WorldWideScience

Sample records for luminescent applications perspectivas

  1. Perspectives of development of ceramic materials with luminescent applications; Perspectivas del desarrollo de materiales ceramicos con aplicaciones luminiscentes

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado E, A.; Fernandez M, J.L.; Diaz G, J.L.I.; Rivera M, T. [IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico)

    2005-07-01

    The science and technology of materials believes and it applies the knowledge that allow to relate the composition, it structures and the one processed with those properties that those they make capable for each one of the applications. The ceramic materials are inorganic materials not metallic, constituted by metallic elements and not metallic. In general, they usually behave, as good insulating electric and thermal due to the absence of conductive electrons. Usually, they possess relatively high coalition temperatures and, also, a chemical stability relatively high. Due to these properties, they are indispensable for many of those designs in engineering. The ceramic materials for luminescent applications are constituted typically by pure compounds (Al{sub 2}O{sub 3}, TiO{sub 2}, SiO{sub 2} and ZrO{sub 2}) or cocktails with some sludges giving as a result (Al{sub 2}O{sub 3}:TR, TiO{sub 2}:Eu, Si:ZrO{sub 2}, ZrO{sub 2}:TR). Presently work describes the panorama to big features on the development of ceramic materials in the CICATA Unit it would Bequeath, which can be characterized by the photoluminescence techniques and thermoluminescence mainly. (Author)

  2. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  3. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  4. Optically Stimulated Luminescence Fundamentals and Applications

    CERN Document Server

    McKeever, Stephen

    2011-01-01

    The book discusses advanced modern applications of optically stimulated luminescence including the appropriate fundamentals of the process. It features major chapters on the use of OSL in space radiation dosimetry, medical physics, personnel dosimetry, security, solid-state physics and other related applications. In each case, the underlying theory is discussed on an as-needed basis for a complete understanding of the phenomena, but with an emphasis of the practical applications of the technique. After an introductory chapter, Chapters 2 to 6 cover basic theory and practical aspects, personal

  5. Recent progress in biomedical applications of persistent luminescence nanoparticles.

    Science.gov (United States)

    Wang, Jie; Ma, Qinqin; Wang, Yingqian; Shen, Haijing; Yuan, Quan

    2017-05-18

    Persistent luminescence nanoparticles (PLNPs) are an emerging group of promising luminescent materials that can remain luminescent after the excitation ceases. In the past decade, PLNPs with intriguing optical properties have been developed and their applications in biomedicine have been widely studied. Due to the ultra-long decay time of persistent luminescence, autofluorescence interference in biosensing and bioimaging can be efficiently eliminated. Moreover, PLNPs can remain luminescent for hours, making them valuable in bio-tracing. Also, persistent luminescence imaging can guide cancer therapy with a high signal-to-noise ratio (SNR) and superior sensitivity. Briefly, PLNPs are demonstrated to be a newly-emerging class of functional materials with unprecedented advantages in biomedicine. In this review, we summarized recent advances in the preparation of PLNPs and the applications of PLNPs in biosensing, bioimaging and cancer therapy.

  6. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far...... retrospective assessment of accident doses received by the population after a nuclear accident. The development of new luminescence techniques after the Chernobyl accident has considerably improved the sensitivity and precision in the evaluation of accident doses. This paper reviews the development work...

  7. Luminescence imaging using radionuclides: a potential application in molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Chan [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Il An, Gwang [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Park, Se-Il [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Oh, Jungmin [Korea Basic Science Institute Chuncheon Center, Gangwon-do 200-701 (Korea, Republic of); Kim, Hong Joo [Department of Physics and Energy Science, Kyungpook National University, Daegu 702-710 (Korea, Republic of); Su Ha, Yeong; Wang, Eun Kyung [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Min Kim, Kyeong; Kim, Jung Young [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Lee, Jaetae [Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Welch, Michael J. [Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Yoo, Jeongsoo, E-mail: yooj@knu.ac.k [Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2011-04-15

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [{sup 32}P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy {beta}{sup +}/{beta}{sup -} particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [{sup 32}P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic {beta}{sup +} or {beta}{sup -} particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  8. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far...... retrospective assessment of accident doses received by the population after a nuclear accident. The development of new luminescence techniques after the Chernobyl accident has considerably improved the sensitivity and precision in the evaluation of accident doses. This paper reviews the development work......, especially on optically stimulated luminescence methods for retrospective assessment of accident doses carried out at Riso National Laboratory in collaboration with the University of Helsinki as part bf a joint European Union research project. We demonstrate that doses lower than 100 mGy can be measured from...

  9. Luminescence basic concepts, applications and instrumentation

    CERN Document Server

    Virk, Hardev Singh

    2014-01-01

    The word luminescence was first used by a German physicist, Eilhardt Wiedemann, in 1888. He also classified luminescence into six kinds according to the method of excitation. No better basis of classification is available today. He recognized photoluminescence, thermoluminescence, electroluminescence, crystalloluminescence, triboluminescence, and chemiluminescence. The designations are obvious, characterized by the prefix. This Volume consists of 9 Chapters, including 8 Review Papers and one Case Study. The first two papers are based on OLEDs. Organic light emitting diodes (OLEDs) have been th

  10. Bioactive luminescent transition-metal complexes for biomedical applications.

    Science.gov (United States)

    Ma, Dik-Lung; He, Hong-Zhang; Leung, Ka-Ho; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2013-07-22

    The serendipitous discovery of the anticancer drug cisplatin cemented medicinal inorganic chemistry as an independent discipline in the 1960s. Luminescent metal complexes have subsequently been widely applied for sensing, bio-imaging, and in organic light-emitting diode applications. Transition-metal complexes possess a variety of advantages that make them suitable as therapeutics and as luminescent probes for biomolecules. It is thus highly desirable to develop new luminescent metal complexes that either interact with DNA through different binding modes or target alternative cellular machinery such as proteins as well as to provide a more effective means of monitoring disease progression. In this Review, we highlight recent examples of biologically active luminescent metal complexes that can target and probe a specific biomolecule, and offer insights into the future potential of these compounds for the investigation and treatment of human diseases.

  11. Applications of quantum dots with upconverting luminescence in bioimaging.

    Science.gov (United States)

    Chen, Yunyun; Liang, Hong

    2014-06-05

    Quantum dots (QDs) have attracted great attention in recent years due to their promising applications in bioimaging. Compared with traditional ultraviolet excitation of QDs, near-infrared laser (NIR) excitation has many advantages, such as being less harmful, little blinking effects, zero autofluorescence and deep penetration in tissue. Composing QDs with upconverting properties is promising to enable NIR excitation. This article provides a review of QDs with upconverting luminescence and their applications in bioimaging. Based on the mechanisms of luminescence, discussion will be divided into four groups: nanoheterostructures/mixtures of QDs and upconverting nanoparticles, graphene quantum dots, lanthanide-doped QDs, and double QDs. The content includes synthetic routes, upconverting luminescence properties, and their applications in bioimaging.

  12. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications.

    Science.gov (United States)

    Knowles, Kathryn E; Hartstein, Kimberly H; Kilburn, Troy B; Marchioro, Arianna; Nelson, Heidi D; Whitham, Patrick J; Gamelin, Daniel R

    2016-09-28

    Copper-doped semiconductors are classic phosphor materials that have been used in a variety of applications for many decades. Colloidal copper-doped semiconductor nanocrystals have recently attracted a great deal of interest because they combine the solution processability and spectral tunability of colloidal nanocrystals with the unique photoluminescence properties of copper-doped semiconductor phosphors. Although ternary and quaternary semiconductors containing copper, such as CuInS2 and Cu2ZnSnS4, have been studied primarily in the context of their photovoltaic applications, when synthesized as colloidal nanocrystals, these materials have photoluminescence properties that are remarkably similar to those of copper-doped semiconductor nanocrystals. This review focuses on the luminescent properties of colloidal copper-doped, copper-based, and related copper-containing semiconductor nanocrystals. Fundamental investigations into the luminescence of copper-containing colloidal nanocrystals are reviewed in the context of the well-established luminescence mechanisms of bulk copper-doped semiconductors and copper(I) molecular coordination complexes. The use of colloidal copper-containing nanocrystals in applications that take advantage of their luminescent properties, such as bioimaging, solid-state lighting, and luminescent solar concentrators, is also discussed.

  13. A REVIEW OF APPLICATIONS OF LUMINESCENCE TO MONITORING OF CHEMICAL CONTAMINANTS IN THE ENVIRONMENT

    Science.gov (United States)

    The recent analytical literature on the application of luminescence techniques to the measurement of various classes of environmentally significant chemicals has been reviewed. Luminescent spectroscopy based methods are compared to other current techniques. Also, examples of rece...

  14. Luminescence dosimetry: recent developments in theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    McKeever, S.W.S. [Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072 (United States)

    2000-07-01

    Thermally and optically stimulated luminescence have been used in applications in solid state physics, radiation dosimetry and geological dating for several decades. This paper gives a generalized description of these methods in terms of non-equilibrium thermodynamics and in doing so highlights similarities and differences between the methods. Recent advances in both the theory and application of the techniques are highlighted with numerous specific examples. (Author)

  15. Nanomatériaux luminescent pour des applications en diagnostics

    OpenAIRE

    2015-01-01

    The work of this thesis titled “Luminescent Nanomaterials for diagnostic applications” is synthesis, characterization and bioimaging applications of nanomaterials. Silicon nanoparticles were synthesized and modified with different functional groups such as amino, carboxylate, sugar and platinum(II) complex on the surface, and applies for cellular imaging at HeLa. Moreover, the assembly platinum(II) complexes modified silicon nanoparticles exhibit an interesting aggregation induced emission (A...

  16. Applications of micelle enhancement in luminescence-based analysis.

    Science.gov (United States)

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2015-02-01

    Micelles are self-assembled aggregates that arrange themselves into spheres in aqueous media. When the surfactant concentration reaches the critical micelle concentration, extensive aggregation of the surfactant monomers occurs to form micelles. A micelle has both a hydrophilic and a hydrophobic part. This allows them to form a spherical shape and for their glycolipid and phospholipid components to form lipid bilayers. The importance of micelles is increasing because of their wide analytical applications. Recently, colloidal carrier systems have received much attention in the field of analytical chemistry, especially in luminescence enhancement applications.

  17. Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications.

    Science.gov (United States)

    Singh, Priyam; Shahi, Praveen Kumar; Singh, Sunil Kumar; Singh, Akhilesh Kumar; Singh, Manish Kumar; Prakash, Rajiv; Rai, Shyam Bahadur

    2017-01-05

    We herein demonstrate novel inorganic-organic hybrid nanoparticles (HNPs) composed of inorganic NPs, NaY0.78Er0.02Yb0.2F4, and an organic β-diketonate complex, Eu(TTA)3Phen, for energy harvesting applications. Both the systems maintain their core integrity and remain entangled through weak interacting forces. HNPs incorporate the characteristic optical behaviour of both the systems i.e. they give an intense red emission under UV excitation, due to Eu(3+) in organic complexes, and efficient green upconversion emission of Er(3+) in inorganic NPs for NIR (980 nm) excitation. However, (i) an energy transfer from Er(3+) (inorganic NPs) to Eu(3+) (organic complex) under NIR excitation, and (ii) an increase in the decay time of (5)D0 → (7)F2 transition of Eu(3+) for HNPs as compared to the Eu(TTA)3Phen complex, under different excitation wavelengths, are added optical characteristics which point to an important role of the interface between both the systems. Herein, the ultra-small size (6-9 nm) and spherical shape of the inorganic NPs offer a large surface area, which improves the weak interaction force between both the systems. Furthermore, the HNPs dispersed in the PMMA polymer have been successfully utilized for luminescent solar collector (LSC) applications.

  18. Testing the application of quartz and feldspar luminescence dating to MIS 5 Japanese marine deposits

    DEFF Research Database (Denmark)

    Thiel, Christine; Tsukamoto, Sumiko; Tokuyasu, Kayoko

    2015-01-01

    The applicability of both quartz and feldspar luminescence dating was tested on twenty-five samples from a marine succession now forming a coastal cliff at Oga Peninsula, Honshu Island, Japan. The quartz optically stimulated luminescence (OSL) signal shows thermal instability and linear modulated...

  19. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  20. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  1. Luminescence from wide band gap materials and their applications

    Science.gov (United States)

    Shinde, S. L.; Senapati, S.; Nanda, K. K.

    2015-03-01

    We demonstrate ZnO and In2O3 microcrystals as an optical probe for wide range thermometry. Both ZnO and In2O3 microcrystals exhibit a monotonic decrease in luminescence intensities with increase in temperature. The variation has been explored to develop a thermometer in a wide temperature range. We also demonstrate enhanced brightness from broad-luminescent-wide band gap materials when sensitized with low band gap CdTe quantum dots. Wide band gap materials act as acceptors, while CdTe act as donors. One of the major implications is the designing of weak-luminescent-wide-band gap materials as bright white light emitting phosphors that can convert the ultraviolet into visible light. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  2. Synthesis of biocompatible multicolor luminescent carbon dots for bioimaging applications

    Directory of Open Access Journals (Sweden)

    Nagaprasad Puvvada, B N Prashanth Kumar, Suraj Konar, Himani Kalita, Mahitosh Mandal and Amita Pathak

    2012-01-01

    Full Text Available Water-soluble carbon dots (C-dots were prepared through microwave-assisted pyrolysis of an aqueous solution of dextrin in the presence of sulfuric acid. The C-dots produced showed multicolor luminescence in the entire visible range, without adding any surface-passivating agent. X-ray diffraction and Fourier transform infrared spectroscopy studies revealed the graphitic nature of the carbon and the presence of hydrophilic groups on the surface, respectively. The formation of uniformly distributed C-dots and their luminescent properties were, respectively, revealed from transmission electron microscopy and confocal laser scanning microscopy. The biocompatible nature of C-dots was confirmed by a cytotoxicity assay on MDA-MB-468 cells and their cellular uptake was assessed through a localization study.

  3. Synthesis and characterization of monodisperse Eu-doped luminescent silica nanospheres for biological applications

    Science.gov (United States)

    Enrichi, Francesco; Riccò, Raffaele; Parma, Alvise; Riello, Pietro; Benedetti, Alvise

    2008-04-01

    Luminescent nanoparticles are gaining more and more interest for bio-sensing and bio-imaging applications. In particular it is desiderable to work with cheap and non toxic materials which could be easily functionalized in their surface. To these respects silica nanoparticles seem to be a very promising and interesting solution. The liquid synthesis of silica spheres can be obtained by condensation of tetraethylortosilicate (TEOS) in basic or acid environment. Several strategies have been developed to make them luminescent by the incorporation of organic or inorganic emission centres, but often requiring multiple processing steps and use of expensive or toxic molecules. Moreover, common dyes suffer disadvantages such as a broad spectral band, short fluorescent lifetime and photobleaching. In contrast, rare earths exhibit narrow emission bands, large Stokes shifts and long luminescence lifetimes. In this work we focus our attention on the synthesis and characterization of europium-doped silica spheres. Europium introduction in the spheres can be interesting for biological applications to increase the signal to noise ratio due to the long luminescence lifetime (possibility to perform time-delayed analysis) and to the good emission intensity. The obtained results are presented and discussed, giving suggestions for the optimization of their morphological and optical properties. The possibility of realizing good luminescent silica spheres by following the described procedure is shown and suggestions for future development are given. The cheap and easy synthesis of these luminescent particles, the stability in water, the easy surface functionalization and bio-compatibility makes them very attractive in biological imaging and other applications.

  4. Holmium doped Lead Tungsten Tellurite glasses for green luminescent applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswarlu, M.; Mahamuda, Sk.; Swapna, K.; Prasad, M.V.V.K.S. [Department of Physics, KL University, Green Fields, Vaddeswaram 522502, Guntur (Dt.), AP (India); Srinivasa Rao, A., E-mail: drsrallam@gmail.com [Department of Physics, KL University, Green Fields, Vaddeswaram 522502, Guntur (Dt.), AP (India); Department of Applied Physics, Delhi Technological University, Bawana Road, New Delhi 110042 (India); Shakya, Suman [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016 (India); Mohan Babu, A. [Department of Physics, C.R. Engineering College, Renigunta Road, Tirupati-517 502, AP (India); Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi 110016 (India)

    2015-07-15

    Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Ho{sup 3+} ions have been synthesized using the melt quenching method and characterized to understand their visible emission characteristic features using optical absorption and photoluminescence spectral studies. The Judd–Ofelt (JO) parameters measured from the absorption spectral features were used to evaluate radiative properties such as transition probability (A{sub R}), branching ratio (β{sub R}) and radiative lifetimes (τ{sub R}) for the prominent fluorescent levels of Ho{sup 3+} ions in LTT glasses. The photoluminescence spectra recorded for all the Ho{sup 3+} doped LTT glasses at an excitation wavelength 452 nm gives three prominent emission transitions {sup 5}F{sub 4}→{sup 5}I{sub 8}, {sup 5}F{sub 5}→{sup 5}I{sub 8} and {sup 5}F{sub 4}→{sup 5}I{sub 7}, of which {sup 5}F{sub 4}→{sup 5}I{sub 8} observed in visible green region (546 nm) is relatively more intense than the other two transitions. The intensity of {sup 5}F{sub 4}→{sup 5}I{sub 8} emission transition in these glasses increases up to 1 mol% of Ho{sup 3+} ions and beyond concentration quenching is observed. Branching ratios (β{sub R}) and emission cross-sections (σ{sub se}) were evaluated for the intense emission transition {sup 5}F{sub 4}→{sup 5}I{sub 8} in these glasses to understand the luminescence efficiency in visible green region (546 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible luminescence. From the measured emission cross-sections and CIE coordinates, it was found that 1 mol% of Ho{sup 3+} ions in LTT glasses are most suitable for visible green luminescence in principle. - Highlights: • Ho{sup 3+} doped LTT glasses have been synthesized using melt quenching technique. • From the absorption spectra, JO parameters have been evaluated using JO theory. • Branching ratios & Emission cross-sections were evaluated for

  5. Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications

    Science.gov (United States)

    Kumar, Pawan; Singh, Satbir; Gupta, Bipin Kumar

    2016-07-01

    Counterfeiting of valuable documents, currency and branded products is a challenging problem that has serious economic, security and health ramifications for governments, businesses and consumers all over the world. It is estimated that counterfeiting represents a multi-billion dollar underground economy with counterfeit products being produced on a large scale every year. Counterfeiting is an increasingly high-tech crime and calls for high-tech solutions to prevent and deter the acts of counterfeiting. The present review briefly outlines and addresses the key challenges in this area, including the above mentioned concerns for anti-counterfeiting applications. This article describes a unique combination of all possible kinds of security ink formulations based on lanthanide doped luminescent nanomaterials, quantum dots (semiconductor and carbon based), metal organic frameworks as well as plasmonic nanomaterials for their possible use in anti-counterfeiting applications. Moreover, in this review, we have briefly discussed and described the historical background of luminescent nanomaterials, basic concepts and detailed synthesis methods along with their characterization. Furthermore, we have also discussed the methods adopted for the fabrication and design of luminescent security inks, various security printing techniques and their anti-counterfeiting applications.

  6. Luminescent Tungsten(VI) Complexes: Photophysics and Applicability to Organic Light-Emitting Diodes and Photocatalysis.

    Science.gov (United States)

    Yeung, Kwan-Ting; To, Wai-Pong; Sun, Chenyue; Cheng, Gang; Ma, Chensheng; Tong, Glenna So Ming; Yang, Chen; Che, Chi-Ming

    2017-01-02

    The synthesis, excited-state dynamics, and applications of two series of air-stable luminescent tungsten(VI) complexes are described. These tungsten(VI) complexes show phosphorescence in the solid state and in solutions with emission quantum yields up to 22 % in thin film (5 % in mCP) at room temperature. Complex 2 c, containing a 5,7-diphenyl-8-hydroxyquinolinate ligand, displays prompt fluorescence (blue-green) and phosphorescence (red) of comparable intensity, which could be used for ratiometric luminescent sensing. Solution-processed organic light-emitting diodes (OLEDs) based on 1 d showed a stable yellow emission with an external quantum efficiency (EQE) and luminance up to 4.79 % and 1400 cd m(-2) respectively. These tungsten(VI) complexes were also applied in light-induced aerobic oxidation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Luminescent lanthanide nanomaterials: an emerging tool for theranostic applications.

    Science.gov (United States)

    Ranjan, Shashi; Jayakumar, Muthu Kumara Gnanasammandhan; Zhang, Yong

    2015-05-01

    Lanthanide materials have been gaining popularity for use in various theranostic applications, primarily due to their unique optical properties such as narrow emission bands, multiple emission wavelengths, emission tunability, long fluorescence lifetime and large Stokes shift. Apart from these, some lanthanide materials also exhibit magnetic and light-up conversion properties. Such nanomaterials have been used for a wide range of applications ranging from detection of biomarkers, in vitro and in vivo imaging to therapeutic applications. Recently, combined modalities of lanthanide nanomaterials for simultaneous detection/imaging and delivery of therapeutic agents (termed 'theranostics') have been explored. The various advantages and disadvantages of using lanthanide nanomaterials as theranostic agents and potential areas for future development have been discussed in this review.

  8. Phosphorescent Molecular Butterflies with Controlled Potential-Energy Surfaces and Their Application as Luminescent Viscosity Sensor.

    Science.gov (United States)

    Zhou, Chenkun; Yuan, Lin; Yuan, Zhao; Doyle, Nicholas Kelly; Dilbeck, Tristan; Bahadur, Divya; Ramakrishnan, Subramanian; Dearden, Albert; Huang, Chen; Ma, Biwu

    2016-09-06

    We report precise manipulation of the potential-energy surfaces (PESs) of a series of butterfly-like pyrazolate-bridged platinum binuclear complexes, by synthetic control of the electronic structure of the cyclometallating ligand and the steric bulkiness of the pyrazolate bridging ligand. Color tuning of dual emission from blue/red, to green/red and red/deep red were achieved for these phosphorescent molecular butterflies, which have two well-controlled energy minima on the PESs. The environmentally dependent photoluminescence of these molecular butterflies enabled their application as self-referenced luminescent viscosity sensor.

  9. Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications

    Science.gov (United States)

    Pfeiffer, Simon A.; Nagl, Stefan

    2015-09-01

    Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics. After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed. Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.

  10. Luminescence Instrumentation

    DEFF Research Database (Denmark)

    Jain, Mayank; Bøtter-Jensen, Lars

    2014-01-01

    This chapter gives an introduction to instrumentation for stimulated luminescence studies, with special focus on luminescence dating using the natural dosimeters, quartz and feldspars. The chapter covers basic concepts in luminescence detection, and thermal and optical stimulation, and reference...

  11. A solid-state dedicated circularly polarized luminescence spectrophotometer: Development and application

    Science.gov (United States)

    Harada, Takunori; Hayakawa, Hiroshi; Watanabe, Masayuki; Takamoto, Makoto

    2016-07-01

    A new solid-state dedicated circularly polarized luminescence (CPL) instrument (CPL-200CD) was successfully developed for measuring true CPL spectra for optically anisotropic samples on the basis of the Stokes-Mueller matrix approach. Electric components newly installed in the CPL-200CD include a pulse motor-driven sample rotation holder and a 100 kHz lock-in amplifier to achieve the linearly polarized luminescence measurement, which is essential for obtaining the true CPL signal for optically anisotropic samples. An acquisition approach devised for solid-state CPL analysis reduces the measurement times for a data set by ca. 98% compared with the time required in our previous method. As a result, the developed approach is very effective for samples susceptible to light-induced degradation. The theory and implementation of the method are described, and examples of its application to a CPL sample with macroscopic anisotropies are provided. An important advantage of the developed instrument is its ability to obtain molecular information for both excited and ground states because circular dichroism measurements can be performed by switching the monochromatic light to white light without rearrangement of the sample.

  12. Luminescence optically stimulated: theory and applications; Luminiscencia opticamente estimulada: teoria y aplicaciones

    Energy Technology Data Exchange (ETDEWEB)

    Rivera M, T.; Azorin N, J. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico D.F. (Mexico)

    2002-07-01

    The thermally stimulated luminescence (Tl) has occupied an important place in the Solid state physics (FES) by the flexibility of the phenomena, mainly for its applications in the fields of Radiation Physics (FR) and Medical Physics (MF). The reason of this phenomena lies in the fact of the electrons release by the action of heat. Under that same reason, it can be used the action of another stimulant agent for releasing the trapped electrons in the metastable states (EM), this agent is the light which has the same effect that the heat, giving as result the production of light photons at using light in the visible spectra, of different wavelength that the excitation light. This phenomena is called Luminescence optically stimulated (LOE). The LOE has a great impact in the Solid State Physics (FES), dating and now in the use of the phenomena as a dosimetric method, alternate to the Tl, for its use in the ionizing and non-ionizing radiations fields. (Author)

  13. Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Chaussedent, S.; Liu, S.

    2013-01-01

    The Eu and Eu/Tb doped silicate glasses are good candidates for light emitting diode (LED) applications. But the optical performance of these glasses is sensitive to variations in chemical composition. In this paper we report our recent findings about the effect of addition of minor components....... The results show that the asymmetry factor and luminescence lifetimes of as-prepared materials are dependent on composition. White fluorescence is achieved in Eu/Tb co-doped glasses, which can be attributed to the simultaneous generation of red, green and blue wavelengths from Eu3+ and Tb3+ ions...... such as B2O3, Al2O3 and CaF2 on the luminescent properties of the above-mentioned glasses. We explore the role of Eu3+ ions as a structural probe of the glasses by determining the asymmetry factor, i.e., the ratio of the emission intensity of the 5D0→7F2 transition to that of the 5D0 →7F1 transition...

  14. Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications

    DEFF Research Database (Denmark)

    Zhu, C.F.; Chaussedent, S.; Liu, S.

    2013-01-01

    such as B2O3, Al2O3 and CaF2 on the luminescent properties of the above-mentioned glasses. We explore the role of Eu3+ ions as a structural probe of the glasses by determining the asymmetry factor, i.e., the ratio of the emission intensity of the 5D0→7F2 transition to that of the 5D0 →7F1 transition......The Eu and Eu/Tb doped silicate glasses are good candidates for light emitting diode (LED) applications. But the optical performance of these glasses is sensitive to variations in chemical composition. In this paper we report our recent findings about the effect of addition of minor components....... The results show that the asymmetry factor and luminescence lifetimes of as-prepared materials are dependent on composition. White fluorescence is achieved in Eu/Tb co-doped glasses, which can be attributed to the simultaneous generation of red, green and blue wavelengths from Eu3+ and Tb3+ ions...

  15. Novel lanthanide hybrid functional materials for high performance luminescence application: The relationship between structures and photophysical behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Jia, Lei [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Ma, Yufei; Liu, Xiao; Tian, Hao; Liu, Weisheng [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Tang, Yu, E-mail: tangyu@lzu.edu.cn [Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2012-09-14

    Functional luminescent hybrid materials have emerged as fascinating and promising materials for their versatile applications. In this report, novel efficient luminescent lanthanide (Tb{sup 3+}, Eu{sup 3+}) hybrid materials with a new kind of amide-type {beta}-diketone ligands covalently bonded to the silica gels have been assembled through the sol-gel progresses. The hybrid materials have been characterized by the Fourier transform infrared (FTIR) spectra, UV-vis absorption spectra, powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and thermal analyses. The relationship between structures and photophysical behaviors of these materials was discussed in detail. The materials assembled by the precursors containing aromatic end group (Si-L{sup 1}-Ln) exhibited longer luminescence lifetimes and higher quantum efficiencies, suggesting that the existence of a suitable conjugated system should allow a more efficient energy transfer. Under UV irradiation, the materials emitted either bright green light or red light with different intensity which may lead to potential functional applications in optical devices and electronic devices. Highlights: Black-Right-Pointing-Pointer A new kind of efficient luminescent lanthanide hybrid materials has been assembled. Black-Right-Pointing-Pointer The materials can efficiently emit green or red light under UVA irradiation. Black-Right-Pointing-Pointer The relationship between photophysical behaviors and structures was discussed. Black-Right-Pointing-Pointer A suitable conjugated system should allow a more efficient energy transfer.

  16. Luminescence Dating of Sediments: An Increasingly Diverse Family of Methods and Range of Applications

    Science.gov (United States)

    Roberts, H. M.

    2015-12-01

    In recent years, the term 'luminescence dating' has expanded its meaning such that today it encompasses a range of luminescence dating methods and materials. Whilst the fundamental principles that underlie these different dating methods are essentially the same, namely that the event typically being recorded is the last exposure of the material to light or to heat, the various luminescence dating techniques do differ in their suitability in different situations. Today, in the field of luminescence dating of sediments, there are a number of minerals that can be used for dating (quartz and feldspar being the most commonly used), and for each mineral it is possible to obtain a number of different luminescence signals (some obtained using optical stimulation, and some obtained by heating). These different luminescence signals may build-up and deplete in the natural environment at different rates from each other, and can span quite different time ranges. Additionally, the scale of analysis used in luminescence dating can now be varied (ranging from single sand-sized grains to multiple grains), as can the size range of the materials used for dating (ranging from fine-silt, coarse-silt, and sand-sized grains, through to large clasts and rock surfaces). Having such flexibility in the range of minerals, luminescence signals, grain sizes, and the scales of analysis available for dating, means that it is now possible to optimise the materials and methods selected for dating in any particular study in response to the precise scientific question to be addressed, the time-range of interest, and the likely mechanisms of re-setting of the luminescence signal in the context that is to be dated. In this paper, the flexibility offered by the growing family of luminescence techniques will be outlined by considering some of the different minerals, luminescence signals, and dramatically different timescales (tens of years to millions of years) potentially available for sediment dating

  17. Tailoring of the luminescent ions local environment in optical fibers, and applications

    CERN Document Server

    Dussardier, Bernard; Peterka, P

    2012-01-01

    The chapter is situated in the fields of fiber materials sciences and technologies (particularly dealing with the fiber glass compositions and luminescent ion doping, and transparent glass ceramic optical fibers), and applications such as fiber lasers and amplifiers. We propose to present a review of research activities on rare-earth (RE) and transition metals (TM) doped silica-based optical fibers, aiming at understanding theier spectral properties, and particularly some of their optical transitions that will allow interesting and alternative applications. Silica, as opposed to alternative, low temperature materials, is chosen for practical and economical reasons. Selected RE and TM ions are studied both as probes of their local environment and for their application potentials. In this chapter, we will focus on erbium (Er) ions for the potential spectral 'tailoring' of its gain curve at 1.55 $\\mu$m, thulium (Tm) as local environment probe along both near infrared transitions around 0.8 and 1.47 $\\mu$m, and c...

  18. Guide to luminescence dating techniques and their application for paleoseismic research

    Science.gov (United States)

    Gray, Harrison J.; Mahan, Shannon; Rittenour, Tammy M.; Nelson, Michelle Summa; Lund, William R.

    2015-01-01

    Over the past 25 years, luminescence dating has become a key tool for dating sediments of interest in paleoseismic research. The data obtained from luminescence dating has been used to determine timing of fault displacement, calculate slip rates, and estimate earthquake recurrence intervals. The flexibility of luminescence is a key complement to other chronometers such as radiocarbon or cosmogenic nuclides. Careful sampling and correct selection of sample sites exert two of the strongest controls on obtaining an accurate luminescence age. Factors such as partial bleaching and post-depositional mixing should be avoided during sampling and special measures may be needed to help correct for associated problems. Like all geochronologic techniques, context is necessary for interpreting and calculating luminescence results and this can be achieved by supplying participating labs with associated trench logs, photos, and stratigraphic locations of sample sites.

  19. [Broad excitation band alkaline-earth silicate luminescent materials activated by rare earth and its applications].

    Science.gov (United States)

    Xia, Wei; Lei, Ming-Kai; Luo, Xi-Xian; Xiao, Zhi-Guo

    2008-01-01

    Series of novel broad excitation band phosphors M2 MgSis O7 : Eu, Dy(M = Ca, Sr) were prepared by a high temperature solid-state reaction method. The crystal structure of compound was characterized. And the effects of part substitution of alkaline-earth on crystal structure, photoluminescence spectra and luminescence properties were also investigated. It is found that the excitation band of silicate luminescent materials extend to visible region and they exhibit yellow, green and blue long after-glow luminescence after excited by ultraviolet or visible light. Ca MgSi O7 : Eu, Dy luminescent materials can be excited effectively under the 450-480 nm range and exhibit a strong emission at 536 nm, nicely combining with blue light emitted by InGaN chips to produce white light. This promises the silicate luminescent materials a potential yellow phosphor for white LED.

  20. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging.

    Science.gov (United States)

    Wang, Shaowei; Xi, Wang; Cai, Fuhong; Zhao, Xinyuan; Xu, Zhengping; Qian, Jun; He, Sailing

    2015-01-01

    Gold nanoparticles can be used as contrast agents for bio-imaging applications. Here we studied multi-photon luminescence (MPL) of gold nanorods (GNRs), under the excitation of femtosecond (fs) lasers. GNRs functionalized with polyethylene glycol (PEG) molecules have high chemical and optical stability, and can be used as multi-photon luminescent nanoprobes for deep in vivo imaging of live animals. We have found that the depth of in vivo imaging is dependent upon the transmission and focal capability of the excitation light interacting with the GNRs. Our study focused on the comparison of MPL from GNRs with two different aspect ratios, as well as their ex vivo and in vivo imaging effects under 760 nm and 1000 nm excitation, respectively. Both of these wavelengths were located at an optically transparent window of biological tissue (700-1000 nm). PEGylated GNRs, which were intravenously injected into mice via the tail vein and accumulated in major organs and tumor tissue, showed high image contrast due to distinct three-photon luminescence (3PL) signals upon irradiation of a 1000 nm fs laser. Concerning in vivo mouse brain imaging, the 3PL imaging depth of GNRs under 1000 nm fs excitation could reach 600 μm, which was approximately 170 μm deeper than the two-photon luminescence (2PL) imaging depth of GNRs with a fs excitation of 760 nm.

  1. A two-dimensional coordination compound as a zinc ion selective luminescent probe for biological applications.

    Science.gov (United States)

    Dhara, Koushik; Karan, Santanu; Ratha, Jagnyeswar; Roy, Partha; Chandra, Goutam; Manassero, Mario; Mallik, Biswanath; Banerjee, Pradyot

    2007-09-01

    A 2D coordination compound {[Cu2(HL)(N3)]ClO4}infinity (1; H3L = 2,6-bis(hydroxyethyliminoethyl)-4-methyl phenol) was synthesized and characterized by single-crystal X-ray diffraction to be a polymer in the crystalline state. Each [Cu2(HL)(N3)]+ species is connected to its adjacent unit by a bridging alkoxide oxygen atom of the ligand to form a helical propagation along the crystallographic a axis. The adjacent helical frameworks are connected by a ligand alcoholic oxygen atom along the crystallographic b axis to produce pleated 2D sheets. In solution, 1 dissociates into [Cu2(HL)2(H3L)]2H2O (2); the monomer displays high selectivity for Zn2+ and can be used in HEPES buffer (pH 7.4) as a zinc ion selective luminescent probe for biological application. The system shows a nearly 19-fold Zn2+-selective chelation-enhanced fluorescence response in the working buffer. Application of 2 to cultured living cells (B16F10 mouse melanoma and A375 human melanoma) and rat hippocampal slices was also studied by fluorescence microscopy.

  2. Luminescence dating: methodological research and application to volcanism in the Laschamp environment; Datation par luminescence: recherches methodologiques et applications au volcanisme dans l'environnement de Laschamp

    Energy Technology Data Exchange (ETDEWEB)

    Bassinet, C

    2007-03-15

    The aim of this work was to date lava flows from the Chaine des Puys (Massif Central, France) which were chronologically situated during the period of the Laschamp paleo-magnetic event (30-50 ka). The methods used were thermoluminescence and optically stimulated luminescence applied to quartz grains and quartz pebbles extracted from sediments baked by the lava flows. These minerals often emit luminescence signals exhibiting erratic behaviour. Thus, their radiation doses were tentatively determined by various methods to select those which were most likely to yield reliable results. These intercomparisons highlighted a dispersion of results beyond what could be expected from the uncertainties usually associated with each measurement. In the majority of cases, these observations forced us to propose a relatively wide interval in which the most probable age of the sample is included. (author)

  3. Dy3+ doped Lithium Sodium Bismuth Borate Glasses for Yellow Luminescent Photonic Applications

    Directory of Open Access Journals (Sweden)

    M. Parandamaiah,

    2015-08-01

    Full Text Available Lithium sodium bismuth borate glasses-doped with trivalent dysprosium (Dy3+ ions (LSBiB have been prepared by conventional melt-quenching technique and characterized by structural, thermal and spectroscopic measurements. XRD pattern of the host glass confirms its amorphous nature. Morphological and elemental analysis has also been carried out for Dy3+doped LSBiB glass matrix. FTIR spectral analysis confirms the glass formation of the host glass. Optical absorption spectral analysis has been carried out for 0.8 mol% Dy3+ doped LSBiB glass sample. Well defined optical absorption bands are assigned with corresponding electronic transitions. Photoluminescence spectra shows two prominent emission bands centered at 482 nm and 575 nm corresponds to the 4 F9/2 → 6H15/2 and 4 F9/2 → 6H13/2 respectively under the excitation of 452 nm. Among all the concentrations of Dy3+ ions, at 0.8 mol% Dy3+ contained glass sample exhibits prominent yellow emission at 575 nm. Lifetime decay dynamics have been systematically analyzed for all the glasses, higher lifetime is found to be 0.47 ms for 0.8 mol% Dy3+ ions doped glass. From the photoluminescence analysis, Dy3+ contained glass samples could be suggested as potential yellow luminescent glass matrix for several photonic device applications.

  4. Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors.

    Science.gov (United States)

    Verbunt, Paul P C; Tsoi, Shufen; Debije, Michael G; Broer, Dirk J; Bastiaansen, Cees W M; Lin, Chi-Wen; de Boer, Dick K G

    2012-09-10

    Organic wavelength-selective mirrors are used to reduce the loss of emitted photons through the surface of a luminescent solar concentrator (LSC). A theoretical calculation suggests that application of a 400 nm broad reflector on top of an LSC containing BASF Lumogen Red 305 as a luminophore can reflect 91% of all surface emitted photons back into the device. Used in this way, such broad reflectors could increase the edge-emission efficiency of the LSC by up to 66%. Similarly, 175 nm broad reflectors could increase efficiency up to 45%. Measurements demonstrate more limited effectiveness and dependency on the peak absorbance of the LSC. At higher absorbance, the increased number of internal re-absorption events reduces the effectiveness of the reflectors, leading to a maximum increase in LSC efficiency of ~5% for an LSC with a peak absorbance of 1. Reducing re-absorption by reducing dye concentration or the coverage of the luminophore coating results in an increase in LSC efficiency of up to 30% and 27%, respectively.

  5. Exploring Feasibility for Application of Luminescent CdTe Quantum Dots Prepared in Aqueous Phase to Live Cell Imaging

    Institute of Scientific and Technical Information of China (English)

    Ji Fang WENG; Xing Tao SONG; Liang LI; Hui Feng QIAN; Ke Ying CHEN; Xue Ming XU; Cheng Xi CAO; Ji Cun REN

    2006-01-01

    This paper explored the feasibility for the application of luminescent CdTe quantum dots prepared in aqueous phase to live cell imaging. The highly luminescent CdTe quantum dots (QDs)were first prepared in aqueous phase, and then were covalently coupled to a plant lectin (UEA-1),as a fluorescent probe. After incubating with of human umbilical vein endothelial cells (HUVECs), the QD probe with UEA-1 was able to specifically bind the corresponding cell receptor. The good cell images were obtained in live cells using laser confocal scanning microscopy. We predict that QDs prepared in water phase will probably become an attractive alternative probe in cellular imaging and bio-labeling.

  6. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    Science.gov (United States)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  7. Integrated luminescent chemical microsensors based on GaN LEDs for security applications using smartphones

    Science.gov (United States)

    Orellana, Guillermo; Muñoz, Elias; Gil-Herrera, Luz K.; Muñoz, Pablo; Lopez-Gejo, Juan; Palacio, Carlos

    2012-09-01

    Development of PCB-integrateable microsensors for monitoring chemical species is a goal in areas such as lab-on-a-chip analytical devices, diagnostics medicine and electronics for hand-held instruments where the device size is a major issue. Cellular phones have pervaded the world inhabitants and their usefulness has dramatically increased with the introduction of smartphones due to a combination of amazing processing power in a confined space, geolocalization and manifold telecommunication features. Therefore, a number of physical and chemical sensors that add value to the terminal for health monitoring, personal safety (at home, at work) and, eventually, national security have started to be developed, capitalizing also on the huge number of circulating cell phones. The chemical sensor-enabled "super" smartphone provides a unique (bio)sensing platform for monitoring airborne or waterborne hazardous chemicals or microorganisms for both single user and crowdsourcing security applications. Some of the latest ones are illustrated by a few examples. Moreover, we have recently achieved for the first time (covalent) functionalization of p- and n-GaN semiconductor surfaces with tuneable luminescent indicator dyes of the Ru-polypyridyl family, as a key step in the development of innovative microsensors for smartphone applications. Chemical "sensoring" of GaN-based blue LED chips with those indicators has also been achieved by plasma treatment of their surface, and the micrometer-sized devices have been tested to monitor O2 in the gas phase to show their full functionality. Novel strategies to enhance the sensor sensitivity such as changing the length and nature of the siloxane buffer layer are discussed in this paper.

  8. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  9. Investigation on luminescence enhancement and decay characteristics of long afterglow nanophosphors for dark-vision display applications

    Energy Technology Data Exchange (ETDEWEB)

    Swati, G.; Chawla, S.; Mishra, S.; Rajesh, B.; Vijayan, N.; Sivaiah, B.; Dhar, A.; Haranath, D., E-mail: haranath@nplindia.org

    2015-04-01

    Graphical abstract: - Highlights: • Synthesis and structural characterization has been performed on long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} nanophosphor having afterglow time of ∼12 h. • Studied the effect of various fuels used for synthesis of nanophosphors on the decay and luminescence characteristics. Interestingly, afterglow times varied significantly with different fuels used for the synthesis of the nanophosphor. • Excitation by different illuminants has profound influence on the luminescence intensity and afterglow times of the synthesized nanophosphor. • Such studies could be guidelines for appropriate usage of nanophosphor under different lighting environment. - Abstract: Long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} nanophosphors were synthesized via a facile but effectual auto-combustion technique followed by post-annealing treatment at elevated temperatures. The influence of various fuels during synthesis and thereafter improvement in the luminescence decay characteristics under various illuminant irradiations of long afterglow nanophosphors have been reported. Extensive studies on structural, morphological and luminescent properties of the as-synthesized afterglow nanophosphors have been presented. Powder X-ray diffraction studies confirm the presence of high-purity, single-phase monoclinic nanophosphors. HRTEM investigations confirm the formation of nanophosphors of particle size less than 50 nm. Photoluminescence emission is attributed to the characteristic d–f transition (4f{sup 6}5d{sup 1}→4f{sup 7}) of Eu{sup 2+} ions and was positioned at 512 nm. As-synthesized nanophosphors exhibit considerable confinement effects resulting into blue shift in emission maxima as compared to their bulk counterparts. The mechanism underlined for long afterglow has been discussed using trapping–detrapping model. The nanophosphor being multifunctional finds many interesting applications including dark-vision display

  10. Luminescence dating of Netherlands’ sediments

    OpenAIRE

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we review: 1) the development of the methodology; 2) tests of the reliability of luminescence dating on Netherlands’ sediments; and 3) geological applications of the method in the Netherlands. Our review shows that optically stimulated luminescence dating of quartz grains using the single aliquot regenerative dose method yi...

  11. Spectroscopic properties of Dy(3+) doped ZnO for white luminescence applications.

    Science.gov (United States)

    Amira, Guesmi; Chaker, Bouzidi; Habib, Elhouichet

    2017-04-15

    Undoped and Dy(3+) (0.25, 0.5, 0.8 and 1.5at.%) doped ZnO were elaborated by solid-state reaction method. The ZnO:Dy(3+) samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL). The XRD analysis confirms the wurtzite structure of ZnO. A slight shift to lower angles, of the (101) peak, is seen with Dy(3+) content, indicating the substitution of these ions into the ZnO lattice. Raman study indicates the good crystallinity of all ZnO:Dy(3+) samples and confirms the substitution of Zn(2+) by Dy(3+). The band gap energy was found to increase then decrease with Dy content. The PL excitation spectra (PLE) of Dy(3+) showed six excitation bands with hypersensitive at 346nm ((6)H15/2→(6)P7/2). PL spectra show principally three emission bands relatives to (4)F9/2→(6)H15/2 (476nm), (4)F9/2→(6)H13/2 (567nm) and (4)F9/2→(6)H11/2 (658nm) transitions. The concentration dependency of PL intensity indicates a quenching for Dy(3+) concentration above 0.5at.%. The PL lifetime of (4)F9/2 metastable state was measured and discussed for all Dy content in ZnO. The temperature dependency of PL intensity is investigated for ZnO:Dy (0.5%) sample and the activation energy is determined. The CIE chromaticity color coordinate shows that ZnO:Dy(3+) can be useful for white luminescence applications.

  12. Spectroscopic properties of Dy3 + doped ZnO for white luminescence applications

    Science.gov (United States)

    Amira, Guesmi; Chaker, Bouzidi; Habib, Elhouichet

    2017-04-01

    Undoped and Dy3 + (0.25, 0.5, 0.8 and 1.5 at.%) doped ZnO were elaborated by solid-state reaction method. The ZnO:Dy3 + samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL). The XRD analysis confirms the wurtzite structure of ZnO. A slight shift to lower angles, of the (101) peak, is seen with Dy3 + content, indicating the substitution of these ions into the ZnO lattice. Raman study indicates the good crystallinity of all ZnO:Dy3 + samples and confirms the substitution of Zn2 + by Dy3 +. The band gap energy was found to increase then decrease with Dy content. The PL excitation spectra (PLE) of Dy3 + showed six excitation bands with hypersensitive at 346 nm (6H15/2 → 6P7/2). PL spectra show principally three emission bands relatives to 4F9/2 → 6H15/2 (476 nm), 4F9/2 → 6H13/2 (567 nm) and 4F9/2 → 6H11/2 (658 nm) transitions. The concentration dependency of PL intensity indicates a quenching for Dy3 + concentration above 0.5 at.%. The PL lifetime of 4F9/2 metastable state was measured and discussed for all Dy content in ZnO. The temperature dependency of PL intensity is investigated for ZnO:Dy (0.5%) sample and the activation energy is determined. The CIE chromaticity color coordinate shows that ZnO:Dy3 + can be useful for white luminescence applications.

  13. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications

    Directory of Open Access Journals (Sweden)

    Pradhan A

    2008-01-01

    Full Text Available During the last 10 years, optically stimulated luminescence (OSL has emerged as a formidable competitor not only to thermoluminescence dosimetry (TLD but also to several other dosimetry systems. Though a large number of materials have been synthesized and studied for OSL, Al 2 O 3 :C continues to dominate the dosimetric applications. Re-investigations of OSL in BeOindicate that this material might provide an alternative to Al 2 O 3 :C. Study of OSL of electronic components of mobile phones and ID cards appears to have opened up a feasibility of dosimetry and dose reconstruction using the electronic components of gadgets of everyday use in the events of unforeseen situations of radiological accidents, including the event of a dirty bomb by terrorist groups. Among the newly reported materials, a very recent development of NaMgF 3 :Eu 2+ appears fascinating because of its high OSL sensitivity and tolerable tissue equivalence. In clinical dosimetry, an OSL as a passive dosimeter could do all that TLD can do, much faster with a better or at least the same efficiency; and in addition, it provides a possibility of repeated readout unlike TLD, in which all the dose information is lost in a single readout. Of late, OSL has also emerged as a practical real-time dosimeter for in vivo measurements in radiation therapy (for both external beams and brachytherapy and in various diagnostic radiological examinations including mammography and CT dosimetry. For in vivo measurements, a probe of Al 2 O 3 :C of size of a fraction of a millimeter provides the information on both the dose rate and the total dose from the readout of radioluminescence and OSL signals respectively, from the same probe. The availability of OSL dosimeters in various sizes and shapes and their performance characteristics as compared to established dosimeters such as plastic scintillation dosimeters, diode detectors, MOSFET detectors, radiochromic films, etc., shows that OSL may soon become

  14. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    CERN Document Server

    Gardés, E; Ban-d'Etat, B; Cassimi, A; Durantel, F; Grygiel, C; Madi, T; Monnet, I; Ramillon, J -M; Ropars, F; Lebius, H

    2013-01-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/\\mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteri...

  15. Study of optically stimulated luminescence (OSL) for radiation detection. Application to an optical fibre {gamma}-radiation sensor; Etude de la luminescence stimulee optiquement (OSL) pour la detection de rayonnements: application a un capteur a fibre optique de rayonnement {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Roy, O. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Electronique et d`Instrumentation Nucleaire]|[Paris-7 Univ., 75 (France)

    1998-12-31

    This work shows up the usefulness of the Optically Stimulated Luminescence (OSL) to resolve radioprotection problems. We study the use of OSL as a gamma dosimetric technique with respect to the ALARA`s concept (As Low As Reasonably Achievable). A new approach based on optical fibers and luminescent materials showing OSL properties (closely related to Thermoluminescence phenomena) is presented in order to improve the remote real time dosimetry monitoring. Like thermoluminescent materials (TLD), OSL materials can trap charges under an irradiation (UV, X, {gamma},...). Instead of heating, the charges trapped are released by light stimulation and produce a visible luminescence which amount is proportional to trap the `data stored` left by irradiation, enabling the dose measurement. The OSL phenomenon offers the same advantages as TLD plus the interesting possibility of a remote optical stimulation. The end-user objective deals with the development of a {gamma}-radiation Optical FIber Sensor (OFS) for dose measurement which can offer new functionalities based on OSL materials coupled with an optical fiber. Rare earth doped Alkaline Earth Sulphides (AES), BAFX:EU{sup 2+} (X = Cl, Br, I) and halogen alkaline have been studied (crystalline form, synthesis techniques, influence of dopants and color centers). Their characteristics are presented and extensively discussed. A specific experimental set-up to characterise various OSL phosphors has been developed. It allows the study of sensitivity, linearity, time decay behaviour of OSL signal and zeroing time. A joint study of OSL and TL has shown the technical limitations as well as the thermal fading and the origin of the long zeroing time. An Optical Fiber Sensor (OFS) based on OSL and using MgS:Sm has been developed for practical applications on nuclear fields. Its specifications are presented and discussed, moreover improvements are proposed. (author) 320 refs.

  16. Optimum Thickness Conditions of TiO2 Nanotubes Layer for Efficient Electrochemical Luminescence Cells Application.

    Science.gov (United States)

    Choi, Min-Ki; Sung, Youl-Moon; Park, Min-Woo

    2015-02-01

    We report a TiO2 nanotubes (NTs)-based Electrochemical luminescence (ECL) cell. The ECL cell was fabricated using the electrode of TiO2 NTs and Ru(II) complex (Ru(bpy)2+(3)) as a luminescence materials. The fabricated ECL cell is composed of F-doped SnO2 (FTO) glass/Ru(II)/TiO2 NTs/Ti plate. At a bias voltage of 3 V, the measured ECL efficiencies were 0 Im/W for cell without NTs, 0.03 Im/W for NTs-6.5 µm, 0.07 Im/W for NTs-8 µm and 0.1 Im/W for NTs-10 µm, respectively. The use of Ti02 NTs increases ECL intensities by about 2 times compared to the typical ECL cell without the use of TiO2 NTs.

  17. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al{sub 2}O{sub 3}). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al{sub 2}O{sub 3}:C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few {mu}Gy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al{sub 2}O{sub 3}. OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of

  18. Investigation on luminescence enhancement and decay characteristics of long afterglow nanophosphors for dark-vision display applications

    Science.gov (United States)

    Swati, G.; Chawla, S.; Mishra, S.; Rajesh, B.; Vijayan, N.; Sivaiah, B.; Dhar, A.; Haranath, D.

    2015-04-01

    Long afterglow SrAl2O4:Eu2+,Dy3+ nanophosphors were synthesized via a facile but effectual auto-combustion technique followed by post-annealing treatment at elevated temperatures. The influence of various fuels during synthesis and thereafter improvement in the luminescence decay characteristics under various illuminant irradiations of long afterglow nanophosphors have been reported. Extensive studies on structural, morphological and luminescent properties of the as-synthesized afterglow nanophosphors have been presented. Powder X-ray diffraction studies confirm the presence of high-purity, single-phase monoclinic nanophosphors. HRTEM investigations confirm the formation of nanophosphors of particle size less than 50 nm. Photoluminescence emission is attributed to the characteristic d-f transition (4f65d1→4f7) of Eu2+ ions and was positioned at 512 nm. As-synthesized nanophosphors exhibit considerable confinement effects resulting into blue shift in emission maxima as compared to their bulk counterparts. The mechanism underlined for long afterglow has been discussed using trapping-detrapping model. The nanophosphor being multifunctional finds many interesting applications including dark-vision display, energy storage, fingerprint detection, in vivo and in vitro biological staining, etc.

  19. Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals.

    Directory of Open Access Journals (Sweden)

    Erbo Ying

    Full Text Available Here we present a facile one-pot method to prepare high-quality CdTe nanocrystals in aqueous phase. In contrast to the use of oxygen-sensitive NaHTe or H(2Te as Te source in the current synthetic methods, we employ more stable sodium tellurite as the Te source for preparing highly luminescent CdTe nanocrystals in aqueous solution. By selecting mercaptosuccinic acid (MSA as capping agent and providing the borate-citrate acid buffering solution, CdTe nanocrystals with high quantum yield (QY >70% at pH range 5.0-8.0 can be conveniently prepared by this method. The influence of parameters such as the pH value of the precursor solution and the molar ratio of Cd(2+ to Na(2TeO(3 on the QY of CdTe nanocrystals was systematically investigated in our experiments. Under optimal conditions, the QY of CdTe nanocrystals is even high up to 83%. The biological application of luminescent MSA-CdTe to HEK 293 cell imaging was also illustrated.

  20. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex (France); Ranouil, Julien [Landauer Europe, 33 avenue du Général Leclerc, Fontenay-aux-Roses 92266 Cedex (France); Morgand, Loïc; Raguin, Olivier [Oncodesign, 20 rue Jean Mazen, Dijon 21076 Cedex (France); Walker, Paul [LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France); Brunotte, François [Department of Nuclear Medicine, Centre Georges-François Leclerc, 1 rue Professeur Marion, Dijon 21079 Cedex, France and LE2i CNRS UMR 5158, Faculty of Medicine, BP 87900, 21079 Dijon Cedex (France)

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  1. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    Science.gov (United States)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  2. Luminescence studies on Dy3+ doped calcium boro-tellurite glasses for White light applications

    Science.gov (United States)

    Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2017-09-01

    A new series of Dy3+ doped calcium boro-tellurite glasses have been prepared by melt quenching technique and their spectroscopic properties were studied through FTIR, absorption luminescence and lifetime spectral measurements. FTIR studies have been made to explore the presence of various stretching and bending vibrations of different borate and tellurite groups in the prepared glasses. The bonding parameter values were estimated from the absorption band positions using Nephelauxetic ratios to examine the nature of the metal-ligand bond. The optical band gap and Urbach energy (ΔE) values were obtained from the absorption spectra to explore the electronic band structure of the studied glasses. Judd-Ofelt (JO) theory have been used to determine the JO intensity parameters (Ω2, Ω4, Ω6) following the least square fitting procedure between the experimental and calculated oscillator strength values. The luminescence spectra of the Dy3+ doped calcium boro-tellurite glasses exhibit two intense emission bands corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions. Further, they exhibit less intense emission band due to the 4F9/2→6H11/2 transition. Luminescence spectra were characterized through CIE 1931 chromaticity diagram to obtain the dominant emission color of the prepared glasses. The JO intensity parameters and refractive index values have been used to calculate the radiative parameters such as transition probabilities (AR), branching ratios (βR) and stimulated emission cross-section (σPE) values for the observed transitions in the luminescence spectra. The decay curves of all the studied glasses found to exhibit non-exponential behavior and further to understand the energy transfer process takes place between the Dy3+ ions, the decay curves were fitted to the Inokuti-Hirayama (IH) model. The structural and optical properties of the Dy3+ doped calcium boro-tellurite glasses have been studied as a function of different metal cations (Zn, Cd, Pb and

  3. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  4. Luminescence from Porous Silicon

    Directory of Open Access Journals (Sweden)

    A. Gupta

    1998-01-01

    Full Text Available Recent observations of photoluminescene (PL and electroluminescence (EL from poroussilicon (PS have prompted many theoretical and experimental studies. Bulk crystalline Si is anindirect band gap material in which .recombination is dominated by non-radiative processes.Therefore, it cannot be used as light-emitting component in Si circuits. PS is a new material formed byanodisation ofsingle crystal Si wafers in hydro fluoric (liF solution. Luminescence from this materialis being explored for technological applications all over the world. The mechanism of luminescence isstill not well-understood. Several models have been proposed but still the facts about the strong lightemission at room temperature are unknown. This paper presents a review of the fabrication process andstudies on luminescent properties of PS. A hybrid model based on quantum confinement of carriers inthe nanometer size Si crystallites having a large number of surface states is suggested to explain theobserved properties.

  5. Multicolored luminescent CdS nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The observation of efficient blue, green, orange and red luminescence from CdS nanocrystals made by using a reverse micelle method was reported. The blue luminescence about 480 nm is attributed to the radiative recombination of electron-hole pairs.The red luminescence around 650 nm is due to the radiative recombination of the exciton trapped in the nanocrystal surface defect states. The combination of different portion of band-edge emission and surface trap state emission results in green and orange luminescence for the nanocrystals. The CdS nanocrystals with efficient multicolored luminescence may find potential application in full color displays and biolabelings.

  6. Microemulsion mediated synthesis of triangular shape SnO{sub 2} nanoparticles: Luminescence application

    Energy Technology Data Exchange (ETDEWEB)

    Luwang, Meitram Niraj, E-mail: mn.luwang@ncl.res.in

    2014-01-30

    The triangular prism shapes of SnO{sub 2}·xH{sub 2}O nanoparticles are prepared using microemulsion route. The effect of variation of water pool value on the formation of SnO{sub 2} nanoparticles was studied. There is the quantum size effect in absorption study of SnO{sub 2} nanoparticles. With the increase of the water pool value, there is a decrease in the band edge absorption energy suggesting the weak quantum confinement effect (QCE) in SnO{sub 2} nanoparticles. Quenching effect increases with increase of water to surfactant ratio in luminescence. There is no significant effect in lifetime values for SnO{sub 2} nanoparticles in both microemulsion and powder form. SnO{sub 2} nanoparticles show green emission due to oxygen vacancy. SnO{sub 2} nanoparticles when doped with Eu{sup 3+} ions give the enhanced luminescence of Eu{sup 3+} due to the surface mediated energy transfer from SnO{sub 2} to Eu{sup 3+} ion.

  7. Lanthanide-based luminescence biolabelling.

    Science.gov (United States)

    Sy, Mohamadou; Nonat, Aline; Hildebrandt, Niko; Charbonnière, Loïc J

    2016-04-14

    Luminescent lanthanide complexes display unrivalled spectroscopic properties, which place them in a special category in the luminescent toolbox. Their long-lived line-like emission spectra are the cornerstones of numerous analytical applications ranging from ultrasensitive homogeneous fluoroimmunoassays to the study of molecular interactions in living cells with multiplexed microscopy. However, achieving such minor miracles is a result of years of synthetic efforts and spectroscopic studies to understand and gather all the necessary requirements for the labels to be efficient. This feature article intends to survey these criteria and to discuss some of the most important examples reported in the literature, before explaining in detail some of the applications of luminescent lanthanide labels to bioanalysis and luminescence microscopy. Finally, the emphasis will be put on some recent applications that hold great potential for future biosensing.

  8. Application of ZnO nanopillars and nanoflowers to field-emission luminescent tubes

    Institute of Scientific and Technical Information of China (English)

    Ye Yun; Guo Tailiang; Jiang Yadong

    2012-01-01

    Zinc oxide (ZnO) nanopillars on a ZnO seed layer and ZnO nanoflowers were synthesized by electrochemical deposition on linear wires.The morphologies and crystal orientation of the ZnO nanostructures were investigated by a scanning electron microscopy and an X-ray diffraction pattern,respectively.Detailed study on the field-emission properties of ZnO nanostructures indicates that nanopillars with a high aspect ratio show good performance with a low turn-on field of 0.16 V/μm and a high field enhancement factor of 2.86 × 104.A luminescent tube with ZnO nanopillars on a linear wire cathode and a transparent anode could reach a luminance of about 1.5 × 104 cd/m2 under an applied voltage of 4 kV.

  9. Luminescent properties of ZrO2:Tb nanoparticles for applications in neuroscience

    Science.gov (United States)

    Słońska, A.; Kaszewski, J.; Wolska-Kornio, E.; Witkowski, B.; Wachnicki, Ł.; Mijowska, E.; Karakitsou, V.; Gajewski, Z.; Godlewski, M.; Godlewski, M. M.

    2016-09-01

    In this paper a new generation of non-toxic nanoparticles based on the zirconium oxide doped with 0.5%Tb and co-doped by the range of 0-70% with Y was evaluated for the use as a fluorescent biomarker of neuronal trafficking. The ZrO2:Tb nanoparticles were created by microwave driven hydrothermal method. Influence of the yttrium content and thermal processing on the Tb3+ related luminescence emission was discussed. The higher intensities were achieved, when host was cubic and for the nanoparticles with 33 nm. Presence of yttrium was associated with the energy coupling of the host and dopant, wide excitation band is present at 309 and 322 nm before and after calcination respectively.

  10. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    Science.gov (United States)

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  11. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications

    Science.gov (United States)

    Deopa, Nisha; Rao, A. S.

    2017-10-01

    Photoluminescence (PL) characterization of Lithium Lead Alumino Borate (LiPbAlB) glasses doped with Sm3+ ions at varying concentrations have been studied by using absorption, excitation, emission, time resolved and confocal image measurements. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ion doped LiPbAlB glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2, for which the emission cross-sections and branching ratios were evaluated to know the potentialities of these materials as visible luminescent devices. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition level were used to estimate quantum efficiency of the as-prepared glasses. The non-exponential decay curves observed for higher Sm3+ ion concentrations were well fitted to Inokuti-Hirayama model to understand the predominant energy transfer mechanism involved in the as-prepared glasses. CIE chromaticity coordinates and correlated color temperatures (CCT) were evaluated to understand the utility of the titled glasses in cool white light generation. The confocal images captured under 405 nm CW laser excitation show intense reddish-orange color. From the evaluated radiative parameters, emission cross-sections, quantum efficiency, CIE co-ordinates, CCT temperatures and confocal images, it was observed that LiPbAlB glass with 0.5 mol% Sm3+ ions are more suitable for w-LEDs and reddish-orange luminescent device applications.

  12. Structural and luminescence properties of Dy3+ doped bismuth phosphate glasses for greenish yellow light applications

    Science.gov (United States)

    Damodaraiah, S.; Reddy Prasad, V.; Babu, S.; Ratnakaram, Y. C.

    2017-05-01

    Different compositions of (5, 10, 15 and 20 mol%) of bismuth and different concentrations (0.5, 1.0, 1.5 and 2.0 mol%) of Dy3+ ion doped bismuth phosphate (BiP) glasses were synthesized by melt-quenching technique. The structural characterization was accomplished by XRD, SEM with EDS, FTIR, FT-Raman and 31P MAS NMR spectroscopy. The optical properties were studied using absorption and photoluminescence spectroscopy. Different structural groups were identified using FTIR and FT-Raman spectra. The depolymerization of metaphosphate chains are described by the decrease of Q2 tetrahedral sites allowing the formation of pyrophosphate groups (Q1) revealed by 31P MAS NMR spectroscopic investigations. Judd-Ofelt intensity parameters Ωλ (λ = 2, 4 and 6) were evaluated from absorption spectra. Radiative parameters such as radiative lifetimes (τR), integrated absorption cross-sections (Σ) and branching ratios (βR) were calculated using Judd-Ofelt intensity parameters. From photoluminescence spectra, experimental branching ratios (βexp) and stimulated emission cross-sections (σP) were calculated for all the observed emission transitions of prepared glasses. The decay profiles for 4F9/2 level were recorded and fit exponential for 0.5 mol% and non-exponential for higher concentrations of Dy3+ due to non-radiative energy transfer among excited Dy3+ ions. The CIE chromaticity co-ordinates have been calculated from the luminescence spectra which confirmed greenish yellow light emission.

  13. Sunlight activated lanthanide complex for luminescent solar collector applications: effect of waveguide matrix

    Science.gov (United States)

    Shahi, Praveen Kumar; Singh, Priyam; Bahadur Rai, Shyam

    2017-02-01

    The performance of Eu(DBM)3Phen complex (EDP) dispersed in PMMA poly-(methyl methacrylate) polymer matrix, as simple planner luminescent solar collectors (LSCs) is demonstrated using spectroscopic and photovoltaic (PV) measurements. The organic ligands absorb ultra-violet-blue (UV-blue) radiation (220–450 nm) very efficiently and transfer its energy to the Eu3+ ion, which gives an intense red emission even in sunlight exposure. The excellent optical properties of EDP in PMMA permit its coating on the front surface of c-Si solar cell (10  ×  10 cm2) for PV measurements. The PV characterizations reveal the improvement in the short circuit current density (J sc) of PV cell and maximum improvement is found to be 4.6% for 2.5 wt% EDP concentration in PMMA matrix. The efficiency of solar cell increases from 17.22% to 18.33% for bare and 2.5% EDP in PMMA. At a higher concentration of EDP, the thin film starts losing its transparency and hence PV efficiency decreases. These results illustrate that a EDP complex combined with a PV cell could work as a prototype of a new generation solar cell.

  14. Luminescence properties of Dy3+ doped different fluoro-phosphate glasses for solid state lighting applications

    Science.gov (United States)

    Babu, S.; Reddy Prasad, V.; Rajesh, D.; Ratnakaram, Y. C.

    2015-01-01

    Dy3+ doped different fluoro-phosphate glasses are prepared and they are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), Raman, optical absorption, and photoluminescence (PL) techniques. The structural characterization is accomplished by XRD, FTIR and Raman spectroscopy. The morphological analysis was performed by SEM. The absorption spectra have been analyzed using Judd-Ofelt theory and the intensity parameters have been evaluated. These parameters are used to calculate radiative properties such as emission probabilities (AR), radiative lifetimes (τR) and integrated absorption cross-sections (Σ) for different Dy3+ transitions. The PL spectra exhibit bands in the blue, yellow and red regions. Furthermore, the dependence of luminescence properties such as stimulated emission cross-sections (σp) and branching ratios (β) on different metal cations in these glasses is studied. From decay curve analysis, the lifetimes of the excited state 4F9/2 have been measured. The calorimetric property is also studied based on Commission International del'Eclairage (CIE) standards for Dy3+ doped different fluoro-phosphate glasses and discussed.

  15. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications.

    Science.gov (United States)

    Lustig, William P; Mukherjee, Soumya; Rudd, Nathan D; Desai, Aamod V; Li, Jing; Ghosh, Sujit K

    2017-06-06

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure-property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.

  16. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  17. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  18. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Science.gov (United States)

    Hegde, Vinod; Wagh, Akshatha; Hegde, Hemanth; Vishwanath, C. S. Dwaraka; Kamath, Sudha D.

    2017-05-01

    The present study explores a new borate family glasses based on 10ZnO-5Na2O-10Bi2O3-(75 - x) B2O3- xEu2O3 ( x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu3+ concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm-1 region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO4 units with rise in europium content which confirmed the `network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω2,Ω4) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu3+ ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm.

  19. Luminescent Properties of Arylpolyene Organic Dyes and Cross-Conjugated Ketones Promising for Quantum Optics and Nanophotonics Applications

    Directory of Open Access Journals (Sweden)

    Naumova N. L.

    2015-01-01

    Full Text Available The spectral-luminescent properties of some dyes of substituted arylpolyenes and cross-conjugated ketones class in Shpolsky matrices, promising for using in solving quantum optics and nanophotonics, were studied.

  20. Investigation into scanning tunnelling luminescence microscopy

    CERN Document Server

    Manson-Smith, S K

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provi...

  1. Luminescent features of sol-gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    Energy Technology Data Exchange (ETDEWEB)

    Gouveia-Neto, A.S., E-mail: artur@df.ufrpe.br [Departamento de Fisica, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil); Silva, A.F. da; Bueno, L.A.; Costa, E.B. da [Departamento de Fisica, Universidade Federal Rural de Pernambuco, Recife, PE (Brazil)

    2012-02-15

    Rare-earth doped oxyfluoride 75SiO{sub 2}:25PbF{sub 2} nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol-gel derived glasses. Room temperature luminescence features of Eu{sup 3+}, Sm{sup 3+}, Tb{sup 3+}, Eu{sup 3+}/Tb{sup 3+}, and Sm{sup 3+}/Tb{sup 3+} ions incorporated into low-phonon-energy PbF{sub 2} nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO{sub 2}:25PbF{sub 2} host herein reported is a promising contender for white-light LED applications. - Highlights: Black-Right-Pointing-Pointer White-light emission in double-doped activated phosphors employing UV-LED excitation. Black-Right-Pointing-Pointer Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. Black-Right-Pointing-Pointer New nanocomposite phosphor host for white-light LED applications.

  2. Surface modification of ZnO quantum dots by organosilanes and oleic acid with enhanced luminescence for potential biological application

    Science.gov (United States)

    Rissi, Nathalia Cristina; Hammer, Peter; Aparecida Chiavacci, Leila

    2017-01-01

    Luminescent ZnO-QDs is a promising candidate for biological application, especially due to their low toxicity. Nevertheless, colloidal ZnO-QDs prepared by sol-gel route are unstable in water and incompatible with lipophilic systems, hindering their application in biology and medicine. To tackle the problem, this study reports three different strategies for surface modification of ZnO-QDs by: (i) hydrophilic (3-glycidyloxypropyl) trimethoxysilane (GPTMS), (ii) hydrophobic hexadecyltrimethoxysilane (HTMS) and then by (iii) oleic acid (OA) and HTMS bilayer. Capped ZnO-QDs by GPTMS and HTMS were performed by hydrolysis and condensation reactions under basic catalysis, leading to the formation of siloxane layer, involving strong interaction between the silanes with hydroxylated surface of ZnO, thereby creating a covalent bond—ZnO-O-Si. Alternatively, OA and HTMS were employed as hydrophobic agent to form a bilayer barrier surrounding the nanoparticles (NPs). Capped ZnO-QDS were analyzed by techniques including: Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and transmission electron microscopy, as well as the monitoring of excitonic peak of ZnO by UV-vis absorption spectroscopy. Photoluminescence measurements confirmed the importance of capping agents. Bare ZnO-QDs powder showed lowest photoluminescence intensity and displacement to yellow region when compared with ZnO-QDs capped, which present a higher photoluminescence in the green region. The above results can be related to changes of the concentration of oxygen vacancies (V o) and also by increased presence of surface defect density. Silane capping represents the best choice for high stability and photoluminescence enhancement of ZnO-QDs.

  3. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny;

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  4. Study structural and up-conversion luminescence properties of polyvinyl alcohol/CaF2:erbium nanofibers for potential medical applications

    Directory of Open Access Journals (Sweden)

    Omolfajr Nakhaei

    2015-04-01

    Full Text Available Objective(s: This paper describes synthesisPolyvinyl Alcohol/CaF2:Er nanofibers because of  its  photoluminescence properties. Materials and Methods:  First, CaF2:Er nanocomposite synthesized with co-precipitation method. In order to prepare polyvinyl alcohol (PVA/CaF2:Er nanofibers, CaF2:Er nanocomposites were added to the polyvinyl alcohol (PVA polymer. PVA/CaF2:Er composite nanofibers were successfully prepared by electrospinning technique. Results:  X-Ray Diffraction (XRD pattern and Transmission Electron Microscopy (TEM images indicate that the CaF2:Er nanocomposite was formed with cubic phase and the average crystalline size was calculated using the Scherrer's equation is about 26-28 nm. Scanning Electron Microscopy (SEM images show that the diameters of the fine nanofibers are in the range of 60-110 nm. For studying luminescence properties of the nanofibers, the samples excited with different wavelengths and show excellent Up-Conversion luminescence transition. Conclusion: Photoluminescence spectrums of the PVA/CaF2:Er nanofibers illustrate                up-conversion luminescence process. This unique property can have high potential for laser application and bio-imaging in medical technology.

  5. Improved properties of phosphor-filled luminescent down-shifting layers: reduced scattering, optical model, and optimization for PV application

    Science.gov (United States)

    Solodovnyk, Anastasiia; Lipovšek, Benjamin; Forberich, Karen; Stern, Edda; Krč, Janez; Batentschuk, Miroslaw; Topič, Marko; Brabec, Christoph J.

    2015-12-01

    We studied the optical properties of polymer layers filled with phosphor particles in two aspects. First, we used two different polymer binders with refractive indices n = 1.46 and n = 1.61 (λ = 600 nm) to decrease Δn with the phosphor particles (n = 1.81). Second, we prepared two particle size distributions D50 = 12 μm and D50 = 19 μm. The particles were dispersed in both polymer binders in several volume concentrations and coated onto glass with thicknesses of 150 - 600 μm. We present further a newly developed optical model for simulation and optimization of such luminescent down-shifting (LDS) layers. The model is developed within the ray tracing framework of the existing optical simulator CROWM (Combined Ray Optics / Wave Optics Model), which enables simulation of standalone LDS layers as well as complete solar cells (including thick and thin layers) enhanced by the LDS layers for an improved solar spectrum harvesting. Experimental results and numerical simulations show that the layers of the higher refractive index binder with larger particles result in the highest optical transmittance in the visible light spectrum. Finally we proved that scattering of the phosphor particles in the LDS layers may increase the overall light harvesting in the solar cell. We used numerical simulations to determine optimal layer composition for application in realistic thin-film photovoltaic devices. Surprisingly LDS layers with lower measured optical transmittance are more efficient when applied onto the solar cells due to graded refractive index and efficient light scattering. Therefore, our phosphor-filled LDS layers could possibly complement other light-coupling techniques in photovoltaics.

  6. Application of new semisynthetic aequorins with long half-decay time of luminescence to G-protein-coupled receptor assay.

    Science.gov (United States)

    Inouye, Satoshi; Iimori, Rie; Sahara, Yuiko; Hisada, Sunao; Hosoya, Takamitsu

    2010-12-15

    Aequorin is a Ca(2+)-binding photoprotein and consists of an apoprotein (apoaequorin) and a 2-peroxide of coelenterazine. Eight new coelenterazine analogues modified at the C2-position were synthesized and incorporated into recombinant apoaequorin with O(2) to yield different semisynthetic aequorins. The luminescence properties and the sensitivity to Ca(2+) of these semisynthetic aequorins were characterized. Two semisynthetic aequorins, namely me- and cf3-aequorin, showed a slow decay of the luminescence pattern with less sensitivity to Ca(2+) and were useful for the cell-based G-protein-coupled receptor (GPCR) reporter assays. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. The Synthesis of Amphiphilic Luminescent Graphene Quantum Dot and Its Application in Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Minxiang Zeng

    2016-01-01

    Full Text Available Although emulsion applications of microscale graphene sheets have attracted much attention recently, nanoscale graphene platelets, namely, graphene quantum dots (GQDs, have been rarely explored in interface science. In this work, we study the interfacial behaviors and emulsion phase diagrams of hydrophobic-functionalized graphene quantum dots (C18-GQDs. Distinctive from pristine graphene quantum dots (p-GQDs, C18-GQDs show several interesting surface-active properties including high emulsification efficiency in stabilizing dodecane-in-water emulsions. We then utilize the C18-GQDs as surfactants in miniemulsion polymerization of styrene, achieving uniform and relatively small polystyrene nanospheres. The high emulsification efficiency, low production cost, uniform morphology, intriguing photoluminescence, and extraordinary stability render C18-GQDs an attractive alternative in surfactant applications.

  8. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application.

    Science.gov (United States)

    Wang, Li; Zhou, H Susan

    2014-09-16

    In the present work, a completely green synthetic method for producing fluorescent nitrogen-doped carbon dots by using milk is introduced. The process is environmentally friendly, simple, and efficient. By hydrothermal heating of milk, we produced monodispersed, highly fluorescent carbon dots with a size of about 3 nm. Imaging of U87 cells, a human brain glioma cancer cell line, can be easily achieved with high resolution using the prepared carbon dots as probes and validates their use in imaging applications.

  9. Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

    DEFF Research Database (Denmark)

    Aznar, M.C.; Andersen, C.E.; Bøtter-Jensen, L.;

    2004-01-01

    A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm), high sensitivity...

  10. Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications

    CERN Document Server

    Bennun, Alfred

    2012-01-01

    Extraction of the light weight radioisotopes (LWR) 89Sr/90Sr, from the expended nuclear bars in the Fukushima reactor, should have decreased the extent of contamination during the course of the accident. 89Sr applications could pay for the extraction of 89Sr/90Sr from nuclear residues. Added value could be obtained by using 89Sr for cancer treatments. Known technologies could be used to relate into innovative ways LWR, to obtain nuclear energy at battery scale. LWR interact by contact with scintillators converting \\beta-radiation into light-energy. This would lead to manufacturing scintillator lamps which operate independently of other source of energy. These lamps could be used to generate photoelectric energy. Engineering of radioisotopes scintillator photovoltaic cells, would lead to devices without moving parts.

  11. Controlling plasmon-enhanced luminescence

    NARCIS (Netherlands)

    Mertens, H.

    2007-01-01

    Plasmons are collective oscillations of the free electrons in a metal or an ionized gas. Plasmons dominate the optical properties of noble-metal nanoparticles, which enables a variety of applications. This thesis focuses on plasmon-enhanced luminescence of silicon quantum dots (Si QDs) and optically

  12. Metal plasmon enhanced europium complex luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Liu Feng [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada); Aldea, Gabriela [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada); Petru Poni Institute of Macromolecular Chemistry Iasi, Aleea Grigore Ghica Voda 41A, 700487 Iasi (Romania); Nunzi, Jean-Michel, E-mail: nunzijm@queensu.c [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada)

    2010-01-15

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod){sub 3}) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  13. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  14. Near-infrared luminescent cubic silicon carbide nanocrystals for in vivo biomarker applications: an ab initio study.

    Science.gov (United States)

    Somogyi, Bálint; Zólyomi, Viktor; Gali, Adam

    2012-12-21

    Molecule-sized fluorescent emitters are much sought-after to probe biomolecules in living cells. We demonstrate here by time-dependent density functional calculations that the experimentally achievable 1-2 nm sized silicon carbide nanocrystals can emit light in the near-infrared region after introducing appropriate color centers in them. These near-infrared luminescent silicon carbide nanocrystals may act as ideal fluorophores for in vivo bioimaging.

  15. Optical fibre dosemeter systems for clinical applications based on radioluminescence and optically stimulated luminescence from Al2O3:C

    DEFF Research Database (Denmark)

    Marckmann, C.J.; Andersen, C.E.; Aznar, M.C.

    2006-01-01

    Optical fibre dosemeter systems based on radioluminescence and optically stimulated luminescence (OSL) from carbon-doped aluminium oxide (Al2O3:C) crystals were developed for in vivo real-time dose rate and absorbed dose measurements in radiotherapy and mammography. A technique was also developed...... for making ultra-small dosemeter probes that can easily be placed inside patients in radiation treatment. These probes have shown excellent properties in both head and neck intensity-modulated radiation therapy treatment and in mammography. The dose-response of the OSL signal for the new optical fibre...

  16. Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample

    DEFF Research Database (Denmark)

    Denby, Phil M.; Bøtter-Jensen, L.; Murray, A.S.

    2006-01-01

    this stimulation source, and hi.-h-speed photon timing, the OSL yield can be monitored throughout the pulsing cycle and subsequent OSL decay. It is found that the total photon yield per unit stimulation power in pulsed mode is, for quartz, twice and, for feldspar, nearly four times, that in continuous wave mode......It is known that the pulsed optically stimulated luminescence (OSL) characteristics of quartz and feldspars are very different. These differences can be used to preferentially discriminate against the feldspar signal in mixed quartz\\feldspar mineral assemblages, or in separated quartz contaminated...

  17. Preparation of luminescent CdTe quantum dots doped core-shell nanoparticles and their application in cell recognition

    Institute of Scientific and Technical Information of China (English)

    LI Zhaohui; WANG Kemin; TAN Weihong; LI Jun; FU Zhiying; WANG Yilin; LIU Jianbo; YANG Xiaohai

    2005-01-01

    Based on the reverse microemulsion technique, luminescent quantum dots doped core-shell nanoparticles have been prepared by employing silica as the shell and CdTe quantum dots as the core of the nanoparticles, which have an excellent solubility and dispersibility, especially amine and phosphonate groups have been modified on their surface synchronously. In comparison with CdTe quantum dots, these nanoparticles show superiority in chemical and photochemical stability. The quantum dots doped core-shell nanoparticles were successfully linked with lactobionic acid by amine group on it, which was used to recognize living liver cells.

  18. Synthesis of luminescents biomarkers containing rare-earth ions for application for diagnostics tests for disease chagas

    OpenAIRE

    ENGELMANN, KLAUSS

    2014-01-01

    Os íons terras raras apresentam propriedades espectroscópicas diferenciadas e números de coordenação entre 6 e 12 e seu estado de oxidação mais comum é o íon trivalente. Apesar de esses íons apresentarem uma baixa intensidade de luminescência, em função de sua baixa absortividade molar, esses são capazes de formar complexo onde o ligante absorva luz e transfira para o centro metálico essa energia, fenômeno conhecido como efeito antena. Essas propriedades tornam os seus complexos alvos de estu...

  19. Mamografia digital: perspectiva atual e aplicações futuras Digital mammography: current view and future applications

    Directory of Open Access Journals (Sweden)

    Andréa Gonçalves de Freitas

    2006-08-01

    Full Text Available Na mamografia digital, os processos de aquisição da imagem, demonstração e armazenamento são separados, o que leva à otimização de cada uma dessas etapas. A radiação transmitida através da mama é absorvida por um detector eletrônico, em resposta fiel a uma ampla variedade de intensidades. Uma vez que esta informação é armazenada, ela pode ser demonstrada usando técnicas computadorizadas de imagem, permitindo variações de brilho e contraste e ampliação, sem a necessidade de exposições radiológicas adicionais para a paciente. Neste artigo, o estado atual da tecnologia em mamografia digital e dados sobre testes clínicos que dão suporte ao uso dessa tecnologia são revistos. Além disso, algumas aplicações potencialmente utilizáveis que estão sendo desenvolvidas com a mamografia digital são descritas.In digital mammography, imaging acquisition, display and storage processes are separated and individually optimized. Radiation transmitted through the breast is absorbed by an electronic detector with an accurate response over a wide range of intensities. Once these data are stored, they can be displayed by means of computer image-processing techniques to allow arbitrary settings of image brightness, contrast and magnification, without the need for further radiological exposure of the patient. In this article, the current state of the art in technology for digital mammography and clinical trials data supporting the use of this technology are reviewed. In addition, several potentially useful applications, currently under development with digital mammography, are described.

  20. Luminescence studies on Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses for WLED applications

    Science.gov (United States)

    Vijayakumar, M.; Uma, V.; Arunkumar, S.; Marimuthu, K.

    2015-06-01

    Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses have been prepared and optically characterized using absorption, luminescence and decay measurements. The Nephelauxetic ratios (β), Bonding parameters (δ) and Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were calculated to study the nature of the environment around the RE3+ ions in the prepared glasses. The yellow to blue (Y/B) intensity ratio and the chromaticity color coordinates were calculated from the luminescence measurements. The lifetimes of the 4F9/2 excited level were measured using decay curves and is found to decrease in the Dy3+:Eu3+ co-doped glass due to the occurrence of resonant energy transfer between Dy3+-Eu3+ ions and the non-exponential decay rates have been fitted with Inokuti-Hirayama (IH) model. The decay curves are well fitted for S= 6 suggesting that the interaction between active ions for the energy transfer is of dipole-dipole nature.

  1. Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging.

    Science.gov (United States)

    Shi, Yunfeng; Liu, Lin; Pang, Huan; Zhou, Hongli; Zhang, Guanqing; Ou, Yangyan; Zhang, Xiaoyin; Du, Jimin; Xiao, Wangchuan

    2014-03-13

    A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a high quantum yield (QY) up to 58%. By preparing CdTe QDs within HPAMAM, the biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs can be combined, endowing the CdTe QDs with biocompatibility. The resulting CdTe QDs can be directly used in biomedical fields, and their potential application in bio-imaging was investigated.

  2. The extended Beer-Lambert theory for ray tracing modeling of LED chip-scaled packaging application with multiple luminescence materials

    Science.gov (United States)

    Yuan, Cadmus C. A.

    2015-12-01

    Optical ray tracing modeling applied Beer-Lambert method in the single luminescence material system to model the white light pattern from blue LED light source. This paper extends such algorithm to a mixed multiple luminescence material system by introducing the equivalent excitation and emission spectrum of individual luminescence materials. The quantum efficiency numbers of individual material and self-absorption of the multiple luminescence material system are considered as well. By this combination, researchers are able to model the luminescence characteristics of LED chip-scaled packaging (CSP), which provides simple process steps and the freedom of the luminescence material geometrical dimension. The method will be first validated by the experimental results. Afterward, a further parametric investigation has been then conducted.

  3. Luminescence at the end of the tunnelling - Investigating charge transfer mechanisms and luminescence dating methods for feldspar minerals

    NARCIS (Netherlands)

    Kars, R.H.

    2014-01-01

    This thesis comprises analyses of mineral physics with an application in geology and archeology. The thesis contributes to the development of feldspar luminescence dating methods in order to extend the applicable age range of feldspar luminescence dating in the Quaternary (last 2.6 Ma). The research

  4. New Opportunities for Lanthanide Luminescence

    Institute of Scientific and Technical Information of China (English)

    Jean-Claude G. Bünzli; Steve Comby; Anne-Sophie Chauvin; Caroline D. B. Vandevyver

    2007-01-01

    Trivalent lanthanide ions display fascinating optical properties. The discovery of the corresponding elements and their first industrial uses were intimately linked to their optical properties. This relationship has been kept alive until today when many high-technology applications of lanthanide-containing materials such as energy-saving lighting devices, displays, optical fibers and amplifiers, lasers, responsive luminescent stains for biomedical analyses and in cellulo sensing and imaging, heavily rely on the brilliant and pure-color emission of lanthanide ions. In this review we first outlined the basics of lanthanide luminescence with emphasis on f-f transitions, the sensitization mechanisms, and the assessment of the luminescence efficiency of lanthanide-containing emissive molecular edifices. Emphasis was then put on two fast developing aspects of lanthanide luminescence: materials for telecommunications and light emitting diodes, and biomedical imaging and sensing. Recent advances in NIR-emitting materials for plastic amplifiers and waveguides were described, together with the main solutions brought by researchers to minimize non-radiative deactivation of excited states. The demonstration in 1999 that erbium tris(8-hydroxyquinolinate) displayed a bright green emission suitable for organic light emitting diodes (OLEDs) was followed by realizing that in OLEDs, 25% of the excitation energy leads to singlet states and 75% to triplet states. Since lanthanide ions are good triplet quenchers, they now also play a key role in the development of these lighting devices. Luminescence analyses of biological molecules are among the most sensitive analytical techniques known. The long lifetime of the lanthanide excited states allows time-resolved spectroscopy to be used, suppressing the sample autofluorescence and reaching very low detection limits. Not only visible lanthanide sensors are now ubiquitously provided in medical diagnosis and in cell imaging, but the

  5. Una perspectiva latinoamericana

    Directory of Open Access Journals (Sweden)

    Jaime Torres Guillén

    2008-01-01

    Full Text Available En este trabajo se ensaya la idea de la desobediencia civil como praxis desde una perspectiva del continente americano. Al hacer alusión al término civil, se plantea la importancia de teorizar sobre la categoría de sociedad civil en conjunto con los conceptos de democracia y praxis. Esto con el objeto de explicitar la justificación de la desobediencia civil dentro de las sociedades democráticas y la posibilidad de extender dicha desobediencia al terreno de la praxis social más allá de la concepción liberal.

  6. Nietzsche en perspectiva

    OpenAIRE

    Berten, André; Borradori, Giovanna; Brusotti,Marco; Cifuentes, Luis Antonio; Cragnolini, Mónica; Fogel, Gilvan; Hanza, Kathia; Jara, José; Mainberger, Sabine; Meléndez, Germán; Tugendhat, Ernst; Vásquez, Carlos; Winchester, James

    2001-01-01

    En este texto se reúne un conjunto de ensayos recientes e inéditos casi todos, de reconocidos estudiosos de la obra de Friedrich Nietzsche (1844-1900), que fueron presentados con motivo de la celebración del primer centenario de la muerte de este gran filósofo alemán durante el Encuentro Internacional: Nietzche en perspectiva. / Contenido. Preliminares; Capítulo 1 - A manera de introducción: el amor por el saber en Nietzsche; Capítulo 2 - Subjetividad y ontología de la fuerza; Capítulo 3 - Cu...

  7. territorial y perspectivas inmediatas

    Directory of Open Access Journals (Sweden)

    José Domingo Sánchez Martínez

    2005-01-01

    Full Text Available El Parque Natural de Despeñaperros se caracteriza por su pequeña extensión, la ausencia de población y la práctica inexistencia de propietarios particulares. Además, destaca por estar atravesado por una autovía. En el presente trabajo se describen sintéticamente los elementos que forman el territorio y prestamos especial atención al proceso que supone el control del suelo por parte de la administración pública. Finalmente, se reflexiona sobre los retos y perspectivas inmediatas del Parque.

  8. Optically stimulated luminescence dating of rock surfaces

    DEFF Research Database (Denmark)

    Sohbati, Reza

    There are many examples of rock surfaces, rock art and stone structures whose ages are of great importance to the understanding of various phenomena in geology, climatology and archaeology. Optically stimulated luminescence (OSL) dating is a well-established chronological tool that has successfully...... of rock surfaces is successfully tested by application to two different quartz-rich rock types (sandstone and quartzite). Together with the measurement of infrared stimulated luminescence (IRSL) signals as a function of depth into the surface of different granites it is clear that both OSL and IRSL can....... Based on the studies of residual luminescence as a function of depth into a rock surface discussed above, a model is developed that relates this increase in residual luminescence to the exposure time. The model is then further developed using the quartz OSL signal from buried quartzite cobbles...

  9. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  10. Enhanced luminescence behaviour of Eu3+ doped heavy metal oxide telluroborate glasses for Laser and LED applications

    Science.gov (United States)

    Pravinraj, S.; Vijayakumar, M.; Marimuthu, K.

    2017-03-01

    Effect on structural and spectroscopic behaviour caused by the replacement of lead cations with the aluminium cations in the Eu3+ doped heavy metal oxide borophosphate glasses have been studied with the chemical composition (55B2O3+19.5TeO2+10K2O+(15-x)PbO+xAl2O3+0.5Eu2O3 (where x=0, 2.5, 5, 7.5, 10, 12.5 and 15 in wt%) prepared by melt quenching technique. The FTIR and Raman spectral studies reveal the presence of various fundamental vibrational units and are used to identify the phonon energy of the title glasses. The positive values of bonding parameter (δ) indicate the formation of covalent bonds between the dopant (Eu3+) and the anions (O2-). Luminescence spectra of all the titled glasses exhibit five emission bands due to the electronic transitions of the trivalent europium ions. The radiative properties such as transition probability (A), stimulated emission cross-section (σpE) and branching ratio (βR) of the various emission transitions of the Eu3+ ions have been estimated using Judd-Ofelt (JO) theory. The characteristic emission was identified through CIE 1931 color chromaticity diagram and McCamy's formula have been used to estimate the correlated color temperature (CCT) using (x,y) chromaticity coordinates. The luminescence decay profile pertaining to the 5D0 metastable state of the Eu3+ ions exhibits single exponential behaviour uniformly for all the titled glasses and the experimental lifetime values were obtained following the curve fitting method.

  11. Surface grafting of Eu(3+) doped luminescent hydroxyapatite nanomaterials through metal free light initiated atom transfer radical polymerization for theranostic applications.

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    We reported a simple and efficient method to prepare the hydrophilic luminescent HAp polymer nanocomposites through the combination of ligand exchange and metal free light initiated surface-initiated atom transfer radical polymerization (SI-ATRP) using 10-phenylphenothiazine (PTH) as organic catalyst and 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as monomers. The biological imaging and drug delivery performance of HAp-poly(MPC-IA) nanorods were examined to evaluate their potential for biomedical applications. Results suggested that hydrophilic HAp-poly(MPC-IA) nanorods can be successfully prepared. More importantly, the HAp-poly(MPC-IA) exhibited excellent water dispersibility, desirable biocompatibility and good performance for biological imaging and controlled drug delivery applications. As compared with other controlled living polymerization reactions, the metal free light initiated SI-ATRP displayed many advantages such as easy for handle, mild reaction conditions, toxicity and fluorescence quenching from metal catalysts. Therefore, we believe that this strategy should be a useful and effective strategy for preparation of HAp nanomaterials for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Developments in luminescence measurement techniques

    DEFF Research Database (Denmark)

    Thomsen, Kristina Jørkov; Bøtter-Jensen, L.; Denby, Phil M.

    2006-01-01

    We report on our continuing investigation and development of new measurement facilities for use in irradiation, optical stimulation and luminescence signal detection; these facilities have potential application to all forms of luminescence-based retrospective dosimetry, and are particularly...... intended for use with the Riso TL/OSL reader. We have investigated the potential of new more powerful blue (455 nm) and green (530nm) LEDs, and of gated counting combined with pulsed stimulation light techniques using conventional LEDs. Measurement of time-resolved OSL has resulted in a method of real......; both types are very stable and reproducible. Other recent developments include the modification of a Riso reader to measure both thermally and optically stimulated electrons (TSE and OSE) from granular or chip phosphors. (c) 2006 Elsevier Ltd. All rights reserved....

  13. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  14. Luminescence characterization of Eu{sup 3+} doped Zinc Alumino Bismuth Borate glasses for visible red emission applications

    Energy Technology Data Exchange (ETDEWEB)

    Swapna, K.; Mahamuda, Sk. [Department of Physics, K L University, Green Fields, Vaddeswaram, 522 502 Guntur District, Andhra Pradesh (India); Rao, A. Srinivasa, E-mail: drsrallam@gmail.com [Department of Physics, K L University, Green Fields, Vaddeswaram, 522 502 Guntur District, Andhra Pradesh (India); Department of Applied Physics, Delhi Technological University, Bawana Road, New Delhi 110 042 (India); Sasikala, T. [Department of Physics, SV University, Tirupathi 517 502, Andhra Pradesh (India); Packiyaraj, P. [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, Hauz Khaz, New Delhi 110 016 (India); Moorthy, L. Rama [Department of Physics, SV University, Tirupathi 517 502, Andhra Pradesh (India); Prakash, G. Vijaya [Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology-Delhi, Hauz Khaz, New Delhi 110 016 (India)

    2014-12-15

    Zinc Alumino Bismuth Borate (ZnAlBiB) glasses doped with different concentrations of Eu{sup 3+} ions have been prepared by rapid melt quenching technique and characterized for their luminescence behavior through various spectroscopic techniques such as absorption, excitation, emission, decay profiles and confocal image measurements at room temperature. From the measured absorption spectra, the bonding parameters (δ) were evaluated to find the nature of bonding between Eu{sup 3+} ions with its surrounding ligands in these ZnAlBiB glasses. The emission spectra of Eu{sup 3+} ions in ZnAlBiB glasses excited at 410 nm (CW laser) show the characteristic of Eu{sup 3+} ions with more intense visible red emission corresponding to {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. This intense visible red emission is further confirmed by the confocal luminescence images recorded for all the ZnAlBiB glasses. Judd–Ofelt (J–O) parameters estimated from the emission spectral information are used to estimate the important radiative properties such as transition probability (A{sub R}), branching ratios (β{sub R}) and emission-cross sections for the prominent emission levels. The large stimulated emission cross-sections and branching ratios observed for ZnAlBiB glasses suggest the utility of these glasses in visible red region of the electromagnetic spectrum. The CIE chromaticity coordinates evaluated from the emission spectra and the confocal images recorded for all the ZnAlBiB glasses also indicates that, these glasses at higher concentration of Eu{sup 3+} ions are aptly suitable for intense red emission at 613 nm corresponding to {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. - Highlights: • ZnAlBiB glasses doped with Eu{sup 3+} ions were prepared by conventional melt quenching technique. • Radiative properties are measured from the emission spectra. • Quantum efficiency of the ZnAlBiB glasses is measured by using radiative and measured lifetimes. • CIE Chromaticity

  15. Luminescent Processes Elucidated by Simple Experiments on ZnS.

    Science.gov (United States)

    Schwankner, R.; And Others

    1981-01-01

    Describes some impurity-related optical properties of semiconductors, with special emphasis on the luminescence of zinc sulfide (ZnS). Presents and interprets five experiments using a ZnS screen, ultraviolet lamp, transparent Dewar liquid nitrogen, and a helium/neon gas base. Includes application of luminescence measurements to archaeology. (SK)

  16. Color-tunable luminescence of organoclay-based hybrid materials showing potential applications in white LED and thermosensors.

    Science.gov (United States)

    Wang, Tianren; Li, Peng; Li, Huanrong

    2014-08-13

    Hybrid composites with great potential for white light LED and temperature sensing obtained through a simple, low cost, and environmental benign way is highly desirable and remains a challengeable task. Herein we present luminescent hybrid composites both in the form of powder and transparent film by simply mixing organic sensitizer, aminoclay (AC), and lanthanide (Ln(3+)) in aqueous solution, the emission color of which can be fine-tuned by changing various parameters such as the molar ratio of Eu(3+) to Tb(3+), excitation wavelength, and the temperature. White lights with satisfied color coordinates have been achieved. The emission intensity ratio of (5)D4 → (7)F5 transition (Tb(3+)) to (5)D0 → (7)F2 transition (Eu(3+)) of the composite containing both Eu(3+) and Tb(3+) can be linearly related to temperature in the range from 78 K to 288 K. These characteristics make the composites suitable for optoelectronic devices such as thermosensors and white light LED.

  17. Luminescence techniques: Instrumentation and methods

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.

    1997-01-01

    This paper describes techniques, instruments and methods used in luminescence dating and environmental dosimetry in many laboratories around the world. These techniques are based on two phenomena - thermally stimulated luminescence and optically stimulated luminescence. The most commonly used...... luminescence stimulation and detection techniques are reviewed and information is given on recent developments in instrument design and on the stale of the art in luminescence measurements and analysis. (C) 1998 Elsevier Science Ltd. All rights reserved....

  18. Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units.

    Science.gov (United States)

    Li, Yilin; Li, Zhipeng; Ablekim, Tursunjan; Ren, Tianhui; Dong, Wen-Ji

    2014-12-21

    A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.

  19. la perspectiva psicosocial

    Directory of Open Access Journals (Sweden)

    Juan Guerrero

    2007-01-01

    Full Text Available Con la opción de analizar las condiciones de trabajo en oficina, el texto realiza una sucinta pero precisa revisión de la conceptualización sobre productividad y consumo. Se documenta la relación contradictoria entre bienestar y rendimiento en el trabajo al identificar el riesgo de llevar al límite de sus capacidades la participación del trabajador como factor de productividad, ignorando que éste tiene además el rol de consumidor activo de bienes y servicios para que la producción tenga sentido. Se plantea que exigir al trabajador hasta su agotamiento puede mermar sustancialmente su doble condición de productor y consumidor. Específicamente, se presenta la perspectiva del trabajo en o"cinas innovadas conceptual y tecnológicamente, con procesos laborales y patrones de desgaste y morbilidad definidos. El tiempo, el ritmo, la parcelación, el control del trabajo y la reestructuración en las organizaciones son, entre otros, factores que convergen para potenciar fenómenos de sobrecarga o subcarga mental con la consecuente aparición de estrés excedente y sus patologías asociadas.

  20. Advanced synchronous luminescence system

    Science.gov (United States)

    Vo-Dinh, Tuan

    1997-01-01

    A method and apparatus for determining the condition of tissue or otherwise making chemical identifications includes exposing the sample to a light source, and using a synchronous luminescence system to produce a spectrum that can be analyzed for tissue condition.

  1. Structured luminescence conversion layer

    Science.gov (United States)

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  2. Luminescent Di- and Trinuclear Boron Complexes Based on Aromatic Iminopyrrolyl Spacer Ligands: Synthesis, Characterization, and Application in OLEDs.

    Science.gov (United States)

    Suresh, D; Gomes, Clara S B; Lopes, Patrícia S; Figueira, Cláudia A; Ferreira, Bruno; Gomes, Pedro T; Di Paolo, Roberto E; Maçanita, António L; Duarte, M Teresa; Charas, Ana; Morgado, Jorge; Vila-Viçosa, Diogo; Calhorda, Maria José

    2015-06-15

    New bis- and tris(iminopyrrole)-functionalized linear (1,2-(HNC4 H3 -C(H)N)2 -C6 H4 (2), 1,3-(HNC4 H3 -C(H)N)2 -C6 H4 (3), 1,4-(HNC4 H3 -C(H)N)2 -C6 H4 (4), 4,4'-(HNC4 H3 -C(H)N)2 -(C6 H4 -C6 H4 ) (5), 1,5-(HNC4 H3 C-(H)N)2 -C10 H6 (6), 2,6-(HNC4 H3 C-(H)N)2 -C10 H6 (7), 2,6-(HNC4 H3 C-(H)N)2 -C14 H8 (8)) and star-shaped (1,3,5-(HNC4 H3 -C(H)N-1,4-C6 H4 )3 -C6 H3 (9)) π-conjugated molecules were synthesized by the condensation reactions of 2-formylpyrrole (1) with several aromatic di- and triamines. The corresponding linear diboron chelate complexes (Ph2 B[1,3-bis(iminopyrrolyl)-phenyl]BPh2 (10), Ph2 B[1,4-bis(iminopyrrolyl)-phenyl]BPh2 (11), Ph2 B[4,4'-bis(iminopyrrolyl)-biphenyl]BPh2 (12), Ph2 B[1,5-bis(iminopyrrolyl)-naphthyl]BPh2 (13), Ph2 B[2,6-bis(iminopyrrolyl)-naphthyl]BPh2 (14), Ph2 B[2,6-bis(iminopyrrolyl)-anthracenyl]BPh2 (15)) and the star-shaped triboron complex ([4',4'',4'''-tris(iminopyrrolyl)-1,3,5-triphenylbenzene](BPh2 )3 (16)) were obtained in moderate to good yields, by the treatment of 3-9 with B(C6 H5 )3 . The ligand precursors are non-emissive, whereas most of their boron complexes are highly fluorescent; their emission color depends on the π-conjugation length. The photophysical properties of the luminescent polyboron compounds were measured, showing good solution fluorescence quantum yields ranging from 0.15 to 0.69. DFT and time-dependent DFT calculations confirmed that molecules 10 and 16 are blue emitters, because only one of the iminopyrrolyl groups becomes planar in the singlet excited state, whereas the second (and third) keeps the same geometry. Compound 13, in which planarity is not achieved in any of the groups, is poorly emissive. In the other examples (11, 12, 14, and 15), the LUMO is stabilized, narrowing the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO), and the two iminopyrrolyl groups become planar, extending the size of the π-system, to

  3. Luminescence engineering in plasmonic meta-surfaces

    CERN Document Server

    Roy, Tapashree; Zheludev, Nikolay I

    2016-01-01

    Photoluminescence is a phenomenon of significant interest due to its wide range of technological applications in plasmonics, nanolasers, spasers, lasing spasers, loss compensation and gain in metamaterials, and luminescent media. Nanostructured materials are known to have very different luminescence characteristics to bulk samples or planar films. Here we show that by engineering a nanostructured meta-surface, we can choose the position of photoluminescence absorption and emission lines of thin gold films. The nanostructuring also aids to strong enhancement of the emission from gold, by a factor of 76 in our experiments. This enhancement is determined by the relative position of the engineered absorption and emission lines to the exciting laser wavelength and the intrinsic properties of the constituent material. These luminescence-engineered materials combined with a resonant material, as in the lasing spaser, or with the power of reconfigurable metamaterials promise huge potential as tunable nanoscale light ...

  4. Luminescence properties of dilute bismide systems

    Energy Technology Data Exchange (ETDEWEB)

    Breddermann, B., E-mail: benjamin.breddermann@physik.uni-marburg.de [Faculty of Physics, Philipps-Universität Marburg, 35032 Marburg (Germany); Bäumner, A.; Koch, S.W.; Ludewig, P.; Stolz, W.; Volz, K. [Faculty of Physics, Philipps-Universität Marburg, 35032 Marburg (Germany); Hader, J.; Moloney, J.V. [Nonlinear Control Strategies Inc, 3542 N. Geronimo Ave., Tucson, AZ 85705 (United States); Broderick, C.A.; O' Reilly, E.P. [Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Department of Physics, University College Cork, Cork (Ireland)

    2014-10-15

    Systematic photoluminescence measurements on a series of GaBi{sub x}As{sub 1−x} samples are analyzed theoretically using a fully microscopic approach. Based on sp{sup 3}s{sup ⁎} tight-binding calculations, an effective k·p model is set up and used to compute the band structure and dipole matrix elements for the experimentally investigated samples. With this input, the photoluminescence spectra are calculated using a systematic microscopic approach based on the semiconductor luminescence equations. The detailed theory-experiment comparison allows us to quantitatively characterize the experimental structures and to extract important sample parameters. - Highlights: • Measurement of photoluminescence spectra of a home grown series of dilute bismides. • Fully microscopic calculation of luminescence spectra from detailed band structure. • Quantitative experiment-theory comparison of luminescence spectra. • Thorough understanding of optoelectronic properties of dilute bismide material system. • Promising perspectives for the development of new device applications.

  5. Functional silk: colored and luminescent.

    Science.gov (United States)

    Tansil, Natalia C; Koh, Leng Duei; Han, Ming-Yong

    2012-03-15

    Silkworm silk is among the most widely used natural fibers for textile and biomedical applications due to its extraordinary mechanical properties and superior biocompatibility. A number of physical and chemical processes have also been developed to reconstruct silk into various forms or to artificially produce silk-like materials. In addition to the direct use and the delicate replication of silk's natural structure and properties, there is a growing interest to introduce more new functionalities into silk while maintaining its advantageous intrinsic properties. In this review we assess various methods and their merits to produce functional silk, specifically those with color and luminescence, through post-processing steps as well as biological approaches. There is a highlight on intrinsically colored and luminescent silk produced directly from silkworms for a wide range of applications, and a discussion on the suitable molecular properties for being incorporated effectively into silk while it is being produced in the silk gland. With these understanding, a new generation of silk containing various functional materials (e.g., drugs, antibiotics and stimuli-sensitive dyes) would be produced for novel applications such as cancer therapy with controlled release feature, wound dressing with monitoring/sensing feature, tissue engineering scaffolds with antibacterial, anticoagulant or anti-inflammatory feature, and many others.

  6. Investigation on the co-luminescence effect of europium (III)-lanthanum(III)-dopamine-sodium dodecylbenzene sulfonate system and its application.

    Science.gov (United States)

    Si, Hailin; Zhao, Fang; Cai, Huan

    2013-01-01

    A novel luminescence, enhancement phenomenon in the europium(III)-dopamine-sodium dodecylbenzene sulfonate system was observed when lanthanum(III) was added. Based on this, a sensitive co-luminescence method was established for the determination of dopamine. The luminescence signal for the europium (III)-lanthanum(III)-dopamine-sodium dodecylbenzene sulfonate system was monitored at λ(ex) = 300 nm, λ(em) = 618 nm and pH 8.3. Under optimized conditions, the enhanced luminescence signal responded linearly to the concentration of dopamine in the range 1.0 × 10(-10)-5.0 × 10(-7) mol/L with a correlation coefficient of 0.9993 (n = 11). The detection limit (3σ) was 2.7 × 10(-11) mol/L and the relative standard deviation for 11 parallel measurements of 3.0 × 10(-8) mol/L dopamine was 1.9%. The presented method was successfully applied for the estimation of dopamine in samples of pharmaceutical preparations, human serum and urine. The possible luminescence enhancement mechanism of the system is discussed briefly.

  7. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications

    Science.gov (United States)

    Lakshminarayana, G.; Kaky, Kawa M.; Baki, S. O.; Lira, A.; Caldiño, U.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    By using melt quenching technique, good optical quality singly doped Dy3+ or Tb3+ and Dy3+/Tb3+-codoped borate glasses were synthesized and studied by optical absorption, excitation, emission and decay lifetimes curve analysis. Following the absorption spectrum, the evaluated Judd-Ofelt (J-O) intensity parameters (Ωλ (λ = 2, 4 and 6)) were used to calculate the transition probability (AR), the branching ratio (βR), and the radiative lifetime (τR) for different luminescent transitions such as 4I15/2 → 6H15/2, 4F9/2 → 6H15/2, 4F9/2 → 6H13/2, 4F9/2 → 6H11/2 and 4F9/2 → 6H9/2,6F11/2 for the 0.5 mol % singly Dy3+-doped glass. The βR calculated (65%) indicates that for lasing applications, 4F9/2 → 6H13/2 emission transition is highly suitable. For all the Dy3+/Tb3+-codoped glasses, Tb3+: 5D3→7F6 emission decay lifetime curves are found to be non-exponential in nature for different concentrations of Dy3+ codoping. Using the Inokuti-Hirayama model, these nonexponential decay curves were analyzed to identify the nature of the energy transfer (ET) processes and here the electric dipole-dipole interaction is dominant for the ET. Based on the excitation and emission spectra and decay lifetimes curve analysis, the cross relaxation and ET processes between Dy3+ and Tb3+ were confirmed. For the 0.5 mol % Tb3+ and 2.0 mol % Dy3+-codoped glass, the evaluated Tb3+→Dy3+ ET efficiency (η) is found to be 45% under 369 nm excitation. Further, for Tb3+/Dy3+ -codoped glasses, an enhancement of Tb3+ green emission is observed up to 1.5 mol % Dy3+ codoping, and this is due to the non-radiative resonant ET from Dy3+ to Tb3+ upon 395 nm excitation. For singly 0.5 mol % Dy3+ or 0.5 mol % Tb3+-doped glass, the calculated color coordinates (x,y) and correlated color temperatures (CCT) represent the neutral white or warm white light regions, whereas Dy3+/Tb3+-codoped glasses (x,y) and CCT values fall in the yellowish green region with respect to the different Dy3

  8. Quantitative luminescence imaging system

    Science.gov (United States)

    Batishko, C. R.; Stahl, K. A.; Fecht, B. A.

    The goal of the Measurement of Chemiluminescence project is to develop and deliver a suite of imaging radiometric instruments for measuring spatial distributions of chemiluminescence. Envisioned deliverables include instruments working at the microscopic, macroscopic, and life-sized scales. Both laboratory and field portable instruments are envisioned. The project also includes development of phantoms as enclosures for the diazoluminomelanin (DALM) chemiluminescent chemistry. A suite of either phantoms in a variety of typical poses, or phantoms that could be adjusted to a variety of poses, is envisioned. These are to include small mammals (rats), mid-sized mammals (monkeys), and human body parts. A complete human phantom that can be posed is a long-term goal of the development. Taken together, the chemistry and instrumentation provide a means for imaging rf dosimetry based on chemiluminescence induced by the heat resulting from rf energy absorption. The first delivered instrument, the Quantitative Luminescence Imaging System (QLIS), resulted in a patent, and an R&D Magazine 1991 R&D 100 award, recognizing it as one of the 100 most significant technological developments of 1991. The current status of the project is that three systems have been delivered, several related studies have been conducted, two preliminary human hand phantoms have been delivered, system upgrades have been implemented, and calibrations have been maintained. Current development includes sensitivity improvements to the microscope-based system; extension of the large-scale (potentially life-sized targets) system to field portable applications; extension of the 2-D large-scale system to 3-D measurement; imminent delivery of a more refined human hand phantom and a rat phantom; rf, thermal and imaging subsystem integration; and continued calibration and upgrade support.

  9. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Science.gov (United States)

    Heng, Chunning; Zheng, Xiaoyan; Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie; Hui, Junfeng; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for biological imaging and controlled drug delivery applications.

  10. Preparation, theory, and biological applications of highly luminescent cadmium selenide/zinc sulfide quantum dots in optical and electron microscopy

    Science.gov (United States)

    Bouwer, James Christopher

    This dissertation describes the preparation, theory, and applications of ZnS overcoated CdSe (core) quantum dots for applications as fluorescent probes in optical microscopy and as electron energy loss spectroscopy (EELS) probes in electron microscopy, with applications to the biological sciences. The dissertation begins with a brief overview of quantum dots and their history. Next, a brief overview of the necessary semiconductor theory is discussed including the origin of the band gap, the origin of holes, the concepts of phonons, and trap states. Then, the role of the confinement potential in the quantum dot fluorescent spectrum is discussed in the context of the 3-dimensional spherical well. Included in this discussion is the role of excitonic electron-hole bound states. To provide a complete document useful to anyone who wishes to continue work along these lines, included is a methods section which describes the complete process of synthesis of the CdSe cores, overcoating the cores with ZnS, size selection of nanocrystals, water solubilization, and protein conjugation. The methods used in live cell labeling are included as well. In the section that follows, a discussion of the mathematical methods of image correlation spectroscopy (ICS) for extracting dynamic constants such as flow rates and diffusion constants from time lapse optical image data is discussed in the context of quantum dot fluorescent probes. Dynamic constants were obtained using live NIH3T3 mouse fibroblast cells labeled with IgG-anti-EGF conjugated quantum dots. These same cells were then fixed, imbedded in resin, sectioned to 100nm thick sections and imaged under the electron microscope. The electron dense cadmium selinide provides the contrast necessary to perform direct imaging of EGF receptor sites. In order to improve the data and move toward multi-channel imaging in the electron microscope, EELS spectroscopy and elemental mapping of quantum dots was performed. The theory along with a

  11. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Chunning [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zheng, Xiaoyan [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-15

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for

  12. Studying the luminescence efficiency of Lu2O3:Eu nanophosphor material for digital X-ray imaging applications

    Science.gov (United States)

    Kalyvas, N.; Liaparinos, P.; Michail, C.; David, S.; Fountos, G.; Wójtowicz, M.; Zych, E.; Kandarakis, I.

    2012-01-01

    Scintillator materials are widely used in X-ray medical imaging detector applications, coupled with available photoreceptors like radiographic film or photoreceptors suitable for digital imaging like a-Si, charge-coupled devises (CCD), complementary metal-oxide-semiconductors (CMOS) and GaAs). In addition, scintillators can be utilized in non-medical imaging detectors such as industrial detectors for non-destructive testing (NDT) and detectors used for security purposes (i.e. airport luggage control). Image quality and dose burden in the above applications is associated with the amount of optical photons escaping the scintillator as well as the amount of optical photons captured by the photoreceptor. The former is characterized by the scintillator efficiency and the latter by the spectral matching between the emission spectrum of the scintillator and the spectral response of the photoreceptor. Recently, a scintillator material, europium-activated lutetium oxide (Lu2O3:Eu), has shown improved scintillating properties. Lu2O3:Eu samples of compact nanocrystalline non-agglomerated powder were developed in our laboratory using homogeneous precipitation from a water-toluene solution in the presence of polyvinyl alcohol as a surfactant. In order to test their light-emission properties, experimental measurements under the excitation of X-ray spectra with X-ray tube voltages between 50 kVp and 140 kVp were performed. This range of applied voltages is appropriate for X-ray radiology, NDT and security applications. Lu2O3:Eu was evaluated with respect to output yield and spectral compatibility of digital imaging photoreceptors (CCD-based, CMOS-based, amorphous silicon a:Si flat panels, ES20 and GaAs). High light yield and spectral compatibility increase the performance of the medical detector and reduce the dose burden to the personnel involved. In addition a theoretical model was used to determine the values for the Lu2O3:Eu optical photon light propagation parameters. The

  13. CCD Luminescence Camera

    Science.gov (United States)

    Janesick, James R.; Elliott, Tom

    1987-01-01

    New diagnostic tool used to understand performance and failures of microelectronic devices. Microscope integrated to low-noise charge-coupled-device (CCD) camera to produce new instrument for analyzing performance and failures of microelectronics devices that emit infrared light during operation. CCD camera also used to indentify very clearly parts that have failed where luminescence typically found.

  14. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  15. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  16. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    2001-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible luminescenc

  17. Optically stimulated luminescence dating of rock surfaces

    DEFF Research Database (Denmark)

    Sohbati, Reza

    There are many examples of rock surfaces, rock art and stone structures whose ages are of great importance to the understanding of various phenomena in geology, climatology and archaeology. Optically stimulated luminescence (OSL) dating is a well-established chronological tool that has successfully...... determined the depositional age of a wide variety of fine-grained sediments, from several years to several hundred thousands of years. However, there is no routine OSL dating method applicable to larger clasts such as cobbles, boulders and other rock surfaces. Here the application of quartz OSL to the dating...... of rock surfaces is successfully tested by application to two different quartz-rich rock types (sandstone and quartzite). Together with the measurement of infrared stimulated luminescence (IRSL) signals as a function of depth into the surface of different granites it is clear that both OSL and IRSL can...

  18. Introducing an R package for luminescence dating analysis

    OpenAIRE

    Kreutzer, Sebastian; Schmidt, Christoph; Fuchs, Margret C.; Dietze, Michael; Fischer, Manfred; Fuchs, Markus

    2012-01-01

    For routine luminescence dating applications the commonly used Risø readers are bundled with analysis software, such as Viewer or Analyst. These software solutions are appropriate for most of the regular dating and publication jobs, and enable assessment of luminescence characteristics and provide basic statistical data treatment. However, for further statistical analysis and data treatments, this software may reach its limits. In such cases, open programmi...

  19. Development of a novel europium complex-based luminescent probe for time-gated luminescence imaging of hypochlorous acid in living samples

    Science.gov (United States)

    Liu, Xiangli; Guo, Lianying; Song, Bo; Tang, Zhixin; Yuan, Jingli

    2017-03-01

    Luminescent lanthanide complexes are key reagents used in the time-gated luminescence bioassay technique, but functional lanthanide complexes that can act as luminescent probes for specifically responding to analytes are very limited. In this work, we designed and synthesized a novel Eu3+ complex-based luminescence probe for hypochlorous acid (HOCl), NPPTTA-Eu3+, by using terpyridine polyacid-Eu3+, dinitrophenyl, and hydrazine as luminophore, quencher and HOCl-recognizer moieties, respectively. In the absence of HOCl, the probe is non-luminescent due to the strong luminescence quenching of the dinitrophenyl group in the complex. However, upon reaction with HOCl, the dinitrophenyl moiety is rapidly cleaved from the probe, which affords a strongly luminescent Eu3+ complex CPTTA-Eu3+, accompanied by a ∼900-fold luminescence enhancement with a long luminescence lifetime of 1.41 ms. This unique luminescence response of NPPTTA-Eu3+ to HOCl allowed NPPTTA-Eu3+ to be conveniently used as a probe for highly selective and sensitive detection of HOCl under the time-gated luminescence mode. In addition, by loading NPPTTA-Eu3+ into RAW 264.7 macrophage cells and Daphnia magna, the generation of endogenous HOCl in RAW 264.7 cells and the uptake of exogenous HOCl by Daphnia magna were successfully imaged on a true-color time-gated luminescence microscope. The results demonstrated the practical applicability of NPPTTA-Eu3+ as an efficient probe for time-gated luminescence imaging of HOCl in living cells and organisms.

  20. Up-conversion luminescence research of Er(0.5):ZBLAN material for volumetric display application when excited by 1520nm laser

    Institute of Scientific and Technical Information of China (English)

    陈晓波; 张福初; 陈鸾

    2003-01-01

    The up-conversion luminescence of the ZBLAN fluoride glass Er(0.5):ZBLAN, when excited by a 1520nm semiconductor laser, is studied in this paper. The absorption and common-fluorescence spectra are also measured in order to understand the up-conversion clearly. It is found that there are seven strong up-conversion luminescence lines (406.97m,410.42 nm), (521.97m, 527.56 nm), (542.38m, 549.27 nm), (654.27m, 665.70 nm), 801.57m nm, 819.46 nm, and 840.00 nm,which can be recognized as the fluorescence transitions of (2G4F2H)9/2 → 4I15/2, 2Hll/2 → 4I15/2, 4S3/2 → 4I15/2,4F9/2 → 4I15/2, 4I9/2 → 4I15/2, (2G4F2H)9/2 → 4I9/2, and 4S3/2 → 4I13/2 respectively. Meanwhile, the small upconversion fluorescence lines 379.20 nm, 453.10 nm and 490.60 nm are the transitions of 4G11/2 → 4I15/2, 4F5/2 → 4I15/2and 4F7/2 → 4I15/2 respectively. It is interesting that the slopes of log F-logP curves, the double-logarithmic variation of up-conversion luminescence intensity F with laser power P, are different from each other for these observed up-conversion luminescence, this being valuable for the volumetric display. Comprehensive discussions find that the 4G11/2 → 4I15/2, (2G4F2H)9/2 → 4I15/2, (2H11/2 → 4I15/2, 4S3/2 → 4I15/2, 4F9/2 → 4I15/2), and 4I9/2 → 4I15/2up-conversion luminescences are five-photon, four-photon, three-photon, and two-photon up-conversion luminescences respectively. It is found also that the absorption from ground-state 4I15/2 level to 4I13/2 level is very large, which is beneficial to the sequential energy transfer up-conversion to occur.

  1. Influence of excited-state absorption on time-resolved luminescence: general formalism and application to the phosphorescence of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Palmeira, Tiago; Fedorov, Alexander; Berberan-Santos, Mário N

    2015-02-23

    The luminescence decay of a species in an absorbing medium whose optical thickness changes with time, as occurs with triplet-triplet absorption following excitation cut-off, is studied theoretically and experimentally. A general luminescence decay function based on a distribution of optical thicknesses is presented. A simple decay function previously used empirically is shown to result from an exponential distribution of optical thicknesses. The general approach introduced allows the adequate description of the phosphorescence decays of two polycyclic aromatic hydrocarbons, coronene and triphenylene (normal and perdeuterated forms for both molecules), in polymer films in the presence of excited-state absorption. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and luminescent properties of a novel green-emitting Tb(III) complex and the excellent thermal stability for application

    Science.gov (United States)

    Yuan, Chen; Xie, Hongde; Cai, Haijun; Chen, Cuili; Cai, Peiqing; Seo, Hyo Jin

    2016-04-01

    A green-emitting Tb(III) complex based on siloxane-modified pressure sensitive adhesives (SPSA-Tb(III)) was successfully synthesized by emulsion polymerization. Siloxane-modified pressure sensitive adhesives (SPSA) were used as host materials. The structural coordination, photoluminescence excitation (PLE) and luminescence (PL) spectra, and thermal characterization of this luminescent polymer were investigated. The result from the FT-IR spectra reveals that SPSA have successfully coordinated with the Tb(III) ions. The luminescent analysis indicates that SPSA-Tb(III) displays Tb(III) typical emission peaks at 489, 545, 583, and 622 nm under the excitation of 369 nm. When monitored at 545 nm, strong and sharp excitation bands appear from 300 to 500 nm. And SPSA-Tb(III) has short lifetime (0.25 ms). Meanwhile, SPSA-Tb(III) exhibits high thermal stability (Td = 402 °C) owing to the high bond dissociation energy of Sisbnd O bonds. All the results suggest that it is expected to be used as a superior green-emitting material under high temperature.

  3. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  4. Spectral converters and luminescent solar concentrators

    CERN Document Server

    Scudo, Petra F; Fusco, Roberto

    2009-01-01

    In this paper we present a comprehensive theoretical description of molecular spectral converters in the specific context of Luminescent Solar Concentrators (LSCs). The theoretical model is an extension to a three-level system interacting with a solar radiation bath of the standard quantum theory of atomic radiative processes. We derive the equilibrium equations of the conversion process and provide specific examples of application of this principle to the development of solar concentration devices.

  5. Luminescent molecular rods - transition-metal alkynyl complexes.

    Science.gov (United States)

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  6. Luminescent properties of aluminum hydride

    Energy Technology Data Exchange (ETDEWEB)

    Baraban, A.P.; Gabis, I.E.; Dmitriev, V.A. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Dobrotvorskii, M.A., E-mail: mstislavd@gmail.com [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Kuznetsov, V.G. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation); Matveeva, O.P. [National Mineral Resources University, Saint Petersburg 199106 (Russian Federation); Titov, S.A. [Petersburg State University of Railway Transport, Saint-Petersburg 190031 (Russian Federation); Voyt, A.P.; Elets, D.I. [Saint-Petersburg State University, Department of Physics, Saint-Petersburg 198504 (Russian Federation)

    2015-10-15

    We studied cathodoluminescence and photoluminescence of α-AlH{sub 3}– a likely candidate for use as possible hydrogen carrier in hydrogen-fueled vehicles. Luminescence properties of original α-AlH{sub 3} and α-AlH{sub 3} irradiated with ultraviolet were compared. The latter procedure leads to activation of thermal decomposition of α-AlH{sub 3} and thus has a practical implementation. We showed that the original and UV-modified aluminum hydride contain luminescence centers ‐ structural defects of the same type, presumably hydrogen vacancies, characterized by a single set of characteristic bands of radiation. The observed luminescence is the result of radiative intracenter relaxation of the luminescence center (hydrogen vacancy) excited by electrons or photons, and its intensity is defined by the concentration of vacancies, and the area of their possible excitation. UV-activation of the dehydrogenation process of aluminum hydride leads to changes in the spatial distribution of the luminescence centers. For short times of exposure their concentration increases mainly in the surface regions of the crystals. At high exposures, this process extends to the bulk of the aluminum hydride and ends with a decrease in concentration of luminescence centers in the surface region. - Highlights: • Aluminum hydride contains hydrogen vacancies which serve as luminescence centers. • The luminescence is the result of radiative relaxation of excited centers. • Hydride UV-irradiation alters distribution and concentration of luminescence centers.

  7. Design and synthesis of a new terbium complex-based luminescent probe for time-resolved luminescence sensing of zinc ions.

    Science.gov (United States)

    Ye, Zhiqiang; Xiao, Yunna; Song, Bo; Yuan, Jingli

    2014-09-01

    Luminescent probes/chemosensors based on lanthanide complexes have shown great potentials in various bioassays due to their unique long-lived luminescence property for eliminating short-lived autofluorescence with time-resolved detection mode. In this work, we designed and synthesized a new dual-chelating ligand {4'-[N,N-bis(2-picolyl)amino]methylene-2,2':6',2'-terpyridine-6,6'-diyl} bis(methylenenitrilo) tetrakis(acetic acid) (BPTTA), and investigated the performance of its Tb(3+) complex (BPTTA-Tb(3+)) for the time-resolved luminescence sensing of Zn(2+) ions in aqueous media. Weakly luminescent BPTTA-Tb(3+) can rapidly react with Zn(2+) ions to display remarkable luminescence enhancement with high sensitivity and selectivity, and such luminescence response can be realized repeatedly. Laudably, the dose-dependent luminescence enhancement shows a good linear response to the concentration of Zn(2+) ions with a detection limit of 4.1 nM. To examine the utility of the new probe for detecting intracellular Zn(2+) ions, the performance of BPTTA-Tb(3+) in the time-resolved luminescence imaging of Zn(2+) ions in living HeLa cells was investigated. The results demonstrated the applicability of BPTTA-Tb(3+) as a probe for the time-resolved luminescence sensing of intracellular Zn(2+) ions.

  8. Thermally assisted OSL application for equivalent dose estimation; comparison of multiple equivalent dose values as well as saturation levels determined by luminescence and ESR techniques for a sedimentary sample collected from a fault gouge

    Energy Technology Data Exchange (ETDEWEB)

    Şahiner, Eren, E-mail: sahiner@ankara.edu.tr; Meriç, Niyazi, E-mail: meric@ankara.edu.tr; Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr

    2017-02-01

    Highlights: • Multiple equivalent dose estimations were carried out. • Additive ESR and regenerative luminescence were applied. • Preliminary SAR results employing TA-OSL signal were discussed. • Saturation levels of ESR and luminescence were investigated. • IRSL{sub 175} and SAR TA-OSL stand as very promising for large doses. - Abstract: Equivalent dose estimation (D{sub e}) constitutes the most important part of either trap-charge dating techniques or dosimetry applications. In the present work, multiple, independent equivalent dose estimation approaches were adopted, using both luminescence and ESR techniques; two different minerals were studied, namely quartz as well as feldspathic polymineral samples. The work is divided into three independent parts, depending on the type of signal employed. Firstly, different D{sub e} estimation approaches were carried out on both polymineral and contaminated quartz, using single aliquot regenerative dose protocols employing conventional OSL and IRSL signals, acquired at different temperatures. Secondly, ESR equivalent dose estimations using the additive dose procedure both at room temperature and at 90 K were discussed. Lastly, for the first time in the literature, a single aliquot regenerative protocol employing a thermally assisted OSL signal originating from Very Deep Traps was applied for natural minerals. Rejection criteria such as recycling and recovery ratios are also presented. The SAR protocol, whenever applied, provided with compatible D{sub e} estimations with great accuracy, independent on either the type of mineral or the stimulation temperature. Low temperature ESR signals resulting from Al and Ti centers indicate very large D{sub e} values due to bleaching in-ability, associated with large uncertainty values. Additionally, dose saturation of different approaches was investigated. For the signal arising from Very Deep Traps in quartz saturation is extended almost by one order of magnitude. It is

  9. New luminescent materials and filters for Luminescent Solar Concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Ronda, C.R.; Keur, W.C.; Meijerink, A.

    2012-01-01

    In a Luminescent Solar Concentrator (LSC), short-wavelength light isconverted by a luminescent material into long-wavelength light, which is guided towards a photovoltaic cell. In principle, an LSC allows for high concentration, but in practice this is prevented by lossmechanisms like limited sunlig

  10. Perspectivas actuais dos aparelhos miorrelaxantes

    OpenAIRE

    Alkhazendar, Manhal Azmi Salim

    2011-01-01

    Tese de mestrado, Medicina Dentária, Universidade de Lisboa, Faculdade de Medicina Dentária, 2011 Este revisão bibliográfica tem como objectivo dar uma perspectiva actual do aparelho miorrelaxante. Neste sentido, foi realizada uma pesquisa na base de dados MedLine, no período compreendido entre 1965 até 2010. Também foram utilizados “related articles “ e pesquisa manual. Deste pesquisa constatou-se que as disfunções temporomandibulares (DTMs), constituem um grupo de patologias que afect...

  11. Luminescence properties of a nanoporous freshwater diatom.

    Science.gov (United States)

    Goswami, Bondita; Choudhury, Amarjyoti; Buragohain, Alak K

    2012-01-01

    Freshwater diatom frustules show special optical properties. In this paper we observed luminescence properties of the freshwater diatom Cyclotella meneghiniana. To confirm the morphological properties we present scanning electron microscopy (SEM) images. X-ray diffraction (XRD) studies were carried out to visualize the structural properties of the frustules, confirming that silica present in diatom frustules crystallizes in an α-quartz structure. Study of the optical properties of the silica frustules of diatoms using ultra-violet-visible (UV-vis) spectroscopy and photoluminescence spectroscopy confirmed that the diatom C. meneghiniana shows luminescence in the blue region of the electromagnetic spectrum when irradiated with UV light. This property of diatoms can be exploited to obtain many applications in day-to-day life. Also, using time-resolved photoluminescence spectroscopy (TRPL) it was confirmed that this species of diatom shows bi-exponential decay.

  12. Application perspectives of simulation techniques CFD in nuclear power plants; Perspectivas de aplicacion de tecnicas de modelado CFD en plantas nucleoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Galindo G, I. F., E-mail: igalindo@iie.org.mx [Instituto de Investigaciones Electricas, Reforma No. 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)

    2013-10-15

    The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)

  13. Luminescence dating of Netherland's sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we revity: 1) the development of the methodology, 2) tests of the reliability of luminescence dating on Netherlands' sediments;

  14. Power dependence of upconversion luminescence

    NARCIS (Netherlands)

    Pollnau, Markus; Güdel, H.U.

    Spectroscopic data are of essential value for understanding the excitation mechanisms in luminescent and laser materials. Special attention has been devoted to the investigation of upconversion-induced luminescence, partly because of the availability of near-infrared pump sources for the excitation

  15. Application of f--f luminescence of terbium ion for determination of non-steroidal anti-inflammatory drug-niflumic acid.

    Science.gov (United States)

    Egorova, A; Beltyukova, S; Teslyuk, O; Karpinchik, V

    2001-03-01

    A simple, rapid and sensitive luminescence method for determination of niflumic acid (NFA) is described. The method is based on the intramolecular energy transfer from niflumic acid to terbium ion (Tb(3+)) in the presence of trioctylphosphine oxide (TOPO). Optimum conditions for the formation of the NFA-Tb(3+)-TOPO ternary complex have been investigated. The calibration graph is linear over the range 0.002--0.02 microg ml(-1). The relative standard deviation is close to 4%. The recoveries obtained by applying the method to the analysis of urine ranged from 94--102%.

  16. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  17. Luminescent solar concentrators – a low cost photovoltaics solution for the built environment

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van

    2012-01-01

    Luminescent solar concentrators (LSCs) are being developed as a potentially low cost-per-Wp photovoltaic device, suited for applications especially in the built environment. LSCs generally consist of transparent polymer sheets doped with luminescent species, either organic dye molecules or

  18. Stored Luminescence Computed Tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Ge

    2013-01-01

    The phosphor nanoparticles made of doped semiconductors, pre-excited by well-collimated X-ray radiation, were recently reported for their light emission upon NIR light stimulation. The characteristics of X-ray energy storage and NIR stimulated emission is highly desirable to design targeting probes and improve molecular and cellular imaging. Here we propose stored luminescence computed tomography (SLCT), perform realistic numerical simulation, and demonstrate a much-improved spatial resolution in a preclinical research context. The future opportunities are also discussed along this direction.

  19. Luminescent macrocyclic lanthanide complexes

    Science.gov (United States)

    Raymond, Kenneth N [Berkeley, CA; Corneillie, Todd M [Campbell, CA; Xu, Jide [Berkeley, CA

    2012-05-08

    The present invention provides a novel class of macrocyclic compounds as well as complexes formed between a metal (e.g., lanthanide) ion and the compounds of the invention. Preferred complexes exhibit high stability as well as high quantum yields of lanthanide ion luminescence in aqueous media without the need for secondary activating agents. Preferred compounds incorporate hydroxy-isophthalamide moieties within their macrocyclic structure and are characterized by surprisingly low, non-specific binding to a variety of polypeptides such as antibodies and proteins as well as high kinetic stability. These characteristics distinguish them from known, open-structured ligands.

  20. Eu2+ activated persistent luminescent materials

    NARCIS (Netherlands)

    Dutczak, D.A.

    2013-01-01

    This thesis deals with luminescence and persistent luminescence of Eu2+ activated materials and aims at unraveling the mechanism behind the persistent luminescence, in particular the role of Dy3+ in the physical process leading to persistent luminescence. The second aim of this thesis is the

  1. Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging.

    Science.gov (United States)

    Yang, Yang; Sun, Yun; Cao, Tianye; Peng, Juanjuan; Liu, Ying; Wu, Yongquan; Feng, Wei; Zhang, Yingjian; Li, Fuyou

    2013-01-01

    Upconversion luminescence (UCL) properties and radioactivity have been integrated into NaLuF(4):(153)Sm,Yb,Tm nanoparticles by a facile one-step hydrothermal method, making these nanoparticles potential candidates for UCL and single-photon emission computed tomography (SPECT) dual-modal bioimaging in vivo. The introduction of small amount of radioactive (153)Sm(3+) can hardly vary the upconversion luminescence properties of the nanoparticles. The as-designed nanoparticles showed very low cytotoxicity, no obvious tissue damage in 7 days, and excellent in vitro and in vivo performances in dual-modal bioimaging. By means of a combination of UCL and SPECT imaging in vivo, the distribution of the nanoparticles in living animals has been studied, and the results indicated that these particles were mainly accumulated in the liver and spleen. Therefore, the concept of (153)Sm(3+)/Yb(3+)/Tm(3+) co-doped NaLuF(4) nanoparticles for UCL and SPECT dual-modality imaging in vivo of whole-body animals may serve as a platform for next-generation probes for ultra-sensitive molecular imaging from the cellular scale to whole-body evaluation. It also introduces an easy methodology to quantify in vivo biodistribution of nanomaterials which still needs further understanding as a community.

  2. Luminescent properties of Eu:Y1.8La0.2O3 transparent ceramics for potential white LED applications

    Science.gov (United States)

    Lu, Shenzhou; Yang, Qiuhong; Wang, Yonggang; Li, Yunhan; Huang, Dongdong

    2013-02-01

    (EuxY0.90-xLa0.1)2O3 (x = 0.01-0.12) transparent ceramics were fabricated by conventional ceramics processing, and their luminescent properties were investigated. Compared with Eu:Y2O3, Eu:(Y0.9La0.1)2O3 ceramics exhibit much stronger excitation peaks at 395, 466 and 535 nm, respectively. The strong excitation peak of Eu:(Y0.9La0.1)2O3 ceramics at 466 nm is in good agreement with the emissions of InGaN blue chips (λem = 450-470 nm). Eu:(Y0.9La0.1)2O3 ceramics can be effectively excited by the light of 466 nm, and show bright red emission at 613 nm. The influences of contents of Eu3+ on the luminescent properties were studied and their Judd-Ofelt parameters were also calculated. The results showed that Eu:Y1.8La0.2O3 transparent ceramics exhibit the potential to act as a red phosphor for blue chips excited white LEDs.

  3. Control of luminescence from pygmy shark (Squaliolus aliae) photophores.

    Science.gov (United States)

    Claes, Julien M; Ho, Hsuan-Ching; Mallefet, Jérôme

    2012-05-15

    The smalleye pygmy shark (Squaliolus aliae) is a dwarf pelagic shark from the Dalatiidae family that harbours thousands of tiny photophores. In this work, we studied the organisation and physiological control of these photogenic organs. Results show that they are mainly situated on the ventral side of the shark, forming a homogeneous ventral photogenic area that appears well suited for counterillumination, a well-known camouflage technique of pelagic organisms. Isolated ventral skin patches containing photophores did not respond to classical neurotransmitters and nitric oxide but produced light after melatonin (MT) application. Prolactin and α-melanocyte-stimulating hormone inhibited this hormonally induced luminescence as well as the spontaneous luminescence from the photogenic tissue. The action of MT seems to be mediated by binding to the MT(2) receptor subtype, as the MT(2) receptor agonist 4P-PDOT inhibited the luminescence induced by this hormone. Binding to this receptor probably decreases the intracellular cAMP concentration because forskolin inhibited spontaneous and MT-induced luminescence. In addition, a GABA inhibitory tonus seems to be present in the photogenic tissue as well, as GABA inhibited MT-induced luminescence and the application of bicuculline provoked luminescence from S. aliae photophores. Similarly to what has been found in Etmopteridae, the other luminous shark family, the main target of the luminescence control appears to be the melanophores covering the photocytes. Results suggest that bioluminescence first appeared in Dalatiidae when they adopted a pelagic style at the Cretaceous/Tertiary boundary, and was modified by Etmopteridae when they started to colonize deep-water niches and rely on this light for intraspecific behaviours.

  4. Eu2+ activated persistent luminescent materials

    OpenAIRE

    Dutczak, D.A.

    2013-01-01

    This thesis deals with luminescence and persistent luminescence of Eu2+ activated materials and aims at unraveling the mechanism behind the persistent luminescence, in particular the role of Dy3+ in the physical process leading to persistent luminescence. The second aim of this thesis is the preparation and characterization of persistent luminescence phosphors emitting at different colors, especially yellow and red, where there is a need for better afterglow materials. A range of aluminates, ...

  5. Gene silencing: concepts, applications, and perspectives in woody plants Silenciamento gênico: conceitos, aplicações e perspectivas em plantas lenhosas

    Directory of Open Access Journals (Sweden)

    Amancio José de Souza

    2007-12-01

    Full Text Available RNA interference, transcriptional gene silencing, virus induced gene silencing, and micro RNAs comprise a series of mechanisms capable of suppressing gene expression in plants. These mechanisms reveal similar biochemical pathways and appear to be related in several levels. The ability to manipulate gene silencing has produced transgenic plants able to switch off endogenous genes and invading nucleic acids. This powerful biotechnological tool has provided plant breeders and researchers with great opportunity to accelerate breeding programs and developmental studies in woody plants. This research work reports on gene silencing in woody plants, and discuss applications and future perspectives.RNA de interferência, silenciamento gênico transcricional, silenciamento gênico induzido por vírus e micro RNAs compõem uma série de mecanismos capazes de suprimir a expressão gênica em plantas. Estes mecanismos revelaram rotas metabólicas parecidas e interagem em vários níveis. A capacidade de manipular técnicas de silenciamento gênico tem produzido plantas transgênicas capazes de suprimir a expressão de genes endógenos e ácidos nucléicos invasores. Esta poderosa ferramenta biotecnológica tem ofertado a possibilidade de acelerar programas de melhoramento e pesquisas em desenvolvimento de plantas lenhosas. Este trabalho visa revisar pesquisas de silenciamento gênico em plantas lenhosas e discutir aplicações e rumos futuros.

  6. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Jain, Mayank; Murray, Andrew S.

    2012-01-01

    Luminescence dating is used extensively to provide absolute chronologies for Late Pleistocene sediments. Nowadays, most optical dates are based on quartz optically stimulated luminescence (OSL). However, the application of this signal is usually limited to the last ~100 ka because of saturation...... of the quartz luminescence signal with dose. In contrast, the feldspar infrared stimulated luminescence (IRSL) dose–response curve grows to much higher doses; this has the potential to extend the datable age range by a factor of 4–5 compared with quartz OSL. However, it has been known for several decades...... is widely applicable (feldspar of appropriate luminescence behaviour is even more ubiquitous than quartz). These characteristics make this a method of great importance for the dating of Middle and Late Pleistocene deposits....

  7. Luminescence decay of porous silicon

    Science.gov (United States)

    Chen, X.; Uttamchandani, D.; Sander, D.; O'Donnell, K. P.

    1993-04-01

    The luminescence decay pattern of porous silicon samples prepared by electrochemical etching is characterised experimentally by a non-exponential profile, a strong dependence on temperature and an absence of spectral diffusion. We describe this luminescence as carrier-dopping-assisted recombination. Following the correlation function approach to non-dispersive transport developed by Scher and co-workers [Physics Today 41 (1991) 26], we suggest a simple derivation of analytical functions which accurately describes the anomalous luminescence decay of porous silicon, and show that this model includes exponential and Kohlrausch [Pogg. Ann. Phys. 119 (1863) 352] (stretched-exponential) relaxations as special cases.

  8. Norbert Elias: legado y perspectivas

    Directory of Open Access Journals (Sweden)

    Vera Weiler

    2010-08-01

    Full Text Available Norbert Elias: Legado y perspectivas. Gustavo Leyva, Héctor Vera, Gina Zabludovsky (Coordinadores. Puebla y México: Universidad Iberoamericana Puebla - Universidad Nacional Autónoma de México - Universidad Autónoma Metropolitana-Iztapalapa, 2002, 311 páginas. Los autores comparten la idea que Elias sigue siendo de interés para las ciencias sociales y que, fuera de unos pocos países y de ciertas escuelas, su obra aún no es suficientemente conocida como para que se pueda producir su productiva incorporación al estudio de las sociedades contemporáneas. Más allá de esta apreciación general, los autores exhiben intereses y direcciones de exploración diversos y también maneras de pensar en parte divergentes. Esta diversidad de por sí resulta interesante.

  9. Norbert Elias: legado y perspectivas

    Directory of Open Access Journals (Sweden)

    Vera Weiler

    2003-01-01

    Full Text Available Norbert Elias: Legado y perspectivas. Gustavo Leyva, Héctor Vera, Gina Zabludovsky (Coordinadores. Puebla y México: Universidad Iberoamericana Puebla - Universidad Nacional Autónoma de México - Universidad Autónoma Metropolitana-Iztapalapa, 2002, 311 páginas. Los autores comparten la idea que Elias sigue siendo de interés para las ciencias sociales y que, fuera de unos pocos países y de ciertas escuelas, su obra aún no es suficientemente conocida como para que se pueda producir su productiva incorporación al estudio de las sociedades contemporáneas. Más allá de esta apreciación general, los autores exhiben intereses y direcciones de exploración diversos y también maneras de pensar en parte divergentes. Esta diversidad de por sí resulta interesante.

  10. Temperature lags of luminescence measurements in a commercial luminescence reader

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Kiyak, Nafiye G. [ISIK University, Faculty of Science and Arts, Physics Department, Sile, 34980 Istanbul (Turkey); Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, Beşevler, 06100 Ankara (Turkey)

    2015-09-15

    The temperature recorded in thermoluminescence and optically stimulated luminescence equipments is not the temperature of the sample but that of the heating element on which the thermocouple is attached. Depending upon the rate of heating, a temperature difference appears between the samples and the heating element, termed as temperature lag, which could have serious effects on the curve shapes and trapping parameters. In the present work the temperature lag effect is studied in a newly developed luminescence equipment measuring both thermoluminescence and optically stimulated luminescence. It is found that the temperature lag could be large for heating rates above 2 K/s and it is strongly dependent upon the sample holder. A simple approximation method is proposed in order to both predict as well as correct for temperature lag effects in luminescence measurements.

  11. Luminescent and Non-Luminescent Solar Concentrators: Challenges andd Progress

    NARCIS (Netherlands)

    De Boer, D.K.G.

    2012-01-01

    Luminescent concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We present new phosphors and filters that facilitate this. Another type of lightguide-based concentrators, diffraction-based, is discussed as well.

  12. Luminescent and Non-Luminescent Solar Concentrators: Challenges andd Progress

    NARCIS (Netherlands)

    De Boer, D.K.G.

    2012-01-01

    Luminescent concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We present new phosphors and filters that facilitate this. Another type of lightguide-based concentrators, diffraction-based, is discussed as well.

  13. A Reversible Pyrene-based Turn-on Luminescent Chemosensor for Selective Detection of Fe(3+) in Aqueous Environment with Logic Gate Application.

    Science.gov (United States)

    Mukherjee, Soma; Talukder, Shrabani

    2016-05-01

    A new Schiff-base, HL luminescent chemosensor of 1-amino pyrene and 8-hydroxy quinoline-2-carboxaldehyde was synthesized which demonstrates selective fluorimetric detection of Fe(3+) in aqueous medium with detection limit of 2.52 × 10(-8) M. The receptor shows selective 'turn-on' response towards Fe(3+) over other metal ions. This gradual 'turn-on' fluorescence response for Fe(3+) may be induced via CHEF (chelation-enhanced fluorescence) through close proximity of pyrene rings. The stoichiometry and binding property of HL with Fe(3+) was examined by emission studies. In presence of Fe(3+), HL also exhibits reversible change in emission pattern with EDTA and thus offers an interesting property of molecular 'INHIBIT' logic gate with Fe(3+) and EDTA as chemical inputs.

  14. Unusual broadening of the NIR luminescence of Er{sup 3+}-doped Nb{sub 2}O{sub 5} nanocrystals embedded in silica host: Preparation and their structural and spectroscopic study for photonics applications

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Felipe Thomaz; Pereira, Rafael R. [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Ferrari, Jefferson Luis [Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, CEP 14040-901 Ribeirão Preto, SP (Brazil); Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, 36301-160 São João Del Rei, MG (Brazil); Ribeiro, Sidney José Lima [Laboratório de Materiais Fotônicos, Instituto de Química, UNESP, Caixa Postal 355, 14801-970 Araraquara, SP (Brazil); Ferrier, Alban; Goldner, Philippe [Chimie-Paristech, Laboratoire de Chimie de la Matière Condensée de Paris, CNRS-UMR 7574, UPMC Univ Paris 06, 11 Rue Pierre et Marie Curie, 75005 Paris (France); and others

    2014-10-15

    This paper reports on the preparation of novel sol-gel erbium-doped SiO{sub 2}-based nanocomposites embedded with Nb{sub 2}O{sub 5} nanocrystals fabricated using a bottom-up method and describes their structural, morphological, and luminescence characterization. To prepare the glass ceramics, we synthesized xerogels containing Si/Nb molar ratios of 90:10 up to 50:50 at room temperature, followed by annealing at 900, 1000, or 1100 °C for 10 h. We identified crystallization accompanying host densification in all the nanocomposites with orthorhombic (T-phase) or monoclinic (M-phase) Nb{sub 2}O{sub 5} nanocrystals dispersed in the amorphous SiO{sub 2} phase, depending on the niobium content and annealing temperature. A high-intensity broadband emission in the near-infrared region assigned to the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition of the Er{sup 3+} ions was registered for all the nanocomposites. The shape and the bandwidth changed with the Nb{sub 2}O{sub 5} crystalline phase, with values achieving up to 81 nm. Er{sup 3+} ions were located mainly in Nb{sub 2}O{sub 5}-rich regions, and the complex structure of the different Nb{sub 2}O{sub 5} polymorphs accounted for the broadening in the emission spectra. The materials containing the T-phase, displayed higher luminescence intensity, longer {sup 4}I{sub 13/2} lifetime and broader bandwidth. In conclusion, these nanostructured materials are potential candidates for photonic applications like optical amplifiers and WDM devices operating in the S, C, and L telecommunication bands. - Highlights: • Rare earth doped Nb{sub 2}O{sub 5} nanocrystals prepared from a bottom-up approach. • Unusual broadband NIR emission in glass ceramic system. • Structural features tuning the luminescence properties. • Potential as optical amplifiers and WDM devices. • Photonic devices operating in the S, C, and L telecommunication.

  15. Modelo OLAM (ocean-land-atmosphere-model: descrição, aplicações, e perspectivas Ocean-land-atmosphere model (OLAM: description, applications, and perspectives

    Directory of Open Access Journals (Sweden)

    Renato Ramos da Silva

    2009-06-01

    Full Text Available O modelo OLAM foi desenvolvido com objetivo de estender a capacidade de representar os fenômenos de escala global e regional simultaneamente. Este modelo apresenta inovações quanto aos processos dinâmicos, configuração de grade, estrutura de memória e técnicas de solução numérica das equações prognósticas. As equações de Navier-Stokes são resolvidas através da técnica de volumes finitos que conservam massa, momento e energia. No presente trabalho, apresenta-se uma descrição sucinta do OLAM e alguns resultados de sua aplicação em simulações climáticas da precipitação mensal para a região norte da América do Sul, bem como em rodadas para previsão numérica de tempo regional. Os resultados mostram que o modelo consegue representar bem os aspectos meteorológicos de grande escala. Em geral, seu desempenho melhora quando são adotadas grades de maior resolução espacial, nas quais se verificam melhorias significativas tanto na estimativa da precipitação mensal regional, quanto na previsão numérica de tempo.The OLAM model was developed to extend the capability to represent the global and regional scale phenomena simultaneously. The model presents innovations regarding to the dynamic processes, grid configuration, memory structure, and numerical technique solutions for the prognostics equations. The Navier-Stokes equations are solved using the finite volume technique that conserves mass, momentum, and energy. In this study the OLAM model is described, and results are presented for its application on the climate mode to simulate the monthly prediction of precipitation for South America and numerical weather prediction. The results show that the model is able to represent reasonable the large scale meteorological processes. In general, its performance improves when grids of greater resolution is adopted, for which significant improvements are observed for the monthly precipitation simulation estimates as for the

  16. Luminescent hyperbolic metasurfaces

    Science.gov (United States)

    Smalley, J. S. T.; Vallini, F.; Montoya, S. A.; Ferrari, L.; Shahin, S.; Riley, C. T.; Kanté, B.; Fullerton, E. E.; Liu, Z.; Fainman, Y.

    2017-01-01

    When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.

  17. Thermally assisted OSL application for equivalent dose estimation; comparison of multiple equivalent dose values as well as saturation levels determined by luminescence and ESR techniques for a sedimentary sample collected from a fault gouge

    Science.gov (United States)

    Şahiner, Eren; Meriç, Niyazi; Polymeris, George S.

    2017-02-01

    Equivalent dose estimation (De) constitutes the most important part of either trap-charge dating techniques or dosimetry applications. In the present work, multiple, independent equivalent dose estimation approaches were adopted, using both luminescence and ESR techniques; two different minerals were studied, namely quartz as well as feldspathic polymineral samples. The work is divided into three independent parts, depending on the type of signal employed. Firstly, different De estimation approaches were carried out on both polymineral and contaminated quartz, using single aliquot regenerative dose protocols employing conventional OSL and IRSL signals, acquired at different temperatures. Secondly, ESR equivalent dose estimations using the additive dose procedure both at room temperature and at 90 K were discussed. Lastly, for the first time in the literature, a single aliquot regenerative protocol employing a thermally assisted OSL signal originating from Very Deep Traps was applied for natural minerals. Rejection criteria such as recycling and recovery ratios are also presented. The SAR protocol, whenever applied, provided with compatible De estimations with great accuracy, independent on either the type of mineral or the stimulation temperature. Low temperature ESR signals resulting from Al and Ti centers indicate very large De values due to bleaching in-ability, associated with large uncertainty values. Additionally, dose saturation of different approaches was investigated. For the signal arising from Very Deep Traps in quartz saturation is extended almost by one order of magnitude. It is interesting that most of De values yielded using different luminescence signals agree with each other and ESR Ge center has very large D0 values. The results presented above highly support the argument that the stability and the initial ESR signal of the Ge center is highly sample-dependent, without any instability problems for the cases of quartz resulting from fault gouge.

  18. PERSPECTIVAS DE APLICACIÓN DEL COMPOSTAJE DE BIORRESIDUOS PROVENIENTES DE RESIDUOS SÓLIDOS MUNICIPALES. UN ENFOQUE DESDE LO GLOBAL A LO LOCAL PERSPECTIVE OF APPLICATION OF BIOWASTE COMPOSTING FROM MUNICIPAL SOLID WASTES: AN APPROACH FROM GLOBAL TO LOCAL

    Directory of Open Access Journals (Sweden)

    Ricardo Oviedo-Ocaña

    2012-06-01

    Full Text Available De los residuos sólidos municipales (RSM, los biorresiduos son la fracción más alta y de mayor potencial de contaminación; el compostaje permite disminuir el impacto ocasionado por su manejo y contribuye con la sostenibilidad de la producción agrícola. Aspectos como el alto grado de contaminación de la materia prima, el uso de tecnologías inadecuadas, mínimas actividades operativas y de control del proceso, baja calidad del producto y la poca comercialización y mercadeo del mismo, han limitado la implementación del compostaje en mayor escala en países en desarrollo como Colombia. En este artículo se plantea una reflexión sobre las perspectivas de aplicación del compostaje en Colombia y se proponen estrategias como la separación en la fuente y recolección selectiva, el posicionamiento del aprovechamiento de biorresiduos en el marco político y normativo, la investigación aplicada sobre ciencia e ingeniería del compostaje, la capacitación profesional, técnica y operativa, y el establecimiento de alternativas para impulsar el producto.Biowaste represents the highest proportion from municipal solid wastes (MSW and its major pollution potential. Composting allows to reduce the impact of MSW management and contributes to sustainability in agricultural production. In developing countries such as Colombia, aspects such as the high pollution levels in raw materials, the use of inappropriate technologies, the minimum operational and process control activities, the low product quality and the scarce commercialization and marketing have represented limited possibilities for scaling up composting implementation. This paper provides a reflection on application perspectives for biowaste composting in Colombia. Strategies like: 1 source separation and selective collection, 2 inclusion of biowaste recovery within political and legal frameworks, 3 applied research about science and engineering of composting, 4 professional, technical and

  19. Detrimental nonlocality in luminescence measurements

    Science.gov (United States)

    Pluska, Mariusz; Czerwinski, Andrzej

    2017-08-01

    Luminescence studies are used to investigate the local properties of various light-emitting materials. A critical issue of these studies is presented that the signals often lack all advantages of luminescence-studies of high locality, and may originate from an extended spatial region of even a few millimeters in size or the whole sample, i.e., places other than intended for investigation. This is a key problem for research and development in photonics. Due to this nonlocality, information indicating defects, irregularities, nonuniformities and inhomogeneities is lost. The issue refers to typical structures with a strong built-in electric field. Such fields exist intentionally in most photonic structures and occur unintentionally in many other materials investigated by applied physics. We reveal [using test samples prepared with focused ion beam (FIB) on an AlGaAs/GaAs laser heterostructure with an InGaAs quantum well (QW)] that nonlocality increases at low temperatures. This is contrary to the widely expected outcome, as low-temperature luminescence measurements are usually assumed to be free from disturbances. We explain many effects observed due to nonlocality in luminescence studies and prove that separation of the investigated area by focused ion beam milling is a practical solution enabling truly local luminescence measurements. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  20. Estimation of luminescence lifetime in frequency domain

    Institute of Scientific and Technical Information of China (English)

    Zhang Fu-Jun; Xu Zheng; Zhao Su-Ling; Lou Zhi-Dong; Yang Sheng-Yi; Xu Xu-Rong

    2006-01-01

    Absorption is the origin of luminescence. But it must be noticed that the lifetime of luminescence might reversely influence the rate of absorption. In this paper, it is reported that the luminescence intensity of copper and manganese changes with the driving frequency at constant voltage. The variation of luminescent intensity depends only on the lifetime of luminescence but not on the type of quenching or other factors. Generally the rate of absorption is dominantly determined by the material property and the lifetime of luminescence centres, the absorption of shorter lifetime centre will be larger than that of the longer lifetime centre at the same excited condition.

  1. Recent Progress on Nanoscale Rare Earth Luminescent Materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results The size of nanoscale rare earth luminescent materials is often smaller than that of the excitement or emission wavelength,and it has amazing surface state density. Therefore,it shows a lot of new luminescent phenomena such as the shift of CTS,the broadening of emission peaks,the variation of fluorescent lifetimes and quantum efficiency,and the increase of quenching concentration.It is not only of academic interest but also of technological importance for advanced phosphor applications to rese...

  2. Luminescent Solar Concentrators – a low cost photovoltaics alternative

    Directory of Open Access Journals (Sweden)

    van Sark W.G.J.H.M.

    2012-10-01

    Full Text Available Luminescent solar concentrators (LSCs are being developed as a potentially low cost-per-Wp photovoltaic device, suited for applications especially in the built environment. LSCs generally consist of transparent polymer sheets doped with luminescent species, either organic dye molecules or semiconductor nanocrystals. Direct and diffuse incident sunlight is absorbed by the luminescent species and emitted at redshifted wavelengths with high quantum efficiency. Optimum design ensures that a large fraction of emitted light is trapped in the sheet, which travels to the edges where it can be collected by one or more mono- or bifacial solar cells, with minimum losses due to absorption in the sheet and re-absorption by the luminescent species. Today’s record efficieny is 7%, however, 10-15% is within reach. Optimized luminescent solar concentrators potentially offer lower cost per unit of power compared to conventional solar cells. Moreover, LSCs have an increased conversion efficiency for overcast and cloudy sky conditions, having a large fraction of diffuse irradiation, which is blueshifted compared to clear sky conditions. As diffuse irradiation conditions are omnipresent throughout mid- and northern-European countries, annual performance of LSCs is expected to be better in terms of kWh/Wp compared to conventional PV.

  3. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  4. Optically stimulated luminescence dosimetry using natural and synthetic materials

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; McKeever, S.W.S.

    1996-01-01

    The application of optically stimulated luminescence (OSL) for use in radiation dosimetry is reviewed. A broad description is given of OSL techniques developed at Riso National Laboratory and at Oklahoma State University, and recent collaborative investigations on the properties of a variety...

  5. Optically stimulated luminescence dosimetry using natural and synthetic materials

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; McKeever, S.W.S.

    1996-01-01

    The application of optically stimulated luminescence (OSL) for use in radiation dosimetry is reviewed. A broad description is given of OSL techniques developed at Riso National Laboratory and at Oklahoma State University, and recent collaborative investigations on the properties of a variety of n......, and unseparated materials such as bricks and porcelain items....

  6. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  7. Instant luminescence chronologies? High resolution luminescence profiles using a portable luminescence reader

    OpenAIRE

    Bateman, M. D.; Stein, S.; Ashurst, R.A.; Selby, K.

    2015-01-01

    Establishing a robust chronology is fundamental to most palaeoenvironmental studies. However, the number and positioning of dated points is critical. Using a portable luminescence reader, it is possible to rapidly generate high resolution down core relative age profiles. Profiles of portable luminescence data from two coastal dunes were evaluated and compared with the results of particle size analysis, stratigraphy, and an independent historical chronology. Results show that, even in young sa...

  8. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  9. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    Directory of Open Access Journals (Sweden)

    Z. O. Lipatova

    2015-03-01

    Full Text Available Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been found to be dependent on the registration wavelength in the range from 450 to 700 nm. Obtained fluorophosphate glasses with CdS quantum dots can find their application as fluorescent materials with intensive luminescence band and long excited-state natural lifetime.

  10. Nanophosphor aluminum oxide: Luminescence response of a potential dosimetric material

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Michael W., E-mail: mblair@lanl.go [Los Alamos National Laboratory, Los Alamos, NM (United States); Jacobsohn, Luiz G. [Center for Optical Materials Science and Engineering Technologies, and the School of Materials Science and Engineering, Clemson University, Anderson, SC 29625 (United States); Tornga, Stephanie C. [Los Alamos National Laboratory, Los Alamos, NM (United States); Ugurlu, Ozan [Characterization Facility, Institute of Technology, University of Minnesota, Minneapolis, MN 55455 (United States); Bennett, Bryan L. [Los Alamos National Laboratory, Los Alamos, NM (United States); Yukihara, Eduardo G. [Department of Physics, Oklahoma State University, Stillwater, OK (United States); Muenchausen, Ross E. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2010-05-15

    This work reports on the investigation of the radiation dosimetry properties of Al{sub 2}O{sub 3} nanopowders. Samples were produced by solution combustion synthesis using three different organic fuels to check for the effect of synthesis conditions on the properties of interest. Luminescence characteristics were studied by thermoluminescence and optically stimulated luminescence (OSL) techniques. We found that samples produced using urea have characteristics similar to bulk Al{sub 2}O{sub 3}:C and may be suitable for personal dosimetry, while samples produced using glycine and hexamethylenetetramine (HMT) may be more suitable for applications where fast OSL decay is advantageous. While these results are promising and warrant further investigation, much has to be done to overcome the greatly decreased luminescence intensity of the nanomaterials as compared to bulk Al{sub 2}O{sub 3}:C.

  11. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen; Cohen, Seth M.; Raymond,Kenneth N.

    2006-07-10

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.

  12. Semiconducting Polymer Nanoparticles with Persistent Near-Infrared Luminescence for In Vivo Optical Imaging.

    Science.gov (United States)

    Palner, Mikael; Pu, Kanyi; Shao, Shirley; Rao, Jianghong

    2015-09-21

    Materials with persistent luminescence are attractive for in vivo optical imaging since they have a long lifetime that allows the separation of excitation of fluorophores and image acquisition for time-delay imaging, thus eliminating tissue autofluorescence associated with fluorescence imaging. Persistently luminescent nanoparticles have previously been fabricated from toxic rare-earth metals. This work reports that nanoparticles made of the conjugated polymer MEH-PPV can generate luminescence persisting for an hour upon single excitation. A near-infrared dye was encapsulated in the conjugated polymer nanoparticle to successfully generate persistent near-infrared luminescence through resonance energy transfer. This new persistent luminescence nanoparticles have been demonstrated for optical imaging applications in living mice.

  13. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters.

    Science.gov (United States)

    Osakada, Yasuko; Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie; Xing, Lei; Cui, Bianxiao

    2014-04-07

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes.

  14. Activatable Multifunctional Persistent Luminescence Nanoparticle/Copper Sulfide Nanoprobe for in Vivo Luminescence Imaging-Guided Photothermal Therapy.

    Science.gov (United States)

    Chen, Li-Jian; Sun, Shao-Kai; Wang, Yong; Yang, Cheng-Xiong; Wu, Shu-Qi; Yan, Xiu-Ping

    2016-12-07

    Multifunctional nanoprobes that provide diagnosis and treatment features have attracted great interest in precision medicine. Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) are optimal materials due to no in situ excitation needed, deep tissue penetration, and high signal-to-noise ratio, while activatable optical probes can further enhance signal-to-noise ratio for the signal turn-on nature. Here, we show the design of an activatable multifunctional PLNP/copper sulfide (CuS)-based nanoprobe for luminescence imaging-guided photothermal therapy in vivo. Matrix metalloproteinases (MMPs)-specific peptide substrate (H2N-GPLGVRGC-SH) was used to connect PLNP and CuS to build a MMP activatable system. The nanoprobe not only possesses ultralow-background for in vivo luminescence imaging due to the absence of autofluorescence and optical activatable nature but also offers effective photothermal therapy from CuS nanoparticles. Further bioconjugation of c(RGDyK) enables the nanoprobe for cancer-targeted luminescence imaging-guided photothermal therapy. The good biocompatibility and the multiple functions of highly sensitive tumor-targeting luminescence imaging and effective photothermal therapy make the nanoprobe promising for theranostic application.

  15. Carioca: a perspectiva da enfermagem

    Directory of Open Access Journals (Sweden)

    Ana Elisa Fernandes Lima

    2015-01-01

    Full Text Available Objetivo: describir las acciones recomendadas por el Programa Cigüeña Carioca para atención a las parturientes y determinar si la aplicación de este Programa tuvo repercusiones en esta asistencia desde la perspectiva del equipo de enfermería. Métodos: estudio descriptivo, con abordaje cualitativo, realizado en una maternidad pública. Entrevistas semiestructuradas se realizaron con cuatro enfermeras obstétricas y siete auxiliares de enfermería que trabajan en el centro de obstetricia de la maternidad. Se utilizó la técnica de análisis de contenido temático. Resultados: las categorías del estudio fueron: Calificación de la atención obstétrica hospitalaria y Repercusiones asistenciales y profesionales del Programa Cigüeña Carioca. Conclusión: el personal de enfermería consideró que la aplicación del Programa ha traído mejoras en la atención al parto, favoreciendo la garantía de los derechos de la mujer y el cumplimiento de la enfermería obstétrica en la red de salud municipal.

  16. Sensing of phosphates by using luminescent Eu(III) and Tb(III) complexes: application to the microalgal cell Chlorella vulgaris.

    Science.gov (United States)

    Nadella, Sandeep; Sahoo, Jashobanta; Subramanian, Palani S; Sahu, Abhishek; Mishra, Sandhya; Albrecht, Markus

    2014-05-12

    Phenanthroline-based chiral ligands L(1) and L(2) as well as the corresponding Eu(III) and Tb(III) complexes were synthesized and characterized. The coordination compounds show red and green emission, which was explored for the sensing of a series of anions such as F(-), Cl(-), Br(-), I(-), NO3(-), NO2(-), HPO4(2-), HSO4(-), CH3COO(-), and HCO3(-). Among the anions, HPO4(2-) exhibited a strong response in the emission property of both europium(III) and terbium(III) complexes. The complexes showed interactions with the nucleoside phosphates adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). Owing to this recognition, these complexes have been applied as staining agents in the microalgal cell Chlorella vulgaris. The stained microalgal cells were monitored through fluorescence microscopy and scanning electron microscopy. Initially, the complexes bind to the outer cell wall and then enter the cell wall through holes in which they probably bind to phospholipids. This leads to a quenching of the luminescence properties.

  17. Synthesis, luminescent properties and white light emitting diode application of Ba7Zr(PO4)6:Eu2+ yellow-emitting phosphor

    Science.gov (United States)

    Li, Chenxia; Dai, Jian; Deng, Degang; Shen, Changyu; Xu, Shiqing

    2015-10-01

    A yellow-emitting phosphor, Eu2+-activated Ba7Zr(PO4)6 phosphor was synthesized by solid-state reaction method and the luminescence properties were investigated. The phosphor exhibited strong absorption in near ultraviolet (n-UV) region, which matched well with the n-UV chip. Upon excitation at 370 nm, the Ba7Zr(PO4)6:Eu2+ phosphor has a broad yellow emission band with a peak at 585 nm and a full width at half maximum of 178 nm wider than that of the commercial yellow-emitting YAG:Ce3+ phosphor. The mechanism of concentration quenching of Eu2+ ions in Ba7Zr(PO4)6 phosphor is verified to be energy transfer among the nearest neighbor Eu2+ ions. The CIE value and temperature dependence of photoluminescence were also discussed. Furthermore, a white-LED was fabricated using a 370 nm UV chip pumped with a blend of phosphors consisting of yellow-emitting Ba6.97Zr(PO4)6:0.03Eu2+ and blue-emitting BaMgAl10O17:Eu2+ phosphors, which achieved a CIE of (0.3329, 0.3562) with a color-rendering index of 86.4 around the CCT of 5487 K.

  18. Luminescent pincer platinum(II) complexes with emission quantum yields up to almost unity: photophysics, photoreductive C-C bond formation, and materials applications.

    Science.gov (United States)

    Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming

    2015-02-09

    Luminescent pincer-type Pt(II)  complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).

  19. Turning on the Light: Lessons from Luminescence

    Science.gov (United States)

    O'Hara, Patricia B.; Engelson, Carol; St. Peter, Wayne

    2005-01-01

    Some of the processes by which light is emitted without a simultaneous change in temperature are discussed and is classified as luminescence or cold light. Luminescent processes include triboluminescence, fluorescence, phosphorescence, chemiluminescence, and bioluminescence.

  20. Systematic development of new thermoluminescence and optically stimulated luminescence materials

    Energy Technology Data Exchange (ETDEWEB)

    Yukihara, E.G., E-mail: eduardo.yukihara@okstate.edu [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Milliken, E.D.; Oliveira, L.C. [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Orante-Barron, V.R. [Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico (Mexico); Jacobsohn, L.G. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, SC (United States); Blair, M.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-01-15

    This paper presents an overview of a systematic study to develop new thermoluminescence (TL) and optically stimulated luminescence (OSL) materials using solution combustion synthesis (SCS) for applications such as personal OSL dosimetry, 2D dose mapping, and temperature sensing. A discussion on the material requirements for these applications is included. We present X-ray diffraction (XRD) data on single phase materials obtained with SCS, as well as radioluminescence (RL), TL and OSL data of lanthanide-doped materials. The results demonstrate the possibility of producing TL and OSL materials with sensitivity similar to or approaching those of commercial TL and OSL materials used in dosimetry (e.g., LiF:Mg,Ti and Al{sub 2}O{sub 3}:C) using SCS. The results also show that the luminescence properties can be improved by Li co-doping and annealing. The presence of an atypical TL background and anomalous fading are discussed and deserve attention in future investigations. We hope that these preliminary results on the use of SCS for production of TL and OSL materials are helpful to guide future efforts towards the development of new luminescence materials for different applications. - Highlights: Black-Right-Pointing-Pointer TL and OSL material produced with sensitivity similar to commercial materials. Black-Right-Pointing-Pointer Luminescence properties improved by Li co-doping and annealing. Black-Right-Pointing-Pointer The presence of atypical TL background and anomalous fading observed.

  1. Luminescence sensitivity changes in quartz

    CERN Document Server

    Wintle, A G

    1999-01-01

    In the luminescence dating of sedimentary or heated quartz, some heat treatment is usually applied to the sample immediately prior to the measurement of the optically stimulated luminescence. In this paper we report experiments on a 30,000-year-old sedimentary quartz, in which we use the luminescence response to a test dose to monitor the changes in sensitivity that are caused by holding the quartz at temperatures from 160 to 280 deg. C for times from 10 s to 22 h. For an optically bleached sample, the monitoring is by both optically stimulated luminescence and the 110 deg. C TL peak; both luminescence signals are shown to have the same sensitisation (i.e. activation energy) characteristics. For natural or laboratory irradiated samples only the 110 deg. C TL peak can be used; sensitivity increases of up to a factor of 1.3 and 3 are observed for the natural and laboratory irradiated aliquots, respectively. Up to four exponential components are used to deconvolve the sensitivity change data; the dominant compon...

  2. Method of measuring luminescence of a material

    Science.gov (United States)

    Miller, Steven D.

    2015-12-15

    A method of measuring luminescence of a material is disclosed. The method includes applying a light source to excite an exposed material. The method also includes amplifying an emission signal of the material. The method further includes measuring a luminescent emission at a fixed time window of about 10 picoseconds to about 10 nanoseconds. The luminescence may be radio photoluminescence (RPL) or optically stimulated luminescence (OSL).

  3. Luminescent DNA- and agar-based membranes.

    Science.gov (United States)

    Leones, R; Fernandes, M; Ferreira, R A S; Cesarino, I; Lima, J F; Carlos, L D; Bermudez, V de Zea; Magon, C J; Donoso, J P; Silva, M M; Pawlicka, A

    2014-09-01

    Luminescent materials containing europium ions are investigated for different optical applications. They can be obtained using bio-macromolecules, which are promising alternatives to synthetic polymers based on the decreasing oil resources. This paper describes studies of the DNA- and Agar-europium triflate luminescent membranes and its potential technological applications are expanded to electroluminescent devices. Polarized optical microscopy demonstrated that the samples are birefringent with submicrometer anisotropy. The X-ray diffraction analysis revealed predominantly amorphous nature of the samples and the atomic force microscopy images showed a roughness of the membranes of 409.0 and 136.1 nm for the samples of DNA10Eu and Agar1.11Eu, respectively. The electron paramagnetic resonance spectra of the DNA(n)Eu membranes with the principal lines at g ≈ 2.0 and g ≈ 4.8 confirmed uniform distribution of rare earth ions in a disordered matrix. Moreover, these strong and narrow resonance lines for the samples of DNA(n)Eu when compared to the Agar(n)Eu suggested a presence of paramagnetic radicals arising from the DNA matrix. The emission spectra suggested that the Eu3+ ions occupy a single local environment in both matrices and the excitation spectra monitored around the Eu emission lines pointed out that the Eu3+ ions in the Agar host were mainly excited via the broad band component rather than by direct intra-4f(6) excitation, whereas the opposite case occurred for the DNA-based sample.

  4. Self absorption in luminescent solar concentrators

    NARCIS (Netherlands)

    Krumer, Z.

    2014-01-01

    Luminescent solar concentrators are photovoltaic devices made of thin transparent material, in which luminescent particles are dispersed. The incident light enters the device through its large facets and is subsequently absorbed by the luminescent particles, which re-emit it whilst changing its dire

  5. Optical enhanced luminescent measurements and sequential reagent mixing on a centrifugal microfluidic device for multi-analyte point-of-care applications

    Science.gov (United States)

    Bartholomeusz, Daniel A.; Davies, Rupert H.; Andrade, Joseph D.

    2006-02-01

    A centrifugal-based microfluidic device1 was built with lyophilized bioluminescent reagents for measuring multiple metabolites from a sample of less than 15 μL. Microfluidic channels, reaction wells, and valves were cut in adhesive vinyl film using a knife plotter with features down to 30 μm and transferred to metalized polycarbonate compact disks (CDs). The fabrication method was simple enough to test over 100 prototypes within a few months. It also allowed enzymes to be packaged in microchannels without exposure to heat or chemicals. The valves were rendered hydrophobic using liquid phase deposition. Microchannels were patterned using soft lithography to make them hydrophilic. Reagents and calibration standards were deposited and lyophilized in different wells before being covered with another adhesive film. Sample delivery was controlled by a modified CD ROM. The CD was capable of distributing 200 nL sample aliquots to 36 channels, each with a different set of reagents that mixed with the sample before initiating the luminescent reactions. Reflection of light from the metalized layer and lens configuration allowed for 20% of the available light to be collected from each channel. ATP was detected down to 0.1 μM. Creatinine, glucose, and galactose were also measured in micro and milliMolar ranges. Other optical-based analytical assays can easily be incorporated into the device design. The minimal sample size needed and expandability of the device make it easier to simultaneously measure a variety of clinically relevant analytes in point-of-care settings.

  6. A luminescent nanocrystal stress gauge

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  7. Micro-modulated luminescence tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Chao; Wang, Ge

    2013-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to light scattering. X-ray microscopy can resolve spatial details of few microns deeply inside a sample but the contrast resolution is still inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and the subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we suggest a micro-modulated luminescence tomography (MLT) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonst...

  8. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study.

    Science.gov (United States)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R; Lehnert, Adrienne; Hunter, William C J; McDougald, Wendy; Miyaoka, Robert S; Kinahan, Paul E

    2015-12-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10-13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector's dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could be

  9. Luminescent lanthanide cryptates: from the bench to the bedside.

    Science.gov (United States)

    Zwier, Jurriaan M; Bazin, Hervé; Lamarque, Laurent; Mathis, Gérard

    2014-02-17

    The design and application of luminescent lanthanide cryptates for sensing biological interactions is highlighted through the review of the work performed in our laboratory and with academic collaborations. The path from the initial applications probing biochemical interaction in vitro to "state-of-the-art" cellular assays toward clinical applications using homogeneous time-resolved fluorescence technology is described. An overview of the luminescent lanthanide macrocyclic compounds developed at Cisbio in the recent past is given with an emphasis on specific constraints required by specific applications. Recent assays for drug-discovery and diagnostic purposes using both antibody-based and suicide-enzyme-based technology are illustrated. New perspectives in the field of molecular medicine and time-resolved microscopy are discussed.

  10. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R.; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  11. El retorno desde una perspectiva transnacional

    OpenAIRE

    Leonardo Cavalcanti; Sònia Parella

    2013-01-01

    El presente artículo analiza el retorno a partir de la perspectiva transnacional de las migraciones. Con este análisis el texto reflexiona sobre la complejidad que significa pensar el retorno en una época en que las migraciones están fuertemente marcadas por prácticas sociales transnacionales. Además de examinar el retorno desde la perspectiva transnacional de las migraciones, el texto también tiene como objetivo hacer una presentación sucinta de los textos que conforman el presente monográfi...

  12. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white

    Science.gov (United States)

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.

    2016-10-01

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.

  13. Luminescent properties and application of Eu3+ -activated Gd2(MoO4)3 red-emitting phosphor with pseudo-pompon shape for solid-state lighting

    Institute of Scientific and Technical Information of China (English)

    HE

    2010-01-01

    Eu3+ -activated Gd2(MoO4)3 pseudo-pompon-like red-emitting phosphors were prepared by solid-state method.The structure,morphology,and luminescent properties of these powder samples were investigated by X-ray diffraction (XRD),scanning electron microscopy(SEM),and fluorescent spectrophotometry,respectively.The as-obtained phosphors were single crystalline phase with orthorhombic unit cell.The particles of the powder samples had the length of 5-12 μm and width of 3-7 μm with flake shape and large surface area,which is suitable for manufacture of white LEDs.The phosphor could be efficiently excited by the incident light of 348-425 nm,well matched with the output wavelength of near-UV (In,Ga)N chip,and re-emitted an intense red light peaking at 615 nm.By combing this phosphor with a~395 nmemitting (In,Ga)N chip,a red LED was fabricated,so that the applicability of this novel phosphor to white LEDs was confirmed.It is considered to be an efficient red-emitting conversion phosphor for solid-state lighting based on (In,Ga)N LEDs.

  14. Luminescence characterization of sol-gel derived Pr{sup 3+} doped NaGd(WO{sub 4}){sub 2} phosphors for solid state lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Durairajan, A., E-mail: durairajan.a@gmail.com [Crystal Growth Centre, Anna University, Chennai, 600025 (India); I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810 193 (Portugal); Thangaraju, D. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka, 432-8011 (Japan); Moorthy Babu, S. [Crystal Growth Centre, Anna University, Chennai, 600025 (India); Valente, M.A. [I3N-Aveiro, Department of Physics, University of Aveiro, Aveiro, 3810 193 (Portugal)

    2016-08-15

    In the present work, xPr{sup 3+}:NaGd(WO{sub 4}){sub 2} (0.5 ≤ x ≤ 5.0 mol%) sub-micron phosphors were synthesised by sol-gel method. Low cost precursors of metal nitrates and low temperature thermal treatment was used compared to conventional solid state reaction. The formation of highly crystalline phosphors with tetragonal structure was confirmed by XRD and increase of Pr{sup 3+} ions content in host matrix leads to expansion of the unit cell volume. The surface morphology, size and particle distribution of the phosphors were observed by field emission scanning electron microscopy (FE-SEM). A rectangular shape particle with a size distribution ranging from 400 to 600 nm and tightly packed surface was seen in FE-SEM micrographs. The various internal and external phonon modes vibration corresponding to double tungstate structure was observed in Raman spectra. The optical properties of the synthesised phosphors were explored by ultraviolet visible (UV–Vis) absorption in diffuse reflectance and photoluminescence (PL) measurements. UV–Vis measurements distinguished the host and Pr{sup 3+} absorption and also reveal an increase in optical band gap values with an increase of Pr{sup 3+}. The PL measurements show various emissions from green and red regions under 450 nm. The maximum intensity emission at 489 nm is due to {sup 3}P{sub 0} → {sup 3}H{sub 4} transition of Pr{sup 3+}. From the maximum emission the critical doping concentration was calculated to be at 3.5 mol% and critical distance between two adjacent Pr{sup 3+} ions as 20.43 Å. - Highlights: • A sol-gel method was used to prepare Pr{sup 3+} doped NaGd(WO{sub 4}){sub 2} at low temperature. • Structural, spectroscopic, morphological, and optical and luminescence properties were studied. • The praseodymium ions are in trivalent state, the site symmetry is distorted and S{sub 4} local symmetry with Na{sup +} ions. • Strong green emission was observed under UV and visible excitation.

  15. Confocal luminescence microscopy study of defect-domain wall interaction in lithium niobate and its application to light-induced domain engineering

    Science.gov (United States)

    Sandmann, Christian

    Understanding the mutual interaction of extrinsic and intrinsic defects with the ferroelectric domain walls of LiNbO3 is the key to achieve domain patterns on the sub-micron scale. For that reason the influence of domain inversion on the Er3+ defect was investigated in a detailed study, in which energetic shifts and changes in the intensity ratio of individual Er3+ sites were found. The results led to an improved model describing the Er3+ defect in LiNbO3 and to the introduction of a concept of an atomistic probe. This atomistic probe allows the determination of the orientation of the ferroelectric axis by means of optical spectroscopy and allows three-dimensional imaging of domain structures with high spatial resolution without topographic artifacts. For this purpose a confocal luminescence microscope was developed, adapted to allow investigation at low temperature and applied electric fields. Based on the concept of an atomistic probe, the interaction of Er and Ti dopants was investigated, and significant spectral broadening and line shifting were found. Calibrating these changes to the [Ti4+]-concentration allows imaging of [Ti4+]-profiles, as found in integrated optical devices. The [Ti4+]-concentration profile can be imaged without artifacts caused by topology, intensity fluctuations, or variations in the [Er3+]-concentration profile. A novel approach was introduced for directly writing ferroelectric domain patterns into LiNbO3 substrates using the confocal microscope to focus visible light from an argon ion laser to a diffraction limited spot. It was shown that space charge fields, created by light with a wavelength of 488nm, can reduce the external applied field needed for domain inversion by up to 30%. So far, structures with a period down to 8mum have been demonstrated. In-situ experiments during domain inversion demonstrated the possibility to monitor the domain inversion process in-situ with a temporal resolution of up to t = 7ms. It could be

  16. Aplicación de la perspectiva de género en artículos publicados en cuatro revistas nacionales de salud, México, 2000-2003 Application of gender perspective in papers published between 2000 and 2003 from four National Institutes of Health journals

    Directory of Open Access Journals (Sweden)

    Prudencia Cerón-Mireles

    2006-08-01

    Full Text Available OBJETIVO: Elaborar un diagnóstico sobre la aplicación de la perspectiva de género en el campo de la investigación en salud en cuatro revistas mexicanas de los institutos nacionales de salud. MATERIAL Y MÉTODOS: Se revisaron 999 artículos publicados en cuatro revistas científicas (2000-2003, con dos niveles de análisis: a desagregación de datos por sexo, que permite describir las diferencias entre mujeres y hombres; y b análisis de estas diferencias desde la perspectiva de género. RESULTADOS: De los artículos revisados, 25.4% desagregó sus resultados por sexo, de los cuales el mayor porcentaje se publicó en Salud Pública de México (48.8% y el menor en la Revista de Investigación Clínica (16.1%. Solamente 4.2% de los artículos aplicó la perspectiva de género, y los temas mayormente abordados fueron las adicciones, el comportamiento sexual y la violencia. CONCLUSIONES: Este es el primer estudio en México que evalúa la aplicación de la perspectiva de género en la investigación en salud. Al igual que en otros países, es baja la proporción de artículos que analizan las diferencias por sexo y aplican la perspectiva de género. Esto destaca la importancia de promover la investigación interdisciplinaria que ayude a comprender los orígenes biológicos y sociales, o la combinación de ambos, que determinan la salud desigual entre mujeres y hombres.OBJECTIVE: The objective of this study was to determine the application of gender perspective in public health papers in four journals published by the Mexican National Health Institutes. MATERIAL AND METHODS: A total of 999 papers published in the four journals between 2000 and 2003 was reviewed. Two levels of analysis were considered: a data presented by sex, providing description of differences between women and men, and b the analysis of these differences from gender perspective. RESULTS: One quarter (25.4% of the articles described results by sex. The largest percentage was

  17. Arthur Ramos: intelectual em perspectiva

    Directory of Open Access Journals (Sweden)

    Adir da Luz Almeida

    2016-03-01

    Full Text Available O trabalho constituise em resultado de pesquisa sobre o intelectual Arthur Ramos, suas reflexões teóricas e os efeitos no campo social e educativo. Arthur Ramos, intelectual complexo, multifacetado, refletiu sobre várias temáticas, pensando o Brasil como "nação" moderna, como outros intelectuais na passagem do século XIX para o século XX. Através redes de sociabilidade das quais participou e dos cargos públicos que ocupou, incluindo a chefia do Serviço de Ortofrenia e Higiene Mental do Instituto de Pesquisas Educacionais, na administração de Anísio Teixeira como Diretor de Instrução Pública, Rio de Janeiro, na década de 1930. Implanta o Serviço que tem como base a proximidade entre família, escola e comunidade, tendo como perspectiva alcançar as famílias e população pela escola. O foco é a discussão conceitual de "higiene" e "miscigenação", com atenção ao intelectual nesse debate, suas concepções, inflexões e contradições. São utilizadas como fontes algumas obras produzidas por Ramos, e arquivos sobre o SHOM, sob aguarda da Biblioteca Nacional.Palavras chave: intelectual, educação, historiografia, antropologia__________________Abstract: The work is the result of research on the intellectual Arthur Ramos, their theoretical reflections and the effects on social and educational field. Arthur Ramos, complex, multifaceted intellectual, reflected on several themes, thinking the Brazil as modern "nation", like other intellectuals in the passage from the XIX century to the XX century. Through social networks of which participated and the public office he held, including the leadership of the Ortofrenia Service and Mental Hygiene, of the Educational Research Institute, administration of Anísio Teixeira, as Director of Public Instruction, Rio de Janeiro, in the decade of 1930. Deploys the service that is based on the close the proximity between family, school and community, with the prospect to reach the families and

  18. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  19. Preparation of ZnO nanoparticles showing upconversion luminescence through simple chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Anjana, R.; Subha, P. P.; Markose, Kurias K.; Jayaraj, M. K., E-mail: mkj@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Kochi, Kerala, India-682022 (India)

    2016-05-23

    Upconversion luminescence is an interesting area while considering its applications in a vast variety of fields. Rare earth ions like erbium is the most studied and efficient candidate for achieving upconversion. Erbium and ytterbium co-doped ZnO nanoparticles were prepared through co-precipitation method. A strong red emission has been obtained while exciting with 980 nm laser. Dependence of luminescence emission colour on ytterbium concentration has been studied.

  20. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    OpenAIRE

    Natalia A. Burmistrova; Olga A. Kolontaeva; Axel Duerkop

    2015-01-01

    Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2) have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new lu...

  1. Morpho-structural and luminescent investigations of niobium activated yttrium tantalate powders

    Energy Technology Data Exchange (ETDEWEB)

    Hristea, Amalia [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Faculty of Chemistry and Chemical Engineering, ' Babes-Bolyai' University, 11 Arany Janos, 400028 Cluj-Napoca (Romania)], E-mail: amaliahristea@gmail.com; Popovici, Elisabeth-Jeanne; Muresan, Laura [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Stefan, Maria [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Faculty of Chemistry and Chemical Engineering, ' Babes-Bolyai' University, 11 Arany Janos, 400028 Cluj-Napoca (Romania); Grecu, Rodica [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Johansson, Anders [Angstrom Laboratory, Department of Materials Chemistry, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Boman, Mats [Angstrom Laboratory, Department of Materials Chemistry, Uppsala University, Box 538, 751 21 Uppsala (Sweden)], E-mail: mats.boman@mkem.uu.se

    2009-03-05

    Yttrium tantalate-based phosphors are a class of efficient luminescent materials used in medical imaging applications. The paper presents the influence of activator concentration, firing regime and flux nature on the crystalline structure, morphology and luminescent characteristics of niobium activated yttrium tantalate powders. Phosphors samples were prepared by solid-state reaction route and their properties were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) measurements and scanning electron microscopy (SEM)

  2. Cristallochimie et luminescence de quelques oxydes et fluorures de l'indium

    OpenAIRE

    Gaewdang, Thitinai

    1993-01-01

    With the prospect of application for the detection of low energy solar neutrinos the crystal chemistry and optical properties of some oxides and fluorides of indium have been investigated. Single crystals of the selected compounds have been prepared by several appropriate methods, i.e. flux growth, chemical vapor transport or Bridgman. The crystal structure determinations and luminescence studies were performed either on powders or on single crystals. The intrinsic luminescence of In2TiO5, In...

  3. Luminescence imaging of water during carbon-ion irradiation for range estimation.

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Akagi, Takashi; Yamashita, Tomohiro; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Toshito, Toshiyuki

    2016-05-01

    The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom's luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  4. Lanthanide-doped luminescent nanomaterials. From fundamentals to bioapplications

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueyuan; Tu, Datao; Liu, Yongsheng [Chinese Academy of Sciences, Fuzhou (China). Fujian Inst. of Research on the Structure of Matter

    2014-07-01

    Covers the frontiers in chemistry, physics and bioapplications of lanthanide-doped luminescent nanomaterials. Presents new insights into the optical behaviors of lanthanide in nanomaterials. Systematically reviews in-vitro biodetection and bioimaging based on lanthanide-doped inorganic nanocrystals. Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the subject.

  5. Solid-state luminescence for the optical examination of archaeological glass beads

    Science.gov (United States)

    Zacharias, N.; Beltsios, K.; Oikonomou, A.; Karydas, A. G.; Bassiakos, Y.; Michael, C. T.; Zarkadas, Ch.

    2008-03-01

    The work pertains to the application of solid-state luminescence as a characterization tool for glassy ceramic cultural artefacts. An archaeological glass bead collection excavated at the city of Thebes, Greece and considered as unique in terms of typological variety and time span was examined with the application of luminescence techniques (thermoluminescence, optically stimulated luminescence). Additionally, X-rays fluorescence (XRF) was used to provide non-destructively the elemental concentration profile of the samples. The thermoluminescence signals following laboratory irradiation provided distinct groups of spectra types according to the color classification of the samples. For each sample, the signal sensitivity and growth were examined using both thermoluminescence and optically stimulated luminescence recording. The study provides evidence for the usefulness of the combined application of luminescence and non-destructive, XRF-based, elemental analysis for the characterization of glass assemblages. Finally, due to the satisfactory level of radiation-induced signal intensity, the work suggests the possibility of chronological estimation of ancient glass beads using luminescence dating protocols.

  6. Biosensing with Luminescent Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Hedi Mattoussi

    2006-08-01

    Full Text Available Luminescent semiconductor nanocrystals or quantum dots (QDs are a recentlydeveloped class of nanomaterial whose unique photophysical properties are helping tocreate a new generation of robust fluorescent biosensors. QD properties of interest forbiosensing include high quantum yields, broad absorption spectra coupled to narrow sizetunablephotoluminescent emissions and exceptional resistance to both photobleaching andchemical degradation. In this review, we examine the progress in adapting QDs for severalpredominantly in vitro biosensing applications including use in immunoassays, asgeneralized probes, in nucleic acid detection and fluorescence resonance energy transfer(FRET - based sensing. We also describe several important considerations when workingwith QDs mainly centered on the choice of material(s and appropriate strategies forattaching biomolecules to the QDs.

  7. Luminescent Solar Concentrators – a low cost photovoltaics alternative

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van

    2013-01-01

    The development and current status of luminescent solar concentrators is reviewed. These solar concentrators generally consist of transparent polymer sheets doped with luminescent species; presently mainly organic dye molecules are used as luminescent species, however semiconductor nanocrystals are

  8. Luminescent Solar Concentrators – a low cost photovoltaics alternative

    NARCIS (Netherlands)

    Sark, W.G.J.H.M. van

    2013-01-01

    The development and current status of luminescent solar concentrators is reviewed. These solar concentrators generally consist of transparent polymer sheets doped with luminescent species; presently mainly organic dye molecules are used as luminescent species, however semiconductor nanocrystals

  9. Luminescence in crosslinked polyethylene at elevated temperatures

    Science.gov (United States)

    Bamji, S. S.; Bulinski, A. T.; Suzuki, H.; Matsuki, M.; Iwata, Z.

    1993-10-01

    Electrical treeing is often responsible for the breakdown of insulating materials used in power apparatus such as high-voltage transformers, cables, and capacitors. Insulation, such as crosslinked polyethylene (XLPE), used in underground high-voltage cables usually operates at temperatures above ambient. This paper describes the characteristics of luminescence, emitted prior to electrical tree inception, at a crosslinked polyethylene-semiconducting material (XLPE-semicon) interface held above room temperature. Use of a sensitive light detection system showed that XLPE subjected to elevated temperatures emits luminescence even without voltage application. This light was attributed to thermoluminescence which decreased with the decrease in the concentration of the crosslinking by-products present in the polymer. The spectra of thermoluminescence were only in the visible range. On the other hand, electroluminescence occurred when the XLPE-semicon interface was held above room temperature and subjected to high electric stress. This light did not depend on the concentration of the crosslinking by-products and the spectra of electroluminescence were in the visible and the ultraviolet ranges. It is proposed that XLPE-semicon interface held at elevated temperature and subjected to long-term voltage application initially emits both thermoluminescence and electroluminescence. As the crosslinking by-products exude out of the polymer, thermoluminescence decreases with time and ultimately ceases, but electroluminescence occurs as long as the voltage is applied to the polymer. Although the intensity of electroluminescence emitted at high temperature was lower than that emitted at ambient, sufficient ultraviolet radiation was emitted. The ultraviolet radiation could photodegrade the polymer and lead to electrical tree inception.

  10. Detection of biological aerosols by luminescence techniques

    Science.gov (United States)

    Stopa, Peter J.; Tieman, Darlene; Coon, Phillip A.; Paterno, Dorothea A.; Milton, Maurice M.

    1999-12-01

    Luciferin-Luciferase (L-L) luminescence techniques were used to successfully measure adenosine triphosphate (ATP) (pg/ml) in concentrated aerosol samples containing either vegetative bacterial cells or spores. Aerosols were collected with wet and dry sampling devices. Evaluation for the presence of total bio-mass from bacterial and non-bacterial sources of ATP was achieved by suspending the collected aerosol samples in phosphate buffered saline (PBS), pipeting a 50-(mu) l aliquot of the PBS suspension into a FiltravetteTM, and then adding bacterial releasing agent (BRA). The sample was then reacted with L-L, and the resulting Relative Luminescence Units (RLU's), indicative of ATP from all sources, were measured. Bacterial cells were enumerated with the additional application of a wash with somatic cell releasing agent (SRA) to remove any interferences and non-bacterial sources of ATP prior to BRA application. This step removes interfering substances and non-bacterial sources of ATP. For spore analysis, an equi-volume sample of the PBS suspension was added to an equi-volume of trypticase soy broth (TSB), incubated at 37 C for 15 minutes, and processed using methods identical to bacterial cell analysis. Using these technique we were able to detect Bacillus subtilin variation niger, formerly known as Bacillus globigii (BG), in aerosol samples at concentrations greater than or equal to 105 colony forming units (CFU) per ml. Results of field and chamber trials show that one can detect the presence of bacterial and non-bacterial sources of ATP. One can also differentiate spore and vegetative bacterial cells. These techniques may be appropriate to situations where the measurement of bacterial aerosols is needed.

  11. Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes

    Science.gov (United States)

    Pierret, Aurélie; Nong, Hanond; Fossard, Frédéric; Attal-Trétout, Brigitte; Xue, Yanming; Golberg, Dmitri; Barjon, Julien; Loiseau, Annick

    2015-12-01

    BN nanotubes (BNNTs) are structurally similar to their carbon counterparts, though much less investigated. New synthesis methods have been recently reported, enabling the production of industrial quantities and stimulating the search of new applications for the BNNTs. In this paper, we investigate the luminescence of multiwall BNNTs. By performing cathodoluminescence experiments on single tubes at 10 K, we show that the tube luminescence is highly heterogeneous (i) from tube to tube and (ii) spatially along a single tube. By combining cathodoluminescence measurements with a nanometer excitation and transmission electron microscopy on the same tube, we correlate luminescence and structural features. We conclude that the near-band-edge luminescence of BNNTs (≈5.4 eV) is related to the presence of extended structural defects, such as dislocations or ruptures in the wall stacking.

  12. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect.

    Science.gov (United States)

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-02-29

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb(3+)/Er(3+) microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser.

  13. Simultaneous quasi-one-dimensional propagation and tuning of upconversion luminescence through waveguide effect

    Science.gov (United States)

    Gao, Dangli; Tian, Dongping; Zhang, Xiangyu; Gao, Wei

    2016-02-01

    Luminescence-based waveguide is widely investigated as a promising alternative to conquer the difficulties of efficiently coupling light into a waveguide. But applications have been still limited due to employing blue or ultraviolet light as excitation source with the lower penetration depth leading to a weak guided light. Here, we show a quasi-one-dimensional propagation of luminescence and then resulting in a strong luminescence output from the top end of a single NaYF4:Yb3+/Er3+ microtube under near infrared light excitation. The mechanism of upconversion propagation, based on the optical waveguide effect accompanied with energy migration, is proposed. The efficiency of luminescence output is highly dependent on the concentration of dopant ions, excitation power, morphology, and crystallinity of tube as an indirect evidence of the existence of the optical actived waveguide effect. These findings provide the possibility for the construction of upconversion fiber laser.

  14. Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection.

    Science.gov (United States)

    Liu, Yongsheng; Tu, Datao; Zhu, Haomiao; Ma, En; Chen, Xueyuan

    2013-02-21

    Trivalent lanthanide (Ln(3+))-doped luminescent inorganic nanoparticles (NPs), characterized by long-lived luminescence, large Stokes and/or anti-Stokes shifts, narrow emission bands and high photochemical stability, are considered to be promising candidates as luminescent bioprobes in biomedicine and biotechnology. In this feature article, we provide a brief overview of the most recent advances in Ln(3+)-doped luminescent inorganic NPs as sensors, which covers from their chemical and physical fundamentals to biodetection, such as controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in vitro biodetection. Finally, some of the most important emerging trends and future efforts toward this active research field are also proposed.

  15. Role of structural defects in the ultraviolet luminescence of multiwall boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Aurélie; Nong, Hanond; Fossard, Frédéric; Loiseau, Annick, E-mail: annick.loiseau@onera.fr [Laboratoire d' Etude des Microstructures (LEM), ONERA-CNRS, BP 72, 92322 Châtillon cedex (France); Attal-Trétout, Brigitte [DMPH, ONERA, Chemin de la Hunière et des Joncherettes, BP 80100, 91123 Palaiseau (France); Xue, Yanming; Golberg, Dmitri [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044 (Japan); Barjon, Julien, E-mail: julien.barjon@uvsq.fr [Groupe d' Etude de la Matière Condensée, University of Versailles St-Quentin and CNRS, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles (France)

    2015-12-21

    BN nanotubes (BNNTs) are structurally similar to their carbon counterparts, though much less investigated. New synthesis methods have been recently reported, enabling the production of industrial quantities and stimulating the search of new applications for the BNNTs. In this paper, we investigate the luminescence of multiwall BNNTs. By performing cathodoluminescence experiments on single tubes at 10 K, we show that the tube luminescence is highly heterogeneous (i) from tube to tube and (ii) spatially along a single tube. By combining cathodoluminescence measurements with a nanometer excitation and transmission electron microscopy on the same tube, we correlate luminescence and structural features. We conclude that the near-band-edge luminescence of BNNTs (≈5.4 eV) is related to the presence of extended structural defects, such as dislocations or ruptures in the wall stacking.

  16. Highly Nonlinear Luminescence Induced by Gold Nanoparticles on Glass Surfaces with Continuous-Wave Laser Illumination

    CERN Document Server

    Wu, Yong; Toro, Ligia; Stefani, Enrico

    2015-01-01

    We report on highly nonlinear luminescence being observed from individual spherical gold nanoparticles immobilized on a borosilicate glass surface and illuminated by continuous-wave (CW) lasers with relatively low power. The nonlinear luminescence shows optical super-resolution beyond the diffraction limit in three dimensions compared to the scatting of the excitation laser light. The luminescence intensity from most nanoparticles is proportional to the 5th--7th power of the excitation laser power and has wide excitation and emission spectra across the visible wavelength range. Strong nonlinear luminescence is only observed near the glass surface. High optical nonlinearity excited by low CW laser power is related to a long-lived dark state of the gold nanoparticles, where the excitation light is strongly absorbed. This phenomenon has potential biological applications in super-resolution and deep tissue imaging.

  17. A fast multiple shutter for luminescence lifetime imaging

    Science.gov (United States)

    Geisler, Reinhard

    2017-09-01

    A new fast readout mode for off-the-shelf CCD image sensors is presented. It provides the capability to record two consecutive frames of short exposure time with multiple exposure cycles in fast succession. This is advantageous for measurements of recurrent low light events. A main application is the lifetime measurement of luminescence emissions such as those used for temperature- or pressure-sensitive paint measurements.

  18. Luminescent solutions and powders of new samarium complexes with N,N',O,O'-chelating ligands

    Science.gov (United States)

    Kharcheva, Anastasia V.; Nikolskiy, Kirill S.; Borisova, Nataliya E.; Ivanov, Alexey V.; Reshetova, Marina D.; Yuzhakov, Viktor I.; Patsaeva, Svetlana V.

    2016-04-01

    Imaging techniques in biology and medicine are crucial tools to obtain information on structural and functional properties of living cells and organisms. To fulfill the requirements associated with application of these techniques it appears necessary to design markers with specific characteristics. Luminescent complexes of trivalent lanthanide ions with chelating ligands are of increasing importance in biomedical applications because of their millisecond luminescence lifetime, narrow emission band, high signal-to-noise ratio and minimal photodamage to biological samples. In order to extend the available emission wavelength range the luminescent samarium chelates are highly desirable. In this study the ligands with diamides of 2,2'-bipyridin-6,6'-dicarboxylic acid were used to improve photophysical characteristics of samarium complexes. We report the luminescence characteristics of samarium complexes with novel ligands. All complexes exhibited the characteristic emission of Sm (III) ion with the lines at 565, 597, 605, 645 and 654 nm, the intensity strongly depended on the ligand. Absorption and luminescence excitation spectra of Sm (III) complexes showed main peaks in the UV range demonstrating lanthanide coordination to the ligand. The absolute lumenescence quantum yield was measured for solutions in acetonitrile with excitation at 350 nm. The largest luminescence quantum yield was found for the samarium complex Bipy 6MePy Sm (3%) being much higher that for samarium complexes reported in the literature earlier. These results prove as well that samarium chelates are potential markers for multiparametric imaging techniques.

  19. Doped zirconia phase and luminescence dependence on the nature of charge compensation

    Science.gov (United States)

    Smits, Krisjanis; Olsteins, Dags; Zolotarjovs, Aleksejs; Laganovska, Katrina; Millers, Donats; Ignatans, Reinis; Grabis, Janis

    2017-01-01

    Zirconia is a relatively new material with many promising practical applications in medical imaging, biolabeling, sensors, and other fields. In this study we have investigated lanthanide and niobium doped zirconia by luminescence and XRD methods. It was proven that charge compensation in different zirconia phases determines the incorporation of intrinsic defects and activators. Thus, the structure of zirconia does not affect the Er luminescence directly; however, it strongly affects the defect distribution around lanthanide ions and the way in which activator ions are incorporated in the lattice. Our results demonstrate the correlation between the crystalline phase of zirconia and charge compensation, as well as the contribution of different nanocrystal grain sizes. In addition, our experimental results verify the theoretical studies of metastable (tetragonal, cubic) phase stabilization determined using only oxygen vacancies. Moreover, it was found that adding niobium drastically increases activator luminescence intensity, which makes Ln3+ doped zirconia even more attractive for various practical applications. Although this study was based on the luminescence of the Er ion, the phase stabilization, charge compensation, and luminescence properties described in our results are expected to be similar for other lanthanide elements. Our results suggest that the luminescence intensity of other oxide matrices where lanthanides incorporate in place of tetravalent cations could be increased by addition of Nb ions. PMID:28287623

  20. Doped zirconia phase and luminescence dependence on the nature of charge compensation

    Science.gov (United States)

    Smits, Krisjanis; Olsteins, Dags; Zolotarjovs, Aleksejs; Laganovska, Katrina; Millers, Donats; Ignatans, Reinis; Grabis, Janis

    2017-03-01

    Zirconia is a relatively new material with many promising practical applications in medical imaging, biolabeling, sensors, and other fields. In this study we have investigated lanthanide and niobium doped zirconia by luminescence and XRD methods. It was proven that charge compensation in different zirconia phases determines the incorporation of intrinsic defects and activators. Thus, the structure of zirconia does not affect the Er luminescence directly; however, it strongly affects the defect distribution around lanthanide ions and the way in which activator ions are incorporated in the lattice. Our results demonstrate the correlation between the crystalline phase of zirconia and charge compensation, as well as the contribution of different nanocrystal grain sizes. In addition, our experimental results verify the theoretical studies of metastable (tetragonal, cubic) phase stabilization determined using only oxygen vacancies. Moreover, it was found that adding niobium drastically increases activator luminescence intensity, which makes Ln3+ doped zirconia even more attractive for various practical applications. Although this study was based on the luminescence of the Er ion, the phase stabilization, charge compensation, and luminescence properties described in our results are expected to be similar for other lanthanide elements. Our results suggest that the luminescence intensity of other oxide matrices where lanthanides incorporate in place of tetravalent cations could be increased by addition of Nb ions.

  1. Luminescence properties of a Fibonacci photonic quasicrystal.

    Science.gov (United States)

    Passias, V; Valappil, N V; Shi, Z; Deych, L; Lisyansky, A A; Menon, V M

    2009-04-13

    An active one-dimensional Fibonacci photonic quasi-crystal is realized via spin coating. Luminescence properties of an organic dye embedded in the quasi-crystal are studied experimentally and compared to theoretical simulations. The luminescence occurs via the pseudo-bandedge mode and follows the dispersion properties of the Fibonacci crystal. Time resolved luminescence measurement of the active structure shows faster spontaneous emission rate, indicating the effect of the large photon densities available at the bandedge due to the presence of critically localized states. The experimental results are in good agreement with the theoretical calculations for steady-state luminescence spectra.

  2. Eu2+ luminescence in strontium aluminates

    OpenAIRE

    Dutczak, D.; Juestel, T.; Ronda, C.; Meijerink, A.|info:eu-repo/dai/nl/075044986

    2015-01-01

    The luminescence properties of Eu2+ doped strontium aluminates are reported and reviewed for a variety of aluminates, viz. SrAl12O19, SrAl4O7, Sr4Al14O25, SrAl2O4 and Sr3Al2O6. The aim of the research is to investigate the role of local coordination and covalency of the aluminate host lattice, related to the Sr/Al ratio, on the optical properties of the Eu2+ ion. The UV and VUV excited luminescence spectra as well as luminescence decay curves were recorded to characterize the luminescence pro...

  3. Synthesis and luminescence properties of lanthanide complexes with a new tripodal ligand featuring N-thenylsalicylamide arms.

    Science.gov (United States)

    Song, Xue-Qin; Zheng, Qing-Fang; Wang, Li; Liu, Wei-Sheng

    2012-01-01

    To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, luminescent lanthanide complexes of a new tripodal ligand, featuring N-thenylsalicylamide arms, were synthesized and characterized by elemental analysis, IR and TGA measurements. Photophysical properties of the complexes were studied by means of UV - visible absorption and steady-state luminescence spectroscopy. The results of UV - vis spectra indicate that metal binding does not disturb the electronic structure of the ligand. Excited-state luminescence lifetimes and quantum yields of the complexes were determined. The photoluminescence analysis suggested that there is an efficient ligand - Ln(III) energy transfer for the Tb(III) complex, and the ligand is an efficient 'antenna' for Tb(III). From a more general perspective, the results demonstrated the potential application of the lanthanide complex as luminescent materials in material chemistry. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Photon Luminescence of the Moon

    Science.gov (United States)

    Wilson, T.L.; Lee, K.T.

    2009-01-01

    Luminescence is typically described as light emitted by objects at low temperatures, induced by chemical reactions, electrical energy, atomic interactions, or acoustical and mechanical stress. An example is photoluminescence created when photons (electromagnetic radiation) strike a substance and are absorbed, resulting in the emission of a resonant fluorescent or phosphorescent albedo. In planetary science, there exists X-ray fluorescence induced by sunlight absorbed by a regolith a property used to measure some of the chemical composition of the Moon s surface during the Apollo program. However, there exists an equally important phenomenon in planetary science which will be designated here as photon luminescence. It is not conventional photoluminescence because the incoming radiation that strikes the planetary surface is not photons but rather cosmic rays (CRs). Nevertheless, the result is the same: the generation of a photon albedo. In particular, Galactic CRs (GCRs) and solar energetic particles (SEPs) both induce a photon albedo that radiates from the surface of the Moon. Other particle albedos are generated as well, most of which are hazardous (e.g. neutrons). The photon luminescence or albedo of the lunar surface induced by GCRs and SEPs will be derived here, demonstrating that the Moon literally glows in the dark (when there is no sunlight or Earthshine). This extends earlier work on the same subject [1-4]. A side-by-side comparison of these two albedos and related mitigation measures will also be discussed.

  5. Solid-matrix luminescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hurtubise, R.J.

    1993-01-15

    Several interactions with lumiphors adsorbed on filter paper were elucidated from experiments with moisture, modulus and heavy-atom salts. The data were interpreted using static and dynamic quenching models, heavy-atom theory, and a theory related to the modulus of paper. With cyclodextrin-salt matrices, it was shown that 10% [alpha]-cyclodextrin/NaCl was very effective for obtaining strong room-temperature fluorescence and moderate room-temperature phosphorescence from adsorbed stereoisomeric tetrols. Extensive photophysical information was obtained for the four tetrols on 10% [alpha]-cyclodextrin/NaCl. The photophysical information acquired was used to develop a method for characterizing two of the tetrols. Work with model compounds adsorbed on deuterated sodium acetate showed that C-H vibrations in the undeuterated sodium acetate were not responsible for the deactivation of the excited triplet state in the model phosphors investigated. A considerable amount of solution luminescence and solid-matrix luminescence data were compared. The most important finding was that in several cases the room-temperature solid-matrix luminescence quantum yields were greater than the solution low-temperature quantum yield values.

  6. Retro y perspectiva del (desempleo sonorense

    Directory of Open Access Journals (Sweden)

    Ernesto Peralta

    2012-01-01

    Full Text Available El artículo revisa y actualiza la evolución, estado actual y perspectiva del (desempleo sonorense. Compara su evolución con previos pronósticos y la proyecta hasta 2030 porque los buscadores de empleo viven actualmente; da un marco para políticas que lo reduzcan. La hipótesis es que si bien no suficiente, sí es nece-sario acelerar y cambiar la estructura del crecimiento económico en favor de sectores intensivos en trabajo. Este trabajo tiene cinco secciones: la primera revisa el (desempleo reciente y lo compara con su perspectiva delineada años atrás; la segunda presenta el marco teórico; en la tercera se proyectan y contrastan oferta y demanda laboral; la cuarta revisa tipos de desempleo y la inversión para reducirlo; la quinta es para conclusiones y recomendaciones.

  7. El sistema presidencial mexicano. Actualidad y perspectivas

    OpenAIRE

    Diego VALADÉS

    2011-01-01

    Este ensayo presenta un análisis del sistema presidencial mexicano desde una perspectiva constitucional. Se hace especial referencia a la concentración del poder presidencial y a las relaciones entre el Congreso y el gobierno. Asimismo, se incluyen consideraciones comparativas entre los sistemas presidenciales estadounidense y mexicano. El concepto vertical del poder en México no ha sido modificado de manera significativa desde su versión original de 1917, por lo que se hacen ostensibles las ...

  8. Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF{sub 4} nanoparticles with upconversion luminescence for possible applications in security

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Jin; Nyk, Marcin; Prasad, Paras N [Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States)], E-mail: pnprasad@buffalo.edu

    2009-05-06

    We report a method for fabricating predefined photopatterns of upconversion nanophosphors using a chemical amplification reaction for direct writing of films with multilayer color-coded patterning for security applications. To photopattern the nanocrystal film we have synthesized rare-earth ion (Er{sup 3+}/Yb{sup 3+} or Tm{sup 3+}/Yb{sup 3+}) co-doped sodium yttrium fluoride ({alpha}-NaYF{sub 4}) nanophosphors and functionalized the nanocrystal surfaces by incorporation of a photopatternable ligand such as t-butoxycarbonyl (t-BOC). The surface modification allows photopatterning of the nanophosphor solid state film. Furthermore, upconversion nanophosphors show a nearly quadratic dependence of the upconversion photoluminescence (PL) intensity on the excitation light power, and tailoring of the PL wavelength is possible by changing the lanthanide ions. We have demonstrated the capability of anchoring nanophosphors at desirable locations by a photolithography technique. The photopatterned films exhibit fixed nanophosphor structures clearly identifiable by strong upconversion photoluminescence under IR illumination which is useful for a number of applications in security.

  9. Croissance, structuration et analyse de films synthétisés par PLD couplant des ions terres rares luminescents et des nanostuctures métalliques (Al, Ag) en vue d’application à la conversion spectrale UV-Visible

    OpenAIRE

    Abdellaoui, Nora

    2015-01-01

    Rare earth luminescent thin film offers attractive properties for down shifting application, particularly for a better adaptation of the solar spectrum to silicon solar cells. In this thesis, we studied two phosphor materials : Y2O3 doped Eu3+ and CaYAlO4 codoped Ce3+, Pr3+. One issue identified for the use of these phosphors as thin films is their low absorption coefficient. We examined two tracks during this thesis to meet these needs : (i) the plasmonic effect was studied by making films w...

  10. Aplicación del modelo de sthepen toulmin a la evolución conceptual del sistema circulatorio: perspectivas didácticas Application of the Stephen Toulmin's model to the circulatory system's conceptual evolution: didactical perspectives

    Directory of Open Access Journals (Sweden)

    Manuel Uribe

    2010-01-01

    Full Text Available En este artículo, se presenta una breve sistematización acerca de la evolución del concepto de sangre que considera el período histórico que transcurre entre las concepciones de los egipcios hasta el siglo XVII, cuando Harvey consolida un ''modelo científico'' de Circulación Sanguínea en el organismo humano. A continuación, aplicamos el modelo de Toulmin para analizar la evolución de los conceptos de movilidad sanguínea, septum y frecuencia cardiaca desde una perspectiva realista pragmática. Finalmente planteamos algunas ideas orientadoras que podrían servir de guía para la enseñanza de este concepto considerando los aspectos históricos que analizamos a través del consolidado de las ideas expuestas.In this article is presented a brief systematization about the evolution of the concept of blood circulation that considers the historical period between the conceptions of the Egyptians until century XVII, when Harvey consolidates a ''scientific model of Sanguineous Circulation'' in the human organism. Next, we applied the model of Toulmin to analyze blood flow, valves and cardiac frequency evolution concepts from pragmatic to a realistic perspective. Finally we raised some ideas that could serve as a guide for the education of this concept considering the historical aspects that we had analyzed.

  11. High-Efficient Excitation-Independent Blue Luminescent Carbon Dots

    Science.gov (United States)

    Liu, Hongzhen; Zhao, Xin; Wang, Fei; Wang, Yunpeng; Guo, Liang; Mei, Jingjing; Tian, Cancan; Yang, Xiaotian; Zhao, Dongxu

    2017-06-01

    Blue luminescent carbon dots (CDs) were synthesized by the hydrothermal method. Blue-shifts of the maximum emission wavelength from 480 to 443 nm were observed when the concentration of CD solution decreased. The photoluminescence (PL) spectra of CDs at low concentration showed an excitation-independent behaviour, which is very different from the previous reports. Two different emitting mechanisms might work: the intrinsic luminescence from sp2-carbon networks can be responsible for the shorter wavelength part of emission (excitation-independent) at low concentration and the high polarity of nanosized clusters led to the excitation-dependent behaviour of the longer wavelength part at high concentration of CD solution. The photophysical property and concentration-dependent behaviour of the CDs offered new insights into CDs from the viewpoints of both experiments and mechanisms, which will promote diverse potential applications of CDs in the near future.

  12. Luminescence of thermally altered human skeletal remains

    NARCIS (Netherlands)

    Krap, Tristan; Nota, Kevin; Wilk, Leah; van de Goot, Frank; Ruijter, Jan; Duijst, Wilma; Oostra, Roelof Jan

    2017-01-01

    Literature on luminescent properties of thermally altered human remains is scarce and contradictory. Therefore, the luminescence of heated bone was systemically reinvestigated. A heating experiment was conducted on fresh human bone, in two different media, and cremated human remains were recovered

  13. Violet stimulated luminescence: geo- or thermochronometer?

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Guralnik, Benny; Porat, N.

    2015-01-01

    The method of quartz optically stimulated luminescence (OSL) dating is widely used, but generally limited to the past ~0.1 million years (Ma) due to early saturation of the desired signal. Violet stimulated luminescence (VSL) of quartz has previously been shown as a promising alternative...

  14. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  15. Spectral Characterization of a Novel Luminescent Organogel

    Science.gov (United States)

    Waguespack, Yan; White, Shawn R.

    2007-01-01

    The spectroscopic-based luminescence experiments were designed to expose the students to various concepts of single-triplet excited states, electron spin, vibrational relaxation, fluorescence-phosphorescence lifetimes and quenching. The students were able to learn about luminescence spectra of the gel and have the experience of synthesizing a…

  16. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  17. Violet stimulated luminescence: geo- or thermochronometer?

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Guralnik, Benny; Porat, N.;

    2015-01-01

    The method of quartz optically stimulated luminescence (OSL) dating is widely used, but generally limited to the past ~0.1 million years (Ma) due to early saturation of the desired signal. Violet stimulated luminescence (VSL) of quartz has previously been shown as a promising alternative...

  18. Time-resolved luminescence from quartz

    NARCIS (Netherlands)

    Chithambo, M.L.; Ankjærgaard, C.; Pagonis, V.

    2016-01-01

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al2O3:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separ

  19. Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)-Thiolate Shell.

    Science.gov (United States)

    Pyo, Kyunglim; Thanthirige, Viraj Dhanushka; Kwak, Kyuju; Pandurangan, Prabhu; Ramakrishna, Guda; Lee, Dongil

    2015-07-01

    Luminescent nanomaterials have captured the imagination of scientists for a long time and offer great promise for applications in organic/inorganic light-emitting displays, optoelectronics, optical sensors, biomedical imaging, and diagnostics. Atomically precise gold clusters with well-defined core-shell structures present bright prospects to achieve high photoluminescence efficiencies. In this study, gold clusters with a luminescence quantum yield greater than 60% were synthesized based on the Au22(SG)18 cluster, where SG is glutathione, by rigidifying its gold shell with tetraoctylammonium (TOA) cations. Time-resolved and temperature-dependent optical measurements on Au22(SG)18 have shown the presence of high quantum yield visible luminescence below freezing, indicating that shell rigidity enhances the luminescence quantum efficiency. To achieve high rigidity of the gold shell, Au22(SG)18 was bound to bulky TOA that resulted in greater than 60% quantum yield luminescence at room temperature. Optical measurements have confirmed that the rigidity of gold shell was responsible for the luminescence enhancement. This work presents an effective strategy to enhance the photoluminescence efficiencies of gold clusters by rigidifying the Au(I)-thiolate shell.

  20. Luminescence behavior of Li2 Sr1-3x/2 Eux SiO4 red phosphors for LED applications.

    Science.gov (United States)

    Sun, Xin-Yuan; Lin, Liang-Wu; Liu, Guang-Yao; Liu, Xin-Gen; Wu, Ai-Jin; Huang, Shi-Ming

    2014-03-01

    Red-emitting Li(2)Sr(1-3x/2)Eux SiO4 0 ≤ x ≤ 0.5) phosphors were synthesized at 900 °C in air by a solid-state reaction. The synthesized phosphors were characterized by X-ray powder diffraction, photoluminescence (PL) excitation (PLE) and PL spectra. The results from the PLE spectra suggest that the strong 394 nm excitation peak associated with the (5) L6 state of Eu(3+) ions is of significance for near ultraviolet pumped white light-emitting diodes and solid-state lighting. It is also noted that the position of the charge transfer state of Eu(3+) ions shifts towards the higher energy side (blue shift) by increasing the content of Eu(3+) ions. The predominant emissions of Eu(3+) ions under 394 nm excitation are observed at 580, 593, 614, 656 and 708 nm, which are attributed to the (5) D0 → (7)FJ (J = 0, 1, 2, 3 and 4), respectively. The PL results reveal that the optimal content of the red-emitting Li2 Sr(1-3x/2)Eux SiO4 phosphors is x = 0.475. Simulation of the white light excited by 394 nm near ultraviolet light has also been carried out for its potential white light-emitting diode applications.

  1. Method for simultaneous luminescence sensing of two species using optical probes of different decay time, and its application to an enzymatic reaction at varying temperature.

    Science.gov (United States)

    Nagl, Stefan; Stich, Matthias I J; Schäferling, Michael; Wolfbeis, Otto S

    2009-02-01

    Chemical sensing, imaging and microscopy based on the use of fluorescent probes has so far been limited almost exclusively to the detection of a single parameter at a time. We present a scheme that can overcome this limitation by enabling optical sensing of two parameter simultaneously and even at identical excitation and emission wavelengths of two probes provided (a) their decay times are different enough to enable two time windows to be recorded, and (b) the emission of the shorter-lived probe decays to below the detectable limit while that of the other still can be measured. We refer to this new scheme as the dual lifetime determination (DLD) method and show that it can be widely varied by appropriate choice of probes and experimental settings. DLD is demonstrated to work by sensing oxygen and temperature independently from each other by making use of two probes, one for oxygen (a platinum porphyrin dissolved in polystyrene), and one for temperature [a europium complex dissolved in poly(vinyl methylketone)]. DLD was applied to monitor the consumption of oxygen in the glucose oxidase-catalyzed oxidation of glucose at varying temperatures. The scheme is expected to have further applications in cellular assays and biophysical imaging.

  2. Samarium(III) as luminescent probe for copper(II)

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, José A., E-mail: jose.jimenez@unf.edu

    2015-05-15

    Lanthanide-based luminescent sensing of copper(II) is currently an active area of research given the need for determining trace amounts of the analyte in environmental and biological matrices. Moreover, the increasing interest of Cu-doped materials for a variety of applications (e.g. luminescent and plasmonic) calls for appropriate measures for the assessment of residual Cu{sup 2+} in the solid state. In this work, Sm{sup 3+} ions are investigated as luminescent probes for Cu{sup 2+} within a glass matrix as model system based on Sm{sup 3+}→Cu{sup 2+} energy transfer. The Cu{sup 2+} concentration dependence of the Sm{sup 3+} emission quenching and decay rates of the {sup 4}G{sub 5/2} excited state allow for establishing calibration curves useful for determining Cu{sup 2+}. The luminescence-based approaches are employed for estimating residual Cu{sup 2+} in a Cu{sup +}/Sm{sup 3+} co-doped glass as ‘unknown’, the results being compared with the spectrophotometric method based on Cu{sup 2+} absorption in the visible. Remarkably, the approaches appeared in good agreement. Thus, the present work demonstrates the potential of Sm{sup 3+} ions for optical sensing of copper(II), opening research avenues extending from materials to liquid phase systems with relevance to biological and environmental sciences. - Highlights: • Sm{sup 3+}→Cu{sup 2+} energy transfer investigated in glass as model matrix in context of analytical applications. • Sm{sup 3+} photoluminescence and emission decay dynamics correlated with Cu{sup 2+} concentration. • Potential of Sm{sup 3+} ions for optical sensing of Cu{sup 2+} demonstrated.

  3. Luminescence of thermally altered human skeletal remains.

    Science.gov (United States)

    Krap, Tristan; Nota, Kevin; Wilk, Leah S; van de Goot, Franklin R W; Ruijter, Jan M; Duijst, Wilma; Oostra, Roelof-Jan

    2017-07-01

    Literature on luminescent properties of thermally altered human remains is scarce and contradictory. Therefore, the luminescence of heated bone was systemically reinvestigated. A heating experiment was conducted on fresh human bone, in two different media, and cremated human remains were recovered from a modern crematory. Luminescence was excited with light sources within the range of 350 to 560 nm. The excitation light was filtered out by using different long pass filters, and the luminescence was analysed by means of a scoring method. The results show that temperature, duration and surrounding medium determine the observed emission intensity and bandwidth. It is concluded that the luminescent characteristic of bone can be useful for identifying thermally altered human remains in a difficult context as well as yield information on the perimortem and postmortem events.

  4. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    The technique of optically stimulated luminescence has important uses in the dose evaluation of irradiated feldspars. The luminescence process involves the eviction of electrons from donor traps, charge transfer through the conduction band, and recombination at acceptor sites; each...... of these processes is, in general, thermally dependent, and leads either to enhancement or quenching of the luminescence with increasing temperature. Previous studies have measured the combined thermal activation characteristics of all three processes, and show a strong dependence on stimulation energy....... In this article, an initial attempt is made to isolate only the recombination part of the luminescence cycle, and determine its thermal characteristics separately. A Variety of luminescence transitions are examined in a range of both alkali and plagioclase feldspars; three distinct emission types are identified...

  5. Gigantic directional asymmetry of luminescence in multiferroic CuB 2O 4

    Science.gov (United States)

    Toyoda, S.; Abe, N.; Arima, T.

    2016-05-01

    In multiferroic materials, luminescence intensities can be direction dependent, i.e., different between the opposite propagating directions of emitted light. However, the effect has not been thought to be used for technological applications, since only small directional asymmetry has been reported so far. Here we show that the effect is robust in multiferroic CuB2O4 . The luminescence intensity changes by about 70 % between the opposite directions of the emission, which is about 100 times larger than the previously reported values. We demonstrate that such a gigantic directional asymmetry of luminescence can be applied to the imaging of canted antiferromagnetic domains. The observation of the effect and its application to magnetic domain imaging are important for a deeper understanding of light-matter interactions as well as technological applications such as optical reading techniques for magnetic memory devices.

  6. NIR luminescence studies on Er{sup 3+}:Yb{sup 3+} co-doped sodium telluroborate glasses for lasers and optical amplifer applications

    Energy Technology Data Exchange (ETDEWEB)

    Annapoorani, K.; Marimuthu, K., E-mail: mari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural Institute - Deemed University, Gandhigram – 624 302 (India); Murthy, N. Suriya [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam–603 102 (India)

    2016-05-23

    Er{sup 3+}:Yb{sup 3+} co-doped Sodium telluroborate glasses were prepared with the chemical composition (49.5–x)B{sub 2}O{sub 3}+25TeO{sub 2}+5Li{sub 2}CO{sub 3}+10ZnO+10NaF+0.5Er{sub 2}O{sub 3}+xYb{sub 2}O{sub 3} (where x= 0.1, 0.5, 1.0 and 2.0 in mol %) following the melt quenching technique. With the addition of Yb{sup 3+} ions into Er{sup 3+} ions in the prepared glasses, the absorption cross-section values were found to increase due to the effective energy transfer from {sup 2}F{sub 5/2} level of Yb{sup 3+} ions to the {sup 4}I{sub 11/2} level of Er{sup 3+} ions. The fluorescence around 1550 nm correspond to the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was observed under 980 nm pumping. Among the present glasses, integrated intensity was found to be higher for 1.0 mol% Yb{sup 3+} ion glass. The parameters such as stimulated emission cross- section, Gain bandwidth and quantum efficiency of the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} transition was found to be higher for the NTBE1.0Y glass and the same is suggested for potential NIR lasers and optical amplifier applications.

  7. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  8. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  9. Inkjet printable luminescent Eu3+-TiO2 doped in sol gel matrix for paper tagging.

    Science.gov (United States)

    Attia, M S; Elsaadany, Soad A; Ahmed, Kawther A; El-Molla, Mohamed M; Abdel-Mottaleb, M S A

    2015-01-01

    Europium (III) with different concentrations (0.2, 0.4 and 0.8 %)-TiO(2) doped silica composite systems were sensitized by sol-gel method. Different spectroscopic and microscopic tools characterized the composites. The Europium ion incorporated into the liquid silica-titania solution acts as red light emission center in the luminescent materials. This luminescent nano composite pigment has great potential of application in preparing luminescent ink. Inkjet printer loaded with the prepared ink to show its potential usage as tagging material performed the printing test on a white paper.

  10. Native Defect Luminescence of Zinc Oxide Films and Its Potential Application as White Light Sources%氧化锌薄膜的缺陷发光和它作为白光光源的潜在应用

    Institute of Scientific and Technical Information of China (English)

    刘石; 陈永健; 崔海宁; 孙胜男; 王子涵; 王海水

    2016-01-01

    阻率,其电阻率的增加是由于 VO 的减少。另外,在200℃条件下准备的样品导电率很低,说明了 VO 的作用很大。退火氧化锌薄膜电导率下降表明,看到了主要的缺陷。%ZnO light-emitting diodes (LEDs)have an enormous potential in lighting applications.The major is-sue to be resolved is the generating and control of light emissions.This issue arises from the variation and combination in LED wavelength.We found that defect luminescence of ZnO has a varied wide range of wave-length,which suits to an application of LED for white-light generation.We have shown both experimentally and theoretically that defect emission can be used in ZnO systems.This type of defect has the advantage of not requiring extensive and costly factory systems comparing with traditional doped materials and others.We not only propose potential application of native defect luminescence of Zinc Oxide film for white LEDs-flat light sources,but also have some methods to control defect origins,a certain center position and broad range of the emission band of ZnO film in the initial stage.According to different preparing method and certain experiment conditions,variant white such as whitish and bluish-white etc.,primary and important colors-blue bands (455,458 nm),green bands (517,548 nm),red bands (613,569 nm)are obtained respectively.This proved that it is a better road to one white light LED with one kind of material-ZnO.

  11. Errancias: la perspectiva de los procesos subjetivos

    Directory of Open Access Journals (Sweden)

    David Maldavsky

    1999-04-01

    Full Text Available Desde la perspectiva de los procesos subjetivos, el nomadismo (con o sin metas conduce a prestar atención al nexo con lo diverso, a la apropiación identificatoria o el repudio de los orígenes somáticos, las cuestiones ligadas con el multilingüismo, con la transmisión intergeneracional de los traumas y de las migraciones simbólicas de elementos correspondientes a lenguajes del erotismo que arraigan en los receptores al evocar relaciones de similitud o de complementariedad.

  12. Ciudades amigables: perspectiva de las personas mayores

    OpenAIRE

    Tricio, Paca

    2014-01-01

    Llegar a ser una ciudad o comunidad amigable con las personas mayores supone un reto de futuro, que implica una gran transformación social, no sólo de espacios y servicios, sino también de perspectiva, de mentalidad. Es muy importante la implicación de las organizaciones de mayores, especialmente de ámbito local y regional, dando a conocer este proyecto en nuestro territorio, a nuestros ayuntamientos, instándoles a participar y adherirse a la Red para llevar a cabo el Proyecto de la OMS en nu...

  13. La vivienda en la perspectiva de seguridad

    OpenAIRE

    Villaveces-Niño, Marta-Juanita

    2007-01-01

    El presente trabajo busca encontrar posibles conexiones entre la vivienda y el análisis de seguridad. Los avances en la teoría de la seguridad han permitido la inclusión de nuevos aspectos señalados como posibles amenazas que ameritan ser considerados dentro de la óptica de seguridad. En esta perspectiva, el tema de seguridad humana cobra fuerza y permite un análisis multidimensional incluyendo aspectos como la seguridad económica y la seguridad ambiental. En este nuevo marco, la vivienda pue...

  14. Perspectiva. Espacios construidos y espacios representados.

    OpenAIRE

    López Vílchez, Inmaculada

    2015-01-01

    La conferencia presentará los fundamentos científicos de la perspectiva, conocida tradicionalmente como “la ciencia del arte”, con la mención de los que han sido considerados sus principales referentes en el contexto del renacimiento italiano. Desde la fundamentación práctica propuesta por Filipo Brunelleschi a la enunciación teórica de sus bases geométricas aplicadas al arte de la pintura por L.B. Alberti en el siglo XV. Se mostrará una visión panorámica de las apli...

  15. Solid-surface luminescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hurtubise, R.J.

    1991-01-01

    We have characterized several interactions that are very important in solid-matrix luminescence. With silica gel chromatoplates and filter paper, simple equations were derived for calculating the individual contributions to the percent decrease in luminescence due to either moisture or to a quenching gas. For sodium acetate as a solid matrix and p-aminobenzoate as a model compound, it was concluded that p-aminobenzoate was incorporated into the crystal structure of sodium acetate, and the triplet energy was lost be skeletal vibrations in sodium acetate. Also, with the same system is was shown that p-aminobenzoate did not undergo rotational relaxation, and thus rotational processes did not contribute to the deactivation of the triplet state. Several results were obtained from model compounds adsorbed on filter paper under different temperature and humidity conditions and with a variety of heavy atoms present. Fundamental photophysical equations were used in calculating several basic parameters that revealed information on rate processes and how the absorbed energy was distributed in an adsorbed lumiphor. The most important advancement with filter paper was the development of equations that relate phosphorescence parameters of adsorbed phosphors to the Young's modulus of filter paper. These equations are based on a fundamental theory that relates the hydrogen-bonding network of paper to the modulus of paper.

  16. Effect of concentrating and exposing the bioluminescent bacteria to the non-luminescent allo-bacterial extracellular products on their luminescence.

    Science.gov (United States)

    Ravindran, J; Geetha Priya, G; Kannapiran, E

    2011-01-01

    Bioluminescence is a biochemical process occurring in many organisms. Bacterial bioluminescence has been investigated extensively that lead to many applications of such knowledge. Quorum sensing in the bioluminescent bacteria is a chemical signal process to recognize the strength of its own population to start luminescence in harmony. There is a mechanism in these bacteria to also recognize inter-species strength. When there is a higher number of these bacteria, the possibility and frequency of cell-cell physical contact will be high. In this study, the physical proximity was artificially enhanced between cells and the effect on luminescence in the concentrated cells in the normal culture medium and in the presence of other non-bacterial cell-free supernatants was investigated. The role of such physical contact in the quorum sensing in the bioluminescence is not known. Increase in the luminescence of V. fischeri when concentrated shows that the presence of physical proximity facilitates the quorum sensing for their bioluminescence.

  17. Measurement of luminescence decays: High performance at low cost

    Science.gov (United States)

    Sulkes, Mark; Sulkes, Zoe

    2011-11-01

    The availability of inexpensive ultra bright LEDs spanning the visible and near-ultraviolet combined with the availability of inexpensive electronics equipment makes it possible to construct a high performance luminescence lifetime apparatus (˜5 ns instrumental response or better) at low cost. A central need for time domain measurement systems is the ability to obtain short (˜1 ns or less) excitation light pulses from the LEDs. It is possible to build the necessary LED driver using a simple avalanche transistor circuit. We describe first a circuit to test for small signal NPN transistors that can avalanche. We then describe a final optimized avalanche mode circuit that we developed on a prototyping board by measuring driven light pulse duration as a function of the circuit on the board and passive component values. We demonstrate that the combination of the LED pulser and a 1P28 photomultiplier tube used in decay waveform acquisition has a time response that allows for detection and lifetime determination of luminescence decays down to ˜5 ns. The time response and data quality afforded with the same components in time-correlated single photon counting are even better. For time-correlated single photon counting an even simpler NAND-gate based LED driver circuit is also applicable. We also demonstrate the possible utility of a simple frequency domain method for luminescence lifetime determinations.

  18. Resonantly Enhanced Emission from a Luminescent Nanostructured Waveguide

    Science.gov (United States)

    Inada, Yasuhisa; Hashiya, Akira; Nitta, Mitsuru; Tomita, Shogo; Tsujimoto, Akira; Suzuki, Masa-aki; Yamaki, Takeyuki; Hirasawa, Taku

    2016-01-01

    Controlling the characteristics of photon emission represents a significant challenge for both fundamental science and device technologies. Research on microcavities, photonic crystals, and plasmonic nanocavities has focused on controlling spontaneous emission by way of designing a resonant structure around the emitter to modify the local density of photonic states. In this work, we demonstrate resonantly enhanced emission using luminescent nanostructured waveguide resonance (LUNAR). Our concept is based on coupling between emitters in the luminescent waveguide and a resonant waveguide mode that interacts with a periodic nanostructure and hence outcouples via diffraction. We show that the enhancement of resonance emission can be controlled by tuning the design parameters. We also demonstrate that the enhanced emission is attributable to the accelerated spontaneous emission rate that increases the probability of photon emission in the resonant mode, accompanied by enhanced the local density of photonic states. This study demonstrates that nanostructured luminescent materials can be designed to exhibit functional and enhanced emission. We anticipate that our concept will be used to improve the performance of a variety of photonic and optical applications ranging from bio/chemical sensors to lighting, displays and projectors. PMID:27682993

  19. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  20. Resonantly Enhanced Emission from a Luminescent Nanostructured Waveguide

    Science.gov (United States)

    Inada, Yasuhisa; Hashiya, Akira; Nitta, Mitsuru; Tomita, Shogo; Tsujimoto, Akira; Suzuki, Masa-Aki; Yamaki, Takeyuki; Hirasawa, Taku

    2016-09-01

    Controlling the characteristics of photon emission represents a significant challenge for both fundamental science and device technologies. Research on microcavities, photonic crystals, and plasmonic nanocavities has focused on controlling spontaneous emission by way of designing a resonant structure around the emitter to modify the local density of photonic states. In this work, we demonstrate resonantly enhanced emission using luminescent nanostructured waveguide resonance (LUNAR). Our concept is based on coupling between emitters in the luminescent waveguide and a resonant waveguide mode that interacts with a periodic nanostructure and hence outcouples via diffraction. We show that the enhancement of resonance emission can be controlled by tuning the design parameters. We also demonstrate that the enhanced emission is attributable to the accelerated spontaneous emission rate that increases the probability of photon emission in the resonant mode, accompanied by enhanced the local density of photonic states. This study demonstrates that nanostructured luminescent materials can be designed to exhibit functional and enhanced emission. We anticipate that our concept will be used to improve the performance of a variety of photonic and optical applications ranging from bio/chemical sensors to lighting, displays and projectors.

  1. Evaluation of one-step luminescent cyanoacrylate fuming.

    Science.gov (United States)

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples.

  2. Grassy Silica Nanoribbons and Strong Blue Luminescence

    Science.gov (United States)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-09-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  3. Grassy Silica Nanoribbons and Strong Blue Luminescence

    Science.gov (United States)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-01-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications. PMID:27666663

  4. Upconversion luminescence in Yb 3+-doped yttrium aluminum garnets

    Science.gov (United States)

    Xu, Xiaodong; Zhao, Zhiwei; Song, Pingxin; Jiang, Benxue; Zhou, Guoqing; Xu, Jun; Deng, Peizhen; Bourdet, Gilbert; Christophe Chanteloup, Jean; Zou, Ji-Ping; Fulop, Annabelle

    2005-03-01

    In this paper, we present results on upconversion luminescence performed on Yb 3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb 3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb 3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%.

  5. Using luminescent materials as the active element for radiation sensors

    Science.gov (United States)

    Hollerman, William A.; Fontenot, Ross S.; Williams, Stephen; Miller, John

    2016-05-01

    Ionizing radiation poses a significant challenge for Earth-based defense applications as well as human and/or robotic space missions. Practical sensors based on luminescence will depend heavily upon research investigating the resistance of these materials to ionizing radiation and the ability to anneal or self-heal from damage caused by such radiation. In 1951, Birks and Black showed experimentally that the luminescent efficiency of anthracene bombarded by alphas varies with total fluence (N) as (I/I0) = 1/(1 + AN), where I is the luminescence yield, I0 is the initial yield, and A is a constant. The half brightness (N1/2) is defined as the fluence that reduce the emission light yield to half and is equal to is the inverse of A. Broser and Kallmann developed a similar relationship to the Birks and Black equation for inorganic phosphors irradiated using alpha particles. From 1990 to the present, we found that the Birks and Black relation describes the reduction in light emission yield for every tested luminescent material except lead phosphate glass due to proton irradiation. These results indicate that radiation produced quenching centers compete with emission for absorbed energy. The purpose of this paper is to present results from research completed in this area over the last few years. Particular emphasis will be placed on recent measurements made on new materials such as europium tetrakis dibenzoylmethide triethylammonium (EuD4TEA). Results have shown that EuD4TEA with its relatively small N1/2 might be a good candidate for use as a personal proton fluence sensor.

  6. Facile sonochemical synthesis and morphology control of CePO{sub 4} nanostructures via an oriented attachment mechanism: Application as luminescent probe for selective sensing of Pb{sup 2+} ion in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shiralizadeh Dezfuli, Amin [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-09-01

    CePO{sub 4} nanostructures with hexagonal phase were controllably synthesized using Ce(NO{sub 3}){sub 3} reaction with NH{sub 4}H{sub 2}PO{sub 4} through a sonochemical method by simply varying the reaction conditions. By adding ethanol and polyethylene glycol (PEG), coral-reef nanostructures (CRNs) were synthesized and controlling over pH caused to nanorods/nanowires. Oriented attachment (OA) is proposed as dominant mechanism on the growth of nanostructures which is in competition with Ostwald ripening (OR). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The luminescent properties of CePO{sub 4} with different morphologies have been studied. Among the nanostructures, nanoparticles with the highest intensity of fluorescent have been used as luminescent probe for selective sensing of Pb{sup 2+} ion in aqueous solution. - Highlights: • Facile sonochemical method has been used for synthesis of CePO{sub 4} nanostructures. • Coral-reef as a new morphology of nanostructures is introduced. • CePO{sub 4} NPs have been used as luminescent probe for selective sensing of Pb{sup 2+} ion.

  7. Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch.

    Science.gov (United States)

    Zhao, Meizhi; Feng, Hui; Han, Jiaonan; Ao, Hang; Qian, Zhaosheng

    2017-09-01

    Thiolate-protected copper nanoclusers (CuNCs) are emerging as a promising class of luminescent materials since its unique optical properties such as aggregation-induced emission (AIE) and intriguing molecular-like behavior have been explored for sensing application. In this work, multi-stimuli responsive property of CuNCs was first investigated in depth and further adopted to develop a reliable and sensitive ACP assay. Penicilamine-capped CuNCs from a facile one-pot synthesis possess bright red luminescence and distinctive multi-stimuli responsive behaviors. Its sensitive and reversible response in luminescence to pH and temperature is originated from its inherent AIE property, and can be constructed as luminescent nanoswitches controlled by these external stimuli for precisely monitoring the change of environmental pH or temperature. The specific redox-responsive behavior of CuNC aggregates is found from severe luminescence quenching in the presence of a small amount of ferric or silver ions, and this sensitive response in luminescence to the preceding species is proved to be due to the conversion of Cu(II) from copper atoms with lower valence inside CuNCs. The luminescence switch of CuNC aggregates controlled by specific external potentials is further utilized to design a novel detection strategy for ACP activity. The great difference in luminescence quenching of CuNCs induced by iron(III) pyrophosphate (FePPi2) complex and free ferric ions enables us to quantitatively monitor ACP level by the luminescence change as variation of ACP activity in the assay solution. This assay is able to detect ACP level as lower as 0.8 U/L, and covers a broad linear scope of 100.0 U/L. This work reports redox-responsive property of CuNCs and its underlying nature due to the oxidation of its interior copper atoms, and provides a sensitive assay method for ACP activity which is sufficiently sensitive for practical measurement in real samples. Copyright © 2017 Elsevier B.V. All

  8. Improvement of luminescence properties of GaN buffer layer for fast nitride scintillator structures

    Science.gov (United States)

    Hubáček, T.; Hospodková, A.; Oswald, J.; Kuldová, K.; Pangrác, J.

    2017-04-01

    We have optimized technology of GaN buffer layer growth with respect to the application in fast scintillation structures. The deep defect luminescence so called yellow band (YB) with decay time up to tens of microseconds is undesired for these applications and should be suppressed or at least the ratio of intensities of excitonic to YB maximum has to be considerably increased. The required photoluminescence properties were achieved by optimization of growth parameters of nucleation and coalescence layer on sapphire substrate. We have shown that decrease of NH3 flow, decrease of coalescence temperature, increase of nucleation time and nucleation pressure lead to improvement of the structure and luminescence properties of the buffer layer. Results indicate a significant increased ratio of excitonic/YB luminescence intensity.

  9. Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots

    Science.gov (United States)

    Erogbogbo, Folarin; Chang, Ching-Wen; May, Jasmine; Prasad, Paras N.; Swihart, Mark T.

    2012-07-01

    Quantum dots are known for their superior optical properties; however, when transferred into aqueous media, their luminescent properties are frequently compromised. When encapsulated in micelles for bioimaging applications, luminescent silicon quantum dots can lose as much as 50% of their luminescence depending on the formulation used. Here, we create an energy transfer micelle platform that combines silicon quantum dots with an anthracene-based dye in the hydrophobic core of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) micelles. These phospholipid micelles are water dispersible, stable, and surrounded by a PEGylated layer with modifiable functional groups. The spectroscopic properties of energy transfer between the anthracene donors and silicon quantum dot acceptors were analyzed based on the observed dependence of the steady-state emission spectrum on concentration ratio, excitation wavelength, pH, and temperature. The luminescence of silicon quantum dots from the core of a 150 nm micelle is enhanced by more than 80% when the anthracene dye is added. This work provides a simple yet readily applicable solution to the long-standing problem of luminescence enhancement of silicon quantum dots and can serve as a template for improving the quantum dot emission yield for biological applications where luminescence signal enhancements are desirable and for solar applications where energy transfer plays a critical role in device performance.Quantum dots are known for their superior optical properties; however, when transferred into aqueous media, their luminescent properties are frequently compromised. When encapsulated in micelles for bioimaging applications, luminescent silicon quantum dots can lose as much as 50% of their luminescence depending on the formulation used. Here, we create an energy transfer micelle platform that combines silicon quantum dots with an anthracene-based dye in the hydrophobic core of 1

  10. Luminescence Properties of a Fibonacci Photonic Quasicrystal

    CERN Document Server

    Passias, Vasilios; Shi, Zhou; Deych, Lev; Lisyansky, Alexander; Menon, Vinod M

    2008-01-01

    We report the realization of an active one-dimensional Fibonacci photonic quasi-crystal via spin coating. Manipulation of the luminescence properties of an organic dye embedded in the quasi-crystal is presented and compared to theoretical simulations. The luminescence occurs via the pseudo-bandedge mode and follows the dispersion properties of the Fibonacci crystal. Time resolved luminescence measurement of the active structure shows faster spontaneous emission rate, indicating the effect of the large photon densities available at the bandedge due to the presence of critically localized states. The experimental results are in excellent agreement with the theoretical calculations.

  11. Grupos vivenciais sob uma perspectiva junguiana

    Directory of Open Access Journals (Sweden)

    Laura Villares de Freitas

    2005-09-01

    Full Text Available Este artigo tece considerações quanto à possibilidade e ao alcance de grupos vivenciais, sob a perspectiva da Psicologia Analítica de Carl G. Jung, em nosso contexto socio-econômico atual. Há uma proposta prática de grupos de construção de máscaras e personagens, e a apresentação e comentários das contribuições de diferentes autores que trazem conceitos junguianos clássicos para a dimensão grupal, consideram de maneira criativa o ritual, do ponto de vista psicológico, e questionam a viabilidade de trabalhos grupais. Numa abordagem mitológica, são considerados Górgona, Dioniso, Ártemis, Eco e Narciso, com destaque à deusa grega Héstia, cujas características são relacionadas a aspectos necessariamente presentes nos grupos vivenciais e à possibilidade de ocorrer uma experiência psicológica. Os grupos vivenciais são considerados favorecedores da perspectiva de alteridade, na medida em que cada participante tem neles a oportunidade de se afirmar e de ser confirmado, isto é, de se expressar e de refletir, num campo interacional fértil.

  12. Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging

    Science.gov (United States)

    Takai, Akira; Nakano, Masahiro; Saito, Kenta; Haruno, Remi; Watanabe, Tomonobu M.; Ohyanagi, Tatsuya; Jin, Takashi; Okada, Yasushi; Nagai, Takeharu

    2015-01-01

    Fluorescence live imaging has become an essential methodology in modern cell biology. However, fluorescence requires excitation light, which can sometimes cause potential problems, such as autofluorescence, phototoxicity, and photobleaching. Furthermore, combined with recent optogenetic tools, the light illumination can trigger their unintended activation. Because luminescence imaging does not require excitation light, it is a good candidate as an alternative imaging modality to circumvent these problems. The application of luminescence imaging, however, has been limited by the two drawbacks of existing luminescent protein probes, such as luciferases: namely, low brightness and poor color variants. Here, we report the development of bright cyan and orange luminescent proteins by extending our previous development of the bright yellowish-green luminescent protein Nano-lantern. The color change and the enhancement of brightness were both achieved by bioluminescence resonance energy transfer (BRET) from enhanced Renilla luciferase to a fluorescent protein. The brightness of these cyan and orange Nano-lanterns was ∼20 times brighter than wild-type Renilla luciferase, which allowed us to perform multicolor live imaging of intracellular submicron structures. The rapid dynamics of endosomes and peroxisomes were visualized at around 1-s temporal resolution, and the slow dynamics of focal adhesions were continuously imaged for longer than a few hours without photobleaching or photodamage. In addition, we extended the application of these multicolor Nano-lanterns to simultaneous monitoring of multiple gene expression or Ca2+ dynamics in different cellular compartments in a single cell. PMID:25831507

  13. Material and Optical Design Rules for High Performance Luminescent Solar Concentrators

    Science.gov (United States)

    Bronstein, Noah Dylan

    This dissertation will highlight a path to achieve high photovoltaic conversion efficiency in luminescent solar concentrators, devices which absorb sunlight with a luminescent dye and then re-emit it into a waveguide where it is ultimately collected by a photovoltaic cell. Luminescent concentrators have been studied for more than three decades as potential low-cost but not high efficiency photovoltaics. Astute application of the blackbody radiation law indicates that photonic design is necessary to achieve high efficiency: a reflective filter must be used to trap luminescence at all angles while allowing higher energy photons to pass through. In addition, recent advances in the synthesis of colloidal nanomaterials have created the possibility for lumophores with broad absorption spectra, narrow-bandwidth emission, high luminescence quantum yield, tunable Stokes shifts and tunable Stokes ratios. Together, these factors allow luminescent solar concentrators to achieve the optical characteristics necessary for high efficiency. We have fabricated and tested the first generation of these devices. Our experiments demonstrate that the application of carefully matched photonic mirrors and luminescent quantum dots can allow luminescent concentration factors to reach record values while maintaining high photon collection efficiency. Finally, the photonic mirror dramatically mitigates the negative impact of scattering in the waveguide, allowing efficient photon collection over distances much longer than the scattering length of the waveguide. After demonstrating the possibility for high performance, we theoretically explore the efficacy of luminescent concentrators with dielectric reflectors as the high-bandgap top-junctions in two-junction devices. Simple thermodynamic calculations indicate that this approach can be nearly as good as a traditional vertically stacked tandem. The major barriers to such a device are the optical design of narrow-bandwidth, angle

  14. Nanocrystals for luminescent solar concentrators.

    Science.gov (United States)

    Bradshaw, Liam R; Knowles, Kathryn E; McDowall, Stephen; Gamelin, Daniel R

    2015-02-11

    Luminescent solar concentrators (LSCs) harvest sunlight over large areas and concentrate this energy onto photovoltaics or for other uses by transporting photons through macroscopic waveguides. Although attractive for lowering solar energy costs, LSCs remain severely limited by luminophore reabsorption losses. Here, we report a quantitative comparison of four types of nanocrystal (NC) phosphors recently proposed to minimize reabsorption in large-scale LSCs: two nanocrystal heterostructures and two doped nanocrystals. Experimental and numerical analyses both show that even the small core absorption of the leading NC heterostructures causes major reabsorption losses at relatively short transport lengths. Doped NCs outperform the heterostructures substantially in this critical property. A new LSC phosphor is introduced, nanocrystalline Cd(1-x)Cu(x)Se, that outperforms all other leading NCs by a significant margin in both small- and large-scale LSCs under full-spectrum conditions.

  15. Piezoelectrically-induced stress-luminescence phenomenon in CaAl{sub 2}O{sub 4}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: wuzheng@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2015-10-15

    Piezoelectrically-induced stress-luminescence in the CaAl{sub 2}O{sub 4}:Eu{sup 2+} was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl{sub 2}O{sub 4}:Eu{sup 2+} arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl{sub 2}O{sub 4}:Eu{sup 2+} ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl{sub 2}O{sub 4}:Eu{sup 2+} was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors.

  16. Luminescent Lariat Aza-Crown Ether

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2010-03-01

    Full Text Available Lariat ethers are interesting recognition motifs in supramolecular chemistry. The synthesis of a luminescent lariat ether with triglycol chain by azide–alkyne (Huisgen cycloaddition is presented.

  17. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  18. Orbital surveys of solar stimulated luminescence

    Science.gov (United States)

    Hemphill, W. R.; Theisen, A. F.; Tyson, R. M.; Granata, J. S.

    The Fraunhofer line discriminator (FLD) is an electro-optical device for imaging natural and manmade materials which have been stimulated to luminesce by the sun. An airborne FLD has been used to detect geochemically stressed vegetation, drought-stressed agricultural crops, industrial and residential pollution effluents, marine oil seeps, phosphate rock, uranium-bearing sandstone, and bioluminescent ocean plankton. Three-dimensional perspective plots of excitation and emission spectra, measured with a laboratory spectrometer, graphically depict similarities and differences in luminescence properties between sample materials. The laboratory data also include luminescence intensities at six Fraunhofer lines in the visible and near-infrared regions of the electromagnetic spectrum. Both the airborne and laboratory data suggest the feasibility of delineating and monitoring at least some of these luminescing materials from orbital altitude, such as a test flight aboard the Space Shuttle using an improved third-generation FLD.

  19. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  20. Recent advancements in chemical luminescence-based lab-on-chip and microfluidic platforms for bioanalysis.

    Science.gov (United States)

    Mirasoli, Mara; Guardigli, Massimo; Michelini, Elisa; Roda, Aldo

    2014-01-01

    Miniaturization of analytical procedures through microchips, lab-on-a-chip or micro total analysis systems is one of the most recent trends in chemical and biological analysis. These systems are designed to perform all the steps in an analytical procedure, with the advantages of low sample and reagent consumption, fast analysis, reduced costs, possibility of extra-laboratory application. A range of detection technologies have been employed in miniaturized analytical systems, but most applications relied on fluorescence and electrochemical detection. Chemical luminescence (which includes chemiluminescence, bioluminescence, and electrogenerated chemiluminescence) represents an alternative detection principle that offered comparable (or better) analytical performance and easier implementation in miniaturized analytical devices. Nevertheless, chemical luminescence-based ones represents only a small fraction of the microfluidic devices reported in the literature, and until now no review has been focused on these devices. Here we review the most relevant applications (since 2009) of miniaturized analytical devices based on chemical luminescence detection. After a brief overview of the main chemical luminescence systems and of the recent technological advancements regarding their implementation in miniaturized analytical devices, analytical applications are reviewed according to the nature of the device (microfluidic chips, microchip electrophoresis, lateral flow- and paper-based devices) and the type of application (micro-flow injection assays, enzyme assays, immunoassays, gene probe hybridization assays, cell assays, whole-cell biosensors). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Luminescent Solar Concentrators in the Algal Industry

    Science.gov (United States)

    Hellier, Katie; Corrado, Carley; Carter, Sue; Detweiler, Angela; Bebout, Leslie

    2013-03-01

    Today's industry for renewable energy sources and highly efficient energy management systems is rapidly increasing. Development of increased efficiency Luminescent Solar Concentrators (LSCs) has brought about new applications for commercial interests, including greenhouses for agricultural crops. This project is taking first steps to explore the potential of LSCs to enhance production and reduce costs for algae and cyanobacteria used in biofuels and nutraceuticals. This pilot phase uses LSC filtered light for algal growth trials in greenhouses and laboratory experiments, creating specific wavelength combinations to determine effects of discrete solar light regimes on algal growth and the reduction of heating and water loss in the system. Enhancing the optimal spectra for specific algae will not only increase production, but has the potential to lessen contamination of large scale production due to competition from other algae and bacteria. Providing LSC filtered light will reduce evaporation and heating in regions with limited water supply, while the increased energy output from photovoltaic cells will reduce costs of heating and mixing cultures, thus creating a more efficient and cost effective production system.

  2. Aplicação do QFD no desenvolvimento de produtos: levantamento sobre seu uso e perspectivas para pesquisas futuras QFD application in product development: survey of its use and perspesctives for future research

    Directory of Open Access Journals (Sweden)

    José Antonio Carnevalli

    2004-04-01

    Full Text Available O objetivo deste trabalho é avaliar a extensão do uso do QFD no Brasil, investigando, principalmente, as maiores empresas privadas por faturamento, de forma a identificar os benefícios e dificuldades para implementar o método, bem como organizações que já têm experiência com sua aplicação. Para atingir esse objetivo, um levantamento exploratório tipo survey foi realizado em uma amostra não aleatória, utilizando como instrumento para coleta dos dados um questionário enviado via correio. A taxa de retorno foi de aproximadamente 21%, e os resultados indicaram que pouco mais de 18% das empresas utilizam o método. Essas empresas iniciaram a aplicação do QFD durante os anos 90, indicando que a utilização do QFD é relativamente recente no País. Em relação às dificuldades para implementar o QFD, o maior problema foi relacionado à falta de experiência em sua utilização. Quanto aos benefícios decorrentes do QFD, os mais importantes foram o aumento da satisfação dos clientes e a melhoria do trabalho em equipe e comunicação entre áreas funcionais. Adicionalmente, a survey identificou cinco empresas com experiência em QFD, que podem ser consideradas referências no uso do método no País. Finalmente, o trabalho apresenta algumas perspectivas para pesquisas futuras.The objective of this work is to evaluate the extension of the use of QFD in Brazil, studying mainly the largest private companies, in order to identify the benefits and difficulties to implement this method as well as companies which already have experience in its use. To achieve this aim, an exploratory survey was carried out, with a non-random sample, using as technique a questionnaire sent by surface mail. The return rate was about 21% and the results showed that a bit more than 18% use the method. Companies started to make use of QFD during the 90s, showing that the use of QFD in Brazil is still relatively recent. Concerning the difficulties to implement

  3. Luminescence dating of ancient Darhad basin, Mongolia

    Science.gov (United States)

    Cheul Kim, Jin; Yi, Sangheon; Lim, Jaesoo; Kim, Ju-Yong

    2016-04-01

    . Thus, age control on existing 14C ages from this site is limited, chronological interpretation based on the 14C ages is still incomplete in Hodon outcrop sediments. OSL (Optically Stimulated Luminescence) is an alternative method for dating to overcome the problems associated with 14C methods. OSL has been extensively used for dating arctic sediments (Thomas et al., 2006; more). Previous optical ages on Darhad paleolake sediments obtained using IRSL (Infrared-stimulated luminescence) on feldspars (Gillespie et al., 2008; Batbaatar et al., 2009). Feldspar has much brighter luminescence than quartz, while the OSL signal of feldspars bleaches at least one order of magnitude slower than the OSL signal of quartz (Godfrey-Smith et al., 1988; Huntly and Lamothe, 2001; Mauz and Bungenstock, 2007; Kim et al., 2012). In glaciofluvial, glaciolacustrine environments, inadequate bleaching of the OSL signal is known to be a potential problem of burial ages (Thomas et al., 2006). OSL dating of permafrost deposits may also involve uncertainty about the inhomogeneous radiation field surrounding the dosimeter and the absorption of ionizing energy alternately by water and ice in a not-constant pore volume (Haeberli et al., 2003). In this study, we test the applicability of quartz OSL dating for the uppermost paleolake sediments in the Hodon outcrop of the Darhad basin. The OSL results were systematically compared with additional radiocarbon ages from wood fragments to conclude the reliability of the OSL dates and to construct intensive chronology for Late-Pleistocene Darhad paleolake. To evaluate the time of recent expansion of the paleolake, the northern piedmont (Talyn outcrop) of the basin was dated by OSL.

  4. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators.

    Science.gov (United States)

    Banal, James L; Zhang, Bolong; Jones, David J; Ghiggino, Kenneth P; Wong, Wallace W H

    2017-01-17

    Luminescent solar concentrators (LSCs) are light harvesting devices that are ideally suited to light collection in the urban environment where direct sunlight is often not available. LSCs consist of highly luminescent compounds embedded or coated on a transparent substrate that absorb diffuse or direct solar radiation over a large area. The resulting luminescence is trapped in the waveguide by total internal reflection to the thin edges of the substrate where the concentrated light can be used to improve the performance of photovoltaic devices. The concept of LSCs has been around for several decades, and yet the efficiencies of current devices are still below expectations for commercial viability. There are two primary challenges when designing new chromophores for LSC applications. Reabsorption of dye emission by chromophores within the waveguide is a significant loss mechanism attenuating the light output of LSCs. Concentration quenching, particularly in organic dye systems, restricts the quantity of chromophores that can be incorporated in the waveguide thus limiting the light absorbed by the LSC. Frequently, a compromise between increased light harvesting of the incident light and decreasing emission quantum yield is required for most organic chromophore-based systems due to concentration quenching. The low Stokes shift of common organic dyes used in current LSCs also imposes another optimization problem. Increasing light absorption of LSCs based on organic dyes to achieve efficient light harvesting also enhances reabsorption. Ideally, a design strategy to simultaneously optimize light harvesting, concentration quenching, and reabsorption of LSC chromophores is clearly needed to address the significant losses in LSCs. Over the past few years, research in our group has targeted novel dye structures that address these primary challenges. There is a common perception that dye aggregates are to be avoided in LSCs. It became apparent in our studies that aggregates

  5. El origen del neoliberalismo: tres perspectivas

    Directory of Open Access Journals (Sweden)

    Hugo Arturo Cardoso Vargas

    2006-01-01

    Full Text Available En el texto se aborda la problemática del origen del neoliberalismo, una de las dimensiones esenciales de la compleja realidad mundial actual; no se olvida que el neoliberalismo es sólo una de las caras del ataque al Estado nacional. A partir de tres autores: Spencer, Rueff y Hayek se explica el origen del neoliberalismo; aunque parecería que sólo Hayek es el promotor del neoliberalismo, las explicaciones de Spencer y Rueff evidencian la toma de conciencia de un nuevo rumbo en la construcción de una nueva sociedad sustentada en la economía. Estos autores propone, desde sus propias perspectivas deteriorar el papel de Estado Nacional. Esto no implica olvidar que lo que se ha globalizado es el neoliberalismo. De este modo parece necesario abordar, desde su origen, el fenómeno que no alcanza a describir la realidad actual.

  6. GESTIÓN HUMANA: TENDENCIAS Y PERSPECTIVAS

    Directory of Open Access Journals (Sweden)

    JUAN GUILLERMO SALDARRIAGA RÍOS

    2008-01-01

    Full Text Available En este artículo se hace referencia a las tendencias y las perspectivas de gestión humana que se imponen en el mundo en la actualidad y que, a su manera, pretenden optimizar la administración del personal de la organización y contribuir al desarrollo e incremento de la productividad y la competitividad. Mediante la realización de un Estado del Arte se logran determinar algunas de las tendencias más relevantes en la actualidad y se concluye que, cada vez con mayor fuerza, dichas tendencias se sustentan en discursos que pretenden "rescatar" al ser humano dentro de la organización, lo que no necesariamente se traduce en los procesos de gestión humana que se realizan en las organizaciones nacionales e internacionales.

  7. SOME PROGRESS IN NANOSTRUCTURED LUMINESCENT MATERIALS%纳米发光材料研究的若干进展

    Institute of Scientific and Technical Information of China (English)

    周永慧; 林君; 张洪杰

    2001-01-01

    本文综述了纳米发光材料的研究进展情况,着重总结了(稀土)掺杂型纳米发光材料的制备方法和表征手段,同时介绍了这些纳米发光材料的性质和应用,并对其未来发展趋势进行了展望。%The progress in nanostructured luminescent materials has been reviewed in this paper.Emphases are laid on the synthesis and characterization methods of (rare earth) doped nanostructured luminescent materials.In the meanwhile,the properties and applications of the nanostructured luminescent materials are introduced,and the future development trends for the nanostructured luminescent materials are forecasted in brief.

  8. Perspectivas de una estrategia nacional de competitividad

    Directory of Open Access Journals (Sweden)

    Roberto Gutiérrez

    1997-06-01

    Full Text Available En los años cincuentas surgió una amplia perspectiva teórica llamada la teoría de la modernización, la cual ha tenido una gran difusión en las ciencias sociales desde entonces. La "modernización" era el camino hacia el desarrollo de un país. La pretendida modernidad incluía una economía liberalizada, un sistema político democrático y una cultura universal. Hoy, la receta para lograr el desarrollo consiste en ser competitivos en los mercados mundiales. Las promesas de la modernización y la competitividad no se han convertido ni se convertirán en realidad. En el presente ensayo hay un examen del devenir histórico de las teorías de la modernización y de las ideas sobre competitividad para resaltar sus similitudes, sus afirmaciones y aquello que está ausente en ambas, y analizar el resultado de sus promesas en relación con el desarrollo nacional. No conocer la historia del descrédito de las teorías sobre la modernización es condenarse a repetirla; mínimo, a reciclarla con unas ideas que son variaciones alrededor del mismo tema. Un análisis de los supuestos, postulados y prescripciones compartidos por las perspectivas que tratan sobre la modernización y la competitividad de nuestras sociedades permite apreciar el alcance de la actual estrategia nacional de competitividad en un país como Colombia.

  9. Towards dating Quaternary sediments using the quartz Violet Stimulated Luminescence (VSL) signal

    DEFF Research Database (Denmark)

    Ankjærgaard, C.; Jain, Mayank; Wallinga, J.

    2013-01-01

    Quartz optically stimulated luminescence (OSL) dating is widely used to determine the time of deposition and burial of Late Quaternary sediments. Application of the method is usually limited to the past 150,000 years due to early saturation of the OSL signal. Here we explore the potential to date...... Quaternary sediments using the violet (402 nm) stimulated luminescence (VSL) signal of quartz.We develop and test a new post-blue VSL single aliquot regenerative dose dating protocol, and demonstrate that the VSL signal originates from a deep trap at about 1.9 eV with a thermal lifetime of 1011 years at 10...

  10. Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks

    Science.gov (United States)

    Yue, Dan; Zhang, Jun; Zhao, Dian; Lian, Xiusheng; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2016-09-01

    A near infrared luminescent MOFs thermometer (Nd0.676Yb0.324BTC) was prepared via a simple solvothermal method using Ln3+ (Ln=Nd, Yb) ions and 1, 3, 5-benznenetricarboxylic acid (H3BTC), and characterized by PXRD, TGA, ICP, and photoluminescence (PL) spectrum. These results indicate that the Nd0.676Yb0.324BTC displays high relative sensitivity and excellent repeatability in the physiological temperature range (288-323 K), and the maximum relative sensitivity is determined to be 1.187% K-1 at 323 K. These NIR luminescent MOFs may have potential applications in physiological temperature sensing.

  11. Surface-acoustic-wave-driven luminescence from a lateral p-n junction

    Science.gov (United States)

    Gell, J. R.; Atkinson, P.; Bremner, S. P.; Sfigakis, F.; Kataoka, M.; Anderson, D.; Jones, G. A. C.; Barnes, C. H. W.; Ritchie, D. A.; Ward, M. B.; Norman, C. E.; Shields, A. J.

    2006-12-01

    The authors report surface-acoustic-wave-driven luminescence from a lateral p-n junction formed by molecular beam epitaxy regrowth of a modulation doped GaAs /AlGaAs quantum well on a patterned GaAs substrate. Surface-acoustic-wave-driven transport is demonstrated by peaks in the electrical current and light emission from the GaAs quantum well at the resonant frequency of the transducer. This type of junction offers high carrier mobility and scalability. The demonstration of surface-acoustic-wave luminescence is a significant step towards single-photon applications in quantum computation and quantum cryptography.

  12. Variables and potential models for the bleaching of luminescence signals in fluvial environments

    Science.gov (United States)

    Gray, Harrison J.; Mahan, Shannon

    2015-01-01

    Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.

  13. An activatable, polarity dependent, dual-luminescent imaging agent with a long luminescence lifetime.

    Science.gov (United States)

    Rood, Marcus T M; Oikonomou, Maria; Buckle, Tessa; Raspe, Marcel; Urano, Yasuteru; Jalink, Kees; Velders, Aldrik H; van Leeuwen, Fijs W B

    2014-09-04

    In this proof-of-concept study, a new activatable imaging agent based on two luminophores and two different quenching mechanisms is reported. Both partial and total activation of the luminescence signal can be achieved, either in solution or in vitro. Bond cleavage makes the compound suitable for luminescence lifetime imaging.

  14. A thermo-responsive supramolecular organogel: dual luminescence properties and luminescence conversion induced by Cd(2+).

    Science.gov (United States)

    Ma, Xinxian; Zhang, Jinjin; Tang, Ning; Wu, Jincai

    2014-12-14

    A simple dual luminescent acylhydrazone-functionalized benzimidazole derivative (L) was blended with ethylene glycol affording a thermo-responsive green-light-emitting supramolecular gel (G-gel). This G-gel can convert to a blue-light-emitting gel (B-gel) by strongly increasing the luminescence of the benzimidazole moiety upon addition of one equivalent of Cd(2+).

  15. Detection of luminescent single ultrasmall silicon nanoparticles using fluctuation correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akcakir, O. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Therrien, J. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Belomoin, G. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Barry, N. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Muller, J. D. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Gratton, E. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Nayfeh, M. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2000-04-03

    We dispersed electrochemical etched Si into a colloid of ultrasmall blue luminescent nanoparticles, observable with the naked eye, in room light. We use two-photon near-infrared femtosecond excitation at 780 nm to record the fluctuating time series of the luminescence, and determine the number density, brightness, and size of diffusing fluorescent particles. The luminescence efficiency of particles is high enough such that we are able to detect a single particle, in a focal volume, of 1 pcm3. The measurements yield a particle size of 1 nm, consistent with direct imaging by transmission electron microscopy. They also yield an excitation efficiency under two-photon excitation two to threefold larger than that of fluorescein. Detection of single particles paves the way for their use as labels in biosensing applications. (c) 2000 American Institute of Physics.

  16. Evaluation of a reconfigurable portable instrument for copper determination based on luminescent carbon dots.

    Science.gov (United States)

    Salinas-Castillo, Alfonso; Morales, Diego P; Lapresta-Fernández, Alejandro; Ariza-Avidad, María; Castillo, Encarnación; Martínez-Olmos, Antonio; Palma, Alberto J; Capitan-Vallvey, Luis Fermin

    2016-04-01

    A portable reconfigurable platform for copper (Cu(II)) determination based on luminescent carbon dot (Cdots) quenching is described. The electronic setup consists of a light-emitting diode (LED) as the carbon dot optical exciter and a photodiode as a light-to-current converter integrated in the same instrument. Moreover, the overall analog conditioning is simply performed with one integrated solution, a field-programmable analog array (FPAA), which makes it possible to reconfigure the filter and gain stages in real time. This feature provides adaptability to use the platform as an analytical probe for carbon dots coming from different batches with some variations in luminescence characteristics. The calibration functions obtained that fit a modified Stern-Volmer equation were obtained using luminescence signals from Cdots quenching by Cu(II). The analytical applicability of the reconfigurable portable instrument for Cu(II) using Cdots has been successfully demonstrated in tap water analysis.

  17. Luminescence, radiative recombination, and current voltage characteristics in sensitized TiO2 solar cells

    Science.gov (United States)

    Smestad, Greg P.

    1992-12-01

    A connection is made between the luminescence or radiative recombination in an absorber material and the current voltage characteristics of a quantum converter of light. A relationship between luminescence and voltage is derived, using detailed balance and the chemical potential of the excitation, which is similar to that obtained using the techniques of Shockley and Queisser or R. T. Ross. This model relates the absorptivity and photoluminescence efficiency of the light absorber to the I V curve. In this way both thermodynamic properties, or voltage, and the kinetics, or charge transfer and current, can be combined in order to optimize materials and configurations. The model is applied to dye sensitized Ti02 solar cells, and compared with preliminary experimental data for Ru based charge transfer dyes and inorganic compounds. The luminescence model is found to be applicable to dye sensitized converters, as well as to standard silicon solar cells, light detectors, and LEDs.

  18. General synthesis route to fabricate uniform upconversion luminescent gadolinium oxide hollow spheres.

    Science.gov (United States)

    Jia, Guang; Zhang, Cuimiao; Ding, Shiwen; Wang, Liyong

    2011-08-01

    Uniform upconversion luminescent gadolinium oxide hollow spheres were successfully synthesized via a homogeneous precipitation method with carbon spheres as template followed by a calcination process. During the annealing process, the carbon spheres template can be effectively removed and the amorphous precursor has converted to crystalline Gd2O3, which can be confirmed by the XRD and TG-DSC analysis. SEM and TEM images indicate that the Gd2O3 hollow spheres with diameters of 300-400 nm are uniform in size and distribution. The rare earth activator ions Ln3+-doped Gd2O3 hollow spheres exhibit intense upconversion luminescence with different colors under 980 nm light excitation, which may find potential applications in the fields such as drug delivery or biological labeling. Moreover, the upconversion luminescent mechanisms of the hollow spherical phosphors were investigated in detail.

  19. Tuning luminescence and reducing reabsorption of CdSe quantum disks forluminescent solar concentrators.

    Science.gov (United States)

    Lin, Huichuan; Xie, Peng; Liu, Yong; Zhou, Xiang; Li, Baojun

    2015-08-21

    Cadmium selenide (CdSe) quantum disks (QDs) have been synthesized for application in luminescent solar concentrators (LSCs). Luminescence tuning and reabsorption reduction of the QDs were achieved by controlling their size using a hot injection method. The overlap of the absorption and photoluminescence spectra of the as-prepared CdSe QDs was negligible. The as-prepared CdSe QDs were incorporated into polymethylmethacrylate without aggregation and luminescence quenching. The obtained highly transparent composites with non-affecting light-emitting properties were used as LSCs. The placement of a CdSe QDs doped LSC prototype (10 × 1 × 0.1 cm) on a Si-cell resulted in a 201% increase in the electrical power output of the Si-cell compared with that of the bare Si-cell.

  20. Photophysical properties of luminescent silicon nanoparticles surface-modified with organic molecules via hydrosilylation.

    Science.gov (United States)

    Miyano, Mari; Kitagawa, Yuichi; Wada, Satoshi; Kawashima, Akira; Nakajima, Ayako; Nakanishi, Takayuki; Ishioka, Junya; Shibayama, Tamaki; Watanabe, Seiichi; Hasegawa, Yasuchika

    2016-01-01

    Luminescent silicon nanoparticles have attracted considerable attention for their potential uses in various applications. Many approaches have been reported to protect the surface of silicon nanoparticles and prevent their easy oxidation. Various air-stable luminescent silicon nanoparticles have been successfully prepared. However, the effect of interactions of the π-electron system with the silicon surface on the excited state properties of silicon nanoparticles is unclear. In this study, we have successfully prepared silicon nanoparticles protected with three organic compounds (styrene, 1-decene, and 1-vinyl naphthalene) and have examined their photophysical properties. The ligand π-electron systems on the silicon surface promoted the light harvesting ability for the luminescence through a charge transfer transition between the protective molecules and silicon nanoparticles and also enhanced the radiative rate of the silicon nanoparticles.

  1. Luminescent, freestanding composite films of Au15 for specific metal ion sensing.

    Science.gov (United States)

    George, Anu; Shibu, E S; Maliyekkal, Shihabudheen M; Bootharaju, M S; Pradeep, T

    2012-02-01

    A highly luminescent freestanding film composed of the quantum cluster, Au(15), was prepared. We studied the utility of the material for specific metal ion detection. The sensitivity of the red emission of the cluster in the composite to Cu(2+) has been used to make a freestanding metal ion sensor, similar to pH paper. The luminescence of the film was stable when exposed to several other metal ions such as Hg(2+), As(3+), and As(5+). The composite film exhibited visual sensitivity to Cu(2+) up to 1 ppm, which is below the permissible limit (1.3 ppm) in drinking water set by the U.S. environmental protection agency (EPA). The specificity of the film for Cu(2+) sensing may be due to the reduction of Cu(2+) to Cu(1+)/Cu(0) by the glutathione ligand or the Au(15) core. Extended stability of the luminescence of the film makes it useful for practical applications.

  2. Discriminação quiral por CLAE em carbamatos de polissacarídeos: desenvolvimento, aplicações e perspectivas Polysaccharide carbamate as chiral stationary phases for HPLC: development, applications and perspectives

    Directory of Open Access Journals (Sweden)

    Quezia B. Cass

    1997-02-01

    Full Text Available The importance of chromatographic separation of enantiomers has been acknowledged. This review surveys the development, application and perspectives of polysaccharide carbamates as chiral stationary phase for HPLC.

  3. El desarrollo local desde una perspectiva sociocultural de la competitividad

    National Research Council Canada - National Science Library

    Echeverry Romero, Ruben D; Medina Vasquez, Javier E; Silva Castellanos, Tulio F

    2013-01-01

    ... de la Universidad del Valle. Esta perspectiva se materializa en un esquema metodologico que parte de la realizacion de un perfil competitivo regional, identifica nucleos tematicos que facilitan la profundizacion...

  4. Tiempo y perspectiva en la pelicula Rashomon de Akira Kurosawa

    National Research Council Canada - National Science Library

    del Mar Grandio Perez, Maria

    2010-01-01

    El objetivo de este articulo es analizar el papel del tiempo y de la subjetividad de las perspectivas en la pelicula Rashomon, aspectos que se consideran decisivos en la filmografia de Akira Kurosawa...

  5. Masaccio y la perspectiva matemática

    OpenAIRE

    2010-01-01

    En esta enumeración de Alberti, aparece el núcleo de artistas,todos amigos entre sí, que revolucionaron la concepción del arte en el primer renacimiento. Y si hay algo que caracteriza ese periodo en lo que respecta al arte y las matemáticas es la invención de la perspectiva artificialis, o perspectiva matemática.

  6. Luminescence dating at Rose cottage cave: a progress report

    CSIR Research Space (South Africa)

    Woodborne, S

    1997-10-01

    Full Text Available Deal with infrared-stimulated luminescence and thermoluminescence dates from Rose Cottage Cave in South Africa. Discrepancy between luminescence and radiocarbon dates; Concentration of radioactive elements in sediments before and after leaching...

  7. Luminescence de l'europium divalent dans les borates doubles BaLnB9O16(Ln=La, Gd, Y) et de l'europium trivalent dans les phosphates d'Yttrium et de gadolinium en vue d'application à la visualisation

    OpenAIRE

    Cong Tuan, Dinh

    2000-01-01

    En vue d'application à l'éclairage ou dans les dispositifs de visualisation à plama, on a étudié la luminescence de l'ion Eu2+ dans les borates BaLnB9O16 (Ln = La, Ce, Gd, Y) et de l'ion Eu3+ dans les diverses phases des systèmes Gd2O3-P2O5 et Y2O3-P2O5. Des informations sur les structures des réseaux-hôtes lorsqu'elles étaient inconnues, ont pu être obtenues par diffraction X et spectroscopie Raman. Pour Ln = Y, Gd, les borates BaLnB9O16:Eu2+ présentent une émission dans le bleu stable...; n...

  8. Luminescence dating of interglacial coastal depositional systems: Recent developments and future avenues of research

    Science.gov (United States)

    Lamothe, Michel

    2016-08-01

    luminescence-dated coastal feature of all, as the chronology of the sea level markers is crucial to assess global eustatic sea level variations through the course of the last interglacial. Nevertheless, the observed abundance of young (100-120 ka) luminescence ages for presumed MIS5e sediments may underline methodological issues, and/or reflect the higher preservation potential of late regressive sequences. On the other hand, the occurrence of geographically distant reports of MIS5a high stand might reflect a true eustatic origin for this event. Age analysis supports the impression of general reliability of luminescence for the timing of former sea level high stands. There is a clear need to address issues in dose rate variability, in the phenomenology of fading in feldspar, and in the behaviour of luminescence growth with dose, both in laboratory and natural conditions. These could be addressed and properly evaluated by dating different minerals, as multiple or single grains, with consequent variable internal dose rates. More robust practices in the application of luminescence dating techniques could eventually constrain the age uncertainties to no better than 2-3%. Therefore, the strength of luminescence as a dating tool is more in terms of its extended age range and the ubiquity of datable material.

  9. Luminescence kinetics of phosphors after excitation by electron beam

    OpenAIRE

    Ваганов, Виталий; Полисадова, Елена Фёдоровна; Мархабаева, А. А.

    2016-01-01

    The luminescence decay of industrial phosphors based on yttrium-aluminum garnet has beeninvestigated at the excitation by an electron beam. The ratio of slow and fast component amplitude in the kinetics of luminescence decay was estimated. It is shown that the luminescence decay time depends on the composition of the phosphor. The luminescence decay time can be used for analysis of the phosphors, to determine their quality.

  10. Progress in phosphors and filters for luminescent solar concentrators

    OpenAIRE

    De Boer, D.K.G.; Broer, D. J.; Debije, M.G.; Keur, W.; Meijerink, A.|info:eu-repo/dai/nl/075044986; Ronda, R.C.; Verbunt, P.P.C.

    2012-01-01

    Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introduce a phosphor with close-to-optimal luminescent properties and hardly any reabsorption. A problem for use in a luminescent concentrator is the large scattering of this material; we discuss possible solutions for this. Furthermore, the use of broad-band cholesteric filters to prevent escape of luminescent radiation from this phosphor is investigated both experim...

  11. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion

    Institute of Scientific and Technical Information of China (English)

    Jean-Claude; G.; Bünzli; V.

    2010-01-01

    Present-day advanced technologies heavily rely on the exciting magnetic and spectroscopic properties of lanthanide ions. In particular, their ability to generate well-characterized and intense near-infrared (NIR) luminescence is exploited in any modern fiber-optic telecommunication network. In this feature article, we first summarize the whereabouts underlying the design of highly luminescent NIR molecular edifices and materials. We then focus on describing the main trends in three applications related to this spectral range: telecommunications, biosciences, and solar energy conversion. In telecommunications, efforts concentrate presently on getting easily processable polymer-based waveguide amplifiers. Upconversion nanophosphors emitting in the visible after NIR excitation are now ubiquitous in many bioanalyses while their application to bio-imaging is still in its early stages; however, highly sensitive NIR-NIR systems start to be at hand for both in vitro and in vivo imaging, as well as dual probes combining magnetic resonance and optical imaging. Finally, both silicon-based and dye-sensitized solar cells benefit from the downconversion and upconversion capabilities of lanthanide ions to harvest UV and NIR solar light and to boost the overall quantum efficiency of these next-generation devices.

  12. Time-resolved luminescence spectra of porous Si

    OpenAIRE

    Miyoshi, Tadaki; Lee, Kyu-Seok; Aoyagi, Yoshinobu

    1992-01-01

    Time-resolved luminescence spectra of porous Si were measured under an N_2 laser excitation. The luminescence shows a nonexponential decay with an initial time constant of less than 5 ns and more than 200 ns for the secondary decay. The luminescence is considered to be associated with localized states, which are probably conduction and valence sublevels in Si microstructures.

  13. Progress in phosphors and filters for luminescent solar concentrators

    NARCIS (Netherlands)

    de Boer, D.K.G.; Broer, D.J.; Debije, M.G.; Keur, W.; Meijerink, A.; Ronda, R.C.; Verbunt, P.P.C.

    2012-01-01

    Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introduce a phosphor with close-to-optimal luminescent properties and hardly any reabsorption. A problem for use in a luminescent concentrator is the large scattering of

  14. Progress in phosphors and filters for luminescent solar concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Broer, D.J.; Debije, M.G.; Keur, W.C.; Meijerink, A.; Ronda, C.R.; Verbunt, P.P.C.

    2012-01-01

    Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introducea phosphor with close-to-optimal luminescent properties and hardlyany reabsorption. A problem for use in a luminescent concentrator isthe large scattering of this

  15. Progress in phosphors and filters for luminescent solar concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Broer, D.J.; Debije, M.G.; Keur, W.C.; Meijerink, A.; Ronda, C.R.; Verbunt, P.P.C.

    2012-01-01

    Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introducea phosphor with close-to-optimal luminescent properties and hardlyany reabsorption. A problem for use in a luminescent concentrator isthe large scattering of this m

  16. Eu2+-activated Ba3Ca3(PO4)4 phosphor with doping-concentration dependent luminescence

    Science.gov (United States)

    Tang, Huidong; Yang, Rong; Li, Rongzhu

    2017-10-01

    A color tunable phosphor of Eu2+-activated monophosphate Ba3Ca3(PO4)4 was developed via facile solid-state reaction synthesis. The samples were tested by X-ray powder diffraction (XRD) patterns, morphological properties, luminescence and decay lifetime measurements. The structural characteristics were discussed. The excitation bands of the phosphors cover the UV-, near-UV and blue-wavelength bands extending from 300 to 440 nm. The luminescence spectra of the phosphors show a great dependence on the Eu2+-concentration in Ba3Ca3(PO4)4, which can give blue to yellow emission colors. There are two kinds of Eu2+ centers in Ba3Ca3(PO4)4 lattices, which give yellow (EuI) and blue (EuII) luminescence with the maximum wavelength at 565 nm and 450 nm, respectively. The structural occupations and luminescence properties of EuI and EuII centers were discussed. EuI (yellow center) has a dominant contribution to the total luminescence with the increase of the Eu2+-doping level. The luminescence internal quantum efficiency and thermal stability (activation energy) were reported. The reported results could be helpful for the further potential application of the phosphor.

  17. Detecting Thermal Barrier Coating Delamination Using Visible and Near-Infrared Luminescence from Erbium-Doped Sublayers

    Science.gov (United States)

    Eldridge, J. I.; Bencic, T. J.; Martin, R. E.; Singh, J.; Wolfe, D. E.

    2007-01-01

    Nondestructive diagnostic tools are needed to monitor early stages of delamination progression in thermal barrier coatings (TBCs) because the risk of delamination induced coating failure will compromise engine performance and safety. Previous work has demonstrated that for TBCs composed of yttria-stabilized zirconia (YSZ), luminescence from a buried europium-doped sublayer can be utilized to identify the location of TBC delamination from the substantially higher luminescence intensity observed from the delaminated regions of the TBC. Luminescence measurements from buried europium-doped layers depend on sufficient transmittance of the 532 nm excitation and 606 nm emission wavelengths through the attenuating undoped YSZ overlayer to produce easily detected luminescence. In the present work, improved delamination indication is demonstrated using erbium-doped YSZ sublayers. For visible-wavelength luminescence, the erbium-doped sublayer offers the advantage of a very strong excitation peak at 517 nm that can be conveniently excited a 514 nm Ar ion laser. More importantly, the erbium-doped sublayer also produces near-infrared luminescence at 1550 nm that is effectively excited by a 980 nm laser diode. Both the 980 nm excitation and the 1550 nm emission are transmitted through the TBC with much less attenuation than visible wavelengths and therefore show great promise for delamination monitoring through thicker or more highly scattering TBCs. The application of this approach for both electron beam physical vapor deposited (EB-PVD) and plasma-sprayed TBCs is discussed.

  18. 发光费氏弧菌对常用色素的生物毒性评价%Application of luminescent Vibrio fischeri to evaluation of toxicity of several common pigments

    Institute of Scientific and Technical Information of China (English)

    郭柔杉; 李翔; 潘力

    2013-01-01

    A method built on the basis of the toxicity effect of pigments on luminescent bacterium Vibrio fisheri was developed for determining the toxicity and content of pigments. Results showed that there was a positive correlation between inhibitory rate of pigments against luminescent intensity of Vibrio fisheri and pigments concentration in aqueous solution,with a correlation coefficient ranging within 0.8760~0.9873. EC50 range was 0.72~2.86mg/L Inhibitory rate of pigments against luminescent intensity of Vibrio fisheri was also positively correlated with positive concentration in fruit juice,and the correlation coefficient was between 0.9136 and 0.9951. EC50 range was 1.02~2.96mg/L This showed that the toxicity of tartrazine was lower and the toxicity of amaranth was larger. Fruit juice played a role of mitigating the toxicity of the synthetic pigments. The bioluminescence inhibition rate by the pigments in the fruit juice increased with the rate significantly was higher than in aqueous solution. The study provided the initial reference for the acute toxicity testing of the food.%在探寻出色素与费氏弧菌发光抑制率存在相关性的基础上,初步建立起评价色素生物毒性的方法,并将其应用于果汁中色素产生的综合毒性的检验.结果:色素溶液质量浓度与发光抑制率呈正相关,相关系数在0.8760~0.9873之间,EC50范围在0.72~2.86mg/L之间;果汁中色素质量浓度与发光抑制率同样呈正相关,相关系数在0.9136~0.9951之间,FC50值在1.02~2.96mg/L之间.柠檬黄毒性较小,苋菜红毒性较大.果汁对人工合成色素的生物毒性具有一定影响.色素在果汁中对费氏弧菌发光抑制率随浓度增加而上升的幅度明显大于在水溶液中.本研究为食品急性生物毒性监测的研究提供初步参考.

  19. Luminescence detection of cysteine based on Ag{sup +}-mediated conformational change of terbium ion-promoted G-quadruplex

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Hongliang, E-mail: hltan@jxnu.edu.cn; Tang, Gonge; Ma, Chanjiao; Li, Qian

    2016-02-18

    In this work, we developed a simple and sensitive method for the detection of cysteine (Cys) by employing terbium ion (Tb{sup 3+})-promoted G-qudraplex (G4/Tb) as a luminescent probe, which is based on Ag{sup +}-mediated conformational change of G4/Tb. Due to Ag{sup +} is able to compete with Tb{sup 3+} to bind guanine at G4, the presence of Ag{sup +} can lead to the formation of G4/Tb–Ag{sup +} complex and disrupt the structure of G4/Tb. Meanwhile, the binding of Ag{sup +} with G4/Tb will also cause the alteration of the excited state of G4 and more efficient energy transfer from G4 to Tb{sup 3+}, enhancing the luminescence of G4/Tb. However, upon the addition of Cys, Ag{sup +} will be released from G4/Tb–Ag{sup +} complex because of the high affinity of Cys to Ag{sup +}. This results in the re-formation of the conformation of G4/Tb and the decrease of the luminescence of G4/Tb. So, Ag{sup +}-enhanced luminescence of G4/Tb is associated with its conformational transformation. As a luminescent probe for Cys, G4/Tb not only shows excellent selectivity and sensitivity with a detection limit of 20 nM, but also possesses the features of simple preparation, easy reproducibility, and eliminating the interferences from background fluorescence. We envision that the presented strategy might provide new insight into the biosensing applications of lanthanide complex. - Highlights: • A G4/Tb-based luminescent probe for Cys detection was developed for the first time. • The binding and remove of Ag{sup +} mediate the luminescence of G4/Tb. • The luminescent ​sensor showed excellent selectivity and high sensitivity to Cys.

  20. Luminescent iridium complexes for detection of molybdate.

    Science.gov (United States)

    Castillo, Carmen E; Davies, David L; Klair, Anne-K Duhme; Singh, Kuldip; Singh, Shalini

    2012-01-14

    Reactions of [Ir(C^N)(2)Cl](2) [HC^N = 2-(3-R-phenyl)pyridine, 2-(3-R-phenylpyrazole) R = H, Me] with Me(2)-phencat give luminescent complexes [Ir(C^N)(2)(Me(2)-phencat)][PF(6)] (Me(2)-2a, b, c)[PF(6)]. Deprotection of the methoxy groups with BBr(3) is problematic as simultaneous bromination of the cyclometallated phenyl groups occurs. However, deprotection of Me(2)-phencat with BBr(3) followed by complexation with [Ir(C^N)(2)Cl](2) gives luminescent complexes [Ir(C^N)(2)(H(2)-phencat)][PF(6)] (H(2)-3a, c)[PF(6)], which are luminescent sensors for molybdate.

  1. Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo.

    Science.gov (United States)

    Wu, Yongquan; Shi, Mei; Zhao, Lingzhi; Feng, Wei; Li, Fuyou; Huang, Chunhui

    2014-07-01

    Europium(III)-based material showing special milliseconds photoluminescence lifetime has been considered as an ideal time-gated luminescence probe for bioimaging, but is still limited in application in luminescent small-animal bioimaging in vivo. Here, a water-soluble, stable, highly-luminescent nanosystem, Ir-Eu-MSN (MSN = mesoporous silica nanoparticles, Ir-Eu = [Ir(dfppy)2(pic-OH)]3Eu·2H2O, dfppy = 2-(2,4-difluorophenyl)pyridine, pic-OH = 3-hydroxy-2-carboxypyridine), was developed by an in situ coordination reaction to form an insoluble dinuclear iridium(III) complex-sensitized-europium(III) emissive complex within mesoporous silica nanoparticles (MSNs) which had high loading efficiency. Compared with the usual approach of physical adsorption, this in-situ reaction strategy provided 20-fold the loading efficiency (43.2%) of the insoluble Ir-Eu complex in MSNs. These nanoparticles in solid state showed bright red luminescence with high quantum yield of 55.2%, and the excitation window extended up to 470 nm. These Ir-Eu-MSN nanoparticles were used for luminescence imaging in living cells under excitation at 458 nm with confocal microscopy, which was confirmed by flow cytometry. Furthermore, the Ir-Eu-MSN nanoparticles were successfully applied into high-contrast luminescent lymphatic imaging in vivo under low power density excitation of 5 mW cm(-2). This synthetic method provides a universal strategy of combining hydrophobic complexes with hydrophilic MSNs for in vivo bioimaging.

  2. Latest developments in silica fibre luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D. A.; Abdul S, S. F.; Jafari, S. M.; Alanazi, A. [University of Surrey, Department of Physics, GU2 7XH Guildford, Surrey (United Kingdom); Amouzad M, G. [University of Malaya, Faculty of Engineering, Department of Electrical Engineering, Integrated Lightwave Research Group, 50603 Kuala Lumpur (Malaysia); Addul R, H. A.; Mizanur R, A. K. M.; Zubair, H. T.; Begum, M.; Yusoff, Z.; Omar, N. Y. M. [Multimedia University, Faculty of Engineering, 2010 Cyberjaya, Selangor (Malaysia); Maah, M. J. [University of Malaya, Department of Chemistry, 50603 Kuala Lumpur (Malaysia); Collin, S. [National Physical Laboratory, Hampton Road, Teddington, TW11 OLW Middlesex (United Kingdom); Mat-Sharif, K. A.; Muhd-Yassin, S. Z.; Zulkifli, M. I., E-mail: d.a.bradley@surrey.ac.uk [Telekom Malaysia Research and Development Sdn Bhd., 63000 Cyberjaya, Selangor (Malaysia)

    2015-10-15

    Full text: Using tailor made sub-mm diameter doped-silica fibres, we are carrying out luminescence dosimetry studies for a range of situations, including thermoluminescence (Tl)investigations on a liquid alpha source formed of {sup 223}RaCl (the basis of the Bayer Health care product Xofigo), the Tl response to a 62 MeV proton source and Tl response to irradiation from an {sup 241}Am-Be neutron source. In regard to the former, in accord with the intrinsic high linear energy transfer (Let) and short path length (<100 um) of the α-particles in calcified tissue, the product is in part intended as a bone-seeking radionuclide for treatment of metastatic cancer, offering high specificity and efficacy. The Tl yield of Ge-doped SiO{sub 2} fibres has been investigated including for photonic crystal fibre un collapsed, flat fibres and single mode fibres, these systems offering many advantages over conventional passive dosimetry types. In particular, one can mention comparable and even superior sensitivity, an effective atomic number Z{sub eff} of the silica dosimetric material close to that of bone, and the glassy nature of the fibres offering the additional advantage of being able to place such dosimeters directly into liquid environments. Finally we review the use of our tailor made fibres for on-line radioluminescence measurements of radiotherapy beams. The outcome from these various lines of research is expected to inform development of doped fiber radiation dosimeters of versatile utility, ranging from clinical applications through to industrial studies and environmental evaluations. (Author)

  3. Os conflitos conjugais na perspectiva dos filhos

    Directory of Open Access Journals (Sweden)

    Viviane Ribeiro Goulart

    2013-01-01

    Full Text Available Se investigó sobre la perspectiva de los hijos en los conflictos conyugales. Participaron 17 estudiantes de una escuela pública de Porto Alegre (RS, de ambos sexos, reunidos en dos grupos focales: uno con 8 niños (8-9 años, y otro con 9 jóvenes (12-13 años, que vivían con sus padres. Cada grupo ha tenido sólo una cita en la escuela. Las informaciones fueron grabadas, transcritas y el contenido analizado a partir de los temas emergentes. De acuerdo con los niños, los conflictos conyugales van desde una discusión hasta la agresión física, son recurrientes, versan sobre cualquier tema, y su expresión es predominantemente negativa. Los niños reconocen la existencia del conflicto pero ni siempre entienden sus causas y todavía sufren sus consecuencias. Los niños adoptan distintas estrategias para lidiar con los conflictos, desde ignorarlos hasta las actitudes autodestructivas. Se concluye que los sujetos son conscientes de los conflictos conyugales de sus padres y reconocen sus repercusiones.

  4. Perspectiva masculina acerca do aborto provocado

    Directory of Open Access Journals (Sweden)

    Graciana Alves Duarte

    2002-06-01

    Full Text Available OBJETIVO: Analisar a perspectiva de homens de uma comunidade universitária que viviam em união legal ou consensual acerca do aborto provocado. MÉTODOS: Estudo descritivo de corte transversal em que se analisaram informações de 361 entrevistados, pertencentes a diferentes categorias de uma universidade. Utilizou-se o teste de qui-quadrado para avaliar a associação das variáveis dependentes com as independentes. RESULTADOS: Dos entrevistados, 53% afirmaram que as mulheres têm direito a interromper a gestação; as situações de maior aceitação foram: risco de vida da gestante (85%, gravidez resultante de estupro (80% e anomalia fetal (75%. As variáveis associadas à opinião masculina favorável ao aborto foram: maior escolaridade dos homens e das parceiras e o grupo (docente/aluno a que pertencia o entrevistado. CONCLUSÕES: Os entrevistados tenderam a ser mais favoráveis ao aborto nas situações já legitimadas legal e/ou socialmente. O maior grau de escolaridade, tanto deles quanto das parceiras, apareceu como relevante para determinar a postura em relação ao aborto.

  5. Perspectiva masculina acerca do aborto provocado

    Directory of Open Access Journals (Sweden)

    Duarte Graciana Alves

    2002-01-01

    Full Text Available OBJETIVO: Analisar a perspectiva de homens de uma comunidade universitária que viviam em união legal ou consensual acerca do aborto provocado. MÉTODOS: Estudo descritivo de corte transversal em que se analisaram informações de 361 entrevistados, pertencentes a diferentes categorias de uma universidade. Utilizou-se o teste de qui-quadrado para avaliar a associação das variáveis dependentes com as independentes. RESULTADOS: Dos entrevistados, 53% afirmaram que as mulheres têm direito a interromper a gestação; as situações de maior aceitação foram: risco de vida da gestante (85%, gravidez resultante de estupro (80% e anomalia fetal (75%. As variáveis associadas à opinião masculina favorável ao aborto foram: maior escolaridade dos homens e das parceiras e o grupo (docente/aluno a que pertencia o entrevistado. CONCLUSÕES: Os entrevistados tenderam a ser mais favoráveis ao aborto nas situações já legitimadas legal e/ou socialmente. O maior grau de escolaridade, tanto deles quanto das parceiras, apareceu como relevante para determinar a postura em relação ao aborto.

  6. en perspectiva de género

    Directory of Open Access Journals (Sweden)

    Elena Hernández Corrochano

    2008-01-01

    Full Text Available Los estudios sobre la familia, desde las diferentes perspectivas que aquí trato, nos muestran no sólo la importancia del parentesco en las relaciones sociales y en la construcción de la identidad de los sujetos, sino que nos indica cómo en sociedades definidas como modernizadas –donde los Estado sólo tienen interés en alcanzar un cambio económico y el acceso a las nuevas tecnologías, olvidándose de las cuestiones sociales, políticas o filosóficas que caracterizan a la modernidad– a mayor individualismo en las acciones de los varones, mayor sujeción de las mujeres al grupo. En estas sociedades la “autorización” que la comunidad da a los hombres para actuar en relación con sus intereses personales, “endurece” la posición de las mujeres que deben, con relación a su bienestar, mantener un orden social comunitario simbolizado por la buena familia y custodiado por una opinión pública que limita su capacidad de actuar como individuos.

  7. Productividad, trabajo y salud: la perspectiva psicosocial

    Directory of Open Access Journals (Sweden)

    York Iván Puerto Barrios

    2007-07-01

    Full Text Available Con la opción de analizar las condiciones de trabajo en oficina, el texto realiza una sucinta pero precisa revisión de la conceptualización sobre productividad y consumo. Se documenta la relación contradictoria entre bienestar y rendimiento en el trabajo al identificar el riesgo de llevar al límite de sus capacidades la participación del trabajador como factor de productividad, ignorando que éste tiene además el rol de consumidor activo de bienes y servicios para que la producción tenga sentido. Se plantea que exigir al trabajador hasta su agotamiento puede mermar sustancialmente su doble condición de productor y consumidor. Específicamente, se presenta la perspectiva del trabajo en oficinas innovadas conceptual y tecnológicamente, con procesos laborales y patrones de desgaste y morbilidad de"nidos. El tiempo, el ritmo, la parcelación, el control del trabajo y la reestructuración en las organizaciones son, entre otros, factores que convergen para potenciar fenómenos de sobrecarga o subcarga mental con la consecuente aparición de estrés excedente y sus patologías asociadas.

  8. Spectral luminescence analysis of amniotic fluid

    Science.gov (United States)

    Slobozhanina, Ekaterina I.; Kozlova, Nataly M.; Kasko, Leonid P.; Mamontova, Marina V.; Chernitsky, Eugene A.

    1997-12-01

    It is shown that the amniotic fluid has intensive ultra-violet luminescence caused by proteins. Along with it amniotic fluid radiated in the field of 380 - 650 nm with maxima at 430 - 450 nm and 520 - 560 nm. The first peak of luminescence ((lambda) exc equals 350 nm; (lambda) em equals 430 - 440 nm) is caused (most probably) by the presence in amniotic fluid of some hormones, NADH2 and NADPH2. A more long-wave component ((lambda) exc equals 460 nm; (lambda) em equals 520 - 560 nm) is most likely connected with the presence in amniotic fluid pigments (bilirubin connected with protein and other). It is shown that intensity and maximum of ultra-violet luminescence spectra of amniotic fluid in normality and at pathology are identical. However both emission spectra and excitation spectra of long-wave ((lambda) greater than 450 nm) luminescence of amniotic fluid from pregnant women with such prenatal abnormal developments of a fetus as anencephaly and spina bifida are too long-wave region in comparison with the norm. Results of research testify that spectral luminescent analysis of amniotic fluid can be used for screening of malformations of the neural tube. It is very difficult for a practical obstetrician to reveal pregnant women with a high risk of congenital malformations of the fetus. Apart from ultrasonic examination, cytogenetic examination of amniotic fluid and defumination of concentrations of alpha-fetoprotein and acetylcholin-esterases in the amniotic fluid and blood plasma are the most widely used diagnostic approaches. However, biochemical and cytogenetic diagnostic methods are time-consuming. In the present work spectral luminescence properties of the amniotic fluid are investigated to determine spectral parameters that can be used to reveal pregnant women with a high risk of congenital malformations of their offsprings.

  9. Optically stimulated luminescence in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2002-01-01

    Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes of this progr......Since the beginning of the 1990s the exploration of optically stimulated luminescence (OSL) in retrospective accident dosimetry has driven an intensive investigation and development programme at Riso into measurement facilities and techniques. This paper reviews some of the outcomes...

  10. Up-Conversion Photostimulated Luminescence of Mg2SnO4 for Optical Storage

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-Chi; QIN Qing-Song; YU Ming-Hui; SUN Jia-Yao; SHI Liu-Rong; MA Xin-Long

    2011-01-01

    @@ We report the first observation of up-conversion photostimulated luminescence in non-doped Mg2SnO4.Stimulated by 980 nm infrared laser (reading) after ultraviolet irradiation (writing), the phosphor shows photostimulated emission band covering 470-550nm, which is due to the recombination of F centers with holes.After ceasing ultraviolet irradiation, the storage intensity would rapidly decrease to 59% of its original storage intensity in 2.5h and then would not degrade anymore.It is suggested that the Mg2SnO4 has potential applications for optical storage.Accordingly, the possible photostimulated luminescence mechanisms of Mg2SnO4 are proposed.%We report the first observation of up-conversion photostimulated luminescence in non-doped Mg2SnO4. Stimulated by 980 nm infrared laser (reading) after ultraviolet irradiation (writing), the phosphor shows photostimulated emission band covering 470-550nm, which is due to the recombination of F centers with holes. After ceasing ultraviolet irradiation, the storage intensity would rapidly decrease to 59% of its original storage intensity in 2.5 h and then would not degrade anymore. It is suggested that the Mg2SnO4 has potential applications for optical storage. Accordingly, the possible photostimulated luminescence mechanisms of Mg2SnO4 are proposed.

  11. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies:a review

    Institute of Scientific and Technical Information of China (English)

    何立莹; 苏玉民; 蒋兰宏; 石士考

    2015-01-01

    Nanostructured cerium oxide (CeO2) commonly known as nanoceria is a rare earth metal oxide, which plays a technologi-cally important role due to its versatile applications as automobile exhaust catalysts, oxide ion conductors in solid oxide fuel cells, electrode materials for gas sensors, ultraviolet absorbents and glass-polishing materials. However, nanoceria has little or weak lumi-nescence, and therefore its uses in high-performance luminescent devices and biomedical areas are limited. In this review, we present the recent advances of nanoceria in the aspects of synthesis, luminescence and biomedical studies. The CeO2 nanoparticles can be synthesized by solution-based methods including co-precipitation, hydrothermal, microemulsion process, sol-gel techniques, combus-tion reaction and so on. Achieving controlled morphologies and enhanced luminescence efficiency of nanoceria particles are quite es-sential for its potential energy- and environment-related applications. Additionally, a new frontier for nanoceria particles in biomedi-cal research has also been opened, which involves low toxicity, retinopathy, biosensors and cancer therapy aspects. Finally, the sum-mary and outlook on the challenges and perspectives of the nanoceria particles are proposed.

  12. Progress in phosphors and filters for luminescent solar concentrators.

    Science.gov (United States)

    de Boer, Dick K G; Broer, Dirk J; Debije, Michael G; Keur, Wilco; Meijerink, Andries; Ronda, Cees R; Verbunt, Paul P C

    2012-05-07

    Luminescent solar concentrators would allow for high concentration if losses by reabsorption and escape could be minimized. We introduce a phosphor with close-to-optimal luminescent properties and hardly any reabsorption. A problem for use in a luminescent concentrator is the large scattering of this material; we discuss possible solutions for this. Furthermore, the use of broad-band cholesteric filters to prevent escape of luminescent radiation from this phosphor is investigated both experimentally and using simulations. Simulations are also used to predict the ultimate performance of luminescent concentrators.

  13. High-Temperature Thermometer Using Cr-Doped GdAlO3 Broadband Luminescence

    Science.gov (United States)

    Eldridge, Jeffrey; Chambers, Matthew

    2011-01-01

    A new concept has been developed for a high-temperature luminescence-based optical thermometer that both shows the desired temperature sensitivity in the upper temperature range of present state-of-the-art luminescence thermometers (above 1,300 C), while maintaining substantial stronger luminescence signal intensity that will allow these optical thermometers to operate in the presence of the high thermal background radiation typical of industrial applications. This objective is attained by using a Cr-doped GdAlO3 (Cr:GdAlO3) sensor with an orthorhombic perovskite structure, resulting in broadband luminescence that remains strong at high temperature due to the favorable electron energy level spacing of Cr:GdAlO3. The Cr:GdAlO3 temperature (and pressure) sensor can be incorporated into, or applied onto, a component s surface when a non-contact surface temperature measurement is desired, or alternatively, the temperature sensor can be attached to the end of a fiber-optic probe that can then be positioned at the location where the temperature measurement is desired. In the case of the fiber-optic probe, both the pulsed excitation and the luminescence emission travel through the fiber-optic light guide. In either case, a pulsed light source provides excitation of the luminescence, and the broadband luminescence emission is collected. Real-time temperature measurements are obtain ed using a least-squares fitting algorithm that determines the luminescence decay time, which has a known temperature dependence established by calibration. Due to the broad absorption and emission bands for Cr:GdAlO3, there is considerable flexibility in the choice of excitation wavelength and emission wavelength detection bands. The strategic choice of the GdAlO3 host is based on its high crystal field, phase stability, and distorted symmetry at the Cr3+ occupation sites. The use of the broadband emission for temperature sensing at high temperatures is a key feature of the invention and is

  14. Complex of heavy magnetic ions and luminescent silicon nanoparticles

    Science.gov (United States)

    Hoang, Tuan

    We study the optical properties of luminescent silicon nanoparticles in the presence of magnetic ions of iron or erbium in solution and electric biasing. Upon the introduction of the ions under zero biasing, the luminescence is enhanced to by 50%. The peak position of the nanoparticle's spectrum shifts by 10 nm. The enhancement remains stable even outside of the solvent, and under exposure to an ionizing environment, with electric eld as high as 8 MV/m exceeding the breakdown eld value of solution. We attribute the enhancement and spectral change to the formation of complex between the silicon nanoparticles and the ions. We compare these results with the computational study that was done in our group using density functional theory. The calculations yield two stable con gurations that such ion-particle complex could form, with binding energy of 0:49 eV between the ion and the nanoparticle. The complexes promise diverse applications in magnetic/optical imaging, spatially programmable deposition, spin-based memories and transistors, infrared communications, ltration, as well as interplanetary and interstellar observation and modeling.

  15. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    Science.gov (United States)

    José Guidelli, Eder; Ramos, Ana Paula; Baffa, Oswaldo

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films.

  16. Quantifying the formation of chiral luminescent lanthanide assemblies in an aqueous medium through chiroptical spectroscopy and generation of luminescent hydrogels.

    Science.gov (United States)

    Bradberry, Samuel J; Savyasachi, Aramballi Jayant; Peacock, Robert D; Gunnlaugsson, Thorfinnur

    2015-01-01

    Herein we present the synthesis and the photophysical evaluation of water-soluble chiral ligands (2·(R,R) and 2·(S,S)) and their application in the formation of lanthanide directed self-assembled structures. These pyridine-2,6-dicarboxylic amide based ligands, possessing two naphthalene moieties as sensitising antennae, that can be used to populate the excited state of lanthanide ions, were structurally modified using 3-propanesultone and caesium carbonate, allowing for the incorporation of a water-solubilising sulfonate motif. We show, using microwave synthesis, that Eu(III) forms chiral complexes in 1 : 3 (M : L) stoichiometries (Eu·[2·(R,R)]3 and Eu·[2·(S,S)]3) with these ligands, and that the red Eu(III)-centred emission arising from these complexes has quantum yields (Φtot) of 12% in water. Both circular dichroism (CD) and circular polarised luminescence (CPL) analysis show that the complexes are chiral; giving rise to characteristic CD and CPL signatures for both the Λ and the Δ complexes, which both possess characteristic luminescence dissymmetry factors (g(lum)), describing the structure in solution. The self-assembly process was also monitored in situ by observing the changes in the ligand absorption and fluorescence emission, as well as in the Eu(III) luminescence. The change, fitted using non-linear regression analysis, demonstrated high binding affinity for Eu(III) which in part can be assigned to being driven by additional hydrophobic effects. Moreover, using CD spectroscopy, the changes in the chiroptical properties of both (2·(R,R) and 2·(S,S)) were monitored in real time. Fitting the changes in the CD spectra allowed for the step-wise binding constants to be determined for these assemblies; these matched well with those determined from both the ground and the excited state changes. Both the ligands and the Eu(III) complexes were then used in the formation of hydrogels; the Eu(III)-metallogels were luminescent to the naked-eye.

  17. O banco do futuro: perspectivas e desafios

    Directory of Open Access Journals (Sweden)

    André Accorsi

    2014-03-01

    Full Text Available Neste artigo, apresentam-se as perspectivas e os desafios dos bancos no futuro. Com o referencial teórico sobre o tema, construiu-se um questionário para identificar o grau de importância atribuído a 20 diferentes questões. Na pesquisa de campo, abarcaram-se 93 bancários dos níveis gerencial e operacional dos principais bancos brasileiros e 9 professores universitários especialistas em mercado financeiro. Os dados coletados foram analisados estatisticamente usando-se o software Statistical Package for the Social Sciences, versão 13.0. Observando-se as principais conclusões da amostra, não há diferença estatística entre os funcionários dos bancos pesquisados, mas o mesmo não ocorreu entre bancários e professores. Algumas variáveis apresentaram maior relevância: combate às fraudes, business intelligence, bancarização e atendimento rápido. A partir da análise fatorial, identificaram-se seis fatores: sustentabilidade e papel do Brasil; mobilidade e segurança; regulação e novas tecnologias; globalização, inserção e privacidade; atendimento inteligente e bancarização. Pela análise discriminante, classificaram-se corretamente 79,3 e 66,7% dos funcionários do Bradesco e do Banco do Brasil, respectivamente, e 78,8% dos gerentes.

  18. El bienestar subjetivo: Actualidad y perspectivas

    Directory of Open Access Journals (Sweden)

    Guillermo Díaz Llanes

    2001-12-01

    Full Text Available Se realizó una revisión de los trabajos sobre bienestar subjetivo publicados en el mundo en los últimos años y se analizaron críticamente los resultados obtenidos tomando en consideración algunos de los fundamentos epistemológicos que les sirvieron de sustento. La enorme vigencia de los estudios sobre bienestar subjetivo en la actualidad pone de manifiesto la creciente conciencia de los investigadores acerca de la importancia del estudio de los factores que tributan a la salud desde una perspectiva positiva. La comprensión de la compleja madeja de interacciones que determinan el bienestar subjetivo en los niveles macrosocial, microsocial e individual, resulta requisito indispensable para la instrumentación de intervenciones en el nivel primario de atención y así elevar dicho indicador, tan ligado a la salud.A review of the papers on subjective well-being published in the world during the last years was made. The results obtained were critically analyzed taking into account the epistemological foundations that served as a sustenance. The fact that the studies about subjective well-being are still in force shows the increasing awareness of the investigators about the importance of studying those factors influencing positively on health. The understanding of the complex skein of interactions determining the subjective well-being at the macrosocial, microsocial and individual levels is an indispensable requirement for the implementation of interventions at the primary health care level and for elevating this indicator so closely related to health.

  19. Aplicação do programa Seis Sigma no Brasil: resultados de um levantamento tipo survey exploratório-descritivo e perspectivas para pesquisas futuras A study on the application of the Six Sigma programme in Brazil: results of an exploratory-descriptive survey and perspectives for future research

    Directory of Open Access Journals (Sweden)

    João Marcos Andrietta

    2007-01-01

    Full Text Available A utilização do Seis Sigma e das técnicas associadas ao programa tem possibilitado resultados que merecem uma avaliação mais detalhada, pois existem relativamente poucos dados publicados sobre a aplicação do Seis Sigma no país. Nesse sentido, o objetivo deste trabalho é apresentar os resultados de um estudo de campo do tipo survey exploratório-descritivo, conduzido com o propósito de levantar uma série de práticas relativas à adoção do programa Seis Sigma em empresas que o adotaram. O instrumento de coleta de dados utilizado foi um questionário estruturado com uma taxa de retorno de aproximadamente 65% dos 121 questionários enviados. Os resultados obtidos com o levantamento puderam revelar que a aplicação do Seis Sigma no Brasil é uma realidade. Contudo, o trabalho conclui que o programa é adotado por empresas de grande porte que investem em infra-estrutura e treinamento de pessoal, possibilitando obter os benefícios financeiros almejados. No final, o artigo considera perspectivas para trabalhos futuros, relacionadas à utilização das técnicas e ferramentas associadas à aplicação do programa, bem como os fatores de insucesso na sua utilização.The use of the Six Sigma and the techniques associated to the programme have showed results that deserve a more detailed analysis as there are few data published on the application of the Six Sigma in the country The objective of this work is to present the results of an exploratory-descriptive survey, from which the main aim is to identify a series of practices in companies that have adopted the programme. A questionnaire was used as an instrument for data collection with a response rate of approximately 65% out of the 121 questionnaires sent to the companies. However, the results revealed that the application of the six sigma in Brazil is a reality. However, the program is adopted by large organizations that invest in infrastructure and staff training, enabling them to

  20. Structural changes and relaxations monitored by luminescence.

    Science.gov (United States)

    Wang, Y; Yang, B; Townsend, P D

    2013-01-01

    Luminescence data have often been used to study imperfections and to characterize lattice distortions because the signals are sensitive to changes of structure and composition. Previous studies have included intentionally added probe ions such as rare earth ions to sense distortions in local crystal fields caused by modified structural environments. An under-exploited extension of this approach was to use luminescence to monitor crystalline phase changes. A current overview of this new and powerful technique shows that continuous scanning of the sample temperatures immediately offered at least three types of signatures for phase transitions. Because of high sensitivity, luminescence signals were equally responsive to structural changes from inclusions and nanoparticles. These coupled to the host material via long-range interactions and modified the host signals. Two frequently observed examples that are normally overlooked are from nanoparticle inclusions of water and CO2. Examples also indicated that phase transitions were detected in more diverse materials such as superconductors and fullerenes. Finally, luminescence studies have shown that in some crystalline examples, high dose ion implantation of surface layers could induce relaxations and/or structural changes of the entire underlying bulk material. This was an unexpected result and therefore such a possibility has not previously been explored. However, the implications for ion implication are significant and could be far more general than the examples mentioned here.

  1. Thermal History Using Microparticle Trap Luminescence

    Science.gov (United States)

    2012-06-01

    34 2008 IEEE/ LEOS Optical MEMS and Nanophotonics Conference, Freiburg Germany, August 2008, pp. 64- 65. 3. J. R. Hazelton, E. G. Yukihara, M. W. Blair...A.J.J. , Prokic, M. and Brouwer , J.C., 2006. Optically and thermally stimulated luminescence characteristics of MgO:Tb3+. Radiat. Prot. Dosim. 119

  2. Probing luminescence centers in Na rich feldspar

    DEFF Research Database (Denmark)

    Prasad, Amit Kumar; Lapp, Torben; Kook, Myung Ho;

    2016-01-01

    our understanding of the luminescence mechanisms and recombination sites, in a sample of Na rich plagioclase feldspar (oligoclase). Both the UV and violet–blue emissions show resonant excitations arising from a distribution of energy levels. We propose, contrary to the general understanding...

  3. Optically stimulated luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Murray, A.S.

    2001-01-01

    Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear...

  4. Dehydration-induced luminescence in clay minerals

    Science.gov (United States)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  5. Optically stimulated luminescence dating of young sediments

    DEFF Research Database (Denmark)

    Madsen, A.T.; Murray, A.S.

    2009-01-01

    Optically stimulated luminescence (OSL) dating of young (< 1000 years) sediments is used increasingly in a wide variety of late-Holocene studies as a mean of establishing contemporary sedimentation rates or the timing of sediment deposition. This paper provides a summary of the basic principles o...

  6. Modeling Light Propagation in Luminescent Media

    Science.gov (United States)

    Sahin, Derya

    This study presents physical, computational and analytical modeling approaches for light propagation in luminescent random media. Two different approaches are used, namely (i) a statistical approach: Monte-Carlo simulations for photon transport and (ii) a deterministic approach: radiative transport theory. Both approaches account accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. The deterministic approach is a generalization of radiative transport theory for solving inelastic scattering problems in random media. We use the radiative transport theory to study light propagation in luminescent media. Based on this theory, we also study the optically thick medium. Using perturbation methods, a corrected diffusion approximation with asymptotically accurate boundary conditions and a boundary layer solution are derived. The accuracy and the efficacy of this approach is verified for a plane-parallel slab problem. In particular, we apply these two approaches (MC and radiative transport theory) to model light propagation in semiconductor-based luminescent solar concentrators (LSCs). The computational results for both approaches are compared with each other and found to agree. The results of this dissertation present practical and reliable techniques to use for solving forward/inverse inelastic scattering problems arising in various research areas such as optics, biomedical engineering, nuclear engineering, solar science and material science.

  7. Probing luminescence from nonspherical bubble collapse

    NARCIS (Netherlands)

    Ohl, Claus-Dieter

    2002-01-01

    The luminescence from single laser produced cavitation bubbles for varying degrees of asphericity is investigated temporally, spatially, and spectrally. The degree of asphericity is controlled with an adjustable rigid boundary near the bubble. Temporally, single and multiple light emission events ha

  8. Luminescence from Erbium Oxide Grown on Silicon

    Science.gov (United States)

    2002-01-01

    H9.14 Luminescence from erbium oxide grown on silicon E. Nogales’, B. Mrndez , J.Piqueras’, R.Plugaru2 , J. A. Garcfa3 and T. J. Tate4 ’ Universidad ... Complutense de Madrid, Dpto. Ffsica de Materiales, 28040 Madrid, Spain.2Inst. of Microtechnology, Bucharest, Romania.3Universidad del Pais Vasco, Dpto

  9. Synthesis and luminescent properties of a novel green-emitting Tb (Ⅲ) complex based on amino-modified fluorine silicone oil and isophorone diisocyanate

    Science.gov (United States)

    Hao, Haixia; Chu, Yang; Yu, Zhenjiang; Xie, Hongde; Seo, Hyo Jin

    2017-10-01

    The novel luminescent polymer-rare earth complexes, denoted as (PFSi-IPDI)-Tb(Ⅲ)-Phen, have been successfully synthesized and can be made into flexible films. Amino-modified fluorine silicone oil-isophorone diisocyanate (PFSi-IPDI) was used as the host macromolecular ligand, and 1, 10-Phenanthroline (Phen) as the secondary small-molecular co-ligand. The luminescent lanthanide complexes were characterized by fourier transform infrared (FITR), scanning electron microscope (SEM), thermogravimetric analysis (TGA). The luminescent properties were investigated through photoluminescence excitation (PLE) and emission (PL) spectroscopy. FTIR analysis verifies the successful preparation and integration of PFSi-IPDI to Tb3+. The comparatively uniform morphological structure can be observed in the images of SEM. The polymer-rare earth complexes display the typical luminescence emission peaks under the excitation wavelength of 330 nm. From the decay curve, the short lifetime (about 0.89 ms) is observed for (PFSi-IPDI)-Tb(Ⅲ)-Phen (0.6 mol/L). Moreover, these luminescent polymer-rare earth complexes possess superior thermal stability (T5 > 195 °C). All the interesting results suggest the potential application of the luminescent polymer-rare earth complexes in green-emitting luminescent materials under high temperature.

  10. Luminescence of yttrium niobium-tantalate doubly activated by europium and/or terbium under X-ray and electron beam excitation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, I.D., E-mail: arellano@utp.edu.co [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Nazarov, M.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Republic of Moldova (Moldova, Republic of); School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Cortes, J.A. [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Ahmad Fauzi, M.N [School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-09-15

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O{sub 4} activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. The influence of these rare earth ions on the luminescence of yttrium niobium-tantalate phosphors was investigated. The luminescent properties were studied under X-ray and electron beam excitations. Under these excitations, the emission centers of the rare earth activators (Eu{sup 3+},Tb{sup 3+}) were found to contribute efficiently to the overall luminescence. Changing the mol concentration of the incorporated activators resulted in a broad variation of visible photoluminescence. Color cathodoluminescence images showed clearly the dependence of chromaticity on the different activators. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing a broad variation of visible photoluminescence from blue to red. - Highlights: Black-Right-Pointing-Pointer The Y(Ta,Nb)O{sub 4} phosphors were activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. Black-Right-Pointing-Pointer The phosphors were studied under X-ray and electron beam excitations. Black-Right-Pointing-Pointer The emission centers contribute efficiently to the overall luminescence. Black-Right-Pointing-Pointer Changing the concentration of the activators resulted in a broad luminescence.

  11. New Nanomaterials and Luminescent Optical Sensors for Detection of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Natalia A. Burmistrova

    2015-10-01

    Full Text Available Accurate methods that can continuously detect low concentrations of hydrogen peroxide (H2O2 have a huge application potential in biological, pharmaceutical, clinical and environmental analysis. Luminescent probes and nanomaterials are used for fabrication of sensors for H2O2 that can be applied for these purposes. In contrast to previous reviews focusing on the chemical design of molecular probes for H2O2, this mini-review highlights the latest luminescent nanoparticular materials and new luminescent optical sensors for H2O2 in terms of the nanomaterial composition and luminescent receptor used in the sensors. The nanomaterial section is subdivided into schemes based on gold nanoparticles, polymeric nanoparticles with embedded enzymes, probes showing aggregation-induced emission enhancement, quantum dots, lanthanide-based nanoparticles and carbon based nanomaterials, respectively. Moreover, the sensors are ordered according to the type of luminescent receptor used within the sensor membranes. Among them are lanthanide complexes, metal-ligand complexes, oxidic nanoparticles and organic dyes. Further, the optical sensors are confined to those that are capable to monitor the concentration of H2O2 in a sample over time or are reusable. Optical sensors responding to gaseous H2O2 are not covered. All nanomaterials and sensors are characterized with respect to the analytical reaction towards H2O2, limit of detection (LOD, analytical range, electrolyte, pH and response time/incubation time. Applications to real samples are given. Finally, we assess the suitability of the nanomaterials to be used in membrane-based sensors and discuss future trends and perspectives of these sensors in biomedical research.

  12. Ratiometric near infrared luminescent thermometer based on lanthanide metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Dan; Zhang, Jun; Zhao, Dian; Lian, Xiusheng; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn; Yang, Yu; Qian, Guodong, E-mail: gdqian@zju.edu.cn

    2016-09-15

    A near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method using Ln{sup 3+} (Ln=Nd, Yb) ions and 1, 3, 5-benznenetricarboxylic acid (H{sub 3}BTC), and characterized by PXRD, TGA, ICP, and photoluminescence (PL) spectrum. These results indicate that the Nd{sub 0.676}Yb{sub 0.324}BTC displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K), and the maximum relative sensitivity is determined to be 1.187% K{sup −1} at 323 K. These NIR luminescent MOFs may have potential applications in physiological temperature sensing. - Graphical abstract: A near infrared luminescent MOFs thermometer (Nd{sub 0.054}Yb{sub 0.946}BTC ) displays high relative sensitivity and excellent repeatability in the physiological temperature range (288–323 K). Display Omitted - Highlights: • A ratiometric near infrared luminescent MOFs thermometer (Nd{sub 0.676}Yb{sub 0.324}BTC) was prepared via a simple solvothermal method. • The maximum relative sensitivity of Nd{sub 0.676}Yb{sub 0.324}BTC is determined to be 1.187% K{sup −1} at 323 K. • Nd{sub 0.676}Yb{sub 0.324}BTC showed excellent repeatability in the physiological temperature range (288–323 K).

  13. Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters.

    Science.gov (United States)

    Zhang, Pu; Lan, Jing; Wang, Yi; Xiong, Zu Hong; Huang, Cheng Zhi

    2015-01-01

    Silk is an excellent natural material and has been used for a variety of applications. Modification of the pristine silk is usually needed depending on the intended purpose. The technical treatments involved in the modification not only should be easy, rapid, environmentally friendly, and cheap but should also retain the features of the pristine silk. Herein, we demonstrate that luminescent silk and fabric can be produced through nanotechnology. The surface of the natural silk fiber is chemically coated with luminescent gold nanoclusters (AuNCs) composed of tens to hundreds of Au atoms through a redox reaction between the protein-based silk and an Au salt precursor. The luminescent silk coated with AuNCs (called golden silk) possesses good optical properties, including a relatively long wavelength emission, high quantum yields, a long fluorescent lifetime, and photostability. Moreover, golden silk prepared this way has better mechanical properties than pristine silk, is better able to inhibit UV, and has lower toxicity in vitro. This work not only provides an effective strategy for in situ preparation of luminescent metal nanoclusters on a solid substrate but also paves the way for large-scale and industrialized production of novel silk-based materials or fabrics through nanotechnology.

  14. Radiation Effects on Luminescent Coupling in III-V Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Myles A.; Lumb, Matthew P.; Hoheisel, Raymond; Geisz, John F.; France, Ryan M.; Scheiman, David; Walters, Robert J.; Jenkins, Phillip P.

    2015-06-14

    Advances in the architecture of GaInP solar cells have recently lead to ~21% conversion efficiencies under the global spectrum due to high radiative efficiencies, and the resulting strong luminescent coupling in GaInP/GaAs tandems has lead to record dual-junction efficiencies. The suitability of these newer GaInP cells to space applications has not been examined, however. Here we present a study to compare the radiation hardness of rear-heterojunction and more traditional GaInP junctions and the resulting luminescent coupling. Pairs of GaInP/GaAs tandem cells were irradiated with 1 MeV electrons at fluences up to 1015 e/cm2. The cells were thoroughly characterized, before and after irradiation, by measuring the quantum efficiency, IV characteristics, electroluminescence and luminescent coupling. We find the luminescent coupling to be unchanged below ~1013 e/cm2, and to decrease to zero by 1015 e/cm2. For all fluence levels, the rear heterojunction structure had a higher coupling constant than the front junction structure. Despite these advantages, the efficiency degraded at the same rate for both structures.

  15. Las acciones punitivas físicas: una perspectiva intercultural

    Directory of Open Access Journals (Sweden)

    María del Mar BADIA MARTÍN

    2009-11-01

    Full Text Available RESUMEN: En este artículo se enmarca el término de castigo corporal diferenciándolo del de abuso físico, a la vez que se realiza un análisis sobre la perspectiva de diferentes países con relación a la aplicación de dicha forma de castigo. La investigación y la teoría analizada, muestran cómo ciertas sociedades todavía reclaman el uso del castigo corporal como una forma más para frenar los comportamientos molestos. Esto nos puede llevar a pensar que no se debe abandonar la tesis sobre el hecho de que esta estrategia es rechazada en la actualidad por todos los sectores de la sociedad, sino que debemos ser sensibles a la idea de que ciertos profesionales y familias lo consideran un instrumento más para la corrección de conductas consideradas como no correctas.ABSTRACT: In this article the term corporal punishment is differentiated from that of physical abuse, and at the same time an analysis is made of the perspective of different countries in relation to the application of this type of punishment. The research and theory analysed show how certain societies still call for the use of corporal punishment as one more way to stop troublesome behaviour. This can lead us to think that the thesis that this strategy is currently rejected by all sectors of society should not be abandoned, but we should be aware that certain professionals and families still consider it one more instrument for correcting behaviour considered as incorrect.

  16. Sanidad animal con perspectiva ecológica

    OpenAIRE

    Delpietro, Horacio

    1983-01-01

    La ecología sanitaria se define como “el estudio de las enfermedades desde una perspectiva eminentemente ecológica, utilizando metodologías propias y convencionales, y tratando de aplicar principalmente estrategias ecológicas, para llegar al control cte las mismas” . Desmenuzando este intento de definición se tratará de comprender en este trabajo, qué es una perspectiva o un punto de vista ecológico en el estudio de las enfermedades. Trabajo galardonado con el Premio Profesor Dr....

  17. Marcadores SNP: conceitos básicos, aplicações no manejo e no melhoramento animal e perspectivas para o futuro SNP markers: basic concepts, applications in animal breeding and management and perspectives for the future

    Directory of Open Access Journals (Sweden)

    Alexandre Rodrigues Caetano

    2009-07-01

    molecular markers to characterize genetic resources and generate tools for animal breeding and management date from the end of the 80s. In the last 20 years the technologies to generate molecular data went through several innovation cycles. The last wave of technological innovations represents a true revolution, bringing methods to identify and genotype SNP (Single Nucleotide Polymorphism markers in large scale. High density DNA chips were generated to genotype from tens of thousands to hundreds of thousands of SNPs in a single assay. Furthermore, other medium density technologies allow for the genotyping of tens to hundreds of makers, in high numbers of samples, with very high speed and automation. These new technologies allowed for the generation of new applications, such as the methods to genetically evaluate and select animals based on their Genomic Value (Genomic Estimated Breeding Value - GEBV. The statistical methods for genomic evaluation and selection are in full development, but the technology already became reality with the release of the first bull summary for the Holstein breed with GEBVs for milk production and quality traits in January 2009. In addition, these technologies brought new options for development of diagnostic tests for paternity testing, individual identification, traceability, etc. Also, these new technologies to genotype SNP markers facilitated the development of outsourcing companies to generate molecular data, allowing any group to conduct advanced experiments, always using the most advanced technologies, without the need of investments into equipment.

  18. Synthesis, luminescent properties and white light emitting diode application of Ba{sub 7}Zr(PO{sub 4}){sub 6}:Eu{sup 2+} yellow-emitting phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chenxia; Dai, Jian [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Deng, Degang, E-mail: dengdegang@cjlu.edu.cn [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Changyu [College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 (China); Xu, Shiqing, E-mail: sxucjlu@163.com [College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-10-15

    A yellow-emitting phosphor, Eu{sup 2+}-activated Ba{sub 7}Zr(PO{sub 4}){sub 6} phosphor was synthesized by solid-state reaction method and the luminescence properties were investigated. The phosphor exhibited strong absorption in near ultraviolet (n-UV) region, which matched well with the n-UV chip. Upon excitation at 370 nm, the Ba{sub 7}Zr(PO{sub 4}){sub 6}:Eu{sup 2+} phosphor has a broad yellow emission band with a peak at 585 nm and a full width at half maximum of 178 nm wider than that of the commercial yellow-emitting YAG:Ce{sup 3+} phosphor. The mechanism of concentration quenching of Eu{sup 2+} ions in Ba{sub 7}Zr(PO{sub 4}){sub 6} phosphor is verified to be energy transfer among the nearest neighbor Eu{sup 2+} ions. The CIE value and temperature dependence of photoluminescence were also discussed. Furthermore, a white-LED was fabricated using a 370 nm UV chip pumped with a blend of phosphors consisting of yellow-emitting Ba{sub 6.97}Zr(PO{sub 4}){sub 6}:0.03Eu{sup 2+} and blue-emitting BaMgAl{sub 10}O{sub 17}:Eu{sup 2+} phosphors, which achieved a CIE of (0.3329, 0.3562) with a color-rendering index of 86.4 around the CCT of 5487 K.

  19. Polímeros luminescentes como sensores de radiação não ionizante: aplicação em fototerapia neonatal Luminescent polymers as sensor for non-ionizing radiation: neonatal phototherapy application

    Directory of Open Access Journals (Sweden)

    Cláudia K. B. de Vasconcelos

    2007-12-01

    Full Text Available Neste trabalho foram observadas mudanças nas propriedades de emissão e de absorção de soluções de poli[2-metoxi-5-(2’etil-hexiloxi-p-fenilenovinileno] - MEH-PPV com a exposição à radiação na região espectral do visível na faixa de 425 a 500 nm. Os resultados demonstram a possibilidade do uso de sistemas luminescentes como elemento ativo de detectores de radiação não ionizante, sobretudo na região empregada na profilaxia e no tratamento fototerápico da hiperbilirrubinemia neonatal.In this work, we observed changes in the emission and absorption properties of poly[(2-methoxy-5-hexyloxy-p-phenylenevinylene] - MEH-PPV solutions in the visible range from 425 to 500 nm. The main results demonstrated the possibility of using luminescent polymers as active material of non-ionizing radiation dosimeter, in such a way that MEH-PPV is promising for use in a management system to monitor radiation absorbed by newborns during phototherapy treatment of neonatal hyperbilirubinemia.

  20. In situ synthesis, enhanced luminescence and application in dye sensitized solar cells of Y2O3/Y2O2S:Eu3+ nanocomposites by reduction of Y2O3:Eu3+

    Science.gov (United States)

    Yuan, Guohai; Li, Mingxia; Yu, Mingqi; Tian, Chungui; Wang, Guofeng; Fu, Honggang

    2016-11-01

    Y2O3/Y2O2S:Eu3+ nanocomposites were successfully prepared by reducing Y2O3:Eu3+ nanocrystals. The obtained Y2O3/Y2O2S:Eu3+ nanocomposites not only can emit enhanced red luminescence excited at 338 nm, but also can be used to improve the efficiency of the dye sensitized solar cells, resulting an efficiency of 8.38%, which is a noticeable enhancement of 12% compared to the cell without Y2O3/Y2O2S:Eu3+ nanocomposites. The results of the incident photon to current, dynamic light scattering, and diffuse reflectance spectra indicated that the enhancement of the cell efficiency was mainly related to the light scattering effect of Y2O3/Y2O2S:Eu3+ nanocomposites. As a phosphor powder, the emission at ~615 nm of Y2O3/Y2O2S:Eu3+ was split into two sub-bands. Compared with Y2O3:Eu3+, the 5D0 → 7F0 and 5D0 → 7F1 emissions of Y2O3/Y2O2S:Eu3+ showed a little red-shift.

  1. Mujeres inmigrantes : realidades, estereotipos y perspectivas educativas

    Directory of Open Access Journals (Sweden)

    María Dolores Pérez Grande

    2008-01-01

    Full Text Available La perspectiva de género resulta imprescindible en el análisis del fenómeno migratorio en el que las mujeres son cada vez una parte más activa y relevante. Las mujeres aparecen en sus propios discursos como un colectivo enormemente heterogéneo que no se corresponde con los estereotipos de mujer analfabeta, sumisa o victima pasiva de sus circunstancias a la que hay que ayudar a desenvolverse. Por el contrario aparecen en su mayoría como mujeres fuertes, con iniciativa y en muchas ocasiones con estudios superiores y un estatus por encima de la media en sus países de origen, aunque tienen que vivir frecuentemente en España situaciones duras y dolorosas. Las problemáticas y recursos de las mujeres son muy variados y los proyectos de formación o educación no pueden restringirse a la alfabetización, el idioma o la formación laboral en determinadas profesiones consideradas típica y estereotipadamente femeninas, sino que es preciso facilitar la integración en proyectos educativos normalizados, en conjunto con el resto de la población autóctona, impulsando un reconocimiento más eficaz de los conocimientos formales y no formales que traen de sus países de origen.The genre perspective turns out to be indispensable in the analysis of themigratory phenomenon in which women are gradually a more active and relevant part. The women appear in their own speeches as an enormously heterogeneous group that does not correspond with the stereotypes ofilliterate,submissive woman or passive victim oftheir own circumstances who need tobe helped in their development. On the contrary they appear mainly as strong women, with initiative and on many occasions with top studies and a status over the average in their native lands, though they have to live frequently in Spain through hard and painful situations. The problems and resources of these women are very varied and the projects of training or education cannot be restricted to the literacy, the language

  2. From antenna to assay: lessons learned in lanthanide luminescence.

    Science.gov (United States)

    Moore, Evan G; Samuel, Amanda P S; Raymond, Kenneth N

    2009-04-21

    Ligand-sensitized, luminescent lanthanide(III) complexes are of considerable importance because their unique photophysical properties (microsecond to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts) make them well suited as labels in fluorescence-based bioassays. The long-lived emission of lanthanide(III) cations can be temporally resolved from scattered light and background fluorescence to vastly enhance measurement sensitivity. One challenge in this field is the design of sensitizing ligands that provide highly emissive complexes with sufficient stability and aqueous solubility for practical applications. In this Account, we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in homogeneous time-resolved fluorescence (HTRF) technology. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms and using multichromophore chelates to increase molar absorptivity; earlier examples utilized a single pendant chromophore (that is, a single "antenna"). Ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to approximately 60% that are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM chromophore and time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of these chromophores as a tool to guide ligand design. Additionally, we have investigated chiral IAM ligands that yield Tb(III) complexes possessing both high quantum yield values and strong circularly

  3. Luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres as efficient labels in DNA microarrays

    Science.gov (United States)

    Enrichi, F.; Riccò, R.; Meneghello, A.; Pierobon, R.; Marinello, F.; Schiavuta, P.

    2009-08-01

    Luminescent nanoparticles are gaining more and more interest in bio-labeling and bio-imaging applications, like for example DNA microarray. This is a high-throughput technology used for detection and quantification of nucleic acid molecules and other ones of biological interest. The analysis is resulting by specific hybridization between probe sequences deposited in array and a target ss-DNA usually expressed by PCR and functionalized by a fluorescent dye. These organic labels have well known disadvantages like photobleaching and limited sensitivity. Quantum dots may be used as alternatives, but they present troubles like blinking, toxicity and excitation wavelengths out of the usual range of commercial instruments, lowering their efficiency. Therefore in this work we investigate a different strategy, based on the use of inorganic silica nanospheres incorporating standard luminescent dyes or rare earth doped nanocrystals. In the first case it is possible to obtain a high luminescence emission signal, due to the high number of dye molecules that can be accommodated into each nanoparticle, reduced photobleaching and environmental protection of the dye molecules thanks to the encapsulation in the silica matrix. In the second case, rare earths exhibit narrow emission bands (easy identification), large Stokes shifts (efficient discrimination of excitation and emission) and long luminescence lifetimes (possibility to perform time-delayed analysis) which can be efficiently used for the improvement of signal to noise ratio. The synthesis and characterization of good luminescent silica spheres either by organic dye-doping or by rare-earth-doping are investigated and reported. Moreover, their application in the DNA microarray technology in comparison to the use of standard molecular fluorophores or commercial quantum dots is discussed. The cheap and easy synthesis of these luminescent particles, the stability in water, the surface functionalization and bio

  4. Recent Advance of Biological Molecular Imaging Based on Lanthanide-Doped Upconversion-Luminescent Nanomaterials

    Directory of Open Access Journals (Sweden)

    Yuanzeng Min

    2014-02-01

    Full Text Available Lanthanide-doped upconversion-luminescent nanoparticles (UCNPs, which can be excited by near-infrared (NIR laser irradiation to emit multiplex light, have been proven to be very useful for in vitro and in vivo molecular imaging studies. In comparison with the conventionally used down-conversion fluorescence imaging strategies, the NIR light excited luminescence of UCNPs displays high photostability, low cytotoxicity, little background auto-fluorescence, which allows for deep tissue penetration, making them attractive as contrast agents for biomedical imaging applications. In this review, we will mainly focus on the latest development of a new type of lanthanide-doped UCNP material and its main applications for in vitro and in vivo molecular imaging and we will also discuss the challenges and future perspectives.

  5. Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Belomoin, Gennadiy [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801 (United States); Therrien, Joel [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801 (United States); Nayfeh, Munir [Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801 (United States)

    2000-08-07

    We dispersed electrochemical etched silicon into a colloid of ultrasmall ultrabright Si nanoparticles. Direct imaging using transmission electron microscopy shows particles of {approx}1 nm in diameter, and infrared and electron photospectroscopy show that they are passivated with hydrogen. Under 350 nm excitation, the luminescence is dominated by an extremely strong blue band at 390 nm. We replace hydrogen by a high-quality ultrathin surface oxide cap by self-limiting oxidation in H{sub 2}O{sub 2}. Upon capping, the excitation efficiency drops, but only by a factor of 2, to an efficiency still two-fold larger than that of fluorescein. Although of slightly lower brightness, capped Si particles have superior biocompatability, an important property for biosensing applications. (c) 2000 American Institute of Physics.

  6. Uniform, luminescent Eu:LuF{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Becerro, Ana I., E-mail: anieto@icmse.csic.es; Gonzalez-Mancebo, Daniel; Ocaña, Manuel [Instituto de Ciencia de Materiales de Sevilla (CSIC-University of Seville) (Spain)

    2015-01-15

    A simple procedure for the synthesis of orthorhombic, uniform, LuF{sub 3} particles with two different morphologies (rhombus- and cocoon-like) and nanometer and sub-micrometer size, respectively, is reported. The method consists in the aging, at 120 °C for 2 h, a solution containing [BMIM]BF{sub 4} ionic liquid (0.5 mL) and lutetium acetate (in the case of the rhombi) or lutetium nitrate (in the case of the cocoons) (0.02 M) in ethylene glycol (total volume 10 mL). This synthesis method was also adequate for the synthesis of Eu{sup 3+}-doped LuF{sub 3} particles of both morphologies, whose luminescence properties were investigated in detail. The experimental observations reported herein suggest that these materials are suitable phosphors for optoelectronic as well as in vitro biotechnological applications.

  7. Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Maurice, Vincent [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Rivolta, Ilaria [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Vincent, Julien [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France); Raccurt, Olivier [CEA Grenoble, Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN) (France); Rouzaud, Jean-Noel [Ecole Normale superieure de Paris, Laboratoire de Geologie (France); Miserrochi, Giuseppe [University of Milano-Bicocca, Department of Experimental Medicine (DIMS) (Italy); Doris, Eric [CEA, Service de Chimie Bioorganique et de Marquage, iBiTecS (France); Reynaud, Cecile; Herlin-Boime, Nathalie, E-mail: nathalie.herlin@cea.fr [CEA Saclay, DSM/IRAMIS/SPAM-LFP (France)

    2012-02-15

    This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core-shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core-shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.

  8. Identifying irradiated flours by photo-stimulated luminescence technique

    Science.gov (United States)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-02-01

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  9. Identifying irradiated flours by photo-stimulated luminescence technique

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi [Faculty of Science and Technology, National University of Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Othman, Zainon; Abdullah, Wan Saffiey Wan [Malaysian Nuclear Agency, Bangi 43000 Kajang, Selangor (Malaysia)

    2014-02-12

    Photo-stimulated luminescence (PSL) technique was used in this study to detect gamma irradiation treatment of five types of flours (corn, rice, tapioca, wheat and glutinous rice) at four different doses 0, 0.2, .05 and 1kGy. The signal level was compared with two threshold values (700 and 5000). With the exception of glutinous rice, all irradiated samples produced a strong signal above the upper threshold (5000 counts/60s). All control samples produced negative result with the signals below the lower threshold (700 counts/60s) suggesting that the samples have not been irradiated. Irradiated glutinous rice samples produced intermediate signals (700 - 5000 counts/60s) which were subsequently confirmed using calibrated PSL. The PSL signals remained stable after 90 days of storage. The findings of this study will be useful to facilitate control of food irradiation application in Malaysia.

  10. Circularly Polarized Luminescence: A Review of Experimental and Theoretical Aspects.

    Science.gov (United States)

    Longhi, Giovanna; Castiglioni, Ettore; Koshoubu, Jun; Mazzeo, Giuseppe; Abbate, Sergio

    2016-10-01

    We review the present status of experiments and calculations for circularly polarized luminescence (CPL) of simple organic molecules and of stimuli-responsive organic molecules. Together with the historical report of the main instrumental approaches, a few crucial points about experiments are tackled, with the aim of defining measurement protocols, in view of the wide availability of commercial apparatuses in the near future. The calculations aimed at interpreting the CPL spectra, mostly based on time-dependent Density Functional Theory (TD-DFT) calculations, which started around 2010, are reviewed, limiting the discussion to small to mid-sized molecules. Some applications of CPL spectra of organic molecules-based systems are presented, with a focus especially on two fields: material science and biology. Chirality 28:696-707, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Luminescence chronology of a second millenium BCE settlement near Porbandar on the Gujarat coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Thomas, P.J.; Vora, K.H.; Sundaresh

    ) and optically stimulated luminescence (OSL) dating of two potshards. The obtained luminescence ages are found to be in agreement with other archaeological findings. The implications of the luminescence ages on the maritime history of the area and the cultural...

  12. Luminescence of Au(I)-thiolate complex affected by solvent

    Science.gov (United States)

    Yang, Lina; Cao, Yuanjie; Chen, Juan; Sun, Zhihu; Yao, Tao; Jiang, Yong; Wei, Shiqiang

    2017-08-01

    This work presents a study on the correlation between luminescence property of Au(I)-SR (SR: thiolate) complexes and solvent polarity. Luminescent [Au15(SR)14-16]+ complexes were synthesized in the weakly polar solvent of toluene, while the non-luminescent [Au7(SR)6]+ species were obtained by the same synthesis method in the polar solvent of ethanol. The dependence of luminescence intensity on the mixed solvent with various toluene/ethanol ratios was also explored. It is proposed that the luminescence of Au(I)-SR complexes originates from the aggregation of the bilayer supramolecular structures induced by the weakly polar solvent. This aggregation strengthens the intra and intercomplex aurophilic Au(I)···Au(I) interactions and subsequently enhances the luminescence intensity of the complexes.

  13. Luminescence studies on europium-strontium phthalate system.

    Science.gov (United States)

    Yang, Limin; Zhao, Ying; Su, Yunlan; Wu, Jinguang

    2002-11-01

    New lanthanide luminescence materials were prepared. The main component lanthanide chelates generally need a relatively high content of rare earth. Inorganic luminescence materials only need low rare earth concentration using doped method. Similarly, lanthanide chelates can be added to complex matrix by doped method. In this way, low rare earth concentration emission was successful in the lanthanide chelates system as well. The influence of europium ion concentration on luminescence intensities was discussed. When the europium ion weight in the complex is only about 0.6%, the sample exhibits good luminescence properties. The fluorescence, Fourier transform infrared spectra, micro-Raman and electron spin resonance spectra of the samples were measured. And a possible luminescence mechanism was suggested by the inorganic doped mechanism and the luminescence of lanthanide complexes together.

  14. Phosphate modulated luminescence in lanthanum vanadate nanorods- Catechin, polyphenolic ligand

    Science.gov (United States)

    Tamilmani, Vairapperumal; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan

    2017-08-01

    Rare earth orthovanadates and phosphates offer a very high opportunity for fabrication of nanoscale devices that exploit their luminescence properties. Optimization of luminescence by way of modulation of size, shape, structure, and morphology has been an area of study for several researchers. There has been a debate as to whether doped orthophosphate or orthovanadate is better luminescent material as both are chemically similar. It has been reported earlier that catechin hydrate can play the role of a structure director and thus influence the luminescence properties of orthovanadates. In this work, a catechin modulated the synthesis of Eu-doped lanthanum orthophosphate by phosphate substitution into vanadate host lattice is reported. A mechanistic understanding of the luminescence changes in LaMO4 has been proposed. During the substitution of V with P, catechin modulates the structure between 1D nanorods and nanowires. The host crystal structure, shape, and size influence the luminescence properties in doped LaMO4.

  15. Paradigma e Disciplina nas Perspectivas de Kuhn e Morin

    Directory of Open Access Journals (Sweden)

    Sérgio Luís Boeira

    2009-07-01

    Full Text Available http://dx.doi.org/10.5007/1807-1384.2009v6n1p90   Este ensaio compara o conceito de paradigma nas perspectivas de Thomas Kuhn e Edgar Morin. Apesar da relevância internacional de suas obras e de suas contribuições para a história da ciência e para a filosofia da ciência, observa-se na literatura uma falta de estudos comparativos sobre suas principais idéias, o que tem gerado confusões e simplificações. O ensaio parte de extensa pesquisa de obras publicadas pelos autores em âmbito internacional. Na primeira seção, trata-se da perspectiva de Kuhn sobre diversas noções, como paradigma, matriz disciplinar, comunidade científica e incomensurabilidade. Na segunda, examina-se a perspectiva de Morin sobre paradigma disjuntor-redutor e paradigma da complexidade. Na terceira seção, comparam-se suas perspectivas sobre progresso científico, a partir da noção de disciplina, para discernir aspectos convergentes e divergentes em suas obras, resumidos nas conclusões. Palavras-chave: Paradigma; Disciplina; Filosofia da ciência.

  16. Solid-matrix luminescence analysis. Progress report, 15 June 1992--31 October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hurtubise, R.J.

    1994-12-31

    Interaction models were developed for moisture effects on room-temperature fluorescence (RTF) and room-temperature phosphorescence (RTP) of compounds adsorbed on filter paper. The models described both dynamic and matrix quenching and also related the Young modulus of filter paper to quenching of phosphor on moist filter paper. Photophysical parameters for lumiphors in solution and on solid matrices were compared. Results showed that for some compounds, solid-matrix luminescence has greater analytical potential than solution luminescence. Also, the solid-matrix systems into one of two categories depending on how the intersystem crossing rate constants change with temperature. The first study was carried out on effects of heavy atom on solid-matrix luminescence. With some heavy atoms, maximum solid-matrix phosphorescence quantum yield was obtained at room temperature, and there was no need to use low temperature to obtain a strong phosphorescence signal. By studying solid-matrix luminescence properties of phosphors adsorbed on sodium acetate and deuterated sodium acetate, an interaction model was developed for p-aminobenzoic acid anion adsorbed on sodium acetate. It was shown that the energy-gap law was applicable to solid-matrix luminescence. Also, deuterated phenanthrene and undeuterated phenanthrene were used to study nonradiative transition of excited triplet state of adsorbed phosphors. Heat capacities of several solid matrices were obtained vs temperature and related to vibrational coupling of solid matrix with phosphor. Photophysical study was performed on the hydrolysis products of benzo(a)pyrene-DNA adducts. Also, an analytical method was developed for tetrols in human lung fractions. Work was initiated on the formation of room temperature glasses with glucose and trehalose. Also, work has begun for the development of an oxygen sensor by measuring the RTP quenching of triphenylene on filter paper.

  17. Highly sensitive nonlinear luminescent ceramics for volumetric and multilayer data carriers

    Energy Technology Data Exchange (ETDEWEB)

    Martynovich, E F; Dresvyanskiy, V P [Irkutsk Branch of Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Irkutsk (Russian Federation); Voitovich, A P [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus); Bagayev, S N [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-10-31

    The interaction of optical ceramics based on wide-bandgap crystals with near-IR femtosecond laser radiation is studied experimentally. The formation of luminescent centres in LiF and MgF{sub 2} ceramics under the action of single laser pulses is considered. Two interaction regimes are used. In the regime of low-aperture focusing of laser radiation (800 nm, 30 fs, 0.3 mJ), multiple selffocusing and filamentation in the samples are observed. The luminescent centres are formed in thin channels induced by light filaments. The average effective self-focusing length is ∼100 μm; the formation of luminescent centres begins at this length and ceases at a wavelength of about 380 mm. The luminescent trace (spur) induced by a single laser filament was ∼30 μm long and 1.3 μm in diameter. The second regime of light interaction with the sample was based on high-aperture focusing with a simultaneous decrease in the laser pulse energy. This led to the formation of single pits with a diameter smaller than the optical diffraction limit. The luminescent centres induced by the laser radiation were aggregated colour centres. The mechanism of their creation included the highly-nonlinear generation of electron – hole pairs in the filamentation region, their recombination with the formation of anion excitons and the decay of excitons into Fresnel defects by the Lushchik – Vitol – Hersh – Pooley mechanism, as well as their recharging, migration and aggregation. (laser applications and other topics in quantum electronics)

  18. Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating

    DEFF Research Database (Denmark)

    Sohbati, Reza; Murray, Andrew S.; Chapot, Melissa S.

    2012-01-01

    We pioneer a technique of surface-exposure dating based upon the characteristic form of an optically stimulated luminescence (OSL) bleaching profile beneath a rock surface; this evolves as a function of depth and time. As a field illustration of this new method, the maximum age of a premier examp......, at decadal to millennial timescales or perhaps longer (depending on the environmental dose rate) even for material subsequently buried. This has considerable potential in many archeological, geological and geo-hazard applications....

  19. Particle image velocimetry of highly luminescent, pressurized combustion flows of aero engine combustors

    OpenAIRE

    Schroll, Michael; Klinner, Joachim; Lange, Lena; Willert, Christian

    2013-01-01

    This contribution describes recent efforts leading toward the successful application of particle image velocimetry (PIV) in highly luminescent flames avoiding saturation of the second frame of commonly available double shutter PIV cameras, which is usually inevitable when using their interline-transfer CCD sensors. Information on fuel placement, reaction zone and temperature field among other quantities can be provided by frequently used spectroscopic techniques. The velocity information is o...

  20. Shape-controlled assembly of luminescent dumbbell-like CdTe cystine nanocomposites

    Science.gov (United States)

    Bao, Haifeng; Cui, Xiaoqiang; Li, Chang Ming; Zang, Jianfeng

    2007-11-01

    A shape perfect luminescent dumbbell with size up to several microns was prepared by incorporating CdTe quantum dots (QDs) into locally created L-cystine matrices, and the photoluminescence of the shaped dumbbells can be easily tailored by reaction time. The growth mechanism was thoroughly investigated. This work not only gives a potential application in optical devices, but also gives a deep insight on the assembly mechanism of nanomaterials into micron-size objects.

  1. Shape-controlled assembly of luminescent dumbbell-like CdTe-cystine nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bao Haifeng; Cui Xiaoqiang; Li Changming; Zang Jianfeng [School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive 637457 (Singapore); Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive 637457 (Singapore)

    2007-11-14

    A shape perfect luminescent dumbbell with size up to several microns was prepared by incorporating CdTe quantum dots (QDs) into locally created L-cystine matrices, and the photoluminescence of the shaped dumbbells can be easily tailored by reaction time. The growth mechanism was thoroughly investigated. This work not only gives a potential application in optical devices, but also gives a deep insight on the assembly mechanism of nanomaterials into micron-size objects.

  2. Synthesis and Luminescence Properties of Transparent Nanocrystalline GdF3:Tb Glass-Ceramic Scintillator

    OpenAIRE

    Lee, Gyuhyon; Savage, Nicholas; Wagner, Brent; Zhang, Yuelan; Jacobs, Benjamin; Menkara, Hisham; Summers, Christopher; Kang, Zhitao

    2013-01-01

    Transparent glass-ceramic containing rare-earth doped halide nanocrystals exhibits enhanced luminescence performance. In this study, a glass-ceramic with Tb doped gadolinium fluoride nanocrystals embedded in an aluminosilicate glass matrix is investigated for X-ray imaging applications. The nanocrystalline glass-ceramic scintillator was prepared by a melt-quench method followed by an anneal. The GdF3:Tb nanocrystals precipitated within the oxide glass matrix during the processing and their lu...

  3. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov

    2012-01-01

    thermoelectrically cooled NIR sensitive PMT (detection window peak at 855 nm, FWHM 27 nm). Software and electronics have been modified to allow standard TL and OSL measurements in the same sequence as RL measurements. Together with a new bleaching source based on a high-power UV LED (395 nm; 700 mW/cm2......This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non......-uniformity.We first describe improvements to the existing RL option to allow near infra-red detection (NIR) during irradiation by the built-in 90Sr/90Y beta source. The RL optical signal is collected by a liquid light guide through an F34-901 interference filter and detection is based on a dedicated...

  4. Anomalous enhancement of nanodiamond luminescence upon heating

    Science.gov (United States)

    Khomich, A. A.; Kudryavtsev, O. S.; Dolenko, T. A.; Shiryaev, A. A.; Fisenko, A. V.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    Characteristic photoluminescence (PL) of nanodiamonds (ND) of different origin (detonation, HPHT, extracted from meteorite) was studied in situ at high temperatures in the range 20-450 °C. Luminescence was excited using 473 nm laser and recorded in the range 500-800 nm. In contrast to decrease of point defect PL in bulk diamond with temperature, we found that the ND luminescence related to ND surface defects increases almost an order of magnitude upon heating to 200-250 °C. The observed effect reveals that water adsorbed on ND surfaces efficiently quenches PL; water desorption on heating leads to dramatic increase of the radiative de-excitation.

  5. Materials for luminescent greenhouse solar collectors.

    Science.gov (United States)

    Levitt, J A; Weber, W H

    1977-10-01

    Luminescent greenhouse solar collectors are potentially useful for concentrating sunlight onto photovoltaic power cells. Measurements of the performance of small-scale collectors made of two commercially available materials (Owens-Illinois ED2 neodymium-doped laser glass and rhodamine 6G-doped plastic) are presented. The results are encouraging, but they indicate a need for further spectral sensitization and for reduced matrix loss coefficient. The measurements with monochromatic illumination agree with the predictions of a mathematical model developed to take account of reemission following the absorption of luminescence. Under solar illumination, the model predicts photon flux concentrations of about 15 for optimized full-scale collectors made of the materials studied and concentrations of 110 for reasonably improved glass.

  6. Modeling and simulation of luminescence detection platforms.

    Science.gov (United States)

    Salama, Khaled; Eltoukhy, Helmy; Hassibi, Arjang; El-Gamal, Abbas

    2004-06-15

    Motivated by the design of an integrated CMOS-based detection platform, a simulation model for CCD and CMOS imager-based luminescence detection systems is developed. The model comprises four parts. The first portion models the process of photon flux generation from luminescence probes using ATP-based and luciferase label-based assay kinetics. An optics simulator is then used to compute the incident photon flux on the imaging plane for a given photon flux and system geometry. Subsequently, the output image is computed using a detailed imaging sensor model that accounts for photodetector spectral response, dark current, conversion gain, and various noise sources. Finally, signal processing algorithms are applied to the image to enhance detection reliability and hence increase the overall system throughput. To validate the model, simulation results are compared to experimental results obtained from a CCD-based system that was built to emulate the integrated CMOS-based platform.

  7. Luminescent lanthanide chelates and methods of use

    Science.gov (United States)

    Selvin, Paul R.; Hearst, John

    1997-01-01

    The invention provides lanthanide chelates capable of intense luminescence. The celates comprise a lanthanide chelator covalently joined to a coumarin-like or quinolone-like sensitizer. Exemplary sensitzers include 2- or 4-quinolones, 2- or 4-coumarins, or derivatives thereof e.g. carbostyril 124 (7-amino-4-methyl-2-quinolone), coumarin 120 (7-amino-4-methyl-2-coumarin), coumarin 124 (7-amino-4-(trifluoromethyl)-2-coumarin), aminomethyltrimethylpsoralen, etc. The chelates form high affinity complexes with lanthanides, such as terbium or europium, through chelator groups, such as DTPA. The chelates may be coupled to a wide variety of compounds to create specific labels, probes, diagnostic and/or therapeutic reagents, etc. The chelates find particular use in resonance energy transfer between chelate-lanthanide complexes and another luminescent agent, often a fluorescent non-metal based resonance energy acceptor. The methods provide useful information about the structure, conformation, relative location and/or interactions of macromolecules.

  8. Analysis of structure origin and luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glass.

    Science.gov (United States)

    Chen, Fangze; Jing, Xufeng; Wei, Tao; Wang, Fengchao; Tian, Ying; Xu, Shiqing

    2014-08-14

    The near infrared luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glasses have been investigated. The various effects on structure and 1.53 μm emission were analyzed as a function of Yb(3+) concentration. The energy transfer mechanism was proposed. High measured lifetime (10.75 ms), large effective full widths at half maximum (73.71 nm) and large gain per unit length (62.8 × 10(-)(24)cm(2)s) have been achieved in prepared glass. The present glass co-doped with 6mol% YbF3 and 2 mol% ErF3 showed magnificent luminescence properties for telecommunication application.

  9. Probing the surface states in nano ZnO powder synthesized by sonication method: Photo and thermo-luminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Dojalisa [Institute of Minerals and Materials Technology, Bhubaneswar (India); Acharya, B.S., E-mail: bsacharya1950@gmail.co [Institute of Minerals and Materials Technology, Bhubaneswar (India); Bag, B.P. [Institute of Minerals and Materials Technology, Bhubaneswar (India); Basanta Singh, Th. [Luminescence Dating Laboratory, Manipur University, Imphal (India); Gartia, R.K. [Department of Physics, Manipur University, Imphal (India)

    2010-08-15

    Zinc oxide, a transparent conducting oxide, has been synthesized in a novel route by application of continuous and pulsed mode ultrasonication. The powders prepared in this method are found to be nano particles of 24 and 20 nm respectively. The behaviour of two powders is found to be different when X-ray diffraction, photoluminescence, and Fourier transform infrared spectra were recorded. The thermo luminescence behaviour was also found to be different. It has been possible to incorporate H ion into the system by sonication process. Surface states created by sonication process are found to influence the photo and thermo luminescence of the system.

  10. Luminescent and transparent nanopaper based on rare-earth up-converting nanoparticle grafted nanofibrillated cellulose derived from garlic skin.

    Science.gov (United States)

    Zhao, Jingpeng; Wei, Zuwu; Feng, Xin; Miao, Miao; Sun, Lining; Cao, Shaomei; Shi, Liyi; Fang, Jianhui

    2014-09-10

    Highly flexible, transparent, and luminescent nanofibrillated cellulose (NFC) nanopaper with heterogeneous network, functionalized by rare-earth up-converting luminescent nanoparticles (UCNPs), was rapidly synthesized by using a moderate pressure extrusion paper-making process. NFC was successfully prepared from garlic skin using an efficient extraction approach combined with high frequency ultrasonication and high pressure homogenization after removing the noncellulosic components. An efficient epoxidation treatment was carried out to enhance the activity of the UCNPs (NaYF4:Yb,Er) with oleic acid ligand capped on the surface. The UCNPs after epoxidation then reacted with NFC in aqueous medium to form UCNP-grafted NFC nanocomposite (NFC-UCNP) suspensions at ambient temperature. Through the paper-making process, the assembled fluorescent NFC-UCNP hybrid nanopaper exhibits excellent properties, including high transparency, strong up-conversion luminescence, and good flexibility. The obtained hybrid nanopaper was characterized by transmission electron microscopy (TEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), field emission-scanning electron microscope (FE-SEM), up-conversion luminescence (UCL) spectrum, and ultraviolet and visible (UV-vis) spectrophotometer. The experimental results demonstrate that the UCNPs have been successfully grafted to the NFC matrix with heterogeneous network. And the superiorly optical transparent and luminescent properties of the nanopaper mainly depend on the ratio of UCNPs to NFC. Of importance here is that, NFC and UCNPs afford the nanopaper a prospective candidate for multimodal anti-counterfeiting, sensors, and ion probes applications.

  11. Luminescence from Tube-Arrest Bubbles in Pure Glycerin

    Institute of Scientific and Technical Information of China (English)

    陈岐岱; 王龙

    2004-01-01

    Single transient cavitation bubble with luminescence has been generated in pure glycerin by using the ‘tube arrest'method. The analyses of high-speed photograph and light emission data suggest that the light emission would be a single bubble sonoluminescence. The luminescence pulse width is observed to wry from sub-nanosecond to about 30 ns. The width and intensity of luminescence pulses increases with the height of the liquid column height and decreases with the liquid temperature.

  12. Uranyl(VI) luminescence spectroscopy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Steudtner, Robin; Franzen, Carola; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Haubitz, Toni [Brandenburg Univ. of Technology, Cottbus-Senftenberg (Germany)

    2016-07-01

    We studied the influence of temperature and ionic strength on the luminescence characteristics (band position, decay time and intensity) of the free uranyl ion (UO{sub 2}{sup 2+}) in acidic aqueous solution. Under the chosen conditions an increasing temperature reduced both intensity and luminescence decay time of the UO{sub 2}{sup 2+} luminescence, but the individual U(VI) emission bands did not change.

  13. Luminescence spectra and kinetics of disordered solid solutions

    DEFF Research Database (Denmark)

    Klochikhin, A.; Reznitsky, A.; Permogorov, S.;

    1999-01-01

    We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline, disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state luminescence band shape caused by recombination of excitons localized in the......-time limit at excitation below the exciton mobility edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed behavior of the luminescence. [S0163-1829(99)11419-X]....

  14. A promising RVO4:Eu(3+), Li(+)@SiO2 (R = Gd, Y and Gd/Y) red-emitting phosphor with improved luminescence (cd/m(2)) and colour purity for optical display applications.

    Science.gov (United States)

    Rambabu, Urlagaddala; Munirathnam, Nagegownivari Ramachandra; Reddy, Busireddy Sudhakar; Chatterjee, Sandip

    2016-02-01

    Red emission intensity was optimized in three stages, by investigating the effects of: (i) host composition (Gd, Y and Gd/Y), (ii) codoping Li(+) as a sensitizer and, finally, (iii) with a SiO2 shell coating as a protecting layer. Lanthanide vanadate powder phosphors were synthesized using a modified colloidal precipitation technique. The effects of SiO2 coating on phosphor particles were characterized using scanning electron microscopy (SEM)-EDAX, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and photoluminescence (PL) measurements. An improvement in the PL intensity on Li codoping was due to improved crystallinity, which led to higher oscillating strengths for the optical transitions, and also a lowering of the inversion symmetry of Eu(3+) ions. Red emission intensity due to (5)D0  → (5)D2 transition of the phosphor Y0.94VO4:Eu(3+)0.05, Li(+)0.01 was enhanced by 22.28% compared with Y0.95VO4:Eu(3+)0.05, and was further improved by 58.73% with SiO2 coating. The luminescence intensity (I) and colour coordinates (x, y) of the optimized phosphor Y0.94VO4:Eu(3+)0.05, Li(+)0.01@SiO2, where I = 13.07 cd/m(2) and (x = 0.6721, y = 0.3240), were compared with values for a commercial red phosphor (Y2O2S:Eu(3+)), where I = 27 cd/m(2) and (x = 0.6522, y = 0.3437). The measured colour coordinates are superior to those of the commercial red phosphor, and moreover, match well with standard NTSC values (x = 0.67, y = 0.33). Copyright © 2015 John Wiley & Sons, Ltd.

  15. Screening of Danofloxacin residue in bovine tissue by terbium-sensitized luminescence on C18 sorbent strips

    Science.gov (United States)

    Danofloxacin (DANO) residue in bovine muscle was screened at 200 ng/g by terbium-sensitized luminescence (TSL) directly measured on 10x6 mm C18 sorbent strips. The analyte was first adsorbed on sorbent surface by immersion in defatted homogenates. After reagent application and desiccation, TSL was d...

  16. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation

    DEFF Research Database (Denmark)

    Nathan, R.P.; Thomas, P.J.; Jain, M.;

    2003-01-01

    simulations. It is concluded that the effect of beta, heterogeneity in complex environments for luminescence dating is two fold: (i) the infinite matrix dose rate is not universally applicable; its accuracy depends on the scale of the heterogeneity, and (ii) the interpretation of D-e distributions is complex...

  17. Synthesis and Luminescent Properties of Two New Triphenylamine-based Compounds with Heterocyclic Ring as Conjugation Bridge

    Institute of Scientific and Technical Information of China (English)

    LI,Qian-Qian; DI,Chong-An; YU,Gui; LIU,Yun-Qi; LI,Zhen; QIN,Jin-Gui

    2008-01-01

    Two new "D-π-D" type triphenylamine-based compounds with a heterocyclic ring,furan or thiophene,as a conjugation bridge were synthesized through a normal Wittig reaction which exhibited good thermal stability and strong luminescence.The preliminary light-emitting diode results indicate that they are promising candidates for the practical application.

  18. Thermally stimulated luminescence of urine salts

    Science.gov (United States)

    Bordun, O.; Drobchak, O.

    2008-05-01

    The thermally stimulated luminescence (TSL) of normal and pathological urine was studied. The presence of pathological salts leads to extinguishing of TSL intensity and to the appearance of additional stripes with maxima nearly 118 and 205K, except of characteristic stripes with the maxima nearly 173 and 260K. TSL stripes depend on urine constituents. The comparison of TSL intensity of normal and pathological urine is carried out and energies of thermal activation are determined for most intensive TSL stripes.

  19. Intrinsic luminescence of alkali silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, V.I.; Grabovskis, V.Y.; Tolstoi, M.N.; Vitol, I.K.

    1986-09-01

    This study obtains additional information on L centers and their role in electron excitation and intrinsic luminescence of a whole series. (Li, Na, K, Rb, and Cs) of alkali silicate glasses. The authors compare the features of the interaction with radiation of specimens of glass and crystal of a similar chemical composition, since silicates of alkali metals can be obtained in both the glassy and crystalline states.

  20. Eu2+ luminescence in strontium aluminates

    NARCIS (Netherlands)

    Dutczak, D.; Juestel, T.; Ronda, C.; Meijerink, A.

    2015-01-01

    The luminescence properties of Eu2+ doped strontium aluminates are reported and reviewed for a variety of aluminates, viz. SrAl12O19, SrAl4O7, Sr4Al14O25, SrAl2O4 and Sr3Al2O6. The aim of the research is to investigate the role of local coordination and covalency of the aluminate host lattice,

  1. Liquid Contact Luminescence from Semiconductor Laser Materials

    Science.gov (United States)

    1997-01-09

    Luminescence - Diagnostic As a diagnostic tool, LCL can provide much useful information about the quality of the epitaxial wafer prior to laser fabrication . In...diagnostic tool, LCL can provide a variety of useful information about the quality of the epitaxial wafer prior to laser fabrication . Temporal...the quality of the epitaxial laser wafer prior to laser fabrication . It is a quick, inexpensive, and non- destructive process that measures a variety

  2. Exciton luminescence in BaFCl crystal

    Energy Technology Data Exchange (ETDEWEB)

    Radzhabov, E

    1998-05-01

    The luminescence spectra and decay characteristics of both 5.45 and 3.4 eV bands in BaFCl oxygen-free crystals were investigated at 5-300 K temperature range using vacuum ultraviolet excitation as well as X-ray excitation. The similarities with excitons in alkali halides allow us to consider both excitons in BaFCl as on-center excitons and strong off-center excitons.

  3. Eu2+ luminescence in strontium aluminates

    NARCIS (Netherlands)

    Dutczak, D.; Juestel, T.; Ronda, C.; Meijerink, A.

    2015-01-01

    The luminescence properties of Eu2+ doped strontium aluminates are reported and reviewed for a variety of aluminates, viz. SrAl12O19, SrAl4O7, Sr4Al14O25, SrAl2O4 and Sr3Al2O6. The aim of the research is to investigate the role of local coordination and covalency of the aluminate host lattice, relat

  4. Luminescence of erbium ions in tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Savikin, Alexander P.; Grishin, Igor A.; Sharkov, Valery V.; Budruev, Andrei V., E-mail: budruev@gmail.com

    2013-11-15

    Optical characteristics of new generation of tellurite glasses having high stability against crystallization have been studied. As the initial reagents for the glasses synthesis on the base of tellurium oxide (TeO{sub 2}) there were used such oxides as WO{sub 3}, MoO{sub 3}, La{sub 2}O{sub 3}, Li{sub 2}CO{sub 3}, ZnO—Bi{sub 2}O{sub 2}CO{sub 3} and active components such as high purity Er{sub 2}O{sub 3}, Yb{sub 2}O{sub 3}, ErF{sub 3} and YbF{sub 3}. Intensities of luminescence at 1.53 µm of the erbium ions were determined after excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. - Graphical abstract: In contrast to the case of ZBLAN glass the TeO{sub 2}–WO{sub 3} (Er{sup 3+}) glass has bright intensity of luminescence at 1.53 µm for erbium ions that should be caused by excitation at 975 nm. Experimental data obtained have shown the possibility to use the studied glasses doped by Er{sup 3+} and Yb{sup 3+} as active elements for fiber and integrated optics. Display Omitted - Highlights: • We examined changes in growth of luminescence in doubly-doped tellurite glasses. • We found that luminescence grows in two orders by using Er{sup 3+} and Yb{sup 3+} at 1.53 μm. • We see possibility to use those glasses as active elements for integrated optics.

  5. Cerenkov luminescence imaging of medical isotopes

    OpenAIRE

    Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan

    2010-01-01

    The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies.

  6. Analyte-triggered luminescence of Eu{sup 3+} ions encapsulated in Nafion membranes -preparation of hybrid materials from in membrane chemical reactions-

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Sánchez, Rocío, E-mail: raguilar@ifuap.buap.mx [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Zelocualtecatl-Montiel, Iván [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Gálvez-Vázquez, María de Jesús [Depto. Química Analítica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570 (Mexico); Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico); Silva-González, Rutilo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado postal J-48, Puebla 72570 (Mexico)

    2017-04-15

    The possibility to perform chemical reactions inside polymer materials opens a unique opportunity to control and prepare materials for diverse solid-state applications. Based on the affinity of Eu{sup 3+} ions for oxygen functionalities, in this work we report the luminescence enhancement of Eu{sup 3+} ions inserted in Nafion membranes (Naf/Eu{sup 3+}) by in-situ complexing to oxalate. The formation of a europium-oxalate type complex enhances Eu{sup 3+} luminescence emission, which could be exploited for the construction of devices for oxalate sensing and the fabrication of highly luminescent materials. Possible analytical applications of Naf/Eu{sup 3+} membranes were evaluated by fluorescence spectroscopy through the linear response with concentration. The complex formation was followed by infrared spectroscopy and SEM-EDS analysis. - Highlights: • Luminescence enhancement by complexation of Eu{sup 3+} ions to oxalate inside Nafion. • Performance of chemical reactions inside Nafion/polymer membranes. • An easy and novel method to prepare luminescent solid devices. • Possibility to develop luminescent sensors by analyte-triggered optical response.

  7. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Patrick T.K.; Welling, Mick M.; Leeuwen, Fijs W.B. van [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, P.O. Box 9600, Leiden (Netherlands); Meskers, Stefan C.J. [Eindhoven University of Technology, Molecular Materials and Nanosystems, P.O. Box 513, Eindhoven (Netherlands); Valdes Olmos, Renato A. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, P.O. Box 9600, Leiden (Netherlands); Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Tanke, Hans [Leiden University Medical Center, Department of Molecular Cell Biology, P.O. Box 9600, Leiden (Netherlands)

    2013-08-15

    Integration of optical imaging technologies can further strengthen the field of radioguided surgery. Rather than using two separate chemical entities to achieve this extension, hybrid imaging agents can be used that contain both radionuclear and optical properties. Two types of such hybrid imaging agents are available: (1) hybrid imaging agents generated by Cerenkov luminescence imaging (CLI) of {beta}-emitters and (2) hybrid imaging agents that contain both a radioactive moiety and a fluorescent dye. One major challenge clinicians are now facing is to determine the potential value of these approaches. With this tutorial review we intend to clarify the differences between the two approaches and highlight the clinical potential of hybrid imaging during image-guided surgery applications. (orig.)

  8. Espacio sagrado y Religiosidad Popular: perspectivas veterotestamentarias

    Directory of Open Access Journals (Sweden)

    Rodrigo García

    2003-01-01

    Full Text Available El artículo, en primer lugar, establece las parámetros de espacio sagrado desde la perspectiva de las ciencias de la religión, como mediación de la experiencia del Absoluto en medio de lo relativo de la experiencia cotidiana, que se funda en él. Enseguida, selecciona una definición de 'religiosidad popular' que resulte instrumentalmente útil para el análisis del fenómeno en el Antiguo Testamento: lo 'popular' se contrapone a lo 'oficial' por el hecho de no ser realizado por el estamento instituido para ello, de modo que pudiendo compartir creencias y ritos, no tiene la garantía oficial de la autenticidad. Por último, trata de presentar el desarrollo de la categoría de espacio sagrado desde el éxodo hasta el exilio. La hipótesis que se plantea sostiene que, ya que desde el éxodo la experiencia de la liberación precedió al culto en un lugar oficial, establecido. Consecuentemente, la crítica profética a las prácticas religiosas acentúan los contenidos de dignidad para la vida de las pobres. La autenticidad de la fe bíblica no viene dada por la relación con la institución, sino por la coherencia con la experiencia del éxodo. Por ello se puede decir que el analogado principal del lugar sagrado es la vida y, por ende, el cuerpo del prójimoThe article in the first place establishes the parameters of the notion of sacred space, from the perspective of the religious sciences, i.e. as a mediation of the experience of the Absolute, amid the ordinary experience. It then provides an instrumental definition of popular religiosity for the analysis of this phenomenon in the Old Testament, where what is popular is opposed to what is official. Even though both forms share beliefs and rites, the latter is not carried out by the duly established institution and therefore lacks the warrant of officially. Finally, the article presents the development of the sacred space from the exodus until the exile, on the hypothesis that from the exodus

  9. Tb3+ sensitization in a deoxycholate organogel matrix, and selective quenching of luminescence by an aromatic nitro derivative.

    Science.gov (United States)

    Kandanelli, Ramesh; Sarkar, Anindya; Maitra, Uday

    2013-11-21

    In this article, we present the discovery of a metallo-organogel derived from a Tb(3+) salt and sodium deoxycholate (NaDCh) in methanol. The gel was made luminescent through sensitization of Tb(3+) by doping with 2,3-dihydroxynaphthalene (DHN) in micromolar concentrations. Rheological measurements of the mechanical properties of the organogel confirmed the characteristics of a true gel. Significant quenching of Tb(3+) luminescence was observed in the deoxycholate gel matrix by 2,4,7-trinitrofluorenone (TNF), but not by several other polynitro aromatics. Microscopic studies (AFM, TEM and SEM) revealed a highly entangled fibrous network. The xerogels retained luminescent properties suggesting the possibility for application in coatings, etc.

  10. Efficient manganese luminescence induced by Ce3+-Mn2+ energy transfer in rare earth fluoride and phosphate nanocrystals

    Directory of Open Access Journals (Sweden)

    Ding Yun

    2011-01-01

    Full Text Available Abstract Manganese materials with attractive optical properties have been proposed for applications in such areas as photonics, light-emitting diodes, and bioimaging. In this paper, we have demonstrated multicolor Mn2+ luminescence in the visible region by controlling Ce3+-Mn2+ energy transfer in rare earth nanocrystals [NCs]. CeF3 and CePO4 NCs doped with Mn2+ have been prepared and can be well dispersed in aqueous solutions. Under ultraviolet light excitation, both the CeF3:Mn and CePO4:Mn NCs exhibit Mn2+ luminescence, yet their output colors are green and orange, respectively. By optimizing Mn2+ doping concentrations, Mn2+ luminescence quantum efficiency and Ce3+-Mn2+ energy transfer efficiency can respectively reach 14% and 60% in the CeF3:Mn NCs.

  11. Luminescent probes for optical in vivo imaging

    Science.gov (United States)

    Texier, Isabelle; Josserand, Veronique; Garanger, Elisabeth; Razkin, Jesus; Jin, Zhaohui; Dumy, Pascal; Favrot, Marie; Boturyn, Didier; Coll, Jean-Luc

    2005-04-01

    Going along with instrumental development for small animal fluorescence in vivo imaging, we are developing molecular fluorescent probes, especially for tumor targeting. Several criteria have to be taken into account for the optimization of the luminescent label. It should be adapted to the in vivo imaging optical conditions : red-shifted absorption and emission, limited overlap between absorption and emission for a good signal filtering, optimized luminescence quantum yield, limited photo-bleaching. Moreover, the whole probe should fulfill the biological requirements for in vivo labeling : adapted blood-time circulation, biological conditions compatibility, low toxicity. We here demonstrate the ability of the imaging fluorescence set-up developed in LETI to image the bio-distribution of molecular probes on short times after injection. Targeting with Cy5 labeled holo-transferrin of subcutaneous TS/Apc (angiogenic murine breast carcinoma model) or IGROV1 (human ovarian cancer) tumors was achieved. Differences in the kinetics of the protein uptake by the tumors were evidenced. IGROV1 internal metastatic nodes implanted in the peritoneal cavity could be detected in nude mice. However, targeted metastatic nodes in lung cancer could only be imaged after dissection of the mouse. These results validate our fluorescence imaging set-up and the use of Cy5 as a luminescent label. New fluorescent probes based on this dye and a molecular delivery template (the RAFT molecule) can thus be envisioned.

  12. Ion beam induced luminescence of materials

    CERN Document Server

    Brooks, R

    2001-01-01

    luminescence dead zone at the domain walls. Neodymium-yttrium-aluminium garnet (Nd:YAG) was examined and the spectra measured as a function of temperature to show the evolution of intensity of the narrow line emission from the Nd rare earth. Shifts and changes in the intrinsic UV band in the YAG material were also apparent. Thin films of alumina grown on silica on a silicon substrate, along with some that contained copper nanoclusters were also examined. TRIM software was used to model the rate of excitation within the different layers of the material for the various implant energies and to identify the source of the luminescence profile observed in each case. Evidence of thin film interference fringes was apparent in the spectra by fringe patterns modulated onto the luminescence signal as a function of wavelength and film thickness. Analysis of an alkali feldspar material using IBL, and combined with work done using RL and CL experiments, showed a shift towards lower wavelengths of the main red/IR band with ...

  13. Establishing age constraints for Middle Pleistocene glaciofluvial sediments in the European Alpine foreland - new insights from luminescence dating

    Science.gov (United States)

    Lüthgens, Christopher; Rades, Eike F.; Bickel, Lukas; Fiebig, Markus

    2017-04-01

    This presentation summarises the outcome of a project funded by the Austrian Science Fund (FWF) which aimed at establishing new age constraints of deposits and landforms (glaciofluvial terraces) of the northern Alpine foreland (NAF) usually assigned to the Middle Pleistocene. The sediments under investigation were mostly deposited when large piedmont glaciers reached far into the Alpine foreland. Based on the concept of four Quaternary glacial advances to the NAF, which was already developed at the beginning of the 20th century by Penck and Brückner, specific morphostratigraphic units which can spatially be connected over the complete NAF area have been assigned to different glacial cycles and were subsequently correlated with the marine isotope record. However, numerical dating of the respective sediments had only been conducted to a limited extent, and previous studies report several methodological issues that limited the outcome with respect to the geochronological and chronostratigraphical value. In the course of the project, it became clear that the applicability of different optically stimulated luminescence (OSL) dating techniques for the targeted sediments was strongly dependent on the varying luminescence properties for samples from different catchment areas. By conducting a comparative luminescence dating approach, using different luminescence signals (quartz OSL, and feldspar infrared stimulated luminescence at 50°C (IR50) as well as post IR infrared stimulated luminescence at an elevated temperature (225°C, pIRIR225)), as well as using single aliquot and single grain dating techniques, it was i) possible to confirm but also to overcome prior problems of luminescence dating with the respective sediments ii) discern between samples that were well bleached prior to deposition and samples for which the luminescence signals were not properly reset, and iii) possible to establish reliable geochronological age constraints for the deposition of the sediments

  14. A New Generation of Luminescent Materials Based on Low-Dimensional Perovskites

    KAUST Repository

    Pan, Jun

    2017-06-02

    Low-dimensional perovskites with high luminescence properties are promising materials for optoelectronic applications. In this article, properties of two emerging types of low-dimensional perovskites are discussed, including perovskite quantum dots CsPbX3 (X = Cl, Br or I) and zero-dimensional perovskite Cs4PbBr6. Moreover, their application for light down conversion in LCD backlighting systems and in visible light communication are also presented. With their superior optical properties, we believe that further development of these materials will potentially open more prospective applications, especially for optoelectronics devices.

  15. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mingjing [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Ye Zhiqiang, E-mail: zhiqiangye2001@yahoo.com.cn [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Xin Chenglong [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China); Yuan Jingli, E-mail: jingliyuan@yahoo.com.cn [State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024 (China)

    2013-01-25

    }/A{sub 325nm}, as a signal. This feature enables the HTTA-Eu{sup 3+}/Tb{sup 3+} mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu{sup 3+} and HTTA-Tb{sup 3+} into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.

  16. Protocols for Thermoluninescence and Optically Stimulated Luminescence Research at DOSAR

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, SM

    2004-10-11

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research at the Dosimetry Applications Research (DOSAR) facility complex. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and materials testing in a variety of radiation environments. Collaborations with the University of Tennessee-Knoxville (UTK) have also led to important contributions in the area of archaeometry, particularly as it relates to the use of radiation dosimetry to date archaeological artifacts. This manual is to serve as the primary instruction and operation manual for dosimetric and archaeometric research at DOSAR involving thermoluminescence (TL) and optically stimulated luminescence (OSL). Its purpose is to (1) provide protocols for common practices associated with the research, (2) outline the relevant organizational structure, (3) identify the Quality Assurance plan, and (4) describe all the procedures, operations, and responsibilities for safe and proper operation of associated equipment. Each person who performs research at DOSAR using TL/OSL equipment is required to read the latest revision of this manual and be familiar with its contents, and to sign and date the manual's master copy indicating that the manual has been read and understood. The TL/OSL Experimenter is also required to sign the manual after each revision to signify that the changes are understood. Each individual is responsible for completely understanding the proper operation of the TL/OSL equipment used and for following the guidance contained within this manual. The instructions, protocols, and operating procedures in this manual do not replace, supersede, or alter the hazard mitigation controls identified in the Research Safety Summary (&apos

  17. Experimental observation of spatially resolved photo-luminescence intensity distribution in dual mode upconverting nanorod bundles

    Science.gov (United States)

    Kumar, Pawan; Singh, Satbir; Singh, V. N.; Singh, Nidhi; Gupta, R. K.; Gupta, Bipin Kumar

    2017-02-01

    A novel method for demonstration of photoluminescence intensity distribution in upconverting nanorod bundles using confocal microscopy is reported. Herein, a strategy for the synthesis of highly luminescent dual mode upconverting/downshift Y1.94O3:Ho3+0.02/Yb3+0.04 nanorod bundles by a facile hydrothermal route has been introduced. These luminescent nanorod bundles exhibit strong green emission at 549 nm upon excitations at 449 nm and 980 nm with quantum efficiencies of ~6.3% and ~1.1%, respectively. The TEM/HRTEM results confirm that these bundles are composed of several individual nanorods with diameter of ~100 nm and length in the range of 1–3 μm. Furthermore, two dimensional spatially resolved photoluminescence intensity distribution study has been carried out using confocal photoluminescence microscope throughout the nanorod bundles. This study provides a new direction for the potential use of such emerging dual mode nanorod bundles as photon sources for next generation flat panel optical display devices, bio-medical applications, luminescent security ink and enhanced energy harvesting in photovoltaic applications.

  18. Luminescence variations in europium-doped silicon-substituted hydroxyapatite nanobiophosphor via three different methods

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Cao Xuan; Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn

    2015-07-15

    Highlights: • Europium doped silicon-substituted hydroxyapatite was synthesized by wet chemical synthesis method. • Morphology of nanoparticles depended on the synthesized method. • Photoluminescence intensity of the sample increases with the increasing of Si substitutions, Eu dopants and thermal annealing. - Abstract: This paper reports the first attempt for the synthesis of europium-doped Si-substituted hydroxyapatite (HA) nanostructure to achieve strong and stable luminescence of nanobiophosphor, particularly, by addition of different Eu dopants, Si substitutions, and application of optimum annealing temperatures of up to 1000 °C. The nanobiophosphor was synthesized by the coprecipitation, microwave, and hydrothermal methods. The nanoparticles demonstrated a nanowire to a spindle-like morphology, which was dependent on the method of synthesis. The photoluminescence (PL) intensity of the sample increases with the increase in Si substitutions and Eu dopants. The luminescent nanoparticles also showed the typical luminescence of Eu{sup 3+} centered at 610 nm, which was more efficient for the annealed Eu-doped Si-HA nanoparticles than for the as-synthesized nanoparticles. Among the different synthesis methods, the hydrothermal method reveals the best light emission represented by high PL intensity and narrow PL spectra. These results suggest the potential application of Eu-doped Si-HA in stable and biocompatible nanophosphors for light emission and nanomedicine.

  19. Green and red luminescence in co-precipitation synthesized Pr:LuAG nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Arun; Kumar, K. Ashok; Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai–600 025, Tamil Nadu (India); Asokan, K. [Materials Science Group, Inter University Accelerator Centre, New Delhi-110067 (India)

    2016-05-06

    Pr:LuAG nanophosphor is an effective candidate in magnetic resonance imaging coupled positron emission tomography (MRI-PET) for medical imaging and scintillator applications. LuAG:Pr (0.05, 0.15 mol%) nanoscale ceramic powders were synthesized by co-precipitation method using urea as precipitant. Effect of antisite defect on structure and luminescence behavior was investigated. Pr:LuAG nanoceramic powders are found crystallized in cubic structure by high temperature calcination at 1400 °C and it shows antisite defect. HR-SEM analysis revealed spherically shaped Pr:LuAG nanoceramic particulate powders with ∼100 nm size. By the excitation at 450 nm, Pr:LuAG nanophosphor exhibit green to red luminescence in the wavelength range of 520 to 680 nm, which is originated from multiplet transition of Pr{sup 3+} ions.

  20. Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics

    Science.gov (United States)

    Hu, Song; Lu, Chunhua; Liu, Xiaoxia; Xu, Zhongzi

    2016-10-01

    The YAG:Pr transparent ceramic was fabricated using a conventional solid-state reactive method to explore its possible application in optical thermometry. Photoluminescence and temperature-dependent luminescence were elaborately investigated under 452 nm excitation. The ceramic showed two intrinsic emission bands at 488 and 594 nm, which were attributed to characteristic Pr3+: 3P0 → 3H4 and 3P1 → 3H6 transitions, respectively. Down-conversion emissions from the two thermally coupled excited states of Pr3+ were recorded in the temperature range of 293-593 K. The Boltzmann distribution theory was adopted to interpret the temperature-dependent luminescence of Pr3+. The temperature sensitivity exhibited an increasing trend with the increase of temperature, typically, 0.0025 K-1 at 593 K. The results indicated that the present ceramic was a promising candidate for optical temperature sensor.

  1. Metal-Organic Frameworks Modulated by Doping Er(3+) for Up-Conversion Luminescence.

    Science.gov (United States)

    Zhang, Xindan; Li, Bin; Ma, Heping; Zhang, Liming; Zhao, Haifeng

    2016-07-13

    Here we present metal-organic frameworks prepared by a one-step synthesis method, possessing both architectural properties of MOF building and up-conversion luminescence of rare earth Er(3+) (hereafter denoted as Up-MOFs). Up-MOFs have characteristic up-conversion emissions at 520, 540, and 651 nm under the excitation of 980 nm owing to the multiple photon absorption. The up-conversion mechanism of these Up-MOFs has been discussed, and it can be attributed to the excited state absorption process. The design and synthesis of Up-MOF materials possessing near-infrared region excitation and up-conversion luminescence are fully expected to be candidates for the advancement of applications in bioimaging, sensors, optoelectronics, and energy conversion/storage devices.

  2. Terbium luminescence in alumina xerogel fabricated in porous anodic alumina matrix under various excitation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gaponenko, N. V., E-mail: nik@nano.bsuir.edu.by [Belarusian State University of Informatics and Radioelectronics (Belarus); Kortov, V. S. [Yeltsin Ural Federal University (Russian Federation); Orekhovskaya, T. I.; Nikolaenko, I. A. [Belarusian State University of Informatics and Radioelectronics (Belarus); Pustovarov, V. A.; Zvonarev, S. V.; Slesarev, A. I. [Yeltsin Ural Federal University (Russian Federation); Prislopski, S. Ya. [National Academy of Sciences of Belarus, Stepanov Institute of Physics (Belarus)

    2011-07-15

    Terbium-doped alumina xerogel layers are synthesized by the sol-gel method in pores of a porous anodic alumina film 1 {mu}m thick with a pore diameter of 150-180 nm; the film is grown on a silicon substrate. The fabricated structures exhibit terbium photoluminescence with bands typical of trivalent terbium terms. Terbium X-ray luminescence with the most intense band at 542 nm is observed for the first time for such a structure. Morphological analysis of the structure by scanning electron microscopy shows the presence of xerogel clusters in pore channels, while the main pore volume remains unfilled and pore mouths remain open. The data obtained confirm the promising applications of fabricated structures for developing matrix converters of X-rays and other ionizing radiations into visible light. The possibilities of increasing luminescence intensity in the matrix converter are discussed.

  3. Radiation induced luminescence processes in c-BN

    DEFF Research Database (Denmark)

    Trinkler, L.; Berzina, B.; Benabdesselam, M.

    2004-01-01

    Spectral properties of cubic boron nitride have been studied using methods of photoluminescence (PL), X-ray excited luminescence (XL), thermoluminescence (TL) and optically stimulated luminescence. It is found that emission of cubic boron nitride is presented by 4 subbands, their relative yield...

  4. Electroluminescent apparatus having a structured luminescence conversion layer

    Science.gov (United States)

    Krummacher, Benjamin Claus [Sunnyvale, CA

    2008-09-02

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  5. Anomalous propagation of luminescence through bulk n-InP

    CERN Document Server

    Luryi, Serge; Subashiev, Arsen; Chen, Zhichao

    2010-01-01

    Implementation of a semiconductor as a scintillator with a lattice-matched surface photo-diode for radiation detection requires efficient luminescence collection. Low and heavily doped bulk n-InP has been studied to optimize luminescence transmission via photon recycling.

  6. Effects of Preparation on Luminescent Characterization of Porous Silicon

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Porous silicon samples are prepared by pulse electrochemical-etching and DC electrochemical-etching. The effects of different preparation methods on luminescent characterization of porous silicon are investigated. Compared with DC electrochemical-etching, pulse electrochemical-etching produces the porous silicon characterized by a more even surface, a stronger luminescence and a PL blue shift to a certain degree.

  7. Polarization-independent filters for luminescent solar concentrators

    NARCIS (Netherlands)

    De Boer, D.K.G.; Lin, C.W.; Giesbers, M.P.; Cornelissen, H.J.; Debije, M.G.; Verbunt, P.P.C.; Broer, D.J.

    2011-01-01

    The efficiency of Luminescent Solar Concentrators could be greatly enhanced by the use of wavelength-selective filters, since they reduce the amount of luminescent light lost. To accomplish this, polarization-independent filters have been made by combining layers of cholesteric liquid crystals,

  8. Ultrashort pulse laser microsurgery system with plasma luminescence feedback control

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.

    1997-11-10

    Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.

  9. UNA PERSPECTIVA NEUROCIENTÍFICA SOBRE LA HISTERIA

    Directory of Open Access Journals (Sweden)

    Lucía Amoruso

    2010-01-01

    Full Text Available En la última década, el desarrollo y la puesta en marcha delas modernas técnicas de neuroimagen en el campo de laneurociencia cognitiva han proporcionado una nueva vía deacercamiento al estudio experimental de algunos trastornosmentales. Dentro de esta perspectiva, denominada por algunosautores “neuropsiquiatría cognitiva”, la histeria (o trastornode conversión, de acuerdo con la clasificación psiquiátricaactual ha cobrado un amplio protagonismo. De acuerdo conlo anterior, el objetivo del presente trabajo consiste en introducirestudios pioneros basados en una perspectiva neurocientíficade la histeria. Conviene destacar que, si bien estosaportan evidencia significativa sobre algunas de las áreascerebrales y las disfunciones cognitivas comprometidas enel mencionado trastorno, los resultados obtenidos a la fechadistan aún de ser concluyentes.

  10. La democracia desde la perspectiva del filosofar latinoamericano

    OpenAIRE

    2008-01-01

    El tema de la tesis es la crítica a la democracia desde la perspectiva del filosofar latinoamericano. En el primer capítulo se parte de una sucinta caracterización del filosofar latinoamericano, sus principales categorías y líneas de pensamiento. De ello se infiere la vocación político social de este filosofar y su intrínseca relación con la problemática de la democracia y su crisis en la región, sus características, perspectivas y referentes. En el segundo capítulo se procede a un análisis d...

  11. Tomasello y Stern: Dos perspectivas actuales incluyentes del Desarrollo Infantil

    Directory of Open Access Journals (Sweden)

    Mata Isabel López

    2011-01-01

    Full Text Available El presente artículo tiene como objetivo ilustrar dos perspectivas actuales del desarrollo infantil incluyentes más que excluyentes -Michael Tomasello (cognitivo y Daniel Stern (social-subjetivo-, en cuanto a que integran a su explicación los descubrimientos de las capacidades tempranas del bebé -realizados a partir de 1970/80- y, sin renunciar al paradigma teórico particular del que provienen, reconocen junto a estas competencias tempranas el rol fundamental de los diversos factores intervinientes en el desarrollo -lo innato y lo ambiental (social y cultural-, los diferentes métodos de investigación y las limitaciones de una mirada reduccionista. Además, postulan que se hace necesaria la conversación entre las diferentes perspectivas teóricas, para lograr una descripción del infante como una unidad.

  12. Luminescence dosimetry using building materials and personal objects.

    Science.gov (United States)

    Göksu, H Y; Bailiff, I K

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed.

  13. Photostimulated luminescence properties of Eu2+ -doped barium aluminate phosphor.

    Science.gov (United States)

    He, Quanlong; Qiu, Guangyu; Xu, Xuhui; Qiu, Jianbei; Yu, Xue

    2015-03-01

    An intense green photostimulated luminescence in BaAl2 O4 :Eu(2+) phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1 , T2 , T3 ) with different trap depths in BaAl2 O4 :Eu(2+) phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read-out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2 O4 :Eu(2+) phosphor. This shows that re-trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence.

  14. On the relationship between luminescence excitation spectra and feldspar mineralogy

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Johnsen, O.

    1996-01-01

    Feldspar minerals can be used as naturally occurring radiation dosemeters, with dose assessment commonly using luminescence techniques. Since many feldspars contain radioactive K-40, knowledge of the mineralogy of the luminescent samples being measured is of high importance. Most feldspars contain...... more than trace amounts of highly luminescent Fe3+ impurities, and this article examines the relationship between features of the luminescence excitation spectrum of this ion with sample mineralogy. It is demonstrated that there is a near linear correspondence between the plagioclase feldspar...... groups. The results are compared with properties of the excitation spectra dose-dependent optically stimulated luminescence (OSL) in order to compare the chemical environment of the OSL donor defect, and the isolated Fe3+ centres....

  15. Visible luminescence of dysprosium ions in oxyhalide lead borate glasses

    Science.gov (United States)

    Pisarska, Joanna; Żur, Lidia; Pisarski, Wojciech A.

    2011-08-01

    Visible luminescence of Dy 3+ ions in oxyhalide lead borate glasses was examined. Luminescence spectra show two intense bands at 480 nm and 573 nm due to 4F 9/2 → 6H 15/2 (blue) and 4F 9/2 → 6H 13/2 (yellow) transitions of Dy 3+. Luminescence decays from 4F 9/2 state and yellow-to-blue luminescence intensity ratios (Y/B) were analysed with PbX 2 (X = F, Cl) content. An introduction of PbX 2 to the borate glass results in the increasing of 4F 9/2 lifetime and the decreasing of yellow-to-blue luminescence intensity ratio, which is due to reduction of covalency between Dy 3+ and O 2-/X - ions.

  16. Perspectiva espiritual de la mujer con cáncer

    Directory of Open Access Journals (Sweden)

    Milena Alexandra Galvis-López

    2011-01-01

    Full Text Available Objetivo: comparar la perspectiva espiritual de las mujeres diagnosticadas con cáncer propio de su género (seno, útero, ovarios y de las mujeres diagnosticadas con otros tipos de cáncer. Método: diseño cuantitativo de tipo descriptivo comparativo, de corte transversal. Se empleó una encuesta sociodemográfica para caracterizar la población y la Escala de perspectiva espiritual de Pamela Reed, a la cual se le realizó el análisis de confiabilidad que reportó un alfa de Cronbach de 0,799 en el grupo 1 y 0,763 en el grupo 2. La muestra incluyó a 100 mujeres que se encuentran en tratamiento contra el cáncer. Resultados: la perspectiva espiritual de las mujeres con cáncer propio de su género es moderada al igual que la de las mujeres con otros tipos de cáncer; al hacer la comparación de estos dos grupos no se encontró evidencia estadística que demostrara una diferencia significativa. Discusión: los resultados de este estudio aportan nuevos elementos para el cuidado de las mujeres con enfermedad oncológica y señalan que una perspectiva espiritual moderada puede ser un potencial para su cuidado integral, en el que la enfermera reconozca sus objetivos en el cuidado de la mujer como un ser total, más que el tipo de cáncer que tiene.

  17. Comprensión de perspectivas psicosociales en Colombia

    Directory of Open Access Journals (Sweden)

    Sandra Liliana Aya Angarita

    2016-01-01

    Full Text Available Este artículo, derivado del estudio Perspectivas psicosociales en Colombia expone el proceso investigativo cuyo objetivo principal fue comprender la perspectiva psicosocial en Colombia considerando experiencias (situaciones abordadas, actores participantes y definiciones de lo psicosocial, referentes teóricos (epistemológicos, disciplinares y metodológicos, retos y oportunidades en el contexto colombiano. El diseño metodológico es cualitativo desde una perspectiva hermenéutica, implementando la entrevista semiestructurada a ocho organizaciones y apoyándose en la revisión de datos derivados de informes sobre “lo psicosocial” disponibles en páginas web, denominada mapeo de redes. Los principales resultados establecen que las experiencias psicosociales, las cuales propenden al bienestar y auto-organización de afectados, se enmarcan en contextos de crisis y vulnerabilidad especialmente en escenarios de violencia política; se identifica que aunque no se explicitan de manera clara referentes teóricos, estos se reflejan en las formas de acción interventiva; se reconoce la importancia de la transdisciplinariedad para generar comprensiones holísticas de fenómenos sociales, se observan como logros la movilización de dinámicas relacionales tanto al interior de la organización como dentro de las comunidades, y como reto la confrontación de discursos y el seguimiento de la acción psicosocial. La principal conclusión alude a que en Colombia la perspectiva psicosocial se enmarca en procesos de intervención que intentan transformar realidades de crisis.

  18. Spectroscopic characteristic of conical bubble luminescence

    Institute of Scientific and Technical Information of China (English)

    Chen Qi-Dai; Fu Li-Min; Ai Xi-Cheng; Zhang Jian-Ping; Wang Long

    2005-01-01

    The conical bubble sonoluminescence (CBSL) from the collapse of the bubble was observed in an improved Utube apparatus. The emitted light energy of a single CBSL flash was measured to be ~ 1.4mJ. The pulse width was about 100μs. The spectra of luminescence were continuum superimposed with the spectral bands from the excitedstate C2, CN and CH. The CBSL provides a link between the light emission of the single-bubble and the multi-bubble sonoluminescence (SBSL and MBSL).

  19. Luminescent solar concentrators with fiber geometry.

    Science.gov (United States)

    Edelenbosch, Oreane Y; Fisher, Martyn; Patrignani, Luca; van Sark, Wilfried G J H M; Chatten, Amanda J

    2013-05-01

    The potential of a fibre luminescent solar concentrator has been explored by means of both analytical and ray-tracing techniques. Coated fibres have been found to be more efficient than homogeneously doped fibres, at low absorption. For practical fibres concentration is predicted to be linear with fibre length. A 1 m long, radius 1 mm, fibre LSC doped with Lumogen Red 305 is predicted to concentrate the AM1.5 g spectrum up to 1100 nm at normal incidence by ~35 x. The collection efficiency under diffuse and direct irradiance in London has been analysed showing that, even under clear sky conditions, in winter the diffuse contribution equals the direct.

  20. Polyethylene terephthalate thin films; a luminescence study

    Science.gov (United States)

    Carmona-Téllez, S.; Alarcón-Flores, G.; Meza-Rocha, A.; Zaleta-Alejandre, E.; Aguilar-Futis, M.; Murrieta S, H.; Falcony, C.

    2015-04-01

    Polyethylene Terephthalate (PET) films doped with Rare Earths (RE3+) have been deposited on glass by spray pyrolysis technique at 240 °C, using recycled PET and (RE3+) chlorides as precursors. Cerium, terbium, dysprosium and europium were used as dopants materials, these dopants normally produce luminescent emissions at 450, 545, 573 and 612 nm respectively; the doped films also have light emissions at blue, green, yellow and red respectively. All RE3+ characteristic emissions were observed at naked eyes. Every deposited films show a high transmission in the visible range (close 80% T), films surfaces are pretty soft and homogeneous. Films thickness is around 3 μm.

  1. Near-Field Enhanced Negative Luminescent Refrigeration

    Science.gov (United States)

    Chen, Kaifeng; Santhanam, Parthiban; Fan, Shanhui

    2016-08-01

    We consider a near-field enhanced negative luminescent refrigeration system made of a polar material supporting surface-phonon polariton resonances and a narrow-band-gap semiconductor under a reverse bias. We show that in the near-field regime, such a device yields significant cooling power density and a high efficiency close to the Carnot limit. In addition, the performance of our system still persists even in the presence of strong nonidealities such as Auger recombination and sub-band-gap thermal radiation from free carriers.

  2. Eu(2+) luminescence in strontium aluminates.

    Science.gov (United States)

    Dutczak, D; Jüstel, T; Ronda, C; Meijerink, A

    2015-06-21

    The luminescence properties of Eu(2+) doped strontium aluminates are reported and reviewed for a variety of aluminates, viz. SrAl12O19, SrAl4O7, Sr4Al14O25, SrAl2O4 and Sr3Al2O6. The aim of the research is to investigate the role of local coordination and covalency of the aluminate host lattice, related to the Sr/Al ratio, on the optical properties of the Eu(2+) ion. The UV and VUV excited luminescence spectra as well as luminescence decay curves were recorded to characterize the luminescence properties of the investigated aluminates. The emission of Eu(2+) ions varies over a wide spectral range, from ultraviolet (UV) to red, for the series of aluminates. The variation in emission color can be related to the crystal-field splitting of the 5d levels and the covalent interaction with the surrounding oxygen anions. In the least covalent material, viz. SrAl12O19:Eu(2+), narrow line emission due to the (6)P7/2-(8)S7/2 transition occurs at 4 K, indicating that the 4f(6)5d excited state is situated above the (6)P7/2(4f(7)) excited state around 360 nm. The most alkaline material, viz. Sr3Al2O6:Eu(2+) is the most covalent host and exhibits several d-f emission bands in the yellow to red spectral range due to the Eu(2+) ions located on different crystallographic Sr(2+) sites. The Eu(2+) emission spectra in the other aluminates confirm the trend that with increasing Sr/Al ratio the Eu(2+) emission shifts to longer wavelengths. Interesting differences are observed for the Eu(2+) from different crystallographic sites which cannot always be related with apparent differences in the first oxygen coordination sphere. The discussion gives insight into how in a similar class of materials, strontium aluminates, the emission color of Eu(2+) can be tuned over a wide spectral region.

  3. Chemically engineered persistent luminescence nanoprobes for bioimaging

    Science.gov (United States)

    Lécuyer, Thomas; Teston, Eliott; Ramirez-Garcia, Gonzalo; Maldiney, Thomas; Viana, Bruno; Seguin, Johanne; Mignet, Nathalie; Scherman, Daniel; Richard, Cyrille

    2016-01-01

    Imaging nanoprobes are a group of nanosized agents developed for providing improved contrast for bioimaging. Among various imaging probes, optical sensors capable of following biological events or progresses at the cellular and molecular levels are actually actively developed for early detection, accurate diagnosis, and monitoring of the treatment of diseases. The optical activities of nanoprobes can be tuned on demand by chemists by engineering their composition, size and surface nature. This review will focus on researches devoted to the conception of nanoprobes with particular optical properties, called persistent luminescence, and their use as new powerful bioimaging agents in preclinical assays. PMID:27877248

  4. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  5. Ion beam luminescence of Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Khanlary, M. [Science and Technology, Pevensey Building, University of Sussex, Brighton BN1 9QH (United Kingdom); Department of Physics, Imam Khomeini International University, Qazvin, Iran (Iran, Islamic Republic of); Hole, D.E. [Science and Technology, Pevensey Building, University of Sussex, Brighton BN1 9QH (United Kingdom); Townsend, P.D. [Science and Technology, Pevensey Building, University of Sussex, Brighton BN1 9QH (United Kingdom)]. E-mail: p.d.townsend@sussex.ac.uk

    2005-01-01

    Luminescence recorded during ion beam implantation of Nd:YAG has proved valuable in sensing structural and local crystal field changes caused by waveguide fabrication in this laser material. The relative line intensities from Nd are sensitive to excitation rate and so the spectra differ strongly between H{sup +} and H2+ excitation, with further changes in the examples using He{sup +} and N{sup +} ions. The overall intensities are reduced at lower temperatures, as well as showing variations in relative line patterns. Some suggestions of component lines and weak broad bands are offered in terms of trace rare earth and other impurities.

  6. Research Update: Luminescence in lead halide perovskites

    Science.gov (United States)

    Srimath Kandada, Ajay Ram; Petrozza, Annamaria

    2016-09-01

    Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  7. In vivo X-Ray excited optical luminescence from phosphor-doped aerogel and Sylgard 184 composites

    Science.gov (United States)

    Allison, Stephen W.; Baker, Ethan S.; Lynch, Kyle J.; Sabri, Firouzeh

    2017-06-01

    X-Ray excited optical luminescence (XEOL) is a new and noninvasive diagnostic technique suitable for in situ biochemical imaging and disease detection. The X-Ray excited optical luminescence of phosphor doping in crosslinked silica aerogel and Sylgard 184 hosts was investigated in this study. Composite silica aerogels and Sylgard 184 samples of 5%, 15%, and 50% concentrations by weight of La2O2S:Eu phosphor were prepared and inserted subcutaneously in a Sprague-Dawley rat and excited by X-Ray emission at 70 and 100 kV. A fiber optic bundle positioned within 5 mm of the sample collected the luminescence signal and conveyed it to a photomultiplier detector. The signal intensity scaled with dopant concentration. The time dependence of the predominantly red luminescence consisted of 60 cycle bursts of approximately 8 ms duration. The amplitude was modulated at about 10 Hz with a 60% depth. This indicates the time dependence of the X-Ray source. A simulation showed how to observe phosphor decay between individual burst pulses. The emission from the two types of composite samples was easily detected from the outside of the skin layer. Both Sylgard 184 and crosslinked silica aerogels are biocompatible and bio stable materials that could serve a variety of potential XEOL applications. These very strong signals imply potential for creating new In-vivo sensing applications and diagnostic tools.

  8. Highly luminescent, stable, transparent and flexible perovskite quantum dot gels towards light-emitting diodes

    Science.gov (United States)

    Sun, Chun; Shen, Xinyu; Zhang, Yu; Wang, Yu; Chen, Xingru; Ji, Changyin; Shen, Hongzhi; Shi, Hengchong; Wang, Yiding; Yu, William W.

    2017-09-01

    By controlling the hydrolysis of alkoxysilanes, highly luminescent, transparent and flexible perovskite quantum dot (QD) gels were synthesized. The gels could maintain the structure without shrinking and exhibited excellent stability comparing to the QDs in solution. This in situ fabrication can be easily scaled up for large-area/volume gels. The gels integrated the merits of the polymer matrices to avoid the non-uniformity of light output, making it convenient for practical LED applications. Monochrome and white LEDs were fabricated using these QD gels; the LEDs exhibited broader color gamut, demonstrating better property in the backlight display application.

  9. SOBRE LOS CAMBIOS DE PERSPECTIVA EN EL CONOCIMIENTO

    Directory of Open Access Journals (Sweden)

    LUZ MARINA BARRETO

    2007-01-01

    Full Text Available El propósito de este artículo es explorar el significado y los alcances de los cambios de perspectiva que a veces ocurren cuando vemos las cosas desde el punto de vista teórico, al producirse un cambio de paradigma en el conocimiento, o, si las vemos desde el uso práctico de la razón, cuando se produce un cambio en la personalidad o una "conversión". La mera cuestión sobre la posibilidad de un cambio radical de perspectiva es filosófica en un sentido profundo: sugiere la existencia de un campo de conocimiento metafísico que sería "libre" respecto de las proyecciones categoriales específicas y determinaciones que descansan en el sujeto de conocimiento, de manera que sería posible ver las cosas desde un punto de vista radicalmente diferente, uno que no sería posible sino al interior de un paradigma. Mis intuiciones son, en primer lugar, que la pregunta por la naturaleza de los cambios de perspectiva, metafísica como es, es más importante para la epistemología de lo que se ha admitido en la filosofía analítica y, en segundo lugar, que esta pregunta puede ser encarada no necesariamente al interior del marco de referencia de la metafísica, sino desde un concepto amplio de razón. En este sentido, los cambios de perspectiva pueden ser entendidos como una posibilidad que sólo puede hacerse inteligible dentro de una noción unificada de la razón, una concepción que ha sido ignorada por concepciones epistemológicas que acentúan su lado instrumental y que podemos remontar a algunos conceptos de la ontología fenomenológica que han sido re-interpretados a través de la lente de la teoría de la experiencia kantiana. Finalmente, sugiero que si miramos los cambios de perspectiva desde el punto de vista de una concepción unificada de la razón, de ello resulta una teoría del conocimiento mucho más fluida y más ligada al uso práctico de la razón que lo que se admite en las epistemologías analíticas que fueron populares durante

  10. Novel luminescent nanoparticles for DNA detection

    Science.gov (United States)

    Dong, Ling; Yang, Zhihua; Zhang, Yi; Zhu, Yanyu; Wang, Lun; Wang, Leyu

    2010-05-01

    Highly luminescent LaF 3:Ce 3+/Tb 3+ nanocrystals were successfully prepared and surface functionalized via Layer-by-Layer technology. These as-prepared nanocrystals are highly resistant to photobleaching and pretty dispersible in aqueous solution. Due to the efficient luminescence quenching of the nanocrystals by nucleic acids, a facile fluorescence quenching method was developed for the detection of trace amount of nucleic acids. Under optimal conditions, the fluorescence intensity was proportional to the DNA concentration over the range of 0.60-25.0 μg mL -1 for calf thymus DNA (ct-DNA) and 0.60-30.0 μg mL -1 for herring sperm DNA (hs-DNA), respectively. The corresponding detection limit is 0.21 μg mL -1 for ct-DNA and 0.31 μg mL -1 for hs-DNA, respectively. The results indicated that the reported method is simple and rapid with wide linear range. Also, the recovery and relative standard deviation of this method are reasonable and satisfactory.

  11. Biological Activities of a Thai Luminescent Mushroom

    Directory of Open Access Journals (Sweden)

    Jiraporn BURAKORN

    2015-06-01

    Full Text Available Wild fruit bodies of luminescent mushrooms were collected from wood stumps over a period covering August to October 2011 in the Kosumpisai forest, Mahasarakham province, in the Northeast of Thailand. A study of the morphological and genetic characteristics of the luminescent mushroom suggested that it was Neonothopanus nimbi KS. The fruiting bodies and mycelium of Neonothopanus nimbi KS were assayed for their antimicrobial activities, antifungal activity, inhibitory activity against avian influenza H5N1 neuraminidase (NA, and anticancer activity, using organic solvent extracts. The results showed that only the methanol extract of mycelia was effective against Bacillus sphaericus, with the widest inhibition zone of 11.66±2.71 mm, but this was not effective against the other 3 bacteria (Pseudomonas aeruginosa, Serratia marcescens, and Escherichia coli. On the other hand, all of the fruit body extracts were inactive against all four bacteria. The ethylacetate extract of mycelia inhibited the NCI-H187 small lung cancer cell line, KB oral cavity cancer cell line, and the MCF7 breast cancer cell line, including Magnaporthe grisea and Curvularia lunata. The methanol extract of mycelia inhibited the KB oral cavity cell cancer cell line, Magnaporthe grisea, and Curvularia lunata at 96.66, 95.32 and 95.41 %, respectively. The results imply that polar extracts of mycelia are a resource of bioactive compounds, whereas extracts of fruit bodies have less inhibitory activity against cancer, phytopathogenic-fungi and H5N1 neuraminidase.

  12. Decreasing luminescence lifetime of evaporating phosphorescent droplets

    Science.gov (United States)

    van der Voort, D. D.; Dam, N. J.; Sweep, A. M.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.; van de Water, W.

    2016-12-01

    Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10-9 → 10-11 m3) corresponding to increasing concentrations (10-4 → 10-2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

  13. Stimulation of luminescence of mycelium of luminous fungus Neonothopanus nambi by ionizing radiation.

    Science.gov (United States)

    Kobzeva, Tatiana V; Melnikov, Anatoly R; Karogodina, Tatiana Y; Zikirin, Samat B; Stass, Dmitri V; Molin, Yuri N; Rodicheva, Emma K; Medvedeva, Svetlana E; Puzyr, Alexey P; Burov, Andrey A; Bondar, Vladimir S; Gitelson, Joseph I

    2014-11-01

    The luminescent system of higher luminous fungi is not fully understood and the enzyme/substrate pair of the light emission reaction has not been isolated. It was suggested that luminescence of fungi involves oxidase-type enzymes, and reactive oxygen species are important for fungal light production. Generation of reactive oxygen species can be stimulated by ionizing irradiation, which has not been studied for luminous fungi. We report the effect of X-irradiation on the luminescence of fungus Neonothopanus nambi. Experiments were performed with mycelium on a home-built setup based on an X-ray tube and monochromator/photomultiplier tube. Application of X-rays does not change the emission spectrum, but after approximately 20 min of continuous irradiation, light production from unsupported mycelium starts growing and increases up to approximately five times. After peaking, its level decreases irrespective of the presence of X-irradiation. After staying at a certain level, light production collapses to zero, which is not related to the drying of the mycelium or thermal impact of radiation. The observed shape of kinetics is characteristic of a multistage and/or chain reaction. The time profile of light production must reflect the current levels of radicals present in the system and/or the activity of enzyme complexes involved in light production.

  14. Synthesis of Efficiently Green Luminescent CdSe/ZnS Nanocrystals Via Microfluidic Reaction

    Directory of Open Access Journals (Sweden)

    Luan Weiling

    2008-01-01

    Full Text Available AbstractQuantum dots with emission in the spectral region from 525 to 535 nm are of special interest for their application in green LEDs and white-light generation, where CdSe/ZnS core-shell structured nanocrystals (NCs are among promising candidates. In this study, triple-ligand system (trioctylphosphine oxide–oleic acid–oleylamine was designed to improve the stability of CdSe NCs during the early reaction stage. With the precisely controlled reaction temperature (285 °C and residence time (10 s by the recently introduced microfluidic reaction technology, green luminescent CdSe NCs (λ = 522 nm exhibiting narrow FWHM of PL (30 nm was reproducibly obtained. After that, CdSe/ZnS core-shell NCs were achieved with efficient luminescence in the pure green spectral region, which demonstrated high PL QY up to 70% and narrow PL FWHM as 30 nm. The strengthened mass and heat transfer in the microchannel allowed the formation of highly luminescent CdSe/ZnS NCs under low reaction temperature and short residence time (T = 120 °C,t = 10 s. The successful formation of ZnS layer was evidence of the substantial improvement of PL intensity, being further confirmed by XRD, HRTEM, and EDS study.

  15. An advanced software suite for the processing and analysis of silicon luminescence images

    Science.gov (United States)

    Payne, D. N. R.; Vargas, C.; Hameiri, Z.; Wenham, S. R.; Bagnall, D. M.

    2017-06-01

    Luminescence imaging is a versatile characterisation technique used for a broad range of research and industrial applications, particularly for the field of photovoltaics where photoluminescence and electroluminescence imaging is routinely carried out for materials analysis and quality control. Luminescence imaging can reveal a wealth of material information, as detailed in extensive literature, yet these techniques are often only used qualitatively instead of being utilised to their full potential. Part of the reason for this is the time and effort required for image processing and analysis in order to convert image data to more meaningful results. In this work, a custom built, Matlab based software suite is presented which aims to dramatically simplify luminescence image processing and analysis. The suite includes four individual programs which can be used in isolation or in conjunction to achieve a broad array of functionality, including but not limited to, point spread function determination and deconvolution, automated sample extraction, image alignment and comparison, minority carrier lifetime calibration and iron impurity concentration mapping.

  16. Luminescent Iridium(III) Complex Labeled DNA for Graphene Oxide-Based Biosensors.

    Science.gov (United States)

    Zhao, Qingcheng; Zhou, Yuyang; Li, Yingying; Gu, Wei; Zhang, Qi; Liu, Jian

    2016-02-02

    There has been growing interest in utilizing highly photostable iridium(III) complexes as new luminescent probes for biotechnology and life science. Herein, iridium(III) complex with carboxyl group was synthesized and activated with N-hydroxysuccinimide, followed by tagging to the amino terminate of single-stranded DNA (ssDNA). The Ir-ssDNA probe was further combined with graphene oxide (GO) nanosheets to develop a GO-based biosensor for target ssDNA detection. The quenching efficiency of GO, and the photostability of iridium(III) complex and GO-Ir-ssDNA biosensor, were also investigated. On the basis of the high luminescence quenching efficiency of GO toward iridium(III) complex, the GO-Ir-ssDNA biosensor exhibited minimal background signals, while strong emission was observed when Ir-ssDNA desorbed from GO nanosheets and formed a double helix with the specific target, leading to a high signal-to-background ratio. Moreover, it was found that luminescent intensities of iridium(III) complex and GO-Ir-ssDNA biosensor were around 15 and 3 times higher than those of the traditional carboxyl fluorescein (FAM) dye and the GO-FAM-ssDNA biosensor after UV irradiation, respectively. Our study suggested the sensitive and selective Ir-ssDNA probe was suitable for the development of highly photostable GO-based detection platforms, showing promise for application beyond the OLED (organic light emitting diode) area.

  17. Comparisons of Vibrio fischeri, Photobacterium phosphoreum, and recombinant luminescent using Escherichia coli as BOD measurement.

    Science.gov (United States)

    Cheng, Chiu-Yu; Kuo, Jong-Tar; Lin, Yu-Cheng; Liao, Yi-Ru; Chung, Ying-Chien

    2010-01-01

    To shorten the time needed to measure biochemical oxygen demand (BOD) in water samples and to provide a rapid feedback of the real condition of water quality, we tested and evaluated the validity and reliability of luminescent bacteria Vibrio fischeri, Photobacterium phosphoreum, and recombinant Escherichia coli as potential indicators of BOD in the domestic wastewaters. The results indicate that the luminescence intensities of these strains are dependent on temperature, pH, and BOD concentration. In comparison to the standard BOD(5) method, the time needed for BOD measurement can be shortened by 90, 120, and 150 min when V. fischeri, P. phosphoreum, and recombinant E. coli, respectively, are used. Recombinant E. coli can be adapted to measure BOD in domestic wastewater containing a wide range of BOD concentrations, V. fischeri is not suitable for measuring diluted wastewater, and P. phosphoreum has only a limited application in measuring concentrated wastewater. To the best of our knowledge, this is the first report in which V. fischeri, P. phosphoreum, and recombinant luminescent E. coli are compared in terms of their potential in BOD measurement systems.

  18. Upconversion luminescence of cerium doped CoWO{sub 4} nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Uma, E-mail: us00@yahoo.com [Department of Physics, Goa University, GOA-403 206 (India); Naik, S.J. [Department of Chemistry, Goa University, GOA-403 206 (India); Tangsali, R.B. [Department of Physics, Goa University, GOA-403 206 (India); Salker, A.V. [Department of Chemistry, Goa University, GOA-403 206 (India)

    2013-02-15

    In this paper we report the bluish green upconversion intrinsic photoluminescence (PL) observed at room temperature (RT) 300 K for the nanorange (27-50 nm) Ce{sup 3+} doped and undoped CoWO{sub 4} powder samples sintered in air at 600 Degree-Sign C. Excitation by Xenon lamp at 600 nm was done and the emission was observed between 400 nm and 550 nm. Co{sub 1-x}Ce{sub x}WO{sub 4} [where x=0.00, 0.02, and 0.03] compounds were prepared by the solution based co-precipitation method and characterised by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The surface morphology of the compounds was examined by scanning electron microscopy (SEM) techniques. Optical absorption and photoluminescence behaviour of the compounds in the rigid matrix were studied. High emission intensity and easy preparation make these systems potential candidates for application as luminescent materials. - Highlights: Black-Right-Pointing-Pointer Ce{sup 3+} doped CoWO{sub 4} nanosamples were prepared by the co-precipitation method. Black-Right-Pointing-Pointer Characterised by XRD, TEM, SEM and XPS. Black-Right-Pointing-Pointer Upconversion intrinsic luminescence observed for nanosamples. Black-Right-Pointing-Pointer Mechanism for the upconverted emission is explained. Black-Right-Pointing-Pointer No upconverted luminescence observed for bulk samples.

  19. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    Directory of Open Access Journals (Sweden)

    Liping Wei

    2014-09-01

    Full Text Available Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies.

  20. Controllable Synthesis of Highly Luminescent Boron Nitride Quantum Dots.

    Science.gov (United States)

    Li, Hongling; Tay, Roland Yingjie; Tsang, Siu Hon; Zhen, Xu; Teo, Edwin Hang Tong

    2015-12-22

    Boron nitride quantum dots (BNQDs), as a new member of heavy metal-free quantum dots, have aroused great interest in fundamental research and practical application due to their unique physical/chemical properties. However, it is still a challenge to controllably synthesize high-quality BNQDs with high quantum yield (QY), uniform size and strong fluorescent. In this work, BNQDs have been successfully fabricated by the liquid exfoliation and the subsequent solvothermal process with respect to its facileness and easy large scale up. Importantly, BNQDs with high-quality can be controllably obtained by adjusting the synthetic parameters involved in the solvothermal process including filling factor, synthesis temperature, and duration time. Encouragingly, the as-prepared BNQDs possess strong blue luminescence with QY as high as 19.5%, which can be attributed to the synergetic effect of size, surface chemistry and edge defects. In addition, this strategy presented here provides a new reference for the controllable synthesis of other heavy metal-free QDs. Furthermore, the as-prepared BNQDs are non-toxic to cells and exhibit nanosecond-scaled lifetimes, suggesting they have great potential biological and optoelectronic applications.

  1. Effect of oxygen concentration on singlet oxygen luminescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Longchao; Lin, Lisheng; Li, Yirong; Lin, Huiyun; Qiu, Zhihai [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China); Gu, Ying [Department of Laser Medicine, Chinese PLA General Hospital, Beijing 100853 (China); Li, Buhong, E-mail: bhli@fjnu.edu.cn [MOE Key Laboratory of OptoElectronic Science and Technology for Medicine, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007 (China)

    2014-08-01

    Singlet oxygen ({sup 1}O{sub 2}) is a major phototoxic component in photodynamic therapy (PDT) and its generation is dependent on the availability of tissue oxygen. To examine the effect of oxygen concentration on {sup 1}O{sub 2} detection, two hydrophilic photosensitizer (PS), rose bengal (RB) and meso-metra (N-methyl-4-pyridyl) porphine tetra tosylate (TMPyP) were used as model PS. Irradiation was carried out using 523 nm under hypoxic (2%, 13%), normoxic (21%) and hyperoxic (65%) conditions. The spectral and spatial resolved {sup 1}O{sub 2} luminescence was measured by near-infrared (NIR) photomultiplier tube (PMT) and camera, respectively. Upon the irradiation, the emission signal mainly consisted of background scattering light, PS fluorescence and phosphorescence, and {sup 1}O{sub 2} luminescence. The PS phosphorescence was evidently dependent on the oxygen concentration and PS type, which resulted in the change of emission profile of {sup 1}O{sub 2} luminescence. This change was further demonstrated on {sup 1}O{sub 2} luminescence image. The present study suggests that the low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection. - Highlights: • Both spectral and spatial resolved {sup 1}O{sub 2} luminescence measurements were performed. • Effect of oxygen concentration on {sup 1}O{sub 2} generation was quantitatively evaluated. • Low oxygen concentration could affect {sup 1}O{sub 2} luminescence detection.

  2. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  3. Na-rich feldspar as a luminescence dosimeter in infrared stimulated luminescence (IRSL) dating

    DEFF Research Database (Denmark)

    Sohbati, Reza; Murray, Andrew; Jain, Mayank;

    2013-01-01

    on geological origin and erosion history, but the dosimetry of K-rich feldspar grains extracted from rocks is complicated because the internal dose rate is very dependent on the original feldspar grain size. The in situ grain size information is lost during the crushing process used to separate the grains...... are in agreement with the expected age control, raising the possibility that this signal originates mainly from K-rich feldspar contamination in our Na-rich fractions, and thus is not so useful in the luminescence dating of rock surfaces. On the other hand, the pIRIR290 fading-corrected ages based on the yellow......One of the challenges in dating rock surfaces is the choice of the luminescence mineral. Although quartz is the preferred dosimeter in sediment dating, it is often not sufficiently sensitive when extracted from solid rocks. The intensity of signals from feldspars tends to be much less dependent...

  4. Fast Diagnosis of Gonorrhea Witth Enhanced Luminescence Enzyme Immunoassay

    Institute of Scientific and Technical Information of China (English)

    ZHENG Heyi(郑和义); CAO Jingjiang(曹经江); SHAO Yanglin(邵燕玲)

    2002-01-01

    Objective:To evaluate the value of enhanced luminescence enzyme immunoassay in the diagnosis of Neisseria gonorrhea(NG) infection.Methods: Anti-catalase antibody for Neisseria gonorrheae combined with enhanced luminescence enzyme immunoassay were used to test for N. Gonorrhea.Results: A minimum of 1x104/CFU of GC in genital tract secretions or urine could be detected with the technique of luminescence enzyme immunoassay.Conclusion : The enhanced luninescence enzyme immunoassay has the advantage of high sensitivity and specificity for diagnosing NG from genitourinary tract secretion and urine.

  5. Luminescent Solar Concentrators--a review of recent results.

    Science.gov (United States)

    van Sark, Wilfried G J H M; Barnham, Keith W J; Slooff, Lenneke H; Chatten, Amanda J; Büchtemann, Andreas; Meyer, Andreas; McCormack, Sarah J; Koole, Rolf; Farrell, Daniel J; Bose, Rahul; Bende, Evert E; Burgers, Antonius R; Budel, Tristram; Quilitz, Jana; Kennedy, Manus; Meyer, Toby; Donegá, C De Mello; Meijerink, Andries; Vanmaekelbergh, Daniel

    2008-12-22

    Luminescent solar concentrators (LSCs) generally consist of transparent polymer sheets doped with luminescent species. Incident sunlight is absorbed by the luminescent species and emitted with high quantum efficiency, such that emitted light is trapped in the sheet and travels to the edges where it can be collected by solar cells. LSCs offer potentially lower cost per Wp. This paper reviews results mainly obtained within the framework of the Full-spectrum project. Two modeling approaches are presented, i.e., a thermodynamic and a ray-trace one, as well as experimental results, with a focus on LSC stability.

  6. Luminescent Solar Concentrators. A review of recent results

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, Wilfried G.J.H.M. [Copernicus Institute of Sustainable Development and Innovation, Utrecht University, Utrecht (Netherlands); Barnham, K.W.J.; Chatten, A.J.; Farrell, D.J.; Bose, R. [Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Slooff, L.H.; Bende, E.E.; Burgers, A.R.; Budel, T. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Buechtemann, A.; Quilitz, J. [Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstrasse 69, 14476 Potsdam (Germany); Meyer, A.; Meyer, T. [Solaronix SA, Rue de l' Ouriette 129, 1170 Aubonne (Switzerland); McCormack, S.J.; Kennedy, M. [Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Koole, R.; De Mello Donega, C.; Meijerink, C.; Vanmaekelbergh, D. [Chemistry of Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2008-12-15

    Luminescent solar concentrators (LSCs) generally consist of transparent polymer sheets doped with luminescent species. Incident sunlight is absorbed by the luminescent species and emitted with high quantum efficiency, such that emitted light is trapped in the sheet and travels to the edges where it can be collected by solar cells. LSCs offer potentially lower cost per Wp. This paper reviews results mainly obtained within the framework of the Fullspectrum project. Two modeling approaches are presented, i.e., a thermodynamic and a ray-trace one, as well as experimental results, with a focus on LSC stability.

  7. Luminescence from potassium feldspars stimulated by infrared and green light

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.

    1993-01-01

    A series of experiments are reported which investigate stimulated luminescence from potassium feldspar. The aim is to provide a basic phenomenological description of the response of the material to stimulation by heat, infrared radiation (875 DELTA 80 nm) and a green light wavelength band from 5 15...... to 560 nm. Two conclusions are drawn: firstly it is suggested that the majority of the trapped charge responsible for the infrared stimulated luminescence signal does not give rise to a thermoluminescence signal, and secondly that a large traction of the two optically stimulated luminescence signals...

  8. Yellow luminescence of gallium nitride generated by carbon defect complexes.

    Science.gov (United States)

    Demchenko, D O; Diallo, I C; Reshchikov, M A

    2013-02-22

    We demonstrate that yellow luminescence often observed in both carbon-doped and pristine GaN is the result of electronic transitions via the C(N)-O(N) complex. In contrast to common isolated defects, the C(N)-O(N) complex is energetically favorable, and its calculated optical properties, such as absorption and emission energies, a zero phonon line, and the thermodynamic transition level, all show excellent agreement with measured luminescence data. Thus, by combining hybrid density functional theory and experimental measurements, we propose a solution to a long-standing problem of the GaN yellow luminescence.

  9. Luminescence of Speleothems in Italian Gypsum Caves: Preliminary Report

    CERN Document Server

    Shopov, Yavor Y; Forti, Paolo

    2009-01-01

    The luminescence of 3 speleothem samples from the Acquafredda karst system and 1 from the Novella Cave (Gessi Bolognesi Natural Park, Italy) has been recorded using excitation by impulse Xe- lamp. All these carbonate speleothems are believed to be formed only from active CO2 from the air, because the bedrock of the cave consist of gypsum and does not contain carbonates. The obtained photos of luminescence record the climate changes during the speleothem growth. U/Th and 14C dating proved that studied speleothems started to grow since about 5,000 years ago. The detailed analyses of the luminescence records is still in progress.

  10. Control of luminescence from lantern shark (Etmopterus spinax) photophores.

    Science.gov (United States)

    Claes, Julien M; Mallefet, Jérôme

    2011-05-01

    The velvet belly lantern shark (Etmopterus spinax) is a common deep-sea shark that has been used, in the recent years, as a model for experimental studies on physiological control of shark luminescence. These studies demonstrated that, unlike any other luminous organism, the luminescence of this shark was under a dual control of hormones and neurotransmitters (or neuromodulators). This paper, by making a short review of histological and pharmacological results from these studies, aims to propose a first model of luminescence control in E. spinax.

  11. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: a new luminescent uranyl benzoate specie.

    Science.gov (United States)

    Kumar, Satendra; Maji, S; Joseph, M; Sankaran, K

    2015-03-05

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3](-) which is highly luminescent. In particular, three sharp bands at 431, 443, 461nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68μs which is much more compared to the lifetime of uncomplexed uranyl (20μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3](-) specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Ligand sensitized luminescence of uranyl by benzoic acid in acetonitrile medium: A new luminescent uranyl benzoate specie

    Science.gov (United States)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-03-01

    Benzoic acid (BA) is shown to sensitize and enhance the luminescence of uranyl ion in acetonitrile medium. Luminescence spectra and especially UV-Vis spectroscopy studies reveal the formation of tri benzoate complex of uranyl i.e. [UO2(C6H5COO)3]- which is highly luminescent. In particular, three sharp bands at 431, 443, 461 nm of absorption spectra provides evidence for tri benzoate specie of uranyl in acetonitrile medium. The luminescence lifetime of uranyl in this complex is 68 μs which is much more compared to the lifetime of uncomplexed uranyl (20 μs) in acetonitrile medium. In contrary to aqueous medium where uranyl benzoate forms 1:1 and 1:2 species, spectroscopic data reveal formation of 1:3 complex in acetonitrile medium. Addition of water to acetonitrile results in decrease of luminescence intensity of this specie and the luminescence features implode at 20% (v/v) of water content. For the first time, to the best of our knowledge, the existence of [UO2(C6H5COO)3]- specie in acetonitrile is reported. Mechanism of luminescence enhancement is discussed.

  13. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Evan; Samuel, Amanda; Raymond, Kenneth

    2008-09-25

    Ligand-sensitized luminescent lanthanide(III) complexes are of considerable current interest due to their unique photophysical properties (micro- to millisecond lifetimes, characteristic and narrow emission bands, and large Stokes shifts), which make them well suited to serve as labels in fluorescence-based bioassays. The long-lived Ln(III) emission can be temporally resolved from scattered light and background fluorescence, resulting in vastly enhanced measurement sensitivity. One of the challenges in this field is the design of sensitizing ligands that provide highly emissive Ln(III) complexes that also possess sufficient stability and aqueous solubility required for practical applications. In this account we give an overview of some of the general properties of the trivalent lanthanides and follow with a summary of advances made in our laboratory in the development of highly luminescent Tb(III) and Eu(III) complexes for applications in biotechnology. A focus of our research has been the optimization of these compounds as potential commercial agents for use in Homogeneous Time Resolved Fluorescence (HTRF) technology, the requirements and current use of which will be briefly discussed. Our approach involves developing high-stability octadentate Tb(III) and Eu(III) complexes that rely on all-oxygen donor atoms as well as using multi-chromophore chelates to increase molar absorptivity compared to earlier examples that utilize a single pendant antenna chromophore. We have found that ligands based on 2-hydroxyisophthalamide (IAM) provide exceptionally emissive Tb(III) complexes with quantum yield values up to ca. 60%. Solution thermodynamic studies have indicated that these complexes are stable at the nanomolar concentrations required for commercial assays. Through synthetic modification of the IAM-chromophore, in conjunction with time-dependent density functional theory (TD-DFT) calculations, we have developed a method to predict absorption and emission properties of

  14. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  15. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy.

    Science.gov (United States)

    Ji, J; Colosimo, A M; Anwand, W; Boatner, L A; Wagner, A; Stepanov, P S; Trinh, T T; Liedke, M O; Krause-Rehberg, R; Cowan, T E; Selim, F A

    2016-08-23

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  16. A label-free G-quadruplex-based luminescent switch-on assay for the selective detection of histidine.

    Science.gov (United States)

    He, Hong-Zhang; Wang, Modi; Chan, Daniel Shiu-Hin; Leung, Chung-Hang; Qiu, Jian-Wen; Ma, Dik-Lung

    2013-12-15

    A label-free G-quadruplex-based luminescent switch-on assay has been developed for the selective detection of micromolar histidine in aqueous solution. In this study, an iridium(III) complex was employed as a G-quadruplex-specific luminescent probe while a guanine-rich oligonucleotide (Pu27, 5'-TG4AG3TG4AG3TG4A2G2-3')/cupric ion (Cu(2+)) ensemble was employed as a recognition unit for histidine. The initial luminescence of the iridium(III) complex in the presence of G-quadruplex DNA is effectively quenched by Cu(2+) ions due to the Cu(2+)-mediated unfolding of the G-quadruplex motif. The addition of histidine sequesters Cu(2+) ions from the ensemble, thereby restoring the luminescence of the system. The assay could detect down to 1 μM of histidine in aqueous media, and also exhibited good selectivity for histidine over other amino acids with the use of the cysteine, masking agent N-ethylmaleimide. Furthermore, the application of the assay for the detection of histidine in diluted urine samples was demonstrated.

  17. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  18. 76 FR 56157 - University of Chicago, et al.; Notice of Decision on Applications for Duty-Free Entry of...

    Science.gov (United States)

    2011-09-12

    .... Applicant: University of Chicago, Institute for Genomic Systems and Biology, Chicago, IL 60637. Instrument... luminescence. ] Dated: September 2, 2011. Gregory W. Campbell, Director, Subsidies Enforcement Office,...

  19. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  20. Luminescent solar concentrator improvement by stimulated emission

    Science.gov (United States)

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W.; Schmidt, Timothy W.; Argyros, Alexander

    2015-12-01

    Luminescent solar concentrators (LSCs) offer the prospect of reducing the cost of solar energy, and are a promising candidate for building integrated photovoltaic (PV) structures. However, the realization of commercially viable efficiency of LSCs is currently hindered by reabsorption losses. In this work, a method is introduced for reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire length of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption, and directed by the seed laser towards a small target PV cell. A mathematical model of such a system is presented which identifies different physical parameters responsible for the power conversion efficiency and gives the net effective output power.