 18 refs, 8 figs

  1. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    Science.gov (United States)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  2. Study of the luminescence properties of a natural amazonite

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V., E-mail: v.correcher@ciemat.es [CIEMAT, Av. Complutense 22, Madrid 28040 (Spain); Garcia-Guinea, J. [Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal 2, Madrid 28006 (Spain)

    2011-09-15

    Most gemstones, being natural materials (silicates, carbonates, phosphates, etc.), exhibit luminescence emission. This property could be potentially employed for personal dosimetry in the case of radiation accident or radiological terrorism where conventional monitoring has not been established. We, herein, report on the thermoluminescence (TL), radioluminescence (RL) and infra-red stimulated luminescence (IRSL) response of a well-characterised natural amazonite (KAlSi{sub 3}O{sub 8}) that, due to its bright blue-green colour when polished, is used as a gemstone. The luminescence emission wavelengths, intensities and thermal kinetics of the amazonite luminescence curves reveal that the ultraviolet band measured on amazonite aliquots is similar to other common K-rich feldspars. On this basis, one can conclude (i) association between twinning and the UV-blue TL emission can be related to structural defects located in the twin-domain boundaries where ionic alkali-self-diffusion, irreversible water losses and irreversible dehydroxylation processes can be involved. (ii) Amazonite exhibits a complex structure with several planar defects (twinning and exsolution interphases which can hold hydroxyl groups, water molecules, etc.) and point defects (impurities, Na, Pb, Mn, etc.) that can act as luminescence centres, and in fact, green and red emissions are respectively associated with the presence of Mn and Fe impurities. Finally, (iv) the thermal stability tests performed on the TL emission of the amazonite confirm a continuum in the trap distribution, i.e. progressive changes in the glow curve shape, intensity and temperature position of the maximum peak.

  3. Luminescent properties of Al{sub 2}O{sub 3}: Tb powders; Propiedades luminiscentes de polvos de Al{sub 2}O{sub 3}: Tb

    Energy Technology Data Exchange (ETDEWEB)

    Esparza G, A.E.; Garcia, M.; Falcony, C.; Azorin N, J. [CICATA-IPN, Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico)

    2000-07-01

    In this work the photo luminescent and cathode luminescent characteristics of aluminium oxide (Al{sub 2}O{sub 3}) powders impurified with terbium (Tb) were studied for their use in dosimetry. The optical, structural, morphological characteristics of the powders as function of variation in the impurity concentration and the annealing temperature will be presented. As regards the optical properties of powders (photoluminescence and cathode luminescence) it was observed a characteristic emission associated with radiative transitions between electron energy levels of terbium, the spectra associated with this emission consists of several peaks associated with such transitions. In the structural and morphological characterization (X-ray diffraction and scanning electron microscopy) it was appreciated that in accordance the annealing temperature of powders is augmented it is evident the apparition of certain crystalline phases. The results show that this is a promissory material for radiation dosimetry. (Author)

  4. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    International Nuclear Information System (INIS)

    Zakharko, Ya.M.; Luchechko, A.P.; Ubizskii, S.B.; Syvorotka, I.I.; Martynyuk, N.V.; Syvorotka, I.M.

    2007-01-01

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb 3+ ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb 3+ ion excitation, as well as the mechanism of lifetime shortening for the excited Yb 3+ luminescence have been discussed

  5. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    Science.gov (United States)

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  6. Iron control of the Vibrio fischeri luminescence system in Escherichia coli.

    Science.gov (United States)

    Dunlap, P V

    1992-01-01

    Iron influences luminescence in Vibrio fischeri; cultures iron-restricted for growth rate induce luminescence at a lower optical density (OD) than faster growing, iron-replete cultures. An iron restriction effect analogous to that in V. fischeri (slower growth, induction of luminescence at a lower OD) was established using Escherichia coli tonB and tonB+ strains transformed with recombinant plasmids containing the V. fischeri lux genes (luxR luxICDABEG) and grown in the presence and absence of the iron chelator ethylenediamine-di(o-hydroxylphenyl acetic acid) (EDDHA). This permitted the mechanism of iron control of luminescence to be examined. A fur mutant and its parent strain containing the intact lux genes exhibited no difference in the OD at induction of luminescence. Therefore, an iron-binding repressor protein apparently is not involved in iron control of luminescence. Furthermore, in the tonB and in tonB+ strains containing lux plasmids with Mu dI(lacZ) fusions in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the luxICDABEG promoter) both increased by a similar amount (8-9 fold each for tonB, 2-3 fold each for tonB+) in the presence of EDDHA. Similar results were obtained with the luxR gene present on a complementing plasmid. The previously identified regulatory factors that control the lux system (autoinducer-LuxR protein, cyclic AMP-cAMP receptor protein) differentially control expression from the luxR and luxICDABEG promoters, increasing expression from one while decreasing expression from the other. Consequently, these results suggest that the effect of iron on the V. fischeri luminescence system is indirect.

  7. Luminescence properties of KCl:Ag{sup -} crystals excited near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Hirai, Takeshi [Department of Physical Science, Faculty of Science and Engineering, Ritsumeikan University, Noji Higashi 1-1-1, Kusatsu, Shiga 525-8577 (Japan)

    2012-02-15

    Luminescence properties of KCl single crystals doped with Ag{sup -} centers have been investigated under various excitation energies around the fundamental absorption edge at low temperatures. Under the excitation at 6.89 eV, which is lower than the intrinsic exciton energy by 0.87 eV, the A Prime luminescence band due to the intraionic transition in the Ag{sup -} ion is dominantly observed at 2.91 eV. On the other hand, the excitation at 6.66 eV induces a broad luminescence band at 2.60 eV in addition to the A Prime luminescence band. From the comparison with the localized excitons in KCl:I crystals, the 2.60 eV luminescence band is attributed to the two-center type localized exciton related with the Ag{sup -} ion. The adiabatic potential energy surfaces of the excited states in the Ag{sup -} center and the localized exciton in KCl:Ag{sup -} are discussed. - Highlights: Black-Right-Pointing-Pointer We study the luminescence properties of KCl single crystals doped with Ag{sup -} ions. Black-Right-Pointing-Pointer The excitation around the absorption edge induces a broad luminescence at 2.60 eV. Black-Right-Pointing-Pointer The 2.60 eV luminescence is attributed to the exciton localized at the Ag{sup -} ion. Black-Right-Pointing-Pointer The localized exciton has the two-center type configuration of the relaxed exciton.

  8. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    International Nuclear Information System (INIS)

    Cheah, S.F.; Lee, S.C.; Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z.

    2015-01-01

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer

  9. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals.

    Science.gov (United States)

    Todoran, R; Todoran, D; Szakács, Zs

    2016-01-05

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Luminescent properties of Y3Al5−xGaxO12:Ce crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Zorenko, T.; Malinowski, P.; Sidletskiy, O.; Neicheva, S.

    2014-01-01

    Absorption, luminescent and scintillation properties of Ce 3+ doped Y 3 Al 5−x Ga x O 12 crystals with Ga content in the x=1–5 range were investigated in this work and compared with the properties of YAG:Ce crystals. Apart from the traditional spectral methods (absorption, cathodoluminescence and light yield measurements), the intrinsic and Ce 3+ related luminescence of Y 3 Al 5−x Ga x O 12 :Ce solid-solution were also investigated using the luminescent spectroscopy under excitation by synchrotron radiation in the 3.7–25 eV range. We show that the optical properties Y 3 Al 5−x Ga x O 12 :Ce garnets monotonically change with increasing the Ga content in the x=0–3 range due to preferable localization of Ga ions in the tetrahedral position of the garnet lattice. At the highest Ga concentration (x>3) the deviation of the optical properties of Y 3 Al 5−x Ga x O 12 :Ce garnets is observed from the respective properties of these crystals with Ga content in the x=0–3 range due to occupation by Ga ions of the octahedral position in the garnet host. - Highlights: • Different dependence of optical properties of Y 3 Al 5−x Ga x O 12 :Ce crystals on Ga content in x=0–3 and 3–5 ranges. • Elimination of the luminescence of Y Al antisite defects in Y 3 Al 5−x Ga x O 12 :Ce crystals at x>2. • Significant improvement of the scintillation properties of Y 3 Al 5−x Ga x O 12 :Ce crystals at x=2 and 3 in comparison with YAG:Ce

  11. Influence of chromium concentration on the optical-electronic properties of ruby microstructures

    International Nuclear Information System (INIS)

    Cossolino, L C; Zanatta, A R

    2010-01-01

    Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the ∼0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 0 C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 0 C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr 3+ ions exhibit luminescent features not present in other Cr 3+ -containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr 3+ -related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.

  12. Electrical, luminescent, and deep trap properties of Si doped n-GaN grown by pendeo epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A. Y. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Smirnov, N. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Rare Metals, B. Tolmachevsky, 5, Moscow 119017 (Russian Federation); Yakimov, E. B. [National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049 (Russian Federation); Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Science, 6, Academician Ossipyan str., Chernogolovka, Moscow Region 142432 (Russian Federation); Lee, In-Hwan, E-mail: ihlee@jbnu.ac.kr [School of Advanced Materials Engineering and Research Center of Advanced Materials Development, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Pearton, S. J. [University of Florida, Gainesville, Florida 32611 (United States)

    2016-01-07

    Electrical and luminescent properties and deep trap spectra of Si doped GaN films grown by maskless epitaxial lateral overgrowth (MELO) are reported. The dislocation density in the wing region of the structure was 10{sup 6 }cm{sup −2}, while in the seed region it was 10{sup 8 }cm{sup −2}. The major electron traps present had activation energy of 0.56 eV and concentrations in the high 10{sup 15 }cm{sup −3} range. A comparison of diffusion length values and 0.56 eV trap concentration in MELO GaN and epitaxial lateral overgrowth (ELOG) GaN showed a good correlation, suggesting these traps could be effective in carrier recombination. The doped MELO films were more uniform in their electrical properties than either ELOG films or undoped MELO films. We also discuss the differences in deep trap spectra and luminescence spectra of low-dislocation-density MELO, ELOG, and bulk n-GaN samples grown by hydride vapor phase epitaxy. It is suggested that the observed differences could be caused by the differences in oxygen and carbon contamination levels.

  13. Luminescence properties of novel red-emitting phosphor InNb1-xPxO4:Eu3+ for white light emitting-diodes

    Directory of Open Access Journals (Sweden)

    Tang An

    2015-06-01

    Full Text Available InNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.

  14. Characterization of luminescent praseodymium-doped ZrO{sub 2} coatings deposited by ultrasonic spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Brito, F [Laboratorio de Materiales Optoelectronicos, DiDe, Centro de Ciencias de Sinaloa, Av. De las Americas No. 2771 Nte. Col. Villa Universidad, C.P. 80010 Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360 Coyoacan 04510 DF (Mexico); Alejo-Armenta, C [Laboratorio de Materiales Optoelectronicos, DiDe, Centro de Ciencias de Sinaloa, Av. De las Americas No. 2771 Nte. Col. Villa Universidad, C.P. 80010 Culiacan, Sinaloa (Mexico); Alvarez-Fragoso, O [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360 Coyoacan 04510 DF (Mexico); Falcony, C [Departamento de Fisica, CINVESTAV-IPN, Apdo. Postal 14-740, 07000 DF (Mexico)

    2007-11-07

    ZrO{sub 2} : Pr films were synthesized by the ultrasonic spray pyrolysis process. X-ray diffraction studies, as a function of the deposition temperature, indicate a tetragonal crystal structure of zirconia as the substrate temperature was increased. Luminescence (photo- and cathodoluminescence) properties of the films were studied as a function of growth parameters such as the substrate temperature and the praseodymium concentration. For an excitation wavelength of 290 nm, all the photoluminescent emission spectra show peaks located at 490, 510, 566, 615, 642, 695, 718, 740 and 833 nm, associated with the electronic transitions {sup 3} P{sub 0} {yields} {sup 3}H{sub 4}, {sup 3}P{sub 0} {yields} {sup 3} H{sub 4}, {sup 3}P{sub 1} + {sup 1}I{sub 6} {yields} {sup 3}H{sub 5}, {sup 1}D{sub 2} {yields} {sup 3}H{sub 4}, {sup 3} P{sub 0} {yields} {sup 3}H{sub 6}, {sup 1}D{sub 2} {yields} {sup 3} H{sub 5}, {sup 1}D{sub 2} {yields} {sup 3}H{sub 5}, {sup 3} P{sub 0} {yields} {sup 3}F{sub 3,4} and {sup 1}D{sub 2} {yields} {sup 3} F{sub 2} of the Pr{sup 3+} ion. As the deposition temperature is increased, an increasing intensity of the luminescence emission is observed. Also, quenching of the luminescence, with increasing doping concentration, is observed. The chemical composition of the films as determined by energy dispersive spectroscopy is reported as well. In addition, the surface morphology characteristics of the films, as a function of the deposition temperature, are presented.

  15. Thermally and optically stimulated luminescence of early medieval blue-green glass mosaics

    Energy Technology Data Exchange (ETDEWEB)

    Galli, A. E-mail: anna.galli@mater.unimib.it; Martini, M.; Montanari, C.; Sibilia, E

    2004-12-01

    The preliminary results of a study related to luminescent mechanisms in glass mosaic tesserae are presented. The samples came from a medieval glass deposit found during archaeological excavations in the S. Lorenzo Church in Milan. Energy Dispersive X-rays Fluorescence (EDXRF) measurements were performed to obtain information on the elemental composition of the materials. Thermally Stimulated Luminescence (TSL, both conventional and wavelength resolved) and Optically Stimulated Luminescence (OSL) analyses allowed to get information about traps and luminescence centres. The observed luminescence characteristics were close to that of quartz, showing the presence of an easy to bleach trap (300 deg. C, 1.95 eV) and of a hard to bleach trap (350 deg. C, 2.20 eV); charge transfer phenomena, involving the low-temperature peaks have been observed. There is a strong indication that the easy to bleach traps are responsible for both OSL and TSL emission at 300 deg. C.

  16. Thermally and optically stimulated luminescence of early medieval blue-green glass mosaics

    International Nuclear Information System (INIS)

    Galli, A.; Martini, M.; Montanari, C.; Sibilia, E.

    2004-01-01

    The preliminary results of a study related to luminescent mechanisms in glass mosaic tesserae are presented. The samples came from a medieval glass deposit found during archaeological excavations in the S. Lorenzo Church in Milan. Energy Dispersive X-rays Fluorescence (EDXRF) measurements were performed to obtain information on the elemental composition of the materials. Thermally Stimulated Luminescence (TSL, both conventional and wavelength resolved) and Optically Stimulated Luminescence (OSL) analyses allowed to get information about traps and luminescence centres. The observed luminescence characteristics were close to that of quartz, showing the presence of an easy to bleach trap (300 deg. C, 1.95 eV) and of a hard to bleach trap (350 deg. C, 2.20 eV); charge transfer phenomena, involving the low-temperature peaks have been observed. There is a strong indication that the easy to bleach traps are responsible for both OSL and TSL emission at 300 deg. C

  17. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  18. An optically stimulated luminescence study of porcelain related to radiation dosimetry

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Jungner, H.

    1995-01-01

    Stokes and anti-Stokes shifted in energy. Glazing is shown in some cases to be considerably more sensitive as a radiation dosemeter than the main porcelain ceramic. By comparison with the properties of artifical phosphors, the principal luminescent matrix is identified as being Al2O3......This article describes the essential features regarding the photo-stimulated luminescence of porcelain: both the main ceramic and glazing materials are studied. In each case, radiation dose dependent signals are observed, superimposed on dose independent luminescence transitions that are both...

  19. Optical and luminescence properties of zinc oxide (Review)

    Science.gov (United States)

    Rodnyi, P. A.; Khodyuk, I. V.

    2011-11-01

    We generalize and systematize basic experimental data on optical and luminescence properties of ZnO single crystals, thin films, powders, ceramics, and nanocrystals. We consider and study mechanisms by which two main emission bands occur, a short-wavelength band near the fundamental absorption edge and a broad long-wavelength band, the maximum of which usually lies in the green spectral range. We determine a relationship between the two luminescence bands and study in detail the possibility of controlling the characteristics of ZnO by varying the maximum position of the short-wavelength band. We show that the optical and luminescence characteristics of ZnO largely depend on the choice of the corresponding impurity and the parameters of the synthesis and subsequent treatment of the sample. Prospects for using zinc oxide as a scintillator material are discussed. Additionally, we consider experimental results that are of principal interest for practice.

  20. Optically stimulated luminescence dosimetry with gypsum wallboard (drywall)

    International Nuclear Information System (INIS)

    Thompson, J. W.; Burdette, K. E.; Inrig, E. L.; Dewitt, R.; Mistry, R.; Rink, W. J.; Boreham, D. R.

    2010-01-01

    Gypsum wallboard (drywall) represents an attractive target for retrospective dosimetry by optically stimulated luminescence (OSL) in the event of a radiological accident or malicious use of nuclear material. In this study, wallboard is shown to display a radiation-induced luminescence signal (RIS) as well as a natural background signal (NS), which is comparable in intensity to the RIS. Excitation and emission spectra show that maximum luminescence intensity is obtained for stimulation with blue light-emitting diodes (470 nm) and for detection in the ultraviolet region (290-370 nm). It is necessary to decrease the optical stimulation power dramatically in order to adequately separate the RIS from the interfering background signal. The necessary protocols are developed for accurately measuring the absorbed dose as low as 500 mGy and demonstrate that the RIS decays logarithmically with storage time, with complete erasure expected within 1-4 d. (authors)

  1. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  2. Dependence of the thermal influence on luminescence lifetimes from quartz on the duration of optical stimulation

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2003-01-01

    Time-resolved luminescence spectra may be measured from quartz at various stages of continuous optical stimulation in order to investigate properties of the spectra associated with the 'fast', 'medium', and 'slow' components of continuous optically stimulated luminescence (OSL). In this work, temperature related changes of luminescence lifetimes and luminescence intensity, both evaluated from time-resolved luminescence spectra recorded in the 'fast' 'medium' and 'slow' component regions of quartz OSL, have been investigated. The luminescence, stimulated at 525 nm, and measured at intervals between 20 deg. C and 200 deg. C reaches maximum intensity at 100 deg. C and decreases thereafter up to 200 deg. C, the maximum temperature of the investigations. Luminescence lifetimes, on the other hand, remain constant within 40±3 μs between 20 deg. C and 100 deg. C and then decrease down to about μs at 200 deg. C. The initial increase of luminescence intensity with temperature between 20 deg. C and 100 deg. C is discussed in terms of thermal assistance to luminescence stimulation. Beyond 100 deg. C, radiative recombination is affected by quenching of luminescence and reduction in luminescence lifetimes. The activation energy for thermal quenching was evaluated to be in the range 0.63±0.07 eV at all stimulation times and that of thermal assistance was evaluated to be about 0.06 eV for the 'fast' and 'medium' component regions and about 0.1 eV for the 'slow' component region of the OSL

  3. Crack luminescence as an innovative method for detection of fatigue damage

    Directory of Open Access Journals (Sweden)

    R. Makris

    2018-04-01

    Full Text Available Conventional non-destructive testing methods for crack detection provide just a snapshot of fatigue crack evolution at a specific location in the moment of examination. The crack luminescence coating realizes a clear visibility of the entire crack formation. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. Several different experiments show that due to the sensitive coating even the early stage of crack formation can be detected. That makes crack luminescence helpful for investigating the incipient crack opening behavior. Cracks can be detected and observed during operation of a structure, making it also very interesting for continuous monitoring. Crack luminescence is a passive method and no skilled professionals are necessary to detect cracks, as for conventional methods. The luminescent light is clearly noticeable by unaided eye observations and also by standard camera equipment, which makes automated crack detection possible as well. It is expected that crack luminescence can reduce costs and time for preventive maintenance and inspection.

  4. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz; Hruška, P.; Melikhova, O.; Procházka, I. [Department of Low-Temperature Physics, Charles University in Prague, V Holešovičkách 2, CZ-180 00, Prague 8 (Czech Republic); Valenta, J. [Department of Chemical Physics and Optics, Charles University in Prague, Ke Karlovu 3, CZ-121 16, Prague 2 (Czech Republic); Novotný, M.; Bulíř, J. [Academy of Science of the Czech Republic, Institute of Physics, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2015-06-22

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  5. Origin of green luminescence in hydrothermally grown ZnO single crystals

    International Nuclear Information System (INIS)

    Čížek, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Valenta, J.; Novotný, M.; Bulíř, J.

    2015-01-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration

  6. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Science.gov (United States)

    Čížek, J.; Valenta, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Novotný, M.; Bulíř, J.

    2015-06-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  7. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  8. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  9. Structure, luminescence, and dynamics of Eu2O3 nanoparticles in MCM-41

    International Nuclear Information System (INIS)

    Chen, Wei; Joly, Alan G.; Kowalchuk, George A.; Malm, Jan-Olle; Huang, Yining; Bovin, Jan-Olov

    2001-01-01

    The structure, luminescence spectroscopy, and lifetime decay dynamics of Eu2O3 nanoparticles formed in MCM-41 have been investigated. Both X-ray diffraction and high resolution transmission electron microscope observations indicate that Eu2O3 nanoparticles of monoclinic structure are formed inside channels of MCM-41 by heating at 140 C. However, heat treatment at 600 and 700 C causes migration of Eu2O3 from the MCM-41 channels forming nanoparticles of cubic structure outside of the MCM-41 channels. The feature of the hypersensitive 5D0? 7F2 emission profile of Eu3+ is used to follow the structural changes. Photoluminescence lifetimes show the existence of short (< 1 microsecond) and long (microsecond to millisecond) components for each sample. The fast decay is attributed to quenching by surface states of the nanoparticles or energy transfer to the MCM-41 while the longer time decays show the effects of concentration quenching. The monoclinic sample prepared at 140 C shows a higher luminescence intensity than the cubic samples or the bulk powder

  10. High-resolution light microscopy using luminescent nanoparticles.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Roy, Indrajit; Yong, Ken-Tye; Pudavar, Haridas E; Prasad, Paras N

    2010-01-01

    This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.

  11. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  12. Preparation, characterization and luminescence of nanocrystalline Y2O3:Ho

    International Nuclear Information System (INIS)

    Biljan, Tomislav; Gajovic, Andreja; Meic, Zlatko; Mestrovic, Ernest

    2007-01-01

    Nanocrystalline Y 2 O 3 :Ho was synthesized by solution combustion method with ethylene glycol as fuel. Material was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties were studied using Raman spectrometers with excitation in near infrared (NIR) and visible regions. The visible and NIR luminescence spectra of nanocrystalline Y 2 O 3 :Ho show some important differences from those of bulk material. The convenience of using Raman instruments for studying luminescence of lanthanide ions is demonstrated

  13. Luminescent properties of LuPO4-Pr and LuPO4-Eu nanoparticles

    International Nuclear Information System (INIS)

    Vistovskyy, V.; Malyi, T.; Vas’kiv, A.; Chylii, M.; Mitina, N.; Zaichenko, A.; Gektin, A.; Voloshinovskii, A.

    2016-01-01

    Spectral-luminescence parameters of LuPO 4 -Eu and LuPO 4 -Pr nanoparticles of different sizes are studied upon excitation by the synchrotron radiation with photon energies 4–40 eV. Influence of the nanoparticle size on Eu 3+ and Pr 3+ impurity luminescence is analyzed for intracenter and recombination excitation. It is shown that the luminescence intensity of impurities in the case of recombination excitation significantly stronger decreases with decreasing of nanoparticle size compared to intracenter excitation. This feature is explained by the influence of thermalization length to nanoparticle size ratio on the recombination luminescence. Electron recombination luminescence inherent for LuPO 4 -Eu nanoparticles shows a weaker dependence on the nanoparticle size than the hole one in LuPO 4 -Pr nanoparticles. The difference between energy states of praseodymium impurity ions in nanoparticles of different sizes is revealed.

  14. Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio qinghaiensis sp. Q67

    Directory of Open Access Journals (Sweden)

    Qijie Jian

    2017-10-01

    Full Text Available Most tropical fruits after harvest are very perishable because of fungal infection. Since some pathogenic fungi can produce hazardous compounds such as mycotoxins, novel rapid and effective methods to assess those hazardous compounds are urgently needed. Herein we report that Vibrio qinghaiensis sp. Q67, a luminescent bacterium, can be used to rapidly assess the toxicities of mycotoxins and cultures from mycotoxin-producing pathogens. A good correlation (R2 > 0.98 between concentrations of the mycotoxins (fumonisin B1, deoxynivalenol, zearalenone, ochratoxin A, patulin, and citrinin and the luminous intensity of V. qinghaiensis sp. Q67 was obtained. Furthermore, significant correlations (R2 > 0.96 between the amount of mycotoxin and the luminous intensity from the cultures of 10 major mycotoxin-producing pathogens were also observed. In addition, Fusarium proliferatum (half-maximal inhibitory concentration (IC50 = 17.49% exhibited greater luminescence suppression than Fusarium semitectum (IC50 = 92.56% or Fusarium oxysporum (IC50 = 28.61%, which was in agreement with the existing higher levels of fumonisin B1, fumonisin B2, and deoxynivalenol, which were measured by high-performance liquid chromatography-tandem mass spectrometry. These results suggest that V. qinghaiensis sp. Q67 is a promising alternative for the rapid evaluation of the toxicity of fungal mycotoxins.

  15. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    Science.gov (United States)

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Construction of order mesoporous (Eu–La)/ZnO composite material and its luminescent characters

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Na; Liu, Yu; Li, Zi-Wei [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Yu, Hui, E-mail: yh2001101@163.com [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Bai, Hao-tian [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Xia, Long, E-mail: xialong_aron@163.com [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Feng, Da-wei [Changchun University of Science and Technology Science Park, Changchun 130022 (China); Guangdong College of Business and Technology, Zhaoqing 526020 (China); Zhang, Hong-bo; Dong, Xiang-ting; Wang, Tian-yang; Han, Ji; Wu, Rong-yi; Zhang, Qi [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2016-09-15

    For the first time, the order mesoporous zinc oxide was synthesized by a soft template synthesis method. The Eu and La phosphate were introduced into the prepared mesoporous zinc oxide by the high temperature solid phase method, and got the mesoporous rare earth/zinc oxide composite materials. The luminescence characters of the materials were studied. The influences of La to Eu luminescent properties had been studied, and the optimum proportion of Eu and La was discussed. The influences of La and Eu to ZnO luminescence properties were also been studied. La phosphate had the large influence to Eu luminescent. ZnO had a strong emission peak at 469 nm, which overlapped with the {sup 7}F{sub 0}–{sup 5}D{sub 2} transition excitation peak of Eu at 465 nm. It indicated that the effective energy transfer happened between ZnO and Eu, which strongly enhanced the luminescence intensity of Eu. At the same time, the Eu and La phosphates could regulate the defect density of ZnO, which could regulate the luminescent intensity of ZnO, and realized the adjustment of luminescent color between green and red light.

  17. Study on upconversion luminescence and thermal properties of Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Minghui; Wen, Haiqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Yu, Huimei [Analysis and Testing Center of Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Ai, Fei [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Shao, Hui [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003 (China); Pan, Xiuhong; Tang, Meibo; Yu, Jianding; Gai, Lijun [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Liu, Yan, E-mail: liuyan@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China)

    2016-07-05

    Bulk Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glass spheres were fabricated by aerodynamic levitation method. High concentration of Yb{sup 3+} ions was successfully doped in glasses. The effects of Yb{sup 3+} concentration on mechanical properties, Raman, absorption spectra, thermal stability, and glass forming ability were studied systematically. Green, red, and infrared emissions centered at 550, 662, and 758 nm were obtained at 980 nm excitation. Yellow light from glass spheres can be easily observed by naked eyes. As Yb{sup 3+} concentration increases, the upconversion luminescence can be improved obviously. The upconversion luminescence mechanism is a two-photon process of energy transfer, excited state absorption, and energy back transfer. The emission intensity can be enhanced in the samples with high Yb{sup 3+} concentration, since the absorption for the incident laser and the energy transfer efficiency are increased, and the nonradiative relaxation probability is reduced. The light color referring to the ratio for red to green emissions can be tuned by Yb{sup 3+} concentration. Ho{sup 3+}/Yb{sup 3+} co-doped La{sub 2}O{sub 3}–TiO{sub 2}–ZrO{sub 2} glasses show promising comprehensive properties and are helpful to speed the application of upconversion luminescence materials. - Highlights: • Ho{sup 3+}/Yb{sup 3+} doped titanate glasses are prepared by containerless processing. • The effects of Yb{sup 3+} on thermal and mechanical properties have been studied. • High concentration of Yb{sup 3+} is favorable to upconversion luminescence. • The mechanisms are energy transfer, excited state absorption, energy back transfer.

  18. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    Science.gov (United States)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir; Tischler, Jonathan R.; Tisdale, William A.; Walker, Brian J.

    2017-12-12

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  19. Increase of (CdSe/ZnS)Cys quantum dot luminescence intensity in the presence of TPPS4 porphyrin

    International Nuclear Information System (INIS)

    Parra, Gustavo G.; Borissevitch, Iouri E.; Oleinikov, Vladimir A.

    2012-01-01

    Full text: Nanocrystal semiconductor particles or Quantum Dots (QD) possess extraordinary photophysical characteristics, such as extreme high fluorescence quantum yield and optical absorption and very narrow fluorescence band, which can be easily shifted by changing of QD particle size. Due to these characteristics, QD is promising for fluorescence cancer diagnostics and photodynamic treatment. The efficiency of these processes can be in- creased by energy transfer between QD and classic fluorescence probes and photosensitizers (PS). In this work we present on the study of the increase of (CdSe/ZnS)Cys quantum dot luminescence intensity, stimulated by interaction with TPPS 4 porphyrin. The optical absorption and steady-state and time-resolved fluorescence techniques were employed. Water soluble QD (CdSe/ZnS) with emission at 580 nm, functionalized with cysteine (Cys), were studied. TPPS 4 porphyrin was used as a stimulator of QD luminescence. All experiments were realized in PBS buffer (pH 7.3; 7.5 mM) in Milli-Q quality water. The TPPS 4 adding into the QD solutions until the 5μM concentration produced an increase in QD luminescence intensity and lifetime, while for TPPS 4 concentrations higher than 20μM the reduction of the fluorescence intensity was observed, the emission spectra and fluorescence decays profile being unchanged. This effect can not be due to the electrostatic interaction between (CdSe/ZnS)Cys and TPPS 4 because both, (CdSe/ZnS)Cys and TPPS 4 , are negatively charged. We suppose that TPPS 4 porphyrin interacts directly with QD (ZnS) shell, reducing the dangling bound number. This reduction decreases, in turn, the probability of nonradiative ways of the excitation energy dissipation. When the majority of dangling bound is occupied by the TPPS 4 molecules, the effect of QD luminescence reduction (quenching) by porphyrin predominates, probably, via the energy transfer from QD to TPPS 4 . However, because of complexity in the systems involving

  20. Investigation on the effect of Tb(dbm)3phen on the luminescent properties of Eu(dbm)3phen-containing mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Moretti, E.; Bellotto, L.; Basile, M.; Malba, C.; Enrichi, F.; Benedetti, A.; Polizzi, S.

    2013-01-01

    Eu(dbm) 3 phen and Tb(dbm) 3 phen complexes (tris(dibenzoylmethane) mono(1,10-phenantroline) Ln(III)) were impregnated in ordered mesoporous silica nanoparticles (MSNs) with an average size of 50–70 nm and a pore diameter centred at 2.8 nm, with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as down-shifter for multi-crystalline solar cells. The morphological, structural, textural and luminescent properties of the synthesized samples were characterized by N 2 adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–visible spectroscopy and photoluminescence measurements. It is demonstrated that inclusion in the MSNs allows one to use much higher loadings (23 wt%) of the Eu-complex than in other matrices, and that co-doping with Tb(dbm) 3 phen improves luminescence for samples with Eu(dbm) 3 phen content lower than about 10 wt%. Results are interpreted by using a simple sphere of action model adapted to the case of a pore-limited system. - Graphical abstract: Sensitization of the antenna effect (down-conversion of UV radiation to red light) by the presence of Tb(dbm) 3 phen in the cavities of mesoporous silica nanoparticles containing Eu(dbm) 3 phen. - Highlights: • Detailed study of Eu(dbm) 3 phen-doped mesoporous silica nanoparticles luminescence. • Inclusion of up to 23 wt% of Eu(dbm) 3 phen without concentration quenching. • Detailed study of the role of the Tb(dbm) 3 phen co-dopant. • Co-doping effective for Eu 3+ (dbm) 3 phen loadings lower than about 10 wt%

  1. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Energy Technology Data Exchange (ETDEWEB)

    Magaryan, K.A., E-mail: xmagaros@gmail.com [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Mikhailov, M.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Karimullin, K.R. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); E.K. Zavoyski Kazan Physical-Technical Institute of RAS, 10/7 Sibirski trakt Str., Kazan 420029 (Russian Federation); Knyazev, M.V.; Eremchev, I.Y. [Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Naumov, A.V. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Vasilieva, I.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Klimusheva, G.V. [Institute of Physics, NAS of Ukraine, 46 Prospect Nauki, Kiev 03028 (Ukraine)

    2016-01-15

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm{sup 2}. Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  2. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  3. X-ray excited luminescence of polystyrene composites loaded with SrF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Hevyk, V.B. [Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., 76019 Ivano-Frankivsk (Ukraine); Yakibchuk, P.M. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Ave, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine)

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF{sub 2} nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF{sub 2} nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF{sub 2} nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF{sub 2} nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF{sub 2} nanoparticles by polystyrene.

  4. Application of pulse spectro- zonal luminescent method for the rapid method of material analysis

    International Nuclear Information System (INIS)

    Lisitsin, V.M.; Oleshko, V.I.; Yakovlev, A.N.

    2004-01-01

    Full text: The scope of luminescent methods of the analysis covers enough a big around of substances as the luminescence can be excited in overwhelming majority of nonmetals. Analytical opportunities of luminescent methods can be essentially expanded by use of pulse excitation and registration of spectra of a luminescence with the time resolved methods. The most perspective method is to use pulses of high-current electron beams with the nanosecond duration for excitation from the following reasons: excitation is carried out ionizing, deeply enough by a penetrating radiation; the pulse of radiation has high capacity, up to 10 8 W, but energy no more than 1 J; the pulse of radiation has the nanosecond duration. Electrons with energy in 300-400 keV will penetrate on depth into some tenth shares of mm, i.e. they create volumetric excitation of a sample. Therefore the luminescence raised by an electronic beam has the information about volumetric properties of substance. High density of excitation allow to find out and study the centers (defects) having a small yield of a luminescence, to analyze the weakly luminescent objects. Occurrence of the new effects is possible useful to analyze of materials. There is an opportunity of reception of the information from change of spectral structure of a luminescence during the time after the ending of a pulse of excitation and kinetic characteristics of attenuation of luminescence. The matter is the energy of radiation is absorbed mainly by a matrix, then electronic excitations one is transferred the centers of a luminescence (defects) of a lattice. Therefore during the time after creation electronic excitations the spectrum of a luminescence can repeatedly change, transferring the information on the centers (defects) which are the most effective radiators at present time. Hence, the study of change of spectra of radiation during the time allows providing an additional way of discrimination of the information on the centers of a

  5. A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods

    International Nuclear Information System (INIS)

    Dai, Shaoliang; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2016-01-01

    The authors describe a turn-on luminescence resonance energy transfer (LRET) method for the detection of the mycotoxin Ochratoxin A (OTA). It utilizes upconversion nanoparticles (UCNPs) of the type NaYF_4: Yb, Er as the energy donor and gold nanorods (Au NRs) as the acceptor. Biotin-labeled OTA aptamers were bound to the surface of the avidin-functionalized UCNPs. The AuNRs, in turn, were modified with thiolated OTA aptamer cDNA via thiol chemistry. The emission band of the UCNPs under 980-nm laser excitation has a maximum peaking at 657 nm and overlaps the absorption band of the AuNRs which peaks at 660 nm. Quenching of luminescence occurs because the hybridization actions shorten the distance between UCNPs and AuNRs. If, however, OTA is added, the two kinds of particles separate again because of the high affinity between OTA and the OTA aptamer. As a result, luminescence is recovered. The calibration plot is linear in the 0.05 to 100 ng mL"−"1 OTA concentration range, and the limit of detection is 27 pg mL"−"1. The method was successfully applied to the determination of OTA in beer. (author)

  6. Urea-assisted synthesis of AlPO4:Ce,Tb nanorods as a redox luminescence switch

    International Nuclear Information System (INIS)

    Yang, Wei; Hu, Juncheng

    2013-01-01

    AlPO 4 :Ce,Tb nanorods were synthesized by a facile hydrothermal method. The morphology of rod-like AlPO 4 was tuned by varying urea concentrations, AlPO 4 gradually changed from nanosheets to nanorods, and urea provided hydroxyl anion (OH − ) in the aqueous solution to prepare the dispersed nanorods under the hydrothermal conditions. The emission intensity of nanorods increased significantly compared to that of nanosheets. AlPO 4 :Ce,Tb nanorods provided a novel redox luminescence switch on the basis of the reversible switching of the Ce 3+ /Ce 4+ redox couple. The luminescence is quenched (off) when the system is in the oxidized form while it is restored (on) in the reduced form. The mechanism of the energy transfer and electronic transition between Ce 3+ and Tb 3+ in the AlPO 4 nanorods was also discussed. This switch has biocompatibility and low toxicity, and may have a potential application in biomedical diagnostics and analysis

  7. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  8. Mechanism of band-edge luminescence in cuprous iodide single crystals

    International Nuclear Information System (INIS)

    Gao, Pan; Gu, Mu; Liu, Xi; Liu, Bo; Zheng, Yan-Qing; Shi, Er-Wei; Shi, Jun-Yan; Zhang, Guo-bin

    2014-01-01

    Highlights: • The luminescence properties of CuI crystals are influenced by the quality of the as-grown crystals. • The emission peaks of free-exciton and bound-exciton are observed in the CuI single crystals. • The ultrafast component luminescence is warranted to the donor-acceptor pair recombination. • The exciton absorption and electron excitation multiplication processes were observed in CuI. - Abstract: The photoluminescence spectra of CuI crystals using synchrotron radiation as an excitation light source were obtained at 60 K. The emission peaks at 405, 415, 420 and 443 nm were observed. The possible origins of these peaks were discussed by the temperature dependence of luminescence spectra for CuI material. Meanwhile, the photoluminescence spectra of CuI powder with different excitation intensity were measured and the ultrafast luminescence component of CuI crystals was warranted to be attributed to the recombination of donor acceptor pair. Furthermore, the excitation process was studied by measuring the photoluminescence excitation spectra of CuI crystals and powder

  9. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  10. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  11. Luminescence and scintillation properties of LuPO4-Ce nanoparticles

    International Nuclear Information System (INIS)

    Vistovskyy, V.; Malyy, T.; Pushak, A.; Vas’kiv, A.; Shapoval, A.; Mitina, N.; Gektin, A.; Zaichenko, A.; Voloshinovskii, A.

    2014-01-01

    Study of the spectral-luminescence parameters of LuPO 4 -Ce nanoparticles upon the excitation by X-ray quanta and synchrotron radiation with photon energies of 4–25 eV was performed. Nanoparticles with mean size about a=35 nm and nanoparticles with size less than 12 nm reveal the different structures of cerium centers. Luminescence efficiency of LuPO 4 -Ce nanoparticles of a 4 -Ce nanoparticles studied using synchrotron and X-ray excitation. • Different structure of Ce 3+ -centers has been revealed for LuPO 4 -Ce nanoparticles. • Luminescence of LuPO 4 -Ce with size less than 12 nm is strongly quenched upon the X-ray excitation

  12. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    Science.gov (United States)

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  13. Delayed luminescence in a multiparameter approach to evaluation and reduction of radiobiological risks

    Science.gov (United States)

    Grasso, Rosaria; Cammarata, Francesco Paolo; Minafra, Luigi; Marchese, Valentina; Russo, Giorgio; Manti, Lorenzo; Musumeci, Francesco; Scordino, Agata

    2017-07-01

    In the framework of the research project ETHICS "Pre-clinical experimental and theoretical studies to improve treatment and protection by charged particles" funded by the National Nuclear Physics Institute, Italy, we studied the phenomenon called delayed luminescence emitted by non-tumorigenic breast epithelial MCF10A cell line after proton irradiation at different doses (0.5, 2, 6, 9 Gy). The aim is to found possible correlations between delayed luminescence and in vitro damaging induced by ion irradiation. The first results of this research show that the delayed luminescence kinetics is proton dose dependent. An interesting correlation between delayed luminescence and clonogenic potential was observed.

  14. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    Science.gov (United States)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  15. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  16. Anomalous enhancement of nanodiamond luminescence upon heating

    Science.gov (United States)

    Khomich, A. A.; Kudryavtsev, O. S.; Dolenko, T. A.; Shiryaev, A. A.; Fisenko, A. V.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    Characteristic photoluminescence (PL) of nanodiamonds (ND) of different origin (detonation, HPHT, extracted from meteorite) was studied in situ at high temperatures in the range 20-450 °C. Luminescence was excited using 473 nm laser and recorded in the range 500-800 nm. In contrast to decrease of point defect PL in bulk diamond with temperature, we found that the ND luminescence related to ND surface defects increases almost an order of magnitude upon heating to 200-250 °C. The observed effect reveals that water adsorbed on ND surfaces efficiently quenches PL; water desorption on heating leads to dramatic increase of the radiative de-excitation.

  17. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Buckley, Heather L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arnold, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  18. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2011-01-01

    . Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal......Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub......-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic...

  19. Suppression of Red Luminescence in Wire Explosion Derived Eu:ZnO

    Science.gov (United States)

    Pallavi, Bandi; Sathyan, Sneha; Yoshimura, Takuya; Kumar, Praveen; Anbalagan, Kousika; Talluri, Bhusankar; Ramanujam, Sarathi; Ranjan, Prem; Thomas, Tiju

    2018-03-01

    Europium oxide (Eu2O3) is coated on zinc (Zn) wire using the electrophoretic deposition process. The coated Zn wire is subjected to the wire explosion process (WEP) which is rapid (material has ˜ 0.24 at.% doping. This analysis also shows that, unlike another popular material GaN, in the case of ZnO, Eu3+ strictly substitutes for Zn2+ (i.e., dopant replacing a cation-anion pair does not seem possible). It may be noted that Eu3+ in a suitable host is oftentimes reported to be an efficient luminophore. The IR spectra show a band shift from 486 cm-1 to 493 cm-1; with peak shifts from 436 cm-1 to 430 cm-1 in Raman spectra. These too indicate the presence of Eu in the samples. However, at room temperature, only green luminescence (centered at 534 nm) is observed from the sample indicating (1) high concentrations of OZn anti-site defects and Zn vacancies, and (2) concomitant quenching of the luminescence at room temperature. Our results suggest that WEP is viable for synthesizing rare earth doped ceramic materials. However, obtaining efficient phosphors using this approach will likely require, (1) reduction of defect densities, and (2) appropriate passivation using post-processing.

  20. Performance of a novel multiple-signal luminescence sediment tracing method

    Science.gov (United States)

    Reimann, Tony

    2014-05-01

    Optically Stimulated Luminescence (OSL) is commonly used for dating sediments. Luminescence signals build up due to exposure of mineral grains to natural ionizing radiation, and are reset when these grains are exposed to (sun)light during sediment transport and deposition. Generally, luminescence signals can be read in two ways, potentially providing information on the burial history (dating) or the transport history (sediment tracing) of mineral grains. In this study we use a novel luminescence measurement procedure (Reimann et al., submitted) that simultaneously monitors six different luminescence signals from the same sub-sample (aliquot) to infer the transport history of sand grains. Daylight exposure experiments reveal that each of these six signals resets (bleaches) at a different rate, thus allowing to trace the bleaching history of the sediment in six different observation windows. To test the feasibility of luminescence sediment tracing in shallow-marine coastal settings we took eight sediment samples from the pilot mega-nourishment Zandmotor in Kijkduin (South-Holland). This site provides relatively controlled conditions as the morphological evolution of this nourishment is densely monitored (Stive et al., 2013). After sampling the original nourishment source we took samples along the seaward facing contour of the spit that was formed from August 2011 (start of nourishment) to June 2012 (sampling). It is presumed that these samples originate from the source and were transported and deposited within the first year after construction. The measured luminescence of a sediment sample was interpolated onto the daylight bleaching curve of each signal to assign the Equivalent Exposure Time (EET) to a sample. The EET is a quantitative measure of the full daylight equivalent a sample was exposed to during sediment transport, i.e. the higher the EET the longer the sample has been transported or the more efficient it has been exposed to day-light during sediment

  1. Luminescence, scintillation, and energy transfer in SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3}:Ce{sup 3+},Pr{sup 3+} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lertloypanyachai, Prapon; Chewpraditkul, Weerapong; Pattanaboonmee, Nakarin [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Chen, Danping [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai (China); Babin, Vladimir; Beitlerova, Alena; Nikl, Martin [Institute of Physics, AS CR, Prague (Czech Republic)

    2017-09-15

    Ce{sup 3+},Pr{sup 3+}-codoped SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} glasses (SABG:Ce,Pr) were prepared by melt quenching under a CO reducing atmosphere. Luminescence properties were investigated under UV and X-ray excitations. A dominant emission band at 430 nm belonging to the Ce{sup 3+}:5d{sub 1} → 4f transition was observed in the photo- and radio-luminescence spectra. The energy transfer occurs from this Ce{sup 3+} band toward the {sup 3}P{sub J} levels of Pr{sup 3+} with an efficiency of up to 24%, followed by the reduction of integrated luminescence intensity with an increasing Pr{sup 3+} concentration. This result is attributed to the increase in the reabsorption of Ce{sup 3+} luminescence and the non-radiative energy transfer toward the {sup 3}P{sub J} levels of Pr{sup 3+}. The cross-relaxation process within the Pr{sup 3+} pairs can further diminish the total luminescence yield at high Pr{sup 3+} concentrations. The integral scintillation efficiency and light yield measurements were carried out and compared to the reference Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) crystal. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Piezoelectrically-induced stress-luminescence phenomenon in CaAl{sub 2}O{sub 4}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: wuzheng@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2015-10-15

    Piezoelectrically-induced stress-luminescence in the CaAl{sub 2}O{sub 4}:Eu{sup 2+} was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl{sub 2}O{sub 4}:Eu{sup 2+} arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl{sub 2}O{sub 4}:Eu{sup 2+} ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl{sub 2}O{sub 4}:Eu{sup 2+} was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors.

  3. Effect of heptadentate (N{sub 4}O{sub 3}) tripodal Schiff base ligand and its yttrium(III) complex on the luminescence and extraction of tris({beta}-diketonato)europium(III)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y. [Department of Chemistry, Faculty of Science, Science University of Tokyo, Tokyo 162-8601 (Japan)], E-mail: yhasegaw@rs.kagu.tus.ac.jp; Saitou, S.; Nagaoka, D.; Yajima, H. [Department of Chemistry, Faculty of Science, Science University of Tokyo, Tokyo 162-8601 (Japan); Kanesato, M. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562 (Japan)

    2008-02-28

    In order to learn the effect of a Schiff base and the complex of Y{sup III} on the extraction of Eu{sup III} with {beta}-diketones and on the luminescence of the extracted species, the extraction of Eu{sup III} with 2-thenoyltrifluoroacetone (Htta) and/or these Schiff bases, tris(5-t-butyl)salicylidenaminoethyl amine (H{sub 3}L{sup 1}), and its Y{sup III} complex ([YL{sup 1}]) prepared, into CHCl{sub 3} was examined. Further, the luminescence and excited spectra of CHCl{sub 3} phases extracted Eu{sup III} complexes and the solutions containing tris({beta}-diketonato)Eu{sup III} and/or the Schiff bases were measured. On the measurement of the luminescence spectra, tris(pivaloyltrifluoroacetonato)Eu{sup III} (Eu(pta){sub 3}) as well as Eu(tta){sub 3} was used. Synergistic effect with Htta and these Schiff bases was observed. However, proper effect of Y{sup III} was not observed. The luminescence intensity of Eu(tta){sub 3} at 613 nm decreased with increasing concentration of H{sub 3}L{sup 1} or [YL{sup 1}], whereas that of Eu(pta){sub 3} increased with increasing concentration of the ligands, but no difference between both Schiff bases was observed, because of picking up of Y{sup III} from [YL{sup 1}] with the interaction between [YL{sup 1}] and water.

  4. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Science.gov (United States)

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  5. Control of luminescence emitted by Cd{sub 1-x}Mn{sub x}S nanocrystals in a glass matrix: x concentration and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Freitas Neto, Ernesto S; Dantas, Noelio O [Laboratorio de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Fisica, Universidade Federal de Uberlandia, CP 593, CEP 38400-902, Uberlandia, Minas Gerais (Brazil); Barbosa Neto, Newton M [Grupo de Espectroscopia de Materiais (GEM), Instituto de Fisica, Universidade Federal de Uberlandia, CP 593, CEP 38400-902, Uberlandia, Minas Gerais (Brazil); Guedes, Ilde [Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, CEP 60455-760, Fortaleza, Ceara (Brazil); Chen, Felipe, E-mail: ernestosfn@yahoo.com.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, CEP 09210-170, Santo Andre, Sao Paulo (Brazil)

    2011-03-11

    Cd{sub 1-x}Mn{sub x}S nanocrystals (NCs) were successfully grown in a glass matrix and investigated by photoluminescence (PL), electron paramagnetic resonance (EPR) and magnetic force microscopy (MFM). We verified that the luminescent properties of these NCs can be controlled both by changing the x concentration and by thermal annealing of the samples. The EPR and PL data showed that the characteristic emission of Mn{sup 2+} ions ({sup 4}T{sub 1}-{sup 6}A{sub 1}) is only observed when this magnetic impurity is substitutionally incorporated in the Cd{sub 1-x}Mn{sub x}S NC core (site S{sub I}). Besides, it was observed that the emission ({sup 4}T{sub 1}-{sup 6}A{sub 1}) suppression, caused by the Mn{sup 2+} ion presence near the surface (site S{sub II}) of the Cd{sub 1-x}Mn{sub x}S NCs, is independent of the host material. The MFM images also confirmed the high quality of the Cd{sub 1-x}Mn{sub x}S NC samples, showing a uniform distribution of total magnetic moments in the nanoparticles.

  6. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  7. Neutron dosimetry using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Miller, S.D.; Eschbach, P.A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron-induced proton recoils for radiation dosimetry is a well-known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years at Pacific Northwest laboratories (PNL) has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one-year period, and the capability of analyzing single grains within a hydrogenous matrix. 4 refs., 10 figs

  8. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence.

    Science.gov (United States)

    Bassler, B L; Wright, M; Showalter, R E; Silverman, M R

    1993-08-01

    Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of an extracellular signal molecule (autoinducer) in the culture medium. A recombinant clone that restored function to one class of spontaneous dim mutants was found to encode functions necessary for the synthesis of, and response to, a signal molecule. Sequence analysis of the region encoding these functions revealed three open reading frames, two (luxL and luxM) that are required for production of an autoinducer substance and a third (luxN) that is required for response to this signal substance. The LuxL and LuxM proteins are not similar in amino acid sequence to other proteins in the database, but the LuxN protein contains regions of sequence resembling both the histidine protein kinase and the response regulator domains of the family of two-component, signal transduction proteins. The phenotypes of mutants with luxL, luxM and luxN defects indicated that an additional signal-response system controlling density-dependent expression of luminescence remains to be identified.

  9. Preparation and luminescence properties of Eu{sup 2+}doped {gamma}-aluminum oxynitride transparent ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fang; Yuan, Xianyuan; Wang, Shaohua [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China); Wang, Shiwei, E-mail: swwang51@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai (China)

    2013-01-15

    Eu{sup 2+} doped {gamma}-AlON transparent ceramics have been prepared by the solid-state reaction sintering method. The influences of Eu concentration on both strength, transparency and luminescence properties of the as-prepared samples were discussed. The strength and transparency decreased as Eu content increased. Two bands were observed in the emission spectrum of each sample. One (B{sub 1}) was narrow and centered at around 401 nm, the other (B{sub 2}) was comparatively broader, and the location of its center as well as the intensity ratio of peak values of B{sub 2} to that of B{sub 1} varied with Eu content. - Highlights: Black-Right-Pointing-Pointer Eu{sub 2}O{sub 3} was an effective sintering aid in fabrication of transparent {gamma}-AlON ceramics. Black-Right-Pointing-Pointer Eu-doped transparent {gamma}-AlON ceramics exhibited broad emission spectra composed of two bands. Black-Right-Pointing-Pointer The relationship between crystal position of Eu{sup 2+} ions and luminescent properties was given.

  10. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  11. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  12. Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2015-01-01

    The influence of annealing, irradiation dose, preheating and measurement temperature on luminescence lifetimes has been studied in quartz annealed at 1000 °C. The measurements were supplemented by studies on quartz annealed at 900 and 800 °C. Lifetimes increase with dose as well as with temperature and duration of annealing between 800 and 1000 °C. Preheating produces the same effect. The changes are accounted for in terms of hole-transfer from the non-radiative luminescence centre to and between radiative centres. The influence of measurement temperature on lifetimes depends on whether the stimulation is carried out from ambient to 200 °C or otherwise. This result is unlike that in quartz annealed at or below 500 °C where lifetimes are independent of the direction of heating. In particular, lifetimes decrease monotonically when measurements are made from 20 to 200 °C but not when recorded from 200 to 20 °C. The latter produces a pattern resembling that in quartz annealed up to 500 °C. The results are concluded as evidence of thermal effects on separate luminescence centres. In support of this, different values of the activation energy for thermal quenching were found for each supposed luminescence centre. The change of the corresponding luminescence intensity with temperature is also qualitatively consistent with this notion. - Highlights: • Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature is reported. • Lifetimes increase with dose, annealing between 800 and 1000 °C, and preheating. • Lifetimes under stimulation temperature are affected by direction of heating. • Changes are accounted for in terms of hole-transfer luminescence centres.

  13. Luminescence of water or ice as a new detection method for magnetic monopoles

    Directory of Open Access Journals (Sweden)

    Pollmann Anna Obertacke

    2017-01-01

    We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.

  14. Novel Luminescent Multilayer Films Containing π-Conjugated Anionic Polymer with Electronic Microenvironment

    Directory of Open Access Journals (Sweden)

    Tianlei Wang

    2016-09-01

    Full Text Available Layered double hydroxides (LDHs, luminescent π-conjugated anionic polymer and montmorillonite (MMT were orderly assembled into luminescent multilayer films via layer-by-layer self-assembly method. The electronic microenvironment (EME, the structure of which is like a traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially, due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer, EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are expected to have the potential for designing, constructing, and investigating novel light-emitting thin films.

  15. Luminescence studies of rare earth doped dosimeters

    International Nuclear Information System (INIS)

    Karali, T.

    1999-10-01

    from the rare earth sites, with signals characteristic of the RE 3+ states. Once more, the data suggest that the rare earth ions are active both in the trapping and luminescence processes where ionic radii influence the TL peak temperature. Finally, the research has expanded to include the analysis of high resolution RL spectra of CaSO 4 and MgB 4 O 7 doped with different concentrations of rare earths. This thesis presents the preliminary results and reveals that in higher concentrations, RE ions form a cluster which reduce the luminescence emission. (author)

  16. Structural and luminescence properties of self-yellow emitting undoped and (Ca, Ba, Sr)-doped Zn2V2O7 phosphors synthesized by combustion method

    Science.gov (United States)

    Foka, Kewele E.; Dejene, Birhanu F.; Koao, Lehlohonolo F.; Swart, Hendrik C.

    2018-04-01

    A self-activated yellow emitting Zn2V2O7 was synthesized by combustion method. The influence of the processing parameters such as synthesis temperature and dopants concentration on the structure, morphology and luminescence properties was investigated. The X-ray diffraction (XRD) analysis confirmed that the samples have a tetragonal structure and no significant structural change was observed in varying both the synthesis temperature and the dopants concentration. The estimated average crystallite size was 78 nm for the undoped samples synthesized at different temperatures and 77 nm for the doped samples. Scanning electron microscope (SEM) images showed agglomerated hexagonal-shaped particles with straight edges at low temperatures and the shape of the particles changed to cylindrical structures at moderate temperatures. At higher temperatures, the morphology changed completely. However, the morphologies of the doped samples looked alike. The photoluminescence (PL) of the product exhibited broad emission bands ranging from 400 to 800 nm. The best luminescence intensity was observed for the undoped Zn2V2O7 samples and those synthesized at 600 ℃ . Any further increase in synthesis temperature, type and concentration of dopants led to a decrease in the luminescence intensity. The broad band emission peak of Zn2V2O7 consisted of two broad bands corresponding to emissions from the Em1 (3T2→1A1) and Em2 (3T1→1A1) transitions.

  17. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  18. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  19. High-temperature peaks of thermostimulated luminescence in the ammonium halogens

    International Nuclear Information System (INIS)

    Kim, L.M.; Musenova, Eh.K.; Mukhamedrakhimov, K.U.

    2003-01-01

    The ammonium halogen crystals (AHC) are the close analogs of the alkali halogen crystals by the type of chemical bonds and crystal lattice structure. The ammonium halogen after irradiation by X-rays within 80-300 K range have two peaks of thermo-stimulation luminescence. Its maximums in dependence of anions type are in the 110-120 K and 170-180 K ranges. The first range is related with activation of auto-localized holes migration, and the second one - with the NH 3 + defects decay. Experimentally is established, that the pure ammonium halogens have memory about the previous irradiation at heating up to 300 K. After repeat irradiation the recombination luminescence high-temperature peak's shoulder is appearing. The second luminescence peak's shoulder revealing does not depend on the impurity center nature. It is known, that in the AHC there is the next thermo-stimulation luminescence peak within 340-360 K. The thermal annealing of this peak leads to the memory effect disappearance. So, the observing phenomenon is related with own defect of the matrix in the cation sublattice. Experimentally is established, that at a room temperature the AHC memorizing about previous irradiation during 20 h

  20. Ab initio calculations of cross luminescence materials

    International Nuclear Information System (INIS)

    Kanchana, V.

    2016-01-01

    Abintio calculations have been performed to study the structural, electronic, and optical properties of ABX 3 (A=alkali, B=alkaline-earth, and X=halide) compounds. The ground state properties are calculated using the pseudopotential method with the inclusion of van der Waals interaction, which we find inevitable in reproducing the experimental structure properties in alkali iodides because of its layered structure. All calculations were performed using the Full-Potential Linearized Augmented Plane Wave method. The band structures are plotted with various functionals and we find the newly developed Tran and Blaha modified Becke-Johnson potential to improve the band gap significantly. The optical properties such as complex dielectric function, refractive index, and absorption spectra are calculated which clearly reveal the optically isotropic nature of these materials though being structurally anisotropic, which is the key requirement for ceramic scintillators. Cross luminescence materials are very interesting because of its fast decay. One of the major criteria for the cross luminescence to happen is the energy difference between valence band and next deeper core valence band being lesser when compared to energy gap of the compound, so that radiative electronic transition may occur between valence band and core valence band. We found this criteria to be satisfied in all the studied compounds leading to cross luminescence except for KSrI 3 , RbSrI 3 . The present study suggest that among the six compounds studied, CsSrI 3 , CsMgCl 3 , CsCaCl 3 , and CsSrCl 3 compounds are cross luminescence materials, which is well explained from the band structure, optical properties calculations. Chlorides are better scintillators that iodides and CsMgCl 3 is found to be promising one among the studied compounds. Apart from these materials we have also discussed electronic structure and optical properties of other scintillator compounds. (author)

  1. Process for producing a self luminescent material

    Energy Technology Data Exchange (ETDEWEB)

    Abe, E

    1962-01-28

    A self luminescent material is produced by a process comprising applying a hydroxide or fluoride of promethium-147 suspended in a medium of paraffinic acid to the surface of a fluorescent body. Promethium-147 decays with a half-life of 2.6 years and emits beta-rays but not alpha- and gamma-rays so that it is suitable for manufacturing self luminescent materials. A chloride of promethium-147 cannot be employed because its structure is destroyed by acids. Although fluorides and hydroxides of promethium-147 are difficult to mix with the fluorescent body material, they become mixable when paraffinic acids containing from 12 to 20 carbon atoms, (for example, steric acid, palmitic acid and margaric acid) are used as a medium. In embodiments, the self luminescent materials are prepared by either neutralization of a promethium-147 chloride solution having a specific radioactivity of 1.2 c/cc. with an ammonium hydroxide solution to form gelatinous hydroxide, or the reaction of a promethium-147 chloride solution with H/sub 2/SiF/sub 6/ by heating at 80/sup 0/C to form a fluoride of promethium-147. The products have a specific radioactivity of 8 to 12 mc/g. These products are suspended in vehicles of polystyrene and methacrylic resin to produce the self luminescent coating materials. Tests show that the initical brightness is comparatively high, the decreasing rate of brightness is small, no blackening effects by alpha-rays occur and costs are low. The brightness of the coating containing promethium-147 is 82-85 after 5 days, 100-105 after 100 days and 82-92 after 180 days. With respect to the coating containing radium the values are 31-70 after 5 days, 28-49 after 100 days and 19-31 after 180 days.

  2. Cu"+ luminescence in Na_2Sr_2Al_2PO_4Cl_9 halophosphate phosphor

    International Nuclear Information System (INIS)

    Yerpude, Vrushali; Dhoble, S.J.; Ghormare, K.B.

    2016-01-01

    This article reports the luminescence of copper doped halophosphate Na_2Sr_2Al_2PO_4Cl_9. The phosphor was synthesized by wet chemical method by varying Cu concentrations as 0.02, 0.05, 0.1, 0.2 and 0.5 mole %.The material was further dried in the oven at 80 °C with subsequent quenching at 200°C. Photoluminescence (PL) properties were studied with Shimadzu RF-5301 PC Spectroflurophotometer. PL excitation spectra of monitored at 439 nm emission wavelength, shows a prominent peak around 381 nm from the ground state electronic configuration 3d"1"0.The PL emission spectra of the phosphor monitored at 381 nm excitation wavelength in the blue region shows a broadband band around 412 nm with a shoulder peak at 440 nm, corresponding to the 3d"1"0 ↔ 3d"94s transitions of copper, which are strictly forbidden for the free ion but become partially allowed in crystals or glasses by coupling with lattice vibrations of odd parity resulting in broad excitation and emission bands. The luminescence intensity is found to increase progressively with the doping concentrations of activator and the maximum intensity is observed for 0.1 mole %. The PL spectra is found to be the same for all concentrations with difference only in the intensity. The excited states energies and the Stokes shift are reported to be very sensitive to the size and the symmetry of the copper site, leading to strong modulations of the spectral distribution, depending on the nature of the material. (author)

  3. Pyrene-Containing ortho-Oligo(phenylene)ethynylene Foldamer as a Ratiometric Probe Based on Circularly Polarized Luminescence.

    Science.gov (United States)

    Reiné, Pablo; Justicia, Jose; Morcillo, Sara P; Abbate, Sergio; Vaz, Belen; Ribagorda, María; Orte, Ángel; Álvarez de Cienfuegos, Luis; Longhi, Giovanna; Campaña, Araceli G; Miguel, Delia; Cuerva, Juan M

    2018-04-20

    In this manuscript, we report the first synthesis of an organic monomolecular emitter, which behaves as a circularly polarized luminescence (CPL)-based ratiometric probe. The enantiopure helical ortho-oligo(phenylene)ethynylene ( o-OPE) core has been prepared by a new and efficient macrocyclization reaction. The combination of such o-OPE helical skeleton and a pyrene couple leads to two different CPL emission features in a single structure whose ratio linearly responds to silver(I) concentration.

  4. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  5. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    International Nuclear Information System (INIS)

    Liu Mingjing; Ye Zhiqiang; Xin Chenglong; Yuan Jingli

    2013-01-01

    Highlights: ► A lanthanide complex-based ratiometric luminescent pH sensor was developed. ► The sensor can luminously respond to pH in weakly acidic to neutral media. ► The sensor can be used for monitoring pH with time-resolved luminescence mode. ► The sensor can be also used for monitoring pH with absorbance mode. ► The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu 3+ and Tb 3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu 3+ is strongly dependent on the pH values in weakly acidic to neutral media (pK a = 5.8, pH 4.8–7.5), while that of HTTA–Tb 3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu 3+ and HTTA–Tb 3+ (the HTTA–Eu 3+ /Tb 3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb 3+ emission at 540 nm to its Eu 3+ emission at 610 nm, I 540nm /I 610nm , as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu 3+ /Tb 3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A 290nm /A 325nm , as a signal. This feature enables the HTTA–Eu 3+ /Tb 3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the

  6. Investigation of the luminescent properties of terbium-anthranilate complexes and application to the determination of anthranilic acid derivatives in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, N.; Georges, J

    2003-01-10

    The luminescent properties of terbium complexes with furosemide (FR), flufenamic (FF) acid, tolfenamic (TF) acid and mefenamic (MF) acid have been investigated in aqueous solutions. For all four compounds, complexation occurs when the carboxylic acid of the aminobenzoic group is dissociated and is greatly favoured in the presence of trioctylphosphine oxide as co-ligand and Triton X-100 as surfactant. Under optimum conditions, luminescence of the lanthanide ion is efficiently sensitised and the lifetime of the {sup 5}D{sub 4} resonance level of terbium in the complex is ranging between 1 and 1.9 ms, against 0.4 ms for the aqua ion. The sensitivity of the method for the determination of anthranilic acid derivatives is improved by one to two orders of magnitude with respect to that achieved using native fluorescence or terbium-sensitised luminescence in methanol. The limits of detection are 2x10{sup -10}, 5x10{sup -10} and 2x10{sup -9} mol l{sup -1} for flufenamic acid, furosemide and tolfenamic acid, and mefenamic acid, respectively, with within-run RSD values of less than 1%. The method has been applied to the determination of flufenamic acid in spiked calf sera with and without sample pretreatment. Depending on the method and the analyte concentration, the recovery was ranging between 83 and 113% and the lowest concentration attainable in serum samples was close to 1x10{sup -7} mol l{sup -1}.

  7. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  8. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  9. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: wanminghua819@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: pohsumwong@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: roslihussin@utm.my [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: hendrik@ibnusina.utm.my [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: salasiah@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-05-15

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  10. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2018-06-01

    Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.

  12. Evaluation of one-step luminescent cyanoacrylate fuming.

    Science.gov (United States)

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spectral luminescence and geochemistry of coral aragonite: Effects of whole-core treatment

    NARCIS (Netherlands)

    Nagtegaal, R.; Grove, C.A.; Kasper, S.; Zinke, J.; Brummer, G.J.A.

    2012-01-01

    Luminescent and geochemical properties of coral skeletons are increasingly used for time-series analysis to resolve past and ongoing changes in environmental and climatic conditions. Corals also contain non-skeletal matter which not only quenches luminescence but is also reported to compromise

  15. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar

    DEFF Research Database (Denmark)

    Guralnik, Benny; Li, Bo; Jain, Mayank

    2015-01-01

    the growth and decay of laboratory-regenerated luminescence signals. Here we review a selection of common models describing the response of infrared stimulated luminescence (IRSL) of feldspar to constant radiation and temperature as administered in the laboratory. We use this opportunity to introduce...

  16. Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions

    Science.gov (United States)

    Cao, Renping; Luo, Wenjie; Xu, Haidong; Luo, Zhiyang; Hu, Qianglin; Fu, Ting; Peng, Dedong

    2016-03-01

    YbAlO3:Mn4+, YbAlO3:Mn4+, Li+, and YbAlO3:Mn4+, Mg2+ phosphors are synthesized by high temperature solid-state reaction method in air. Their crystal structures and luminescence properties are investigated. Photoluminescence excitation (PLE) spectrum monitored at 677 nm contains broad PLE band with three PLE peaks located at ∼318, 395, and 470 nm within the range 220-600 nm. Emission spectra with excitation 318 and 470 nm exhibit three emission band peaks located at ∼645, 677, and 700 nm in the range of 610-800 nm and their corresponding chromaticity coordinates are about (x = 0.6942, y = 0.3057). The possible luminous mechanism of Mn4+ ion is analyzed by the simple energy level diagram of Mn4+ ion. The optimum Mn4+-doped concentration in YbAlO3:Mn4+ phosphor is about 0.4 mol% and the luminescence lifetime of YbAlO3:0.4%Mn4+ phosphor is ∼0.59 ms. Emission intensity of YbAlO3:0.4%Mn4+ phosphor can be enhanced ∼6 times after Mg2+ ion is co-doped and it is ∼2 times when Li+ ion is co-doped. The content in the paper is useful to research new Mn4+-doped luminescence materials and improve luminescence property of other Mn4+-doped phosphors.

  17. A pulse radiolysis based singlet oxygen luminescence facility

    International Nuclear Information System (INIS)

    Gorman, A.A.; Hamblett, I.; Land, E.J.

    1989-01-01

    In this paper the authors report the first successful time-resolved detection of singlet oxygen, O 2 ( 1 Δ g ), luminescence using the pulse radiolysis technique. The use of this technique (a) to produce high concentrations of solute (S) triplet states in aerated benzene (B) via a combination of channels 1-4 and (b) to subsequently form O 2 ( 1 Δ g ) via channel 5 has already been described. The method complements direct pulsed laser excitation of S in that formation of 3 S*, and therefore of O 2 ( 1 Δ g ), is still efficient in those instances where intersystem crossing (channel 4) is unimportant. In the latter situation a laser-based experiment would require an additional light-absorbing sensitizer which could subsequently transfer triplet energy to high concentrations of S. Such experiments, certainly of a quantitative nature, are usually doomed to failure because of competitive light absorption problems. No such problems exist with pulse radiolysis, and the high available triplet energy of 3 B* (84 kcal mol -1 ) ensures that virtually any solute of interest, in the O 2 ( 1 Δ g ) context, will be efficiently promoted to its triplet state

  18. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    Science.gov (United States)

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  20. Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies

    Science.gov (United States)

    Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.

    2017-06-01

    Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.

  1. Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosticher, Céline [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France); Viana, Bruno, E-mail: bruno.viana@chimie-paristech.fr [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Maldiney, Thomas; Richard, Cyrille [Unité de Technologies Chimiques et Biologiques pour la Santé, CNRS, UMR 8258, Paris Cedex F-75270 (France); Inserm U1022, Paris Cedex F-75270 (France); Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex F-75270 (France); Chanéac, Corinne, E-mail: corinne.chaneac@upmc.fr [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France)

    2016-02-15

    Biocompatible nanoparticles possessing persistent luminescence properties offer attractive possibilities for in vivo imaging applications as it allows an excitation of the sensors outside the animal before injection and a long-lasting emission of light. Here we report the development of highly biocompatible calcium phosphate nanoparticles doped with europium, Mn{sup 2+} and Ln{sup 3+} (Ln{sup 3+}=Dy{sup 3+}, Pr{sup 3+}) ions synthesized by hydrothermal route and tailored to present red-near infrared persistent luminescence after UV excitation. Nanosize biphasic HAp/β-TCP compounds with sphere and rod-shaped were obtained. Two emission bands in the red-near infrared range were observed and attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transitions of Mn{sup 2+} ions in HAp/β-TCP. An annealing treatment in reductive atmosphere post-synthesis was essential to reveal persistent luminescence properties. Indeed, such thermal treatment allows reducing Eu{sup 3+} ions in Eu{sup 2+} ions and generating required defaults as oxygen vacancies in the crystal necessary for red emission in accordance with persistent luminescence mechanism. These nanoparticles have been tested for the first time for in vivo imaging on small animal as proof of concept of prospective highly biocompatible nanoprobes. - Highlights: • Biocompatible HAp/b-TCP nanoparticles with persistent luminescence are investigated. • Reducing step induced persistent luminescence. • Nanoparticles have been tested for the first time for in vivo imaging. • Persistent luminescence is observed after 10 min in vivo.

  2. Luminescence behavior and compensation effect on the hole concentration in the sol–gel Zn{sub 1−x}Cu{sub x}S{sub y} films with different compositions

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Wei-Shih [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Lin, Yow-Jon, E-mail: rzr2390@yahoo.com.tw [Institute of Photonics, National Changhua University of Education, Changhua 500, Taiwan (China); Chang, Hsing-Cheng [Department of Automatic Control Engineering, Feng Chia University, Taichung 407, Taiwan (China); Liu, Chia-Jyi; Chen, Liang-Ru [Department of Physics, National Changhua University of Education, Changhua 500, Taiwan (China)

    2015-12-15

    This study determines the effect of Cu and S content on the structural, luminescence and electrical properties of sol–gel Zn{sub 1−x}Cu{sub x}S{sub y} films. The dependence of acceptors [interstitial sulfur (S{sub i})] and donors [sulfur vacancy (V{sub S})] on the film composition allows the hole concentration of Zn{sub 1−x}Cu{sub x}S{sub y} samples to be tuned. It is found that an increased Cu/Zn molar ratio leads to a reduced probability of the formation of V{sub S}, which increases the hole concentration. An increase in Cu/Zn and S/Zn molar ratios leads to a significantly increased probability of the formation of S{sub i} and a reduced probability of the formation of V{sub S}, which significantly increases the hole concentration. Clearly, compensation effects limit the hole concentration of Zn{sub 1−x}Cu{sub x}S{sub y} samples. The results show that S{sub i} is the origin of the p-type conductivity. It is also shown that a suitable choice of composition increases acceptor-like defect formation in Zn{sub 1−x}Cu{sub x}S{sub y}. - Highlights: • The effect of the composition on the hole concentration of Zn{sub 1−x}Cu{sub x}S{sub y} is studied. • A dependence of the optical property upon the film composition is found. • Compensation effects limit the hole concentration of Zn{sub 1−x}Cu{sub x}S{sub y} samples. • Interstitial sulfur is the origin of the p-type conductivity of Zn{sub 1−x}Cu{sub x}S{sub y}. • A suitable choice of the compositions promotes the formation of acceptors.

  3. Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses.

    Science.gov (United States)

    Yang, Hucheng; Lakshminarayana, G; Zhou, Shifeng; Teng, Yu; Qiu, Jianrong

    2008-04-28

    Aluminum-lanthanum-silicate glasses with different Eu doping concentration have been synthesized by conventional melt-quenching method at 1680 degrees C in reductive atmosphere. Under 395nm excitation, samples with low Eu doping concentration show mainly the cyan broad emission at 460nm due to 4f(6)5d(1)-4f(7) transition of Eu(2+); and the samples with higher Eu doping concentration show mainly some narrow emissions with maximum at 616nm due to (5)D(0)-(7)F(j) (J=0, 1, 2, 3, 4) transitions of Eu(3+). Cyan-white-red tunable luminescence under 395nm excitation has been obtained by changing the Eu doping concentration.

  4. A portable luminescence dating instrument

    DEFF Research Database (Denmark)

    Kook, M.H.; Murray, A.S.; Lapp, Torben

    2011-01-01

    We describe a portable luminescence reader suitable for use in remote localities in the field. The instrument weighs about 8kg and is based around a 30mm bialkali photomultiplier detecting signals through a glass filter centered on 340nm. Stimulation is by 470nm blue LEDs (24W in total) operating...

  5. Luminescence due to peptide linkage observed in L-cysteine molecules irradiated by infrared laser light

    Energy Technology Data Exchange (ETDEWEB)

    Tsujibayashi, Toru, E-mail: toru-t@cc.osaka-dent.ac.jp [Department of Physics, Osaka Dental University, 8-1 Kuzuha-hanazono, Hirakata, Osaka 573-1121 (Japan); Matsubara, Eiichi; Ichimiya, Masayoshi [Department of Physics, Osaka Dental University, 8-1 Kuzuha-hanazono, Hirakata, Osaka 573-1121 (Japan); Ohno, Nobuhito [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-Cho, Neyagawa, Osaka 572-8530 (Japan)

    2016-01-15

    The sequence of amino acids in peptide chains consisting of proteins is the most fundamental information of living things. A direct and nondestructive method of reading is highly required as an alternative to the method based on the gene analysis. Luminescence detection is a very sensitive tool for investigating various materials. In order to find characteristic luminescence of each amino acid we study L-cysteine and L-tyrosine using UV laser of 3.36 eV with pulse duration of 1.5 ps. In addition to a common 2.66 eV band of the luminescence we have found 2.89 eV band for L-cysteine and 2.92 eV band for L-tyrosine. It can be interpreted that the side chain makes difference on the luminescence by affecting the peptide linkage or carbonyl group. - Highlights: • Luminescence from L-cysteine and L-tyrosine are studied. • Analyzing the luminescence enables to distinguish those two amino acids. • The lifetimes and the peak photon energies under UV laser excitation are presented.

  6. Luminescence properties of Si-containing porous matrix–PbS nanoparticle systems

    International Nuclear Information System (INIS)

    Tarasov, S. A.; Aleksandrova, O. A.; Lamkin, I. A.; Maksimov, A. I.; Maraeva, E. V.; Mikhailov, I. I.; Moshnikov, V. A.; Musikhin, S. F.; Nalimova, S. S.; Permyakov, N. V.; Spivak, Yu. M.; Travkin, P. G.

    2015-01-01

    The luminescence properties of systems that contain lead-sulfide nanoparticles deposited onto substrates fabricated from porous silicon, oxidized porous silicon, and porous (tin-oxide)–(silicon-oxide) layers are studied. It is shown that the structure and composition of the matrix induce a strong effect on the luminescence spectra of colloidal quantum dots, defining their emission wavelength

  7. Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate-Europium Complex.

    Science.gov (United States)

    Sun, Jingyan; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-12-21

    Singlet oxygen ((1)O2) plays a key role in the photodynamic therapy (PDT) technique of neoplastic diseases. In this work, by using a 9,10-dimethyl-2-anthryl-containing β-diketone, 1,1,1,2,2-pentafluoro-5-(9',10'-dimethyl-2'-anthryl)-3,5-pentanedione (Hpfdap), as a (1)O2-recognition ligand, a novel β-diketonate-europium(III) complex that can act as a luminescence probe for (1)O2, [Eu(pfdap)3(tpy)] (tpy = 2,2',2″-terpyridine), has been designed and synthesized for the time-gated luminescence detection of (1)O2 in living cells. The complex is weakly luminescent due to the quenching effect of 9,10-dimethyl-2-anthryl groups. After reaction with (1)O2, accompanied by the formation of endoperoxides of 9,10-dimethyl-2-anthryl groups, the luminescence quenching disappears, so that the long-lived luminescence of the europium(III) complex is switched on. The complex showed highly selective luminescence response to (1)O2 with a remarkable luminescence enhancement. Combined with the time-gated luminescence imaging technique, the complex was successfully used as a luminescent probe for the monitoring of the time-dependent generation of (1)O2 in 5-aminolevulinic acid (a PDT drug) loaded HepG2 cells during the photodynamic process. In addition, by coloading the complex and a mitochondrial indicator, Mito-Tracker Green, into HepG2 cells, the specific localization of [Eu(pfdap)3(tpy)] molecules in mitochondria of HepG2 cells was demonstrated by confocal fluorescence imaging measurements.

  8. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  9. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  10. Luminescent and structural properties of Zn_xMg_1_-_xWO_4 mixed crystals

    International Nuclear Information System (INIS)

    Krutyak, N.; Nagirnyi, V.; Spassky, D.; Tupitsyna, I.; Dubovik, A.; Belsky, A.

    2016-01-01

    The structural and luminescent properties of perspective scintillating Zn_xMg_1_-_xWO_4 mixed crystals were studied. The following characteristics were found to depend linearly on x value: the energy of several vibrational modes detected by Raman spectroscopy, the bandgap width deduced from the shift of the excitation spectrum onset of a self-trapped exciton (STE) emission, the position of thermally stimulated luminescence peaks. It is also shown that the thermal stability of the STE luminescence decreases gradually when x decreases. These data indicate that each Zn_xMg_1_-_xWO_4 mixed crystal is not a mixture of two constituents, but possesses its original crystalline structure, as well as optical and luminescent properties. - Highlights: • The structural and luminescent properties of Zn_xMg_1_-_xWO_4 were studied. • The energy of Raman modes, the bandgap width, TSL peak position linearly depend on x. • Each Zn_xMg_1_-_xWO_4 possesses its original crystalline structure.

  11. Excitonic surface polaritons in luminescence from ZnTe crystals

    International Nuclear Information System (INIS)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G.

    1984-01-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ΔE/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated. (author)

  12. Excitonic surface polaritons in luminescence from ZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G. (AN Ukrainskoj SSR, Kiev. Inst. Fiziki)

    1984-10-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ..delta..E/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated.

  13. Functional morphology of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae), a bacterially luminous coral reef fish.

    Science.gov (United States)

    Dunlap, Paul V; Nakamura, Masaru

    2011-08-01

    Previous studies of the luminescence system of Siphamia versicolor (Perciformes: Apogonidae) identified a ventral light organ, reflector, lens, duct, and a ventral diffuser extending from the throat to the caudal peduncle. The control and function of luminescence in this and other species of Siphamia, however, have not been defined. Morphological examination of fresh and preserved specimens identified additional components of the luminescence system involved in control and ventral emission of luminescence, including a retractable shutter over the ventral face of the light organ, contiguity of the ventral diffuser from the caudal peduncle to near the chin, and transparency of the bones and other tissues of the lower jaw. The shutter halves retract laterally, allowing the ventral release of light, and relax medially, blocking ventral light emission; topical application of norepinephrine to the exposed light organ resulted in retraction of the shutter halves, which suggests that operation of the shutter is under neuromuscular control. The extension of the diffuser to near the chin and transparency of the lower jaw allow a uniform emission of luminescence over the entire ventrum of the fish. The live aquarium-held fish were found to readily and consistently display ventral luminescence. At twilight, the fish left the protective association with their longspine sea urchin, Diadema setosum, and began to emit ventral luminescence and to feed on zooplankton. Ventral luminescence illuminated a zone below and around the fish, which typically swam close to the substrate. Shortly after complete darkness, the fish stopped feeding and emitting luminescence. These observations suggest that S. versicolor uses ventral luminescence to attract and feed on zooplankton from the reef benthos at twilight. Ventral luminescence may allow S. versicolor to exploit for feeding the gap at twilight in the presence of potential predators as the reef transitions from diurnally active to

  14. Infrared stimulated luminescence dating of an Eemian (MIS 5e) site in Denmark using K-feldspar

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Huot, Sebastian; Murray, Andrew S.

    2011-01-01

    Infrared stimulated luminescence (IRSL) dating of K-feldspars may be an alternative to quartz optically stimulated luminescence (OSL) dating when the quartz OSL signal is too close to saturation or when the quartz luminescence characteristics are unsuitable. In this paper, Eemian (MIS 5e) coastal...

  15. Luminescence detection of phase transitions in crystals and nanoparticle inclusions

    International Nuclear Information System (INIS)

    Townsend, P. D.; Yang, B.; Wang, Y.

    2008-01-01

    Luminescence measurements are extremely sensitive to variations in structural environment and thus have the potential to probe distortions of fluorescence sites. Changes can be monitored via luminescence efficiency, emission spectra or excited state lifetimes and these factors are influenced by the local neighbourhood around the emission site, and therefore by structure, composition, pressure and temperature. A rarely exploited approach for condensed matter has been to use the changes in luminescence responses during heating or cooling of a material to provide a rapid survey to detect the presence of phase transitions. One can often differentiate between bulk and surface effects by contrasting results from radioluminescence for bulk responses, and cathodoluminescence or photoluminescence for surface effects. One expects that discontinuous changes in optical parameters occur during temperature changes through phase transitions of insulating materials. In practice, optical signals also exist from surface states of fullerenes and high temperature superconductors etc which identify the presence of structural or superconducting transitions. Numerous examples are cited which match standard documented transitions. Interestingly many examples show the host signals are strongly sensitive to impurity phase transitions from inclusions such as nanoparticles of water, N 2 , O 2 or CO 2 . Recent luminescence data reveal many examples of new transitions, hysteresis and irreversible changes. The signals equally respond to relaxations of a structure and surprisingly indicate that in some materials, such as SrTiO 3 or ZnO, ion implantation of the surface triggers relaxations and phase changes throughout the bulk of the material. Luminescence routes to detect phase transitions are powerful tools but have a tiny literature and so the subject is ideal for rapid exploitation and development. (Author)

  16. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  17. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  18. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  19. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    Kry, S.

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  20. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.