WorldWideScience

Sample records for luminescence intensity measurements

  1. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  2. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  3. A CMOS Luminescence Intensity and Lifetime Dual Sensor Based on Multicycle Charge Modulation.

    Science.gov (United States)

    Fu, Guoqing; Sonkusale, Sameer R

    2018-06-01

    Luminescence plays an important role in many scientific and industrial applications. This paper proposes a novel complementary metal-oxide-semiconductor (CMOS) sensor chip that can realize both luminescence intensity and lifetime sensing. To enable high sensitivity, we propose parasitic insensitive multicycle charge modulation scheme for low-light lifetime extraction benefiting from simplicity, accuracy, and compatibility with deeply scaled CMOS process. The designed in-pixel capacitive transimpedance amplifier (CTIA) based structure is able to capture the weak luminescence-induced voltage signal by accumulating photon-generated charges in 25 discrete gated 10-ms time windows and 10-μs pulsewidth. A pinned photodiode on chip with 1.04 pA dark current is utilized for luminescence detection. The proposed CTIA-based circuitry can achieve 2.1-mV/(nW/cm 2 ) responsivity and 4.38-nW/cm 2 resolution at 630 nm wavelength for intensity measurement and 45-ns resolution for lifetime measurement. The sensor chip is employed for measuring time constants and luminescence lifetimes of an InGaN-based white light-emitting diode at different wavelengths. In addition, we demonstrate accurate measurement of the lifetime of an oxygen sensitive chromophore with sensitivity to oxygen concentration of 7.5%/ppm and 6%/ppm in both intensity and lifetime domain. This CMOS-enabled oxygen sensor was then employed to test water quality from different sources (tap water, lakes, and rivers).

  4. Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics

    International Nuclear Information System (INIS)

    Massing, J; Kähler, C J; Cierpka, C; Kaden, D

    2016-01-01

    The simultaneous and non-intrusive measurement of temperature and velocity fields in flows is of great scientific and technological interest. To sample the velocity and temperature, tracer particle based approaches have been developed, where the velocity is measured using PIV or PTV and the temperature is obtained from the intensity (LIF, thermographic phosphors) or frequency (TLC) of the light emitted or reflected by the tracer particles. In this article, a measurement technique is introduced, that relates the luminescent intensity ratio of individual dual-color luminescent tracer particles to temperature. Different processing algorithms are tested on synthetic particle images and compared with respect to their accuracy in estimating the intensity ratio. Furthermore, polymer particles which are doped with the temperature sensitive dye europium (III) thenoyltrifluoroacetonate (EuTTA) and the nearly temperature insensitive reference dye perylene are characterized as valid tracers. The results show a reduction of the temperature measurement uncertainty of almost 40% (95% confidence interval) compared to previously reported luminescent particle based measurement techniques for microfluidics. (paper)

  5. Reflection measurements for luminescent powders

    Science.gov (United States)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  6. Linear luminescence for thin plastic scintillator under intense soft X-ray irradiation

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Guo Cun

    2006-01-01

    The basic principle of soft X-ray power meter is introduced in the paper and the experimental process and the result of thin plastic scintillator linear luminescence under intense soft X-ray irradiation are described. A range of flux density of energy for thin plastic scintillator linear luminescence under intense soft X-ray irradiation is included. The upper limit of the flux density is 1.47 x 10 5 W/cm 2 . (authors)

  7. Investigations on the homogeneity of silica glass and on the order of X-amorphous silica by luminescence measurements

    International Nuclear Information System (INIS)

    Boden, G.

    1982-08-01

    Silica glasses melted from crystalline SiO 2 were exposed to ionizing radiation. At room temperature the spatial intensity distribution of the emitted luminescent radiation has been recorded by means of photographic or autoradiographic materials. Thereby schlieren and inhomogeneities are made visible and information is obtained on the melting process of the crystalline SiO 2 . Synthetic fused silica made from SiCl 4 shows no luminescent radiation. Depending on the penetration depth of the ionizing radiation the bulk or the surface of the sample can be studied. The decay curves of the integral luminescence intensity yield data on inhomogeneities in the silica glass leading to conclusions on order state and structure. The luminescence intensity and its half-life are a measure for the inhomogeneity of the silica glass and the existence of so-called 'preordered states'. This connection between luminescence intensity and the order state is found also with other X-amorphous SiO 2 modifications: silica gel, precipitated silicic acids, porous SiO 2 glasses, aerosil, thin SiO 2 layers, mechanically activated quartz: whereas no luminescence phenomena occur in disordered nearly ideally amorphous SiO 2 species, the luminescence increases with increasing order degree of the SiO 2 network and attains a high intensity in the case of the crystalline SiO 2 modifications quartz and cristobalite

  8. Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass

    International Nuclear Information System (INIS)

    Sun Hongtao; Zhanga Liyan; Zhang Junjie; Wen Lei; Yu Chunlei; Duan Zhongchao; Dai Shixun; Hu Lili; Jiang Zhonghong

    2005-01-01

    Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl 2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1 G 4 → 3 H 6 and 1 G 4 → 3 H 4 , respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers

  9. Fiber optical dose rate measurement based on the luminescence of beryllium oxide

    Directory of Open Access Journals (Sweden)

    Teichmann Tobias

    2018-01-01

    Full Text Available This work presents a fiber optical dose rate measurement system based on the radioluminescence and optically stimulated luminescence of beryllium oxide. The system consists of a small, radiation sensitive probe which is coupled to a light detection unit with a long and flexible light guide. Exposing the beryllium oxide probe to ionizing radiation results in the emission of light with an intensity which is proportional to the dose rate. Additionally, optically stimulated luminescence can be used to obtain dose and dose rate information during irradiation or retrospectively. The system is capable of real time dose rate measurements in fields of high dose rates and dose rate gradients and in complex, narrow geometries. This enables the application for radiation protection measurements as well as for quality control in radiotherapy. One inherent drawback of fiber optical dosimetry systems is the generation of Cherenkov radiation and luminescence in the light guide itself when it is exposed to ionizing radiation. This so called “stem” effect leads to an additional signal which introduces a deviation in the dose rate measurement and reduces the spatial resolution of the system, hence it has to be removed. The current system uses temporal discrimination of the effect for radioluminescence measurements in pulsed radiation fields and modulated optically stimulated luminescence for continuous irradiation conditions. This work gives an overview of the major results and discusses new-found obstacles of the applied methods of stem discrimination.

  10. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far ...

  11. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  12. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  13. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  14. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  15. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  16. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  17. Chemisorptive luminescence on γ-irradiated magnesium oxide

    International Nuclear Information System (INIS)

    Breakspere, R.J.; Read, R.L.

    1976-01-01

    The intensity of a chemisorptive luminescence produced on MgO by oxygen at room temperature is increased by prior γ-irradiation of the MgO, under vacuum, before adsorption. This enhancement of the luminescence increases with radiation dose up to 1.9 x 10 6 rad and is attributed to the interaction between the F + sub (s) centres produced by the radiation and oxygen molecules arriving at the surface from the gas phase. In this work, the spectrum of the emitted luminescence could not be measured. (author)

  18. Effect of luminescence transport through adipose tissue on measurement of tissue temperature by using ZnCdS nanothermometers

    Science.gov (United States)

    Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2018-02-01

    The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.

  19. X-ray luminescence computed tomography imaging via multiple intensity weighted narrow beam irradiation

    Science.gov (United States)

    Feng, Bo; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2018-02-01

    The purpose of this work is to introduce and study a novel x-ray beam irradiation pattern for X-ray Luminescence Computed Tomography (XLCT), termed multiple intensity-weighted narrow-beam irradiation. The proposed XLCT imaging method is studied through simulations of x-ray and diffuse lights propagation. The emitted optical photons from X-ray excitable nanophosphors were collected by optical fiber bundles from the right-side surface of the phantom. The implementation of image reconstruction is based on the simulated measurements from 6 or 12 angular projections in terms of 3 or 5 x-ray beams scanning mode. The proposed XLCT imaging method is compared against the constant intensity weighted narrow-beam XLCT. From the reconstructed XLCT images, we found that the Dice similarity and quantitative ratio of targets have a certain degree of improvement. The results demonstrated that the proposed method can offer simultaneously high image quality and fast image acquisition.

  20. Optically stimulated luminescence from quartz measured using the linear modulation technique

    DEFF Research Database (Denmark)

    Bulur, E.; Bøtter-Jensen, L.; Murray, A.S.

    2000-01-01

    The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonical...

  1. NaCl samples for optical luminescence dosimetry

    International Nuclear Information System (INIS)

    Catli, S.

    2005-01-01

    Optically stimulated luminescence (OSL) have been used broadly for luminescence dosimetry and dating. In many cases, it has been pointed out that the decay of the OSL do not generally behave according to a simple exponential function. In this study the Infra-red stimulated luminescence (IRSL) intensity from NaCl samples were experimentally measured. The decay curves for this sample were fitted to some functions and it is in good agreement with the function y = α + b exp(-cx). The IRSL decay curves from NaCl using different β-doses have been obtained and investigated their dose response

  2. Dependence of the thermal influence on luminescence lifetimes from quartz on the duration of optical stimulation

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2003-01-01

    Time-resolved luminescence spectra may be measured from quartz at various stages of continuous optical stimulation in order to investigate properties of the spectra associated with the 'fast', 'medium', and 'slow' components of continuous optically stimulated luminescence (OSL). In this work, temperature related changes of luminescence lifetimes and luminescence intensity, both evaluated from time-resolved luminescence spectra recorded in the 'fast' 'medium' and 'slow' component regions of quartz OSL, have been investigated. The luminescence, stimulated at 525 nm, and measured at intervals between 20 deg. C and 200 deg. C reaches maximum intensity at 100 deg. C and decreases thereafter up to 200 deg. C, the maximum temperature of the investigations. Luminescence lifetimes, on the other hand, remain constant within 40±3 μs between 20 deg. C and 100 deg. C and then decrease down to about μs at 200 deg. C. The initial increase of luminescence intensity with temperature between 20 deg. C and 100 deg. C is discussed in terms of thermal assistance to luminescence stimulation. Beyond 100 deg. C, radiative recombination is affected by quenching of luminescence and reduction in luminescence lifetimes. The activation energy for thermal quenching was evaluated to be in the range 0.63±0.07 eV at all stimulation times and that of thermal assistance was evaluated to be about 0.06 eV for the 'fast' and 'medium' component regions and about 0.1 eV for the 'slow' component region of the OSL

  3. Intense upconversion luminescence and effect of local environment for Tm3+/Yb3+ co-doped novel TeO2-BiCl3 glass system.

    Science.gov (United States)

    Wang, Guonian; Dai, Shixun; Zhang, Junjie; Wen, Lei; Yang, Jianhu; Jiang, Zhonghong

    2006-05-15

    We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups.

  4. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del [Department of Physics, University of Pisa, Pisa (Italy); INFN, section of Pisa, Pisa (Italy); Cherry, Simon R. [Department of Biomedical Engineering, University of California, Davis, CA (United States); Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E. [Department of Radiology, University of Washington, Seattle, WA (United States)

    2015-11-16

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  5. Cherenkov luminescence measurements with digital silicon photomultipliers: a feasibility study

    International Nuclear Information System (INIS)

    Ciarrocchi, Esther; Belcari, Nicola; Guerra, Alberto Del; Cherry, Simon R.; Lehnert, Adrienne; Hunter, William C. J.; McDougald, Wendy; Miyaoka, Robert S.; Kinahan, Paul E.

    2015-01-01

    A feasibility study was done to assess the capability of digital silicon photomultipliers to measure the Cherenkov luminescence emitted by a β source. Cherenkov luminescence imaging (CLI) is possible with a charge coupled device (CCD) based technology, but a stand-alone technique for quantitative activity measurements based on Cherenkov luminescence has not yet been developed. Silicon photomultipliers (SiPMs) are photon counting devices with a fast impulse response and can potentially be used to quantify β-emitting radiotracer distributions by CLI. In this study, a Philips digital photon counting (PDPC) silicon photomultiplier detector was evaluated for measuring Cherenkov luminescence. The PDPC detector is a matrix of avalanche photodiodes, which were read one at a time in a dark count map (DCM) measurement mode (much like a CCD). This reduces the device active area but allows the information from a single avalanche photodiode to be preserved, which is not possible with analog SiPMs. An algorithm to reject the noisiest photodiodes and to correct the measured count rate for the dark current was developed. The results show that, in DCM mode and at (10–13) °C, the PDPC has a dynamic response to different levels of Cherenkov luminescence emitted by a β source and transmitted through an opaque medium. This suggests the potential for this approach to provide quantitative activity measurements. Interestingly, the potential use of the PDPC in DCM mode for direct imaging of Cherenkov luminescence, as a opposed to a scalar measurement device, was also apparent. We showed that a PDPC tile in DCM mode is able to detect and image a β source through its Cherenkov radiation emission. The detector’s dynamic response to different levels of radiation suggests its potential quantitative capabilities, and the DCM mode allows imaging with a better spatial resolution than the conventional event-triggered mode. Finally, the same acquisition procedure and data processing could

  6. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    Science.gov (United States)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  7. Uranyl(VI) luminescence spectroscopy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Steudtner, Robin; Franzen, Carola; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Haubitz, Toni [Brandenburg Univ. of Technology, Cottbus-Senftenberg (Germany)

    2016-07-01

    We studied the influence of temperature and ionic strength on the luminescence characteristics (band position, decay time and intensity) of the free uranyl ion (UO{sub 2}{sup 2+}) in acidic aqueous solution. Under the chosen conditions an increasing temperature reduced both intensity and luminescence decay time of the UO{sub 2}{sup 2+} luminescence, but the individual U(VI) emission bands did not change.

  8. Sensitive luminescent determination of DNA using the terbium(III)-difloxacin complex

    International Nuclear Information System (INIS)

    Yegorova, Alla V.; Scripinets, Yulia V.; Duerkop, Axel; Karasyov, Alexander A.; Antonovich, Valery P.; Wolfbeis, Otto S.

    2007-01-01

    The interaction of the terbium-difloxacin complex (Tb-DFX) with DNA has been examined by using UV-vis absorption and luminescence spectroscopy. The Tb-DFX complex shows an up to 85-fold enhancement of luminescence intensity upon titration with DNA. The long decay times allow additional detection schemes like time-resolved measurements in microplate readers to enhance sensitivity by off-gating short-lived background luminescence. Optimal conditions are found at equimolar concentrations of Tb 3+ and DFX (0.1 or 1 μM) at pH 7.4. Under these conditions, the luminescence intensity is linearly dependent on the concentration of ds-DNAs and ss-DNA between 1-1500 ng mL -1 and 4.5-270 ng mL -1 , respectively. The detection limit is 0.5 ng mL -1 for ds-DNAs and 2 ng mL -1 for ss-DNA. The mechanism for the luminescence enhancement was also studied

  9. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  10. [Digital luminescence radiography. A new method of study in thoracic diagnosis at the intensive care unit].

    Science.gov (United States)

    Witte, G; Pothmann, W; Bause, H; Nicolas, V; Schulte am Esch, J; Bücheler, E

    1989-02-01

    The digital luminescence-radiography (DLR) technique relies on a complete digitalization of the X-ray image. Luminescence crystals on the imaging plate serve as an energy reservoir following their exposure to ionized radiation from any conventional X-ray source. A Helium-Neon laser stimulates the electrons in their high energy bands and therefore will be dropped back emitting luminescence. This luminescence is digitized by the DLR-System thus delivering a complete digital image to the image processor for subsequent processing and evaluation. The processed digital image is then recorded on a conventional film or a monitor screen. More than 3000 chest examinations using DLR have been performed on intensive care unit (ICU) patients at the University Hospital Eppendorf following the first eleven months since the clinical introduction of this new technique. The positive aspects of DLR such as high-contrast resolution and optimal reproducibility were clinically evaluated under ICU conditions. It was shown that DLR greatly improves the quality of the chest X-rays of all ICU patients and offers the following advantages: reproducibility, lateral chest projection, no insufficient exposure, reduction of exposure dose, electronical post-processing and storage, quality preserving digital storage and copying.

  11. Effect of calcinations temperature on the luminescence intensity and fluorescent lifetime of Tb3+-doped hydroxyapatite (Tb-HA nanocrystallines

    Directory of Open Access Journals (Sweden)

    Hairong Yin

    2017-06-01

    Full Text Available Hydroxyapatite luminescent nanocrystallines doped with 6 mol.% Tb3+ (Tb-HA were prepared via chemical deposition method and calcined at different temperature, and the effects of calcinations temperature on the luminescence intensity and fluorescent lifetime were studied. TEM image of Tb-HA revealed that the shape of nanocrystallines changed from needle-like to short rod-like and sphere-like with the increase of calcinations temperature; while the particles sizes decreased from 190 nm to 110 nm. The crystallinity degree increased. The typical emission peaks attributed to Tb3+ ions were observed in emission spectra of 6 mol.% Tb-HA under 378 nm excitation. The luminescent intensity of Tb-HA, which showed the fluorescence quenching, firstly enhanced and then decreased at 700 °C; while the fluorescent lifetime increased firstly and then decreased after 600 °C. Furthermore, the ratio of intensity between 545 nm and 490 nm corresponding to electric-dipole and magnetic-dipole transition (IR: IO increases firstly and then decreases, which revealed that the proportion of substitute type and site of Ca2+ ions by Tb3+ ions were helpful to realize the substitute process and functional structure design.

  12. Optically stimulated luminescence dosimetry with gypsum wallboard (drywall)

    International Nuclear Information System (INIS)

    Thompson, J. W.; Burdette, K. E.; Inrig, E. L.; Dewitt, R.; Mistry, R.; Rink, W. J.; Boreham, D. R.

    2010-01-01

    Gypsum wallboard (drywall) represents an attractive target for retrospective dosimetry by optically stimulated luminescence (OSL) in the event of a radiological accident or malicious use of nuclear material. In this study, wallboard is shown to display a radiation-induced luminescence signal (RIS) as well as a natural background signal (NS), which is comparable in intensity to the RIS. Excitation and emission spectra show that maximum luminescence intensity is obtained for stimulation with blue light-emitting diodes (470 nm) and for detection in the ultraviolet region (290-370 nm). It is necessary to decrease the optical stimulation power dramatically in order to adequately separate the RIS from the interfering background signal. The necessary protocols are developed for accurately measuring the absorbed dose as low as 500 mGy and demonstrate that the RIS decays logarithmically with storage time, with complete erasure expected within 1-4 d. (authors)

  13. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO_3 nanoparticles

    International Nuclear Information System (INIS)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-01-01

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO_2 nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  14. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov

    2012-01-01

    ), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal.Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when......This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non...... radiation field is spatially non-uniform across the sample area. We document the effect of this correction method and further investigate on the effect of lifting the source to achieve a better dose-rate uniformity.Finally we summarise two recently-developed novel facilities to help investigate (i) the time...

  15. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  16. Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Tsuyoshi; Han, Yu; Nagao, Daisuke, E-mail: dnagao@tohoku.ac.jp; Kamezawa, Nao; Ishii, Haruyuki; Konno, Mikio

    2016-09-15

    Highlights: • Dielectric barium titanate (BT) nanoparticles incorporated into luminescence films. • Luminescence intensities increased by the BT nanoparticle incorporation. • Incorporation of highly dielectric nanoparticles effective for luminescence enhancement. - Abstract: Incorporation of highly dielectric nanoparticles into luminescent ZnO-polymethylmethacrylate (PMMA) nanocomposite films was undertaken to examine the effect of nanoparticle incorporation on luminescence intensity of the nanocomposite films. ZnO nanoparticles were prepared as inorganic phosphors by a precipitation method. The ZnO nanoparticles were then surface-modified with 3-methacryloxypropyltrimethoxysilane (MPTMS) to be used for fabrication of the ZnO-PMMA nanocomposite film. Barium titanate (BT) nanoparticles were synthesized with a sol-gel method as the highly dielectric nanoparticles, which were also surface-modified with the MPTMS for the incorporation into the nanocomposite films. Luminescence intensity of the nanocomposite films was successfully increased by the nanoparticle incorporation up to a BT content around 15 vol%. The luminescence intensity higher than that measured for the nanocomposite films incorporating SiO{sub 2} nanoparticles indicated that the incorporation of highly dielectric nanoparticles was an effective approach to enhance the luminescence of ZnO nanoparticles in the polymer thin films.

  17. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  18. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  19. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  20. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of ~200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  1. Luminescence imaging of water during irradiation of X-ray photons lower energy than Cerenkov- light threshold

    Science.gov (United States)

    Yamamoto, Seiichi; Koyama, Shuji; Komori, Masataka; Toshito, Toshiyuki

    2016-10-01

    Luminescence imaging of water using X-ray photon irradiation at energy lower than maximum energy of 200 keV is thought to be impossible because the secondary electrons produced in this energy range do not emit Cerenkov- light. Contrary to this consensus assumption, we show that the luminescence imaging of water can be achieved by X-ray irradiation at energy lower than 120 keV. We placed water phantoms on a table with a conventional X-ray imaging system, and luminescence images of these phantoms were measured with a high-sensitivity, cooled charge coupled device (CCD) camera during X-ray photon irradiation at energy below 120 keV. We also carried out such imaging of an acrylic block and plastic scintillator. The luminescence images of water phantoms taken during X-ray photon irradiation clearly showed X-ray photon distribution. The intensity of the X-ray photon images of the phantom increased almost proportionally to the number of X-ray irradiations. Lower-energy X-ray photon irradiation showed lower-intensity luminescence at the deeper parts of the phantom due to the higher X-ray absorption in the water phantom. Furthermore, lower-intensity luminescence also appeared at the deeper parts of the acrylic phantom due to its higher density than water. The intensity of the luminescence for water was 0.005% of that for plastic scintillator. Luminescence imaging of water during X-ray photon irradiation at energy lower than 120 keV was possible. This luminescence imaging method is promising for dose estimation in X-ray imaging systems.

  2. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  3. Luminescence and luminescence quenching of Eu{sub 2}Mo{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Janulevicius, Matas; Grigorjevaite, Julija; Merkininkaite, Greta [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Sakirzanovas, Simas [Department of Applied Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, Arturas, E-mail: arturas.katelnikovas@chf.vu.lt [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2016-11-15

    A polycrystalline Eu{sub 2}Mo{sub 4}O{sub 15} phosphor sample was prepared by high temperature solid state reaction. Phase purity and morphological features of the phosphor were investigated by X-ray diffraction and scanning electron microscopy, respectively. Reflectance spectra showed that the optical band gap of Eu{sub 2}Mo{sub 4}O{sub 15} is 2.95 eV. Phosphor emits intensive red light when excited with 394 and 465 nm radiation. Temperature dependent emission and luminescence lifetime measurements revealed that external and internal quantum yields decrease at the same rate and that luminescence quenches due to photoionization. The calculated external quantum yields for 394 and 465 nm excitation were 7.8% and 53.5%, respectively.

  4. Increase of (CdSe/ZnS)Cys quantum dot luminescence intensity in the presence of TPPS4 porphyrin

    International Nuclear Information System (INIS)

    Parra, Gustavo G.; Borissevitch, Iouri E.; Oleinikov, Vladimir A.

    2012-01-01

    Full text: Nanocrystal semiconductor particles or Quantum Dots (QD) possess extraordinary photophysical characteristics, such as extreme high fluorescence quantum yield and optical absorption and very narrow fluorescence band, which can be easily shifted by changing of QD particle size. Due to these characteristics, QD is promising for fluorescence cancer diagnostics and photodynamic treatment. The efficiency of these processes can be in- creased by energy transfer between QD and classic fluorescence probes and photosensitizers (PS). In this work we present on the study of the increase of (CdSe/ZnS)Cys quantum dot luminescence intensity, stimulated by interaction with TPPS 4 porphyrin. The optical absorption and steady-state and time-resolved fluorescence techniques were employed. Water soluble QD (CdSe/ZnS) with emission at 580 nm, functionalized with cysteine (Cys), were studied. TPPS 4 porphyrin was used as a stimulator of QD luminescence. All experiments were realized in PBS buffer (pH 7.3; 7.5 mM) in Milli-Q quality water. The TPPS 4 adding into the QD solutions until the 5μM concentration produced an increase in QD luminescence intensity and lifetime, while for TPPS 4 concentrations higher than 20μM the reduction of the fluorescence intensity was observed, the emission spectra and fluorescence decays profile being unchanged. This effect can not be due to the electrostatic interaction between (CdSe/ZnS)Cys and TPPS 4 because both, (CdSe/ZnS)Cys and TPPS 4 , are negatively charged. We suppose that TPPS 4 porphyrin interacts directly with QD (ZnS) shell, reducing the dangling bound number. This reduction decreases, in turn, the probability of nonradiative ways of the excitation energy dissipation. When the majority of dangling bound is occupied by the TPPS 4 molecules, the effect of QD luminescence reduction (quenching) by porphyrin predominates, probably, via the energy transfer from QD to TPPS 4 . However, because of complexity in the systems involving

  5. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Science.gov (United States)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and

  6. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  7. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  8. Device for the evaluation of radio-photo-luminescent glasses

    International Nuclear Information System (INIS)

    Hoegl, A.; Schubert, K.

    1979-01-01

    The UV light for irradiation of the glass as well as the luminescent light generated by the UV light are recorded in different measuring circuits. Intensity variations of the UV light source are corrected by a programmed control system and a comparing and correcting device linking both measuring circuits with one another and containing integrating stages as well as a-d converters. In order to eliminate the influence of sensitivity variations of the light converter and of the amplifying level of the succeeding amplifier a reference light source is added to the light converter. The programmed control system causes alternating measuring phases of luminescence and reference light. The correction is done by the comparing and correcting unit. (DG) [de

  9. Terbium and dysprosium complexes luminescence at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meshkova, S B; Kravchenko, T B; Kononenko, L.I.; Poluehktov, N S [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1979-01-01

    The variation is studied of the luminescence intensity of terbium and dysprosium complexes used in the analysis as solutions are cooled down to the liquid nitrogen temperature. Three groups of methods have been studied: observation of fluorescence of aqueous solutions, precipitate and extract suspensions in organic solvents. The brightest luminescence and greatest increase in luminescence intensity are observed at freezing of complex solvents with 1,2-dioxybenzene-3,5-disulfonic acid (DBSA) and iminodiacetic acid (IDA) and DBSA+EDTA, as well as in the case of benzene extracting of complexes with phenanthroline and salicylic acid. Otherwise the intensity increases 2-14-fold and for the complex of terbium with acetoacetic ester 36-fold.

  10. Luminescence as a new detection method for non-relativistic highly ionizing particles in water/ice neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Anna [Bergische Universitaet Wuppertal (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    Cosmic ray detectors use air as a radiator for luminescence. In water and ice detectors Cherenkov light is the dominant light producing mechanism when the particle velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light. Luminescence is produced by highly ionizing particles passing through matter due to the excitation of the surrounding atoms. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium. Therefore, the results of measurements, in which luminescence was produced by particles passing through water or ice, vary by two orders of magnitude in intensity. It is shown that, even for the most conservative intensity value, luminescence can be used as a detection method for highly ionizing particles with velocities below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly penetrating exotic particles. In the most optimistic case, luminescence contributes even to the light output of standard model particles.

  11. A Radiation Dosimetry Method Using Pulsed Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Akselrod, M.S.; McKeever, S.W.S.

    1999-01-01

    A method for the determination of absorbed radiation dose is described based on pulsed optically stimulated luminescence (POSL). The method relies upon the stimulation of an irradiated sample with a train of light pulses from a suitable light source (e.g. a laser) using a wavelength which is within the range of wavelengths corresponding to the radiation-induced optical absorption in the irradiated sample. The subsequent emitted light, due to the detrapping of trapped charges and their subsequent recombination with charge of the opposite sign, is synchronously detected in the period between each stimulation pulse. The total luminescence is summed over the desired number of stimulation pulses and this forms the measured POSL signal. By monitoring the emitted light only in the period between stimulation pulses one can reduce the optical filtering required to discriminate between the stimulation light and the emission light; in this way a high measurement efficiency, and, therefore, a high radiation sensitivity (luminescence intensity per unit absorbed dose) is achieved. Key parameters in the method are the intrinsic luminescence lifetime for the material being used as the luminescent detector, the width of the optical stimulation pulse, and the period between pulses. For optimum operation the measurement parameters should be such that both the pulse width and the time between pulses are much less than the luminescence lifetime. By appropriate choice of the power of the optical stimulation, the frequency of the stimulation pulses, and the total stimulation period, one can also re-measure the absorbed dose several times. In this way, a re-read capability is available with the procedure. The method is illustrated using light from a 2nd-harmonic Nd:YAG laser, with irradiated, anion-deficient aluminium oxide as the luminescent detector material. (author)

  12. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  13. Study of the luminescence properties of a natural amazonite

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V., E-mail: v.correcher@ciemat.es [CIEMAT, Av. Complutense 22, Madrid 28040 (Spain); Garcia-Guinea, J. [Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal 2, Madrid 28006 (Spain)

    2011-09-15

    Most gemstones, being natural materials (silicates, carbonates, phosphates, etc.), exhibit luminescence emission. This property could be potentially employed for personal dosimetry in the case of radiation accident or radiological terrorism where conventional monitoring has not been established. We, herein, report on the thermoluminescence (TL), radioluminescence (RL) and infra-red stimulated luminescence (IRSL) response of a well-characterised natural amazonite (KAlSi{sub 3}O{sub 8}) that, due to its bright blue-green colour when polished, is used as a gemstone. The luminescence emission wavelengths, intensities and thermal kinetics of the amazonite luminescence curves reveal that the ultraviolet band measured on amazonite aliquots is similar to other common K-rich feldspars. On this basis, one can conclude (i) association between twinning and the UV-blue TL emission can be related to structural defects located in the twin-domain boundaries where ionic alkali-self-diffusion, irreversible water losses and irreversible dehydroxylation processes can be involved. (ii) Amazonite exhibits a complex structure with several planar defects (twinning and exsolution interphases which can hold hydroxyl groups, water molecules, etc.) and point defects (impurities, Na, Pb, Mn, etc.) that can act as luminescence centres, and in fact, green and red emissions are respectively associated with the presence of Mn and Fe impurities. Finally, (iv) the thermal stability tests performed on the TL emission of the amazonite confirm a continuum in the trap distribution, i.e. progressive changes in the glow curve shape, intensity and temperature position of the maximum peak.

  14. Effect of solvents on relation of intensities of bands of luminescence spectra of terbium and dysprosium ions in solutions of their complexes with acetoacetic ester

    International Nuclear Information System (INIS)

    Kononenko, L.I.; Bel'tyukova, S.V.; Meshkova, S.B.; Kravchenko, T.B.; Poluehktov, N.S.

    1978-01-01

    An investigation is made of the effect of different solvents on the ratio of the intensity of luminescence spectrum bands of terbium and dysprosium ions, corresponding and not corresponding to ''supersensitive'' transitions in complex compounds with acetoacetic ether. A dependence is established between these values and the dielectric constant of the solvent, and also parallels in their changes, which indicate the similar manifestation of the effect of solvents in both elements. A correlation is observed between ratios of the intensity of luminescence spectrum bands and values of forces of neodymium complex absorption band oscillators in different solvents

  15. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  16. Mechanism of band-edge luminescence in cuprous iodide single crystals

    International Nuclear Information System (INIS)

    Gao, Pan; Gu, Mu; Liu, Xi; Liu, Bo; Zheng, Yan-Qing; Shi, Er-Wei; Shi, Jun-Yan; Zhang, Guo-bin

    2014-01-01

    Highlights: • The luminescence properties of CuI crystals are influenced by the quality of the as-grown crystals. • The emission peaks of free-exciton and bound-exciton are observed in the CuI single crystals. • The ultrafast component luminescence is warranted to the donor-acceptor pair recombination. • The exciton absorption and electron excitation multiplication processes were observed in CuI. - Abstract: The photoluminescence spectra of CuI crystals using synchrotron radiation as an excitation light source were obtained at 60 K. The emission peaks at 405, 415, 420 and 443 nm were observed. The possible origins of these peaks were discussed by the temperature dependence of luminescence spectra for CuI material. Meanwhile, the photoluminescence spectra of CuI powder with different excitation intensity were measured and the ultrafast luminescence component of CuI crystals was warranted to be attributed to the recombination of donor acceptor pair. Furthermore, the excitation process was studied by measuring the photoluminescence excitation spectra of CuI crystals and powder

  17. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: yjyang@mail.hust.edu.c [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-04-15

    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  18. Study of carrier concentration in single InP nanowires by luminescence and Hall measurements

    International Nuclear Information System (INIS)

    Lindgren, David; Hultin, Olof; Heurlin, Magnus; Storm, Kristian; Borgström, Magnus T; Samuelson, Lars; Gustafsson, Anders

    2015-01-01

    The free electron carrier concentrations in single InP core–shell nanowires are determined by micro-photoluminescence, cathodoluminescence (CL) and Hall effect measurements. The results from luminescence measurements were obtained by solving the Fermi–Dirac integral, as well as by analyzing the peak full width at half maximum (FWHM). Furthermore, the platform used for Hall effect measurements, combined with spot mode CL spectroscopy, is used to determine the carrier concentrations at specific positions along single nanowires. The results obtained via luminescence measurements provide an accurate and rapid feedback technique for the epitaxial development of doping incorporation in nanowires. The technique has been employed on several series of samples in which growth parameters, such as V/III-ratio, temperature and dopant flows, were investigated in an optimization procedure. The correlation between the Hall effect and luminescence measurements for extracting the carrier concentration of different samples were in excellent agreement. (paper)

  19. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  20. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  1. Luminescence imaging of water during proton-beam irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2015-01-01

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy

  2. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  3. Increase of (CdSe/ZnS)Cys quantum dot luminescence intensity in the presence of TPPS{sub 4} porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Gustavo G.; Borissevitch, Iouri E. [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Fisica; Kuzmin, Vladimir A. [Emanuel Institute of Biophysical Chemistry, RAS-RU, Moscow (Russian Federation); Oleinikov, Vladimir A. [Shemyakin and Ovchinnikov Institute of Biooganic Cemistry, RAS-RU, Moscow (Russian Federation)

    2012-07-01

    Full text: Nanocrystal semiconductor particles or Quantum Dots (QD) possess extraordinary photophysical characteristics, such as extreme high fluorescence quantum yield and optical absorption and very narrow fluorescence band, which can be easily shifted by changing of QD particle size. Due to these characteristics, QD is promising for fluorescence cancer diagnostics and photodynamic treatment. The efficiency of these processes can be in- creased by energy transfer between QD and classic fluorescence probes and photosensitizers (PS). In this work we present on the study of the increase of (CdSe/ZnS)Cys quantum dot luminescence intensity, stimulated by interaction with TPPS{sub 4} porphyrin. The optical absorption and steady-state and time-resolved fluorescence techniques were employed. Water soluble QD (CdSe/ZnS) with emission at 580 nm, functionalized with cysteine (Cys), were studied. TPPS{sub 4} porphyrin was used as a stimulator of QD luminescence. All experiments were realized in PBS buffer (pH 7.3; 7.5 mM) in Milli-Q quality water. The TPPS{sub 4} adding into the QD solutions until the 5{mu}M concentration produced an increase in QD luminescence intensity and lifetime, while for TPPS{sub 4} concentrations higher than 20{mu}M the reduction of the fluorescence intensity was observed, the emission spectra and fluorescence decays profile being unchanged. This effect can not be due to the electrostatic interaction between (CdSe/ZnS)Cys and TPPS{sub 4} because both, (CdSe/ZnS)Cys and TPPS{sub 4}, are negatively charged. We suppose that TPPS{sub 4} porphyrin interacts directly with QD (ZnS) shell, reducing the dangling bound number. This reduction decreases, in turn, the probability of nonradiative ways of the excitation energy dissipation. When the majority of dangling bound is occupied by the TPPS{sub 4} molecules, the effect of QD luminescence reduction (quenching) by porphyrin predominates, probably, via the energy transfer from QD to TPPS{sub 4}. However

  4. Super-Resolution Definition of Coordinates of Single Semiconductor Nanocrystal (Quantum Dot: Luminescence Intensity Dependence

    Directory of Open Access Journals (Sweden)

    Eremchev M. Yu.

    2015-01-01

    Full Text Available In this research a relation between the accuracy of restoration of the single quantum dots (QD CdSe/CdS/ZnS cross-cut coordinates and luminescence intensity was investigated. It was shown that the limit of the accuracy of determining the coordinates of a single QD for a considerable total amount of registered photons approaches its limiting value that is comparable to the size of the QD. It also means that the installation used in the research is mechanically stable enough to reach the limiting values of determination accuracy of point emitters coordinates.

  5. Sub-ppb level detection of uranium using ligand sensitized luminescence

    International Nuclear Information System (INIS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-01-01

    Uranyl ion (UO 2 2+ ) is known to exhibit weak luminescence in aqueous medium due to poor molar absorptivity and low quantum yield. In order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HClO 4 have been widely used. Like lanthanides, uranyl luminescence can also be sensitized by using some organic ligands. Pyridine 2,6-dicarboxylic acid (PDA) has shown enhancement of luminescence of uranyl in aqueous medium. Enhancement in intensity is due to sensitization of uranyl luminescence by PDA. In order to see the effect of non-aqueous medium, in this work, luminescence of uranyl-PDA complex has been studied in acetonitrile medium. More than one order luminescence enhancement has been observed compared to UO 2 2+ - PDA complex in aqueous medium. The lifetime of uranyl luminescence of the complex in acetonitrile medium is 90 μs which is very high compared to 10 μs in aqueous medium, suggesting that the luminescence enhancement is a result of reduction in non-radiative decay channels in acetonitrile medium. The large enhancement of uranyl luminescence of uranyl-PDA complex in acetonitrile medium can be used for ultra-trace level detection of uranium. Linearity in the luminescence intensity has been observed over the uranium concentration range of 5 to 80 ppb and the detection limit calculated using the criterion of 3 σ is ~ 0.2 ppb. (author)

  6. Pukaki 1-01 : initial luminescence dating and radiometric measurements

    International Nuclear Information System (INIS)

    Rieser, U.

    2001-01-01

    Core from Pukaki 1-01 was sampled for luminescence dating and radiometric measurements on 14 March 2001 in the dark room laboratory at Victoria University. Seven samples were taken to get an overview of the crater history, and laboratory work was completed in August 2001. (author). 2 figs., 3 tabs

  7. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  8. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  9. Luminescence imaging of water during carbon-ion irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-01-01

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  10. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  11. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4:Eu2+

    International Nuclear Information System (INIS)

    Wei, Yongbin; Wu, Zheng; Jia, Yanmin; Liu, Yongsheng

    2015-01-01

    Piezoelectrically-induced stress-luminescence in the CaAl 2 O 4 :Eu 2+ was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl 2 O 4 :Eu 2+ arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl 2 O 4 :Eu 2+ ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl 2 O 4 :Eu 2+ was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors

  12. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan [Indira Ghandi Centre for Atomic Research, Tamil Nadu (India). Materials Chemistry Div.

    2017-10-01

    Luminescence from UO{sub 2}{sup 2+} (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y{sup 3+}; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  13. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    International Nuclear Information System (INIS)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan

    2017-01-01

    Luminescence from UO_2"2"+ (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y"3"+; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  14. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  15. Thermal dependence of luminescence lifetimes and radioluminescence in quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, V., E-mail: vpagonis@mcdaniel.edu [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Chithambo, M.L. [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Chen, R. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Chruścińska, A. [Institute of Physics, Nicholas Copernicus University, 87-100 Toruń (Poland); Fasoli, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Li, S.H. [Department of Earth Sciences, The University of Hong Kong (Hong Kong); Martini, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Ramseyer, K. [Institut für Geologie, Baltzerstrasse 1-3, 3012 Bern (Switzerland)

    2014-01-15

    During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers L{sub H} and L{sub L} in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers L{sub H} and L{sub L}, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was

  16. Microprobe analysis, iono- and photo-luminescence of Mn2+ activated ZnGa2O4 fibres

    International Nuclear Information System (INIS)

    Santos, N.F.; Fernandes, A.J.S.; Alves, L.C.; Sobolev, N.A.; Alves, E.; Lorenz, K.; Costa, F.M.; Monteiro, T.

    2013-01-01

    Cubic ZnGa 2 O 4 fibres have been grown by the laser floating zone technique with different pulling rates. In fibres activated with manganese ions, the room temperature photo- and iono-luminescence is dominated by an intense green emission which is observed by the naked eye. The green band is due to an overlap of the 4 T 1 → 6 A 1 intraionic transitions of the Mn 2+ ions in different sites in the gallate host. The fibres’ photoluminescence spectra have been found to be dependent on the excitation energy. Additionally, the intensity of the green photo- and iono-luminescence is strongly sensitive to the measurement temperature and proton irradiation time. Micro PIXE analysis was used in order to verify the homogeneous distribution of the Mn luminescence activators and determine its concentration as well as for verification of impurity contents that may have been incorporated during the fibres growth. The potential of ionoluminescence measurements for characterization of optical materials is discussed

  17. Suppression of concentration quenching of Er-related luminescence in Er-doped GaN

    International Nuclear Information System (INIS)

    Chen Shaoqiang; Tomita, Shigeo; Kudo, Hiroshi; Akimoto, Katsuhiro; Dierre, Benjamin; Lee, Woong; Sekiguchi, Takashi

    2010-01-01

    Erbium-doped GaN with different doping concentrations were grown by ammonia-source molecular beam epitaxy. The intra-4f-shell transitions related green luminescence were observed by both photoluminescence (PL) and cathodoluminescence (CL) measurements. It was found that concentration quenching of Er-related luminescence was observed in PL measurements while not in CL measurements. The different excitation and relaxation processes are suggested as the cause of the concentration quenching characteristics between PL and CL. The strong Er-related CL intensity in highly doped GaN demonstrates that high energy excitation is a promising approach to suppress the concentration quenching in Er-doped GaN.

  18. Flight testing of a luminescent surface pressure sensor

    Science.gov (United States)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  19. Investigation of cross talk in single grain luminescence measurements using an EMCCD camera

    International Nuclear Information System (INIS)

    Gribenski, Natacha; Preusser, Frank; Greilich, Steffen; Huot, Sebastien; Mittelstraß, Dirk

    2015-01-01

    Highly sensitive electron multiplying charges coupled devices (EMCCD) enable the spatial detection of luminescence emissions from samples and have a high potential in single grain luminescence dating. However, the main challenge of this approach is the potential effect of cross talk, i.e. the influence of signal emitted by neighbouring grains, which will bias the information recorded from individual grains. Here, we present the first investigations into this phenomenon when performing single grain luminescence measurements of quartz grains spread over the flat surface of a sample carrier. Dose recovery tests using mixed populations show an important effect of cross talk, even when some distance is kept between grains. This issue is further investigated by focusing just on two grains and complemented by simulated experiments. Creation of an additional rejection criteria based on the brightness properties of the grains is inefficient in selecting grains unaffected by their surroundings. Therefore, the use of physical approaches or image processing algorithms to directly counteract cross talk is essential to allow routine single grain luminescence dating using EMCCD cameras. - Highlights: • We have performed single grain OSL measurements using an EMCCD detector. • Individual equivalent dose cannot be accurately recovered from a mixed dose population. • Grains are influenced by signal emitted by their neighbours during the measurements. • Simulated data confirm the strong effect of this phenomenon. • Increasing the distance between grains or applying brightness criteria are inefficient.

  20. Luminescent properties of terbium complex with phenylanthranilic acid

    International Nuclear Information System (INIS)

    Alakaeva, L.A.; Kalazhokova, I.A.; Naurzhanova, F.Kh.

    1990-01-01

    Existence of terbium luminescence reaction in complex with phenanthranilic acid (FAA) is ascertained. The optimal conditions of terbium complexing with FAA are found. The ratio of components in the complex is 1:1. The influence of foreign rare earth in terbium luminescence intensity in complex with FAA is studied

  1. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  2. Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2015-01-01

    The influence of annealing, irradiation dose, preheating and measurement temperature on luminescence lifetimes has been studied in quartz annealed at 1000 °C. The measurements were supplemented by studies on quartz annealed at 900 and 800 °C. Lifetimes increase with dose as well as with temperature and duration of annealing between 800 and 1000 °C. Preheating produces the same effect. The changes are accounted for in terms of hole-transfer from the non-radiative luminescence centre to and between radiative centres. The influence of measurement temperature on lifetimes depends on whether the stimulation is carried out from ambient to 200 °C or otherwise. This result is unlike that in quartz annealed at or below 500 °C where lifetimes are independent of the direction of heating. In particular, lifetimes decrease monotonically when measurements are made from 20 to 200 °C but not when recorded from 200 to 20 °C. The latter produces a pattern resembling that in quartz annealed up to 500 °C. The results are concluded as evidence of thermal effects on separate luminescence centres. In support of this, different values of the activation energy for thermal quenching were found for each supposed luminescence centre. The change of the corresponding luminescence intensity with temperature is also qualitatively consistent with this notion. - Highlights: • Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature is reported. • Lifetimes increase with dose, annealing between 800 and 1000 °C, and preheating. • Lifetimes under stimulation temperature are affected by direction of heating. • Changes are accounted for in terms of hole-transfer luminescence centres.

  3. Optimising the separation of quartz and feldspar optically stimulated luminescence using pulsed excitation

    International Nuclear Information System (INIS)

    Ankjaergaard, C.; Jain, M.; Thomsen, K.J.; Murray, A.S.

    2010-01-01

    In luminescence dating, the two most commonly used natural minerals, quartz and feldspar, are exposed to different dose rates in the natural environment, and so record different doses. The luminescence signals also have different stabilities. For accurate dosimetry, the signals from these two minerals must be separated, either by physical separation of the mineral grains, or by instrumental separation of the luminescence signals. The luminescence signals from quartz and feldspar have different luminescence lifetimes under pulsed optical stimulation. This difference in lifetime can be used to discriminate between the two signals from a mixed quartz-feldspar sample. The purpose of this study is to identify optimum measurement conditions for the best separation of quartz OSL from that of feldspar in a mixed sample using pulsed stimulation and time-resolved OSL. We integrate the signal from 5 μs after the LEDs are switched off until just before the LEDs are switched on again, with the pulse on-time equal to the pulse off-time of 50 μs. By using only the initial interval of the pulsed OSL decay curve (equivalent to 0.2 s of CW-OSL using blue light at 50 mW cm -2 ) we find that the quartz to feldspar pulsed OSL intensity ratio is at a maximum. By using these parameters with an additional infrared (IR) stimulation at 175 o C before measurement (to further reduce the feldspar signal intensity), we obtain a factor of 25 enhancement in signal separation compared to that from a conventional prior-IR CW measurement. This ratio can be further improved if the counting window in the pulse off-time is restricted to detect between 20 and 50 μs instead of the entire off-period.

  4. Luminescent micro- and nanofibers based on novel europium phthalate complex

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail: mdatcu@infim.ro [National Institute of Materials Physics, Multifunctional Materials and Structures, PO Box MG-7, 77125 Magurele-Bucharest (Romania); Preda, N.; Matei, E.; Enculescu, I. [National Institute of Materials Physics, Multifunctional Materials and Structures, PO Box MG-7, 77125 Magurele-Bucharest (Romania)

    2012-09-14

    We synthesized by wet chemical route a novel europium-potassium phthalate complex Eu{sup 3+}K{sup +}[(COO){sub 2}(C{sub 6}H{sub 4})]{sub 2}. The compound is a white powder insoluble in water. X-ray diffraction evaluation shows that we obtained a new crystalline compound with no traces of the starting materials (potassium hydrogen phthalate and europium chloride). Scanning electron microscopy reveals that the powder consists of fiber-shaped structures with sizes larger than 250 nm in diameter. Energy dispersive X-ray analysis proves that the compound has a 1:1 europium-potassium ratio. Fourier transform infrared spectroscopy confirms the presence of the phthalate in the new compound. Photoluminescence and cathodoluminescence measurements show that the fiber-shaped structures are intensely luminescent with emission bands corresponding to the {sup 5}D{sub 0} {yields} {sup 7}F{sub J} (J = 1-4) Eu (III) ion's transitions in the region between 580 nm and 700 nm, the most intense maximum being observed around 615 nm. Up-converted luminescence with a maximum at 315 nm was recorded. -- Highlights: Black-Right-Pointing-Pointer A new europium-potassium phthalate complex was synthesized by wet chemical route. Black-Right-Pointing-Pointer Fiber-shaped crystalline structures with sizes larger than 250 nm. Black-Right-Pointing-Pointer The most probable structure of the molecule is [C{sub 6}H{sub 4}(COO{sup -}){sub 2}]{sub 2} K{sup +}Eu{sup 3+}. Black-Right-Pointing-Pointer Intense luminescence due to Eu{sup 3+} ions {sup 5}D{sub 0} {yields} {sup 7}F{sub J} transitions. Black-Right-Pointing-Pointer Up-converted luminescence with a maximum at 315 nm was recorded.

  5. Influence of electric field on the properties of the polymer stabilized luminescent quantum dots in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zharkova, Irina S.; Markina, Natalia E. [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Markin, Alexey V., E-mail: av_markin@mail.ru [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Drozd, Daniil D.; Speranskaya, Elena S. [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Goryacheva, Irina Yu. [Saratov State University, Astrakhanskaya 83, 410012 Saratov (Russian Federation); Saint-Petersburg State University, Universitetskii pr. 26, 198504 Petrodvorets, Saint-Petersburg (Russian Federation)

    2016-08-15

    The application of external electric field for verification of quantum dots (QDs) stability in aqueous medium was proposed. Hydrophilic CdSe core-shell nanocrystals were synthesized and used with three polymer-based organic stabilizers, two of which contain PEG chains. An increasing of the stability under applied electric field (EF) was shown for stabilizer containing higher amount of PEG chains and terminal amino-groups: introduction of additional PEG chains allowed reducing degradation of luminescence intensity for about 60%. The changes of QDs solutions after EF treatment were examined by dynamic light scattering measurements, luminescence and absorbance spectroscopy, and conductivity measurements and explained by decreasing of quantum yield of the samples due to degradation of stabilizer coating. - Highlights: • Hydrophilic QDs with three types of stabilizer coatings were prepared and treated by electric field in water environment. • Permanent QDs luminescence quenching in aqueous medium under low electric field strength was observed. • Luminescence stability to EF treatment increases by stabilizer with higher PEG content. • Redox mechanism of luminescence quenching was proved via conductivity, DLS, and UV-visible absorbance measurements.

  6. Simple and rapid measurement of α-rays on smear samples using air luminescence

    International Nuclear Information System (INIS)

    Takiue, M.

    1980-01-01

    The α-activity collected on smear samples has been measured indirectly using an air luminescence counting method and a liquid scintillation spectrometer. In this method, air luminescence, attributed to the fluorescence emitted by nitrogen molecules excited by α-rays in air, serves to detect α-rays. Thus, sample preparation and α-ray measurement are simple and rapid, and moreover, no radioactive waste solution is produced. Taking into account a low background and a counting efficiency between 10 and 20%, it is estimated that the detectable limit for α-ray measurement is about 1 x 10 -7 μCi/cm 2 for loose contamination. This method is convenient to use in the routine analysis of α-ray-emitting nuclides on smear paper. (author)

  7. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles - structure and luminescence.

    Science.gov (United States)

    Ritter, Benjamin; Haida, Philipp; Fink, Friedrich; Krahl, Thoralf; Gawlitza, Kornelia; Rurack, Knut; Scholz, Gudrun; Kemnitz, Erhard

    2017-02-28

    A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu 3+ and Tb 3+ doped CaF 2 , SrF 2 and BaF 2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF 2 :Eu10 via SrF 2 :Eu10 to BaF 2 :Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce 3+ and Tb 3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce 3+ → Tb 3+ . In this case, the luminescence intensity is higher for CaF 2 than for SrF 2 , due to a lower spatial distance of the rare earth ions.

  8. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  9. Luminescent amine sensor based on europium(III) chelate.

    Science.gov (United States)

    Petrochenkova, Nataliya V; Mirochnik, Anatolii G; Emelina, Tatyana B; Sergeev, Alexander A; Leonov, Andrei A; Voznesenskii, Sergey S

    2018-07-05

    The effect of methylamine vapor on luminescence of Eu(III) tris-benzoylacetonate (I) immobilized in thin-layer chromatography plates has been investigated. It has been revealed that interaction of I with analyte vapor results in increase of the intensity of Eu(III) luminescence. The mechanism of the effect of methylamine vapors on intensification of the Eu(III) luminescence has been suggested using the data of IR spectroscopy and quantum chemistry calculations. The mechanism of luminescence sensitization consists in bonding of an analyte molecule with a water molecule into the coordination sphere of Eu(III). As a result, the bond of a water molecule with the luminescence centre weakens, rigid structural fragment including europium ion, water and methylamine molecules forms. The presence of such fragment must naturally promote decrease of influence of OH-vibrations on luminescence of the complex I. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Holographic patterning of luminescent photopolymer nanocomposites

    International Nuclear Information System (INIS)

    Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim

    2008-01-01

    Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated

  11. Basic study on electrically stimulated luminescence (ESL) as a dosimetry and dating method

    International Nuclear Information System (INIS)

    Sato, H.; Yamanaka, C.; Ikeya, M.

    2003-01-01

    Electrically stimulated luminescence (ESL) of calcium carbonate has been studied for application as dosimetry and dating. A powdered calcium carbonate was sandwiched by electrodes, which supplied electric field. Luminescence and surface current through a powdered sample were measured using a photomultiplier and a digital multimeter, respectively. A linear dependence of ESL on the absorbed dose by γ-rays was found when the applied voltage was below the breakdown threshold. Reciprocal electric charges through the sample had also linear relation with the absorbed dose. We propose that the luminescence and electric charge under intense electric field in calcium carbonate become new methods for dosimetry and dating on the basis of the surface defects of the calcium carbonate grains produced by the irradiation of γ-rays

  12. Spectral study of the luminescence produced by the excitation of noble gases by alpha-rays; Etude spectrale de la luminescence due a l'excitation des gaz rares par les rayons alpha

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Luminescence spectra of the noble gases He, A, Kr and Xe are studied under excitation by {alpha} rays. It is shown that the energy is transferred from excited levels of these gases to Hg and N{sub 2} impurities for impurity concentrations respectively less than 10{sup 6} and 10{sup 4}. These results confirm previous measurements concerning the period of luminescence and its variations versus nitrogen concentration in noble gases. (author) [French] On etudie les spectres de luminescence des gaz rares, He, A, Kr et Xe excites par une source intense de rayons {alpha}. Le transfert d'energie des etats excites des gaz rares sur les impuretes mercure et azote pour des concentrations respectives de ces impuretes inferieures a 1 ppm et 100 ppm est demontre. Ces resultats confirment les mesures anterieures concernant la duree de luminescence et ses variations avec la concentration d'azote dans les gaz rares. (auteur)

  13. Piezoelectrically-induced stress-luminescence phenomenon in CaAl{sub 2}O{sub 4}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: wuzheng@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2015-10-15

    Piezoelectrically-induced stress-luminescence in the CaAl{sub 2}O{sub 4}:Eu{sup 2+} was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl{sub 2}O{sub 4}:Eu{sup 2+} arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl{sub 2}O{sub 4}:Eu{sup 2+} ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl{sub 2}O{sub 4}:Eu{sup 2+} was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors.

  14. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Luminescent properties of europium different-ligand complexes with cyclic. beta. -diketones and diantipyrylalkanes

    Energy Technology Data Exchange (ETDEWEB)

    Ul' yanova, T M; Gerasimenko, G N; Tishchenko, M A; Vitkun, R A [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1983-03-01

    Using luminescence method different-ligand complexing of europium ions with diantipyrylalkanes and cyclic ..beta..-diketones: 2-acetyl- and 2-benzoyl-1.3-indandions, has been studied. The optimum conditions of the formation of different-ligand complexes and the ratio of components in it are determined. Effect of alien lanthanides and diantipyrylmethane derivatives on the luminescence intensity of europium complexes is clarified. A correlation between the ratio of the luminescence intensity bands of europium complexes and the values of oscillator strengths of supersensitive transitions of neodymium and erbium absorption bands is established.

  16. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  17. Scintillation and optical stimulated luminescence of Ce-doped CaF2

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi; Fukuda, Kentaro; Kawaguchi, Noriaki; Miyamoto, Yuka; Nanto, Hidehito

    2014-01-01

    Scintillation and optical stimulated luminescence of Ce 0.1–20% doped CaF 2 crystals prepared by Tokuyama Corp. were investigated. In X-ray induced scintillation spectra, luminescence due to Ce 3+ 5d–4f transition appeared around 320 nm with typically 40 ns decay time. By 241 Am 5.5 MeV α-ray irradiation, 0.1% doped one showed the highest scintillation light yield and the light yield monotonically decreased with Ce concentrations. Optically stimulated luminescence after X-ray irradiation was observed around 320 nm under 550 or 830 nm stimulation in all samples. As a result, intensities of optically stimulated luminescence were proportional to Ce concentrations. Consequently, scintillation and optically stimulated luminescence resulted to have a complementary relation in Ce-doped CaF 2 system. - Highlights: • Optical, scintillation, and OSL properties of Ce 0.1–20% doped CaF 2 were studied. • Scintillation light yield exhibited inverse proportionality to Ce concentrations. • OSL intensities showed proportionality to Ce concentrations. • Complementary relation of scintillation and OSL was experimentally confirmed

  18. Analysis of combustion in an ATAC engine with measurement of radical luminescence; Radical hakko keisoku ni yoru ATAC engine no nensho kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y; Oguma, H; Ueda, H; Iida, N [Keio University, Tokyo (Japan)

    1997-10-01

    In order to make clear of the combustion mechanism and the frame structure in two stake, so called, active thermo-atmosphere combustion (ATAC) engine fueled by gasoline and methanol, we measured the 2-demensional images of OH, CH and C2 radical band spectra in both ATAC and SI combustion mode. From the results of pressure data in the cylinder, the heat release rate was calculated. We evaluated the correlation of radical luminescence intensity and the rate of heat release. 3 refs., 4 figs., 2 tabs.

  19. Luminescence and ultrafast phenomena in InGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Viswanath, Annamraju Kasi; Lee, J.I.; Kim, S.T.; Yang, G.M.; Lee, H.J.; Kim, Dongho

    2007-01-01

    High quality In 0.13 Ga 0.87 N/GaN multiple quantum wells (MQWs) on (0001) sapphire substrate were fabricated by MOCVD method. The quantum well thickness is as thin as 10 A, and the barrier thickness is 50 A. We have investigated these ultrathin MQWs by continuous wave (cw) and time-resolved spectroscopy in the picosecond time scales in a wide temperature range from 10 to 290 K. In the luminescence spectrum at 10 K, we observed a broad peak at 3.134 eV which was attributed to the quantum wells emission of InGaN. The full width at half maximum of this peak was 129 meV at 10 K and the broadening at low temperatures which was mostly inhomogeneous was thought to be due to compositional fluctuations and interfacial disorder in the alloy. We also observed an intense and narrow peak at 3.471 eV due to the GaN barrier. The temperature dependence of the luminescence was studied and the peak positions and the intensities of the different peaks were obtained. The activation energy of the InGaN quantum well emission peak was estimated as 69 meV. From the measurements of luminescence intensities and lifetimes at various temperatures, radiative and non-radiative recombination lifetimes were deduced. The results were explained by considering only the localization of the excitons due to potential fluctuations

  20. Limestone: some observations on luminescence in the region of 360 nm

    International Nuclear Information System (INIS)

    Galloway, R.B.

    2003-01-01

    An empirical study of luminescence around 360 nm from limestone is presented. Thermoluminescence glow curves from natural limestone show broad peaks at 440 deg. C, 350 deg. C, 530 deg. C and 286 deg. C in order of decreasing amplitude in contrast to the usual observation, for luminescence around 535 nm, of a sharp peak at 286 deg. C with a broader less intense peak at 350 deg. C. Recuperation occurs around 350 deg. C and 525 deg. C, which has a time dependence consistent with quantum tunnelling. Dependent on the history of heating and light exposure of the sample, sharp peaks at about 325 deg. C and 425 deg. C can be observed. Laboratory irradiated limestone shows a peak at 140 deg. C. The stimulation of luminescence by light of 470 nm with preheating at 145 deg. C for 300 s, shows an increasing signal for successive cycles of measurement associated with the heating, light exposure having little influence. Beta irradiation of a sample, with the same measurement conditions, gives a signal which increases in proportion to radiation dose but which does not survive storage for 17 h. Time resolved luminescence spectra, with no preheating, show a luminescence lifetime between stimulation and emission of less than a few μs for natural limestone, and an exponential increase in signal with increase in temperature (over the rang 20-167 deg. C) during stimulation. A signal proportional to laboratory applied beta dose is measurable at room temperature, with lifetime between stimulation and emission of this signal of 35 μs, but it does not survive heating to 100 deg. C

  1. Influence of ionizing radiation on biogel bone implants observed by luminescence measurements

    International Nuclear Information System (INIS)

    Szarska, St.; Jungner, H.; Borsowska, A.

    2004-01-01

    The preparation of sol-gel-derived bioactive glass thin films coated on glass is described. Biogel is one of the important modern materials, which are applied in medicine to reduce disability and thus to improve the level of human life. A patient with implanted biogel (i.e. bone, tooth) may be subjected to ionizing radiation during X-ray examination or treatment of cancer. Such an irradiation can generate electron and hole traps in the insulator surface layer. Changes in the microstructure of the biogel surface resulting from irradiation were observed using luminescence methods. Results from luminescence measurements after irradiation of a set of biogel samples are discussed in terms of point defects in the glass structure

  2. Analysis of art objects by means of ion beam induced luminescence

    International Nuclear Information System (INIS)

    Quaranta, A; Dran, J C; Salomon, J; Pivin, J C; Vomiero, A; Tonezzer, M; Maggioni, G; Carturan, S; Mea, G Della

    2006-01-01

    The impact of energetic ions on solid samples gives rise to the emission of visible light owing to the electronic excitation of intrinsic defects or extrinsic impurities. The intensity and position of the emission features provide information on the nature of the luminescence centers and on their chemical environments. This makes ion beam induced luminescence (IBIL) a useful complement to other ion beam analyses, like PIXE, in the cultural heritage field in characterizing the composition and the provenience of art objects. In the present paper, IBIL measurements have been performed on inorganic pigments for underlying the complementary role played by IBIL in the analysis of artistic works. Some blue and red pigment has been presented as case study

  3. Freestanding silicon quantum dots: origin of red and blue luminescence.

    Science.gov (United States)

    Gupta, Anoop; Wiggers, Hartmut

    2011-02-04

    In this paper, we studied the behavior of silicon quantum dots (Si-QDs) after etching and surface oxidation by means of photoluminescence (PL) measurements, Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy (EPR). We observed that etching of red luminescing Si-QDs with HF acid drastically reduces the concentration of defects and significantly enhances their PL intensity together with a small shift in the emission spectrum. Additionally, we observed the emergence of blue luminescence from Si-QDs during the re-oxidation of freshly etched particles. Our results indicate that the red emission is related to the quantum confinement effect, while the blue emission from Si-QDs is related to defect states at the newly formed silicon oxide surface.

  4. Discuss on luminescence dose data analysis technology

    International Nuclear Information System (INIS)

    Ma Xinhua; Xiao Wuyun; Ai Xianyun; Shi Zhilan; Liu Ying

    2009-01-01

    This article describes the development of luminescence dose data measurement and processing technology. General design planning of luminescence dose data measurement and processing technology is put forward with the diverse demands. The emphasis is focused on dose data processing method, luminescence curve analysis method, using of network, mechanics of communication among computers, data base management system of individual dose in this paper. The main methods and skills used in this technology as well as their advantages are also discussed. And it offers general design references for development luminescence dose data processing software. (authors)

  5. The effect of Bi3+ and Li+ co-doping on the luminescence characteristics of Eu3+-doped aluminum oxide films

    International Nuclear Information System (INIS)

    Padilla-Rosales, I.; Martinez-Martinez, R.; Cabañas, G.; Falcony, C.

    2015-01-01

    The incorporation of Bi 3+ and Li + as co-dopants in Eu 3+ -doped aluminum oxide films deposited by the ultrasonic spray pyrolysis technique and its effect on the luminescence characteristics of this material are described. Both Bi 3+ and Li + do not introduce new luminescence features but affect the luminescence intensity of the Eu 3+ related emission spectra as well as the excitation spectra. The introduction of Bi 3+ generates localized states in the aluminum oxide host that result in a quenching of the luminescence intensity, while Li + and Bi 3+ co-doping increase the luminescence intensity of these films. - Highlights: • Li and Bi co-doping increase the luminescence. • Bi creates localized states in the Al 2 O 3 host. • Li was incorporated as a co-activator

  6. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  7. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  8. Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p-type GaAs(110) surface

    International Nuclear Information System (INIS)

    Imada, Hiroshi; Miwa, Kuniyuki; Jung, Jaehoon; Shimizu, Tomoko K; Kim, Yousoo; Yamamoto, Naoki

    2015-01-01

    Luminescence of p-type GaAs was induced by electron injection from the tip of a scanning tunnelling microscope into a GaAs(110) surface. Atomically-resolved photon maps revealed a significant reduction in luminescence intensity at surface electronic states localized near Ga atoms. Theoretical analysis based on first principles calculations and a rate equation approach was performed to describe the perspective of electron energy dissipation at the surface. Our study reveals that non-radiative recombination through the surface states (SS) is a dominant process for the electron energy dissipation at the surface, which is suggestive of the fast scattering of injected electrons into the SS. (paper)

  9. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    International Nuclear Information System (INIS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-01-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8–13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours. - Highlights: • The surface doses of NPC patients are compared between VMAT and IMRT. • VMAT exerts lower skin dose than IMRT for deep tumours. • The surface tumour coverage is insufficient for VMAT and IMRT.

  10. A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver

    International Nuclear Information System (INIS)

    Ma Zhiya; Dosev, Dosi; Kennedy, Ian M

    2009-01-01

    A facile one-pot microemulsion method has been developed for the synthesis of spherical silver core-silica shell (Ag-SiO 2 ) nanoparticles with europium chelates doped in the shell through a silane agent. The method is significantly more straightforward than other extant methods. Measurements of the luminescent emissions from the Ag-SiO 2 nanoparticles, in comparison with control silica nanoparticles without silver cores, showed that the presence of the silver cores can increase the fluorescence intensity approximately 24-fold and decrease the luminescence lifetime. This enhancement offers a potential increase in overall particle detectability with increased fluorophore photostability.

  11. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    International Nuclear Information System (INIS)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-01-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique

  12. Construction of order mesoporous (Eu–La)/ZnO composite material and its luminescent characters

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Na; Liu, Yu; Li, Zi-Wei [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Yu, Hui, E-mail: yh2001101@163.com [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Bai, Hao-tian [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Xia, Long, E-mail: xialong_aron@163.com [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Feng, Da-wei [Changchun University of Science and Technology Science Park, Changchun 130022 (China); Guangdong College of Business and Technology, Zhaoqing 526020 (China); Zhang, Hong-bo; Dong, Xiang-ting; Wang, Tian-yang; Han, Ji; Wu, Rong-yi; Zhang, Qi [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2016-09-15

    For the first time, the order mesoporous zinc oxide was synthesized by a soft template synthesis method. The Eu and La phosphate were introduced into the prepared mesoporous zinc oxide by the high temperature solid phase method, and got the mesoporous rare earth/zinc oxide composite materials. The luminescence characters of the materials were studied. The influences of La to Eu luminescent properties had been studied, and the optimum proportion of Eu and La was discussed. The influences of La and Eu to ZnO luminescence properties were also been studied. La phosphate had the large influence to Eu luminescent. ZnO had a strong emission peak at 469 nm, which overlapped with the {sup 7}F{sub 0}–{sup 5}D{sub 2} transition excitation peak of Eu at 465 nm. It indicated that the effective energy transfer happened between ZnO and Eu, which strongly enhanced the luminescence intensity of Eu. At the same time, the Eu and La phosphates could regulate the defect density of ZnO, which could regulate the luminescent intensity of ZnO, and realized the adjustment of luminescent color between green and red light.

  13. Laser-induced luminescence lifetime measurement as an analytical probe for speciation of poly carboxylates in aqueous solutions

    International Nuclear Information System (INIS)

    Yoshio Takahashi; Takaumi Kimura; Yoshiharu Kato; Yoshitaka Minai

    2001-01-01

    Luminescence from lanthanide or actinide ion is influenced by hydration structure of the ion in aqueous solution system. In particular lifetime of the luminescence has been regarded as a measure of hydration number of the lanthanide or the actinide ion based on the studies on lifetime measurement of the ion in solid and solution system. Compared with other technique like NMR to determine the hydration number, laser induced lifetime measurement is advantageous in sensitivity and selectivity. This allows us to apply this method to determining the hydration number of lanthanide or actinide ion even at low concentration. (authors)

  14. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  15. Sample and plume luminescence in fast heavy ion induced desorption

    International Nuclear Information System (INIS)

    Tuszynski, W.; Koch, K.; Hilf, E.R.

    1996-01-01

    The luminescence arising in 252 Cf-fission fragment induced desorption events has been measured using the time-correlated single photon counting technique. Photons emitted from the sample have been guided from a plasma desorption ion source to a photodetector by an optical fibre. Spectra and decay functions have been obtained using thin layers of Coronene or POPOP as samples. The results are strongly dependent on the acceleration field applied for ion extraction. Approximately 10 photons per fission fragment have been produced when applying no accelerating voltage. The results clearly show that these photons come from radiative electronic relaxations of molecules in the solid sample. Considerably more photons per fission fragment have been produced when applying a positive acceleration voltage. The intensity increases almost linearly for acceleration fields below 10 kV/cm and saturates at a nearly 10-fold higher value when compared to no acceleration. The intensity is also affected by the homogeneity of the accelerating field. These additional photons are attributed to radiative electronic relaxations of desorbed neutral molecules in the plume excited by inelastic collisions with accelerated positive ions. No additional photons have been observed when extracting negative ions. The negative ions produced do obviously not hit and/or excite desorbed neutral molecules, presumably due to their specific desorption characteristics. The experimental data have been analyzed by comparing with the cw and time-resolved sample luminescence obtained by optical excitation. The findings demonstrate that valuable information on ion-solid interactions, on specific desorption quantities and on processes in the plume can be obtained by measuring and analyzing the luminescence induced by the impact of high energy primary ions. (orig.)

  16. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  17. Luminescent properties of Europium(III) nitrate with 1,10-phenantroline and cinnamic acid in light - Transforming polymer materials

    Science.gov (United States)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2018-04-01

    Influence of cinnamic acid on the luminescent properties of the europium(III) nitrate with 1,10-phenantroline in a polymer materials was studied. It was shown that combined use of these rare earth complexes leads to intense luminescence in the 400-700 nm region. Samples containing polymer europium nitrate with 1,10-phenantroline and cinnamic acid at a molar ratio of 1:2,0 had the maximum luminescence intensity and photostability.

  18. Broadband luminescence in liquid-solid transition

    CERN Document Server

    Achilov, M F; Trunilina, O V

    2002-01-01

    Broadband luminescence (BBL) intensity behavior in liquid-solid transition in polyethyleneglycol-600 has been established. Oscillation of BBL intensity observed in liquid-polycrystal transition are not found to observed in liquid-amorphous solid transition. It is shown that application of the theory of electron state tails to interpretation of BBL spectral properties in liquids demands restriction. BBL spectroscopy may be applied for optimization of preparation of polymers with determined properties. (author)

  19. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  20. Tuning luminescence intensity of RHO6G dye using silver ...

    Indian Academy of Sciences (India)

    Wintec

    Wang and Kerker (1982) found that due to interaction of metal and dye in core shell particles splitting of extinction bands occurs. En- hancement also has been reported due to such interaction. Quenching of the luminescence of dye molecules ad- sorbed on a smooth Ag surface was observed by Ritchie and Burstein (1981).

  1. Luminescence studies on Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses for WLED applications

    Science.gov (United States)

    Vijayakumar, M.; Uma, V.; Arunkumar, S.; Marimuthu, K.

    2015-06-01

    Dy3+ and Dy3+:Eu3+ co-doped boro-phosphate glasses have been prepared and optically characterized using absorption, luminescence and decay measurements. The Nephelauxetic ratios (β), Bonding parameters (δ) and Judd-Ofelt (JO) intensity parameters Ωλ (λ = 2, 4 and 6) were calculated to study the nature of the environment around the RE3+ ions in the prepared glasses. The yellow to blue (Y/B) intensity ratio and the chromaticity color coordinates were calculated from the luminescence measurements. The lifetimes of the 4F9/2 excited level were measured using decay curves and is found to decrease in the Dy3+:Eu3+ co-doped glass due to the occurrence of resonant energy transfer between Dy3+-Eu3+ ions and the non-exponential decay rates have been fitted with Inokuti-Hirayama (IH) model. The decay curves are well fitted for S= 6 suggesting that the interaction between active ions for the energy transfer is of dipole-dipole nature.

  2. Role of oxygen concentration distribution and microstructure in luminescent properties of laser-irradiated silicon

    International Nuclear Information System (INIS)

    Zhu, Min; Li, Xiaohong; Li, Guoqiang; Xie, Changxin; Qiu, Rong; Li, Jiawen; Huang, Wenhao

    2015-01-01

    Graphical abstract: Photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses was studied. The visible blue luminescence is observed both from the deionized water and air. The position and shape of emission luminescence peaks in the visible range are same at 330 nm. The PL is confirmed to be not merely induced by the oxygen defects or quantum confinement effects, but is commonly decided by the concentration distribution of SiO x and the depth of the surface microstructure. The PL gets strongest only when depth of the surface microstructure is not deeper and the distribution of the shallow SiO x is more intensive. - Highlights: • Different morphologies and compositions of the surface microstructures are formed. • The SiO x concentration and surface microstructure depth commonly decide the PL. • The PL intensity can be controlled by changing the experimental conditions. - Abstract: We study the photoluminescence (PL) of monocrystalline silicon irradiated by femtosecond laser pulses in different environments (deionized water and air) and energy intensities. The fluorescence spectroscopy measurement results indicate that the visible blue luminescence is observed both from the silicon surfaces ablated in the deionized water and air. The more interesting phenomenon is that the position and shape of the emission luminescence peaks in the visible range are substantially the same at the same excitation wavelength 330 nm. Compared with the granular-like microstructure generated on the silicon surface in air, the smaller and stripe-like microstructure is formed in the deionized water as the field emission scanning electron microscope (FESEM) measures. The results of the energy dispersive spectroscopy (EDS) show that silicon and oxygen is the main elemental composition on laser-induced silicon surfaces, and the oxygen content on the sample surfaces formed in air is nearly four times more than that in the deionized water. The studies confirm

  3. Correlation between the local stress and the grain misorientation in the polycrystalline Al2O3 measured by near-field luminescence spectroscopy

    Science.gov (United States)

    Tomimatsu, Toru; Takigawa, Ryo

    2018-06-01

    Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.

  4. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  5. Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry

    International Nuclear Information System (INIS)

    Spooner, N.A.; Smith, B.W.; Williams, O.M.; Creighton, D.F.; McCulloch, I.; Hunter, P.G.; Questiaux, D.G.; Prescott, J.R.

    2011-01-01

    Thermoluminescence (TL), Optically-Stimulated Luminescence (OSL) and Infrared-Stimulated Luminescence (IRSL) emitted from a set of 19 salt (NaCl) samples were studied for potential application to retrospective dosimetry. TL emission spectra revealed intense TL emissions from most samples, centred on 590 nm; UV and blue emissions were also found. Significant thermally-induced sensitivity changes were observed and TL, OSL and IRSL growth curves were measured. Pulse anneal analysis was performed, as was quantitative imaging of the TL, OSL and IRSL to assess sample heterogeneity. Kinetic analysis found lifetimes at 20 °C of the 200 °C and 240 °C TL peaks to be 0.6 ka and 4 ka respectively; sufficient for application to retrospective dosimetry.

  6. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    Science.gov (United States)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of

  7. Characterization and luminescent properties of thermally annealed olivines

    International Nuclear Information System (INIS)

    Colin-Garcia, Maria; Correcher, Virgilio; Garcia-Guinea, Javier; Heredia-Barbero, Alejandro; Roman-Lopez, Jesus; Ortega-Gutierrez, Fernando; Negron-Mendoza, Alicia; Ramos-Bernal, Sergio

    2013-01-01

    Olivine is an iron-magnesium solid solution silicate (Mg,Fe) 2 SiO 4 and it is probably one of the most abundant mineral phase in the Solar System, it is present in the primitive carbonaceous meteorites (i.e Allende), and in ordinary chondritic meteorite, comets or terrestrial planets. The olivine grains in those bodies have been exposed to different radiation sources like UV, electrons, cosmic radiation, etc. Here, we explore the effect of ionizing and non ionizing radiation on the luminescence emission of the two well-characterised olivine samples from Mexico and Spain by means of cathodoluminescence and thermoluminescence. The analyses by X-ray dispersive energies in the scanning electron microscopy show differences between the samples in the amount of iron and magnesium and also show traces of rare elements. Olivine exhibits spectral cathodoluminescence emissions of low intensity, explained for the quenching of the luminescence of the iron, and sharp signals assigned as impurities. Cathodoluminescence and thermoluminescence glow curves of the natural, and UV induced olivine samples were obtained. Our results show that thermal treatments at 1100 °C change the mineral molecular structure and the luminescence properties of this mineral phase. These results confirm an active participation of physical factors influencing the luminescent properties of olivine. -- Highlights: ► Luminescent properties of two olivines samples (Mexican and Spanish) were explored. ► EDS show different iron and magnesium content and traces of rare elements on both. ► Olivine exhibits spectral CL emissions of low intensity due to the quenching of iron. ► Treatments at 1100 °C change the mineral structure and its response to UV radiation

  8. The first example of intensive luminescence of LMCT state based on metal complexes in solution

    International Nuclear Information System (INIS)

    Lukova, G.V.; Vasil'ev, V.P.; Smirnov, V.A.; Huhn, W.

    2007-01-01

    A bridge complex rac-C 6 H 10 (IndH 4 ) 2 ZrC 2 , featuring a unique long-living luminescence in liquid solutions at 20 deg C, has been prepared for the first time by catalytic hydrogenation of bis-indinyl complex C 6 H 10 (Ind) 2 Zr 2 Cl 2 . It has been identified that quantum yields of luminescence of the complex solutions at room temperature are the greatest ones for the known compounds possessing emission states of charge transfer from ligand to metal. Linear correlations of quantum yield of metal complex luminescence in a solution with steric features of the solvent molecules have been detected for the first time [ru

  9. MO-FG-CAMPUS-JeP1-03: Luminescence Imaging of Water During Proton Beam Irradiation for Range Estimation

    International Nuclear Information System (INIS)

    Yamamoto, S; Komori, M; Toshito, T; Watabe, H

    2016-01-01

    Purpose: Since proton therapy has the ability to selectively deliver a dose to a target tumor, the dose distribution should be accurately measured. A precise and efficient method to evaluate the dose distribution is desired. We found that luminescence was emitted from water during proton irradiation and thought this phenomenon could be used for estimating the dose distribution. Methods: For this purpose, we placed water phantoms set on a table with a spot-scanning proton-therapy system, and luminescence images of these phantoms were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton-beam irradiation. We also conducted the imaging of phantoms of pure-water, fluorescein solution and acrylic block. We made three dimensional images from the projection data. Results: The luminescence images of water phantoms during the proton-beam irradiations showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. The image of the pure-water phantom also showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had 14.5% shorter proton range than that of water; the proton range in the acrylic phantom was relatively matched with the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 sec. Three dimensional images were successfully obtained which have more quantitative information. Conclusion: Luminescence imaging during proton-beam irradiation has the potential to be a new method for range estimations in proton therapy.

  10. MO-FG-CAMPUS-JeP1-03: Luminescence Imaging of Water During Proton Beam Irradiation for Range Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Komori, M [Nagoya University, Nagoya, Aichi (Japan); Toshito, T [Nagoya Proton Therapy Center, Nagoya, Aichi (Japan); Watabe, H [Tohoku University, Sendai, Miyagi (Japan)

    2016-06-15

    Purpose: Since proton therapy has the ability to selectively deliver a dose to a target tumor, the dose distribution should be accurately measured. A precise and efficient method to evaluate the dose distribution is desired. We found that luminescence was emitted from water during proton irradiation and thought this phenomenon could be used for estimating the dose distribution. Methods: For this purpose, we placed water phantoms set on a table with a spot-scanning proton-therapy system, and luminescence images of these phantoms were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton-beam irradiation. We also conducted the imaging of phantoms of pure-water, fluorescein solution and acrylic block. We made three dimensional images from the projection data. Results: The luminescence images of water phantoms during the proton-beam irradiations showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. The image of the pure-water phantom also showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had 14.5% shorter proton range than that of water; the proton range in the acrylic phantom was relatively matched with the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 sec. Three dimensional images were successfully obtained which have more quantitative information. Conclusion: Luminescence imaging during proton-beam irradiation has the potential to be a new method for range estimations in proton therapy.

  11. An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Velazquez, D. Y., E-mail: dyolotzin@correo.azc.uam.mx; Alejandre-Zuniga, B. Y.; Loera-Serna, S.; Ortiz, E. M. [Universidad Autónoma Metropolitana-Azcapotzalco, División de Ciencias Básicas e Ingeniería (Mexico); Morales-Ramirez, A. de J. [CIITEC IPN, Instituto Politécnico Nacional (Mexico); Garfias-Garcia, E. [Universidad Autónoma Metropolitana-Azcapotzalco, División de Ciencias Básicas e Ingeniería (Mexico); Garcia-Murillo, A. [CIITEC IPN, Instituto Politécnico Nacional (Mexico); Falcony, C. [Centro de Investigación y Estudios Avanzados, Departamento de Física (Mexico)

    2016-12-15

    The increasing demand for optoelectronic devices requires the development of luminescent materials with high luminescence efficiency and low energy demands, and the metalorganic frameworks (MOFs) with lanthanides ions offer great potential in this area. The metalorganic materials provide properties of flexibility, low density, low-cost methods of synthesis, and insolubility in water, which gives them an advantage over traditional phosphors. In this study, a benzenetricarboxylate ligand (BTC) with a Eu{sup 3+} MOF was synthesized, and its structural and luminescent properties were measured. The metalorganic compound was generated in a one-pot reaction from europium nitrate and trimesic acid precursors. Through characterization by X-ray diffraction powder, infrared spectroscopy, SEM structural characterization, and luminescent spectroscopy, the formation of Europium benzenetricarboxylate (Eu-BTC) MOF nanorods was tested and the calculated value was in the range of 30–60 nm. A red luminescent emission with high intensity was observed for all the procedures.

  12. Luminescence studies on Dy3+ doped calcium boro-tellurite glasses for White light applications

    Science.gov (United States)

    Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2017-09-01

    A new series of Dy3+ doped calcium boro-tellurite glasses have been prepared by melt quenching technique and their spectroscopic properties were studied through FTIR, absorption luminescence and lifetime spectral measurements. FTIR studies have been made to explore the presence of various stretching and bending vibrations of different borate and tellurite groups in the prepared glasses. The bonding parameter values were estimated from the absorption band positions using Nephelauxetic ratios to examine the nature of the metal-ligand bond. The optical band gap and Urbach energy (ΔE) values were obtained from the absorption spectra to explore the electronic band structure of the studied glasses. Judd-Ofelt (JO) theory have been used to determine the JO intensity parameters (Ω2, Ω4, Ω6) following the least square fitting procedure between the experimental and calculated oscillator strength values. The luminescence spectra of the Dy3+ doped calcium boro-tellurite glasses exhibit two intense emission bands corresponding to the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions. Further, they exhibit less intense emission band due to the 4F9/2→6H11/2 transition. Luminescence spectra were characterized through CIE 1931 chromaticity diagram to obtain the dominant emission color of the prepared glasses. The JO intensity parameters and refractive index values have been used to calculate the radiative parameters such as transition probabilities (AR), branching ratios (βR) and stimulated emission cross-section (σPE) values for the observed transitions in the luminescence spectra. The decay curves of all the studied glasses found to exhibit non-exponential behavior and further to understand the energy transfer process takes place between the Dy3+ ions, the decay curves were fitted to the Inokuti-Hirayama (IH) model. The structural and optical properties of the Dy3+ doped calcium boro-tellurite glasses have been studied as a function of different metal cations (Zn, Cd, Pb and

  13. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    P R, Chithira; Theresa John, Teny, E-mail: teny@goa.bits-pilani.ac.in

    2017-05-15

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH{sup -}] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  14. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    International Nuclear Information System (INIS)

    P R, Chithira; Theresa John, Teny

    2017-01-01

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH - ] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  15. Persistent luminescence and thermoluminescence of UV/VIS -irradiated SrAl2O4: Eu2+, Dy3+ phosphor

    International Nuclear Information System (INIS)

    Pereyda-Pierre, C.; Meléndrez, R.; García, R.; Pedroza-Montero, M.; Barboza-Flores, M.

    2011-01-01

    The persistent luminescence and thermoluminescence properties of SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors excited with UV–VIS light in the 200–500 nm region were investigated. The thermoluminescence glow curve was found to be composed of peaks around 70, 125 and 245 °C. The persistent luminescence and thermoluminescence excitation spectra exhibited a broad band around 300–500 nm centered at 400 and 420 nm respectively. A linear behavior of the integrated thermoluminescence intensity and persistent luminescence versus irradiation time was found for the first 60 s. The charge detrapping from the 70 °C trapping levels was the major contributor to the observed persistent luminescence at room temperature. The SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors have suitable properties to be applied as storage and persistent luminescence UV–VIS irradiation dose phosphor. -- Highlights: ► SrAl 2 O 4 :Eu 2+ , Dy 3+ persistent luminescence and thermoluminescence was measured. ► The phosphor was irradiated with UV–VIS photons in the 200–500 nm wavelength range. ► SrAl 2 O 4 :Eu 2+ , Dy 3+ behaves adequately as persistent and storage UV–VIS dosimeter. ► The persistent luminescence dosimetry does not require heat or light stimulation.

  16. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates

    International Nuclear Information System (INIS)

    Puntus, L.N.; Zolin, V.F.; Babushkina, T.A.; Kutuza, I.B.

    2004-01-01

    The luminescence and PMR spectra of europium salts of six isomers of 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-pyridinedicarboxylic acids (PDA) had been studied. The distribution of the effective charge in the nearest surroundings of the Eu 3+ ion in these salts was evaluated from Stark splittings of electronic transitions. The values of relative integral intensities of electronic transitions 5 D 0 - 7 F J (J=0-4) in the luminescence spectra were reported. Compounds investigated were divided into three subgroups taking into account the details of the structure of the ligands and details of the luminescence spectra. The ligand coordination manners as well as the strength of interaction between lanthanide ion and ligands were confirmed by data of the PMR and IR spectroscopy

  17. Luminescence induced by electrons outside zinc oxide nanoparticles driven by intense terahertz pulse trains

    International Nuclear Information System (INIS)

    Nagai, Masaya; Aono, Shingo; Ashida, Masaaki; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2017-01-01

    We investigated the behaviours of electrons from ZnO nanoparticles via a strong terahertz field. Luminescence from ZnO nanoparticles and surrounding nitrogen molecules was observed when the nanoparticles were irradiated with a terahertz free-electron laser (FEL). These excitations arose from the collision of electrons released via field electron emission with the ZnO nanoparticles and neighbouring nitrogen molecules. The strong excitation frequency dependence of the luminescence reflected the kinetic energy and trajectory of electrons outside the nanoparticles. We also observed spectral changes in the luminescence during macropulses of the FEL, even though the carrier lifetime of the nanoparticles was shorter than the interval between the micropulses. These changes were caused by the nanoparticles becoming charged due to electron emission, resulting in the electrons being re-emitted outside the nanoparticles. The electrons outside the nanoparticles were accelerated more efficiently by the terahertz field than the electrons inside the nanoparticles, and thus the motion of these exterior electrons provided a new excitation path. (paper)

  18. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  19. Luminescence and Luminescence Quenching of K2Bi(PO4)(MoO4):Eu3+ Phosphors with Efficiencies Close to Unity.

    Science.gov (United States)

    Grigorjevaite, Julija; Katelnikovas, Arturas

    2016-11-23

    A very good light emitting diode (LED) phosphor must have strong absorption, high quantum efficiency, high color purity, and high quenching temperature. Our synthesized K 2 Bi(PO 4 )(MoO 4 ):Eu 3+ phosphors possess all of the mentioned properties. The excitation of these phosphors with the near-UV or blue radiation results in a bright red luminescence dominated by the 5 D 0 → 7 F 2 transition at ∼615 nm. Color coordinates are very stable when changing Eu 3+ concentration or temperature in the range of 77-500 K. Furthermore, samples doped with 50% and 75% Eu 3+ showed quantum efficiencies close to 100% which is a huge benefit for practical application. Temperature dependent luminescence measurements showed that phosphor performance increases with increasing Eu 3+ concentration. K 2 Eu(PO 4 )(MoO 4 ) sample at 400 K lost only 20% of the initial intensity at 77 K and would lose half of the intensity only at 578 K. Besides, the ceramic disks with thicknesses of 0.33 and 0.89 mm were prepared from K 2 Eu(PO 4 )(MoO 4 ) powder, and it turned out that they efficiently converted the radiation of 375 nm LED to the red light. The conversion of 400 nm LED radiation to the red light was not complete; thus, the light sources with various tints of purple color were obtained. The combination of ceramic disks with 455 nm LED yielded the light sources with tints of blue color due to the low absorption of ceramic disk in this spectral range. In addition, these phosphors possess a very unique emission spectra; thus, they could also be applied in luminescent security pigments.

  20. Luminescence study of Eu3+ doped GdVO4 nanoparticles: Concentration, particle size, and core/shell effects

    Science.gov (United States)

    Singh, N. Shanta; Ningthoujam, R. S.; Devi, L. Romila; Yaiphaba, N.; Sudarsan, V.; Singh, S. Dorendrajit; Vatsa, R. K.; Tewari, R.

    2008-11-01

    Nanoparticles of GdVO4 doped with Eu3+ and core/shell of GdVO4:Eu3+/GdVO4 are prepared by urea hydrolysis method using ethylene glycol as capping agent as well as reaction medium at 130 °C. Unit cell volume increases when GdVO4 is doped with Eu3+ indicating the substitution of Gd3+ lattice sites by Eu3+. From luminescence study, it is confirmed that there is no particle size effect on emission positions of Eu3+. Optimum luminescence intensity is found to be in 5-10 at. % Eu3+. Above these concentrations, luminescence intensity decreases due to concentration quenching effect. There is an enhancement in luminescence intensity of core/shell nanoparticles. This has been attributed to the reduction in surface inhomogenities of Eu3+ surroundings by bonding to GdVO4 shell. The lifetime for D50 level increases with annealing and core/shell formation.

  1. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Compartir For more help with what counts as aerobic activity, watch this video: Windows Media Player, 4: ... ways to understand and measure the intensity of aerobic activity: relative intensity and absolute intensity. Relative Intensity ...

  2. A simple optode based imaging technique to measure O2 distribution and dynamics in tap water biofilms

    DEFF Research Database (Denmark)

    Staal, Marc Jaap; Prest, E.; Vrouwenvelder, H.

    2011-01-01

    window. The method is based on sequential imaging of the O2 dependent luminescence intensity, which are subsequently normalized with luminescent intensity images recorded under anoxic conditions. We present 2-dimensional O2 distribution images at the base of a tap water biofilm measured with the new...... is depleted during incubation....

  3. Luminescence sensitivity changes in quartz

    CERN Document Server

    Wintle, A G

    1999-01-01

    In the luminescence dating of sedimentary or heated quartz, some heat treatment is usually applied to the sample immediately prior to the measurement of the optically stimulated luminescence. In this paper we report experiments on a 30,000-year-old sedimentary quartz, in which we use the luminescence response to a test dose to monitor the changes in sensitivity that are caused by holding the quartz at temperatures from 160 to 280 deg. C for times from 10 s to 22 h. For an optically bleached sample, the monitoring is by both optically stimulated luminescence and the 110 deg. C TL peak; both luminescence signals are shown to have the same sensitisation (i.e. activation energy) characteristics. For natural or laboratory irradiated samples only the 110 deg. C TL peak can be used; sensitivity increases of up to a factor of 1.3 and 3 are observed for the natural and laboratory irradiated aliquots, respectively. Up to four exponential components are used to deconvolve the sensitivity change data; the dominant compon...

  4. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  5. Near-surface layer radiation color centers in lithium fluoride nanocrystals: Luminescence and composition

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P., E-mail: voitovich@imaph.bas-net.by; Kalinov, V.S.; Stupak, A.P.; Novikov, A.N.; Runets, L.P.

    2015-01-15

    Lithium fluoride nanocrystals are irradiated by gamma quanta at 77 K. The radiation color centers formed in a near-surface layer of nanocrystals are studied. Absorption, luminescence and luminescence excitation spectra of the surface defects have been measured. It has been found that the luminescence excitation spectra for aggregated surface centers consist of two or three bands with not very much different intensities. Reactions of the surface centers separately with electrons and with anion vacancies have been investigated. Numbers of anion vacancies and electrons entering into the centers composition have been established and it has been found that F{sub S1}, F{sub S1}{sup −}, F{sub S2}, F{sub S2}{sup −}, F{sub S3}{sup +} and F{sub S3} types of the surface centers are formed. The degree of luminescence polarization has been defined and it has been determined that the polarization degree for F{sub S2}{sup +} centers changes sign under transition from one excitation band to another. It has been shown that during irradiation at 77 K radiation-induced defects are formed more efficiently on the surface than in the bulk. - Highlights: • Radiative color centers were fabricated in lithium fluoride nanocrystals. • The unique absorption and luminescence characteristics are inherent in the centers. • The reactions of these centers with electrons and anion vacancies were studied. • The degree of luminescence polarization was defined. • Numbers of anion vacancies and electrons forming the centers were established.

  6. Highly Sensitive Luminescence Assessment of Bile Acid Using a Balofloxacin-Europium(III) Probe in Micellar Medium

    International Nuclear Information System (INIS)

    Cai, Huan; Zhao, Fang; Si, Hailin; Zhang, Shuaishuai; Wang, Chunchun; Qi, Peirong

    2012-01-01

    A novel and simple method of luminescence enhancement effect for the determination of trace amounts of bile acid was proposed. The procedure was based on the luminescence intensity of the balofloxacin-europium(III) complex that could be strongly enhanced by bile acid in the presence of sodium dodecyl benzene sulfonate (SDBS). Under the optimum conditions, the enhanced luminescence intensity of the system exhibited a good linear relationship with the bile acid concentration in the range 5.0 Χ 10 -9 - 7.0 Χ 10 -7 mol L -1 with a detection limit of 1.3 Χ 10 -9 mol L.1 (3σ). The relative standard deviation (RSD) was 1.7% (n = 11) for 5.0 Χ 10 -8 mol L -1 bile acid. The applicability of the method to the determination of bile acid was demonstrated by investigating the effect of potential interferences and by analyzing human serum and urine samples. The possible enhancement mechanism of luminescence intensity in balofloxacin-europium(III)-bile acid-SDBS system was also discussed briefly

  7. Synthesis and luminescence properties of tris(bipyridine)ruthenium(II)-containing vinyl polymers

    International Nuclear Information System (INIS)

    Furue, Masaoki; Sumi, Katsuhiro; Nozakura, Shun-ichi

    1981-01-01

    The luminescence properties of poly[Ru(bpy) 2 (6-vinyl-bpy)-co-6-vinyl-bpy], (I) were compared with those of Ru(bpy) 3 2+ at 77 - 298 K. A larger depletion of luminescence intensity and lifetime was observed in I in fluid solution. The dynamic quenching processes were suggested to be the dominant factor for the energy dissipation in I. (author)

  8. Temperature dependence of luminescence from silica glasses under in-reactor and 60Co gamma-ray irradiation

    Science.gov (United States)

    Takahara, Shogo; Yoshida, Tomoko; Tanabe, Tetuo; , Tatuya, Ii; Hirano, Masahiro; Okada, Moritami

    2004-06-01

    In order to investigate the temperature effects on the dynamic radiation damaging process, we have carried out in situ measurements of in-reactor luminescence (IRL) and gamma-ray induced luminescence (GIL) of a silica glass at temperatures ranging from 70 K to 370 K. Both luminescence spectra were found to consist of two broad emission centers at 3.1 eV and 4.1 eV with an additional temperature independent emission around 2.5 eV. The 2.5 eV emission different from the other two showed long tail to the lower energy side and was attributed to the Cherenkov radiation. The 3.1 eV band was attributed to a B 2 β oxygen deficient center on the basis of our photoluminescence measurement. The intensity of the 3.1 eV IRL increased with increasing temperature up to ca. 200 K and saturated above 200 K, which is clearly different from the reported temperature dependence of 3.1 eV photoluminescence, suggesting the existence of some different relaxation mechanism of excited electron under ionizing radiations.

  9. Label-Free Ag+ Detection by Enhancing DNA Sensitized Tb3+ Luminescence

    Directory of Open Access Journals (Sweden)

    Kimberly Kleinke

    2016-08-01

    Full Text Available In this work, the effect of Ag+ on DNA sensitized Tb3+ luminescence was studied initially using the Ag+-specific RNA-cleaving DNAzyme, Ag10c. While we expected to observe luminescence quenching by Ag+, a significant enhancement was produced. Based on this observation, simple DNA oligonucleotide homopolymers were used with systematically varied sequence and length. We discovered that both poly-G and poly-T DNA have a significant emission enhancement by Ag+, while the absolute intensity is stronger with the poly-G DNA, indicating that a G-quadruplex DNA is not required for this enhancement. Using the optimized length of the G7 DNA (an oligo constituted with seven guanines, Ag+ was measured with a detection limit of 57.6 nM. The signaling kinetics, G7 DNA conformation, and the binding affinity of Tb3+ to the DNA in the presence or absence of Ag+ are also studied to reveal the mechanism of emission enhancement. This observation is useful not only for label-free detection of Ag+, but also interesting for the rational design of new biosensors using Tb3+ luminescence.

  10. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart Rate & Estimated Maximum Heart Rate Perceived Exertion ( ... a heavy backpack Other Methods of Measuring Intensity Target Heart Rate and Estimated Maximum Heart Rate Perceived ...

  11. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry

    Science.gov (United States)

    Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi

    2018-02-01

    Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.

  12. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs

    International Nuclear Information System (INIS)

    Luo Yongsong; Xia Xiaohong; Liang Ying; Zhang Yonggang; Ren Qinfeng; Li Jialin; Jia Zhijie; Tang Yiwen

    2007-01-01

    Luminescence of the short multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups has been studied. The results show that the carboxyl-functionalized short MWNTs could emit luminescence and the emission peak appears at 500 nm with a corresponding optimal excitation wavelength centering at 310 nm. When the short MWNTs are filtered through 0.15 μm polytetrafluoroethylene (PTFE) membrane, the ultrashort MWNTs are obtained from the filtrate. An interesting feature for the ultrashort MWNTs is that the emission intensity is strengthened and the peak is slightly blue shifted to 460 nm. This result indicates that the luminescence properties of MWNTs are strongly affected by the tube length. After chemical oxidization cutting, defects and carboxylic acid groups at the tube end and/or sidewall can be produced; the more shorten of MWNTs, the better dispersion and carboxylic passivation of the nanotubes, and the more intense luminescence emissions. The broad emissions are logically attributed to the trapping of excitation energy by defect sites in the carboxyl-functionalized nanotube structure. - Graphical abstract: Luminescence of the short and ultrashort multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups, which is logically attributed to the trapping of excitation energy by defect sites, has been studied

  13. Comparison of temperature sensing of the luminescent upconversion and ZnCdS nanoparticles

    Science.gov (United States)

    Yanina, I. Yu.; Volkova, E. K.; Sagaidachnaya, E. A.; Konyukhova, J. G.; Kochubey, V. I.; Tuchin, V. V.

    2018-02-01

    The luminescence spectra of upconversion nanoparticles (UCNPs) and ZnCdS nanoparticles (ZnCdSNPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the luminescence signal of UCNPs and ZnCdSNPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. The most likely that the multiple phase transitions are associated with the different components of fat cells, such as phospholipids of cell membrane and lipids of fat droplets. In the course of fat cell heating, lipids of fat droplet first transit from a crystalline form to a liquid crystal form and then to a liquid form, which is characterized by much less scattering. The results of phase transitions of lipids were observed as the changes in the slope of the temperature dependence of the intensity of luminescence of the film with nanoparticles embedded into tissue. The obtained results confirm a high sensitivity of the luminescent UCNPs and ZnCdSNPs to the temperature variations within thin tissue samples and show a strong potential for the controllable tissue thermolysis.

  14. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    Science.gov (United States)

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  15. Highly sensitive time resolved singlet oxygen luminescence detection using LEDs as the excitation source

    International Nuclear Information System (INIS)

    Hackbarth, S; Schlothauer, J; Preuss, A; Röder, B

    2013-01-01

    For the first time singlet oxygen luminescence kinetics in living cells were detected at high precision using LED light for excitation. As LED technology evolves, the light intensity emitted by standard LEDs allows photosensitized singlet oxygen luminescence detection in solution and cell suspensions. We present measurements superior to those of most actual laser powered setups regarding precision of singlet oxygen kinetics in solutions and cell suspensions. Data presented here show that LED based setups allow the determination of the photosensitizer triplet and singlet oxygen decay times in vitro with an accuracy of 0.1 μs. This enables monitoring of the photosensitizer efficiency and interaction with the cellular components using illumination doses small enough not to cause cell death. (letter)

  16. Measuring thermo-luminescence efficiency of TLD-2000 detectors to different energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei Min; Chen, Bao Wei; Han, Yi; Yang, Zhong Jian [China Institute for Radiation Protection, Taiyuan (China)

    2016-06-15

    As an important detecting device, TLD is a widely used in the radiation monitoring. It is essential for us to study the property of detecting element. The aim of this study is to calculate the thermo-luminescence efficiency of TL elements. A batch of thermo-luminescence elements were irradiated by the filtered X-ray beams of average energies in the range 40-200 kVp, 662 keV {sup 137}Cs gamma rays and then the amounts of lights were measured by the TL reader. The deposition energies in elements were calculated by theory formula and Monte Carlo simulation. The unit absorbed dose in elements by photons with different energies corresponding to the amounts of lights was calculated, which is called the thermo luminescent efficiency (η(E)). Because of the amounts of lights can be calculated by the absorbed dose in elements multiply η(E), the η(E) can be calculated by the experimental data (the amounts of lights) divided by absorbed dose. The deviation of simulation results compared with theoretical calculation results were less than 5%, so the absorbed dose in elements was calculated by simulation results in here. The change range of η(E) value, relative to 662 keV {sup 137}Cs gamma rays, is about 30% in the energy range of 33 keV to 662 keV, is in accordance by the comparison with relevant foreign literatures. The η(E) values can be used for updating the amounts of lights that are got by the direct ratio assumed relations with deposition energy in TL elements, which can largely reduce the error of calculation results of the amounts of lights. These data can be used for the design of individual dosimeter which used TLD-2000 thermo-luminescence elements, also have a certain reference value for manufacturer to improve the energy-response performance of TL elements by formulation adjustment.

  17. The nature of unusual luminescence in natural calcite, CaCO3

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Panczer, G.; Waychunas, G.; Porat, N.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms, accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.

  18. Radiation ray discrimination method using photo-stimulated luminescence fluorescent material

    International Nuclear Information System (INIS)

    Atsumi, Yoshihiro; Takebe, Masahiro; Abe, Ken.

    1996-01-01

    An IP (imaging plate) using PSL (photo-stimulated luminescence fluorescent material) is formed by coating a photo-stimulated luminescence fluorescent material on a thin plastic plate. A predetermined colorants is added to the PSL material. A colorant which absorbs a light having a wavelength of about 600nm is preferred. After irradiating various kinds of radiation rays to the IP, and then irradiating a white light thereto for a predetermined period of time, lights at several kinds of wavelength specific to several kinds of radiation rays to be measured are successively irradiated to the IP. The ratios between the luminance intensity of the fluorescent light emitted from the IP in this case and that emitted when a light of one specific wavelength is irradiated are successively calculated. The light of the specific wavelength preferably has a wavelength of 600nm. With such procedures, the kinds of the several radiation rays which are irradiated to the IP can be discriminated. (I.N.)

  19. Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements

    Directory of Open Access Journals (Sweden)

    M. Veronica Rigo

    2012-01-01

    Full Text Available Optical fiber sensors using luminescent probes located along an optical fiber in the cladding of this fiber are of great interest for monitoring physical and chemical properties in their environment. The interrogation of a luminophore with a short laser pulse propagating through the fiber core allows for the measurement of the location of these luminophores. To increase the spatial resolution of such a measurements and to measure multiple analytes and properties in a confined space, a crossed optical fiber sensing platform can be employed. Here we describe the application of this platform to measuring the concentration of dissolved oxygen. The sensor is based on luminescence quenching of a ruthenium complex immobilized in a highly crosslinked film and covalently attached to the optical fibers. Both luminescence-intensity and luminescence-lifetime changes of the sensor molecules in response to changes in the concentration of oxygen dissolved in water are reported. For luminescence-intensity measurements, a second adjacent sensor region is employed as reference to account for laser pulse energy fluctuations. Enhanced quenching response in water is demonstrated by the use of organically modified poly(ethylene glycol precursors, which increase the hydrophobicity of the film surface.

  20. Luminescence investigation of Yb3+/Er3+ codoped single LiYF4 microparticle

    International Nuclear Information System (INIS)

    Gao, Wei; Zheng, Hairong; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-01-01

    Tetragonal phase LiYF 4 :Yb 3+ /Er 3+ microparticles are synthesized via facile hydrothermal method. Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF 4 :Yb 3+ /Er 3+ microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF 4 :Yb 3+ /Er 3+ microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF 4 microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated

  1. A polymeric dosimeter film based on optically-stimulated luminescence for dose measurements below 1 kGy

    International Nuclear Information System (INIS)

    Kovacs, A.; Baranyai, M.; Wojnarovits, L.; Slezsak, I.; McLaughlin, W.L.; Miller, S.D.; Miller, A.; Fuochi, P.G.; Lavalle, M.

    1999-01-01

    A new potential dosimetry system 'Sunna' containing a microcrystalline dispersion of an optically-stimulated fluor in a plastic matrix has been recently developed to measure and image high doses. Our previous investigations have revealed that the new dosimeter system is capable of measuring absorbed doses in the dose range of 1-100 kGy. The optically-stimulated luminescence (OSL) analysis is based on the blue light stimulation of the colour center states produced upon irradiation, and the intensity of the resulting red-light emission is used to measure absorbed dose. This analysis is carried out with a simple table-top fluorimeter developed for this purpose having also the ability to calculate the mathematical formula of the calibration function. The Sunna dosimeter was recently investigated for potential use in lower dose range below 1 kGy. These investigations have shown that the film is suitable for measuring doses in the range of 1-1000 Gy for both electron and gamma radiation. To test the applicability of the film, its reproducibility, stability, sensitivity to ambient and UV light and irradiation temperature were measured. The stability of the dosimeter was investigated by monitoring the change of the OSL signal with storage time after irradiation. Further experiments proved the homogeneity of the film with respect to thickness variation, and limited differences in its response were found between batches. (author)

  2. Preparation and luminescence properties of Ca3(VO4)2: Eu3+, Sm3+ phosphor for light-emitting diodes

    International Nuclear Information System (INIS)

    Huang Jiaping; Li Qiuxia; Chen Donghua

    2010-01-01

    Rare-earth ions co-activated red phosphors Ca 3 (VO 4 ) 2 : Eu 3+ , Sm 3+ were synthesized by modified solid-state reactions. The samples were characterized by X-ray powder diffractometer (XRD), energy-dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and luminescence spectrometer (LS). The results showed that the Eu-Sm system exhibits higher emission intensity than those of the Eu single-doped system and Sm separate-doped system under blue light. Samarium (III) ions are effective in broadening and strengthening absorptions around 467 nm. Furthermore, they exhibit enhanced luminescence emission. Luminescent measurements showed that the phosphors can be efficiently excited by ultraviolet (UV) to visible region, emitting a red light with a peak wavelength of 616 nm. The material has potential application as a phosphor for light-emitting diodes (LEDs).

  3. Site symmetry and crystal field of Ce{sup 3+} luminescent centres in KMgF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yamaga, M. [Department of Electrical and Electronic Engineering, Faculty of Engineering, Gifu University, Gifu (Japan); Honda, M.; Kawamata, N. [Faculty of Science, Naruto University of Education, Naruto (Japan); Fujita, T.; Shimamura, K.; Fukuda, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2001-04-09

    The electron-spin resonance (ESR) spectra of Ce{sup 3+} in KMgF{sub 3} observed at low temperatures (<20 K) show that two tetragonal and two orthorhombic Ce{sup 3+} centres exist in the absence of a cubic centre. These Ce{sup 3+} centres are strongly associated with substitution of Ce{sup 3+} ions for K{sup +} ions with K{sup +}-ion vacancies at three different sites and for a Mg{sup 2+} ion with a vacancy of the nearest neighbour Mg{sup 2+} ion along the [101] direction as charge compensators. The optical absorption spectrum of Ce{sup 3+} in KMgF{sub 3} measured at room temperature consists of two intense broadbands with peaks at 229 and 237 nm, and two weak bands with peaks at 203 and 211 nm corresponding to the transition from the ground state {sup 2}F{sub 5/2} to the 5d{sup 1} excited states of Ce{sup 3+}. The Ce{sup 3+} luminescence spectrum excited at 229 or 237 nm at room temperature is composed of broadbands with double peaks at 265 and 282 nm, which are due to the ground-state splitting between {sup 2}F{sub 5/2} and {sup 2}F{sub 7/2}. The peak of the weak luminescence band excited at a tail (250-280 nm) of the intense absorption bands is shifted to lower energy. The intense and weak Ce{sup 3+} luminescence bands are assigned to Ce{sup 3+} ions substituting for K{sup +} ions away from and near to K{sup +}-ion vacancies, respectively. The luminescence from Ce{sup 3+} ions substituting for Mg{sup 2+} ions could not be observed at room temperature. (author)

  4. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  5. Luminescent properties of LuPO4-Pr and LuPO4-Eu nanoparticles

    International Nuclear Information System (INIS)

    Vistovskyy, V.; Malyi, T.; Vas’kiv, A.; Chylii, M.; Mitina, N.; Zaichenko, A.; Gektin, A.; Voloshinovskii, A.

    2016-01-01

    Spectral-luminescence parameters of LuPO 4 -Eu and LuPO 4 -Pr nanoparticles of different sizes are studied upon excitation by the synchrotron radiation with photon energies 4–40 eV. Influence of the nanoparticle size on Eu 3+ and Pr 3+ impurity luminescence is analyzed for intracenter and recombination excitation. It is shown that the luminescence intensity of impurities in the case of recombination excitation significantly stronger decreases with decreasing of nanoparticle size compared to intracenter excitation. This feature is explained by the influence of thermalization length to nanoparticle size ratio on the recombination luminescence. Electron recombination luminescence inherent for LuPO 4 -Eu nanoparticles shows a weaker dependence on the nanoparticle size than the hole one in LuPO 4 -Pr nanoparticles. The difference between energy states of praseodymium impurity ions in nanoparticles of different sizes is revealed.

  6. Yellow stimulated luminescence from potassium feldspar: Observations on its suitability for dating

    International Nuclear Information System (INIS)

    Lauer, T.; Krbetschek, M.; Mauz, B.; Frechen, M.

    2012-01-01

    Yellow stimulated luminescence (Y-OSL) is the light detected from potassium-rich feldspars at 410 nm under stimulation by a yellow light source emitting 590 nm. The investigation of this study aimed at understanding basic luminescence physics of Y-OSL in order to assess the suitability of the technique for dating. The Y-OSL signal properties tested were signal intensity, thermal assistance, thermal stability, sensitivity to daylight and the suitability of a single aliquot regenerative (SAR) protocol to be employed for equivalent dose (D e ) estimation. D e measurements were conducted on samples of Holocene, last glacial and Tertiary age. The tests were undertaken on sedimentary feldspar separates extracted from aeolian, fluvial and coastal deposits. Results from experiments show that the signal intensity increases by measuring Y-OSL at elevated temperature suggesting thermal assistance characteristics similar to infrared stimulated luminescence (IRSL). The yellow stimulated signal remains unaffected by preheat temperatures up to ∼200 °C suggesting higher thermal stability than the IRSL signal. The Y-OSL signal is less light sensitive than the IRSL signal and D e residuals obtained from modern samples are up to 7 Gy indicating suitability of the technique for ‘older’ and well-bleached sediments. The dose recovery tests successfully recovered the given dose if the specific light sensitivity of Y-OSL is taken into account. For every sample Y-OSL D e values obtained by a single aliquot regenerative dose protocol (SAR) are higher than those obtained by an IRSL SAR approach. From these results we infer high thermal stability and a minimal anomalous fading of the Y-OSL signal. We conclude that Y-OSL has a high potential to date Quaternary sediments that were sufficiently bleached in nature.

  7. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    Science.gov (United States)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  8. LUMINESCENCE DETERMINATION OF ETODOLAC

    Directory of Open Access Journals (Sweden)

    A. V. Yegorova

    2015-02-01

    Full Text Available A highly sensitive, simple and rapid method for determination of non-steroidal anti- inflammatory drug – etodolac (Et in washings from surfaces of pharmaceutical equipment have been proposed. The intensity of native luminescence of water-n-propanol solutions of etodolac (λex= 274 nm; λlum= 350 nm was used as the analytical signal. The calibration graph is linear in the concentration range 0.014-2.3 μg/ml, the limit of detection is 0.5 ng/ml.

  9. A luminescence lifetime assisted ratiometric fluorimeter for biological applications

    Science.gov (United States)

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-12-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.

  10. Principal and secondary luminescence lifetime components in annealed natural quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Ogundare, F.O.; Feathers, J.

    2008-01-01

    Time-resolved luminescence spectra from quartz can be separated into components with distinct principal and secondary lifetimes depending on certain combinations of annealing and measurement temperature. The influence of annealing on properties of the lifetimes related to irradiation dose and temperature of measurement has been investigated in sedimentary quartz annealed at various temperatures up to 900 deg. C. Time-resolved luminescence for use in the analysis was pulse stimulated from samples at 470 nm between 20 and 200 deg. C. Luminescence lifetimes decrease with measurement temperature due to increasing thermal effect on the associated luminescence with an activation energy of thermal quenching equal to 0.68±0.01eV for the secondary lifetime but only qualitatively so for the principal lifetime component. Concerning the influence of annealing temperature, luminescence lifetimes measured at 20 deg. C are constant at about 33μs for annealing temperatures up to 600 0 C but decrease to about 29μs when the annealing temperature is increased to 900 deg. C. In addition, it was found that lifetime components in samples annealed at 800 deg. C are independent of radiation dose in the range 85-1340 Gy investigated. The dependence of lifetimes on both the annealing temperature and magnitude of radiation dose is described as being due to the increasing importance of a particular recombination centre in the luminescence emission process as a result of dynamic hole transfer between non-radiative and radiative luminescence centres

  11. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    Science.gov (United States)

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  13. Development of optically stimulated luminescence reader systems in BARC

    International Nuclear Information System (INIS)

    Kulkarni, M.S.

    2008-01-01

    BARC has very vast experience in the development of thermoluminescence (TL) reader systems both for routine personnel monitoring and research application. However, optically stimulated luminescence (OSL) related instrumentation is a recent development in BARC. The increasing popularity of OSL technique in the radiation dosimetry applications in the recent past has driven investigation and developmental programme in the OSL measurement facilities at BARC. As the consequence of the efforts directed towards the indigenous development of OSL reader system, OSL readers with various readout modes like continuous wave (CW) OSL mode, linear intensity modulated OSL (LM-OSL), pulsed OSL (POSL) have been developed. In addition to these conventional modes of operation a novel non-linear OSL mode (NL-OSL) has also been developed for the OSL measurements. This paper reviews the details of the development of OSL reader system including experience with high intensity blue/green LED stimulation light source and detection system. Also discussed are recently developed versatile integrated TL/OSL reader systems for TL and OSL measurements. (author)

  14. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Rusu, Mircea; Stere, Oana; Haiduc, Maria; Caramete, Laurentiu

    2004-01-01

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  15. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  16. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  17. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  18. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  19. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  20. Optical luminescence studies of the ethyl xanthate adsorption layer on the surface of sphalerite minerals.

    Science.gov (United States)

    Todoran, R; Todoran, D; Szakács, Zs

    2016-01-05

    In this work we propose optical luminescence measurements as a method to evaluate the kinetics of adsorption processes. Measurement of the intensity of the integral optical radiation obtained from the mineral-xanthate interface layer, stimulated with a monochromatic pulsating optical signal, as a function of time were made. The luminescence radiation was obtained from the thin interface layer formed at the separation surface between the sphalerite natural mineral and potassium ethyl xanthate solution, for different solution concentrations and pH-es at the constant industry standard temperature. This method enabled us to determine the time to achieve dynamic equilibrium in the formation of the interface layer of approximately 20min, gaining information on the adsorption kinetics in the case of xanthate on mineral surface and leading to the optimization of the industrial froth flotation process. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ag2O dependent up-conversion luminescence properties in Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses

    International Nuclear Information System (INIS)

    Hu, Yuebo; Qiu, Jianbei; Song, Zhiguo; Zhou, Dacheng

    2014-01-01

    Up-conversion (UC) luminescence properties of Ag/Tm 3+ /Er 3+ /Yb 3+ co-doped oxyfluorogermanate glasses have been studied to assess the effective role of silver nanoparticles as a sensitizer for Tm 3+ and Er 3+ ions. The X-ray diffraction patterns obtained in this work do not reveal any crystalline phase in the glass. However, the absorption spectra reveal that surface plasmons resonance band of Ag undergoes a distinct split with two maxima and a very broad absorption peak with a background that extends toward the near infrared (NIR) with the increasing of Ag 2 O added concentration. Transmission electron microscope images confirm that silver nanoparticles have been precipitated from matrix glasses and show their distribution, size, and shapes. In addition, changes in UC luminescence intensity of four emission bands 476, 524, 546, and 658 nm corresponding to 1 G 4 → 3 H 6 (Tm 3+ ), ( 2 H 11/2 , 4 S 3/2 ) → 4 I 15/2 (Er 3+ ), and 4 F 9/2 → 4 I 15/2 (Er 3+ ) transitions, respectively, as a function of silver addition to the base composition have been measured under 980 nm excitation. It is confirmed that Ag 2 O added concentration plays an important role in increasing the UC luminescence intensity; however, further increase in Ag 2 O added concentration reduces the intensity

  2. X-ray excited luminescence of polystyrene composites loaded with SrF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Hevyk, V.B. [Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., 76019 Ivano-Frankivsk (Ukraine); Yakibchuk, P.M. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Ave, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine)

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF{sub 2} nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF{sub 2} nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF{sub 2} nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF{sub 2} nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF{sub 2} nanoparticles by polystyrene.

  3. Cleavage Luminescence from Cleaved Indium Phosphide

    International Nuclear Information System (INIS)

    Dong-Guang, Li

    2008-01-01

    We outline the experiments performed to gain further information about the structure and properties of cleaved InP surfaces. The experiments involved detecting the luminescence produced after cleaving thin InP plates within a high vacuum, by a process of converting the luminescence to an electrical signal which could be amplified and measured accurately. The experimental results show that the detected luminescence durations from cleaved InP are usually only about 10μs. It is believed that this time represents the time of travel of the crack with the actual recombination time being much shorter. Strong signals could also be picked up from cleaved InP in air

  4. Optically stimulated luminescence (OSL) and some other luminescence images from granite slices exposed with radiations

    International Nuclear Information System (INIS)

    Hashimoto, T.; Notoya, S.; Ojima, T.; Hoteida, M.

    1995-01-01

    Optically stimulated luminescence (OSL) images of some X- and γ-irradiated granite slices were obtained using photon detection through a 570 nm bandpass filter with diode-laser excitation of 910 nm. Alternative photo-induced phosphorescence (PIP) images, which were colour photographed immediately after the sunlight exposure of slice samples, were also found to be helpful in the observation of the luminescence properties and to filter selection for OSL measurements. These OSL and PIP images were compared with some other colour luminescence images, including thermoluminescence images (TLCI) and after-glow images (AGCI). It was obvious that there exists a variety of coloured emissions derived mainly from feldspar constituents and these were found to be dependent on the geological history or metamorphism of the granites. (Author)

  5. Luminescence properties of the Sm-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2015-01-01

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 compositions were investigated and analysed. The Li 2 B 4 O 7 :Sm, LiKB 4 O 7 :Sm, CaB 4 O 7 :Sm, and LiCaBO 3 :Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm 3+ (4f 5 , 6 H 5/2 ) ions, exclusively. All observed 4f – 4f transitions of the Sm 3+ centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm 3+ ions peaked about 598 nm ( 4 G 5/2 → 6 H 7/2 transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm 3+ luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm 3+ centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce 3+ non-controlled impurity and intrinsic luminescence centres to the Sm 3+ centres has been observed. Peculiarities of the Sm 3+ local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 glasses of high quality were obtained. • EPR, optical absorption and luminescence spectra of Sm 3+ ions in obtained glasses were

  6. The research of characteristic difference of selected frequency luminescence for desert sand

    International Nuclear Information System (INIS)

    Liu Chao; Wei Mingjian; Li Huhou

    2011-01-01

    The characters of selected frequency luminescence of four groups of samples from Badain Jaran desert are measured by BG2003 luminescence spectrograph. The measurement subjects include selected frequency optical stimulate luminescence spectrum, selected frequency thermoluminescence spectrum and the dose response curve. A double-peak map is obtained by the result from all groups of data and spectrum. The difference is emerged between each group. The optical stimulate luminescence and thermoluminescence is applied in the measurement process. The dispersion of photon count on every response wavelength is analyzed. Based on the analysis, a better result can be gained by selected frequency thermoluminescence. (authors)

  7. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... using relative intensity, people pay attention to how physical activity affects their heart rate and breathing. The talk test is a simple way to measure relative intensity. ...

  8. Luminescence of porous silicon doped by erbium

    International Nuclear Information System (INIS)

    Bondarenko, V.P.; Vorozov, N.N.; Dolgij, L.N.; Dorofeev, A.M.; Kazyuchits, N.M.; Leshok, A.A.; Troyanova, G.N.

    1996-01-01

    The possibility of the 1.54 μm intensive luminescence in the silicon dense porous layers, doped by erbium, with various structures is shown. Low-porous materials of both porous type on the p-type silicon and porous silicon with wood-like structure on the n + type silicon may be used for formation of light-emitting structures

  9. Luminescence and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blasse, G; Bleijenberg, K C; Powell, R C

    1980-01-01

    This paper deals with the luminescence of uranate centres in solids. The luminescence properties are influenced by the coordination number of the hexavalent uranium ion and by the crystallographic surroundings of the uranate centre. Transitions playing a role in the luminescence processes within the octahedral UO/sub 6//sup 6 -/ group are discussed using the results from both theoretical and experimental studies on another octahedral uranium complex: UF/sub 6/. The luminescence of the octahedral uranate group in oxidic compounds is discussed. Attention is paid to the vibrational structure, which is observed in the luminescence spectra at low temperatures and to the temperature quenching of the luminescence. The temperature quenching of the uranate luminescence in uranium-doped tungstates with ordered perovskite structure can be described in terms of a three state single configurational coordinate diagram. The complicated luminescence spectra of uranium-activated sodium fluoride (NaF-U) crystals have been unraveled using chemical variation of the crystal compositions and using site selective laser excitation techniques. Four different luminescent uranate centres have been observed in NaF-U. A model for the configurations of the luminescent centres has been deduced using the results from ionic conductivity experiments.

  10. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    Science.gov (United States)

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A high sensitivity optically stimulated luminescence scanning system for measurement of single sand-sized grains

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Kohsiek, P.

    1999-01-01

    An instrument has been designed for the routine analysis of the optically stimulated luminescence signal from single grains of sand. The system is capable of analysing over 3000 individual grains in a single measurement sequence, and the OSL signal from each grain can be read in less than 3 s....... The design principles are described, along with preliminary measurements that illustrate the operation of the system and its capabilities....

  12. The effect of thermal oxidation on the luminescence properties of nanostructured silicon.

    Science.gov (United States)

    Liu, Lijia; Sham, Tsun-Kong

    2012-08-06

    Herein is reported a detailed study of the luminescence properties of nanostructured Si using X-ray excited optical luminescence (XEOL) in combination with X-ray absorption near-edge structures (XANES). P-type Si nanowires synthesized via electroless chemical etching from Si wafers of different doping levels and porous Si synthesized using electrochemical method are examined under X-ray excitation across the Si K-, L(3,2) -, and O K-edges. It is found that while as-prepared Si nanostructures are weak light emitters, intense visible luminescence is observed from thermally oxidized Si nanowires and porous Si. The luminescence mechanism of Si upon oxidation is investigated by oxidizing nanostructured Si at different temperatures. Interestingly, the two luminescence bands observed show different response with the variation of absorption coefficient upon Si and O core-electron excitation in elemental silicon and silicon oxide. A correlation between luminescence properties and electronic structures is thus established. The implications of the finding are discussed in terms of the behavior of the oxygen deficient center (OCD) and non-bridging oxygen hole center (NBOHC). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On luminescence lifetimes in quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Galloway, R.B.

    2000-01-01

    In this paper we present results of investigations concerning the time dependence of luminescence emission relative to the time of stimulation in quartz. Measurements of time-resolved spectra were performed on a new versatile pulsed light emitting diode system using 525 nm stimulation, an 11 μs duration pulse, a repetition rate of 11 kHz and a 64 μs dynamic range. Effects on luminescence lifetime resulting from sample treatments such as optical stimulation, irradiation, and preheating, are reported

  14. Design of Interrogation Protocols for Radiation Dose Measurements Using Optically-Stimulated Luminescent Dosimeters.

    Science.gov (United States)

    Abraham, Sara A; Kearfott, Kimberlee J; Jawad, Ali H; Boria, Andrew J; Buth, Tobias J; Dawson, Alexander S; Eng, Sheldon C; Frank, Samuel J; Green, Crystal A; Jacobs, Mitchell L; Liu, Kevin; Miklos, Joseph A; Nguyen, Hien; Rafique, Muhammad; Rucinski, Blake D; Smith, Travis; Tan, Yanliang

    2017-03-01

    Optically-stimulated luminescent dosimeters are capable of being interrogated multiple times post-irradiation. Each interrogation removes a fraction of the signal stored within the optically-stimulated luminescent dosimeter. This signal loss must be corrected to avoid systematic errors in estimating the average signal of a series of optically-stimulated luminescent dosimeter interrogations and requires a minimum number of consecutive readings to determine an average signal that is within a desired accuracy of the true signal with a desired statistical confidence. This paper establishes a technical basis for determining the required number of readings for a particular application of these dosimeters when using certain OSL dosimetry systems.

  15. Detection of irradiated food using photostimulated luminescence

    International Nuclear Information System (INIS)

    Malec-Czechowska, K.; Stachowicz, W.

    2005-01-01

    Detection of irradiated spices, dried mushrooms and flavour blends using photostimulated luminescence (PSL) is presented. PSL measurements were carried out as described in standard PN-EN 13751. A lower threshold (T 1 700 counts/60s) and an upper threshold (T 2 = 5000 counts/60s) were used to classify the sample. PSL intensities below the threshold were classified as from non-irradiated samples and PSL signals above the upper threshold were regarded from irradiated samples. Signal levels between the two thresholds were classified as intermediate, showing that further investigations are necessary. The PSL tests were carried out at Institute Nutritional Physiology, Federal Research Centre for Nutrition in Karlsruhe with a SURRAC PPSL Iradiated food screening system (SURRAC, Glasgow, UK). (author)

  16. Instability of Yb3+ and Pr3+ low-symmetry luminescence centers in gallium phosphide

    International Nuclear Information System (INIS)

    Kasatkin, V.A.

    1985-01-01

    The stability of γb 3+ and Pr 3+ low-symmetry luminescence centers formed in gallium phosphide during quenching were studied in the process of durable storage and annealing. Observation of the Yb 3+ and Pr 3+ centrer states was accomplished by the photoluminescence spectra at 18 K. It has been established that annealing in the dark under normal conditions results in a reduced integral luminescence intensity of all low-symmetry Yb 3+ and Pr 3+ centers. Annealing of quenched GaP and GaP saples at 400 K results in complete disappearance of intracenter luminescence of Pr 3+ and low-symmetry Yb 3+ centers. Decomposition during storage and low anealing temperature point to the instability of low-symmetry centers of Pr 3+ and Yb 3+ luminescence

  17. Luminescent properties of terbium complexes with catecholamines and their application in analysis

    International Nuclear Information System (INIS)

    Kravchenko, T.B.; Bel'tyukova, S.V.; Kononenko, L.I.; Poluehktov, N.S.

    1982-01-01

    Tb complexing with a representative of catecholamines - adrenaline - is studied using the luminescence method. It is found, that the complexing takes place in alkaline medium (pH 12.0). To prevent from compound oxidation with air oxygen and to create the necessary pH in solution sodium borohydride is used. The highest luminescence intensity is achieved when the reaction occurs in aqueous-isopropanol solutions. It is established that in the complexes formed the ratio of components is the following: Tb:adrenaline=1:3. Luminescent properties of Tb complex with adrenaline are used to determine the latter. The least detectable amount of adrenaline constitutes 0.02 μg, the determination error does not exceed 5.5% [ru

  18. Blue and green luminescence of reduced graphene oxide quantum dots

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Henych, Jiří; Lang, Kamil; Kormunda, M.

    2013-01-01

    Roč. 63, november (2013), s. 537-546 ISSN 0008-6223 Institutional support: RVO:61388980 Keywords : different solvents * graphene oxides * green luminescence * intensive cavitations * N-methyl-2-pyrrolidone Subject RIV: CA - Inorganic Chemistry Impact factor: 6.160, year: 2013

  19. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  20. Evaluation of external exposures of the population of Ozyorsk, Russia, with luminescence measurements of bricks.

    Science.gov (United States)

    Woda, Clemens; Jacob, P; Ulanovsky, A; Fiedler, I; Mokrov, Y; Rovny, S

    2009-11-01

    Recently discovered historical documents indicate that large releases of noble gases (mainly (41)Ar and radioactive isotopes of Kr and Xe) from the Mayak Production Association (MPA) over the period from 1948 to 1956 may have caused considerable external exposures of both, inhabitants of Ozyorsk and former inhabitants of villages at the upper Techa River. To quantify this exposure, seven brick samples from three buildings in Ozyorsk, located 8-10 km north-northwest from the radioactive gas release points, were taken. The absorbed dose in brick was measured in a depth interval of 3-13 mm below the exposed surface of the bricks by means of the thermoluminescence (TL) and the optically stimulated luminescence (OSL) method. Generally, luminescence properties using TL were more favorable for precise dose determination than using OSL, but within their uncertainties the results from both methods agree well with each other. The absorbed dose due to natural radiation was assessed and subtracted under the assumption of the bricks to be completely dry. The weighted average of the anthropogenic dose for all samples measured by TL and OSL is 10 +/- 9 and 1 +/- 9 mGy, respectively. An upper limit for a possible anthropogenic dose in brick that would not be detected due to the measurement uncertainties is estimated at 24 mGy. This corresponds to an effective dose of about 21 mSv. A similar range of values is obtained in recently published dispersion calculations that were based on reconstructed MPA releases. It is concluded that the release of radioactive noble gases from the radiochemical and reactor plants at Mayak PA did not lead to a significant external exposure of the population of Ozyorsk. In addition, the study demonstrates the detection limit for anthropogenic doses in ca. 60-year-old bricks to be about 24 mGy, if luminescence methods are used.

  1. Luminescence characteristics of dental ceramics for retrospective dosimetry: a preliminary study

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Correcher, V.; Delgado, A.; Goksu, Y.; Huebner, S.

    2002-01-01

    Ceramic materials that are widely employed in dental prosthetics and repairs exhibit luminescent properties. Because of their use in the body, these materials are potentially of interest in situations where retrospective dosimetry for individuals is required but where monitoring was not planned. The luminescent properties of dental ceramics obtained in Germany, Spain and the UK were examined. Linear dose-response characteristics were obtained in the range <100 mGy to 10 Gy using thermoluminescence (TL), optically stimulated luminescence and infrared-stimulated luminescence measurement techniques. Measurements of time-resolved luminescence were also performed to examine the nature of the luminescence recombination under visible (470 nm) and IR (855 nm) stimulation. The results obtained by TL and optically stimulated techniques suggest that there may be deeper traps than previously observed in certain types of dental ceramic. Such traps may be less susceptible to optical and athermal fading than was reported in earlier studies. (author)

  2. Structural and luminescence studies on Dy3+ doped lead boro-telluro-phosphate glasses

    Science.gov (United States)

    Selvi, S.; Venkataiah, G.; Arunkumar, S.; Muralidharan, G.; Marimuthu, K.

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy3+doped lead boro-telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B-O vibrations, P-O-P symmetric vibrations and Te-O stretching modes of TeO3 and TeO6 units. The metal-ligand bond was identified through UV-vis-NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd-Ofelt (JO) intensity parameters (Ω2, Ω4 and Ω6), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σPE) and branching ratio (βR) for the transitions that include 4F9/2→6H11/2, 6H13/2 and 6H15/2 bands. The effect of Dy3+ ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the 4F9/2 level of the title glasses has been found to decrease with the increase in Dy3+ ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  3. Luminescence stability of porous Si terminated by hydrophilic organic molecules

    Science.gov (United States)

    Matsumoto, Kimihisa; Kamiguchi, Masao; Kamiya, Kazuhide; Nomura, Takashi; Suzuki, Shinya

    2016-02-01

    The effects of the surface termination of a porous Si surface by propionic acid and by undecylenic acid on their hydrophilicity and luminescence stability were studied. In the measurements of the contact angle of water droplets on porous Si films, the hydrophilicity of porous Si is improved by the surface termination each types of organic molecule. The PL intensity of as-prepared porous Si decreased with increasing aging time in ambient air. As PL quenching involves PL blue shift and increasing Si-O bonds density, nonradiative recombination centers are formed in the surface oxide. After the hydrosilylation process of propionic acid and undecylenic acid, PL intensity decreased and became 30% that of as-prepared porous Si film. However, the PL intensity was stable and exceeded that of the as-prepared film after 1000 min of aging in the ambient air. The PL stabilities are contributed to the termination by organic molecules that inhibits surface oxidation.

  4. Spectral-luminescent investigation of polymers doped with europium trisphenoyltrifluoroacetonate compound with 1,10-phenanthroline

    International Nuclear Information System (INIS)

    Karasev, V.E.; Mirochnik, A.G.; Shchelokov, R.N.

    1983-01-01

    Spectral-luminescent characteristics of europium tristhenoyltrifluoroacetonate with 1.10-phenanthpoline in polystyrepe and polyvinyl chloride are investigated. E 4 (TTA) 3 phen during introduction into polymers preserves its composition and structure. Weak temperature dependence of half-Width of luminescent lines qualitatively different from the case of crystal chelate is characteristic for polymers doped with E 4 (TTA) 3 xphen. Investigation into temperature dependence of E 4 3+ luminescent intensity in chelate doped polymers proves the conclusion on weakening processes of excitation energy relaxation by vibration constituents of close and far environment during chelate introduction into polymers

  5. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  6. First experience with a novel luminescence-based optical sensor for measurement of oxygenation in tumors

    International Nuclear Information System (INIS)

    Jarm, T.; Miklavcic, D.; Lesnicar, H.; Sersa, G.

    2001-01-01

    Background. The purpose of this preliminary study was to evaluate a novel luminescence-based fiber-optic sensor (OxyLite system) for the measurement of partial pressure of oxygen (pO 2 ) in tumors and for the detection of changes in pO 2 as a function of time. The new method was used simultaneously with the laser Doppler flowmetry method for the measurement of relative tissue perfusion. Materials and methods. Blood perfusion and pO 2 were measured continuously via fiber-optic sensors inserted into SA-1 tumors in anesthetized A/J mice. The changes in blood flow and oxygenation of tumors were induced by transient changes of the parameters of anesthesia and by injection of a vasoactive drug hydralazine. Results. Both optical methods used in the study successfully detected the induced changes in blood flow and pO 2 . The measurements of pO 2 were well correlated with measurements of microcirculatory blood perfusion. In the majority of pO 2 measurements, we observed an unexpected behavior of the signal during the stabilization process immediately after the insertion of the probe into tumor. This behaviour of the pO 2 signal was most probably caused by local tissue damage induced by the insertion of the probe. Conclusion. The novel luminescence-based optical oximetry can reliably detect local pO 2 changes in tumors as a function of time but some aspects of prolonged pO 2 measurement by this method require further investigation. (author)

  7. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    International Nuclear Information System (INIS)

    Altabella, L.; Spinelli, A.E.; Boschi, F.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure

  8. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    International Nuclear Information System (INIS)

    Cheah, S.F.; Lee, S.C.; Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z.

    2015-01-01

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer

  9. Optically stimulated luminescence in retrospective dosimetry

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Murray, A.S.

    2002-01-01

    Since the beginning of the 1990s the exploration of optically stimulated luminescence in retrospective accident dosimetry has driven an intensive investigation and development programme at Ris deg. into measurement facilities and techniques. This paper reviews some of the outcomes of this programme, including the evaluation of the single-aliquot regenerative-dose measurement protocol with brick quartz and the determination of dose-depth profiles in building materials as a guide to determining the mean energy of the incident radiation. Investigations into heated materials are most advanced, and a lower detection limit for quartz extracted from Chernobyl bricks was determined to be <10 mGy. The first results from the measurement of doses in unheated building materials such as mortar and concrete are also discussed. Both small-aliquot and single-grain techniques have been used to assess accident doses in these cement based building materials more commonly found in workplaces. Finally some results of a preliminary investigation of the OSL properties of household chemicals are discussed with reference to their potential as accident dosemeters. (author)

  10. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    Science.gov (United States)

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  11. Luminescence dosemeter of the Al{sub 2}O{sub 3}:Er,Yb

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Katia A.; Ventieri, Alexandre; Bitencourt, Jose F.S. [Universidade de Sao Paulo (EP/USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Eletrica; Mittani, Juan C.R.; Tatumi, Sonia H. [Faculdade de Tecnologia de Sao Paulo (CEETEPS), SP (Brazil)

    2011-07-01

    The present work deals with the thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties of {alpha}-Al{sub 2}O{sub 3}: Er,Yb obtained by sol gel process. Nanocrystals formations composed by Er{sub 2}O{sub 3}, Yb{sub 2}O{sub 3} and Yb{sub 3}Al{sub 5}O{sub 12} were observed by TEM images, EDS, electron beam diffraction and RXD, located at the surface of the alumina grains. The sample codoped with 1mol% of Er and 2 mol% of Yb supplied the best results for TL and OSL responses. The growth of the intensity of dosimetric TL peak at 205 deg C was linear with gamma radiation doses and the same behavior was observed in OSL growth curve. The luminescence fading of the sample after a dose of 5 Gy was found initially for a period of 30 days and minimum detectable dose measured for TL was 60.78 mGy and for OSL was 13.09 mGy. (author)

  12. Electric field dependence of the total excimer luminescence of xenon excited below the atomic ionization limit

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    In the spectral region of interest (i.e., 11.1 eV ≤ h nu ≤ 11.9 eV), the photoionization yield of electrons from excited-state dimers of xenon, increases monotonically to relatively high values (e.g., Y(11.7 eV) = 0.43 electrons/absorbed photon). It is also known however, that the luminescence intensity excited by photons in this region is quite high, even at low pressures. These two observations can be reconciled only by assuming that one of the processes leading to excimer luminescence involves dimer-ion + electron recombination. If this assumption is correct, application of an electric field, with concomitant collection of the free charges generated by the incident photons, should lead to a decrease in luminescence intensity; moreover, this decrease should follow the energy dependence of the photoionization yield function. The present report demonstrates experimentally that this is indeed the case. Such experiments combining luminescence and electric fields were made, until now, only by high-energy excitation. In this case the deconvolution of the various decay channels is hardly possible

  13. Luminescence of CdSe/ZnS quantum dots infiltrated into an opal matrix

    International Nuclear Information System (INIS)

    Gruzintsev, A. N.; Emelchenko, G. A.; Masalov, V. M.; Yakimov, E. E.; Barthou, C.; Maitre, A.

    2009-01-01

    The effect of the photonic band gap in the photonic crystal, the synthesized SiO 2 opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and the luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.

  14. Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films

    International Nuclear Information System (INIS)

    RodrIguez, A; Ortiz, M I; Sangrador, J; RodrIguez, T; Avella, M; Prieto, A C; Torres, A; Jimenez, J; Kling, A; Ballesteros, C

    2007-01-01

    The luminescence emission of structures containing Ge nanocrystals embedded in a dielectric matrix obtained by dry and wet oxidation of polycrystalline SiGe layers has been studied as a function of the oxidation time and initial SiGe layer thickness. A clear relationship between the intensity of the luminescence, the structure of the sample, the formation of Ge nanocrystals and the oxidation process parameters that allows us to select the appropriate process conditions to get the most efficient emission has been established. The evolution of the composition and thickness of the growing oxides and the remaining SiGe layer during the oxidation processes has been characterized using Raman spectroscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, Rutherford backscattering spectrometry and transmission electron microscopy. For dry oxidation, the luminescence appears suddenly, regardless of the initial SiGe layer thickness, when all the Si of the SiGe has been oxidized and the remaining layer of the segregated Ge starts to be oxidized forming Ge nanocrystals. Luminescence is observed as long as Ge nanocrystals are present. For wet oxidation, the luminescence appears from the first stages of the oxidation, and is related to the formation of Ge-rich nanoclusters trapped in the mixed (Si and Ge) growing oxide. A sharp increase of the luminescence intensity for long oxidation times is also observed, due to the formation of Ge nanocrystals by the oxidation of the layer of segregated Ge. For both processes the luminescence is quenched when the oxidation time is long enough to cause the full oxidation of the Ge nanocrystals. The intensity of the luminescence in the dry oxidized samples is about ten times higher than in the wet oxidized ones for equal initial thickness of the SiGe layer

  15. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  16. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N T

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  17. The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stanek, S., E-mail: stanislav.stanek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic); Oswald, J. [Institute of Physics, Academy of Science of the Czech Republic, Cukrovarnicka 10/112, 162 00 Prague (Czech Republic); Mackova, A.; Malinsky, P. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Department of Physics, Faculty of Science, J.E. Purkinje University, Ceske mladeze 8, 40096 Usti nad Labem (Czech Republic); Spirkova, J. [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 16628 Prague (Czech Republic)

    2016-03-15

    A set of zinc-silicate glasses with different ratios of erbium and ytterbium was fabricated. To achieve Ag-rich thin films in a sub-surface layer, ion-implantation technique at an energy of 1.2 MeV and 1.7 MeV with a fluence of 1 × 10{sup 16} cm{sup −2} was used. Post-implantation annealing was also applied. Changes in the spectroscopic and lasing properties of erbium ions as a function of implantation fluence of silver were studied with the aim to assess the positive effect of silver as a sensitiser of erbium luminescence. Therefore, absorption spectra in the visible range as well as luminescence spectra in the near-infrared range were measured and partially also the {sup 4}I{sub 11/2}–{sup 4}I{sub 15/2} transition of the erbium ion was studied. The results showed that silver positively influenced luminescence intensity at 1530 nm by increasing it almost three times. The biggest increase was achieved in glass with the highest concentration of erbium. Luminescence lifetime was not significantly influenced by the presence of silver and still remained around 10 ms.

  18. Luminescence variations in europium-doped silicon-substituted hydroxyapatite nanobiophosphor via three different methods

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Cao Xuan; Pham, Vuong-Hung, E-mail: vuong.phamhung@hust.edu.vn

    2015-07-15

    Highlights: • Europium doped silicon-substituted hydroxyapatite was synthesized by wet chemical synthesis method. • Morphology of nanoparticles depended on the synthesized method. • Photoluminescence intensity of the sample increases with the increasing of Si substitutions, Eu dopants and thermal annealing. - Abstract: This paper reports the first attempt for the synthesis of europium-doped Si-substituted hydroxyapatite (HA) nanostructure to achieve strong and stable luminescence of nanobiophosphor, particularly, by addition of different Eu dopants, Si substitutions, and application of optimum annealing temperatures of up to 1000 °C. The nanobiophosphor was synthesized by the coprecipitation, microwave, and hydrothermal methods. The nanoparticles demonstrated a nanowire to a spindle-like morphology, which was dependent on the method of synthesis. The photoluminescence (PL) intensity of the sample increases with the increase in Si substitutions and Eu dopants. The luminescent nanoparticles also showed the typical luminescence of Eu{sup 3+} centered at 610 nm, which was more efficient for the annealed Eu-doped Si-HA nanoparticles than for the as-synthesized nanoparticles. Among the different synthesis methods, the hydrothermal method reveals the best light emission represented by high PL intensity and narrow PL spectra. These results suggest the potential application of Eu-doped Si-HA in stable and biocompatible nanophosphors for light emission and nanomedicine.

  19. Detection of food irradiation with luminescence methods

    International Nuclear Information System (INIS)

    Anderle, H.

    1997-06-01

    Food irradiation is applied as method for the preservation of foods, the prevention of food spoilage and the inhibition of food-borne pathogens. Doses exceeding 10 kGy (10 kJ/kg) are not recommended by the WHO. The different legislation requires methods for the detection and the closimetry of irradiated foods. Among the physical methods based on the radiation-induced changes in inorganic, nonhygroscopic crystalline solids are thermoluminescence (TL), photostimulated luminescence (PSL) and lyoluminescence (LL) measurement. The luminescence methods were tested on natural minerals. Pure quartz, feldspars, calcite, aragonite and dolomite of known origin were irradiated, read out and analyzed to determine the influence of luminescence-activators and deactivators. Carbonate minerals show an orange-red TL easily detectable by blue-sensitive photomultiplier tubes. TIL-inactive carbonate samples may be identified by a lyoluminescence method using the reaction of trapped irradiation-generated charge carriers with the solvent during crystal-lattice breakup. The fine-ground mineral is dissolved in an alkaline complexing agent/chemiluminescence sensitizer/chemiluminescence catalyst (EDTA/luminol/hemin) reagent mixture. The TL and PSL of quartz is too weak to contribute a significant part for the corresponding signals in polymineral dust. Alkali and soda feldspar show intense TL and PSL. The temperature maxima in the TL glow curves allow a clear distinction. PSL does not give this additional information, it suffers from bleaching by ambient light and requires light-protection. Grain disinfestated with low irradiation doses (500 Gy) may not identified by both TL and PSL measurement. The natural TL of feldspar particles may be overlap with the irradiation-induced TL of other minerals. As a routine method, irradiated spices are identified with TL measurement. The dust particles have to be enriched by heavy-liquid flotation and centrifugation. The PSL method allows a clear

  20. Luminescence properties of tetravalent uranium in aqueous solution

    International Nuclear Information System (INIS)

    Kirishima, A.; Kimura, T.; Nagaishi, R.; Tochiyama, O.

    2004-01-01

    The luminescence spectra of U 4+ in aqueous solutions were observed in the UV-VIS region at ambient and liquid nitrogen temperatures. The excitation spectrum indicates that the luminescence is arising from the deexcitation of a 5f electron at the 1 S 0 level and no other emissions of U 4+ in aqueous solutions were detected for other f-f transitions. All the luminescence peaks were assigned to the transitions from 1 S 0 to lower 5f levels. To estimate the luminescence lifetime, luminescence decay curves were measured using time-resolved laser-induced fluorescence spectroscopy. At room temperature, the decay curve indicated that the lifetime was shorter than 20 ns. On the other hand, the frozen sample of U 4+ in aqueous solution at liquid nitrogen temperature showed the same emission spectrum as at room temperature and its lifetime was 149 ns in H 2 O system and 198 ns in D 2 O system. The longer lifetime at liquid nitrogen temperature made it possible to measure the spectrum of U 4+ at the concentration as low as 10 -6 M. The difference in the anion species (ClO 4 - , Cl - , SO 4 2- ) affected the structure of the emission spectrum to some extent. (orig.)

  1. Anodization of aluminium thin films on p{sup ++}Si and annihilation of strong luminescence from Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Efeoglu, Hasan, E-mail: hefeoglu@atauni.edu.t [Atatuerk University, Faculty of Engineering, Department of Electrical and Electronics Engineering, 25240 Erzurum (Turkey); Karacali, Tevhit [Atatuerk University, Faculty of Engineering, Department of Electrical and Electronics Engineering, 25240 Erzurum (Turkey); Meral, Kadem; Erdogan, Ibrahim Y.; Onganer, Yavuz [Atatuerk University, Faculty of Sciences, Department of Chemistry, 25240 Erzurum (Turkey)

    2010-01-15

    Photoluminescence (PL) of Al{sub 2}O{sub 3} films obtained by anodization of thermally evaporated and annealed thin Al films on p{sup ++}Si in 0.3 M oxalic acid has been investigated. Thermal annealing at 200-950 deg. C under the dry nitrogen atmosphere was used for deactivation of luminescence centres. Luminescence from as grown films was broad and located at 425 nm. This luminescence reached to highest level after annealing at 600 deg. C. Maximum 10 min was required for full optical activation and prolonged annealing up to 4 h did not change the luminescence intensity. Because of deep levels, absorption band edge of as grown films was shifted to the lower energy which is 3.25 eV. Annealing above 800 deg. C reduced the PL intensity and this observation was correlated with the blue shift of band edge as the defects annealed out. Disappearing PL intensity and blue shift of band edge absorption after annealing at 950 deg. C was mainly attributed to the oxygen-related defects and partly to impurities that may be originated from oxalic acid. AFM results did not show any hexagonally ordered holes but uniformly distributed nanosized Al{sub 2}O{sub 3} clusters that were clearly seen. XRD measurements on as grown Al{sub 2}O{sub 3} showed only [1 1 0] direction of alpha phase. Debye-Scherer calculation for this line indicates that cluster size is 35.7 nm. XRD and AFM pictures suggest that nanocrystalline Al{sub 2}O{sub 3} are embedded in amorphous Al{sub 2}O{sub 3}.

  2. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  3. Luminescent determination of trace amounts of terbium using diantipyrylmethane and salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tishchenko, M A; Gerasimenko, G I; Poluehktov, N S [AN Ukrainskoj SSR, Odessa. Inst. Obshchej i Neorganicheskoj Khimii

    1978-01-01

    To elucidate the possibility of using pyrazolone-5-diantipyril-methane (DAM) derivative for determination of terbium microimpurities, the conditions have been studied of luminescent determination of terbium in complex compounds containing an ion of rare-earth element, diantipyrilmethane, and salicylic acid (Sal.). The ratio between the components in the complex REE-DAM-Sal is 1:1:3. La, Y, Gd do not affect the luminescence intensity of terbium complex. A luminescent method of determining terbium traces in highly pure oxides of lanthanum, gadolinium, lutetium, and yttrium has been developed in which suspensions of complex precipitation are used. The amount of terbium determined in oxide of lanthanum, gadolinium, and lutetium is (1-5)x10/sup -6/% and (2-3)x10/sup -5/% in yttrium oxide.

  4. Luminescence and electrification in a flow of dielectric liquids through narrow channels

    Science.gov (United States)

    Margulis, M. A.; Pil'Gunov, V. N.

    2009-08-01

    Blue-violet luminescence was observed in a mineral oil, which appeared under hydrodynamic cavitation conditions in a channel orifice 1 mm in diameter in a transparent throttling device at inlet pressures higher than 2 MPa. The appearance of electric pulses when a dielectric liquid flew through a thin channel orifice was observed much earlier than luminescence arose. A device for continuously scanning electric potential along a flow without disturbing it was developed. According to the oscillograms obtained, the electric signal was high-frequency, could not be synchronized, and its separate peaks reached 1000 mV. Light emission flux decreased as the temperature of the liquid increased to 30-35°C and inlet pressure grew. The appearance of luminescence and its intensity depended on the sharpness of the entrance edge of the throttle. Studies of hydrodynamic luminescence revealed hysteresis of light emission. A mechanism of localized light emission based on an important role played by electrokinetic phenomena was suggested.

  5. Depth profilometric case studies in caries diagnostics of human teeth using modulated laser radiometry and luminescence

    Science.gov (United States)

    Jeon, Raymond J.; Mandelis, Andreas; Abrams, Stephen H.

    2003-01-01

    Simultaneous measurements from human teeth of photothermal radiometric (PTR) and luminescence (LM) signals induced by an intensity modulated laser have been performed to assess the feasibility of detecting deep lesions and near-surface cracks, to examine the effects of varying enamel thicknesses, the presence of fillings, and stains on the surface of teeth. A commercial dc luminescence monitoring instrument (DIAGNOdent by KaVo) was also used to examine a set of teeth for comparison purposes with PTR and LM. PTR amplitude signals from carious regions and from thin enamel were higher than those from healthy regions and thicker enamel. A crack produces a peak in the PTR amplitude scan, as well as a sudden change in the luminescence amplitude at the corresponding point. At low frequencies (5 Hz), the PTR amplitude showed high sensitivity to a deep (about 2 mm) lesion, while at high frequencies (700 Hz) it was more sensitive to surface cracks. It was concluded that by selecting proper modulation frequencies of the laser, measurements of PTR and LM signals could be used as a dental diagnostic technique with a small, inexpensive, low-power (<30 mW) semiconductor laser as a light source emitting in the optical window range of hard tissue (650-1000 nm).

  6. Luminescence investigation of Yb{sup 3+}/Er{sup 3+} codoped single LiYF{sub 4} microparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Zheng, Hairong, E-mail: hrzheng@snnu.edu.cn; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-08-01

    Tetragonal phase LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticles are synthesized via facile hydrothermal method. Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF{sub 4} microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated.

  7. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    International Nuclear Information System (INIS)

    Xie, Ruishi; Zhang, Xingquan; Liu, Haifeng

    2014-01-01

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  8. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi, E-mail: rxie@foxmail.com; Zhang, Xingquan; Liu, Haifeng

    2014-03-15

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  9. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    International Nuclear Information System (INIS)

    Liu Mingjing; Ye Zhiqiang; Xin Chenglong; Yuan Jingli

    2013-01-01

    Highlights: ► A lanthanide complex-based ratiometric luminescent pH sensor was developed. ► The sensor can luminously respond to pH in weakly acidic to neutral media. ► The sensor can be used for monitoring pH with time-resolved luminescence mode. ► The sensor can be also used for monitoring pH with absorbance mode. ► The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu 3+ and Tb 3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu 3+ is strongly dependent on the pH values in weakly acidic to neutral media (pK a = 5.8, pH 4.8–7.5), while that of HTTA–Tb 3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu 3+ and HTTA–Tb 3+ (the HTTA–Eu 3+ /Tb 3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb 3+ emission at 540 nm to its Eu 3+ emission at 610 nm, I 540nm /I 610nm , as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu 3+ /Tb 3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A 290nm /A 325nm , as a signal. This feature enables the HTTA–Eu 3+ /Tb 3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the

  10. Preparation of high-purity Pr(3+) doped Ge–Ga–Sb–Se glasses with intensive middle infrared luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Karaksina, E.V.; Shiryaev, V.S., E-mail: shiryaev@ihps.nnov.ru; Kotereva, T.V.; Churbanov, M.F.

    2016-02-15

    Glass materials with high emission characteristics and low content of limiting impurities are required for creation of devices for middle infrared (mid-IR) fiber optics. The paper presents the results of preparation of high-purity Pr{sup 3+}-doped Ga{sub x}Ge{sub y}Sb{sub z}Se{sub 1−(x+y+z)} (x=3÷4, y=20÷26, z=5÷11) glasses. The multi-stage technique for synthesis of these glasses is developed. It is based on chemical distillation purification of glass components and the transport reaction for purification of gallium. Transmitting, as well as thermal and luminescent properties of glasses are investigated. The content of limiting impurities of oxygen, carbon and hydrogen in the glass samples was ≤0.2 ppm wt. The 1300–3000 ppm wt Pr{sup 3+}-doped Ga–Ge–Sb–Se bulk glasses exhibit an intensive photoluminescence in the spectral range of 3.5–5.5 μm.

  11. Preparation and photophysical properties of luminescent nanoparticles based on lanthanide doped fluorides (LaF3:Ce3+, Gd3+, Eu3+), obtained in the presence of different surfactants

    International Nuclear Information System (INIS)

    Runowski, Marcin; Lis, Stefan

    2014-01-01

    Highlights: • Synthesis of nanocrystalline lanthanide fluorides doped with Eu 3+ ions. • Inorganic nanomaterials exhibiting bright red luminescence. • Luminescence enhancement by energy transfer (ET) from Ce 3+ → Gd 3+ to Eu 3+ ions. • Decreased agglomeration and morphology control using organic modifiers/surfactants. • Absolute and relative quantum yield (QY) comparison. - Abstract: A series of nanomaterials composed of LaF 3 :Ce 3+ 10%, Gd 3+ 30%, Eu 3+ 1% was synthesized via a facile co-precipitation approach. The reaction between appropriate lanthanide (Ln 3+ ) and fluoride ions resulted in the formation of crystalline, Ln 3+ doped fluorides and was performed in the presence of a series of organic modifiers, acting as surfactants and anti-agglomeration agents. Modifiers such as polyacrylic acid (PAA), ethylenediaminetetraacetic acid (EDTA), citric acid and oleylamine most significantly influenced the morphology and spectroscopic properties of the products. The product obtained in the presence of PAA was composed of the smallest nanoparticles (ca. 5–6 nm), with narrow size/shape distribution. All fluorides synthesized exhibited intensive, bright red luminescence under UV irradiation (λ ex ≈ 250 nm), because of the presence of Eu 3+ ions in their structure. The efficient intensity of luminescence was a result of indirect excitation, via energy transfer (ET) phenomena occurring in the system (Ce 3+ → Gd 3+ → Eu 3+ ). The structure and morphology of the obtained nanomaterials were established by powder X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) measurements. Optical properties of the obtained compounds were studied and discussed on the basis of excitation emission spectra and luminescence decay curves. On the basis of the performed measurements, luminescence quantum yield (absolute and relative) and radiative lifetimes were calculated and analyzed. FT-IR spectroscopy was applied to examine the presence of molecules of

  12. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    Science.gov (United States)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  13. Lanthanum lead boro-tellurite glasses doped with samarium trioxide for luminescent devices application

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Boro-tellurite based glasses (10La2O3-(20-x) TeO2-30PbO-40B2O3-xSm2O3) (x = 0, 0.5, 1.0 and 2.0 mol %) doped with different concentrations of Sm3+ ions has been investigated. The optical properties have been studied through spectroscopic measurements such as absorption and luminescence. Absorption spectra reveals nine peaks due to 6H5/2→6P3/2, 4I3/2+4F5/2+4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2, and 6H13/2 transitions. Luminescence spectra under the excitation of 403 nm display four emission bands due to 4G5/2→6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of Sm3+ ions. Among them 6H7/2 bright orange -red is more intense which proves that the present glasses are potential candidates for luminescent device applications in visible range as well as optical fibre communication since its refractive index is 1.65 high compared to other glasses.

  14. Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid

    International Nuclear Information System (INIS)

    Stojadinovic, S.; Vasilic, R.; Petkovic, M.; Nedic, Z.; Kasalica, B.; Belca, I.; Zekovic, Lj.

    2010-01-01

    In this paper, we have investigated luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. For the first time we have measured weak luminescence during anodization of aluminum in this electrolyte (so-called galvanoluminescence GL) and showed that there are wide GL bands in the visible region of the spectrum and observed two dominant spectral peaks. The first one is at about 425 nm, and the second one shifts with anodization voltage. As the anodization voltage approaches the breakdown voltage, a large number of sparks appear superimposed on the anodic GL. Several intensive band peaks were observed under breakdown caused by electron transitions in W, P, Al, O, H atoms. Furthermore, photoluminescence (PL) of anodic oxide films and anodic-spark formed oxide coatings were performed. In both cases wide PL bands in the range from 320 nm to 600 nm were observed.

  15. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  16. Highly sensitive sorption-luminescence determination of trace europium with preconcentration on silica chemically modified with iminodiacetic acid

    International Nuclear Information System (INIS)

    Voronina, R.D.; Zorov, N.B.

    2007-01-01

    Features of a sorption-luminescence method for the determination of trace europium were studied. The method includes the preliminary sorption of europium at pH 7.1 from solutions with silica chemically modified with iminodiacetic acid, the subsequent treatment of the sorbent with 2-thenoyltrifluoroacetone at pH 8.0, and the measurement of the intensity of luminescence of the surface three-component europium complex at 613 nm. The effect of moisture as the quencher of luminescence of the surface europium complex was studied, and techniques for its removal were proposed. Sorption in the static mode provides the detection limit of europium of 7 x 10 -5 g/ml. The calibration plot is linear in the range of two orders of magnitude of europium concentration in solutions. The relative standard deviation in the determination of 1.5 x 10 -2 μg/ml europium is 5%. In the dynamic mode of sorption from 1000 ml of an analyzed solution with the use of sorption-desorption, the detection limit of europium of 8 x 10 -7 μg/ml was attained [ru

  17. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  18. Dating Last Interglacial Coastal Systems Using New Feldspar Luminescence Technologies

    Science.gov (United States)

    Lamothe, M.

    2017-12-01

    The recent explosion in new luminescence dating technologies offers new opportunities to explore Quaternary marine coastal facies and landforms. However, tectonic and climatic processes controlling the development of Pleistocene coastal lithosomes are commonly obscured by their poorly constrained geological age. Luminescence dating of feldspar probes one order of magnitude deeper into geological time than radiocarbon and more than 5 times the current age range of quartz optically-stimulated luminescence, routinely used in luminescence dating. However, feldspar luminescence stimulated by infrared photons (eg IRSL) is hampered by anomalous fading. Successful correction methods developed by us over the last 15 years did produce sound chronologies but the fading-corrected ages carried large uncertainties. New approaches initiated by other laboratories, mainly in Europe, have isolated high temperature post-IRSL luminescence as this signal seems to be only slightly affected by fading. However, the gain in stability seems to be lessened due to bleachibility issues, generating age overestimations. We developed a novel protocol known as post-isothermal IRSL dating (Pit-IR) that focuses on a dual system of luminescence signals, probing low (50C) and medium (225C) temperature IRSL signals following isothermal treatments of various intensities. These protocols have been tested on Last interglacial coastal sediments in strikingly different GIA contexts along the Atlantic coastal areas of SE USA as well as from Morocco, Brazil and LIG sites in the Mediterranean basin. A systematic analysis of these results would suggest that a) falling-stages sequences are more commonly preserved as the OSL/IRSL ages are preferentially dating from the end of the MIS5e high stand and b) MIS5a marine sediments may be detectable away from areas generally thought to be affected by peripheral bulge collapse.

  19. Analytical expressions for time-resolved optically stimulated luminescence experiments in quartz

    International Nuclear Information System (INIS)

    Pagonis, V.; Lawless, J.; Chen, R.; Chithambo, M.L.

    2011-01-01

    Optically stimulated luminescence (OSL) signals can be obtained using a time-resolved optical stimulation (TR-OSL) method, also known as pulsed OSL. During TR-OSL measurements, the stimulation and emission of luminescence are experimentally separated in time using short light pulses. This paper presents analytical expressions for the TR-OSL intensity observed during and after such a pulse in quartz experiments. The analytical expressions are derived using a recently published kinetic model which describes thermal quenching phenomena in quartz samples. In addition, analytical expressions are derived for the concentration of electrons in the conduction band during and after the TR-OSL pulse, and for the maximum signals attained during optical stimulation of the samples. The relevance of the model for dosimetric applications is examined, by studying the dependence of the maximum TR-OSL signals on the degree of initial trap filling, and also on the probability of electron retrapping into the dosimetric trap. Analytical expressions are derived for two characteristic times of the TR-OSL mechanism; these times are the relaxation time for electrons in the conduction band, and the corresponding relaxation time for the radiative transition within the luminescence center. The former relaxation time is found to depend on several experimental parameters, while the latter relaxation time depends only on internal parameters characteristic of the recombination center. These differences between the two relaxation times can be explained by the presence of localized and delocalized transitions in the quartz sample. The analytical expressions in this paper are shown to be equivalent to previous analytical expressions derived using a different mathematical approach. A description of thermal quenching processes in quartz based on AlO 4 - /AlO 4 defects is presented, which illustrates the connection between the different descriptions of the luminescence process found in the literature

  20. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  1. Stimulation of Cysteine-Coated CdSe/ZnS Quantum Dot Luminescence by meso-Tetrakis (p-sulfonato-phenyl) Porphyrin

    Science.gov (United States)

    Parra, Gustavo G.; Ferreira, Lucimara P.; Gonçalves, Pablo J.; Sizova, Svetlana V.; Oleinikov, Vladimir A.; Morozov, Vladimir N.; Kuzmin, Vladimir A.; Borissevitch, Iouri E.

    2018-02-01

    Interaction between porphyrins and quantum dots (QD) via energy and/or charge transfer is usually accompanied by reduction of the QD luminescence intensity and lifetime. However, for CdSe/ZnS-Cys QD water solutions, kept at 276 K during 3 months (aged QD), the significant increase in the luminescence intensity at the addition of meso-tetrakis (p-sulfonato-phenyl) porphyrin (TPPS4) has been observed in this study. Aggregation of QD during the storage provokes reduction in the quantum yield and lifetime of their luminescence. Using steady-state and time-resolved fluorescence techniques, we demonstrated that TPPS4 stimulated disaggregation of aged CdSe/ZnS-Cys QD in aqueous solutions, increasing the quantum yield of their luminescence, which finally reached that of the fresh-prepared QD. Disaggregation takes place due to increase in electrostatic repulsion between QD at their binding with negatively charged porphyrin molecules. Binding of just four porphyrin molecules per single QD was sufficient for total QD disaggregation. The analysis of QD luminescence decay curves demonstrated that disaggregation stronger affected the luminescence related with the electron-hole annihilation in the QD shell. The obtained results demonstrate the way to repair aged QD by adding of some molecules or ions to the solutions, stimulating QD disaggregation and restoring their luminescence characteristics, which could be important for QD biomedical applications, such as bioimaging and fluorescence diagnostics. On the other hand, the disaggregation is important for QD applications in biology and medicine since it reduces the size of the particles facilitating their internalization into living cells across the cell membrane.

  2. Preparation and up-conversion luminescence of SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Zhang, Wei; Feng, Zhiqing; Tang, Dongxin; Na, Liyan [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2014-03-05

    Graphical abstract: The SrAlF{sub 5} nanorods co-doped with various Yb{sup 3+}/Er{sup 3+} concentrations was synthetized via a microemulsion-hydrothermal process for the first time. It was found that the optimum doping concentration of Yb{sup 3+} and Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence. Highlights: • SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods were synthesized via a microemulsion-hydrothermal process. • Crystal structure and morphology were characterized by using XRD and FESEM. • The upconversion luminescence intensity depend on LD working current was studied. • The post heat-treatment could greatly improve upconversion luminescence. -- Abstract: Yb{sup 3+} and Er{sup 3+} co-doped SrAlF{sub 5} nanorods with average diameter of 35 nm and average length of 400 nm were synthesized via a microemulsion-hydrothermal process, and their crystal structure and morphology were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The optimum doping concentration of Yb{sup 3+}/Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. The upconversion luminescence intensity dependence on the laser diode (LD) working current was studied and the possible upconversion mechanism was analyzed. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence.

  3. Highly luminescent Eu{sup 3+}-doped benzenetricarboxylate based materials

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ivan G.N. [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Mustafa, Danilo, E-mail: dmustafa@iq.usp.br [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Andreoli, Bruno [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil); Felinto, Maria C.F.C. [Centro de Química do Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Av. Prof. Lineu Prestes 2242, São Paulo 05508-000, SP (Brazil); Malta, Oscar L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife 50670-90, PE (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.br [Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-900, SP (Brazil)

    2016-02-15

    [RE(TMA)] anhydrous complexes (RE{sup 3+}: Y, Gd and Lu) present high red emission intensity with a quantum efficiency (~45%) for the [Y(TMA):Eu{sup 3+}] complexes, due to the absence of non-radioactive decay pathways mediated by water molecules. The complexes were prepared in mild conditions. All the compounds are crystalline and thermostable up to 460 °C. Phosphorescence data of the complexes with Y, Gd and Lu show that the T{sub 1} state of the TMA{sup 3−} anion has energy higher than the {sup 5}D{sub 0} emitting level of the Eu{sup 3+} ion, indicating that the ligand can act as an intramolecular energy sensitizer. The photoluminescence properties of the doped materials were studied based on the excitation and emission spectra and luminescence decay curves. The experimental intensity parameters (Ω{sub λ}), lifetimes (τ), radiative (A{sub rad}) and non-radiative (A{sub nrad}) decay rates were determined and discussed. - Highlights: • Highly luminescent Europium doped anhydrous complexes. • Efficient monochromatic red light conversion molecular devices (LCMDs). • High emission quantum efficiencies.

  4. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  5. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    Science.gov (United States)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  6. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose

    International Nuclear Information System (INIS)

    Jursinic, Paul A.

    2010-01-01

    Purpose: A new type of in vivo dosimeter, an optically stimulated luminescent dosimeter (OSLD), has now become commercially available for clinical use. The OSLD is a plastic disk infused with aluminum oxide doped with carbon (Al 2 O 3 :C). Crystals of Al 2 O 3 :C, when exposed to ionizing radiation, store energy that is released as luminescence (420 nm) when the OSLD is illuminated with stimulation light (540 nm). The intensity of the luminescence depends on the dose absorbed by the OSLD and the intensity of the stimulation light. The effects of accumulated dose on OSLD response were investigated. Methods: The OSLDs used in this work were nanodot dosimeters, which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x rays and gamma rays from Co-60 and Ir-192. The signal on the OSLDs after irradiation is removed by optical annealing with a 150 W tungsten-halogen lamp or a 14 W compact fluorescent lamp was investigated. Results: It was found that OSLD response to dose was supralinear and this response was altered with the amount of accumulated dose to the OSLD. The OSLD response can be modeled by a quadratic and an exponential equation. For accumulated doses up to 60 Gy, the OSLD sensitivity (counts/dose) decreases and the extent of supralinear increases. Above 60 Gy of accumulated dose the sensitivity increases and the extent of supralinearity decreases or reaches a plateau, depending on how the OSLDs were optically annealed. With preirradiation of OSLDs with greater than 1 kGy, it is found that the sensitivity reaches a plateau 2.5 folds greater than that of an OSLD with no accumulated dose and the supralinearity disappears. A regeneration of the luminescence signal in the dark after full optical annealing occurs with a half time of about two days. The extent of this regeneration signal depends on the amount of accumulated dose. Conclusions: For in vivo dosimetric measurements, a precision of ±0.5% can be

  7. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen.

    Science.gov (United States)

    Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B

    2014-01-01

    The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. VUV and UV–vis optical study on KGd2F7 luminescent host doped with terbium and co-doped with europium

    International Nuclear Information System (INIS)

    Lisiecki, Radosław

    2013-01-01

    The KGd 2 F 7 :Tb and KGd 2 F 7 :Tb,Eu samples were obtained using a solid state reaction. Excitation spectra and emission spectra are reported and analyzed within the VUV–UV–vis spectral range. The intense green luminescence is observed in the KGd 2 F 7 :Tb while the combined emission of terbium and europium in the KGd 2 F 7 :Tb,Eu covers substantially the region of white light. The materials under study can be effectively excited making use of intense f–d transitions of Tb 3+ in the VUV–UV region. Experimental lifetimes of luminescent levels have been measured and discussed. It was found that the considerable energy transfer from Tb 3+ to Eu 3+ occurs. -- Highlights: • The prospective green and white emitting phosphors. • The effective VUV and UV–vis excitation process. • The considerable energy transfer among optically active ions. • The influence of (Tb, Eu) co-doping on relaxation dynamic of excited states

  9. Luminescence and circularly polarized luminescence of macrocyclic Eu(III) and Tb(III) complexes embedded in xerogel and sol-gel SiO2 glasses

    International Nuclear Information System (INIS)

    Morita, M.; Rau, D.; Kai, T.

    2002-01-01

    Luminescence, time-resolved luminescence, circularly polarized luminescence (CPL) and decay profiles of Ln(III)(15-crownether-5) (Ln=Ce, Sm, Eu, Tb) and Tb(III)-(R),(S)-cyclen derivative complexes doped in xerogel and sol-gel silica glasses are measured at temperatures down to 10 K to characterize luminescence properties and the electronic structure in the excited states. Luminescence spectral profiles and calculation of crystal field parameters (B 0 (2) ,B 2 (2) ) in the 5 D 0 → 7 F J (J=1,2) transition give evidence of the fact that the pentagonal and planar structure of Eu(III) (15-crownether-5) does hold in xerogel and sol-gel glasses prepared at temperatures below 100 deg. C. As annealing temperatures are increased from 80 deg. C to 750 deg. C, Eu(III) complexes in sol-gel glasses are found to decompose gradually to SiO 2 :Eu 3+ . Tb(III)-(R) and (S)-cyclen derivative complexes in xerogel reveal at room temperature and 10 K sharp CPL spectra with luminescence dissymmetry factors g lum =-0.1 and 0.1, respectively. These complexes doped in sol-gel glasses represent luminescence characteristics of rare earth ions encapsulated in the nano-porous host

  10. Optically stimulated luminescence from quartz measured using the linear modulation technique

    International Nuclear Information System (INIS)

    Bulur, E.; Boetter-Jensen, L.; Murray, A.S.

    2000-01-01

    The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonically decreasing signal, linearly increasing the stimulation power gives peaks in the signal as a function of time. In cases where the OSL signal contains more than one component, the linear increase in power of the stimulation light may result in a curve containing overlapping peaks, where the most easily stimulated component occurs at a shorter time. This allows the separation of the overlapping OSL components, which are assumed to originate from different traps. The LM-OSL curve from quartz shows an initial peak followed by a broad one. Deconvolution using curve fitting has shown that the composite OSL curve from quartz can be approximated well by using a linear combination of first-order peaks. In addition to the three known components, i.e. fast, medium and slow components from continuous-wave-OSL studies, an additional slow component is also identified for the first time. The dose responses and thermal stabilities of the various components are also studied

  11. Structural and luminescence studies on Dy{sup 3+} doped lead boro–telluro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvi, S. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Arunkumar, S.; Muralidharan, G. [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624302 (India)

    2014-12-01

    This paper reports results obtained on the structural and luminescence properties of Dy{sup 3+}doped lead boro−telluro-phosphate glasses prepared following the melt quenching technique. FTIR spectra exhibit the presence of B−O vibrations, P−O−P symmetric vibrations and Te−O stretching modes of TeO{sub 3} and TeO{sub 6} units. The metal–ligand bond was identified through UV−vis−NIR absorption spectra and to determine the band tailing parameter, direct and indirect band gap energy of the prepared glasses. The Judd−Ofelt (JO) intensity parameters (Ω{sub 2}, Ω{sub 4} and Ω{sub 6}), experimental and theoretical oscillator strengths were also determined and reported. Luminescence measurements were made to determine the transition probability (A), stimulated emission cross-section (σ{sub P}{sup E}) and branching ratio (β{sub R}) for the transitions that include {sup 4}F{sub 9/2}→{sup 6}H{sub 11/2}, {sup 6}H{sub 13/2} and {sup 6}H{sub 15/2} bands. The effect of Dy{sup 3+} ion concentration on the intensity ratio of yellow to blue emission bands has also been studied and reported. The lifetime corresponding to the {sup 4}F{sub 9/2} level of the title glasses has been found to decrease with the increase in Dy{sup 3+} ion concentration. The chromaticity coordinates (x,y) have been estimated from the luminescence spectra and the suitability of title glasses for white light applications has been analyzed using CIE chromaticity diagram. The variation of optical properties with the concentration of dysprosium oxide content in the glasses have been studied and reported.

  12. Luminescent Dinuclear Ruthenium Terpyridine Complexes with a Bis-Phenylbenzimidazole Spacer.

    Science.gov (United States)

    Mondal, Debiprasad; Biswas, Sourav; Paul, Animesh; Baitalik, Sujoy

    2017-07-17

    A conjugated bis-terpyridine bridging ligand, 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-6-(2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-benzo[d]imidazol-6-yl)-1H-benzo[d] imidazole (tpy-BPhBzimH 2 -tpy), was designed in this work by covalent coupling of 3,3'-diaminobenzidine and two 4'-(p-formylphenyl)-2,2':6',2″-terpyridine units to synthesize a new series of bimetallic Ru(II)-terpyridine light-harvesting complexes. Photophysical and electrochemical properties were modulated by the variation of the terminal ligands in the complexes. The new compounds were thoroughly characterized by 1 H NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Absorption spectra of the complexes consist of very strong ligand-centered π-π* and n-π* transitions in the UV, metal-to-ligand, and intraligand charge transfer bands in the visible regions. Steady-state and time-resolved emission spectral measurements indicate that the complexes exhibit moderately intense luminescence at room temperature within the spectral domain of 653-687 nm having luminescence lifetimes in the range between 6.3 and 55.2 ns, depending upon terminal tridentate ligand and solvent. Variable-temperature luminescence measurements suggest substantial increase of the energy gap between luminescent 3 metal-to-ligand charge transfer state and nonluminescent 3 metal centered in the complexes compared to the parent [Ru(tpy) 2 ] 2+ . Each of the three bimetallic complexes exhibits only one reversible couple in the positive potential window with almost no detectable splitting corresponding to simultaneous oxidation of the two remote Ru centers. All the complexes possess a number of imidazole NH protons, which became sufficiently acidic upon metal ion coordination. By utilizing these NH protons, we thoroughly studied anion recognition properties of the complexes in pure organic as well as predominantly aqueous media through multiple optical channels and spectroscopic methods. Finally

  13. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  14. CMOS direct time interval measurement of long-lived luminescence lifetimes.

    Science.gov (United States)

    Yao, Lei; Yung, Ka Yi; Cheung, Maurice C; Chodavarapu, Vamsy P; Bright, Frank V

    2011-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) Direct Time Interval Measurement (DTIM) Integrated Circuit (IC) to detect the decay (fall) time of the luminescence emission when analyte-sensitive luminophores are excited with an optical pulse. The CMOS DTIM IC includes 14 × 14 phototransistor array, transimpedance amplifier, regulated gain amplifier, fall time detector, and time-to-digital convertor. We examined the DTIM system to measure the emission lifetime of oxygen-sensitive luminophores tris(4,7-diphenyl-1, 10-phenanthroline) ruthenium(II) ([Ru(dpp)(3)](2+)) encapsulated in sol-gel derived xerogel thin-films. The DTIM system fabricated using TSMC 0.35 μm process functions to detect lifetimes from 4 μs to 14.4 μs but can be tuned to detect longer lifetimes. The system provides 8-bit digital output proportional to lifetimes and consumes 4.5 mW of power with 3.3 V DC supply. The CMOS system provides a useful platform for the development of reliable, robust, and miniaturized optical chemical sensors.

  15. Luminescence and luminescence quenching of Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Mikalauskaite, I.; Raudonyte-Svirbutaviciene, E. [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Linkeviciute, A. [State Research Institute, Centre for Physical Sciences and Technology, Sauletekio Avenue 3, LT-10257 Vilnius (Lithuania); Urbonas, M. [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, A., E-mail: arturas.katelnikovas@chf.vu.lt [Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2017-04-15

    A series of near-UV to blue emitting Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors were prepared by a solid state reaction. The optical properties of synthesized phosphors were investigated as a function of Ce{sup 3+} concentration and temperature. These luminescent materials strongly absorb UV radiation shorter than 360 nm. The optimal Ce{sup 3+} concentration was 0.1% (external quantum efficiency ca. 45%). Temperature dependent measurements showed that Sr{sub 3}Lu{sub 2}(Si{sub 3}O{sub 9}){sub 2}:Ce{sup 3+} phosphors possess good thermal stability and loses only about 40% to 50% of initial intensity in the temperature range of 77–500 K depending on activator concentration.

  16. Shock-induced luminescence from Z-cut lithium niobate

    International Nuclear Information System (INIS)

    Brannon, P.J.; Morris, R.W.; Asay, J.R.

    1985-01-01

    Shock-induced luminescence from lithium niobate has been studied in the stress range 1.6--21.0 GPa. Both fast-framing photography and five-channel optical pyrometry were used to observe the luminescence. The framing photography showed that the emission pattern is heterogeneous for stresses just above the dynamic yield point. A further increase of the stress resulted in a pattern which was essentially homogeneous to within the experimental spatial resolution of about 30 μm. Narrowband filters and photomultiplier tubes were used in the optical pyrometry experiments. A broadband spectrum with a peak near 700 nm was observed. A plot of the energy dissipated by the shock versus shock stress correlates very well with a plot of the 700-nm intensity versus shock stress. The mechanism for light emission in lithium niobate appears to be closely related to the dynamic yielding process

  17. Luminescence detection of shellfish

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Spencer, J.Q.; Naylor, J.D.

    1996-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) has been active in the development and application of luminescence techniques in the detection of irradiated foods, in support of UK legislation. Thermoluminescence (TL), photostimulated luminescence (PSL) and photo-transfer luminescence (PTTL) are radiation-specific phenomena which arise due to energy stored by trapped charge carriers following irradiation. The energy released following stimulation is accompanied by detectable luminescence. The TL method involves preparation of pure silicate extracts from the sample and subsequent TL analysis, whereas PSL uses stimulation by electromagnetic radiation (visible, or near visible wavelengths) thus avoiding heating the sample. (author)

  18. Analysis of green luminescent Tb3+:Ca4GdO(BO3)3 powder phosphor

    International Nuclear Information System (INIS)

    Vengala Rao, B.; Rambabu, U.; Buddhudu, S.

    2007-01-01

    This paper reports on the emission analysis of a green luminescent Tb 3+ :Ca 4 GdO(BO 3 ) 3 powder phosphor based on the measurements of excitation, emission and lifetimes. Besides this, we have also observed an intense green emission from this powder phosphor under an UV source. The emission transitions of ( 5 D 4 →7 F 3,4,5,6 ) with λ exci =257 nm have been measured. Particularly, the green emission transition ( 5 D 4 →7 F 5 ) at 553 nm has been found to be more prominent and intense. Such green strong emission displaying powder phosphor will find applications in the development of coated screens in certain electronic systems. Apart from the emission analysis of this phosphor, XRD, SEM and FTIR studies have also been carried out in order to understand the structural details of it

  19. Effects of nanostructuring on luminescence properties of SrS:Ce,Sm phosphor: An experimental and phenomenological study

    Science.gov (United States)

    Yazdanmehr, Mohsen; Sadeghi, Hossein; Tehrani, Masoud Kavosh; Hashemifar, Seyed Javad; Mahdavi, Mohammad

    2018-01-01

    In this work, we employ various experimental techniques to illustrate the effects of nanostructuring on improvement of the luminescence properties of the polycrystalline SrS co-activated by cerium and samarium dopants (SrS : Ce , Sm). The nano and microstructure SrS : Ce , Sm powders were synthesized by the co-precipitation and solid state diffusion methods, respectively, followed by the spark plasma sintering (SPS) process to densify powders into pellet shape. It is observed that the photo-luminescence (PL), radio-luminescence (RL), and optically stimulated luminescence (OSL) emission intensity of the nanostructure samples are significantly improved with respect to the microstructure samples. Moreover, by using an accurate photomultiplier tube, we measured the CW-OSL decay curves of the samples to demonstrate much higher and faster sensitivity of the nanostructure SrS : Ce , Sm for in-flight and online OSL radiation dosimetry. The obtained absorption and emission spectra are used for phenomenology of the electronic band structure of the SrS : Ce , Sm micro and nano-phosphors inside the band gap. The proposed phenomenological electronic structures are then used to clarify the role of Ce3+ and Sm3+ localized energy levels in the luminescence properties of the nano and microstructure samples. It is argued that electronic transitions from the 2T2g state of Ce3+ and the 4G5/2 state of Sm3+ have strong contribution to the PL and RL emission spectra, while in the OSL mechanism, the Sm3+ 4G5/2 state is mainly responsible for electrons trapping.

  20. Luminescence and energy transfer of Tb3+-doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses.

    Science.gov (United States)

    Zuo, Chenggang; Huang, Jinze; Liu, Shaoyou; Xiao, Anguo; Shen, Youming; Zhang, Xiangyang; Zhou, Zhihua; Zhu, Ligang

    2017-12-05

    Transparent Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses with the greater than 4g/cm 3 were prepared by high temperature melting method and its luminescent properties have been investigated by measured UV-vis transmission, excitation, emission and luminescence decay spectra. The transmission spectrum shows there are three weak absorption bands locate at about 312, 378 and 484nm in the glasses and it has good transmittance in the visible spectrum region. Intense green emission can be observed under UV excitation. The effective energy transfer from Gd 3+ ion to Tb 3+ ion could occur and sensitize the luminescence of Tb 3+ ion. The green emission intensity of Tb 3+ ion could change with the increasing SiO 2 /B 2 O 3 ratio in the borosilicate glass matrix. With the increasing concentration of Tb 3+ ion, 5 D 4 → 7 F J transitions could be enhanced through the cross relaxation between the two nearby Tb 3+ ions. Luminescence decay time of 2.12ms from 546nm emission is obtained. The results indicate that Tb 3+ -doped BaO-Gd 2 O 3 -Al 2 O 3 -B 2 O 3 -SiO 2 glasses would be potential scintillating material for applications in X-ray imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Luminescence decay in condensed argon under high energy excitation

    International Nuclear Information System (INIS)

    Carvalho, M.J.; Klein, G.

    1978-01-01

    α and β particles were used to study the luminescence of condensed argon. The scintillation decay has always two components independently of the phase and the kind of the exciting particles. Decay time constants are given for solid, liquid and also gaseous argon. Changes in the relative intensity values of the two components are discussed in terms of track effects

  2. Solubility limit and luminescence properties of Eu{sup 3+} ions in Al{sub 2}O{sub 3} powder

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yuya; Nakamura, Toshihiro, E-mail: tnakamura@gunma-u.ac.jp; Adachi, Sadao, E-mail: adachi@gunma-u.ac.jp

    2016-08-15

    Al–Eu–O compounds are synthesized from Al{sub 2}O{sub 3}:Eu{sub 2}O{sub 3}=(1–x):x mixtures (x=0–0.15) by the metal organic decomposition method and subsequently calcined at various temperatures from T{sub c}=750 to 1200 °C in dry O{sub 2} atmosphere. The structural and luminescence properties of these compounds are investigated using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation spectroscopy, and luminescence lifetime measurements. The present study focuses on the effects of the Eu{sub 2}O{sub 3} addition (x) on the material and phosphor properties of Al{sub 2}O{sub 3}:Eu{sup 3+}. The stable phase of α-Al{sub 2}O{sub 3} is synthesized at T{sub c}>1100 °C and cubic γ-Al{sub 2}O{sub 3} phase at T{sub c}≤1100 °C. The calcination temperature dependence of the PL intensity yields an activation of E{sub a}~0.8 eV for Eu{sup 3+} ions in the Al{sub 2}O{sub 3} host. The luminescence decay time is determined to be ~0.8 ms, independent of x. Temperature dependence of the PL intensity at T=20–450 K exhibits thermal quenching behavior with energies of 17 meV and 0.28 eV at low (<200 K) and high temperatures (>200 K), respectively. The solubility limit of Eu{sup 3+} ions in α-Al{sub 2}O{sub 3} is determined to be ~1%. The schematic energy-level diagram of Eu{sup 3+} in α-Al{sub 2}O{sub 3} is also proposed for the sake of a better understanding of the luminescence process of this phosphor system.

  3. Luminescence from Ce in sol-gel SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Seed Ahmed, H.A.A.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Koao, L.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Nagpure, I.M.; Gusowski, M.A. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa)

    2012-05-15

    The sol-gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce{sup 4+} ions capture electrons to form excited Ce{sup 3+} ions from which the luminescence originates.

  4. Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio qinghaiensis sp. Q67

    Directory of Open Access Journals (Sweden)

    Qijie Jian

    2017-10-01

    Full Text Available Most tropical fruits after harvest are very perishable because of fungal infection. Since some pathogenic fungi can produce hazardous compounds such as mycotoxins, novel rapid and effective methods to assess those hazardous compounds are urgently needed. Herein we report that Vibrio qinghaiensis sp. Q67, a luminescent bacterium, can be used to rapidly assess the toxicities of mycotoxins and cultures from mycotoxin-producing pathogens. A good correlation (R2 > 0.98 between concentrations of the mycotoxins (fumonisin B1, deoxynivalenol, zearalenone, ochratoxin A, patulin, and citrinin and the luminous intensity of V. qinghaiensis sp. Q67 was obtained. Furthermore, significant correlations (R2 > 0.96 between the amount of mycotoxin and the luminous intensity from the cultures of 10 major mycotoxin-producing pathogens were also observed. In addition, Fusarium proliferatum (half-maximal inhibitory concentration (IC50 = 17.49% exhibited greater luminescence suppression than Fusarium semitectum (IC50 = 92.56% or Fusarium oxysporum (IC50 = 28.61%, which was in agreement with the existing higher levels of fumonisin B1, fumonisin B2, and deoxynivalenol, which were measured by high-performance liquid chromatography-tandem mass spectrometry. These results suggest that V. qinghaiensis sp. Q67 is a promising alternative for the rapid evaluation of the toxicity of fungal mycotoxins.

  5. Luminescence of water or ice as a new detection method for magnetic monopoles

    Directory of Open Access Journals (Sweden)

    Pollmann Anna Obertacke

    2017-01-01

    We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.

  6. Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies

    Science.gov (United States)

    Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.

    2017-06-01

    Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.

  7. Study of Polymeric Luminescent Blend (PC/PMMA) Doped with Europium Complex under Gamma-Iradiation

    International Nuclear Information System (INIS)

    Parra, D. F.

    2006-01-01

    Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with europium in organic complex were studied. Polymeric luminescent blends are potential materials for many applications; however, little information has been reported concerning the stability under thermal and radiation conditions. Luminescent films were synthesized from europium thenoyltrifluoroacetonate at different concentrations doped in PC/PMMA blends. Films produced of the luminescent polymer blend were irradiated in a 60 C o source. Their luminescent properties, in the solid state, as well as, the thermal oxidative resistance after gamma irradiation was investigated. These systems were characterized by elemental analysis, thermogravimetry (TGA), differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). Based on TGA data, the thermal stability of PC/PMMA:(tta)3 system is higher than the polymer blend. The DSC results indicated that those new systems are chemically stables. The emission spectra of the Eu 3 +-tta complex doped in the PC/PMMA recorded at 298 and 77 K exhibited the characteristic bands arising from the 5 D 0 →7 F J transitions (J = 0-6). The luminescence intensity decreases with increasing of precursor concentration in the doped polymer obtained by chemical reaction. This result is different from that of samples obtained by physical method in melting doping. The blend was irradiated under ionizing radiation of 60 C o source. After irradiation of the luminescent films the physical properties of luminescence, thermal and oxidative stability were evaluated.(Fapesp and Cnpq financial support)

  8. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Measuring Physical Activity Intensity Recommend on Facebook Tweet Share Compartir For more help with what ...

  9. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  10. Effect of High-Temperature Annealing on Yellow and Blue Luminescence of Undoped GaN

    International Nuclear Information System (INIS)

    Chai Xu-Zhao; Zhou Dong; Liu Bin; Xie Zi-Li; Han Ping; Xiu Xiang-Qian; Chen Peng; Lu Hai; Zhang Rong; Zheng You-Dou

    2015-01-01

    The effect of high-temperature annealing on the yellow and blue luminescence of the undoped GaN is investigated by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is found that the band-edge emission in the GaN apparently increases, and the yellow luminescence (YL) and blue luminescence (BL) bands dramatically decrease after annealing at 700°C. At the annealing temperature higher than 900°C, the YL and BL intensities show an enhancement for the nitrogen annealed GaN. This fact should be attributed to the increment of the Ga and N vacancies in the GaN decomposition. However, the integrated PL intensity of the oxygen annealed GaN decreases at the temperature ranging from 900°C to 1000°C. This results from the capture of many photo-generated holes by high-density surface states. XPS characterization confirms that the high-density surface states mainly originate from the incorporation of oxygen atoms into GaN at the high annealing temperature, and even induces the 0.34eV increment of the upward band bending for the oxygen annealed GaN at 1000°C. (paper)

  11. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  12. Visible luminescence peculiar to sintered silica nanoparticles: Spectral and decay properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Cangialosi, C. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Laboratoire H. Curien, UMR CNRS 5516, Université St-Etienne, St-Etienne F-42000 (France); Spallino, L.; Gelardi, F.M. [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy)

    2015-10-15

    We report that the sintering at 1000 °C of silica nanoparticles (an average diameter of 14 nm) produces a transparent sample that exhibits a bright visible emission under UV excitation. The use of time resolved luminescence spectroscopy and a tunable laser source allows us to single out three contributions centered at 1.96 eV, 2.41 eV and 3.43 eV. The excitation spectra of these emissions evidence bell shaped bands consistent with transitions between localized defects’ states. For each emission we study the intensity and the lifetime in the temperature range from 300 K down to 10 K, thus evidencing the competition between radiative and non-radiative processes in the optical cycle of luminescent centers. The comparison with the luminescence properties of silica, both nanoparticles and bulk, points out that the observed emissions are peculiar to the sintered silica network. - Highlights: • Solid-phase sintering at 1000 °C of silica nanoparticles produces a transparent sample. • Sintered silica nanoparticles emit a bright luminescence under UV excitation. • Three emissions, centered around 2.0 V, 2.4 eV and 3.4 eV, are distinguished on the basis of the excitation and decay properties. • The observed excitation/emission bands originate from localized defect states peculiar to the sintered silica network. • The luminescence efficiency decreases with temperature due to the activation of non-radiative channels.

  13. Luminescence thermometry with Eu{sup 3+} doped GdAlO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Lojpur, Vesna, E-mail: vesna.lojpur@yahoo.com; Ćulubrk, Sanja; Medić, Mina; Dramicanin, Miroslav

    2016-02-15

    Eu{sup 3+} doped GdAlO{sub 3} powder synthesized by solid state reaction was investigated for application in luminescence thermometry. Phase composition of material was confirmed by X-ray powder diffraction analysis. The photoluminescence emission spectra were collected under excitation of 399 nm, while elevating the temperature of the sample from the room temperature to 793 K. Emissions from {sup 5}D{sub 1}→{sup 7}F{sub 1} and {sup 5}D{sub 0}→{sup 7}F{sub 2} characteristic transitions of Eu{sup 3+} ions are selected for the temperature-dependence study using the fluorescence intensity ratio method. Emission decay curves measured at the strongest emission peak centered at 614 nm were recorded in a same temperature range. Data analysis showed that thermometry by fluorescence intensity ratio method can be used over the temperature region 293–793 K with the maximal relative sensitivity of 2.96% K{sup −1} (at 293 K). Temporal dependence of emission (lifetime) provides temperature sensing from 620 to 793 K with the maximal relative sensitivity of 2.28% K{sup −1}. - Highlights: • GdAlO{sub 3}: 4 at% of Eu{sup 3+} can be used for luminescence thermometry in the 293–793 K range. • Combined FIR and lifetime thermometry provide >0.5% K{sup −1} relative sensitivity. • Temperature dependence of lifetime is well described energy gap law model.

  14. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  15. Crystalline Chromium Doped Aluminum Oxide (RUBY) Use as a Luminescent Screen for Proton Beams

    International Nuclear Information System (INIS)

    Brown, K. A.; Gassner, D. M.

    1999-01-01

    In the search for a better luminescent screen material, the authors tested pieces of mono-crystalline chromium doped aluminum oxide (more commonly known as a ruby) using a 24 GeV proton beam. Due to the large variations in beam intensity and species which are run at the Alternating Gradient Synchrotron (AGS), they hope to find a material which can sufficiently luminesce, is compatible in vacuum, and maintain its performance level over extended use. Results from frame grabbed video camera images using a variety of neutral density filters are presented

  16. A new luminescent terbium 4-methylsalicylate complex as a novel sensor for detecting the purity of methanol.

    Science.gov (United States)

    Zeng, Cheng-Hui; Yang, Yang-Yi; Zhu, Yi-Min; Wang, Hong-Ming; Chu, Tian-Shu; Ng, Seik Weng

    2012-01-01

    A new dinuclear terbium complex [Tb(2)(4-msal)(6)(H(2)O)(4)]·6H(2)O (1) (4-msal = 4-methylsalcylate) was synthesized. Its structure was determined by single crystal X-ray diffraction, and the complex was characterized by PXRD, FT-IR, fluorescence, TGA and DTA. Complex 1 exists as discrete molecules that are linked by extensive O-H … O hydrogen bonds into a 3D network. The luminescence lifetimes of 3 μM methanol solution and solid sample of 1 are 1.321 and 1.009 ms, respectively. The quantum yield of solid sample is 6.0%. The luminescence quenched more than 50% when 3% (vol/vol) different impurities (acetone, acetonitrile, chloroform, dichloromethane, dioxane, DMF, DMSO, ethanol, ether, ethyl acetate, glycol, H(2)O, hexane, TEA, THF and toluene or their mixture) were added. The inverse linear relationship between the Lg value of fluorescence intensity and the volume ratio of the minor component (to a maximum of 20%) is interpreted in terms of LgI = a-bX (I: luminescence intensity; X: volume ratio of impurities in methanol; a, b are constants). So 1 is a potential luminescent sensor for analyzing the purity of methanol. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  17. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... 10 miles per hour or faster Jumping rope Heavy gardening (continuous digging or hoeing) Hiking uphill or with a heavy backpack Other Methods of Measuring Intensity Target Heart ...

  18. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  19. Effect of solution composition on determination of uranium (6) microquantities by laser-induced luminescence method

    International Nuclear Information System (INIS)

    Romanovskaya, G.I.; Zakharova, G.V.; Chibisova, A.K.

    1984-01-01

    The effect of cation and anion composition of natural waters (sea water, ground water, etc.) on the uranium (6) determination in the form of uranyl complexes with Na 2 O3SiO 2 using the laser-induced luminescence method with the determination limit 2x10 -11 g/ml, has been studied. The dependence of the luminescence intensity of uranyl polysilicate complexes on the inorganic ion concentration has been measured. The measurement results permitted to determine the maximum permissible concentrations (MAC) of ions, the values of which are presented. The results reproducibility is characterized by a relative standard deveation within 0.01-0.05. It follows from the data analysis that the MPC of impurities vary from 10 -8 to 10 -2 g/ml. The MPCs of uranium as determined in the form of polysilicate complexes, are shown to be close to the values obtained during uranium determination in the form of complexes with fluoran for the CO 3 2- , Ni, Cu ions and they are by an order higher for the Na, K, Cl - , SO 4 2- , HPO 4 2- , Mn ions

  20. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  1. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Measuring Intensity Target Heart Rate and Estimated Maximum Heart Rate Perceived Exertion (Borg Rating of Perceived Exertion Scale) Get Email Updates To receive email updates about this page, enter your email ... ...

  2. PROPERTIES OF Eu3+ LUMINESCENCE IN THE MONOCLINIC Ba2MgSi2O7

    Directory of Open Access Journals (Sweden)

    Shansh an Yao

    2011-09-01

    Full Text Available Red-emitting phosphors Ba2-xMgSi2O7: Eux3+ was prepared by combustion-assisted synthesis method and an efficient red emission under near-ultraviolet (UV was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometer. The emission spectrum shows that the most intense peak is located at 614 nm, which corresponds to the 5D0 → 7F2 transitions of Eu3+. The phosphor has two main excitation peaks located at 394 and 465 nm, which match the emission of UV and blue light-emitting diodes, respectively. The effect of Eu3+ concentration on the emission spectrum of Ba2MgSi2O7:Eu3+ phosphor was studied. The results showed that the emission intensity increased with increasing Eu3+ concentration, and then decreased because of concentration quenching. The critical quenching concentration of Eu3+ in Ba2MgSi2O7: Eu3+ phosphor is about 0.05 mol. The mechanism of concentration quenching of Ba2MgSi2O7: Eu3+ luminescence is energy transfer between Eu3+ ions casued by the dipole-dipole interaction.

  3. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+,Yb(3+-doped rare-earth microparticles.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ma

    Full Text Available Cerenkov luminescence imaging (CLI has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs, which can be dually excited by Cerenkov luminescence (CL resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration.Yb(3+- and Er(3+- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD, scanning electron microscopy (SEM, and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models.the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results.this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

  4. A sprayable luminescent pH sensor and its use for wound imaging in vivo.

    Science.gov (United States)

    Schreml, Stephan; Meier, Robert J; Weiß, Katharina T; Cattani, Julia; Flittner, Dagmar; Gehmert, Sebastian; Wolfbeis, Otto S; Landthaler, Michael; Babilas, Philipp

    2012-12-01

    Non-invasive luminescence imaging is of great interest for studying biological parameters in wound healing, tumors and other biomedical fields. Recently, we developed the first method for 2D luminescence imaging of pH in vivo on humans, and a novel method for one-stop-shop visualization of oxygen and pH using the RGB read-out of digital cameras. Both methods make use of semitransparent sensor foils. Here, we describe a sprayable ratiometric luminescent pH sensor, which combines properties of both these methods. Additionally, a major advantage is that the sensor spray is applicable to very uneven tissue surfaces due to its consistency. A digital RGB image of the spray on tissue is taken. The signal of the pH indicator (fluorescein isothiocyanate) is stored in the green channel (G), while that of the reference dye [ruthenium(II)-tris-(4,7-diphenyl-1,10-phenanthroline)] is stored in the red channel (R). Images are processed by rationing luminescence intensities (G/R) to result in pseudocolor pH maps of tissues, e.g. wounds. © 2012 John Wiley & Sons A/S.

  5. Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure

    Science.gov (United States)

    Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon

    2018-04-01

    In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.

  6. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine

    Science.gov (United States)

    Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.

    2018-06-01

    Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.

  7. Luminescence of Y2O2S-Eu3+ and Ln2O2S-Tb3+ films grown by the method of photostimulated epitaxy

    International Nuclear Information System (INIS)

    Maksimovskij, S.N.; Sidorov, P.P.; Sluch, M.I.

    1990-01-01

    Study of luminescence of Y 2 O 2 S-Eu 3+ (1) and La 2 O 2 S-Tb 3+ (2) films, grown from vapor phase by photostimulated epitaxy method is carried out. Spectroscopic analysis data showed that films(1) spectra contain narrow lines, relating to C 3V symmetry centre, and wider lines, relating to C S symmetry centre. Films(2) possess intensive luminescence in green spectral region, but luminescence lines are wider due to higher number of defects. As to production of film luminescent screens the method is shown to be promising

  8. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Adults Need More Physical Activity MMWR Data Highlights State Indicator Report on Physical Activity, 2014 Recommendations & Guidelines ... Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Measuring Physical Activity Intensity Recommend ...

  9. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Local Programs Measuring Physical Activity Intensity Recommend on Facebook Tweet Share Compartir For more help with what ... RSS ABOUT About CDC Jobs Funding LEGAL Policies Privacy FOIA No Fear Act OIG 1600 Clifton Road ...

  10. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Hiking uphill or with a heavy backpack Other Methods of Measuring Intensity Target Heart Rate and Estimated ... Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF ...

  11. Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing

    International Nuclear Information System (INIS)

    Sato, Keisuke; Hirakuri, Kenji

    2006-01-01

    We report an annealing effect on electrical and luminescence properties of a red electroluminescent device consisting of nanocrystalline silicon (nc-Si). The red luminescence was generated by flowing the forward current into the device at a low threshold direct current (DC) forward voltage with a rise of annealing temperature up to 500 deg. C. Moreover, the luminescence of the device annealed at 500 deg. C was more intense than that of the device annealed at 200 deg. C or less under the same forward current density, because of the injection of a large quantity of carriers to the radiative recombination centers at the nc-Si surface vicinity. These were attained by a low resistivity of indium tin oxide (ITO) electrode and good contact at the ITO electrode/luminous layer interface region by the annealing treatment. The above results indicated that the annealing treatment of the device is effective for the realization of high luminance due to the improvement in the injection efficiency of carriers to the radiative recombination centers

  12. Combining infrared- and green-laser stimulation sources in single-grain luminescence measurements of feldspar and quartz

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Murray, A.S.

    2003-01-01

    A system designed for measurement of the optically stimulated luminescence (OSL) from individual sand-sized mineral grains has been constructed. Previously, this system was equipped only with a green laser emitting at 532 run, but now an infrared (IR) laser at 830 run has been added. It is now...... possible to interchangeably use the two laser sources for optical stimulation. This is especially valuable for the measurement of feldspars. The power density using the IR laser at the grain is similar to500 W cm(-2), and stimulation for 1 s reduces the OSL signal to near background level. Initial results...

  13. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A., E-mail: azab2@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Duerkop, Axel [Institute of Analytical Chemistry, Chemo and Biosensors, Regensburg University, D-93040 Regensburg (Germany); Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. Black-Right-Pointing-Pointer Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. Black-Right-Pointing-Pointer A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. Black-Right-Pointing-Pointer The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA){sub 2} probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 {mu}M. The detection limits were 0.24-0.55 {mu}M for P3, P4, and P1 and 2.5 {mu}M for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA){sub 2} were evaluated. Positive and negative values of entropy ({Delta}S) and enthalpy ({Delta}H) changes for Eu(III)-(PDCA){sub 2}-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  14. Infrared to visible upconversion luminescence in Er3+/Yb3+ co-doped CeO2 inverse opal

    International Nuclear Information System (INIS)

    Yang, Zhengwen; Wu, Hangjun; Liao, Jiayan; Li, Wucai; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Wang, Rongfei; Qiu, Jianbei

    2013-01-01

    Highlights: • UC emission of Er 3+ was modified by introducing the structure of inverse opal. • Color tuning of CeO 2 :Yb, Er inverse opal was realized by inhibition of UC emission. • Two-photon excitation processes were observed in CeO 2 :Yb, Er inverse opal. -- Abstract: Infrared to visible upconversion luminescence has been investigated in Er 3+ /Yb 3+ co-doped CeO 2 inverse opal. Under the excitation of 980 nm diode lasers, visible emissions centered at 525, 547, 561, 660 and 680 nm are observed, which are assigned to the Er 3+ transitions of 2 H 11/2 → 4 I 15/2 (525 nm), 4 S 3/2 → 4 I 15/2 (547, 561 nm), 4 F 9/2 → 4 I 15/2 (660 and 680 nm), respectively. The effect of photonic band gap on the upconversion luminescence intensity was also obtained. Additionally, the upconversion luminescence mechanism was studied. The dependence of Er 3+ upconversion emission intensity on pump power reveals that it is a two-photon excitation process

  15. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Hiking uphill or with a heavy backpack Other Methods of Measuring Intensity Target Heart Rate and Estimated ... YouTube Instagram Listen Watch RSS ABOUT About CDC Jobs Funding LEGAL Policies Privacy FOIA No Fear Act ...

  16. X-ray excited optical luminescence (XEOL) and its application to porous silicon

    International Nuclear Information System (INIS)

    Hill, D.A.

    1998-09-01

    X-ray Excited Optical Luminescence (XEOL) is investigated as a local structural probe of the light-emitting sites in porous silicon. A detailed microscopic model of the XEOL process in porous silicon is proposed. A central aspect of the technique is an assessment of the spatial separation between the primary photoionisation event and subsequent optical radiative recombination. By constructing a Monte Carlo simulation of hot electron propagation in silicon using both elastic and inelastic scattering cross-sections, the mean minimum range of luminescence excitation can be calculated. This range is estimated as 546±1A for the silicon K-edge (∼ 1839eV), but is reduced to 8.9±0.1A for the silicon L 2,3 -edge (∼ 99eV). From known porous silicon properties, it is concluded that this mean minimum range is comparable to the actual range of excitation. Hence, more localised structural information may be obtained from L 2,3 -edge XEOL measurements. This important difference between the two spectra has been neglected in previous studies. Simultaneous measurements of the XEOL and total electron yield (TEY) x-ray absorption spectra (XAS) have been conducted at both the silicon K-edge and L 2,3 -edge for various porous silicon samples and related materials. Measurements have been conducted at the Si K-edge on a rapid thermally oxidised (RTO) porous silicon sample. XEOL spectra yield two distinct luminescence bands in the visible region. From multi-bunch wavelength-selective XEOL measurements, it is concluded that there are blue luminescent defective silica sites together with a red luminescent site originating from silicon-like material. The spectral time decay curve under pulsed x-ray excitation gives two distinct decay components; one fast in the range of a few nanoseconds and the other slow in the range of microseconds. Time-resolved XEOL measurements in single-bunch mode show that the fast band mirrors the blue wavelength XEOL whereas the slow band correlates with the

  17. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Adults Needs for Children What Counts Needs for Older Adults Needs for Pregnant or Postpartum Women Physical Activity & ... to Your Life Activities for Children Activities for Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart ...

  18. New strategies invonving upconverting nanoparticles for determining moderate temperatures by luminescence thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Savchuk, Ol.A. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Carvajal, J.J., E-mail: joanjosep.carvajal@urv.cat [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Pujol, M.C.; Massons, J. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain); Haro-González, P. [Fluorescence Imaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, E-28049 Madrid (Spain); Martínez, O.; Jiménez, J. [GdS-Optronlab, Departamento Física Materia Condensada, Universidad de Valladolid, Edificio I+D, Paseo de Belén 11, 47011 Valladolid (Spain); Aguiló, M.; Díaz, F. [Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA) and EMaS, Universitat Rovira i Virgili (URV), c/Marcellí Domingo s/n E-43007, Tarragona (Spain)

    2016-01-15

    Here we analyze alternative luminescence thermometry techniques to FIR, such as intensity ratio luminescence thermometry between the emission arising from two electronic levels that are not necessarily thermally coupled, but that show different evolutions with temperature, and lifetime luminescence nanothermometry in (Ho,Tm,Yb):KLu(WO{sub 4}){sub 2} and (Er,Yb):NaY{sub 2}F{sub 5}O nanoparticles. (Ho,Tm,Yb):KLu(WO{sub 4}){sub 2} nanoparticles exhibited a maximum relative sensitivity of 0.61% K{sup −1}, similar to that achievable in Er-doped systems, which are the upconverting systems presenting the highest sensitivity. From another side, (Er,Yb):NaY{sub 2}F{sub 5}O nanocrystals show great potentiality as thermal sensors at the nanoscale for moderate temperatures due to the incorporation of additional non-radiative relaxation mechanisms that shorten the emission lifetime generated by the oxygen present in the structure when compared to (Er,Yb):NaYF{sub 4} nanoparticles exhibiting the highest upconversion efficiency. We used those nanoparticles for ex-vivo temperature determination by laser induced heating in chicken breast using lifetime-based thermometry. The results obtained indicate that these techniques might constitute alternatives to FIR with potential applications for the determination of moderate temperatures, with sensitivities comparable to those that can be achieved by FIR or even higher. - Highlights: • Other nanothermometry techniques than FIR proposed with upconversion nanoparticles. • Energy transfer between different lanthanide ions can be used for thermometry. • Lifetime measurements can constitute also a tool for temperature determination.

  19. The application of time-resolved luminescence spectroscopy to a remote uranyl sensor

    International Nuclear Information System (INIS)

    Varineau, P.T.; Duesing, R.; Wangen, L.E.

    1991-01-01

    Time resolved luminescence spectroscopy is an effective method for the determination of a wide range of uranyl concentrations in aqueous samples. We have applied this technique to the development of a remote sensing device using fiber optic cables coupled with a micro flow cell in order to probe for uranyl in aqueous samples. This sensor incorporates a Nafion membrane through which UO 2 2+ can diffuse in to a reaction/analysis chamber which holds phosphoric acid, a reagent which enhances the uranyl luminescence intensity and lifetime. With this device, anionic and fluorescing organic interferences could be eliminated, allowing for the determination of uranyl over a concentration range of 10 4 to 10 -9 M. 17 refs., 5 figs

  20. Up-conversion luminescence of Er3+/Yb3+/Nd3+-codoped tellurite glasses

    International Nuclear Information System (INIS)

    Lu Longjun; Nie Qiuhua; Xu Tiefeng; Dai Shixun; Shen Xiang; Zhang Xianghua

    2007-01-01

    Up-conversion luminescence and energy transfer (ET) processes in Nd 3+ -Yb 3+ -Er 3+ triply doped TeO 2 -ZnO-Na 2 O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er 3+ : 4 S 3/2 →4 I 15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er 3+ singly doped and Er 3+ -Yb 3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb 2 O 3 -concentration and Nd 2 O 3 -concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd 3+ , Yb 3+ and Er 3+ . And a possible up-conversion mechanism based on sequential ET from Nd 3+ to Er 3+ through Yb 3+ is proposed for green and red up-conversion emission processes

  1. Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2014-09-01

    Full Text Available Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL and second harmonic generation (SHG were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°.

  2. Effect of retrapping on the persistent luminescence in strontium silicate orange–yellow phosphor

    International Nuclear Information System (INIS)

    Xu, Xuhui; Yu, Xue; Zhou, Dacheng; Qiu, Jianbei

    2013-01-01

    The orange–yellow long persistent luminescence in Sr 3 SiO 5 :Eu 2+ , Er 3+ with the chromaticity coordination of (0.48, 0.49) can persist for over 20 h above the recognizable intensity level (≥0.32 mcd/m 2 ) because of retrapping carriers by the deep traps. The incorporation of Er 3+ into Sr 3 SiO 5 :Eu 2+ generates a large number of shallow traps responsible for the fast decay component as well as deep traps responsible for the decay tail of the LPL. It demonstrates that the retrapping of the carrier released from a trap plays an important role in the persistent luminescence process. - Graphical abstract: LPL decay curves of Sr 3−x−y SiO 5 :xEu 2+ , yEr 3+ (x=0.0025, y=0, 0.0025). Inset: Orange–yellow emission images recorded using a classic Reflex digital camera with exposure times varying with the persistent luminescence times. Display Omitted - Highlights: • The persistence time of Sr 3 SiO 5 :Eu 2+ , Er 3+ lasts over 20 h above the recognizable intensity level. • The incorporation of Er 3+ into Sr 3 SiO 5 :Eu 2+ generates a large number of shallow traps. • The experimental results provide an evidence for the retrapping process in LPL processes

  3. Absorption-Modulated Crossed-Optical Fiber-Sensor Platform for Measurements in Liquid Environments and Flow Streams

    Directory of Open Access Journals (Sweden)

    Paul E. Henning

    2017-01-01

    Full Text Available A new evanescent-wave fiber sensor is described that utilizes absorption-modulated luminescence (AML in combination with a crossed-fiber sensor platform. The luminescence signals of two crossed-fiber reference regions, placed on opposite sides of the stretch of fiber supporting the absorbance sensor, monitor the optical intensity in the fiber core. Evanescent absorption of the sensor reduces a portion of the excitation light and modulates the luminescence of the second reference region. The attenuation is determined from the luminescence intensity of both reference regions similar to the Beer-Lambert Law. The AML-Crossed-Fiber technique was demonstrated using the absorbance of the Zn(II-PAN2 complex at 555 nm. A linear response was obtained over a zinc(II concentration range of 0 to 20 μM (approximately 0 to 1.3 ppm. A nonlinear response was observed at higher zinc(II concentrations and was attributed to depletion of higher-order modes in the fiber. This was corroborated by the measured induced repopulation of these modes.

  4. Luminescence spectra of lead tungstate, spodumene and topaz crystals

    International Nuclear Information System (INIS)

    Ramachandran, Vasuki

    2002-01-01

    A detailed set of thermoluminescence, cathodoluminescence and radioluminescence (TL, CLTL and RLTL) data of lead tungstate, Spodumene and Topaz have been reported for the first time over a wide temperature range from 25 to 500K. Lead tungstate (PbWO 4 ), a widely known scintillating material, gives TL glow peaks which are related to complex defect centres. Doping of this crystal with trivalent rare earth ions (La 3+ , Y 3+ ) reduces the slow component of the emission thereby making it more suitable for its applications. The pentavalent dopants on the other hand, enhance the green emission and quench the blue emission at temperatures 100K. The origin and the irradiation temperature definitely have an effect on the spectrum. No strong relationship could be derived from the dose dependence data. Two less studied minerals, Spodumene and Topaz have also been investigated with the luminescence techniques. The glow peak near 250degC is thought to have originated from Mn 2+ centres. As there are no ESR data available, the assignment of defect centres is rather difficult. Cr + acts as the quencher in green spodumene. Topaz had the same treatment as the other two sets of samples and the defect centre characterisation looks complex as each coloured sample gave different patterns of glow peaks. Cathodoluminescence whilst heating (CLTL) of all these samples showed some unusual features in the form of a luminescence intensity step which is believed to have originated from the presence of ice. Water, in nanoparticle size quantities, is present as a contaminant in the lattice and undergoes a phase transition at 170K from hexagonal to cubic structures. This phase change influences the luminescence efficiency of the host material and is reflected in the spectrum as a discontinuity in intensity. (author)

  5. Determination of Silver Ions Toxicity in Short-Term and Long-Term Experiments Using a Luminescent Recombinant Strain of E. coli

    Directory of Open Access Journals (Sweden)

    Tatiana P. Yudina

    2013-01-01

    Full Text Available The effects of silver ions on the luminescent recombinant strain of Escherichia coli carrying luxCDABE operon of Vibrio fischeri were investigated. The toxicity of silver ions was determined in 30 minutes and in chronic 24 hours experiments. Changes in the luminescence intensity and in the growth rate of bacteria were considered as a measure of silver ions toxicity within the range of concentrations applied. The effect of silver ions was demonstrated to be strongly dependent on the concentration of bacteria and on the medium composition. EC50 values were 0.018 mg/l after 30 min exposure and 0.014 mg/l after 10 hours of bacterial growth. Comparison of two modifications of the experiment showed that silver ions have a strong non-specific toxicity, as well as a specific effect on bacterial cells

  6. Possible reasons for anomalous fading in alkali feldspars used for luminescence dating of Quaternary deposits

    Directory of Open Access Journals (Sweden)

    Jaek, Ivar

    2007-09-01

    Full Text Available According to many publications, alkali feldspars are characterized by specific athermal (anomalous fading of their thermoluminescence and optically-stimulated luminescence. This phenomenon is manifested as spontaneous decline in luminescence intensity over relatively long (months and years time after laboratory irradiation, possibly due to tunnelling of electrons from lattice defects and impurities acting as dosimetric traps. It can hamper reliable luminescent dating of Quaternary deposits on the basis of feldspar extractions due to possible unpredictable underestimation of the ages. In this paper we present some experimental results related to the manifestation of the phenomenon. It is found that, in general case, the assumed long-term anomalous fading cannot be connected to electron tunnelling from the deep dosimetric traps. At the same time, some decrease in the dosimetric luminescence signal observable in just irradiated feldspar samples can really be caused by tunnelling. However, the probability of this process quickly goes down, already within some days after irradiation. Interpretation of some other short- and long-term anomalous fading-like effects requires involvement of radiation- and thermo-induced ionic processes.

  7. A study on the real-time radiation dosimetry measurement system based on optically stimulated luminescence

    International Nuclear Information System (INIS)

    Liu Yanping; Du Yanzhao; Chen Zhaoyang; Ba Weizhen; Fan Yanwei; Pan Shilie; Guo Qi

    2008-01-01

    The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity. Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-access and hazardous. In addition, optical fiber dosimeters are immune to electrical and radio-frequency interference. In this paper, a novel remote optical fiber radiation dosimeter is described. The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL. The measuring range of the dosimeter is from 0.1 to 100 Gy. The equipment is relatively simple and small in size, and has low power consumption. This device is suitable for measuring the space radiation dose and also can be used in high radiation dose condition and other dangerous radiation occasions. (authors)

  8. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)–pyridine-2,6-dicarboxylic acid probe

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Duerkop, Axel; Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek

    2013-01-01

    Highlights: ► Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. ► Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. ► A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. ► The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)–pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol–water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)–(PDCA) 2 probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)–pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0–35.0 μM. The detection limits were 0.24–0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)–(PDCA) 2 were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)–(PDCA) 2 –P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  9. Performance of a novel multiple-signal luminescence sediment tracing method

    Science.gov (United States)

    Reimann, Tony

    2014-05-01

    Optically Stimulated Luminescence (OSL) is commonly used for dating sediments. Luminescence signals build up due to exposure of mineral grains to natural ionizing radiation, and are reset when these grains are exposed to (sun)light during sediment transport and deposition. Generally, luminescence signals can be read in two ways, potentially providing information on the burial history (dating) or the transport history (sediment tracing) of mineral grains. In this study we use a novel luminescence measurement procedure (Reimann et al., submitted) that simultaneously monitors six different luminescence signals from the same sub-sample (aliquot) to infer the transport history of sand grains. Daylight exposure experiments reveal that each of these six signals resets (bleaches) at a different rate, thus allowing to trace the bleaching history of the sediment in six different observation windows. To test the feasibility of luminescence sediment tracing in shallow-marine coastal settings we took eight sediment samples from the pilot mega-nourishment Zandmotor in Kijkduin (South-Holland). This site provides relatively controlled conditions as the morphological evolution of this nourishment is densely monitored (Stive et al., 2013). After sampling the original nourishment source we took samples along the seaward facing contour of the spit that was formed from August 2011 (start of nourishment) to June 2012 (sampling). It is presumed that these samples originate from the source and were transported and deposited within the first year after construction. The measured luminescence of a sediment sample was interpolated onto the daylight bleaching curve of each signal to assign the Equivalent Exposure Time (EET) to a sample. The EET is a quantitative measure of the full daylight equivalent a sample was exposed to during sediment transport, i.e. the higher the EET the longer the sample has been transported or the more efficient it has been exposed to day-light during sediment

  10. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd6MoO12:Eu3+

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Donglei; Huang, Yanlin; Kim, Sun Il; Yu, Young Moon; Seo, Hyo Jin

    2013-01-01

    A novel red-emitting nano-phosphor of Eu 3+ -doped Gd 6 MoO 12 was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition 5 D 0 → 7 F 2 of Eu 3+ ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd 6 MoO 12 :Eu 3+ nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips

  11. Near Infrared-Emitting Cr3+/Eu3+ Co-doped Zinc Gallogermanate Persistence Luminescent Nanoparticles for Cell Imaging

    Science.gov (United States)

    Wang, Qiaoqiao; Zhang, Shuyun; Li, Zhiwei; Zhu, Qi

    2018-02-01

    Near infrared (NIR)-emitting persistent luminescent nanoparticles have been developed as potential agents for bioimaging. However, synthesizing uniform nanoparticles with long afterglow for long-term imaging is lacking. Here, we demonstrated the synthesis of spinel structured Zn3Ga2Ge2O10:Cr3+ (ZGGO:Cr3+) and Zn3Ga2Ge2O10:Cr3+,Eu3+ (ZGGO:Cr3+,Eu3+) nanoparticles by a sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The samples were investigated via detailed characterizations by combined techniques of XRD, TEM, STEM, selected area electron diffraction, photoluminescence excitation (PLE)/photoluminescence (PL) spectroscopy, and temperature-dependent PL analysis. The single-crystalline nanoparticles are homogeneous solid solution, possessing uniform cubic shape and lateral size of 80-100 nm. Upon UV excitation at 273 nm, ZGGO:Cr3+,Eu3+ exhibited a NIR emission band at 697 nm (2E → 4A2 transition of distorted Cr3+ ions in gallogermanate), in the absence of Eu3+ emission. NIR persistent luminescence of the sample can last longer than 7200 s and still hold intense intensity. Eu3+ incorporation increased the persistent luminescence intensity and the afterglow time of ZGGO:Cr3+, but it did not significantly affect the thermal stability. The obtained ZGGO:Cr3+,Eu3+-NH2 nanoparticles possessed an excellent imaging capacity for cells in vitro.

  12. Optically stimulated luminescence of ZnO obtained by thermal treatment of ZnS chemically synthesized

    International Nuclear Information System (INIS)

    Cruz V, C.; Burruel I, S.E.; Orante B, V.R.; Grijalva M, H.; Perez S, R.; Bernal, R.

    2005-01-01

    In this work, we report the optically stimulated luminescence (OSL) dosimetry of new nano phosphors of ZnO obtained by thermal annealing of chemically synthesized ZnS powder. The synthesized ZnS nano powder was compressed in order to form pellet shaped pellets, which were afterwards subjected to a thermal annealing at 700 C during 24 h under air atmosphere. X-ray diffraction (XRD) patterns and energy-disperse X-ray Spectrometry (EDS) analyses confirmed the transformation of ZnS to ZnO. Samples were exposed to several doses of beta radiation up to 600 Gy, and the optically stimulated luminescence with 470 nm wavelength light was recorded as a function of dose. The intensity of the OSL signal increases by increasing dose, for what it is concluded that these new phosphor materials are suitable to be used in optically stimulated luminescence dosimetry. (Author)

  13. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  14. Calibration beads containing luminescent lanthanide ion complexes

    Science.gov (United States)

    The reliability of lanthanide luminescence measurements, by both flow cytometry and digital microscopy, will be enhanced by the availability of narrow-band emitting lanthanide calibration beads. These beads can also be used to characterize spectrographic instruments, including mi...

  15. Modelling the thermal quenching mechanism in quartz based on time-resolved optically stimulated luminescence

    International Nuclear Information System (INIS)

    Pagonis, V.; Ankjaergaard, C.; Murray, A.S.; Jain, M.; Chen, R.; Lawless, J.; Greilich, S.

    2010-01-01

    This paper presents a new numerical model for thermal quenching in quartz, based on the previously suggested Mott-Seitz mechanism. In the model electrons from a dosimetric trap are raised by optical or thermal stimulation into the conduction band, followed by an electronic transition from the conduction band into an excited state of the recombination center. Subsequently electrons in this excited state undergo either a direct radiative transition into a recombination center, or a competing thermally assisted non-radiative process into the ground state of the recombination center. As the temperature of the sample is increased, more electrons are removed from the excited state via the non-radiative pathway. This reduction in the number of available electrons leads to both a decrease of the intensity of the luminescence signal and to a simultaneous decrease of the luminescence lifetime. Several simulations are carried out of time-resolved optically stimulated luminescence (TR-OSL) experiments, in which the temperature dependence of luminescence lifetimes in quartz is studied as a function of the stimulation temperature. Good quantitative agreement is found between the simulation results and new experimental data obtained using a single-aliquot procedure on a sedimentary quartz sample.

  16. Long-time Luminescence Kinetics of Localized excitons and conduction Band Edges Smearing in ZnSe(1-c)Tec Solid Solutions

    DEFF Research Database (Denmark)

    Klochikhin, O.; Ogloblin, S. G.; Permogorov, S.

    2000-01-01

    It is shown that the integrated luminescence intensity of localized excitons in solid solutions ZnSe(1 - c)Tec has a component slowly decaying with time. After the excitation above the mobility threshold, the long-time intensity decreases exponentially, with a fractional exponent changing from...

  17. Photoinduced Effects in the ZnO Luminescence Spectra

    Science.gov (United States)

    Akopyan, I. Kh.; Labzovskaya, M. E.; Novikov, B. V.; Lisachenko, A. A.; Serov, A. Yu.; Filosofov, N. G.

    2018-02-01

    The effect of intense UV irradiation on the photoluminescence (PL) spectra of ZnO powders and nanocrystalline films obtained by atomic layer deposition (ALD) was investigated. At room temperature, the behavior of the spectra under continuous UV irradiation in multiple vacuum-atmosphere cycles was studied. The changes in the intensities of exciton radiation and radiation in the "green" band region, associated with the phenomena of oxygen photodesorption and photoadsorption, are discussed. In the temperature range of 5-300 K, the effect of strong UV irradiation on the near-edge luminescence spectrum of ZnO films was studied. The nature of a new line arising in the photoluminescence spectra of an irradiated film in the region of emission of bound excitons is discussed.

  18. Supramolecular assembly of borate with quaternary ammonium: Crystal structure and tunable luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jie; Wang, Yong-gang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang, Ying-xia, E-mail: wangyx@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Liao, Fu-hui [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Lin, Jian-hua, E-mail: jhlin@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2013-04-15

    A new borate [C{sub 6}H{sub 16}N][B{sub 5}O{sub 6}(OH){sub 4}] (1) is synthesized hydrothermally by the reaction of isopropyltrimethylammonium hydroxide with boric acid. It crystallizes in the triclinic space group P-1 with the parameters a=9.1578(10) Å, b=9.372(9) Å, c=9.9812(10) Å, α=66.508(2)°, β=74.751(2)°, γ=81.893(2)°. The [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions are interlinked via hydrogen bonding forming a 3D supramolecular network containing large cavities, where reside the (CH{sub 3}){sub 3}(i-C{sub 3}H{sub 7}) N{sup +} cations. This borate shows tunable luminescent properties with temperature, heating-treatment, exciting-light, and solvents. The fluorescent intensity of 1 enhances 6-fold with decreasing the temperature from 25 K to 78 K. By treatment under different temperatures, the luminescence of 1 shifted from blue to white and the sample treated at 230 °C emits bright white light to naked eyes. The hybrid borate can disperse in different solvents, and shows a red-shifted and intense emission in polar solvents. - Graphical abstract: The new quaternary ammonium borate [C{sub 6}H{sub 17}N][B{sub 5}O{sub 6}(OH){sub 4}] contains a 3D supramolecular network formed by hydrogen bond linked [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions and shows tunable luminescent properties with temperature, excitation light, and solvents. Highlights: ► A novel quaternary ammonium borate was synthesized. ► It possesses a supramolecular network fomed by H-bonded [B{sub 5}O{sub 6}(OH){sub 4}]{sup −} anions. ► This borate shows tunable luminescent properties with temperature, heating treatment, excitation light, and solvents.

  19. Luminescent ultra-small gold nanoparticles obtained by ion implantation in silica

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, T., E-mail: tiziana.cesca@unipd.it [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Maurizio, C.; Kalinic, B.; Scian, C. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy); Trave, E.; Battaglin, G. [Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Dorsoduro 2137, I-30123 Venice (Italy); Mazzoldi, P.; Mattei, G. [Department of Physics and Astronomy and CNISM, University of Padova, via Marzolo 8, I-35131 Padova (Italy)

    2014-05-01

    The room temperature photoluminescence properties of ultra-small Au nanoclusters (made by 5–10 atoms) obtained by ion implantation in silica are presented. The results show a broad and intense luminescent emission in three different spectral regions around 750 nm, 980 nm and 1150 nm. The luminescence properties of the molecule-like Au clusters have been also correlated to the energy-transfer process to Er{sup 3+} ions in Au–Er co-implanted silica samples. A partial quenching of the 980 nm component is observed due to the Er{sup 3+} absorption level at 980 nm that acts as a de-excitation channel through which the photon energy is transferred from the Au nanoclusters to the Er ions, eventually producing the Er-related emission at 1.5 microns.

  20. Optical spectroscopy and luminescence properties of Ho3+ doped zinc fluorophosphate (ZFP) glasses for green luminescent device applications

    Science.gov (United States)

    Reddy Prasad, V.; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Ho3+ doped zinc fluorophosphate (ZFP) glasses with molar chemical compositions, (60-x) NH4H2PO4+20ZnO+10BaF2+10NaF+xHo2O3 (where x = 0.1, 0.3, 0.5, 1.0 and 1.5 mol%) were prepared by melt quenching technique. These glasses were characterized through physical, structural, optical, excitation, luminescence and decay curve analysis. From the absorption spectra, spectral intensities (fexp and fcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), radiative transition probabilities (AT), radiative lifetimes (τR) and branching ratios (βR) were evaluated for all Ho3+ doped ZFP glass matrices. From the photoluminescence spectra, peak stimulated emission cross-sections (σP) were calculated for all Ho3+ doped ZFP glasses. The Ho3+ doped ZFP glasses show strong green emission at 545 nm and red emission at 656 nm under excitation, 450 nm. The measured lifetimes (τmeas) of (5S2)5F4 level of Ho3+ doped ZFP glasses were obtained from decay profiles. The CIE color coordinates of Ho3+ doped ZFP glasses were calculated from emission spectra and 1.0 mol% of Ho3+ doped ZFP glass matrix gives green emission. Hence, these results confirm that the Ho3+ doped ZFP glasses could be considered as a promising candidate for visible green laser applications.

  1. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Energy Technology Data Exchange (ETDEWEB)

    Magaryan, K.A., E-mail: xmagaros@gmail.com [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Mikhailov, M.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Karimullin, K.R. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); E.K. Zavoyski Kazan Physical-Technical Institute of RAS, 10/7 Sibirski trakt Str., Kazan 420029 (Russian Federation); Knyazev, M.V.; Eremchev, I.Y. [Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Naumov, A.V. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Vasilieva, I.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Klimusheva, G.V. [Institute of Physics, NAS of Ukraine, 46 Prospect Nauki, Kiev 03028 (Ukraine)

    2016-01-15

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm{sup 2}. Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  2. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  3. Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2018-06-01

    Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.

  4. Luminescence properties of pure and Eu-doped SrI{sub 2} crystals purified by a “Liquinert” process and grown by vertical Bridgman method

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Sakuragi, Shiro; Hashimoto, Satoshi [Union Materials Inc. 1640 Oshido, Tone-machi, Ibaraki 300-1602 (Japan)

    2016-08-15

    We have prepared high quality crystals of pure SrI{sub 2} and Eu-doped SrI{sub 2} by our original “Liquinert” process and investigated their luminescence properties. Under the excitation with the 193 nm light of an ArF excimer laser, which corresponds to the wavelength above the bandgap of SrI{sub 2} bulk crystals, the pure and Eu doped SrI{sub 2} crystals exhibit no luminescence band related to defects or impurities around 560 nm. This fact indicates that the crystals prepared by the “Liquinert” process contain lower defects and/or impurities. When the Eu-doped SrI{sub 2} crystals are excited with the 325 nm light of a He–Cd laser, only the luminescence band due to the 5d→4f transition in the Eu{sup 2+} ions is observed around 425 nm. The 425 nm band observed at a forward configuration exhibits the shift to the longer wavelength side and the decrease of the luminescence intensity with increasing Eu concentration. The Eu concentration dependences of the peak wavelength and luminescence intensity are simulated on the basis of a simple self-absorption model. - Highlights: • Our original “Liquinert” process allows us to prepare high quality crystals of SrI{sub 2}. • No luminescence band related with impurities and/or defects is observed. • The 425 nm luminescence bands due to Eu{sup 2+} ions are affected by a self-absorption. • A simple self-absorption model reproduces the changes of the 425 nm bands.

  5. Thermally and optically stimulated luminescence of early medieval blue-green glass mosaics

    Energy Technology Data Exchange (ETDEWEB)

    Galli, A. E-mail: anna.galli@mater.unimib.it; Martini, M.; Montanari, C.; Sibilia, E

    2004-12-01

    The preliminary results of a study related to luminescent mechanisms in glass mosaic tesserae are presented. The samples came from a medieval glass deposit found during archaeological excavations in the S. Lorenzo Church in Milan. Energy Dispersive X-rays Fluorescence (EDXRF) measurements were performed to obtain information on the elemental composition of the materials. Thermally Stimulated Luminescence (TSL, both conventional and wavelength resolved) and Optically Stimulated Luminescence (OSL) analyses allowed to get information about traps and luminescence centres. The observed luminescence characteristics were close to that of quartz, showing the presence of an easy to bleach trap (300 deg. C, 1.95 eV) and of a hard to bleach trap (350 deg. C, 2.20 eV); charge transfer phenomena, involving the low-temperature peaks have been observed. There is a strong indication that the easy to bleach traps are responsible for both OSL and TSL emission at 300 deg. C.

  6. Thermally and optically stimulated luminescence of early medieval blue-green glass mosaics

    International Nuclear Information System (INIS)

    Galli, A.; Martini, M.; Montanari, C.; Sibilia, E.

    2004-01-01

    The preliminary results of a study related to luminescent mechanisms in glass mosaic tesserae are presented. The samples came from a medieval glass deposit found during archaeological excavations in the S. Lorenzo Church in Milan. Energy Dispersive X-rays Fluorescence (EDXRF) measurements were performed to obtain information on the elemental composition of the materials. Thermally Stimulated Luminescence (TSL, both conventional and wavelength resolved) and Optically Stimulated Luminescence (OSL) analyses allowed to get information about traps and luminescence centres. The observed luminescence characteristics were close to that of quartz, showing the presence of an easy to bleach trap (300 deg. C, 1.95 eV) and of a hard to bleach trap (350 deg. C, 2.20 eV); charge transfer phenomena, involving the low-temperature peaks have been observed. There is a strong indication that the easy to bleach traps are responsible for both OSL and TSL emission at 300 deg. C

  7. Development and measurement of luminescence properties of Ce-doped Cs2LiGdBr6 crystals irradiated with X-ray, γ-ray and proton beam

    Science.gov (United States)

    Jang, Jonghun; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2017-12-01

    The effect of higher Ce-concentration on the luminescence and scintillation properties of Cs2LiGdBr6 single crystals are studied. We used the Bridgman method for the growth of Ce-doped Cs2LiGdBr6 single crystals. Luminescence properties of the grown crystals are measured by X-ray and proton excitations. We measured the pulse height and fluorescence decay time spectra of Cs2LiGdBr6:Ce3+ with a bi-alkali photo multiplier tube (PMT) under γ-ray excitation from 137Cs source. Improvements in the scintillation properties are observed with the increase of Ce-concentration in the lattice. Detailed procedure of the crystal growth is also discussed.

  8. Annealing time dependent up-conversion luminescence enhancement in magnesium–tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Amjad, Raja J., E-mail: rajajunaid25@gmail.com [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan); Sahar, M.R.; Ghoshal, S.K.; Dousti, M.R. [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Riaz, S. [Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan); Samavati, A.R.; Arifin, R. [Advanced Optical Material Research Group, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor bahru 81310 (Malaysia); Naseem, S. [Centre for Solid State Physics, University of the Punjab, QAC, Lahore 54590 (Pakistan)

    2013-04-15

    Silver nanoparticles (NPs) embedded Er{sup 3+} ions doped magnesium–tellurite glasses are prepared using melt quenching technique. Heat treatment with different time intervals above the glass transition temperature is applied in order to reduce the silver ions (Ag{sup +}) to silver NPs (Ag{sup o}). The transmission electron microscopy (TEM), differential thermal analyses (DTA), UV–vis-NIR absorption spectroscopy and photoluminescence (PL) spectroscopy are used to examine annealing time dependent structural and optical properties. The characteristics temperatures such as glass transition temperature (T{sub g}), crystallization temperature (T{sub c}) and melting temperature (T{sub m}) obtained from DTA for an as prepared sample are 322 °C, 450 °C and 580 °C, respectively. TEM image clearly shows the homogeneous distribution of silver NPs with an average diameter ∼12 nm. The observed localized surface plasmon resonance (LSPR) band is evidenced at 534 nm. Furthermore, the infrared to visible frequency up-conversion (UC) emission under 786 nm excitation exhibits three emission bands centered at 532 nm, 554 nm and 634 nm corresponding to {sup 2}H{sub 11/2}→{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}→{sup 4}I{sub 15/2} and {sup 4}F{sub 9/2}→{sup 4}I{sub 15/2} transitions of Er{sup 3+}, respectively. Intensity of all the bands is found to enhance by increasing the annealing time up to 24 h. However, further increase in the annealing time duration (∼40 h) reduces the intensity. Enhancement in the luminescence intensity is understood in terms of the local field effect of the silver NPs whereas the quenching is attributed to the energy transfer from Er{sup 3+} ions to silver NPs. -- Highlights: ► Er{sup 3+}-doped silver NPs embedded magnesium–tellurite glasses are prepared. ► TEM confirms the successful precipitation of spherical NPs by heat treatment (HT). ► Luminescence is enhanced due to the growth of NPs after HT up to 24 h. ► With HT>24 h (40 h

  9. Upconversion luminescence properties of Y2O3:Yb3+, Er3+ nanostructures

    International Nuclear Information System (INIS)

    De Gejihu; Qin Weiping; Zhang Jishen; Zhang Jishuang; Wang, Yan; Cao Chunyan; Cui Yang

    2006-01-01

    Cubic Y 2 O 3 nanostructures doped with Yb 3+ and Er 3+ ions were synthesized by a facile hydrothermal method. Three distinct shapes such as nanotubes, nanospheres and nanoflakes formed in the products by adjusting the pH value of reacting solution. Powder X-ray diffraction analyses indicate that all the three nanostructures are pure cubic phase, while electron microscopy measurements confirm the formation of different morphologies. These nanostructures exhibit strong visible upconversion luminescence under the excitation of a 978-nm diode laser. In Yb 3+ - and Er 3+ - codoped Y 2 O 3 nanocrystals, the relative intensity of green emission became stronger as the size and morphology of sample changed from tubes to flakes

  10. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  11. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    Science.gov (United States)

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  12. Synthesis and luminescence studies of novel rare earth activated lanthanum pentaborate

    International Nuclear Information System (INIS)

    Nagpure, P.A.; Bajaj, N.S.; Omanwar, S.K.; Sonekar, R.P.

    2011-01-01

    The lanthanum pentaborate (LaB 5 O 9 ) is a novel material which exhibits excellent luminescence when doped with rare earth ions. It was prepared by a novel technique which is a slight variation of solution combustion synthesis. The synthesis is based on the exothermic reaction between the fuel (urea) and oxidizer (ammonium nitrate). The structure of the prepared material was confirmed by powder XRD technique. The photoluminescence of rare earth ions (Ce 3+ , Eu 3+ ) and sensitized luminescence of Gd 3+ (Pr 3+ -Gd 3+ and Bi 3+ -Gd 3+ ) in LaB 5 O 9 have been studied. LaB 5 O 9 :Ce 3+ shows broad band UV emission at 317 nm and LaB 5 O 9 :Eu 3+ shows orange red emission. LaB 5 O 9 : Pr 3+ -Gd 3+ and LaB 5 O 9 : Bi 3+ -Gd 3+ exhibit efficient luminescence of Gd 3+ in narrow UVB region at 310 nm. The material (La 0.5 Pr 0.4 )B 5 O 9 :Gd 0.1 exhibits intense narrow band UVB emission at 310 nm and could be a potential candidate for UVB phosphors used in phototherapy lamps. (author)

  13. Plasmon-mediated circularly polarized luminescence of GaAs in a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mühlenberend, Svenja; Gruyters, Markus; Berndt, Richard, E-mail: berndt@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel (Germany)

    2015-12-14

    The electroluminescence from p-type GaAs(110) in a scanning tunneling microscope has been investigated at 6 K. Unexpectedly, high degrees of circular polarization have often been observed with ferromagnetic Ni tips and also with paramagnetic W and Ag tips. The data are interpreted in terms of two distinct excitation mechanisms. Electron injection generates intense luminescence with low polarization. Plasmon-mediated generation of electron-hole pairs leads to less intense emission, which, however, is highly polarized for many tips.

  14. Luminescence properties of different Eu sites in LiMgPO4:Eu2+, Eu3+

    International Nuclear Information System (INIS)

    Baran, A; Mahlik, S; Grinberg, M; Cai, P; Kim, S I; Seo, H J

    2014-01-01

    The effect of temperature on the luminescence properties of LiMgPO 4 doped with Eu 3+ and Eu 2+ are presented. Depending on the excitation wavelength, luminescence spectra consist of two distinct broad emission bands peaking at 380 nm and 490 nm related to 4f 6 5d 1  → 4f 7 ( 8 S 7/2 ) luminescence of Eu 2+ and to europium-trapped exciton, respectively, and/or several sharp lines between the 580 nm and 710 nm region, ascribed to the 5 D 0  →  7 F J (J = 0, 1, 2, 3 and 4) transitions in Eu 3+ . To explain all the features of the Eu 2+ and Eu 3+ luminescence we discussed the existence of two different Eu sites substituting for Li + , with short and long distance compensation. The evident effect of increasing the intensity of the Eu 2+ luminescence with increasing temperature was observed. It was considered that the charge compensation mechanism for Eu 3+ and Li + as well as Eu 2+ replacing Li + in the LiMgPO 4 is a long distance compensation that allows for the existence of some of the europium ions either as Eu 3+ at low temperature or as Eu 2+ at high temperature. We concluded that Eu 2+ in the Li + site with long distance compensation yields only 4f 6 5d 1  → 4f 7 luminescence, whereas Eu 2+ in the Li + site with short distance compensation yields 4f 6 5d 1  → 4f 7 luminescence and europium-trapped exciton emission. (paper)

  15. Luminescence properties of novel red-emitting phosphor InNb1-xPxO4:Eu3+ for white light emitting-diodes

    Directory of Open Access Journals (Sweden)

    Tang An

    2015-06-01

    Full Text Available InNb1-xPxO4:Eu3+ red phosphors were synthesized by solid-state reaction and their luminescence properties were also studied through photoluminescence spectra. The excitation and emission spectra make it clear that the as-prepared phosphors can be effectively excited by near-ultraviolet (UV 394 nm light and blue 466 nm light to emit strong red light located at 612 nm, due to the Eu3+ transition of 5D0 → 7F2. The luminescence intensity is dependent on phosphorus content, and it achieves the maximum at x = 0.4. Excessive phosphorus in the phosphors can result in reduction of luminescence intensity owing to concentration quenching.With the increasing content of phosphorus, the phosphors are prone to emit pure red light. This shows that the InNb1.6P0.4O4:0.04Eu3+ phosphor may be a potential candidate as a red component for white light emitting-diodes.

  16. Measured efficiency of a luminescent solar concentrator PV module called Leaf Roof

    NARCIS (Netherlands)

    Reinders, Angèle H.M.E; Debije, Michael G.; Rosemann, Alexander

    2017-01-01

    A functional prototype of a luminescent solar concentrator photovoltaic (LSC PV) module, called Leaf Roof, aims at demonstrating the design features of LSC PV technologies such as coloring, transparency, and flexibility in physical shape. In this paper, the prototype is presented and the first

  17. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Stojadinović, Stevan, E-mail: sstevan@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Tadić, Nenad [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, Nenad [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, Plamen [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, 1113 Sofia (Bulgaria); Grbić, Boško [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vasilić, Rastko [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2015-11-15

    Graphical abstract: - Highlights: • Anodic luminescence is correlated to the existence of morphological defects in the oxide. • Spectrum under spark discharging reveals only oxygen and hydrogen lines. • Oxide films formed under spark discharging are crystallized and composed of Nb{sub 2}O{sub 5}. • Photocatalytic activity and photoluminescence of Nb{sub 2}O{sub 5} films increase with time. - Abstract: This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb{sub 2}O{sub 5} hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  18. Effect of retrapping on the persistent luminescence in strontium silicate orange–yellow phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuhui; Yu, Xue, E-mail: yuyu6593@126.com; Zhou, Dacheng; Qiu, Jianbei, E-mail: qiu@kmust.edu.cn

    2013-10-15

    The orange–yellow long persistent luminescence in Sr{sub 3}SiO{sub 5}:Eu{sup 2+}, Er{sup 3+} with the chromaticity coordination of (0.48, 0.49) can persist for over 20 h above the recognizable intensity level (≥0.32 mcd/m{sup 2}) because of retrapping carriers by the deep traps. The incorporation of Er{sup 3+} into Sr{sub 3}SiO{sub 5}:Eu{sup 2+} generates a large number of shallow traps responsible for the fast decay component as well as deep traps responsible for the decay tail of the LPL. It demonstrates that the retrapping of the carrier released from a trap plays an important role in the persistent luminescence process. - Graphical abstract: LPL decay curves of Sr{sub 3−x−y}SiO{sub 5}:xEu{sup 2+}, yEr{sup 3+} (x=0.0025, y=0, 0.0025). Inset: Orange–yellow emission images recorded using a classic Reflex digital camera with exposure times varying with the persistent luminescence times. Display Omitted - Highlights: • The persistence time of Sr{sub 3}SiO{sub 5}:Eu{sup 2+}, Er{sup 3+} lasts over 20 h above the recognizable intensity level. • The incorporation of Er{sup 3+} into Sr{sub 3}SiO{sub 5}:Eu{sup 2+} generates a large number of shallow traps. • The experimental results provide an evidence for the retrapping process in LPL processes.

  19. Measurement of Solid-State Optical Refrigeration by Two-Band Differential Luminescence Thermometry

    Science.gov (United States)

    2010-03-01

    high speed transimpedance amplifier that generates an output voltage proportional to the difference in the optical power in bands A and D, i.e., IA...bands in the luminescence spectrum by inter- ference filters, in combination with large core optical fi- bers and highly amplified balanced

  20. UV luminescence of dendrimer-encapsulated gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyeong Seop; Kim, Jun Myung; Sohn, So Hyeong; Han, Noh Soo; Park, Seung Min [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of)

    2016-10-15

    Size-dependent luminescence color is one of the interesting properties of metal nanocrystals, whose sizes are in the dimension of the Fermi wavelength of an electron. Despite the short Fermi wavelength of electrons in gold (-0.7 nm), luminescence of gold nanoclusters has been reported to range from the near-infrared to near-ultraviolet, depending on the number of atoms in the nanoclusters. The photoluminescence of G4-OH (Au) obtained by the excitation of 266 nm showed UV emission in addition to the well-known blue emission. The higher intensity and red-shifted emission of the gold nanoclusters was distinguished from the emission of dendrimers. The UV emission at 352 nm matched the emission energy of Au{sub 4} in the spherical jellium model, rather than the planar Au{sub 8}, which supported the emission of Au{sub 4} formed in G4-OH. Despite the change of [HAuCl{sub 4} ]/[G4-OH], the relative population between Au{sub 4} and Au{sub 8} was similar in G4-OH(Au), which indicated that the closed electronic and geometric structures stabilized the magic number of Au{sub 4}.

  1. Dose-dependent optically stimulated luminescence of synthetic quartz at room temperature

    International Nuclear Information System (INIS)

    Kale, Y.D.; Gandhi, Y.H.; Gartia, R.K.

    2008-01-01

    Physical conditions such as annealing temperature, duration of annealing, ionizing radiation, etc., play a significant role in the applications of optically stimulated luminescence (OSL) dating as well as OSL dosimetry. Many efforts are made to understand the effect of these physical parameters on quartz specimens owing to its use in such applications. Such factors induce changes in OSL decay pattern. The definite correlation between color centers and luminescence sensitivity can be established on account of such pre-treatments to the specimen. The purpose of present investigations is to study the effect of ionizing radiation under identical physical conditions on OSL properties measured at room temperature. The shapes of decay curve and dose-response data are considered for this purpose. This study can reveal the changes in color centers in response to the pre-conditions to the specimen. It was found that the OSL decay remains slow and OSL properties change systematically with the rise in beta dose up to a critical dose; however, it changes the pattern when the beta exposure to the specimen was increased higher than the critical dose. This critical dose was found to be different for different temperature of annealing. The shape of decay curve up to the critical dose was also studied by considering the difference of OSL intensities between two successive durations from the observed OSL decay data. The results are explained based on the changes in available shallow traps during OSL measurement at room temperature with changes in pre-conditions to the specimens. The results also have been confirmed with the corresponding changes in ESR signals

  2. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate

    Science.gov (United States)

    Kojima, Kazunobu; Takashima, Shinya; Edo, Masaharu; Ueno, Katsunori; Shimizu, Mitsuaki; Takahashi, Tokio; Ishibashi, Shoji; Uedono, Akira; Chichibu, Shigefusa F.

    2017-06-01

    The photoluminescences of ion-implanted (I/I) and epitaxial Mg-doped GaN (GaN:Mg) are compared. The intensities and lifetimes of the near-band-edge and ultraviolet luminescences associated with a MgGa acceptor of I/I GaN:Mg were significantly lower and shorter than those of the epilayers, respectively. Simultaneously, the green luminescence (GL) became dominant. These emissions were quenched far below room temperature. The results indicate the generation of point defects common to GL and nonradiative recombination centers (NRCs) by I/I. Taking the results of positron annihilation measurement into account, N vacancies are the prime candidate to emit GL and create NRCs with Ga vacancies, (VGa) m (VN) n , as well as to inhibit p-type conductivity.

  3. Luminescence of LiH(D):Ru monocrystals

    International Nuclear Information System (INIS)

    Sabirzyanov, A.A.; Oparin, D.V.; Pilipenko, G.I.; Gavrilov, F.F.

    1993-01-01

    Luminescence of lithium hydride (deuteride) activated by ruthenium is recorded for the first time. The features connected with the structure and oscillations of the basic lattice are detected in luminescence spectrum. The qualitative model of luminescence spectrum is suggested

  4. Investigations on luminescence behavior of Er3+/Yb3+ co-doped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Arunkumar, S.; Venkata Krishnaiah, K.; Marimuthu, K.

    2015-01-01

    Er3+/Yb3+ co-doped boro-tellurite glasses with the chemical composition 30TeO2+(24 - x)B2O3 + 15SrO + 10BaO + 10Li2O + 10LiF + 1Er2O3 + xYb2O3 (where x = 0, 0.1, 0.5, 1 and 2 in wt%) have been prepared and their luminescence behavior were studied and reported. Absorption spectral measurements have been used to derive the Judd-Ofelt (JO) intensity parameters from the experimental and calculated oscillator strength values following the JO theory. The various lasing parameters such as stimulated emission cross-section (σEp), experimental and calculated branching ratios (βR) and radiative lifetime (τcal) for the 2H9/2 → 4I15/2, 4S3/2 → 4I15/2 and 4I13/2 → 4I15/2 emission transitions were determined using the JO intensity parameters. The absorption and emission cross-section values for the 4I13/2 → 4I15/2 emission band have been calculated using McCumbar theory and the Gain cross-section for the 4I13/2 → 4I15/2 emission transition also obtained. The upconversion emission mechanism have been studied through various energy transfer processes and the intensity of the upconversion emission transitions are found to increase with the increase in Yb3+ ion concentration. The luminescence decay curves corresponding to the 4I13/2 → 4I15/2 transition of the Er3+/Yb3+ co-doped boro-tellurite glasses under 980 nm excitation wavelength have also been studied and reported in the present work.

  5. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  6. Photoluminescence spectroscopies and temperature-dependent luminescence of Mn{sup 4+} in BaGe{sub 4}O{sub 9} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoan; Hu, Yihua, E-mail: huyh@gdut.edu.cn

    2016-09-15

    New non-rare-earth red phosphor BaGe{sub 4}O{sub 9}:Mn{sup 4+} was prepared successfully via the traditional solid state reaction method. The luminescent performance was investigated by the steady-state photoluminescence (PL) and temperature-dependent PL/decay measurements. The excitation band of BaGe{sub 4}O{sub 9}:Mn{sup 4+} phosphor covers a broad spectral region from 250 nm to 500 nm, which matches well with the commercial near-UV and blue LEDs. The concentration quenching of Mn{sup 4+} in BaGe{sub 4}O{sub 9}:Mn{sup 4+} occurs at a low content of 0.5% due to the dipole–dipole interaction. We gained insight into the temperature-dependent relative emission intensity of BaGe{sub 4}O{sub 9}:Mn{sup 4+} phosphor, and determined the luminescence quenching temperature and the activation energy for thermal quenching (∆E) to be ~150 K and ~0.17 eV, respectively.

  7. The dependence of luminescence lifetimes on additive irradiation in natural sedimentary quartz: sands from Santa Elina, Brazil

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Ogundare, F.O.; Feathers, J.; Hong, D.G.

    2008-01-01

    Time-resolved luminescence and its component lifetimes have been measured from natural quartz in order to interpret the associated dynamics of luminescence emission. The influence of beta irradiation, and measurement temperature on the lifetimes have been investigated and parameters of the kinetics involved calculated. The results are explained by considering the extent of non-radiative processes and the role of charge transfer between several types of luminescence centres. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. The dependence of luminescence lifetimes on additive irradiation in natural sedimentary quartz: sands from Santa Elina, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L. [Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Ogundare, F.O. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Feathers, J. [Department of Anthropology, University of Washington, P.O. Box 353100, Seattle, WA 98195-3100 (United States); Hong, D.G. [Department of Physics, Kangwon National University, Chuncheon, Kangwon-Do 200-701 (Korea)

    2008-07-01

    Time-resolved luminescence and its component lifetimes have been measured from natural quartz in order to interpret the associated dynamics of luminescence emission. The influence of beta irradiation, and measurement temperature on the lifetimes have been investigated and parameters of the kinetics involved calculated. The results are explained by considering the extent of non-radiative processes and the role of charge transfer between several types of luminescence centres. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles.

    Science.gov (United States)

    Liu, Jinshui; Vellaisamy, Kasipandi; Yang, Guanjun; Leung, Chung-Hang; Ma, Dik-Lung

    2017-06-15

    A novel luminescent turn-on detection method for Hg(II) was developed. The method was based on the silver nanoparticle (AgNP)-mediated quenching of Ir(III) complex 1. The addition of Hg(II) ions causes the luminescence of complex 1 to be recovered due to the oxidation of AgNPs by Hg(II) ions to form Ag(I) and Ag/Hg amalgam. The luminescence intensity of 1 increased in accord with an increased Hg(II) concentration ranging from 0 nM to 180 nM, with the detection limit of 5 nM. This approach offers an innovative method for the quantification of Hg(II).

  10. Luminescent, Fire-Resistant, and Water-Proof Ultralong Hydroxyapatite Nanowire-Based Paper for Multimode Anticounterfeiting Applications.

    Science.gov (United States)

    Yang, Ri-Long; Zhu, Ying-Jie; Chen, Fei-Fei; Dong, Li-Ying; Xiong, Zhi-Chao

    2017-08-02

    Counterfeiting of valuable certificates, documents, and banknotes is a serious issue worldwide. As a result, the need for developing novel anticounterfeiting materials is greatly increasing. Herein, we report a new kind of ultralong hydroxyapatite nanowire (HAPNW)-based paper with luminescence, fire resistance, and waterproofness properties that may be exploited for anticounterfeiting applications. In this work, lanthanide-ion-doped HAPNWs (HAPNW:Ln 3+ ) with lengths over 100 μm have been synthesized and used as a raw material to fabricating a free-standing luminescent, fire-resistant, water-proof paper through a simple vacuum filtration process. It is interesting to find that the luminescence intensity, structure, and morphology of HAPNW:Ln 3+ highly depend on the experimental conditions. The as-prepared HAPNW:Ln 3+ paper has a unique combination of properties, such as high flexibility, good processability, writing and printing abilities, luminescence, tunable emission color, waterproofness, and fire resistance. In addition, a well-designed pattern can be embedded in the paper that is invisible under ambient light but viewable as a luminescent color under ultraviolet light. Moreover, the HAPNW:Ln 3+ paper can be well-preserved without any damage after being burned by fire or soaked in water. The unique combination of luminescence, fire resistance, and waterproofness properties and the nanowire structure of the as-prepared HAPNW:Ln 3+ paper may be exploited toward developing a new kind of multimode anticounterfeiting technology for various high-level security antiforgery applications, such as in making forgery-proof documents, certificates, labels, and tags and in packaging.

  11. Hydrological characterisation of stalagmite dripwaters at Grotte de Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter

    Directory of Open Access Journals (Sweden)

    A. Baker

    2000-01-01

    Full Text Available Five stalagmite drip-waters in the Grotte de Villars, Dordogne, have been monitored from early 1997 to early 1998, for variations in discharge, major inorganic species and dissolved luminescent organic matter. When compared to surface precipitation, each drip-water has a subtly different response, both in terms of discharge variability and lag time between surface precipitation and drip rate response. Calculated water excess is shown to be important in determining drip-water discharge; during periods of soil moisture deficit, drip-waters either show no response to surface precipitation, or in the case of one sample station, respond only to high intensity and/or high quantity precipitation events. All drip-waters have a large storage component to their flow. Four sample stations have a similar hydrochemical and luminescence response, although the precise timing and magnitude of the responses may vary between drip sources that are Drip-water conductivity reflects Ca-HCO3 variations and falls during late summer to autumn, which is inferred to result from increased calcite precipitation above the cave with enhanced degassing related to progressive drying of the aquifer. Drip-water magnesium (following removal of the marine aerosol component is just above detection limits and does not show strong seasonal variations. Variations in solution Pco2 occur, with a particularly strong increase in early 1997. The various chemical trends are observed at a number of different sites despite a pronounced variation between them in terms of total Ca-HCO3 mineralisation and Pco2. One sampling station of the five investigated had a different response to surface precipitation; drip discharge was more variable, with evidence of non-linear responses, and luminescence intensity exhibited a dilution response to drip rate. For this site, flow switching occurred at times of high rainfall, with a rapid discharge response less than 24 hours after rainfall. Luminescence

  12. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  13. Growth and luminescence properties of Pr3+-doped single crystalline films of garnets and perovskites

    International Nuclear Information System (INIS)

    Gorbenko, V.; Zorenko, Yu.; Savchyn, V.; Zorenko, T.; Pedan, A.; Shkliarskyi, V.

    2010-01-01

    Peculiarities of growth of single crystalline films (SCF) of Pr 3+ doped Y 3 Al 5 O 12 and Lu 3 Al 5 O 12 garnets and YAlO 3 and LuAlO 3 perovskites by the liquid phase epitaxy method from melt-solutions based on PbO-B 2 O 3 flux as well as luminescent and scintillation properties of these SCFs were studied in this work. Dependence the intensity of the Pr 3+ d-f and f-f-luminescence on the activator concentration and influence of Pb 2+ flux dopant on the light yield of SCFs of the mentioned garnets and perovskites were analyzed.

  14. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  15. Luminescent features of sol–gel derived rare-earth multi-doped oxyfluoride nano-structured phosphors for white LED application

    International Nuclear Information System (INIS)

    Gouveia-Neto, A.S.; Silva, A.F. da; Bueno, L.A.; Costa, E.B. da

    2012-01-01

    Rare-earth doped oxyfluoride 75SiO 2 :25PbF 2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu 3+ , Sm 3+ , Tb 3+ , Eu 3+ /Tb 3+ , and Sm 3+ /Tb 3+ ions incorporated into low-phonon-energy PbF 2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO 2 :25PbF 2 host herein reported is a promising contender for white-light LED applications. - Highlights: ► White-light emission in double-doped activated phosphors employing UV-LED excitation. ► Luminescent features of europium, samarium, and terbium in nanocrystals dispersed in aluminosilicate glass. ► New nanocomposite phosphor host for white-light LED applications.

  16. Effect of structural packing on the luminescence properties in tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xin; Shi Liu [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wei Ang, E-mail: iamawei@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays, 9 Wenyuan Road, Nanjing 210046 (China); Wan Dongyun; Wang Yaoming [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Huang Fuqiang, E-mail: huangfq@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-08-15

    Tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba) were successfully synthesized, and the luminescence properties were investigated. Among the three compounds, Ca{sub 2}KNb{sub 5}O{sub 15} showed an obviously broad band of host luminescence at 460 nm with exciting at 269 nm. By doping Eu{sup 3+} into the M sites, Ca{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} displayed strong red emission from Eu{sup 3+} ions characteristic transitions, nearly four times higher than Sr{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} and seven times higher than Ba{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+}. Crystal packing factor (PF) was introduced to account for this luminescence difference, lower PF being correlated to higher luminescence intensity for perovskite-related structure. Both the as-prepared compounds and the literature examples were proved to fit this correlation. This can be explained through the influence of the structural packing on the environment distortion and crystal field splitting of the doping site. - Graphical abstract: Tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba) show the dependence of luminescence properties on structural packing, among which Ca{sub 2}KNb{sub 5}O{sub 15} has the superior luminescence. Highlights: Black-Right-Pointing-Pointer Tungsten bronze compounds were synthesized by solid state reaction. Black-Right-Pointing-Pointer Ca{sub 2}KNb{sub 5}O{sub 15} displayed remarkably blue host luminescence. Black-Right-Pointing-Pointer Ca{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} showed more intense red emission than M{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} (M=Sr, Ba). Black-Right-Pointing-Pointer The relationship between crystal packing factor and luminescence was obtained.

  17. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    Science.gov (United States)

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  18. Accurate thermometry based on the red and green fluorescence intensity ratio in NaYF4: Yb, Er nanocrystals for bioapplication.

    Science.gov (United States)

    Liu, Lixin; Qin, Feng; Lv, Tianquan; Zhang, Zhiguo; Cao, Wenwu

    2016-10-15

    A biological temperature measurement method based on the fluorescence intensity ratio (FIR) was developed to reduce uncertainty. The upconversion luminescence of NaYF4:Yb, Er nanocrystals was studied as a function of temperature around the physiologically relevant range of 300-330 K. We found that the green-green FIR Fe and red-green FIR (I660/I540) varied linearly as temperature increased. The thermometric uncertainties using the two FIRs were discussed and were determined to be almost constant at 0.6 and 0.09 K for green-green and red-green, respectively. The lower thermometric uncertainty comes from the intense signal-to-noise ratio of the measured FIRs owing to their comparable fluorescence intensities.

  19. Effect of heptadentate (N{sub 4}O{sub 3}) tripodal Schiff base ligand and its yttrium(III) complex on the luminescence and extraction of tris({beta}-diketonato)europium(III)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y. [Department of Chemistry, Faculty of Science, Science University of Tokyo, Tokyo 162-8601 (Japan)], E-mail: yhasegaw@rs.kagu.tus.ac.jp; Saitou, S.; Nagaoka, D.; Yajima, H. [Department of Chemistry, Faculty of Science, Science University of Tokyo, Tokyo 162-8601 (Japan); Kanesato, M. [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562 (Japan)

    2008-02-28

    In order to learn the effect of a Schiff base and the complex of Y{sup III} on the extraction of Eu{sup III} with {beta}-diketones and on the luminescence of the extracted species, the extraction of Eu{sup III} with 2-thenoyltrifluoroacetone (Htta) and/or these Schiff bases, tris(5-t-butyl)salicylidenaminoethyl amine (H{sub 3}L{sup 1}), and its Y{sup III} complex ([YL{sup 1}]) prepared, into CHCl{sub 3} was examined. Further, the luminescence and excited spectra of CHCl{sub 3} phases extracted Eu{sup III} complexes and the solutions containing tris({beta}-diketonato)Eu{sup III} and/or the Schiff bases were measured. On the measurement of the luminescence spectra, tris(pivaloyltrifluoroacetonato)Eu{sup III} (Eu(pta){sub 3}) as well as Eu(tta){sub 3} was used. Synergistic effect with Htta and these Schiff bases was observed. However, proper effect of Y{sup III} was not observed. The luminescence intensity of Eu(tta){sub 3} at 613 nm decreased with increasing concentration of H{sub 3}L{sup 1} or [YL{sup 1}], whereas that of Eu(pta){sub 3} increased with increasing concentration of the ligands, but no difference between both Schiff bases was observed, because of picking up of Y{sup III} from [YL{sup 1}] with the interaction between [YL{sup 1}] and water.

  20. Influence of the crystallization process on the luminescence of multilayers of SiGe nanocrystals embedded in SiO2

    International Nuclear Information System (INIS)

    Avella, M.; Prieto, A.C.; Jimenez, J.; Rodriguez, A.; Sangrador, J.; Rodriguez, T.; Ortiz, M.I.; Ballesteros, C.

    2008-01-01

    Multilayers of SiGe nanocrystals embedded in an oxide matrix have been fabricated by low-pressure chemical vapor deposition of SiGe and SiO 2 onto Si wafers (in a single run at 390 deg. C and 50 mTorr, using GeH 4 , Si 2 H 6 and O 2 ) followed by a rapid thermal annealing treatment to crystallize the SiGe nanoparticles. The main emission band is located at 400 nm in both cathodoluminescence and photoluminescence experiments at 80 K and also at room temperature. The annealing conditions (temperatures ranging from 700 to 1000 deg. C and for times of 30 and 60 s) have been investigated in samples with different diameter of the nanoparticles (from ∼3 to ≥5 nm) and oxide interlayer thickness (15 and 35 nm) in order to establish a correlation between the crystallization of the nanoparticles, the degradation of their composition by Ge diffusion and the intensity of the luminescence emission band. Structures with small nanoparticles (3-4.5 nm) separated by thick oxide barriers (∼35 nm) annealed at 900 deg. C for 60 s yield the maximum intensity of the luminescence. An additional treatment at 450 deg. C in forming gas for dangling-bond passivation increases the intensity of the luminescence band by 25-30%

  1. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  2. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    Energy Technology Data Exchange (ETDEWEB)

    Czelusniak, C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Massi, M. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L.; Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Re, A.; Lo Giudice, A. [Dipartimento di Fisica, Università di Torino & INFN Sezione di Torino, Via Giuria 1, 10125 Torino (Italy); Pratesi, G. [Museo di Storia Naturale, Università di Firenze, Via G. La Pira 4, 50121 Firenze (Italy); Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Ruberto, C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 1, 50019 Sesto Fiorentino, Firenze (Italy); Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); and others

    2016-03-15

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  3. Preliminary results on time-resolved ion beam induced luminescence applied to the provenance study of lapis lazuli

    International Nuclear Information System (INIS)

    Czelusniak, C.; Palla, L.; Massi, M.; Carraresi, L.; Giuntini, L.; Re, A.; Lo Giudice, A.; Pratesi, G.; Mazzinghi, A.; Ruberto, C.; Castelli, L.

    2016-01-01

    This work will present preliminary results concerning the use of time-resolved ion beam induced luminescence applied to provenance studies of lapis lazuli. Measurements were performed at the pulsed beam facility at LABEC laboratory in Florence. Lapis lazuli is a semi-precious gemstone, used as ornament since the early civilizations that can be found in few places on Earth. The importance of this work lies in understanding the origin of various samples of lapis lazuli, from which it may be possible to gain insight into trade routes from ancient times. The samples studied in this work originated from Chile, Afghanistan, Tajikistan, Myanmar, and Siberia. The stones were irradiated with 3 MeV protons and the resulting luminescence was detected by a photomultiplier tube, whose output was acquired using a sampling digitizer VME module (CAEN/V1720). Wavelength discrimination was performed at 430 nm utilizing a range of beam currents. The results showed that, by changing the beam current intensity, one can study different features of lapis lazuli, and this may aid in distinguishing lapis lazuli from different provenances.

  4. Enhanced luminescence properties of hybrid Alq{sub 3}/ZnO (organic/inorganic) composite films

    Energy Technology Data Exchange (ETDEWEB)

    Cuba, M.; Muralidharan, G., E-mail: muraligru@gmail.com

    2014-12-15

    Pristine tris-(8-hydroxyquionoline)aluminum(Alq{sub 3}) and (Alq{sub 3}/ZnO hybrid) composites containing different weight percentages (5 wt%, 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt%) of ZnO in Alq{sub 3} were synthesized and coated on to a glass substrate using the dip coating method. The optimum concentration of ZnO in Alq{sub 3} films to get the best luminescence yield has been identified. XRD pattern reveals the amorphous nature of pure Alq{sub 3} film. The Alq{sub 3} films containing different weight percentages of ZnO show the presence of crystalline ZnO in Alq{sub 3}/ZnO composite films. The FTIR spectrum confirms the formation of quinoline with absorption in the region 600−800 cm{sup −1}. The hybrid Alq{sub 3}/ZnO composite films indicate the presence of Zn−O vibration band along with the corresponding Alq{sub 3} band. The band gap (HOMO–LUMO) of Alq{sub 3} film was calculated using absorption spectra and it is 2.87 eV for pristine films while it is 3.26 eV, 3.21 eV, 3.14 eV, 3.10 eV, 3.13 eV and 3.20 eV for the composite films containing 5–50 wt% of ZnO. The photoluminescence (PL) spectra of Alq{sub 3} films show a maximum PL intensity at 514 nm when excited at 390 nm. The ZnO incorporated composite films (Alq{sub 3}/ZnO) exhibit an emission in 485 nm and 514 nm. The composite films containing 30 wt% of ZnO exhibit maximum luminescence yield. - Highlights: • The pure Alq{sub 3} and Alq{sub 3}/ZnO composite were synthesized and coated on to a glass substrate using dip coating method. • Alq{sub 3}/ZnO composite film containing 30 wt% of ZnO exhibits two fold increases in luminescence intensity. • The shielding effect of ZnO on the Alq{sub 3} material suppresses the interactions among the host molecules in the excited state. • This leads to enhance the luminescence intensity in composite films.

  5. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  6. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications

    International Nuclear Information System (INIS)

    Jin, D; Connally, R; Piper, J

    2006-01-01

    We report the results of a detailed study of the spectral and temporal properties of visible emission from three different GaN-based ultraviolet (UV) light emitting diodes (UV LEDs). The primary UV emission in the 360-380 nm band decays rapidly (less than 1 μs) following switch-off; however, visible luminescence (470-750 nm) with a decay lifetime of tens of microseconds was observed at approximately 10 -4 of the UV intensity. For applications of UV LEDs in time-resolved fluorescence (TRF) employing lanthanide chelates, the visible luminescence from the LEDs competes with the target Eu 3+ or Tb 3+ fluorescence in both spectral and temporal domains. A UV band-pass filter (Schott UG11 glass) was therefore used to reduce the visible luminescence of the UV LEDs by three orders of magnitude relative to UV output to yield a practical excitation source for TRF

  7. Real-time luminescence from Al2O3 fiber dosimeters

    International Nuclear Information System (INIS)

    Polf, J.C.; Yukihara, E.G.; Akselrod, M.S.; McKeever, S.W.S.

    2004-01-01

    The real-time luminescence signal from Al 2 O 3 single crystal fibers, monitored during simultaneous irradiation and optical stimulation, was investigated using computer simulations and experimental measurements. Both radioluminescence (RL) and optically stimulated luminescence (OSL) signals were studied. The simulations were performed initially using a simple one-trap/one-recombination-center energy band model, and then extended to include shallow and deep electron traps as well. Real-time luminescence experiments were performed for different radiation dose rates and optical stimulation powers using periodic laser stimulation of the samples through a fiber optic cable, and the experimental results were compared with the predictions from the computer simulations. The luminescence signal was observed, both theoretically and experimentally, to increase from its initial value to a steady-state level. The steady-state RL and OSL levels were found to be dependent on dose rate, the steady-state level of the real-time OSL being independent of laser power. It was also shown that the total integrated absorbed dose throughout the irradiation period can be determined by correcting the real-time OSL signal for depletion caused by each laser stimulation pulse. The effects of the shallow and deep traps on the time-dependence of the real-time luminescence signal were studied comparing the experimental data from several Al 2 O 3 fibers known to have different trapping state concentrations. The additional traps were found to slow the response of the real-time luminescence such that the time to reach steady state was increased as the additional traps were added

  8. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    Science.gov (United States)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  9. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  10. Polysiloxane-based luminescent elastomers prepared by thiol-ene "click" chemistry.

    Science.gov (United States)

    Zuo, Yujing; Lu, Haifeng; Xue, Lei; Wang, Xianming; Wu, Lianfeng; Feng, Shengyu

    2014-09-26

    Side-chain vinyl poly(dimethylsiloxane) has been modified with mercaptopropionic acid, methyl 3-mercaptopropionate, and mercaptosuccinic acid. Coordinative bonding of Eu(III) to the functionalized polysiloxanes was then carried out and crosslinked silicone elastomers were prepared by thiol-ene curing reactions of these composites. All these europium complexes could be cast to form transparent, uniform, thin elastomers with good flexibility and thermal stability. The networks were characterized by FTIR, NMR, UV/Vis, and luminescence spectroscopy as well as by scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The europium elastomer luminophores exhibited intense red light at 617 nm under UV excitation at room temperature due to the (5)D0 →(7)F2 transition in Eu(III) ions. The newly synthesized luminescent materials offer many advantages, including the desired mechanical flexibility. They cannot be dissolved or fused, and so they have potential for use in optical and electronic applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Near-Infrared Quantum Cutting Long Persistent Luminescence

    OpenAIRE

    Zou, Zehua; Feng, Lin; Cao, Cheng; Zhang, Jiachi; Wang, Yuhua

    2016-01-01

    By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called ?near-infrared quantum cutting long persistent luminescence (NQPL)?, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Guided by the NQPL concept, we fabricate the first NQPL phosphor Ca2Ga2GeO7:Pr3+,Yb3+. It reveals that both the two-step energy transfer of model (I) and the one-step energy ...

  12. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:MN2+ phosphor

    International Nuclear Information System (INIS)

    Wan Junxi; Wang Zhenghua; Chen Xiangying; Mu Li; Yu Weichao; Qian Yitai

    2006-01-01

    Mn-doped Zn 2 SiO 4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn 2 SiO 4 nanorods have higher photoluminescence intensity than Zn 2 SiO 4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods

  13. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Barbaglia, Mario O; Bonetto, Fabian J [Consejo Nacional de Investigaciones Cientificas y Tecnicas and Instituto Balseiro, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Instituto Balseiro, and Comision Nacional de Energia Atomica, Laboratorio de Cavitacion y Biotecnologia, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina)

    2004-02-15

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point.

  14. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    International Nuclear Information System (INIS)

    Barbaglia, Mario O.; Bonetto, Fabian J.

    2004-01-01

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point

  15. Luminescence dating of Netherland's sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we revity: 1) the development of the methodology, 2) tests of the reliability of luminescence dating on Netherlands' sediments;

  16. Unclonable Security Codes Designed from Multicolor Luminescent Lanthanide-Doped Y2O3 Nanorods for Anticounterfeiting.

    Science.gov (United States)

    Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar

    2017-04-26

    The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.

  17. Measures of Competitive Intensity – Analysis Based on Literature Review

    Directory of Open Access Journals (Sweden)

    Dariusz Kwieciński

    2017-03-01

    Full Text Available Purpose: To systematize the existing approaches and tools used for measuring competitive intensity. Methodology: Systematic literature review along with critical literature review. Findings: Identifcation of two main approaches to measuring competition intensity: the frst pertains to research based on experts’ opinions and involves the use of questionnaires (primary sources, while the second is based on structural variables used with a variety of indexes (secondary sources. In addition, variables applied for the purpose of measuring the intensity of competition are divided into structural and behavioural. Research implications: Research implications are two-fold. Firstly, a distinction is made between various types of existing approaches to measuring competitive intensity. Secondly, research is carried out, inter alia, with regard to the actual object of certain measures, as opposed to their object stemming from commonly accepted defnitions. Practical implications: The issue of measuring competition intensity occupies a prominent place in the discussion on the effectiveness of inter-organizational relationships. The fndings outlined in this paper may help managers to develop/adopt the right approach supporting their strategic decisions. Originality: The paper provides a complex review of the existing methods and measures of competitive intensity. It systematizes recent knowledge about competitive intensity measurements.

  18. Structural, vibrational and luminescence properties of the (1−x)CaWO{sub 4}−xCdWO{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 83957, La Garde (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); CEA/DEN, Département d’Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache, 13108, Saint-Paul-lez-Durance (France); Société CESIGMA, Signals and Systems, 1576 Chemin de La Planquette, 83130 La Garde (France); Guinneton, F.; Valmalette, J-C.; Arab, M. [Institut Matériaux Microélectronique et Nanosciences de Provence, Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 83957, La Garde (France); Benlhachemi, A.; Bakiz, B. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Villain, S. [Institut Matériaux Microélectronique et Nanosciences de Provence, Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334, 83957, La Garde (France); and others

    2014-11-15

    In the present work, we investigate the structural, microstructural, vibrational and luminescence properties of the system (1−x)CaWO{sub 4}−xCdWO{sub 4} with x ranging between 0 and 1. Polycrystalline samples were elaborated using a coprecipitation technique followed by thermal treatment at 1000 °C. The samples were then characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and luminescence analyses. X-ray diffraction profile analyses using Rietveld method showed that two kinds of solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} having scheelite and wolframite structures, with respectively tetragonal and monoclinic crystal cells, were observed, with a biphasic system for compositions x=0.6 and 0.7. The scanning electron microscopy experiments showed a complex evolution of morphologies and crystallite sizes as x increased. The vibration modes of Raman spectra were characteristic of composition-dependent disordered solid solutions with decreasing wavenumbers as x increased. Luminescence experiments were performed under UV-laser light irradiation. The energies of emission bands increased linearly with cadmium composition x. The integrated intensity of luminescence reached a maximum value for the substituted wolframite phase with composition x=0.8. - Graphical abstract: Luminescence on UV excitation (364.5 nm) of (1−x)CaWO{sub 4−x}CdWO{sub 4} system, elaborated from coprecipitation technique at 1000 °C, with 0luminescence intensity for the composition x=0.8. - Highlights: • Solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} are elaborated from coprecipitation technique. • The structures of two types of solid solutions are refined using Rietveld method. • A maximum of luminescence is obtained for an intermediate composition x=0.8.

  19. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, John; Mishra, Ashok Kumar [Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  20. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  1. Concentration depolarization of luminescence of Eu3+-doped glasses

    International Nuclear Information System (INIS)

    Bodunov, E.N.; Lebedev, V.P.; Malyshev, V.A.; Przheuskij, A.K.

    1989-01-01

    Experimental study of concentrational depolarization luminescence (CDL) of phosphate and germanate glasses, containing Eu 3+ ions, has been carried out. On the basis of three-body self-consistent approximation the theory of CDL is conceived, which takes into account Eu-Eu interaction of higher multipolarities. By comparing the theory with the experiment energy transfer radii for Eu-Eu dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions are determined. The attempt to discriminate Eu-Eu interaction types in the studied range of Eu 3+ ion concentration change has failed owing to law accuracy of luminescence emittance anisotropy measurement

  2. Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

    DEFF Research Database (Denmark)

    Beierholm, Anders Ravnsborg; Lindvold, Lars René; Andersen, Claus Erik

    2011-01-01

    of experiments performed using two organic scintillators, one commercially available and one custom made. The luminescent lifetimes of the scintillators have been measured using i) optical excitation by pulsed UV light, and ii) irradiative excitation using high-energy X-rays from a linac. A luminescent lifetime...... component on the order of 20 μs was estimated for the custom-made organic scintillator, while the commercial scintillator exhibited a fast component of approximately 5 ns lifetime (7 ns as stated by the manufacturer) and an approximate 10 μs lifetime slow component. Although these lifetimes are not long...

  3. Stimulation of mineral-specific luminescence from multi-mineral samples

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Poolton, N.R.J.

    1995-01-01

    Grains of quartz and potassium-rich feldspar have been mixed in known ratios to produce samples of known mineralogical composition, analogous to those found in natural sedimentary deposits. The variation of the green light stimulated luminescence (GLSL), as a function of sample temperature......, was measured for each of these mixtures in order to attempt to isolate a luminescence signal that originates specifically from just one of the components. As the sample is heated from room temperature to 450 degrees C, thermal quenching reduces the signal from the quartz component to near zero, while that from...... geological samples....

  4. Luminescent hybrid materials functionalized with lanthanide ethylenodiaminotetraacetate complexes containing β-diketonate as antenna ligands

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Franklin P.; Costa, Israel F.; Espínola, José Geraldo P.; Faustino, Wagner M.; Moura, Jandeilson L. [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Brito, Hermi F.; Paolini, Tiago B. [Departamento de Química Fundamental-Instituto de Química da Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Felinto, Maria Cláudia F.C. [Instituto de Pesquisas energéticas e Nucleares-IPEN, 05508-900 São Paulo, SP (Brazil); Teotonio, Ercules E.S., E-mail: teotonioees@quimica.ufpb.br [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-02-15

    Three organic–inorganic hybrid materials based on silica gel functionalized with (3-aminopropyl)trimethoxysilane (APTS), [3-(2-aminoetilamino)-propil]-trimetoxissilano (DAPTS) and 3-[2-(2-aminoetilamino)etilamino] propiltrimetoxysilane (TAPTS) and subsequently modified with EDTA derivative were prepared by nonhomogeneous route and were then characterized. The resulting materials named SilXN-EDTA (X=1 for APTS, 2 for DAPTS and 3 for TAPTS) were used to obtain new lanthanide Ln{sup 3+}-β-diketonate (Ln{sup 3+}=Eu{sup 3+}, Gd{sup 3+} and Tb{sup 3+}) complexes covalently linked to the functionalized silica gel surfaces (named SilXN-EDTALn-dik, dik=tta, dbm, bzac and acac). The photophysical properties of the new luminescent materials were investigated and compared with those with similar system presenting water molecules coordinated to the lanthanide ions, SilXN-EDTALn-H{sub 2}O. The SilXN-EDTAEu-dik and SilXN-EDTATb-dik systems displayed characteristic red and green luminescence when excited by UV radiation. Furthermore, the quantitative results showed that the emission quantum efficiency (η), experimental intensity parameters Ω{sub 2} and Ω{sub 4}, and Einstein's emission coefficient (A{sub 0J}) of the SilXN-EDTAEu-dik materials were largely dependent on the ligands. Based on the luminescence data, the most efficient intramolecular energy transfer processes were found to the SilXN-EDTAEu-dik (dik: tta and dbm) and SilXN-EDTATb-acac materials, which exhibited more pure emission colors. These materials are promising red and green phosphors, respectively. - Highlights: • New highly luminescent hybrid materials containing lanthanide-EDTA complexes. • The effect of three silylanting agent on the adsorption and luminescent properties has been studied. • The luminescence sensitizing by different β-diketonate ligands have been investigated.

  5. Temperature dependence of the infrared luminescence of ZnSe grown

    International Nuclear Information System (INIS)

    Vakulenko, O.V.; Kravchenko, V.M.

    2000-01-01

    Photoluminescence (PL) spectra of undoped ZnSe crystals grown by the sublimation method are studied within the spectral range 500-1030 nm at T 100/330 K. PL was excited with N 2 , He - Cd, and Ar + lasers. Under Ar + laser excitation (h ν e xc g ), the IP 1.3 eV band is observed in addition to the red 1.9 eV band. The temperature dependences of the peak intensities (TD) of both bands are measured. The TD of IR band has a peak at 260 K and flattens out at T < 180. To interpret such a TD, two models are considered the model of multi charge donor as a luminescence center and the model of simple donor. It is suggested that the IR PL band may be due to intracentor transitions between some levels of multi charge donor-like defects of the ZnSe lattice

  6. Aluminum Nitride Ceramic as an Optically Stimulable Luminescence Dosimeter Plate

    Directory of Open Access Journals (Sweden)

    Go Okada

    2016-04-01

    Full Text Available Photostimulable storage phosphors have been used in a wide range of applications including radiation measurements in one- and two-dimensional spaces, called point dosimetry and radiography. In this work, we report that an aluminum nitride (AlN ceramic plate, which is practically used as a heat sink (SHAPAL®, Tokuyama Corp., Yamaguchi, Japan, shows good optically-stimulated luminescence (OSL properties with sufficiently large signal and capability for imaging applications, and we have characterized the AlN plate for OSL applications. Upon interaction with X-rays, the sample color turns yellowish, due to a radiation-induced photoabsorption band in the UV-blue range below ~500 nm. After irradiating the sample with X-rays, an intense OSL emission can be observed in the UV (360 nm spectral region during stimulation by red light. Although our measurement setup is not optimized, dose detection was confirmed as low as ~3 mGy to over 20 Gy. Furthermore, we have successfully demonstrated that the SHAPAL® AlN ceramic plate has great potential to be used as an imaging plate in radiography.

  7. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method

    International Nuclear Information System (INIS)

    Luo Xixian; Cao Wanghe; Zhou Lixin

    2007-01-01

    ZnS:Ag and (Zn,Cd)S:Ag nanoparticles with particle sizes of about 50 and 150 nm have been prepared by hydrothermal method. The effects of hydrothermal process on the physical and luminescence characteristics are investigated. The photoluminescence intensities of hydrothermal treatment ZnS:Ag samples are 10 times higher than that of non-treated samples after annealing at 800 deg. C

  8. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    Science.gov (United States)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  9. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  10. A luminescence-optical spectroscopy study of Rb2KTiOF5 single crystals

    Science.gov (United States)

    Pustovarov, V. A.; Ogorodnikov, I. N.; Kozlov, A. V.; Isaenko, L. I.

    2018-06-01

    Large single crystals of Rb2KTiOF5 (RKTF), grown by slow solidification method, were studied (7-400 K) for various types of optical and radiation effects. The optical absorption spectra, the parameters of the Urbach rule at 293 K (σ = 0.24 and EU = 105 meV), the low-temperature reflection spectra (T = 7 K, E = 3.7-22 eV) were determined. The luminescence spectra (1.2-6.2 eV) and luminescence decay kinetics are studied upon excitation by a nanosecond electron beam (PCL), ultraviolet and vacuum ultraviolet light (PL), or X-rays radiation (XRL). PL excitation spectra under selective photoexcitation by synchrotron radiation (E = 3.7-22 eV, T = 7 K), temperature dependences of the intensity of steady-state XRL in different emission bands, as well as thermoluminescence (7-400 K) are studied. In the visible spectral region, we detected three luminescence bands that were attributed to radiative annihilation of intrinsic excitons (2.25 eV), recombination-type luminescence (2.1 eV) and luminescence of higher TiOF5 complexes (1.9 eV). The exponential component with lifetime of about 19 μs was revealed in the PCL decay kinetics at 2.25 eV. The low-energy onset of the intrinsic host absorption Ec = 3.55 eV was determined on the basis of the experimental data obtained. Spectra of optical constants were calculated by the Kramers-Krönig method, the energy of the onset of the interband transitions Eg = 4.2 eV was determined, and the main peaks of the optical spectra were identified.

  11. Review of present trends in luminescence research

    International Nuclear Information System (INIS)

    Williams, F.; Delaware Univ., Newark

    1981-01-01

    The difficulties of a comprehensive review of the broad and diverse branches of molecular and solid-state luminescence research are noted. This review is thus limited to selective topics. Some general concepts and trends are then introduced, including: luminescence excitation as a collective excitation of a many-body problem, encompassing in some cases the source and probe in its formulation; continuing trends towards extremal conditions of experiments and towards inhomogeneous and structured materials, from man-made superlattices to biological materials; and increased attention to applications of luminescence research to lamps, displays, solar devices and biological research. Representative recent and new specific research areas include: site selection spectroscopy and 'hole burning'; picosecond delayed coherent anti-Stokes Raman scattering; computer simulation of dynamical processes in luminescence; electron-hole expansion from the Fermi pressure of e-h plasmas; and hot electron phenomena and hot luminescence. Finally some pending problems in luminescence research, such as reconciling the configuration coordinate model and the electronic band theory and clarifying multi-phonon non-radiative processes, are discussed. (orig.)

  12. Exploring procedures for the rapid assessment of optically stimulated luminescence range-finder ages

    International Nuclear Information System (INIS)

    Roberts, Helen M.; Durcan, Julie A.; Duller, Geoff A.T.

    2009-01-01

    Optically stimulated luminescence (OSL) dating of sediments is a lengthy, labour-intensive, and time-consuming procedure. However, in some situations a rough approximation of the OSL age is all that is necessary e.g. for a pilot field campaign, to plan a sampling strategy, or to determine the resolution required for a dating campaign. Thus, it would be useful to establish an approximate OSL age without the lengthy and involved processes normally used. This paper explores how the standard procedures involved in OSL age determinations can be simplified to yield range-finder ages. Three areas are examined, namely, laboratory preparation, D e estimation, and dose-rate determination. The consequences of circumventing some of the preparation and measurement steps of conventional OSL dating are examined for a variety of sediments, by comparing the OSL range-finder ages to those obtained using full quartz OSL preparation and measurement procedures.

  13. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    Science.gov (United States)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  14. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    Science.gov (United States)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  15. Adaptation of low-temperature autoradiography to tritium detection by elimination of a parasitic luminescence (1960)

    International Nuclear Information System (INIS)

    Pellerin, P.; Fallot, P.; Laine-Boszormenyi; Serrel, F.

    1960-01-01

    Low-temperature autoradiography, already described by one of the authors, has been applied to the study of the diffusion of tritiated water in the animal organism. In the course of this work some striking disagreements were observed between the measured radioactivity of water in the organs and the relative intensity of blackening of the photographic plate on which they are projected. The cause of these paradoxical images was found in a phenomenon of luminescence, induced by the very soft beta. The application of the low-temperature autoradiography technique to the detection of tritium beta rays therefore involves the use of filters opaque to ultraviolet and visible light, but permitting the autoradiographic recording of radioactivity. (author) [fr

  16. UV induced photoluminescence and thermally stimulated luminescence of ThO2:Tb3+ phosphor

    International Nuclear Information System (INIS)

    Godbole, S.V.; Nagpal, J.S.; Page, A.G.

    2000-01-01

    Thorium oxide doped with trivalent terbium ions offers itself as a novel phosphor with its photo- and thermally-stimulated luminescence (PL and TSL) characteristics showing a marked change on sustained exposure to 254 and 365 nm ultraviolet (UV) radiation. The reduction in luminescence intensity of Tb 3+ ions, on irradiation with 254 nm photons and subsequent restoration on exposure to 365 nm, has been correlated with the complimentary behaviour in UV-induced TSL. These changes are, in turn, ascribed to inter-configurational (f-d) transitions and e-h formation and recombination processes. UV radiation induced TSL output increases linearly with incident UV radiant energy at a constant radiation flux; however, for a fixed exposure, TSL output increases with increase in radiant flux

  17. Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II Complexes

    Directory of Open Access Journals (Sweden)

    Nelia Bustamante

    2018-02-01

    Full Text Available Temperature is a key parameter in many fields and luminescence-based temperature sensing is a solution for those applications in which traditional (mechanical, electrical, or IR-based thermometers struggle. Amongst the indicator dyes for luminescence thermometry, Ru(II polyazaheteroaromatic complexes are an appealing option to profit from the widespread commercial technologies for oxygen optosensing based on them. Six ruthenium dyes have been studied, engineering their structure for both photostability and highest temperature sensitivity of their luminescence. The most apt Ru(II complex turned out to be bis(1,10-phenanthroline(4-chloro-1,10-phenanthrolineruthenium(II, due to the combination of two strong-field chelating ligands (phen and a substituent with electron withdrawing effect on a conjugated position of the third ligand (4-Clphen. In order to produce functional sensors, the dye has been best embedded into poly(ethyl cyanoacrylate, due to its low permeability to O2, high temperature sensitivity of the indicator dye incorporated into this polymer, ease of fabrication, and excellent optical quality. Thermosensitive elements have been fabricated thereof as optical fiber tips for macroscopic applications (water courses monitoring and thin spots for microscopic uses (temperature measurements in cell culture-on-a-chip. With such dye/polymer combination, temperature sensing based on luminescence lifetime measurements allows 0.05 °C resolution with linear response in the range of interest (0–40 °C.

  18. Time-resolved luminescence measurements of the magnetic field effect on paramagnetic photosensitizers in photodynamic reactions

    Science.gov (United States)

    Mermut, O.; Bouchard, J.-P.; Cormier, J.-F.; Desroches, P.; Diamond, K. R.; Fortin, M.; Gallant, P.; Leclair, S.; Marois, J.-S.; Noiseux, I.; Morin, J.-F.; Patterson, M. S.; Vernon, M.

    2008-02-01

    The development of multimodal molecular probes and photosensitizing agents for use in photodynamic therapy (PDT) is vital for optimizing and monitoring cytotoxic responses. We propose a combinatorial approach utilizing photosensitizing molecules that are both paramagnetic and luminescent with multimodal functionality to perturb, control, and monitor molecular-scale reaction pathways in PDT. To this end, a time-domain single photon counting lifetime apparatus with a 400 nm excitation source has been developed and integrated with a variable low field magnet (0- 350mT). The luminescence lifetime decay function was measured in the presence of a sweeping magnetic field for a custom designed photosensitizing molecule in which photoinduced electron transfer was studied The photosensitizer studied was a donor-acceptor complex synthesized using a porphyrin linked to a fullerene molecule. The magneto-optic properties were investigated for the free-base photosensitizer complex as well as those containing either diamagnetic (paired electron) or paramagnetic (unpaired electron) metal centers, Zn(II) and Cu(II). The magnetic field was employed to affect and modify the spin states of radical pairs of the photosensitizing agents via magnetically induced hyperfine and Zeeman effects. Since the Type 1 reaction pathway of an excited triplet state photosensitizer involves the production of radical species, lifetime measurements were conducted at low dissolved oxygen concentration (0.01ppm) to elucidate the dependence of the magnetic perturbation on the photosensitization mechanistic pathway. To optimize the magnetic response, a solvent study was performed examining the dependence of the emission properties on the magnetic field in solutions of varying dielectric constants. Lastly, the cytotoxicity in murine tumor cell suspensions was investigated for the novel porphyrin-fullerene complex by inducing photodynamic treatments and determining the associated cell survival.

  19. Detection of irradiated prawns by photostimulated luminescence

    International Nuclear Information System (INIS)

    Chen, Susu; Saito, Kimie; Hagiwara, Shoji; Todoriki, Setsuko; Nakajima, Mitsutoshi

    2011-01-01

    The purpose of this study was to investigate how photostimulated luminescence (PSL) can be applied to verify whether prawns have been irradiated by analyzing their intestinal tracts. Prawns from five different locations which were irradiated at doses of 1 kGy of γ-radiations were analyzed using the Japanese model PSL system. The results showed that the integrated photon counts of all the irradiated samples exceeded the upper threshold value (T 2 =4000 counts/90 s), whereas those of the non-irradiated samples were blew than the lower threshold value (T 1 =1000 counts/90 s). Moreover, using the other parameters which were decrease of intensity after optically stimulation and increase of intensity by optically stimulation, a clear difference was observed between non-irradiated and 1 kGy irradiated samples. Therefore, the Japanese model PSL system can be used as a screening method for detecting irradiated prawns by analyzing their intestinal tracts. (author)

  20. Responsive hybrid inorganic-organic system derived from lanthanide luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Jiang, Lasheng; Yang, Jinglian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China)

    2016-05-15

    Highlights: • A novel covalent hybrid material was used to detect hemoglobin. • All the recognition experiments were performed in buffer solution. • Porous nano-structures was extensively studied for the recognition. - Abstract: Terbium ions were incorporated into new organic-inorganic matrices to achieve intense green emissions. Hemoglobin (HB) interactions lead to dramatic changes in the luminescence emission intensities. Infrared spectra, morphological studies and photoluminescence give information for the speciation and process of hemoglobin additions. The porous material has a large specific surface area of 351 cm{sup 2}/g and the detection limit for HB (0.7 μM) was much lower than its physical doped material (8 μM). This promising hybrid material will lead to the design of versatile optical probes that are efficiently responding to the external targets.

  1. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  2. Effect of temperature on the luminescence of Sm{sup 3+} ions in YAM crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kaczkan, M. [Institute of Microelectronics and Optoelectronics PW, ul. Koszykowa 75, 00-662 Warsaw (Poland); Boruc, Z., E-mail: z.boruc@stud.elka.pw.edu.pl [Institute of Microelectronics and Optoelectronics PW, ul. Koszykowa 75, 00-662 Warsaw (Poland); Turczyński, S. [Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warsaw (Poland); Malinowski, M. [Institute of Microelectronics and Optoelectronics PW, ul. Koszykowa 75, 00-662 Warsaw (Poland)

    2014-11-05

    Highlights: • Different concentration Sm{sup 3+}-doped Y{sub 4}Al{sub 2}O{sub 9} crystals are fabricated by μ-pulling down method. • Thermally activated {sup 4}F{sub 3/2} → {sup 6}H{sub 5/2} emission of Sm{sup 3+} in YAM is studied. • Temperature dependent quenching mechanism of the {sup 4}G{sub 5/2} luminescence is proposed. - Abstract: The spectroscopic features of samarium Sm{sup 3+} activated Y{sub 4}Al{sub 2}O{sub 9} (YAM) crystals are presented and discussed. Temperature sensing properties of Sm{sup 3+}:YAM phosphor was demonstrated over the 300–1200 K range. Temperature dependent luminescence spectra and decay curves for the {sup 4}G{sub 5/2} level of Sm{sup 3+} in YAM were measured. Ratio of the fluorescence intensities arising from the two close lying {sup 4}F{sub 3/2} and {sup 4}G{sub 5/2} levels (with energy separation of ΔE ∼ 1000 cm{sup −1}) followed a straight line pattern, which confirms the Boltzmann distribution of the population, and can be used to measure temperature. The lifetime for the {sup 4}G{sub 5/2} level in 1% Sm doped sample decreases from 1.65 to 0.08 ms with heating from room temperature to 1200 K. This behavior of decays is discussed in terms of radiative and multiphonon decays as well as cross-relaxation dependence on temperature.

  3. Synthesis and luminescence of graphene-nano calcium sulphide composite

    International Nuclear Information System (INIS)

    Sharma, Geeta; Patil, K.R.; Gosavi, S.W.

    2014-01-01

    Graphene-nanocrystalline calcium sulphide has been synthesized using in-situ reduction of calcium salt and graphene oxide. Graphene oxide was prepared using Hummer's method. Surface morphology and crystal structure of samples were observed by transmission electron microscopy (TEM) and X-Ray diffraction (XRD). Ultra thin graphene and graphene oxide sheets with size ranging between tens to several hundreds of square nanometers are observed in TEM images. The TEM micrographs of G-CaS show that CaS particles are embedded in graphene sheets and the average particle size of CaS particles in the composite is less than 50 nm. The reduction in the intensity of various functional groups in FTIR spectrum also confirms the formation of graphene. The UV-Visible spectra of CaS shows absorption peak at 220 nm with a small shoulder at 250 nm whereas in G-CaS 220 nm absorption peak has reduced intensity and the shoulder at 250 nm has now shifted to 270 nm due to modification in the defect structure of CaS by graphene. CaS and G-CaS shows photoluminescence emission at 470 nm (λ exc . = 375 nm) and 440 nm (λ exc . = 350 nm) respectively, however emission intensity of G-CaS is relatively lower than CaS. Although the emission intensity is found to be lower than CaS, addition of CaS to graphene in G-CaS complex has made graphene luminescent. XPS spectra also indicate reduction of various oxygen containing functional groups in highly reduced graphene oxide and G-CaS. - Highlights: • G-CaS was synthesized using in situ reduction of calcium salt and graphene oxide. • Samples were characterized by XRD, TEM, PL, FTIR, XPS, Raman Spectroscopy. • TEM of GCaS show CaS particles having size less than 50 nm are embedded in graphene. • G-CaS shows PL emission at 440 nm when excited with 350 nm. • PL emission intensity in case of G-CaS is lower than CaS but it is luminescent

  4. A New Optic Technology for Measuring Oxygen Dissolved in Water: Luminescence Dissolved Oxygen (LDO); Nueva tecnologia optica para la medicion de oxigeno disuelto en agua: oxigeno disuelto por luminiscencia (LDO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Continual measurement of oxygen in the active sludge tank is a very important parameter is the biological treatment of waste waters. Traditional electrochemical sensors are based on polarographic or galvanic cells, a technique which produces electrolyte consumption and progressive deterioration of the anode. Both effects inevitable lead to a drift in the measurement signal, which requires periodical calibration. Lange has developed a completely new technique for its new LDO sensor for measuring oxygen concentration in waste waters. This technique is based on the luminescent radiation of a luminescent substance (luminophore) and reduces the determination to the purely physical measurement of time, so that, in theory it is free of drift and there is no need for the use to calibrate the sensor. (Author)

  5. Magnetic, thermal and luminescence properties in room-temperature nanosecond electron-irradiated various metal oxide nanopowders

    Science.gov (United States)

    Sokovnin, S. Yu; Balezin, M. E.; Il’ves, V. G.

    2018-03-01

    By means of pulsed electron beam evaporation in vacuum of targets non-magnetic, in bulk state, Al2O3 and YSZ (ZrO2-8% Y2O3) oxides, magnetic nanopowders (NPs) with a high specific surface were produced. The NPs were subsequently irradiated in air by electrons with energy of 700 keV, using a URT-1 accelerator for 15 and 30 minutes. The magnetic, thermal, and pulsed cathodoluminescence (PCL) characteristics of NPs were measured before and after irradiation. It was established that the electron irradiation non-monotonically changes the magnetization of the pristine samples. To the contrary, a clear correlation between the intensity of PCL and the irradiation doses is found in the oxides. There was a decrease in the intensity of PCL after irradiation. Luminescent and thermal properties reflect the transformation of structural defects in NPs more strongly after the exposure to a pulsed electron beam in comparison with corresponding changes of the NPs magnetic response.

  6. Sound intensity and its measurement

    DEFF Research Database (Denmark)

    Jacobsen, Finn

    1997-01-01

    The paper summarises the basic theory of sound intensity and its measurement and gives an overview of the state of the art with particular emphasis on recent developments in the field. Eighty references are given, most of which to literature published in the past two years. The paper describes...

  7. Determination of organophosphorus pesticides in water samples by using a new sensitive luminescent probe of Eu (III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A., E-mail: azab2@yahoo.com; Anwar, Z.M.; Rizk, M.A.; Khairy, Gasser M.; El-Asfoury, M.H.

    2015-01-15

    This work describes the application of fluorescence for investigating the interactions of Eu(III)-TAN-1,10 phenanthroline (where TAN=4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione) with pesticides Chlorpyrifos, Malathion, Endosulfan, Heptachlor. The complex was synthesized and characterized by elemental analysis, FTIR, x-ray spectroscopy, solid fluorescence and thermal analysis. The results indicated that the composition of this complex is [Eu(TAN){sub 2}(Phen)(H{sub 2}O){sub 2}]Cl. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence at pH=7.5. The interactions of Eu-complex with different pesticides (Chlorpyrifos, Malathion, Endosulfan, and Heptachlor) in aqueous medium have been investigated by fluorescence measurements. The luminescence intensity of the probe is quenched by Malathion and enhanced by (Endosulfan, Heptachlor, and Chlorpyrifos). Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 0.47, 1.02, 0.66, 0.64 µmol/L for Chlorpyrifos, Endosulfan, Heptachlor, and Malathion, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. The emission quantum yield (QY=0.71) of Eu(III)-complex was determined using tris (2,2'-bipyridyl) dichlororuthenium(II) hexahydrate. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, river, and waste water). - Highlights: • A new luminescent probe of Eu (III) complex has been developed for sensing some organophosphorus pesticides. • Four guest pesticides Chlorpyrifos, Malathion

  8. Determination of organophosphorus pesticides in water samples by using a new sensitive luminescent probe of Eu (III) complex

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Anwar, Z.M.; Rizk, M.A.; Khairy, Gasser M.; El-Asfoury, M.H.

    2015-01-01

    This work describes the application of fluorescence for investigating the interactions of Eu(III)-TAN-1,10 phenanthroline (where TAN=4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione) with pesticides Chlorpyrifos, Malathion, Endosulfan, Heptachlor. The complex was synthesized and characterized by elemental analysis, FTIR, x-ray spectroscopy, solid fluorescence and thermal analysis. The results indicated that the composition of this complex is [Eu(TAN) 2 (Phen)(H 2 O) 2 ]Cl. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence at pH=7.5. The interactions of Eu-complex with different pesticides (Chlorpyrifos, Malathion, Endosulfan, and Heptachlor) in aqueous medium have been investigated by fluorescence measurements. The luminescence intensity of the probe is quenched by Malathion and enhanced by (Endosulfan, Heptachlor, and Chlorpyrifos). Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 0.47, 1.02, 0.66, 0.64 µmol/L for Chlorpyrifos, Endosulfan, Heptachlor, and Malathion, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. The emission quantum yield (QY=0.71) of Eu(III)-complex was determined using tris (2,2'-bipyridyl) dichlororuthenium(II) hexahydrate. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, river, and waste water). - Highlights: • A new luminescent probe of Eu (III) complex has been developed for sensing some organophosphorus pesticides. • Four guest pesticides Chlorpyrifos, Malathion, Endosulfan, and

  9. Dosimetry based on thermally and optically stimulated luminescence

    International Nuclear Information System (INIS)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and α-Al 2 O 3 have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in α-Al 2 O 3 :C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of αAl 2 O 3 :C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for γ-irradiated αAl 2 O 3 :C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au)

  10. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  11. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  12. High pressure luminescence studies of localized excitations in ZnS doped with Pb2+ and Mn2+

    International Nuclear Information System (INIS)

    House, G.L.; Drickamer, H.G.

    1977-01-01

    High pressure luminescence measurements have been made on ZnS doped with Pb +2 and Mn +2 . The data include changes in peak energy and shape, integrated intensities, and lifetimes. These localized emissions are treated in terms of a single configuration coordinate model. For Pb +2 the emission peak shifted to lower energy by a moderate amount and narrowed. For excitation in the Pb +2 absorption the intensity was independent of pressure, which is consistent with the fact that the energy barrier for radiationless return to the ground state was high at all pressures. For excitation in the ZnS absorption edge the intensity decreased significantly with pressure above about 80 kbar. Data on shifts of the conduction band with pressure would indicate that one is approaching a transition from a direct to indirect transition at high pressure so that decrease in emission intensity may be associated with decreased absorption efficiency. The Mn+ 2 emission peak shifted strongly to lower energy with increasing pressure. The direction and magnitude of the shift were consistent with the predictions of ligand field theory. The intensity doubled in 100 kbar, while the lifetime decreased by roughly a factor of 2. These results could be described in terms of a model for a phonon assisted transition. In addition, peak location, intensity, and lifetime measurements were made on ZnS:Pb:Mn. There is clear evidence of energy transfer by exchange, but in addition there is a nonradiative process in the doubly doped crystal which affects both intensities and lifetimes

  13. Signal intensity analysis and optimization for in vivo imaging of Cherenkov and excited luminescence

    Science.gov (United States)

    LaRochelle, Ethan P. M.; Shell, Jennifer R.; Gunn, Jason R.; Davis, Scott C.; Pogue, Brian W.

    2018-04-01

    During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100×  stronger than CEL signals. As a result, imaging signals from depths  <15 mm is reasonable for Cherenkov light, and depths  <3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues.

  14. Luminescence studies on Sb3+ co-doped Y2Sn2O7: Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, Sandeep; Sudarsan, V.; Vatsa, R.K.

    2008-01-01

    Pyrochlore-type oxides (A 2 B 2 O 7 ) have emerged as important host matrices for lanthanide doped luminescent materials due to their good thermal stability. Due to the higher symmetry around the A and B cations in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. One way to circumvent this problem is to incorporate ions like Sb 3+ or Bi 3+ in the lattice so that the lattice get distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterisation of Sb 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles prepared by the hydrolysis of Y 3+ , Sn 4+ , Tb 3+ and Sb 3+ in ethylene glycol medium followed by heating at 700 deg C for 4 hours. From XRD studies it is confirmed that as prepared sample is amorphous and heat treatment at 700 deg C results in the formation of highly crystalline Y 2 Sn 2 O 7 phase having pyrochlore structure

  15. Phase transition and luminescence properties from vapor etched silicon

    International Nuclear Information System (INIS)

    Aouida, S.; Saadoun, M.; Ben Saad, K.; Bessais, B.

    2006-01-01

    In this work, we present a study on the structure and photoluminescence (PL) properties of a non-conventional ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 (white powder) obtained from HNO 3 /HF chemical vapor etching (CVE) of silicon wafers. The CVE method leads either to the formation of luminescent Porous Silicon (PS) or SiO x /Si-containing (NH 4 ) 2 SiF 6 depending on the experimental conditions. At specific conditions (i.e., HNO 3 / HF volume ratio > 1 / 4), the CVE technique can generate instead of PS, a (NH 4 ) 2 SiF 6 phase where SiO x /Si particles are embedded. The (NH 4 ) 2 SiF 6 marketed powder is not luminescent, while that obtained from silicon vapor-etching presents a noticeable intense and stable photoluminescence (PL), which was found to have mainly two shoulders at 1.98 and 2.1 eV. Two processes have been proposed to explain this PL property. First, the visible luminescence around 1.98 eV would come from silicon nanoparticles embedded in the powder, having a distribution size that does not allow SiO x species to influence their own PL. Second, the PL shoulder around 2.1 eV would originate from small silicon nanoparticles trapped in SiO x features, leading to oxide related states that may trap electrons or excitons, depending on the silicon nanoparticle size, wherein radiative recombination occurs. The PL shoulder could become broader at low temperatures suggesting the existence of radiative recombination in SiO x related defects

  16. Hydrothermal synthesis and upconversion luminescent properties of YVO4:Yb3+,Er3+ nanoparticles

    International Nuclear Information System (INIS)

    Liang, Yanjie; Chui, Pengfei; Sun, Xiaoning; Zhao, Yan; Cheng, Fuming; Sun, Kangning

    2013-01-01

    Graphical abstract: YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The PL intensity of the sample increases with the increase of annealing temperature and excitation power. Under the excitation of a 980 nm diode laser, the samples show bright green luminescence. Highlights: ► YVO 4 :Yb 3+ ,Er 3+ nanoparticles were prepared by a hydrothermal approach. ► Bright green luminescence is observed under the excitation of a 980 nm laser diode. ► The PL intensity increases with the increase of annealing temperature. ► Energy transfer properties between Yb 3+ ion and Er 3+ ion were analyzed. -- Abstract: In this paper, YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The nanostructures, morphologies and upconversion luminescent properties of the as-prepared YVO 4 :Yb 3+ ,Er 3+ upconverting nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescent (PL) spectra. XRD results indicate that all the diffraction peaks of samples can be well indexed to the tetragonal phase of YVO 4 . TEM images demonstrate that the samples synthesized hydrothermally consist of granular-like nanoparticles ranging in size from about 30 to 50 nm. After being calcined at 500–800 °C for 2 h, the grain sizes of nanoparticles increase slightly. Additionally, the as-prepared nanoparticles show bright green luminescence corresponding to the 2 H 11/2 → 4 I 15/2 and 4 S 3/2 → 4 I 15/2 transitions of Er 3+ ions under the excitation of a 980 nm diode laser, which might find potential applications in fields such as phosphor powders, infrared detection and display devices

  17. Synthesis and luminescence of Eu3+ and Tb3+ complexes with novel calix[4]arene ligands carrying 2,2'-bipyridine subunits

    International Nuclear Information System (INIS)

    Sabbatini, N.; Guardigli, M.; Manet, I.; Ungaro, R.; Casnati, A.; Fischer, C.; Ziessel, R.; Ulrich, G.

    1995-01-01

    Eu 3+ and Tb 3+ complexes with novel branched calix[4]arene ligands incorporating 2,2' -bipyridine subunits functionalized in the 6- or 5,5'-positions have been synthesized and their photophysical properties investigated. High luminescence intensity was obtained for the Eu 3+ complex of the calix[4]arene ligand carrying four 5,5' -substituted- 2,2' -bipyridines, which has high molar extinction coefficients (ε max 39 600 M -1 cm -1 ) and a high luminescence quantum yield (15%). (authors). 12 refs., 2 figs., 1 tab

  18. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence

    Science.gov (United States)

    Nicolaides, Lena; Mandelis, Andreas

    2000-01-01

    A high-spatial-resolution dynamic experimental imaging setup, which can provide simultaneous measurements of laser- induced frequency-domain infrared photothermal radiometric and luminescence signals from defects in teeth, has been developed for the first time. The major findings of this work are: (1) radiometric images are complementary to (anticorrelated with) luminescence images, as a result of the nature of the two physical signal generation processes; (2) the radiometric amplitude exhibits much superior dynamic (signal resolution) range to luminescence in distinguishing between intact and cracked sub-surface structures in the enamel; (3) the radiometric signal (amplitude and phase) produces dental images with much better defect localization, delineation, and resolution; (4) radiometric images (amplitude and phase) at a fixed modulation frequency are depth profilometric, whereas luminescence images are not; and (5) luminescence frequency responses from enamel and hydroxyapatite exhibit two relaxation lifetimes, the longer of which (approximately ms) is common to all and is not sensitive to the defect state and overall quality of the enamel. Simultaneous radiometric and luminescence frequency scans for the purpose of depth profiling were performed and a quantitative theoretical two-lifetime rate model of dental luminescence was advanced.

  19. Sintering process of Eu doped luminescent glass prepared from porous glass

    International Nuclear Information System (INIS)

    Akai, T; Murakami, M; Yamashita, M; Okajima, T; Umesaki, N

    2011-01-01

    Eu doped high silica glass prepared by sintering porous glass exhibits blue luminescence with high quantum efficiency. In this work, we studied effects of sintering temperature on valance state of europium ion. To investigate a change of valance state of Eu, X-ray absorption near edge structure (XANES) spectroscopy measurements were carried out. Intensity of blue emission at around 430nm drastically increases when the sintering temperature is above 1000 deg. C. From XANES spectra, it is found that almost all the Eu exist as Eu 3+ in a samples sintered below 900 deg. C, while more than 70% of Eu exist as Eu 2+ in the sample sintered at 1050 deg. C and 1100 deg. C. The drastic change of oxidation state of europium ion between 900 and 1050 deg. C is discussed in relation to the structural change probed by infrared (IR) spectroscopy.

  20. Characterization of UV written waveguides with luminescence microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Rosbirk, Tue

    2005-01-01

    Luminescence microscopy is used to measure the refractive index profile and molecular defect distribution of UV written waveguides with a spatial resolution of ~0.4 mm and high signal-to-noise ratio. The measurements reveal comlex waveguide formation dynamics with significant topological changes...... in the core profile. In addition, it is observed that thewaveguide formation process requires several milliseconds of UV exposure before starting....

  1. Linear least-squares method for global luminescent oil film skin friction field analysis

    Science.gov (United States)

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  2. Luminescence behavior of the dibenzoyl methane europium(III) complexes in sol-gel derived host materials

    International Nuclear Information System (INIS)

    Wang Feng; Fan Xianping; Wang Minquan; Zhang Xianghua

    2005-01-01

    The luminescence behavior of the dibenzoyl methane europium(III) complexes (Eu(DBM) 3 ) in sol-gel derived host materials have been investigated. The steady-state excitation and emission spectra and the time-resolved spectra of the 1% EuCl 3 and 3% DBM co-doped gel indicated an efficient ligand-to-metal energy transfer. The Eu(DBM) 3 complexes in the gel showed longer 5 D 0 lifetimes in comparison with Eu(DBM) 3 .3H 2 O complexes. The luminescence intensity of the 1% EuCl 3 and 3% DBM co-doped gel decreased continuously with increasing temperature and time of heat treatment, which indicated the gradual decomposition of the Eu(DBM) 3 complexes in the gel during heat treatment

  3. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd{sub 6}MoO{sub 12}:Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Wei, Donglei [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of); Huang, Yanlin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Kim, Sun Il [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of); Yu, Young Moon [Pukyong National University, LED-Marin Convergence Technology R and BD Center (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of)

    2013-09-15

    A novel red-emitting nano-phosphor of Eu{sup 3+}-doped Gd{sub 6}MoO{sub 12} was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} of Eu{sup 3+} ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd{sub 6}MoO{sub 12}:Eu{sup 3+} nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips.

  4. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region; Etude des processus d`absorption et de transfert d`energie au sein de materiaux inorganiques luminescents dans le domaine UV et VUV

    Energy Technology Data Exchange (ETDEWEB)

    Mayolet, A

    1995-11-29

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the `impurity bound exciton` model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author) 134 refs.

  5. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    International Nuclear Information System (INIS)

    Singh, L Robindro; Ningthoujam, R S; Sudarsan, V; Srivastava, Iti; Singh, S Dorendrajit; Dey, G K; Kulshreshtha, S K

    2008-01-01

    Nanoparticles of Eu 3+ doped Y 2 O 3 (core) and Eu 3+ doped Y 2 O 3 covered with Y 2 O 3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 deg. C, followed by heating at 500 and 900 deg. C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 deg. C heated samples respectively. Based on the luminescence studies of 500 and 900 deg. C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu 3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu 3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu 3+ environment in amorphous Y (OH) 3 is different from that in crystalline Y 2 O 3 . For a fixed concentration of Eu 3+ doping, there is a reduction in Eu 3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu 3+ increases with increase of crystallinity

  6. Luminescent properties and structure of multicomponent naphthalene-{beta}-cyclodextrin complexes. 1. Effect of adding third parties, o-carborane or/and adamantane

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, Valery B. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation); Avakyan, Vitaly G., E-mail: avak@photonics.ru [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Rudyak, Vladimir Y.; Alfimov, Michail V. [Photochemistry Center of Russian Academy of Sciences, 119421 Moscow, Novatorov 7a (Russian Federation); Vershinnikova, Tatiana G. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Moscow region, Chernogolovka (Russian Federation)

    2011-09-15

    Luminescence spectra of water solution of {beta}-cyclodextrin ({beta}-CD) inclusion complexes with naphthalene have been studied in the presence of carcass compounds (CC), adamantane and ocarborane, added in solution as the third parties. It was observed that the CC structure completely determines luminescence type displayed by the three-component complex. Adding adamantane to the solution leads to the disappearance of the spontaneous excimer fluorescence observed usually along with a monomer fluorescence of naphthalene and the appearance of the long lived phosphorescence at room temperature. At the same time, introducing o-carborane in solution of {beta}-CD inclusion complexes with naphthalene results in the dramatic growth of intensity of the excimer band at the expense of lowering intensity of monomer fluorescence. These phenomena were explained using results of the quantum-chemical calculation of the structure and complexation energies at the semi-empirical PM3 and DFT levels of theory. - Highlights: > Structure of carcass compounds determines luminescence types for naphthalene - betaCD complex. > Adding o-carborane leads to the growth of excimer fluorescence at low naphthalene concentrations. > Adding adamantane leads to the room temperature phosphorescence without deoxygenation.

  7. Piezoelectric and deformation potential effects of strain-dependent luminescence in semiconductor quantum well structures

    DEFF Research Database (Denmark)

    Zhang, Aihua; Peng, Mingzeng; Willatzen, Morten

    2017-01-01

    The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain, in the frame......The mechanism of strain-dependent luminescence is important for the rational design of pressure-sensing devices. The interband momentum-matrix element is the key quantity for understanding luminescent phenomena. We analytically solved an infinite quantum well (IQW) model with strain......, in the framework of the 6 × 6 k·p Hamiltonian for the valence states, to directly assess the interplay between the spin-orbit coupling and the strain-induced deformation potential for the interband momentum-matrix element. We numerically addressed problems of both the infinite and IQWs with piezoelectric fields...... to elucidate the effects of the piezoelectric potential and the deformation potential on the strain-dependent luminescence. The experimentally measured photoluminescence variatio½n as a function of pressure can be qualitatively explained by the theoretical results....

  8. Apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Sante Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  9. Radiation-induced luminescence from dry and hydrated DNA and related macromolecules

    International Nuclear Information System (INIS)

    Al-Kazwini, A.T.; O'Neill, P.; Fielden, E.M.; Adams, G.E.

    1988-01-01

    The radiation-induced luminescence from three types of fibrous DNA and a series of polydeoxynucleotides was measured under vacuum or in the presence of oxygen at 77 and 293K. The in-pulse emission spectra, generated by electrons with energies 50% water by wt (1.2:1 w/w, H 2 O/DNA), the in-pulse luminescence spectrum is similar to that of dry DNA. These findings are discussed in terms of energy or charge migration induced in DNA upon irradiation and the possible effects of conformational changes, caused by hydration, on charge migration. (author)

  10. A change in the luminescence spectra of plant cells induced by gamma-radiation

    International Nuclear Information System (INIS)

    Arias, P.U.; Vagabova, M.Eh.; Karnaukhov, V.N.

    1988-01-01

    The ratio of the intensity of radiation within the red spectrum (680 nm) to that within the green (530 mm) spectrum of self-luminescence of plicated (folded) parenchyma of pine needles χ=I 680 /I 530 might be used as a characteristic parameter indicating for physiological status of the plant. The value of this parameter χ may be a criterion for estimation of chemical and radioactive contamination of the environment

  11. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  12. Measurements of acoustic pressure at high amplitudes and intensities

    International Nuclear Information System (INIS)

    Crum, L A; Bailey, M R; Kaczkowski, P; McAteer, J A; Pishchalnikov, Y A; Sapozhnikov, O A

    2004-01-01

    In our research group, we desire measurements of the large pressure amplitudes generated by the shock waves used in shock wave lithotripsy (SWL) and the large acoustic intensities used in High Intensity Focused Ultrasound (HIFU). Conventional piezoelectric or PVDF hydrophones can not be used for such measurements as they are damaged either by cavitation, in SWL applications, or heat, in HIFU applications. In order to circumvent these difficulties, we have utilized optical fiber hydrophones in SWL that do not cavitate, and small glass probes and a scattering technique for measurements of large HIFU intensities. Descriptions of these techniques will be given as well as some typical data

  13. Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi.

    Science.gov (United States)

    Bassler, B L; Wright, M; Silverman, M R

    1994-05-01

    Density-dependent expression of luminescence in Vibrio harveyi is regulated by the concentration of extracellular signal molecules (autoinducers) in the culture medium. A recombinant clone that restored function to one class of spontaneous dim mutants was found to encode a function required for the density-dependent response. Transposon Tn5 insertions in the recombinant clone were isolated, and the mutations were transferred to the genome of V. harveyi for examination of mutant phenotypes. Expression of luminescence in V. harveyi strains with transposon insertions in one locus, luxO, was independent of the density of the culture and was similar in intensity to the maximal level observed in wild-type bacteria. Sequence analysis of luxO revealed one open reading frame that encoded a protein, LuxO, similar in amino acid sequence to the response regulator domain of the family of two-component, signal transduction proteins. The constitutive phenotype of LuxO- mutants indicates that LuxO acts negatively to control expression of luminescence, and relief of repression by LuxO in the wild type could result from interactions with other components in the Lux signalling system.

  14. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region

    International Nuclear Information System (INIS)

    Mayolet, A.

    1995-01-01

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the 'impurity bound exciton' model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author)

  15. Luminescence spectroscopy of Rb2KTiOF5 oxyfluoride single crystals

    Science.gov (United States)

    Kozlov, A. V.; Pustovarov, V. A.; Sarychev, M. N.; Isaenko, L. I.

    2017-09-01

    Spectra of photoluminescence (PL) and X-ray excited luminescence (XRL) in region of 1.5-5.5 eV, PL excitation spectra using synchrotron radiation (3.7-22 eV), time-resolved impulse cathode-luminescence (ICL) spectra, the temperature depending of the XRL, decay kinetics as well as thermoluminescence curves were measured for single crystals Rb2KTiOF5, a promising nonlinear optical material. Single crystals are transparent in microwave, visible and near UV range, inter-band transition energy is Eg = 4.2 eV. Crystalline structure has two disordered mixed position O/F, phase transition in the region of 215 K. All the obtained results indicate that in luminescence spectra nonelementary band 2.2 eV is connected to the emission of self-trapped excitons. Nonelementary band 2.2 eV associated with the presence local distortion in the octahedron TiOF5. It is observed that at interband excitation in VUV region at energies more than 3.5 Eg the effect of multiplication of electronic excitations appears. That determines the high output of XRL and ICL. Luminescence methods of quality control of grown crystals are proposed.

  16. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  17. Luminescence properties of Sm"3"+ doped YPO_4: Effect of solvent, heat-treatment, Ca"2"+/W"6"+-co-doping and its hyperthermia application

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Ningthoujam, R. S.; Tyagi, A. K.

    2012-01-01

    Sm"3"+ doped YPO_4 spherical nanoparticles are prepared by wet chemical route. Pure YPO_4 shows the tetragonal phase, which is stable up to 900 °C, whereas pure SmPO_4 shows the phase transition from hexagonal to monoclinic when heated above 800 °C. The (2-10 at.%) Sm"3"+ doped YPO_4 shows the mixture of phases of tetragonal and hexagonal, which transform to the tetragonal phase above 800 °C. Infra-red study could distinguish confined water in the pore of hexagonal phase from water present on the surface of particles. Luminescence intensities of Sm"3"+ at 564, 601 and 645 nm are weak in case of as-prepared samples because of high non-radiative rate arising from the H_2O molecules present in pores of hexagonal lattice. The intensities increase for samples heated up to 900 °C because of increase of extent of radiative rate. Luminescence lifetime increases with increase of heat-treatment up to 900 °C. When solvent of as-prepared sample was changed from the H_2O to D_2O, 5 times enhancement in luminescence intensity is observed, which can be ascribed to the lower vibration energy of D-O over H-O, which is near to Sm"3"+. When Y"3"+ and P"5"+ ions are substituted by Ca"3"+ and W"3"+ up to 3 at.%, there is an enhancement of luminescence. In order to use them as bio-labeling in drug delivery for hyperthermia applications, hybrid of Fe_3O_4@YPO_4:7Sm is prepared and heating up to 45 °C is observed under AC magnetic field.

  18. Dosimetry based on thermally and optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and {alpha}-Al{sub 2}O{sub 3} have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in {alpha}-Al{sub 2}O{sub 3}:C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of {alpha}Al{sub 2}O{sub 3}:C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for {gamma}-irradiated {alpha}Al{sub 2}O{sub 3}:C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au) 8 tabs., 59 ills., 90 refs.

  19. Luminescence decay of S Zn::Ag and O Zn:Ga scintillation detectors excited by a pulsed laser

    International Nuclear Information System (INIS)

    Romero, L.; Campos, J.

    1981-01-01

    In the present work a high sensitivity experimental set up for luminescence decay measurements in the 1 0 - 1 sec range has been developed. As an application, luminescence light decay In S Zn:Ag and 0Zn:Ga after excitation by a pulsed N 2 laser has been measured. In SZnrAg, measurements of total light decay was compared with donor acceptor pairs theory. In both substances, spectral evolution in the first 15 sec was investigated. (Author) 4 refs

  20. The role of additives in the recombination luminescence mechanism of irradiated 2-methyltetrahydrofuran glasses

    International Nuclear Information System (INIS)

    Krauss, K.H.; Boes, J.

    1981-01-01

    The radiothermoluminescence (RTL) of γ-irradiated pure glassy 2-methyltetrahydrofuran (2-MTHF) and of 2-MTHF glasses containing additives was measured. For pure 2-MTHF a very weak luminescence peak at 93 K (heating rate 0,05 K/s) was found which in the presence of certain additives was enhanced by several orders of magnitude. Using data of radiothermoluminescence, absorption and phosphorescence measurements and bleaching experiments an attempt was made to derive a reaction mechanism. It was found to exist different possibilities for activation the ionic species to give recombination luminescence. (author)

  1. Luminescence enhancement in irradiated polyethylene

    International Nuclear Information System (INIS)

    Charlesby, A.; Owen, G.P.

    1976-01-01

    Results are presented for the luminescence decay in polyethylene following irradiation at liquid nitrogen temperature and its enhancement on application of an electric field. It is found that both the luminescence enhancement and its subsequent decay may be described by a model involving electron tunnelling from a monoenergetic trap distribution to the parent positive ion. The possible nature of the trap is briefly discussed. (author)

  2. Realizing luminescent downshifting in ZnO thin films by Ce doping with enhancement of photocatalytic activity

    Science.gov (United States)

    Narayanan, Nripasree; Deepak, N. K.

    2018-04-01

    ZnO thin films doped with Ce at different concentration were deposited on glass substrates by spray pyrolysis technique. XRD analysis revealed the phase purity and polycrystalline nature of the films with hexagonal wurtzite geometry and the composition analysis confirmed the incorporation of Ce in the ZnO lattice in the case of doped films. Crystalline quality and optical transmittance diminished while electrical conductivity enhanced with Ce doping. Ce doping resulted in a red-shift of optical energy gap due to the downshift of the conduction band minimum after merging with Ce related impurity bands formed below the conduction band in the forbidden gap. In the room temperature photoluminescence spectra, UV emission intensity of the doped films decreased while the intensity of the visible emission band increased drastically implying the degradation in crystallinity as well as the incorporation of defect levels capable of luminescence downshifting. Ce doping showed improvement in photocatalytic efficiency by effectively trapping the free carriers and then transferring for dye degradation. Thus Ce doped ZnO thin films are capable of acting as luminescent downshifters as well as efficient photocatalysts.

  3. Bright white upconversion luminescence from Er3+/Tm3+/Yb3+-doped titanate-based glasses prepared by aerodynamic levitation method

    Science.gov (United States)

    Zhang, Minghui; Yu, Jianding; Jiang, Wan; Liu, Yan; Ai, Fei; Wen, Haiqin; Jiang, Meng; Yu, Huimei; Pan, Xiuhong; Tang, Meibo; Gai, Lijun

    2017-10-01

    Aerodynamic levitation method was employed to prepare Er3+/Tm3+/Yb3+-doped titanate-based glasses. DTA results show that the glass performs high thermal stability with the glass transition temperature of 799 °C. The interaction among rare earth ions has been discussed by adjusting the relative concentration. Er3+ ions can quench the upconversion luminescence of Tm3+ ions. Tm3+ ions play a strong role in quenching the emissions of Er3+ and Tm3+ when the content of Tm3+ ions is greater than or equal 0.05. From the view of the ratio of red emission to green emission, Tm3+ ions can improve the red emission of Er3+ ions to some extent in contrast with the green emissions of Er3+ ions. 980 nm incident laser can be efficiently absorbed by Yb3+ ions. The relative intensity of red, green, and blue upconversion luminescence has been tuned to obtain white light. The composition with white upconversion luminescence of the color coordinate (0.291, 0.3292) has been found. Moreover, white upconversion luminescence mechanism is a two-photon process of ET, ESA, and cooperative sensitization. Rare earth ions doped titanate-based glasses with bright upconversion luminescence perform potential applications in color display, back light, et al.

  4. Characterization of luminescent samarium doped HfO2 coatings synthesized by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Chacon-Roa, C; Guzman-Mendoza, J; Aguilar-Frutis, M; Garcia-Hipolito, M; Alvarez-Fragoso, O; Falcony, C

    2008-01-01

    Trivalent samarium (Sm 3+ ) doped hafnium oxide (HfO 2 ) films were deposited using the spray pyrolysis deposition technique. The films were deposited on Corning glass substrates at temperatures ranging from 300 to 550 deg. C using chlorides as raw materials. Films, mostly amorphous, were obtained when deposition temperatures were below 350 deg. C. However, for temperatures higher than 400 deg. C, the films became polycrystalline, presenting the HfO 2 monoclinic phase. Scanning electron microscopy of the films revealed a rough surface morphology with spherical particles. Also, electron energy dispersive analysis was performed on these films. The photoluminescence and cathodoluminescence characteristics of the HfO 2 : SmCl 3 films, measured at room temperature, exhibited four main bands centred at 570, 610, 652 and 716 nm, which are due to the well-known intra-4f transitions of the Sm 3+ ion. It was found that the overall emission intensity rose as the deposition temperature was increased. Furthermore, a concentration quenching of the luminescence intensity was also observed

  5. Luminescent properties of complexly substituted oxides Ме2Ln8 (XO46O2 (Me=Sr, Ca; Ln=La, Gd, Eu; X= Si, P

    Directory of Open Access Journals (Sweden)

    A. A. Vasin

    2014-11-01

    Full Text Available In the current work it is established that the maximum intensity of a luminescence of crystalline phosphors with structure silicate-apatite of general formulae: Ca2Eu8Si6(1-xP6xO26, Sr2Gd7.2Eu0.8Si6(1-xP6xO26 and Ca2La8(1-xEu8xSi6O26 is reached at concentration of europium equal 0,15. The maximum intensity of a luminescence of these substances, at replacement in an anion sublattice of tetrahedrons [SiO4]4- on tetrahedrons [PO4]3- takes place at concentration of phosphorus 0,05.

  6. Photoluminescence, reddish orange long persistent luminescence and photostimulated luminescence properties of praseodymium doped CdGeO3 phosphor

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Chen, Li; Fu, Yinrong; Mu, Zhongfei; Wang, Tao; Lin, Jun

    2014-01-01

    Highlights: • A novel phosphor CdGeO 3 :Pr 3+ was synthesized successfully. • The persistent luminescence properties of CdGeO 3 :Pr 3+ were studied. • The photostimulated luminescence properties of CdGeO 3 :Pr 3+ were investigated. • The persistent and photostimulated luminescence mechanisms were discussed in detail. - Abstract: Praseodymium doped CdGeO 3 phosphors were prepared successfully by a conventional high temperature solid-state reaction method. It showed reddish orange long persistent luminescence (LPL) after the short UV-irradiation. The reddish orange photostimulated luminescence (PSL) was also observed upon near infrared stimulation at 980 nm after per-exposure into UV light. The origin of LPL and PSL was identified with the emission from Pr 3+ ions with the aid of traps in host lattice. The optimal concentration of Pr 3+ ions for the brightest photoluminescence (PL) emission and the best LPL characteristic were experimentally to be about 3% and 0.5 mol%, respectively. The trapping and de-trapping processes of charge carriers between shallower and deep traps were illustrated. A model was proposed on the basis of experimental results to study the mechanisms of LPL and PSL

  7. Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation.

    Science.gov (United States)

    Štengl, Václav; Henych, Jiří

    2013-04-21

    Intense ultrasound in a pressurized batch reactor was used for preparation of monolayered MoS2 nanosheets from natural mineral molybdenite. Exfoliation of bulk MoS2 using ultrasound is an attractive route to large-scale preparation of monolayered crystals. To evaluate the quality of delamination, methods like X-ray diffraction, Raman spectroscopy and microscopic techniques (TEM and AFM) were employed. From single- or few-layered products obtained from intense sonication, MoS2 quantum dots (MoSQDs) were prepared by a one-pot reaction by refluxing exfoliated nanosheets of MoS2 in ethylene glycol under atmospheric pressure. The synthesised MoSQDs were characterised by photoluminescence spectroscopy and laser-scattering particle size analysis. Our easy preparation leads to very strongly green luminescing quantum dots.

  8. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  9. Time-resolved luminescence from feldspars: New insight into fading

    DEFF Research Database (Denmark)

    Tsukamoto, S.; Denby, P.M.; Murray, A.S.

    2006-01-01

    Time-resolved infrared optically stimulated luminescence (IR-OSL) signals of K- and Na-feldspar samples extracted from sediments were measured in UV, blue and red detection windows, using a fast photon counter and pulsed IR stimulation (lambda = 875 nm). We observe that the relative contribution ...

  10. Au@NaYF{sub 4}:Tb{sup 3+} core@shell nanostructures: Synthesis and construction of luminescence resonance energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yan; Liu, Guixia, E-mail: liuguixia22@163.com; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2016-03-15

    Luminescence resonance energy transfer (LRET) system can be constructed using NaYF{sub 4}:Tb{sup 3+} luminescence nanocrystals and gold nanoparticles (AuNPs) served as energy donor and acceptor, respectively. The AuNPs modified by cetyltrimethylammonium bromide (CTAB) were synthesized first and NaYF{sub 4}:Tb{sup 3+} shells encapsulated Au cores via a hydrothermal method. The synthesized materials were well characterized by X-ray diffraction (XRD), Fourier-transform infrared spectra (FT-IR), Transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), UV–vis absorption spectra (UV–vis) and photoluminescence (PL) measurement. The results indicate that the synthesized Au@NaYF{sub 4}:Tb{sup 3+} core–shell nanoparticles have spherical morphology with a size of 80–90 nm and the shell layers of NaYF{sub 4}:Tb{sup 3+} nanocrystals have pure cubic structure. The luminescence properties of Au@NaYF{sub 4}:Tb{sup 3+} core–shell nanoparticles are same as those of NaYF{sub 4}:Tb{sup 3+} particles. The LRET process was realized using the core–shell nanoarchitectures due to the absorption spectrum of AuNPs matches well with the major emission peaks of Tb{sup 3+} ions. The LRET experiments have successfully verified the energy transfer between NaYF{sub 4}:Tb{sup 3+} nanocrystals and AuNPs. Additionally, the emission intensities of Tb{sup 3+} ions and the content of AuNPs exhibited a fair linear correlation.

  11. Luminescent converter of neodymium laser radiation

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Golab, S.

    1992-01-01

    The new luminescent converter of neodymium laser radiation has been worked out. Activated inorganic compounds of ytterbium and erbium ions has been used as luminescent agent. The multi-component inorganic glass containing tellurium oxide as well as boron, sodium, magnesium and zinc oxides has been applied as a converter matrix

  12. A new flexible system for measuring thermally and optically stimulated luminescence

    DEFF Research Database (Denmark)

    Markey, B.G.; Bøtter-Jensen, L.; Duller, G.A.T.

    1997-01-01

    . New hardware features include a two-speed sample turntable, a new detachable beta irradiator with a Be window vacuum interface and the incorporation of an on-board minicomputer.,A completely new software concept was developed that allows the user unlimited control of the reader and has, at the same......The automated Riso TL/OSL reader system is used worldwide for luminescence dating, retrospective dosimetry environmental dosimetry and material characterization. In response to requests from many users we have re-designed the reader by incorporating a variety of new hardware and software features...

  13. Measuring modulated luminescence using non-modulated stimulation: Ramping the sample period

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Andersen, C.E.

    2003-01-01

    . Directly analogous results to LM-OSL can, however, be achieved with non-modulated excitation sources, by ramping the sample period (RSP) of luminescence detection. RSP-OSL has the distinct advantage over LM-OSL in that, since the excitation remains at full power, data accumulation times (that can...... be considerable) can be reduced by typically 50%. RSP methods are universally applicable and can be employed, for example, where the excitation source is constant heat, rather than light: here, iso-thermal decay of phosphorescence becomes recorded as a sequence of peaks, corresponding to de-trapping of charge...

  14. Mitochondria Targetable Time-Gated Luminescence Probe for Singlet Oxygen Based on a β-Diketonate-Europium Complex.

    Science.gov (United States)

    Sun, Jingyan; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-12-21

    Singlet oxygen ((1)O2) plays a key role in the photodynamic therapy (PDT) technique of neoplastic diseases. In this work, by using a 9,10-dimethyl-2-anthryl-containing β-diketone, 1,1,1,2,2-pentafluoro-5-(9',10'-dimethyl-2'-anthryl)-3,5-pentanedione (Hpfdap), as a (1)O2-recognition ligand, a novel β-diketonate-europium(III) complex that can act as a luminescence probe for (1)O2, [Eu(pfdap)3(tpy)] (tpy = 2,2',2″-terpyridine), has been designed and synthesized for the time-gated luminescence detection of (1)O2 in living cells. The complex is weakly luminescent due to the quenching effect of 9,10-dimethyl-2-anthryl groups. After reaction with (1)O2, accompanied by the formation of endoperoxides of 9,10-dimethyl-2-anthryl groups, the luminescence quenching disappears, so that the long-lived luminescence of the europium(III) complex is switched on. The complex showed highly selective luminescence response to (1)O2 with a remarkable luminescence enhancement. Combined with the time-gated luminescence imaging technique, the complex was successfully used as a luminescent probe for the monitoring of the time-dependent generation of (1)O2 in 5-aminolevulinic acid (a PDT drug) loaded HepG2 cells during the photodynamic process. In addition, by coloading the complex and a mitochondrial indicator, Mito-Tracker Green, into HepG2 cells, the specific localization of [Eu(pfdap)3(tpy)] molecules in mitochondria of HepG2 cells was demonstrated by confocal fluorescence imaging measurements.

  15. Application of time-correlated single photon counting and stroboscopic detection methods with an evanescent-wave fibre-optic sensor for fluorescence-lifetime-based pH measurements

    International Nuclear Information System (INIS)

    Henning, Paul E; Geissinger, Peter

    2012-01-01

    Quasi-distributed optical fibre sensor arrays containing luminescent sensor molecules can be read out spatially resolved utilizing optical time-of-flight detection (OTOFD) methods, which employ pulsed laser interrogation of the luminosensors and time-resolved detection of the sensor signals. In many cases, sensing is based on a change in sensor luminescence intensity; however, sensing based on luminescence lifetime changes is preferable because it reduces the need for field calibration. Because in OTOFD detection is time-resolved, luminescence-lifetime information is already available through the signal pulses, although in practise applications were restricted to sensors with long luminescence lifetimes (hundreds of ns). To implement lifetime-based sensing in crossed-optical-fibre-sensor arrays for sensor molecules with lifetimes less than 10 ns, two time-domain methods, time-correlated single photon counting and stroboscopic detection, were used to record the pH-dependent emission of a fluorescein derivative covalently attached to a highly-porous polymer. A two-term nonexponential decay function yielded both a good fit for experimental lifetime data during reconvolution and a pH response that matches Henderson–Hasselbalch behaviour, yielding a sensor accuracy of 0.02 pH units. Moreover, strong agreement was obtained for the two lifetime determination methods and with intensity-based measurements taken previously. (paper)

  16. Comparison of Eu(NO3)3 and Eu(acac)3 precursors for doping luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Enrichi, F.; Ricco, R.; Scopece, P.; Parma, A.; Mazaheri, A. R.; Riello, P.; Benedetti, A.

    2010-01-01

    In this study, we report the comparison between Eu 3+ -doped silica nanoparticles synthesized by Stoeber method using Eu(NO 3 ) 3 or Eu(acac) 3 as precursors. The impact of different europium species on the properties of the final silica nanospheres is investigated in details in terms of size, morphology, reachable doping amount, and luminescence efficiency. Moreover, the results obtained for different thermal treatments are presented and discussed. It is shown that the organic complex modify the silica growing process, leading to bigger and irregular nanoparticles (500-800 nm) with respect to the perfectly spherical ones (400 nm) obtained by the nitrate salt, but their luminescence intensity and lifetime is significantly higher when 800-900 o C annealing is performed.

  17. UV induced photoluminescence and thermally stimulated luminescence of ThO{sub 2}:Tb{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Godbole, S.V.; Nagpal, J.S.; Page, A.G. E-mail: agpage@magnum.barc.ernet.in

    2000-08-15

    Thorium oxide doped with trivalent terbium ions offers itself as a novel phosphor with its photo- and thermally-stimulated luminescence (PL and TSL) characteristics showing a marked change on sustained exposure to 254 and 365 nm ultraviolet (UV) radiation. The reduction in luminescence intensity of Tb{sup 3+} ions, on irradiation with 254 nm photons and subsequent restoration on exposure to 365 nm, has been correlated with the complimentary behaviour in UV-induced TSL. These changes are, in turn, ascribed to inter-configurational (f-d) transitions and e-h formation and recombination processes. UV radiation induced TSL output increases linearly with incident UV radiant energy at a constant radiation flux; however, for a fixed exposure, TSL output increases with increase in radiant flux.

  18. Can glacial shearing of sediment reset the signal used for luminescence dating?

    Science.gov (United States)

    Bateman, Mark D.; Swift, Darrel A.; Piotrowski, Jan A.; Rhodes, Edward J.; Damsgaard, Anders

    2018-04-01

    Understanding the geomorphology left by waxing and waning of former glaciers and ice sheets during the late Quaternary has been the focus of much research. This has been hampered by the difficulty in dating such features. Luminescence has the potential to be applied to glacial sediments but requires signal resetting prior to burial in order to provide accurate ages. This paper explores the possibility that, rather than relying on light to reset the luminescence signal, glacial processes underneath ice might cause resetting. Experiments were conducted on a ring-shear machine set up to replicate subglacial conditions and simulate the shearing that can occur within subglacial sediments. Luminescence measurement at the single grain level indicates that a number (albeit small) of zero-dosed grains were produced and that these increased in abundance with distance travelled within the shearing zone. Observed changes in grain shape characteristics with increasing shear distance indicate the presence of localised high pressure grain-to-grain stresses caused by grain bridges. This appears to explain why some grains became zeroed whilst others retained their palaeodose. Based on the observed experimental trend, it is thought that localised grain stress is a viable luminescence resetting mechanism. As such relatively short shearing distances might be sufficient to reset a small proportion of the luminescence signal within subglacial sediments. Dating of previously avoided subglacial sediments may therefore be possible.

  19. Delayed Luminescence and Biophotons from Biological Materials

    Science.gov (United States)

    Knoesel, Ernst; Hann, Patrick; Garzon, Maria; Pfeiffer, Erik; Lofland, Samuel

    2008-03-01

    There has recently been increased interest in the field of biophotonics, since it is a non-invasive technique. Many biological systems, such as yeast, bacteria, leaves, seeds, and algae display the unusual phenomenon of a weak, delayed luminescence on the timescale of seconds to minutes after transient illumination. It is also observed that the time decay of the biophotonic emission is not exponential, even after the delay, and that there can be oscillations in intensity with time, which depend on the duration of the illumination. Results from two types of yeast, i.e. bread yeast, and saccharomyces, as well as those from several types of algae are presented. Possible mechanisms for the source of the ultraweak photon emission are discussed.

  20. Luminescence spectroscopy with synchrotron radiation: History, highlights, future

    International Nuclear Information System (INIS)

    Zimmerer, Georg

    2006-01-01

    Luminescence spectroscopy and the investigation of dynamical processes with synchrotron radiation (SR) started about 35 years ago in nearly all SR laboratories existing at that time. In the present paper, the pioneering experiments are particularly emphasized. The exciting development is illustrated presenting highlights for the whole period from the beginning to the present day. The highlights are taken from fields like exciton self-trapping, inelastic electron-electron scattering, optically stimulated desorption, cross luminescence, or probing of cluster properties with luminescence spectroscopic methods. More technological aspects play a role in present day's experiments, like quantum cutting in rare-earth-doped insulators. Promising two-photon excitation and light amplification experiments with SR will be included, as well as the first results obtained in a luminescence experiment with selective Vaccum ultraviolet-free electron laser excitation. Finally, a few ideas concerning the future development of luminescence spectroscopy with SR will be sketched

  1. Tetranuclear cluster-based Pb(II)-MOF: Synthesis, crystal structure and luminescence sensing for CS2

    Science.gov (United States)

    Dong, Yanli

    2018-05-01

    A new Pb(II) coordination polymer, namely [Pb2(bptc)(DMA)]n (1, H4bptc = biphenyl-3,3‧,5,5‧-tetracarboxylic acid, DMA = N, N‧- dimethylacetamide), has been synthesized by the combination of H4bptc with Pb(NO3)2 under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D framework based on tetranuclear [Pb4(COO)6] subunits, and topological analysis revealed that compound represents a binodal (4, 8)-connected scu-type topological network with the point symbol of {416,612}{44,62}2. Luminescence studies indicated that 1 and 1' (1‧ represents the desolvated samples) showed intense yellow emissions. Significantly, 1‧ exhibited sensitive luminescence sensing for CS2 solvent molecules at a low concentration.

  2. International Conference on Luminescence Held at Madison, Wisconsin on 13-17 August 1984.

    Science.gov (United States)

    1984-10-01

    Meucci , A. Scacco F. Somma (b) and M. Tonelli(c) (a) ENEA, TIB-FIS, Centro Ricerche Energia , 00044 Frascati, Italy (b) Dipartimento di Fisica...luminesce by solar ultraviolet and visible light. This instrument uses glass spacer Fabry-Perot filters of narrow bandwidth (ɘ.1 nm) to isolate a...central intensity of a Fraunhofer line to the solar continuum a few tenths of a nanometer distant; it then compares this ratio with a conjugate

  3. On the effect of optical and isothermal treatments on luminescence signals from feldspars

    International Nuclear Information System (INIS)

    Pagonis, Vasilis; Polymeris, George; Kitis, George

    2015-01-01

    During luminescence dosimetry and luminescence dating applications it is often necessary to precondition the geological samples by applying a thermal or optical treatment before measuring the luminescence signal. In luminescence applications using apatites or feldspars, measurement of continuous-wave infrared or optically stimulated signals (CW-IRSL and CW-OSL) are customarily preceded by either an isothermal heating of the samples at a fixed temperature for a short time interval, or alternatively by optically bleaching the samples using light from LEDs with the appropriate wavelength. This paper presents new analytical equations which can be used to describe these commonly employed double experimental procedures. The equations are based on a recently published model which assumes that tunneling processes are taking place in random distributions of donor–acceptor pairs. The concentration of charge carriers during the CW-IRSL or CW-OSL experiment is expressed in terms of the parameters of the preceding thermal or optical bleaching procedure, and depends also on the distribution of distances between electron and hole pairs. The analytical equations in this paper are compared with experimental data from a feldspar sample which undergoes an isothermal procedure followed by measurement of the CW-IRSL signal. Additional comparisons with experiment are provided using a feldspar sample which undergoes an infrared bleaching process, followed by measurement of the CW-OSL signal. These results and conditions under which the equations can be used are discussed within the framework of the model. - Highlights: • CW-IRSL and CW-OSL measurements are preceded by heating or optical bleaching. • New analytical equations are derived to describe these double experimental procedures. • Equations are compared with data from a feldspar sample following isothermal procedure. • Equations are compared with data from a feldspar sample following optical bleaching.

  4. Tuning into blue and red luminescence in dual-phase nano-glass–ceramics

    International Nuclear Information System (INIS)

    Chen, Daqin; Wan, Zhongyi; Zhou, Yang; Zhong, Jiasong; Ding, Mingye; Yu, Hua; Lu, Hongwei; Xiang, Weidong; Ji, Zhenguo

    2015-01-01

    Highlights: • Ga 2 O 3 and YF 3 dual-phase embedded glass ceramics were fabricated. • RE 3+ and Cr 3+ dopants incorporated into YF 3 and Ga 2 O 3 lattice respectively. • Intense blue and red emissions are simultaneously achieved in the sample. • Such glass ceramics had possible application in photosynthesis of plants. - Abstract: A series of γ-Ga 2 O 3 and β-YF 3 nanocrystals embedded dual-phase glass ceramics co-doped with rare earth (Eu 3+ or Tm 3+ ) and transition metal (Cr 3+ ) activators were successfully prepared by high-temperature melt-quenching to explore blue/red luminescent materials for potential application in photosynthesis of green plants. It is experimentally verified that Eu 3+ (or Tm 3+ ) ions partitioned into the crystallized orthorhombic YF 3 nanophases, while Cr 3+ ones entered into the precipitated cubic Ga 2 O 3 nanocrystals after glass crystallization. Such spatial separation of the different active ions in the dual-phase glass ceramics can effectively suppress adverse energy transfers between rare earth and transition metal ions, resulting in their independent and efficient luminescence. As an example, it is experimentally demonstrated that both intense Tm 3+ blue and Cr 3+ deep-red emissions are easily achieved in the Tm 3+ /Cr 3+ co-doped dual-phase glass ceramics

  5. Syntheses and luminescence properties of two novel lanthanide (III) perchlorate complexes with phenacyl p-tolyl sulfoxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shu-Yan [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Li, Wen-Xian, E-mail: nmglwx@163.com [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China); Zheng, Yu-Shan [Inner Mongolia Autonomous Region Product Quality Inspection Institute, Hohhot 010070 (China); Xin, Xiao-Dong; Guo, Feng; Cao, Xiao-Fang [College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021 (China)

    2015-06-15

    Two novel solid binary complexes of rare earth perchlorate with phenacyl p-tolyl sulfoxide were synthesized and characterized by elemental analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, {sup 1}HNMR and UV spectra. The results indicated that the composition of these complexes was REL{sub 7} (ClO{sub 4}){sub 3}·6H{sub 2}O (RE=Eu (III), Tb (III), L=C{sub 6}H{sub 5}COCH{sub 2}SOC{sub 6}H{sub 4}CH{sub 3}). The study on IR spectra and {sup 1}HNMR spectra revealed that phenacyl p-tolyl sulfoxide bonded with RE{sup 3+} ions by the oxygen atom in sulfinyl group. The emission spectra illustrated that both the Eu (III) and Tb (III) complexes displayed excellent luminescence in solid state, and The most intensive characteristic emission of the Eu(III) and Tb(III) complexes were 245,400 a.u. and 298,000 a.u. respectively. The slit with was 1 nm. By analysis luminescence and phosphorescence spectrum, it was found that the ligand had the advantage to absorb energy and transfer it to the Eu (III) and Tb (III) ions. The fluorescence lifetimes of the complexes were measured as well as the quantum yield of the Eu (III) complex.

  6. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  7. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  8. luminescence properties

    Indian Academy of Sciences (India)

    1Faculty of Science and Arts, Department of Chemistry, Bozok University, Yozgat 66900, Turkey. 2Faculty of Science, Department of Chemistry, Erciyes ... synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) ...

  9. Luminescence detection of phase transitions in crystals and nanoparticle inclusions

    International Nuclear Information System (INIS)

    Townsend, P. D.; Yang, B.; Wang, Y.

    2008-01-01

    Luminescence measurements are extremely sensitive to variations in structural environment and thus have the potential to probe distortions of fluorescence sites. Changes can be monitored via luminescence efficiency, emission spectra or excited state lifetimes and these factors are influenced by the local neighbourhood around the emission site, and therefore by structure, composition, pressure and temperature. A rarely exploited approach for condensed matter has been to use the changes in luminescence responses during heating or cooling of a material to provide a rapid survey to detect the presence of phase transitions. One can often differentiate between bulk and surface effects by contrasting results from radioluminescence for bulk responses, and cathodoluminescence or photoluminescence for surface effects. One expects that discontinuous changes in optical parameters occur during temperature changes through phase transitions of insulating materials. In practice, optical signals also exist from surface states of fullerenes and high temperature superconductors etc which identify the presence of structural or superconducting transitions. Numerous examples are cited which match standard documented transitions. Interestingly many examples show the host signals are strongly sensitive to impurity phase transitions from inclusions such as nanoparticles of water, N 2 , O 2 or CO 2 . Recent luminescence data reveal many examples of new transitions, hysteresis and irreversible changes. The signals equally respond to relaxations of a structure and surprisingly indicate that in some materials, such as SrTiO 3 or ZnO, ion implantation of the surface triggers relaxations and phase changes throughout the bulk of the material. Luminescence routes to detect phase transitions are powerful tools but have a tiny literature and so the subject is ideal for rapid exploitation and development. (Author)

  10. Luminescence (IRSL) dating of Yeni Rabat church in Artvin, Turkey

    International Nuclear Information System (INIS)

    Şahiner, Eren; Meriç, Niyazi; Uygun, Selda

    2013-01-01

    Luminescence dating is a chronological method that has been used extensively in terrestrial materials. In this study, we present Infrared Stimulated Luminescence (IRSL) dating results obtained for sediment and pottery samples taken from Yeni Rabat Church, Ardanuç, Artvin, Turkey. For this purpose, equivalent dose (ED) and annual dose rate (AD) of samples were measured. For annual dose rate, concentrations of radioactive isotopes (U, Th, K) were determined by using a high-purity germanium detector. For the equivalent dose, polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used. The optimal preheat temperature was determined for sediment and pottery samples. Ages were calculated by Aitken's luminescence age calculation method, which found 710±190 years for the pottery sample and 1450±370 years, 1390±420 years, 1430±310 years, 2210±520 years and 1640±390 years for different sediment samples, respectively. These estimated age ranges support the theory that Yeni Rabat Church could have been constructed in medieval times. - Highlights: ► The luminescence (IRSL) ages of the samples, taken from in Yeni Rabat church in Artvin-Turkey were found. ► Equivalent doses and annual doses were determined. ► Polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used

  11. Measurement of intensity distribution of CSR in LEBRA PXR beamline

    International Nuclear Information System (INIS)

    Nakao, Keisuke; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nogami, Kyoko; Inagaki, Manabu; Sei, Norihiro

    2014-01-01

    Last year, the intensity of Coherent Synchrotron Radiation (CSR) in LEBRA PXR beamline was measured. As a result, it turned out that the intensity of CSR was stronger than anticipation. It is suggested that Coherent Edge Radiation (CER) is mixed with CSR. Then, in order to confirm whether CER is contained, the intensity distribution of CSR was measured. The result of the experiment is reported in this paper. (author)

  12. Luminescent polymethyl methacrylate modified by gamma radiation

    International Nuclear Information System (INIS)

    Morais, Guilherme F.; Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F.

    2011-01-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C 2 F 4 ) in closed reactor for 48 hours. A second part was reacted with C 2 F 4 after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  13. Experimental and modelling study of pulsed optically stimulated luminescence in quartz, marble and beta irradiated salt

    International Nuclear Information System (INIS)

    Pagonis, V; Mian, S M; Barnold, C; Chithambo, M L; Christensen, E

    2009-01-01

    Optical stimulation luminescence (OSL) signals can be obtained using continuous-wave optical stimulation (CW-OSL), the linear modulation optical stimulation method (LM-OSL) and the time-resolved optical stimulation (TR-OSL) method. During TR-OSL measurements, the stimulation and emission of luminescence are experimentally separated in time by using short light pulses. This paper presents new TR-OSL data for annealed high purity synthetic quartz, for marble and for commercially available iodized salt. A new type of behaviour for TR-OSL signals for quartz and iodized salt is presented, in which the OSL signal exhibits a nonmonotonic behaviour during optical stimulation; this type of behaviour has not been reported previously in the literature for quartz. Furthermore, a luminescence component with very long luminescence lifetime is reported for some quartz aliquots, which may be due to the presence of a delayed-OSL (DOSL) mechanism in quartz. A new kinetic model for TR-OSL in quartz is presented, which is based on a main electron trap and on several luminescence centres. The model is used to quantitatively fit several sets of experimental data of pulsed optically stimulated luminescence from quartz.

  14. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  15. Effect of radiation damage on luminescence of erbium-implanted SiO sub 2 /Si studied by slow positron beam

    CERN Document Server

    Kawasuso, A; Hirata, K; Sekiguchi, T; Kobayashi, Y; Okada, S

    2000-01-01

    The effect of damage on 1.54 mu m luminescence for 30 keV-Er-implanted SiO sub 2 films has been studied by positron annihilation and cathodoluminescence. It was found that S-parameter in the films decreased after implantation, indicating the suppression of positronium formation. The luminescence appeared with the recovery of the S-parameter after 600 deg. C annealing. The intensity reached a maximum at 900 deg. C annealing whereas the S-parameter did not change significantly. It seems that most damages recover at 600 deg. C and thereafter Er ions transform to an optically active state at 900 deg. C.

  16. Red luminescence from Eu3+-doped TeO2-WO3-GeO2 glasses for solid state lasers

    Science.gov (United States)

    Subrahmanyam, Tallam; Gopal, Kotalo Rama; Suvarna, Reniguntla Padma; Jamalaiah, Bungala Chinna

    2018-05-01

    Eu3+-doped oxyfluoro tellurite (TWGEu) glasses were prepared by conventional melt quenching method. The optical band gap energy and covalence between Eu3+ and O2-/F- ions were determined from optical absorption spectra. Using the 5D0 → 7F1,2,4 emission transitions, the Ω2 and Ω4 intensity parameters were determined. These intensity parameters were used to evaluate the radiative parameters such as emission probability rate (AR), luminescence branching ratio (βR) and radiative life time (τR) of 5D0 → 7FJ transitions. The laser characteristic parameters such as stimulated emission cross-section, gain bandwidth and quantum efficiency were determined. The luminescence decay profiles of 5D0 emission level were well fitted to single exponential function for all the concentrations. The experimental results show that the 0.5 mol% of Eu3+-doped TWGEu glass could be the best choice to design red laser sources.

  17. Luminescence properties of Si-capped β-FeSi{sub 2} nanodots epitaxially grown on Si(001) and (111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amari, Shogo; Ichikawa, Masakazu [Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Yoshiaki, E-mail: nakamura@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan)

    2014-02-28

    We studied the luminescence properties of Si-capped β-FeSi{sub 2} nanodots (NDs) epitaxially grown on Si substrates by using photoluminescence (PL) and electroluminescence (EL) spectroscopies. Codepositing Fe and Si on ultrathin SiO{sub 2} films induced the self-assembly of epitaxial β-FeSi{sub 2} NDs. The PL spectra of the Si/β-FeSi{sub 2} NDs/Si structure depended on the crystal orientation of the Si substrate. These structures exhibited a broad PL peak near 0.8 eV on both Si(001) and (111) substrates. The PL intensity depended on the shape of the β-FeSi{sub 2} NDs. For the flat NDs, which exhibited higher PL intensity, we also recorded EL spectra. We explained the luminescence properties of these structures by the presence of nanostructured Si offering radiative electronic states in the Si cap layers, generated by nano-stressors for upper Si layer: the strain-relaxed β-FeSi{sub 2} NDs.

  18. Optical fibre dosemeter systems for clinical applications based on radioluminescence and optically stimulated luminescence from Al2O3:C

    DEFF Research Database (Denmark)

    Marckmann, C.J.; Andersen, C.E.; Aznar, M.C.

    2006-01-01

    Optical fibre dosemeter systems based on radioluminescence and optically stimulated luminescence (OSL) from carbon-doped aluminium oxide (Al2O3:C) crystals were developed for in vivo real-time dose rate and absorbed dose measurements in radiotherapy and mammography. A technique was also developed...... for making ultra-small dosemeter probes that can easily be placed inside patients in radiation treatment. These probes have shown excellent properties in both head and neck intensity-modulated radiation therapy treatment and in mammography. The dose-response of the OSL signal for the new optical fibre...

  19. Smart Sensing Methodology for Object Identification Using Circularly Polarized Luminescence from Coordination-Driven Self-Assembly.

    Science.gov (United States)

    Imai, Yuki; Nakano, Yuka; Kawai, Tsuyoshi; Yuasa, Junpei

    2018-05-21

    This work demonstrates a potential use of circularly polarized luminescence for object identification methodology in a sensor application. Towards this aim, we have developed new luminescence probes using pyrene derivatives as sensor luminophores. The probes [(R,R)- and (S,S)-Im2Py] contain two chiral imidazole moieties at 1,6-positions through ethynyl spacers (the angle between the spacers is close to 180°). The probe molecules spontaneously self-assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination preference (e.g., Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) in the absence of metal ions. However, [(R,R)- and (S,S)-Im2Py] begins to exhibit intense chiroptical activity (CD and CPL) upon self-assembly with Zn2+ ions. The unique chiroptical properties of [(R,R)- and (S,S)-Im2Py] with chemical stimuli-responsibility are capable of demonstrating the new sensing methodology using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non-target species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence

    NARCIS (Netherlands)

    Klink, S.I.; Keizer, Henk; van Veggel, F.C.J.M.

    2000-01-01

    We thank Roel Fokkens and Nico Nibbering (University of Amsterdam) for recording and discussing the MALDI-TOF mass spectra. Martijn Werts (University of Amsterdam) is gratefully acknowledged for his support with the time-resolved luminescence measurements. This research has been financially

  1. Doping the dots: doped quantum dots for luminescent solar concentrators

    NARCIS (Netherlands)

    Eilers, J.J.

    2015-01-01

    In this thesis, synthesis methods for luminescent organically capped colloidal ZnSe QDs of different sizes, ranging from 4.0 to 7.5 nm are reported. These QDs are analyzed using TEM, absorption spectroscopy, photoluminescence measurements and temperature dependent photoluminescence decay

  2. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A.; Gonon, P.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  3. Ion beam induced luminescence characterisation of CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A A; Gonon, P; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The characterisation of the band structure properties of materials and devices by ion microprobe techniques has been made possible at the Melbourne MeV ion microprobe facility with the development of Ion Beam Induced Luminescence (IBIL). A number of diamond films grown by Microwave Plasma Chemical Vapour Deposition (MPCVD) on silicon substrates are analysed. A preliminary study of the luminescence properties of these samples has revealed information not previously obtainable via traditional microprobe techniques. The optical effects of incorporating dopants during the deposition process is determined using IBIL. The presence of trace element impurities introduced during growth is examined by Particle Induced X-ray Emission (PIXE), and a measurement of the film thickness is made using Rutherford Backscattering Spectrometry (RBS). 7 refs., 2 figs.

  4. Oxide/polymer nanocomposites as new luminescent materials

    Science.gov (United States)

    Vollath, D.; Szabó, D. V.; Schlabach, S.

    2004-06-01

    It is demonstrated that nanocomposites, consisting of an electrically insulating oxide core and PMMA coating exhibit strong luminescence. This luminescence is connected to the interface, where PMMA is bond via a carboxylate bonding to the surface. In this case, luminescence is originated at the carbonyl group of the coating polymer. With decreasing particle size, this emission shows a blue shift, following a law inversely the ones found for quantum confinement systems. For semi-conducting oxides, such as ZnO, this interface related emission is found additionally to quantum confinement phenomena.

  5. Luminescence, scintillation, and energy transfer in SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3}:Ce{sup 3+},Pr{sup 3+} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lertloypanyachai, Prapon; Chewpraditkul, Weerapong; Pattanaboonmee, Nakarin [Department of Physics, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Chen, Danping [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai (China); Babin, Vladimir; Beitlerova, Alena; Nikl, Martin [Institute of Physics, AS CR, Prague (Czech Republic)

    2017-09-15

    Ce{sup 3+},Pr{sup 3+}-codoped SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} glasses (SABG:Ce,Pr) were prepared by melt quenching under a CO reducing atmosphere. Luminescence properties were investigated under UV and X-ray excitations. A dominant emission band at 430 nm belonging to the Ce{sup 3+}:5d{sub 1} → 4f transition was observed in the photo- and radio-luminescence spectra. The energy transfer occurs from this Ce{sup 3+} band toward the {sup 3}P{sub J} levels of Pr{sup 3+} with an efficiency of up to 24%, followed by the reduction of integrated luminescence intensity with an increasing Pr{sup 3+} concentration. This result is attributed to the increase in the reabsorption of Ce{sup 3+} luminescence and the non-radiative energy transfer toward the {sup 3}P{sub J} levels of Pr{sup 3+}. The cross-relaxation process within the Pr{sup 3+} pairs can further diminish the total luminescence yield at high Pr{sup 3+} concentrations. The integral scintillation efficiency and light yield measurements were carried out and compared to the reference Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) crystal. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Luminescence at the end of the tunnelling - Investigating charge transfer mechanisms and luminescence dating methods for feldspar minerals

    NARCIS (Netherlands)

    Kars, R.H.

    2014-01-01

    This thesis comprises analyses of mineral physics with an application in geology and archeology. The thesis contributes to the development of feldspar luminescence dating methods in order to extend the applicable age range of feldspar luminescence dating in the Quaternary (last 2.6 Ma). The research

  7. Synthesis of mixed ligand europium complexes: Verification of predicted luminescence intensification

    International Nuclear Information System (INIS)

    Lima, Nathalia B.D.; Silva, Anderson I.S.; Gonçalves, Simone M.C.; Simas, Alfredo M.

    2016-01-01

    Mixed ligand europium complexes are predicted to be more luminescent than what would be expected from their corresponding repeating ligand compounds according to a conjecture recently advanced by our research group; a conjecture that has already been validated for strongly luminescent europium complexes. In this article, we seek to further verify the validity of this conjecture for complexes which are much more symmetric, and which thus display lower levels of luminescence. Accordingly, we synthesized complexes Eu(DBM) 3 (L) 2 , and all novel mixed ligand combinations Eu(DBM) 3 (L,L') with L and L' equal to DBSO, PTSO, and TPPO. The syntheses were carried out via displacement reactions from the starting complex Eu(DBM) 3 (H 2 O) 2 , passing through the intermediates Eu(DBM) 3 (L) 2 and finally, by displacement of L by L', arriving at Eu(DBM) 3 (L,L'). The ligands L obey the following order of displacement TPPO>PTSO>DBSO>H 2 O, which had been previously described by our group. In the present article, we further show that this displacement order could have been predicted by Sparkle/RM1 thermochemical calculations. Subsequently, we determined the radiative decay rates, A rad , for all six compounds by photophysical measurements. As expected, results show that the measured A rad values for all novel mixed ligand complexes are larger than the average of the A rad values for the corresponding repeating ligand coordination compounds. In conclusion, the present article does broaden the scope of our conjecture, which enunciates that an increase in the diversity of ligands around the europium ion tends to intensify the luminescence. - Highlights: • Mixed ligand europium complexes are predicted to be more luminescent than repeating ligand ones. • Radiative decay rates increase with structural coordination asymmetry. • The non-ionic ligands displacement order in substitution reactions is TPPO>PTSO>DBSO>H 2 O. • Sparkle/RM1 correctly predicts the

  8. Luminescence (IRSL) dating of Yeni Rabat church in Artvin, Turkey

    Science.gov (United States)

    Şahiner, Eren; Meriç, Niyazi; Uygun, Selda

    2013-05-01

    Luminescence dating is a chronological method that has been used extensively in terrestrial materials. In this study, we present Infrared Stimulated Luminescence (IRSL) dating results obtained for sediment and pottery samples taken from Yeni Rabat Church, Ardanuç, Artvin, Turkey. For this purpose, equivalent dose (ED) and annual dose rate (AD) of samples were measured. For annual dose rate, concentrations of radioactive isotopes (U, Th, K) were determined by using a high-purity germanium detector. For the equivalent dose, polymineral fine grain SAR (Single Aliquot Regenerative Dose) and MAAD (Multiple Aliquot Additive Dose) procedures were used. The optimal preheat temperature was determined for sediment and pottery samples. Ages were calculated by Aitken's luminescence age calculation method, which found 710±190 years for the pottery sample and 1450±370 years, 1390±420 years, 1430±310 years, 2210±520 years and 1640±390 years for different sediment samples, respectively. These estimated age ranges support the theory that Yeni Rabat Church could have been constructed in medieval times.

  9. Measuring the Carbon Intensity of the South African Economy

    DEFF Research Database (Denmark)

    Arndt, Channing; Davies, Rob; Makrelov, Konstantin

    2013-01-01

    We estimate the carbon intensity of industries, products and households in South Africa using data from a high resolution supply-use table. Direct and indirect carbon usage is measured using multiplier methods that capture inter-industry linkages and multi-product supply chains. Carbon intensity ...... or poorer households. Seven percent of emissions arise through marketing margins, implying that carbon pricing should be accompanied by supporting public policies and investments.......We estimate the carbon intensity of industries, products and households in South Africa using data from a high resolution supply-use table. Direct and indirect carbon usage is measured using multiplier methods that capture inter-industry linkages and multi-product supply chains. Carbon intensity...... is found to be high for exports but low for major employing sectors. Middle-income households are the most carbon-intensive consumers. These results suggest that carbon pricing policies (without border tax adjustments) would adversely affect export earnings, but should not disproportionately hurt workers...

  10. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  11. Spectral-luminescence properties of trivalent titanium in aluminum-sodium phosphate glass

    International Nuclear Information System (INIS)

    Sukhanov, S.B.; Batyaev, I.M.

    1992-01-01

    Since development of the first crystal laser, Al 2 O 3 crystals remain the most widely used in quantum electronics. In the present work, the aluminum-sodium phosphate glass, Al 2 O 3 -Na 2 O 3 -P 2 O 5 , was studied with different proportions of components. A luminescence medium is obtained based on phosphate glass doped by Ti 3+ ions with intense emission in the 700-900-nm spectral range. This glass is a promising lasing medium for tunable solid-state lasers. 12 refs., 2 figs

  12. Luminescent Afterglow Behavior in the M2Si5N8: Eu Family (M = Ca, Sr, Ba

    Directory of Open Access Journals (Sweden)

    Koen Van den Eeckhout

    2011-05-01

    Full Text Available Persistent luminescent materials are able to emit light for hours after being excited. The majority of persistent phosphors emit in the blue or green region of the visible spectrum. Orange- or red-emitting phosphors, strongly desired for emergency signage and medical imaging, are scarce. We prepared the nitrido-silicates Ca2Si5N8:Eu (orange, Sr2Si5N8:Eu (reddish, Ba2Si5N8:Eu (yellowish orange, and their rare-earth codoped variants (R = Nd, Dy, Sm, Tm through a solid state reaction, and investigated their luminescence and afterglow properties. In this paper, we describe how the persistent luminescence is affected by the type of codopant and the choice and ratio of the starting products. All the materials exhibit some form of persistent luminescence, but for Sr2Si5N8:Eu,R this is very weak. In Ba2Si5N8:Eu the afterglow remains visible for about 400 s, and Ca2Si5N8:Eu,Tm shows the brightest and longest afterglow, lasting about 2,500 s. For optimal persistent luminescence, the dopant and codopant should be added in their fluoride form, in concentrations below 1 mol%. A Ca3N2 deficiency of about 5% triples the afterglow intensity. Our results show that Ba2Si5N8:Eu(,R and Ca2Si5N8:Eu(,R are promising persistent phosphors for applications requiring orange or red light.

  13. Thermal History Using Microparticle Trap Luminescence

    Science.gov (United States)

    2012-06-01

    the size and shape of bacterial or viral agents and dispersed in a burst vessel . After the test, luminescence from the microparticles is measured to...platinum resistor sputtered on 1 nm adhesion layer of chrome, in turn on a 200nm LPCVD nitride; silicon wet -etching makes this a platform suspended...increased to 500°C until combustion occurred (- 7 min). The remaining powder was collected, crushed in a agate mortar, and annealed (typically at 900

  14. Sol-gel synthesis and luminescent properties of red-emitting Y(P,V)O4:Eu(3+) phosphors.

    Science.gov (United States)

    Zhang, Xinguo; Zhou, Fangxiang; He, Pei; Zhang, Min; Gong, Menglian

    2016-02-01

    Eu(3+)-activated Y(P,V)O4 phosphors were prepared by the EDTA sol-gel method, and the corresponding morphologies and luminescent properties were investigated. The sample particles were relatively spheroid with size of 2-3 µm and had a smooth surface. The excitation spectra for Y(P,V)O4:Eu(3+) consisted of three strong excitation bands in the 200-350 nm range, which were attributed to a Eu(3+)- O(2-) charge-transfer band and (1)A1-(1) T1/(1) T2 transitions in VO4(3-). The as-synthesized phosphors exhibited a highly efficient red luminescence at 613 nm due to the Eu(3+5) D0-(7) F2 electric dipole transition. With the increase in the V(5+)/P(5+) ratio, the luminescence intensity of the red phosphor under UV excitation was greatly improved due to enhanced VO4(3-) → Eu(3+) energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Investigations of the luminescence of phosphate glasses with respect to their application as solid dosemeters

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1977-03-01

    A comprehensive presentation of the luminescent properties of phosphate glass is worked out. The extensive investigations show an essential enlargement of the knowledge on the luminescence of phosphate glass existing hitherto. These results form the basis for a detailed discussion of the luminescence mechanism. By applying additional results of measurements concerning optical and paramagnetic absorption, enabling the access to the atomic effect, propositions were developed for models of absorption, excitation and luminous centers relevant for dosimetry for which Ag ++ was found to be the constituent determining the centers. The interpretation of the luminescence phenomena within the frame of these models leads to considerable corrections on the existing concepts. At the same time the comparability of Ag-doped phosphate glasses and alkali halogenides is shown with respect to their luminescence behaviour, and with it an argument for the existence of crystal-like short-order regions in the amorphous glass is provided. This result serves as a basis for a discussion of the centers in the band model. Further investigations dealt with the quantities of influence for the practical application of the dosemeter. By interpretation of these results explanations are given for the effect of irradiation and evaluation temperatures, of LET, the dose, and UV light on the measuring signal. The phenomenon of 'pre-dose', for which especially surface effects have been detected as cause, is discussed under the aspect of a boundary layer theory. (orig./HP) [de

  16. A chromosomally based luminescent bioassay for mercury detection in red soil of China

    Energy Technology Data Exchange (ETDEWEB)

    Wei, He [Chinese Academy of Sciences, Nanking (China). State Key Lab. of Soil and Sustainable Agriculture; Nanjing Normal Univ., Nanking (China). College of Life Science; Cheng, Han; Ting, Mao; Zhong, Wen-Hui [Nanjing Normal Univ., Nanking (China). College of Chemistry and Environmental Science; Lin, Xian-Gui [Chinese Academy of Sciences, Nanking (China). State Key Lab. of Soil and Sustainable Agriculture

    2010-07-15

    A luminescent reporter gene system was constructed by fusing the mercury-inducible promoter, P{sub merT}, and its regulatory gene, merR, with a promoterless reporter gene EGFP. A stable and nonantibiotic whole-cell reporter (BMB-ME) was created by introducing the system cassette into the chromosome of Pseudomonas putida strain and then applied it for mercury detection in the red soil of China. Spiked with 10 and 100 {mu}g g{sup -1} Hg{sup 2+} and after 15 and 30 days incubation, soil samples were extracted and evaluated water soluble, bioavailable, organic matter bound, and residual fractions of mercury by both BMB-ME and chemical way. The expression of EGFP was confirmed in soil extraction, and fluorescence intensity was quantified by luminescence spectrometer. The sensor strain BMB-ME appeared to have a detection range similar to that of reversed-phase high-performance liquid chromatography method. The optimal temperature for EGFP expression was 35 C and the lowest detectable concentration of Hg{sup 2+} 200 nM. Cu{sup 2+}, Fe{sup 2+}, Mn{sup 2+}, Sn{sup 2+}, Zn{sup 2+}, Co{sup 2+}, Ag{sup +}, Ba{sup 2+}, Mg{sup 2+}, and Pb{sup 2+} ions at nanomolar level did not interfere with the measurement. These results showed that the BMB-ME constitute an adaptable system for easy sensing of small amounts of mercury in the red soil of China. (orig.)

  17. Novel Mechano-Luminescent Sensors Based on Piezoelectric/Electroluminescent Composites

    Directory of Open Access Journals (Sweden)

    Yunzhang Fang

    2011-04-01

    Full Text Available A high-sensitivity mechano-luminescent sensor was fabricated on the basis of piezoelectric/electroluminescent composites. The working principle of this mechano-luminescent sensor was elucidated by analyzing the relationship between the piezoelectric-induced charges and the electroluminescent effects. When a stress is applied on the piezoelectric layer, electrical charges will be induced at both the top and bottom sides of the piezoelectric layer. The induced electrical charges will lead to a light output from the electroluminescent layer, thus producing a mechano-luminescence effect. By increasing the vibration strength or frequency applied, the mechano-luminescence output can be obviously enhanced. Mechano-luminescence sensors have potential in smart stress-to-light devices, such as foot-stress-distribution-diagnosis systems and dynamic-load-monitors for bridge hanging cables.

  18. Radiation dose measurements of an on-board imager X-ray unit using optically-stimulated luminescence dosimeters

    International Nuclear Information System (INIS)

    Smith, Leon; Haque, Mamoon; Hill, Robin; Morales, Johnny

    2015-01-01

    Cone beam computed tomography (CBCT) is now widely used to image radiotherapy patients prior to treatment for the purpose of accurate patient setup. However each CBCT image delivered to a patient increases the total radiation dose that they receive. The measurement of the dose delivered from the CBCT images is not readily performed in the clinic. In this study, we have used commercially available optically stimulated luminescence (OSLD) dosimeters to measure the dose delivered by the Varian OBI on a radiotherapy linear accelerator. Calibration of the OSLDs was achieved by using a therapeutic X-ray unit. The dose delivered by a head CBCT scan was found to be 3.2 ± 0.3 mGy which is similar in magnitude to the dose of a head computed tomography (CT) scan. The results of this study suggest that the radiation hazard associated with CBCT is of a similar nature to that of conventional CT scans. We have also demonstrated that the OSLDs are suitable for these low X-ray dose measurements.

  19. Facial feature tracking: a psychophysiological measure to assess exercise intensity?

    Science.gov (United States)

    Miles, Kathleen H; Clark, Bradley; Périard, Julien D; Goecke, Roland; Thompson, Kevin G

    2018-04-01

    The primary aim of this study was to determine whether facial feature tracking reliably measures changes in facial movement across varying exercise intensities. Fifteen cyclists completed three, incremental intensity, cycling trials to exhaustion while their faces were recorded with video cameras. Facial feature tracking was found to be a moderately reliable measure of facial movement during incremental intensity cycling (intra-class correlation coefficient = 0.65-0.68). Facial movement (whole face (WF), upper face (UF), lower face (LF) and head movement (HM)) increased with exercise intensity, from lactate threshold one (LT1) until attainment of maximal aerobic power (MAP) (WF 3464 ± 3364mm, P exercise intensities (UF minus LF at: LT1, 1048 ± 383mm; LT2, 1208 ± 611mm; MAP, 1401 ± 712mm; P exercise intensity.

  20. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.