WorldWideScience

Sample records for luminescence detailed investigation

  1. Investigation into scanning tunnelling luminescence microscopy

    International Nuclear Information System (INIS)

    Manson-Smith, S.K.

    2001-01-01

    This work reports on the development of a scanning tunnelling luminescence (STL) microscope and its application to the study of Ill-nitride semiconductor materials used in the production of light emitting devices. STL microscopy is a technique which uses the high resolution topographic imaging capabilities of the scanning tunnelling microscope (STM) to generate high resolution luminescence images. The STM tunnelling current acts as a highly localised source of electrons (or holes) which generates luminescence in certain materials. Light generated at the STM tunnelling junction is collected concurrently with the height variation of the tunnelling probe as it is scanned across a sample surface, producing simultaneous topographic and luminescence images. Due to the very localised excitation source, high resolution luminescence images can be obtained. Spectroscopic resolution can be obtained by using filters. Additionally, the variation of luminescence intensity with tunnel current and with bias voltage can provide information on recombination processes and material properties. The design and construction of a scanning tunnelling luminescence microscope is described in detail. Operating under ambient conditions, the microscope has several novel features, including a new type of miniature inertial slider-based approach motor, large solid-angle light collection optical arrangement and a tip-height regulation system which requires the minimum of operator input. (author)

  2. Luminescence nanothermometry

    Science.gov (United States)

    Jaque, Daniel; Vetrone, Fiorenzo

    2012-07-01

    The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed.The current status of luminescence nanothermometry is reviewed in detail. Based on the main parameters of luminescence including intensity, bandwidth, bandshape, polarization, spectral shift and lifetime, we initially describe and compare the different classes of luminescence nanothermometry. Subsequently, the various luminescent materials used in each case are discussed and the mechanisms at the root of the luminescence thermal sensitivity are described. The most important results obtained in each case are summarized and the advantages and disadvantages of these approaches are discussed. This work was supported by the Universidad Autónoma de Madrid and Comunidad Autónoma de Madrid (Project S2009/MAT-1756), by the Spanish Ministerio de Educacion y Ciencia (MAT2010-16161) and by Caja Madrid Foundation.

  3. Investigations of the luminescence of phosphate glasses with respect to their application as solid dosemeters

    International Nuclear Information System (INIS)

    Regulla, D.F.

    1977-03-01

    A comprehensive presentation of the luminescent properties of phosphate glass is worked out. The extensive investigations show an essential enlargement of the knowledge on the luminescence of phosphate glass existing hitherto. These results form the basis for a detailed discussion of the luminescence mechanism. By applying additional results of measurements concerning optical and paramagnetic absorption, enabling the access to the atomic effect, propositions were developed for models of absorption, excitation and luminous centers relevant for dosimetry for which Ag ++ was found to be the constituent determining the centers. The interpretation of the luminescence phenomena within the frame of these models leads to considerable corrections on the existing concepts. At the same time the comparability of Ag-doped phosphate glasses and alkali halogenides is shown with respect to their luminescence behaviour, and with it an argument for the existence of crystal-like short-order regions in the amorphous glass is provided. This result serves as a basis for a discussion of the centers in the band model. Further investigations dealt with the quantities of influence for the practical application of the dosemeter. By interpretation of these results explanations are given for the effect of irradiation and evaluation temperatures, of LET, the dose, and UV light on the measuring signal. The phenomenon of 'pre-dose', for which especially surface effects have been detected as cause, is discussed under the aspect of a boundary layer theory. (orig./HP) [de

  4. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  5. Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates

    International Nuclear Information System (INIS)

    Puntus, L.N.; Zolin, V.F.; Babushkina, T.A.; Kutuza, I.B.

    2004-01-01

    The luminescence and PMR spectra of europium salts of six isomers of 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-pyridinedicarboxylic acids (PDA) had been studied. The distribution of the effective charge in the nearest surroundings of the Eu 3+ ion in these salts was evaluated from Stark splittings of electronic transitions. The values of relative integral intensities of electronic transitions 5 D 0 - 7 F J (J=0-4) in the luminescence spectra were reported. Compounds investigated were divided into three subgroups taking into account the details of the structure of the ligands and details of the luminescence spectra. The ligand coordination manners as well as the strength of interaction between lanthanide ion and ligands were confirmed by data of the PMR and IR spectroscopy

  6. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    Science.gov (United States)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  7. Investigation of InGaN/GaN laser degradation based on luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Pengyan; Zhang, Shuming, E-mail: smzhang2010@sinano.ac.cn; Liu, Jianping; Li, Deyao; Zhang, Liqun; Sun, Qian; Tian, Aiqin; Zhou, Kun; Yang, Hui [Key Laboratory of Nanodevices and Applications, Chinese Academy of Sciences, Suzhou 215123 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Zhou, Taofei [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2016-06-07

    Degradation of InGaN/GaN laser diode (LD) is investigated based on the luminescence properties. Gradual degradation of the LD is presented with the threshold current increase and the slope efficiency decrease. The cathodoluminescence and photoluminescence characterizations of the LD show a dislocation independent degradation of the active region under the ridge. Detailed studies on the temperature-dependent micro-photoluminescence and the electroluminescence indicate that the degradation of the LD is attributed to the generation of non-radiative recombination centers in the local multiple quantum well regions with lower indium content. The activation energy of the non-radiative recombination centers is about 10.2 meV.

  8. Spectral-luminescent investigation of polymers doped with europium trisphenoyltrifluoroacetonate compound with 1,10-phenanthroline

    International Nuclear Information System (INIS)

    Karasev, V.E.; Mirochnik, A.G.; Shchelokov, R.N.

    1983-01-01

    Spectral-luminescent characteristics of europium tristhenoyltrifluoroacetonate with 1.10-phenanthpoline in polystyrepe and polyvinyl chloride are investigated. E 4 (TTA) 3 phen during introduction into polymers preserves its composition and structure. Weak temperature dependence of half-Width of luminescent lines qualitatively different from the case of crystal chelate is characteristic for polymers doped with E 4 (TTA) 3 xphen. Investigation into temperature dependence of E 4 3+ luminescent intensity in chelate doped polymers proves the conclusion on weakening processes of excitation energy relaxation by vibration constituents of close and far environment during chelate introduction into polymers

  9. Photoluminescence, reddish orange long persistent luminescence and photostimulated luminescence properties of praseodymium doped CdGeO3 phosphor

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Chen, Li; Fu, Yinrong; Mu, Zhongfei; Wang, Tao; Lin, Jun

    2014-01-01

    Highlights: • A novel phosphor CdGeO 3 :Pr 3+ was synthesized successfully. • The persistent luminescence properties of CdGeO 3 :Pr 3+ were studied. • The photostimulated luminescence properties of CdGeO 3 :Pr 3+ were investigated. • The persistent and photostimulated luminescence mechanisms were discussed in detail. - Abstract: Praseodymium doped CdGeO 3 phosphors were prepared successfully by a conventional high temperature solid-state reaction method. It showed reddish orange long persistent luminescence (LPL) after the short UV-irradiation. The reddish orange photostimulated luminescence (PSL) was also observed upon near infrared stimulation at 980 nm after per-exposure into UV light. The origin of LPL and PSL was identified with the emission from Pr 3+ ions with the aid of traps in host lattice. The optimal concentration of Pr 3+ ions for the brightest photoluminescence (PL) emission and the best LPL characteristic were experimentally to be about 3% and 0.5 mol%, respectively. The trapping and de-trapping processes of charge carriers between shallower and deep traps were illustrated. A model was proposed on the basis of experimental results to study the mechanisms of LPL and PSL

  10. Luminescence investigation of Yb3+/Er3+ codoped single LiYF4 microparticle

    International Nuclear Information System (INIS)

    Gao, Wei; Zheng, Hairong; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-01-01

    Tetragonal phase LiYF 4 :Yb 3+ /Er 3+ microparticles are synthesized via facile hydrothermal method. Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF 4 :Yb 3+ /Er 3+ microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF 4 :Yb 3+ /Er 3+ microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF 4 microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF 4 microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated

  11. Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure

    Science.gov (United States)

    Ok, Jung-Woo; Pooyodying, Pattarapon; Anuntahirunrat, Jirapat; Sung, Youl-Moon

    2018-04-01

    In this paper, we investigate electrochemical luminescent (ECL) device with a new structure and the ECL cell device with proposed electrode configuration works reliably at AC voltage. In particular, the conventional ECL cell has counter electrodes in which a cathode and an anode are opposed to each other, whereas the proposed structure has parallel electrodes in which a cathode and an anode are arranged on a single substrate. The proposed electrode configuration has a structural feature that electric short-circuiting is less likely to occur during bending than the conventional electrode configuration. The electro-optical characteristics of the new electrode configuration such as the current density, the light emission intensity, and the time evolution of the emission are investigated. The proposed ECL device exhibited higher light emitting efficiency than the conventional structure. Especially, at AC operation mode, the new structure showed the distinctive luminescence characteristic which is combined the first luminescence near the surface of electrode with the delayed second luminescence near the center of between electrodes. It was closely related to the behavior of luminescent particles. The proposed the ECL cell structure is expected to be utilized as a flexible display device by taking advantage of its characteristics and practicality.

  12. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    Science.gov (United States)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  13. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  14. Investigation of cross talk in single grain luminescence measurements using an EMCCD camera

    International Nuclear Information System (INIS)

    Gribenski, Natacha; Preusser, Frank; Greilich, Steffen; Huot, Sebastien; Mittelstraß, Dirk

    2015-01-01

    Highly sensitive electron multiplying charges coupled devices (EMCCD) enable the spatial detection of luminescence emissions from samples and have a high potential in single grain luminescence dating. However, the main challenge of this approach is the potential effect of cross talk, i.e. the influence of signal emitted by neighbouring grains, which will bias the information recorded from individual grains. Here, we present the first investigations into this phenomenon when performing single grain luminescence measurements of quartz grains spread over the flat surface of a sample carrier. Dose recovery tests using mixed populations show an important effect of cross talk, even when some distance is kept between grains. This issue is further investigated by focusing just on two grains and complemented by simulated experiments. Creation of an additional rejection criteria based on the brightness properties of the grains is inefficient in selecting grains unaffected by their surroundings. Therefore, the use of physical approaches or image processing algorithms to directly counteract cross talk is essential to allow routine single grain luminescence dating using EMCCD cameras. - Highlights: • We have performed single grain OSL measurements using an EMCCD detector. • Individual equivalent dose cannot be accurately recovered from a mixed dose population. • Grains are influenced by signal emitted by their neighbours during the measurements. • Simulated data confirm the strong effect of this phenomenon. • Increasing the distance between grains or applying brightness criteria are inefficient.

  15. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    DEFF Research Database (Denmark)

    Ankjærgaard, Christina; Jain, Mayank; Kalchgruber, R.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved opti......The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time...... suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model...... cannot be rejected definitively....

  16. Investigation of the yield process by deformation luminescence of X-ray irradiated KCl:Ca2+

    International Nuclear Information System (INIS)

    Nakamura, S.; Ida, K.; Ohgaku, T.

    2011-01-01

    It is found that deformation luminescence gives us information about the microscopic yield process of X-ray irradiated KCl:Ca 2+ . The stress-strain curve has a macroscopic yield point. But we find that luminescence appears to start before the macroscopic yield. This means that dislocation begin to move before the macroscopic yield because deformation luminescence is attributed to radiation-induced dislocation motion. The beginning of luminescence is considered to be the microscopic yield. Investigating the dependence of microscopic yield stress on strain rate and impurity concentration gives us additional information. The activation volume obtained from the dependence of microscopic yield stress on strain rate is comparable to the value estimated from the concentration of impurity. Then the dislocation starts to move overcoming impurity-vacancy dipoles as obstacles to dislocation motion. The dislocation density starts to increase at the microscopic yield point and then sharply increases to the macroscopic yield.

  17. Further investigations into the luminescence of silver-activated ZnS:CdS phosphors containing nickel and cobalt

    International Nuclear Information System (INIS)

    Elmanharawy, M.S.; Eid, A.H.

    1978-01-01

    An attempt has been made to explain the luminescence of (ZnS : CdS : Ag : Ni : Co) phosphors using the uniform luminescence centre model of zinc sulphide. The phosphors investigated give rise to characteristic glow curves with a number of peaks depending on the cobalt content. The emitted thermoluminescence consists of two bands: a yellow band at 5900 A and another in the red region of the spectrum (7000 A). These peak wavelengths coincide reasonably well with values of 5800 A and 6800 A predicted by the uniform luminescence centre model. It is suggested that the yellow terhmoluminescence takes place with the participation of the conduction band while electron transfer via the conduction band from traps to separated luminescence centres is assumed for the red glow. (author)

  18. Luminescence investigation of Yb{sup 3+}/Er{sup 3+} codoped single LiYF{sub 4} microparticle

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wei; Zheng, Hairong, E-mail: hrzheng@snnu.edu.cn; He, Enjie; Lu, Ying; Gao, Fangqi

    2014-08-01

    Tetragonal phase LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticles are synthesized via facile hydrothermal method. Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. It is found that single LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with sub-structure presents stronger upconversion luminescence emission and smaller intensity ratio of red to green emission than that from LiYF{sub 4}:Yb{sup 3+}/Er{sup 3+} microparticle with no sub-structure. The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion luminescence emission are investigated. The current study suggests that the luminescence observation with single micropaticle can effectively avoid the influence of environment and neighbor particles, which is important for investigating the luminescence properties of micro- or nano-crystals and for extending their application. - Highlights: • Single LiYF{sub 4} microparticle is excited with IR laser at 980 nm in a confocal setup, and strong green and weak red emissions are observed. • Single LiYF{sub 4} microparticle with different morphology exhibits different fluorescence emission intensity and intensity ratio of red to green emission. • The possible mechanism, the influence of particle size and the existence of EDTA on the upconversion emission are investigated.

  19. The effect of thermal oxidation on the luminescence properties of nanostructured silicon.

    Science.gov (United States)

    Liu, Lijia; Sham, Tsun-Kong

    2012-08-06

    Herein is reported a detailed study of the luminescence properties of nanostructured Si using X-ray excited optical luminescence (XEOL) in combination with X-ray absorption near-edge structures (XANES). P-type Si nanowires synthesized via electroless chemical etching from Si wafers of different doping levels and porous Si synthesized using electrochemical method are examined under X-ray excitation across the Si K-, L(3,2) -, and O K-edges. It is found that while as-prepared Si nanostructures are weak light emitters, intense visible luminescence is observed from thermally oxidized Si nanowires and porous Si. The luminescence mechanism of Si upon oxidation is investigated by oxidizing nanostructured Si at different temperatures. Interestingly, the two luminescence bands observed show different response with the variation of absorption coefficient upon Si and O core-electron excitation in elemental silicon and silicon oxide. A correlation between luminescence properties and electronic structures is thus established. The implications of the finding are discussed in terms of the behavior of the oxygen deficient center (OCD) and non-bridging oxygen hole center (NBOHC). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Luminescent Measurement Systems for the Investigation of a Scramjet Inlet-Isolator

    Directory of Open Access Journals (Sweden)

    Azam Che Idris

    2014-04-01

    Full Text Available Scramjets have become a main focus of study for many researchers, due to their application as propulsive devices in hypersonic flight. This entails a detailed understanding of the fluid mechanics involved to be able to design and operate these engines with maximum efficiency even at their off-design conditions. It is the objective of the present cold-flow investigation to study and analyse experimentally the mechanics of the fluid structures encountered within a generic scramjet inlet at M = 5. Traditionally, researchers have to rely on stream-thrust analysis, which requires the complex setup of a mass flow meter, a force balance and a heat transducer in order to measure inlet-isolator performance. Alternatively, the pitot rake could be positioned at inlet-isolator exit plane, but this method is intrusive to the flow, and the number of pitot tubes is limited by the model size constraint. Thus, this urgent need for a better flow diagnostics method is addressed in this paper. Pressure-sensitive paint (PSP has been applied to investigate the flow characteristics on the compression ramp, isolator surface and isolator sidewall. Numerous shock-shock interactions, corner and shoulder separation regions, as well as shock trains were captured by the luminescent system. The performance of the scramjet inlet-isolator has been shown to improve when operated in a modest angle of attack.

  1. Luminescence and the light emitting diode the basics and technology of leds and the luminescence properties of the materials

    CERN Document Server

    Williams, E W; Pamplin, BR

    2013-01-01

    Luminescence and the Light Emitting Diode: The Basics and Technology of LEDS and the Luminescence Properties of the Materials focuses on the basic physics and technology of light emitting diodes (LEDS) and pn junction lasers as well as their luminescence properties. Optical processes in semiconductors and the useful devices which can be made are discussed. Comprised of 10 chapters, this book begins with an introduction to the crystal structure and growth, as well as the optical and electrical properties of LED materials. The detailed fabrication of the LED is then considered, along with the lu

  2. Luminescence at the end of the tunnelling - Investigating charge transfer mechanisms and luminescence dating methods for feldspar minerals

    NARCIS (Netherlands)

    Kars, R.H.

    2014-01-01

    This thesis comprises analyses of mineral physics with an application in geology and archeology. The thesis contributes to the development of feldspar luminescence dating methods in order to extend the applicable age range of feldspar luminescence dating in the Quaternary (last 2.6 Ma). The research

  3. Interactions between bicarbonate, potassium, and magnesium, and sulfur-dependent induction of luminescence in Vibrio fischeri.

    Science.gov (United States)

    Tabei, Yosuke; Era, Mariko; Ogawa, Akane; Morita, Hiroshi

    2012-06-01

    In spite of its central importance in research efforts, the relationship between seawater compounds and bacterial luminescence has not previously been investigated in detail. Thus, in this study, we investigated the effect of cations (Na(+) , K(+) , NH(4) (+) , Mg(2+) , and Ca(2+) ) and anions (Cl(-) , HCO(3) (-) , CO(3) (2-) , and NO(3) (-) ) on the induction of both inorganic (sulfate, sulfite, and thiosulfate) and organic (L-cysteine and L-cystine) sulfur-dependent luminescence in Vibrio fischeri. We found that HCO(3) (-) (bicarbonate) and CO(3) (2-) (carbonate), in the form of various compounds, had a stimulatory effect on sulfur-dependent luminescence. The luminescence induced by bicarbonate was further promoted by the addition of magnesium. Potassium also increased sulfur-dependent luminescence when sulfate or thiosulfate was supplied as the sole sulfur source, but not when sulfite, L-cysteine, or L-cystine was supplied. The positive effect of potassium was accelerated by the addition of magnesium and/or calcium. Furthermore, the additional supply of magnesium improved the induction of sulfite- or L-cysteine-dependent luminescence, but not the l-cystine-dependent type. These results suggest that sulfur-dependent luminescence of V. fischeri under nutrient-starved conditions is mainly controlled by bicarbonate, carbonate, and potassium. In addition, our results indicate that an additional supply of magnesium is effective for increasing V. fischeri luminescence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal plasmon enhanced europium complex luminescence

    International Nuclear Information System (INIS)

    Liu Feng; Aldea, Gabriela; Nunzi, Jean-Michel

    2010-01-01

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod) 3 ) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  5. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    International Nuclear Information System (INIS)

    Ankjaergaard, C.; Jain, M.; Kalchgruber, R.; Lapp, T.; Klein, D.; McKeever, S.W.S.; Murray, A.S.; Morthekai, P.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved optically stimulated luminescence (TR-OSL), and these signals can be mathematically described as a sum of 4 exponential components (a, b, c, d). The slowest component, d, increases with the duration of the light pulse as expected from the exponential model. The stimulation temperature dependence experiment suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model cannot be rejected definitively.

  6. Investigation of luminescence properties in SiO2: Tb, Yb upconversion inverse opal

    International Nuclear Information System (INIS)

    Yang Zhengwen; Yan Dong; Song Zhiguo; Zhou Dacheng; Yu Xue; Yang Yong; Yin Zhaoyi; Yan Lei; Wang Rongfei; Wu Hangjun; Qiu Jianbei

    2012-01-01

    The SiO 2 : Tb, Yb inverse opals with photonic band gap at 465 or 543 nm were prepared, and an effect of photonic band gap on upconversion spontaneous emission from Tb 3+ was investigated. The results show that the photonic band gap has a significant influence on the upconversion emission of the SiO 2 : Tb, Yb inverse opals. The upconversion luminescence of the Tb 3+ ions is suppressed in the inverse opal compared with the luminescence of that of the reference sample. - Highlights: ► Upconversion emission from Tb 3+ was observed in the SiO 2 : Tb, Yb inverse opal. ► UC emission of Tb 3+ was modulated by controlling the structure of inverse opal. ► UC emission of Tb 3+ was depressed in the inverse opal.

  7. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  8. Towards Luminescence Dating Of Mosaic Glass

    Science.gov (United States)

    Galli, A.; Martini, M.; Sibila, E.; Villa, I.

    The possibility of dating archaeological glass by means of luminescent techniques has been investigated in recent years, despite the difficulties of this application, mainly linked to the amorphous structure of the material. We focused in particular on mosaic glass, after the encouraging results obtained on byzantine and medieval samples. Further studies were devoted to the comprehension of the luminescent mechanisms in silica glasses, and to the investigation of the relationships between luminescence, colouring or opacifier ions and crystalline phase of the vitreous matrix. The results of a study on the dosimetric characteristics of thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) of a few medieval blue-green mosaic glasses from the San Lorenzo church (Milan) are presented, and the experimental protocols established to identify their suitability for dating are discussed.

  9. f-state luminescence of lanthanide and actinide ions in solution

    International Nuclear Information System (INIS)

    Beitz, J.V.

    1993-01-01

    Detailed studies of the luminescence of aquated Am 3+ are presented in the context of prior lanthanide and actinide ion work. The luminescing state of aquated Am 3+ is confirmed to be 5 D l based on observed emission and excitation spectra. The luminescence lifetime of Am 3+ in H 2 O solution is (22 ± 3) ns and (155 ± 4) ns in D 2 O solution at 295 K. Judd-Ofelt transition intensity theory qualitatively describes the observed Am 3+ relative integrated fluorescence intensities. Recent luminescence studies on complexed trivalent f-element ions in solution are reviewed as to the similarities and differences between lanthanide ion 4f state and actinide ion 5f state properties

  10. Investigation on the effect of Tb(dbm)3phen on the luminescent properties of Eu(dbm)3phen-containing mesoporous silica nanoparticles

    International Nuclear Information System (INIS)

    Moretti, E.; Bellotto, L.; Basile, M.; Malba, C.; Enrichi, F.; Benedetti, A.; Polizzi, S.

    2013-01-01

    Eu(dbm) 3 phen and Tb(dbm) 3 phen complexes (tris(dibenzoylmethane) mono(1,10-phenantroline) Ln(III)) were impregnated in ordered mesoporous silica nanoparticles (MSNs) with an average size of 50–70 nm and a pore diameter centred at 2.8 nm, with the aim of increasing the luminescence by avoiding concentration quenching and having mainly in mind the application as down-shifter for multi-crystalline solar cells. The morphological, structural, textural and luminescent properties of the synthesized samples were characterized by N 2 adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–visible spectroscopy and photoluminescence measurements. It is demonstrated that inclusion in the MSNs allows one to use much higher loadings (23 wt%) of the Eu-complex than in other matrices, and that co-doping with Tb(dbm) 3 phen improves luminescence for samples with Eu(dbm) 3 phen content lower than about 10 wt%. Results are interpreted by using a simple sphere of action model adapted to the case of a pore-limited system. - Graphical abstract: Sensitization of the antenna effect (down-conversion of UV radiation to red light) by the presence of Tb(dbm) 3 phen in the cavities of mesoporous silica nanoparticles containing Eu(dbm) 3 phen. - Highlights: • Detailed study of Eu(dbm) 3 phen-doped mesoporous silica nanoparticles luminescence. • Inclusion of up to 23 wt% of Eu(dbm) 3 phen without concentration quenching. • Detailed study of the role of the Tb(dbm) 3 phen co-dopant. • Co-doping effective for Eu 3+ (dbm) 3 phen loadings lower than about 10 wt%

  11. Investigation of blue luminescence in Mg-doped nonpolar a-plane GaN

    International Nuclear Information System (INIS)

    Kim, Hogyoung; Song, Keun Man

    2014-01-01

    The temperature-dependent optical characteristics of blue luminescence (BL) band in Mg-doped nonpolar a-plane GaN films were investigated using photoluminescence (PL) measurements. For the sample with the highest Cp 2 Mg/TMGa ([Mg]/[Ga]) molar ratio, the BL band was shown to have two distinct peaks, one at about 2.95 eV and the other at about 2.75 eV, which were associated with the donor–acceptor pair (DAP) transitions between the one shallow Mg acceptor level and the two different deep donor levels. In contrast, a single broad BL band was observed for all other samples. Strong potential fluctuations caused by high compensation level in the sample with the highest [Mg]/[Ga] molar ratio might localize the carriers related to the 2.75 eV band, leading to the different emission characteristics in BL band as compared to other samples. -- Highlights: • The temperature-dependent optical characteristics of blue luminescence (BL) in Mg-doped nonpolar a-plane GaN were investigated using photoluminescence (PL) measurements. • At the highest [Mg]/[Ga] molar ratio, the BL was observed to have two distinct peaks at low temperatures. • The BL was associated with the one shallow Mg acceptor level and the two different Mg-related deep donor levels. • Strong potential fluctuations caused by high compensation level might localize the carriers

  12. Investigation of blue luminescence in Mg-doped nonpolar a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hogyoung [Department of Optometry, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Song, Keun Man, E-mail: skmmec@gmail.com [Korea Advanced Nano Fab Center, Suwon, Gyeonggi 443-770 (Korea, Republic of)

    2014-01-15

    The temperature-dependent optical characteristics of blue luminescence (BL) band in Mg-doped nonpolar a-plane GaN films were investigated using photoluminescence (PL) measurements. For the sample with the highest Cp{sub 2}Mg/TMGa ([Mg]/[Ga]) molar ratio, the BL band was shown to have two distinct peaks, one at about 2.95 eV and the other at about 2.75 eV, which were associated with the donor–acceptor pair (DAP) transitions between the one shallow Mg acceptor level and the two different deep donor levels. In contrast, a single broad BL band was observed for all other samples. Strong potential fluctuations caused by high compensation level in the sample with the highest [Mg]/[Ga] molar ratio might localize the carriers related to the 2.75 eV band, leading to the different emission characteristics in BL band as compared to other samples. -- Highlights: • The temperature-dependent optical characteristics of blue luminescence (BL) in Mg-doped nonpolar a-plane GaN were investigated using photoluminescence (PL) measurements. • At the highest [Mg]/[Ga] molar ratio, the BL was observed to have two distinct peaks at low temperatures. • The BL was associated with the one shallow Mg acceptor level and the two different Mg-related deep donor levels. • Strong potential fluctuations caused by high compensation level might localize the carriers.

  13. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  14. Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors

    Science.gov (United States)

    Dieu, Bjorn; Roeffaers, Maarten B.J.; Hofkens, Johan

    2016-01-01

    Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be controlled by adjusting the water content of the zeolite. These samples showed a dynamic change in their emission color from blue to green and yellow upon an increase of the hydration level of the zeolite, showing the great potential that these materials can have as luminescence-based humidity sensors at the macro and micro scale. Here, we describe the detailed procedure to fabricate a humidity sensor prototype using silver-exchanged zeolite composites. The sensor is produced by suspending the luminescent Ag-zeolites in an aqueous solution of polyethylenimine (PEI) to subsequently deposit a film of the material onto a quartz plate. The coated plate is subjected to several hydration/dehydration cycles to show the functionality of the sensing film. PMID:27911397

  15. luminescence properties

    Indian Academy of Sciences (India)

    1Faculty of Science and Arts, Department of Chemistry, Bozok University, Yozgat 66900, Turkey. 2Faculty of Science, Department of Chemistry, Erciyes ... synthesized by the conventional solid-state reaction method, their crystal structures and luminescence properties were investigated. X-ray diffraction patterns (XRD) ...

  16. X-ray micro-modulated luminescence tomography (XMLT)

    Science.gov (United States)

    Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge

    2014-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898

  17. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Rusu, Mircea; Stere, Oana; Haiduc, Maria; Caramete, Laurentiu

    2004-01-01

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  18. Luminescent amine sensor based on europium(III) chelate.

    Science.gov (United States)

    Petrochenkova, Nataliya V; Mirochnik, Anatolii G; Emelina, Tatyana B; Sergeev, Alexander A; Leonov, Andrei A; Voznesenskii, Sergey S

    2018-07-05

    The effect of methylamine vapor on luminescence of Eu(III) tris-benzoylacetonate (I) immobilized in thin-layer chromatography plates has been investigated. It has been revealed that interaction of I with analyte vapor results in increase of the intensity of Eu(III) luminescence. The mechanism of the effect of methylamine vapors on intensification of the Eu(III) luminescence has been suggested using the data of IR spectroscopy and quantum chemistry calculations. The mechanism of luminescence sensitization consists in bonding of an analyte molecule with a water molecule into the coordination sphere of Eu(III). As a result, the bond of a water molecule with the luminescence centre weakens, rigid structural fragment including europium ion, water and methylamine molecules forms. The presence of such fragment must naturally promote decrease of influence of OH-vibrations on luminescence of the complex I. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Integrated light in direct excitation and energy transfer luminescence

    OpenAIRE

    Chimczak, Eugeniusz

    2007-01-01

    Integrated light in direct excitation and energy transfer luminescence has been investigated. In the investigations reported here, monomolecular centers were taken into account. It was found that the integrated light is equal to the product of generation rate and time of duration of excitation pulse for both direct excitation and energy transfer luminescence.

  20. Optical and luminescence properties of zinc oxide (Review)

    Science.gov (United States)

    Rodnyi, P. A.; Khodyuk, I. V.

    2011-11-01

    We generalize and systematize basic experimental data on optical and luminescence properties of ZnO single crystals, thin films, powders, ceramics, and nanocrystals. We consider and study mechanisms by which two main emission bands occur, a short-wavelength band near the fundamental absorption edge and a broad long-wavelength band, the maximum of which usually lies in the green spectral range. We determine a relationship between the two luminescence bands and study in detail the possibility of controlling the characteristics of ZnO by varying the maximum position of the short-wavelength band. We show that the optical and luminescence characteristics of ZnO largely depend on the choice of the corresponding impurity and the parameters of the synthesis and subsequent treatment of the sample. Prospects for using zinc oxide as a scintillator material are discussed. Additionally, we consider experimental results that are of principal interest for practice.

  1. Enhancing and quenching luminescence with gold nanoparticle films: the influence of substrate on the luminescent properties

    International Nuclear Information System (INIS)

    Guidelli, Eder José; Baffa, Oswaldo; Ramos, Ana Paula

    2016-01-01

    Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength. For the case of the AuNP/aluminum films, the luminescence quenching diminishes, and OSL intensity partially recovers upon increasing the distance between the AuNPs and the aluminum substrates, and between the luminescent nanocrystals and the AuNP films. These results suggest that plasmonic interactions between the emitter nanocrystals, the localized surface plasmons (LSP) of the AuNPs, and the substrate are responsible for the OSL enhancement and quenching. In this sense, the substrate dictates whether LSP relaxation occurs by radiative or non-radiative transisitions, leading to enhanced or quenched OSL, respectively. Therefore, besides showing that AuNP films can enhance and/or tune the sensitivity of luminescent radiation detectors, and demonstrating OSL as a new technique to investigate mechanisms of plasmon-enhanced luminescence, these results bring insights on how substrates strongly modify the optical properties of AuNP films. (paper)

  2. On luminescence lifetimes in quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Galloway, R.B.

    2000-01-01

    In this paper we present results of investigations concerning the time dependence of luminescence emission relative to the time of stimulation in quartz. Measurements of time-resolved spectra were performed on a new versatile pulsed light emitting diode system using 525 nm stimulation, an 11 μs duration pulse, a repetition rate of 11 kHz and a 64 μs dynamic range. Effects on luminescence lifetime resulting from sample treatments such as optical stimulation, irradiation, and preheating, are reported

  3. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2013-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  4. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  5. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2008-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  6. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2012-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materials in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs.

  7. Luminescence dating

    International Nuclear Information System (INIS)

    Rieser, U.

    2009-01-01

    The luminescence techniques have evolved over the last 40 years to a powerful dating instrument in archaeology and geoscience. Depending on how the luminescence is stimulated, one distinguishes the phenomena of thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Each of these phenomena has its specific potential for dating various archaeological materals in the time range from medieval back to palaeolithic periods, or, speaking in geological terms, for dating of Holocene and late Pleistocene objects. The OSL and IRSL techniques are sometimes treated together as 'optical dating'. The luminescence techniques differ from other major dating techniques, such as 14 C, essentially by their applicability to inorganic materials, their wide age-range from about 100 years to more than 100,000 years and the kind of datable events which are the last exposure to heat or to light. (author). 10 refs., 3 figs

  8. Luminescence and energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Blasse, G; Bleijenberg, K C; Powell, R C

    1980-01-01

    This paper deals with the luminescence of uranate centres in solids. The luminescence properties are influenced by the coordination number of the hexavalent uranium ion and by the crystallographic surroundings of the uranate centre. Transitions playing a role in the luminescence processes within the octahedral UO/sub 6//sup 6 -/ group are discussed using the results from both theoretical and experimental studies on another octahedral uranium complex: UF/sub 6/. The luminescence of the octahedral uranate group in oxidic compounds is discussed. Attention is paid to the vibrational structure, which is observed in the luminescence spectra at low temperatures and to the temperature quenching of the luminescence. The temperature quenching of the uranate luminescence in uranium-doped tungstates with ordered perovskite structure can be described in terms of a three state single configurational coordinate diagram. The complicated luminescence spectra of uranium-activated sodium fluoride (NaF-U) crystals have been unraveled using chemical variation of the crystal compositions and using site selective laser excitation techniques. Four different luminescent uranate centres have been observed in NaF-U. A model for the configurations of the luminescent centres has been deduced using the results from ionic conductivity experiments.

  9. NaCl samples for optical luminescence dosimetry

    International Nuclear Information System (INIS)

    Catli, S.

    2005-01-01

    Optically stimulated luminescence (OSL) have been used broadly for luminescence dosimetry and dating. In many cases, it has been pointed out that the decay of the OSL do not generally behave according to a simple exponential function. In this study the Infra-red stimulated luminescence (IRSL) intensity from NaCl samples were experimentally measured. The decay curves for this sample were fitted to some functions and it is in good agreement with the function y = α + b exp(-cx). The IRSL decay curves from NaCl using different β-doses have been obtained and investigated their dose response

  10. Investigation on luminescence enhancement and decay characteristics of long afterglow nanophosphors for dark-vision display applications

    Energy Technology Data Exchange (ETDEWEB)

    Swati, G.; Chawla, S.; Mishra, S.; Rajesh, B.; Vijayan, N.; Sivaiah, B.; Dhar, A.; Haranath, D., E-mail: haranath@nplindia.org

    2015-04-01

    Graphical abstract: - Highlights: • Synthesis and structural characterization has been performed on long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+}, Dy{sup 3+} nanophosphor having afterglow time of ∼12 h. • Studied the effect of various fuels used for synthesis of nanophosphors on the decay and luminescence characteristics. Interestingly, afterglow times varied significantly with different fuels used for the synthesis of the nanophosphor. • Excitation by different illuminants has profound influence on the luminescence intensity and afterglow times of the synthesized nanophosphor. • Such studies could be guidelines for appropriate usage of nanophosphor under different lighting environment. - Abstract: Long afterglow SrAl{sub 2}O{sub 4}:Eu{sup 2+},Dy{sup 3+} nanophosphors were synthesized via a facile but effectual auto-combustion technique followed by post-annealing treatment at elevated temperatures. The influence of various fuels during synthesis and thereafter improvement in the luminescence decay characteristics under various illuminant irradiations of long afterglow nanophosphors have been reported. Extensive studies on structural, morphological and luminescent properties of the as-synthesized afterglow nanophosphors have been presented. Powder X-ray diffraction studies confirm the presence of high-purity, single-phase monoclinic nanophosphors. HRTEM investigations confirm the formation of nanophosphors of particle size less than 50 nm. Photoluminescence emission is attributed to the characteristic d–f transition (4f{sup 6}5d{sup 1}→4f{sup 7}) of Eu{sup 2+} ions and was positioned at 512 nm. As-synthesized nanophosphors exhibit considerable confinement effects resulting into blue shift in emission maxima as compared to their bulk counterparts. The mechanism underlined for long afterglow has been discussed using trapping–detrapping model. The nanophosphor being multifunctional finds many interesting applications including dark-vision display

  11. Structure and luminescent investigation of new Ln(III)-TTA complexes containing N-methyl-ε-caprolactam as ligand

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Alex Santos, E-mail: alexb@ifes.edu.br [Coordenadoria de Química e Biologia, IFES, Vitória, ES 29040-780 (Brazil); Caliman, Ewerton Valadares [Coordenadoria de Engenharia Metalúrgica, IFES, Vitória, ES 29040-780 (Brazil); Dutra, José Diogo L. [Departamento de Química Fundamental, UFPE, Recife, PE 50590-470 (Brazil); Da Silva, Jeferson G. [Departamento de Farmácia, UFJF, Governador Valadares, MG 35010-17 (Brazil); Araujo, Maria Helena, E-mail: maria.araujo@pq.cnpq.br [Departamento de Química, UFMG, Belo Horizonte, MG 31270-901 (Brazil)

    2016-02-15

    The synthesis and photoluminescent properties of Ln(III)-TTA complexes (Ln=Eu(III) and Sm(III) ions; TTA=3-thenoyltrifluoroacetonate) with N-methyl-ε-caprolactam (NMC) are reported. The Ln complexes were characterized by elemental analysis, complexometric titration with EDTA and infrared spectroscopy. The molecular structures of the [Eu(TTA){sub 3}(NMC)(H{sub 2}O)] and [Sm(TTA){sub 3}(NMC)(H{sub 2}O)]·H{sub 2}O compounds were determined by single crystal X-ray crystallography. In these structures, the three TTA molecules are coordinated to the metal in anionic form as bidentate ligands, while the H{sub 2}O and NMC molecules are coordinated to the metal in neutral form as monodentated ligands. The coordination polyhedron around the Ln(III) atom can be described as square antiprismatic molecular geometry. The geometry of the [Eu(TTA){sub 3}(NMC)(H{sub 2}O)] complex was optimized with the Sparkle/RM1 model for Ln(III) complexes, allowing analysis of intramolecular energy transfer processes of the Eu(III) compound. The spectroscopic properties of the 4f{sup 6} intraconfigurational transitions of the Eu(III) complex were then studied experimentally and theoretically. The low value of emission quantum efficiency of {sup 5}D{sub 0} emitting level (η) of Eu(III) ion (ca. 36%) is due to the vibrational modes of the water molecule that act as luminescence quenching. In addition, the luminescence decay curves, the experimental intensity parameters (Ω{sub λ}), lifetimes (τ), radiative (A{sub rad}) and non-radiative (A{sub nrad}) decay rates, theoretical quantum yield (q{sub cal}) were also determined and discussed. - Highlights: • New Ln-TTA complexes with lactam were obtained and their luminescence investigated. • Jablonsky diagram for the Eu(III) complex shows the main channel for the IET process. • Data confirm the potentiality of the Eu(III) complex to produce red luminescence. • LUMPAC has provided useful information on the luminescence of the Eu

  12. Comparison of Eu(NO3)3 and Eu(acac)3 precursors for doping luminescent silica nanoparticles

    International Nuclear Information System (INIS)

    Enrichi, F.; Ricco, R.; Scopece, P.; Parma, A.; Mazaheri, A. R.; Riello, P.; Benedetti, A.

    2010-01-01

    In this study, we report the comparison between Eu 3+ -doped silica nanoparticles synthesized by Stoeber method using Eu(NO 3 ) 3 or Eu(acac) 3 as precursors. The impact of different europium species on the properties of the final silica nanospheres is investigated in details in terms of size, morphology, reachable doping amount, and luminescence efficiency. Moreover, the results obtained for different thermal treatments are presented and discussed. It is shown that the organic complex modify the silica growing process, leading to bigger and irregular nanoparticles (500-800 nm) with respect to the perfectly spherical ones (400 nm) obtained by the nitrate salt, but their luminescence intensity and lifetime is significantly higher when 800-900 o C annealing is performed.

  13. Luminescence spectroscopy with synchrotron radiation: History, highlights, future

    International Nuclear Information System (INIS)

    Zimmerer, Georg

    2006-01-01

    Luminescence spectroscopy and the investigation of dynamical processes with synchrotron radiation (SR) started about 35 years ago in nearly all SR laboratories existing at that time. In the present paper, the pioneering experiments are particularly emphasized. The exciting development is illustrated presenting highlights for the whole period from the beginning to the present day. The highlights are taken from fields like exciton self-trapping, inelastic electron-electron scattering, optically stimulated desorption, cross luminescence, or probing of cluster properties with luminescence spectroscopic methods. More technological aspects play a role in present day's experiments, like quantum cutting in rare-earth-doped insulators. Promising two-photon excitation and light amplification experiments with SR will be included, as well as the first results obtained in a luminescence experiment with selective Vaccum ultraviolet-free electron laser excitation. Finally, a few ideas concerning the future development of luminescence spectroscopy with SR will be sketched

  14. Quartz luminescence response to a mixed alpha-beta field: Investigations on Romanian loess

    DEFF Research Database (Denmark)

    Constantin, Daniela; Jain, Mayank; Murray, Andrew S.

    2015-01-01

    -OSL laboratory dose response curves do not reflect the growth of the OSL signal in nature. A main difference in coarse- and fine-grained quartz dating lies in the alpha irradiation history, but the effect of mixed alpha-beta fields has so far received little attention. In the present study we investigate whether...... the alpha dose experienced by fine grains over geological cycles of irradiation and bleaching may have an effect on the saturation characteristics of the laboratory dose response. By applying time resolved optically stimulated luminescence we confirm that the OSL signals induced in quartz by alpha and beta...

  15. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    Science.gov (United States)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  16. Luminescence properties and energy transfer investigations of Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Yang, Zaifa; Xu, Denghui; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-01-01

    Highlights: • A phosphor Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce"3"+ to Tb"3"+ ions was illustrated in detail. • Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce"3"+ or Tb"3"+ doped and Ce"3"+/Tb"3"+ co-doped Sr_3Lu(PO_4)_3 phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce"3"+ single doping is 4 mol% with maximal fluorescence intensity. The Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor shows both a blue emission (428 nm) from Ce"3"+ and a yellowish-green emission (545 nm) from Tb"3"+ with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce"3"+ to Tb"3"+ ions takes place in the Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce"3"+ to Tb"3"+ ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr_3Lu(PO_4)_3:Ce"3"+, Tb"3"+ phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  17. Fabrication and Spectral Properties of Wood-Based Luminescent Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xianjun Li

    2014-01-01

    Full Text Available Pressure impregnation pretreatment is a conventional method to fabricate wood-based nanocomposites. In this paper, the wood-based luminescent nanocomposites were fabricated with the method and its spectral properties were investigated. The results show that it is feasible to fabricate wood-based luminescent nanocomposites using microwave modified wood and nanophosphor powders. The luminescent strength is in positive correlation with the amount of phosphor powders dispersed in urea-formaldehyde resin. Phosphors absorb UV and blue light efficiently in the range of 400–470 nm and show a broad band of bluish-green emission centered at 500 nm, which makes them good candidates for potential blue-green luminescent materials.

  18. Investigations on the homogeneity of silica glass and on the order of X-amorphous silica by luminescence measurements

    International Nuclear Information System (INIS)

    Boden, G.

    1982-08-01

    Silica glasses melted from crystalline SiO 2 were exposed to ionizing radiation. At room temperature the spatial intensity distribution of the emitted luminescent radiation has been recorded by means of photographic or autoradiographic materials. Thereby schlieren and inhomogeneities are made visible and information is obtained on the melting process of the crystalline SiO 2 . Synthetic fused silica made from SiCl 4 shows no luminescent radiation. Depending on the penetration depth of the ionizing radiation the bulk or the surface of the sample can be studied. The decay curves of the integral luminescence intensity yield data on inhomogeneities in the silica glass leading to conclusions on order state and structure. The luminescence intensity and its half-life are a measure for the inhomogeneity of the silica glass and the existence of so-called 'preordered states'. This connection between luminescence intensity and the order state is found also with other X-amorphous SiO 2 modifications: silica gel, precipitated silicic acids, porous SiO 2 glasses, aerosil, thin SiO 2 layers, mechanically activated quartz: whereas no luminescence phenomena occur in disordered nearly ideally amorphous SiO 2 species, the luminescence increases with increasing order degree of the SiO 2 network and attains a high intensity in the case of the crystalline SiO 2 modifications quartz and cristobalite

  19. Principal and secondary luminescence lifetime components in annealed natural quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Ogundare, F.O.; Feathers, J.

    2008-01-01

    Time-resolved luminescence spectra from quartz can be separated into components with distinct principal and secondary lifetimes depending on certain combinations of annealing and measurement temperature. The influence of annealing on properties of the lifetimes related to irradiation dose and temperature of measurement has been investigated in sedimentary quartz annealed at various temperatures up to 900 deg. C. Time-resolved luminescence for use in the analysis was pulse stimulated from samples at 470 nm between 20 and 200 deg. C. Luminescence lifetimes decrease with measurement temperature due to increasing thermal effect on the associated luminescence with an activation energy of thermal quenching equal to 0.68±0.01eV for the secondary lifetime but only qualitatively so for the principal lifetime component. Concerning the influence of annealing temperature, luminescence lifetimes measured at 20 deg. C are constant at about 33μs for annealing temperatures up to 600 0 C but decrease to about 29μs when the annealing temperature is increased to 900 deg. C. In addition, it was found that lifetime components in samples annealed at 800 deg. C are independent of radiation dose in the range 85-1340 Gy investigated. The dependence of lifetimes on both the annealing temperature and magnitude of radiation dose is described as being due to the increasing importance of a particular recombination centre in the luminescence emission process as a result of dynamic hole transfer between non-radiative and radiative luminescence centres

  20. Synthesis and luminescence properties of novel LiSrPO{sub 4}:Dy{sup 3+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayue, E-mail: jiayue_sun@126.com [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Zhang, Xiangyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China); Xia, Zhiguo, E-mail: xiazg426@yahoo.com.cn [School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083 (China); Du, Haiyan [School of Science, Beijing Technology and Business University, Beijing 100048 (China)

    2011-11-15

    Graphical abstract: Novel LiSrPO4:Dy{sup 3+} phosphors were synthesized by solid-state reaction, and Dy{sup 3+}-doped concentration dependent luminescence properties, concentration quenching effect and the decay times were investigated in detail. Highlights: {yields} LiSrPO{sub 4}:Dy{sup 3+} could be excited by UV light and exhibited blue and yellow emission. {yields} Concentration quenching effect of LiSrPO{sub 4}:Dy{sup 3+} samples were investigated in detail. {yields} Decay times are estimated to be 0.57-0.89 ms for Dy{sup 3+} in LiSrPO{sub 4} host. -- Abstract: Novel LiSrPO{sub 4}:Dy{sup 3+} phosphors for white light-emitting diodes (w-LEDs) were synthesized by the conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation of LiSrPO{sub 4}:Dy{sup 3+} materials. Luminescence properties results showed that the phosphor could be efficiently excited by the UV-vis light region from 250 to 460 nm, and it exhibited blue (483 nm) and yellow (574 nm) emission corresponding to {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2} transitions and {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 13}/{sub 2} transitions, respectively. The luminescence intensity of LiSrPO{sub 4}:xDy{sup 3+} phosphor firstly increased and then decreased with increasing Dy{sup 3+} concentration, and reached the maximum at x = 0.03. It was found that concentration quenching occurred as a result of dipole-dipole interaction according to the Dexter's theory. The decay time was also determined for various concentrations of Dy{sup 3+} in LiSrPO{sub 4}.

  1. Luminescence properties of the Sm-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2015-01-01

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 compositions were investigated and analysed. The Li 2 B 4 O 7 :Sm, LiKB 4 O 7 :Sm, CaB 4 O 7 :Sm, and LiCaBO 3 :Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm 3+ (4f 5 , 6 H 5/2 ) ions, exclusively. All observed 4f – 4f transitions of the Sm 3+ centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm 3+ ions peaked about 598 nm ( 4 G 5/2 → 6 H 7/2 transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm 3+ luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm 3+ centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce 3+ non-controlled impurity and intrinsic luminescence centres to the Sm 3+ centres has been observed. Peculiarities of the Sm 3+ local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 glasses of high quality were obtained. • EPR, optical absorption and luminescence spectra of Sm 3+ ions in obtained glasses were

  2. Dosimetry based on thermally and optically stimulated luminescence

    International Nuclear Information System (INIS)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and α-Al 2 O 3 have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in α-Al 2 O 3 :C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of αAl 2 O 3 :C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for γ-irradiated αAl 2 O 3 :C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au)

  3. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  4. Luminescence and photosensitivity of PbI2 crystals

    International Nuclear Information System (INIS)

    Novosad, S.S.; Novosad, I.S.; Matviishin, I.M.

    2002-01-01

    One studied effect of temperature treatment and storage conditions on spectra features of PbI 2 crystals grown by the Bridgman-Stockbarger method from salt additionally purified by directed crystallization. Spectra of X-ray luminescence, photoluminescence and thermostimulated luminescence were investigated within 85-295 K temperature range under stationary X-ray excitation and emission of N 2 -laser. One studied photoelectret properties of those crystals under 85 K. Luminescence of PbI 2 crystals with maximum within 595 nm region observed following their thermal annealing under 475-495 K temperature and typical for near-the-surface section of specimens may be caused by oxygen-containing centres [ru

  5. The exploration and characterization of an orange emitting long persistent luminescence phosphor LiSr4(BO3)3:Eu2+

    International Nuclear Information System (INIS)

    Jin, Yahong; Hu, Yihua; Wu, Haoyi; Chen, Li; Wang, Xiaojuan

    2016-01-01

    An orange emitting long persistent phosphor LiSr 4 (BO 3 ) 3 :Eu 2+ was prepared successfully using a conventional solid state reaction method. The luminescent and persistent luminescence properties were studied using fluorescence spectra, decay curves, persistent luminescence spectra and thermoluminescence (TL) glow curves. The effects on the fluorescence and persistent luminescence properties by the dosage of Li 2 CO 3 were explored. The relationship between the Eu 2+ contents and persistent luminescence properties were studied. The optimal doping concentration of Eu 2+ was experimentally to be 1 mol%. The detailed processes and a possible mechanism were also discussed. - Highlights: • Li 2 CO 3 plays a critical role in producing persistent luminescence. • 40 % excess of Li 2 CO 3 makes the largest enhancement on persistent luminescence. • The optimal doping concentration of Eu 2+ was experimentally to be 1mol %. • Possible mechanism for persistent luminescence was discussed.

  6. Dependence of the thermal influence on luminescence lifetimes from quartz on the duration of optical stimulation

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2003-01-01

    Time-resolved luminescence spectra may be measured from quartz at various stages of continuous optical stimulation in order to investigate properties of the spectra associated with the 'fast', 'medium', and 'slow' components of continuous optically stimulated luminescence (OSL). In this work, temperature related changes of luminescence lifetimes and luminescence intensity, both evaluated from time-resolved luminescence spectra recorded in the 'fast' 'medium' and 'slow' component regions of quartz OSL, have been investigated. The luminescence, stimulated at 525 nm, and measured at intervals between 20 deg. C and 200 deg. C reaches maximum intensity at 100 deg. C and decreases thereafter up to 200 deg. C, the maximum temperature of the investigations. Luminescence lifetimes, on the other hand, remain constant within 40±3 μs between 20 deg. C and 100 deg. C and then decrease down to about μs at 200 deg. C. The initial increase of luminescence intensity with temperature between 20 deg. C and 100 deg. C is discussed in terms of thermal assistance to luminescence stimulation. Beyond 100 deg. C, radiative recombination is affected by quenching of luminescence and reduction in luminescence lifetimes. The activation energy for thermal quenching was evaluated to be in the range 0.63±0.07 eV at all stimulation times and that of thermal assistance was evaluated to be about 0.06 eV for the 'fast' and 'medium' component regions and about 0.1 eV for the 'slow' component region of the OSL

  7. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Gessner, Andre

    2010-12-01

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the 5 D 0 - 7 F 0 -transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the mesopores. Lanthanide ions located here, are

  8. Luminescent solar concentrator

    Directory of Open Access Journals (Sweden)

    Tugce Tosun

    2015-07-01

    Full Text Available Luminescent solar concentrator (LSC is a device that has luminescent molecules embedding or topping polymeric or glass waveguide to generate electricity from sunlight with a photovoltaic cell attachment. LSCs can be employed both in small and large scale projects, independent on the direction or angle of the surface with respect to the sun, promising more freedom for integration in urban environments compared to the traditional PV systems. The aim of the SEB&C PDEng project is to investigate the applicability of this innovative technology in the built environment and to bridge the gap of knowledge linking societal, design and technological aspects. The final goal is to exhibit potential application concepts of LSC developed by co-creative methods at SPARK campus which is a hub for open innovation in built environment. Necessity of a paradigm shift towards sustainable and smart cities came into being due to the significant increase in energy demand of the buildings. The challenge is to increase renewable sources in the energy mix while designing aesthetic environments. Thus, building integrated renewable energy technologies represent a great opportunity to help overcome this current challenge. Smart energy, energy efficiency and use of renewable sources are key aspects to be considered nowadays and many innovative technologies need further exploitation to be commercially viable, such as luminescent solar concentrator.

  9. Defect-Induced Luminescence of a Self-Activated Borophosphate Phosphor

    Science.gov (United States)

    Han, Bing; Liu, Beibei; Dai, Yazhou; Zhang, Jie

    2018-05-01

    A self-activated borophosphate phosphor Ba3BPO7 was prepared via typical solid-state reaction in thermal-carbon reduction atmosphere. The structural and luminescence properties were investigated using x-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and photoluminescence spectroscopy. Upon excitation with ultraviolet (UV) light, the as-prepared phosphor shows bright greenish-yellow emission with a microsecond-level fluorescence lifetime, which could result from the oxygen vacancies produced in the process of solid-state synthesis. The possible luminescence mechanism is proposed. Through the introduction of defects in the host, this work realizes visible luminescence in a pure borophosphate compound that does not contain any rare earth or transition metal activators, so it is helpful to develop defect-related luminescent materials in view of energy conservation and environmental protection for sustainable development.

  10. Cerium luminescence in nd0 perovskites

    International Nuclear Information System (INIS)

    Setlur, A.A.; Happek, U.

    2010-01-01

    The luminescence of Ce 3+ in perovskite (ABO 3 ) hosts with nd 0 B-site cations, specifically Ca(Hf,Zr)O 3 and (La,Gd)ScO 3 , is investigated in this report. The energy position of the Ce 3+ excitation and emission bands in these perovskites is compared to those of typical Al 3+ perovskites; we find a Ce 3+ 5d 1 centroid shift and Stokes shift that are larger versus the corresponding values for the Al 3+ perovskites. It is also shown that Ce 3+ luminescence quenching is due to Ce 3+ photoionization. The comparison between these perovskites shows reasonable correlations between Ce 3+ luminescence quenching, the energy position of the Ce 3+ 5d 1 excited state with respect to the host conduction band, and the host composition. - Graphical abstract: Ce 3+ decay times versus temperature for perovskites with nd 0 B-site cations.

  11. Dosimetry based on thermally and optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Agersnap Larsen, Niels

    1999-01-01

    Thermally Stimulated Luminescence (TL) and Optically Stimulated Luminescence (OSL) properties of quartz and {alpha}-Al{sub 2}O{sub 3} have been investigated. Anneling-induced OSL and TL sensitivity changes in quartz has been investigated by experiments and modelling. This study does not support a pre-dose effect to account for the observed annealing-induced sensitivity change. The experimental data indicates a more simple mechanism that involves alteration of the concentration of the defect centers. Results from modelling of removal or creation of defect centers comparing well with experimentally obtained data. Thermal quenching of luminescence for the main emission center, the F-center, in {alpha}-Al{sub 2}O{sub 3}:C has been investigated by analysing TL curves obtained at different heating rates. The thermal quenching dependence of luminescence is found to follow the classical Mott-Seitz expression. Basic investigations of OSL properties of {alpha}Al{sub 2}O{sub 3}:C, including: the thermal depth of the OSL traps, the temperature dependence of OSL, and the OSL stimulation spectra. Simultaneous measurements of TL and thermally stimulated conductivity (TSC) are presented for {gamma}-irradiated {alpha}Al{sub 2}O{sub 3}:C. Activation energy analysis of the data reveals a superposition of several first-order TL and TSC peaks caused by release of charge carriers from a distribution of trapping states. Furthermore a description of an experimental method developed to determine the sign of the thermally released charge carriers has been presented. (au) 8 tabs., 59 ills., 90 refs.

  12. Gamma response characterizations of optically stimulated luminescence (OSL) affects personal dosimetry

    Science.gov (United States)

    Monthonwattana, S.; Esor, J.; Rungseesumran, T.; Intang, A.

    2017-06-01

    Optically Stimulated Luminescence (OSL) is the current technique of personal dosimetry changed by Nuclear Technology Service Center instead of Thermoluminescence dosimetry (TLD) because OSL has more advantages, such as repeat reading and elimination of heating process. In this study, OSL was used to test the gamma response characterizations. Detailed OSL investigation on personal dosimetry was carried out in the dose range of 0.2 - 3.0 mSv. The batch homogeneity was 7.66%. R2 value of the linear regression was 0.9997. The difference ratio of angular dependence at ± 60° was 8.7%. Fading of the reading was about 3%.

  13. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  14. Luminescence from potassium feldspars stimulated by infrared and green light

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.

    1993-01-01

    A series of experiments are reported which investigate stimulated luminescence from potassium feldspar. The aim is to provide a basic phenomenological description of the response of the material to stimulation by heat, infrared radiation (875 DELTA 80 nm) and a green light wavelength band from 5 15...... to 560 nm. Two conclusions are drawn: firstly it is suggested that the majority of the trapped charge responsible for the infrared stimulated luminescence signal does not give rise to a thermoluminescence signal, and secondly that a large traction of the two optically stimulated luminescence signals...

  15. Luminescence detection of shellfish

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Spencer, J.Q.; Naylor, J.D.

    1996-01-01

    The Scottish Universities Research and Reactor Centre (SURRC) has been active in the development and application of luminescence techniques in the detection of irradiated foods, in support of UK legislation. Thermoluminescence (TL), photostimulated luminescence (PSL) and photo-transfer luminescence (PTTL) are radiation-specific phenomena which arise due to energy stored by trapped charge carriers following irradiation. The energy released following stimulation is accompanied by detectable luminescence. The TL method involves preparation of pure silicate extracts from the sample and subsequent TL analysis, whereas PSL uses stimulation by electromagnetic radiation (visible, or near visible wavelengths) thus avoiding heating the sample. (author)

  16. Luminescence and luminescence quenching of Eu{sub 2}Mo{sub 4}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Janulevicius, Matas; Grigorjevaite, Julija; Merkininkaite, Greta [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Sakirzanovas, Simas [Department of Applied Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Katelnikovas, Arturas, E-mail: arturas.katelnikovas@chf.vu.lt [Department of Analytical and Environmental Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2016-11-15

    A polycrystalline Eu{sub 2}Mo{sub 4}O{sub 15} phosphor sample was prepared by high temperature solid state reaction. Phase purity and morphological features of the phosphor were investigated by X-ray diffraction and scanning electron microscopy, respectively. Reflectance spectra showed that the optical band gap of Eu{sub 2}Mo{sub 4}O{sub 15} is 2.95 eV. Phosphor emits intensive red light when excited with 394 and 465 nm radiation. Temperature dependent emission and luminescence lifetime measurements revealed that external and internal quantum yields decrease at the same rate and that luminescence quenches due to photoionization. The calculated external quantum yields for 394 and 465 nm excitation were 7.8% and 53.5%, respectively.

  17. X-ray photoemission spectroscopy investigation of CaTiO3:Eu for luminescence property: effect of Eu3+ ion

    International Nuclear Information System (INIS)

    Wang, Kaichen; Zhao, Baijun; Gao, Lu

    2016-01-01

    Graphical abstract: The influence on the photoluminescent performance due to the electronic structure change in Eu-doped CaTiO 3 of the specific core-level and valence band spectrum via X-ray photoemission spectroscopy were characterized. - Highlights: • Single phase CaTiO 3 and CaTiO 3 : Eu crystals were prepared under mild hydrothermal method. • Crystal structure, doping level and the relations to their luminescent property were discussed. • Charge compensation mechanism was discussed via valance band spectrum by XPS. - Abstract: Charge compensation of on-site Eu 4f–5d transition that determines the luminescent performance was confirmed with valance band spectrum. Influence of photoelectrons from CaTiO 3 : Eu to the corresponding luminescent performance was discussed based on the crystal structure, doping level and the relations to their luminescent property. This paper is important to further optimize the luminescent performance for improving the efficiency and reducing the cost in light emitting diode industry.

  18. Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells

    International Nuclear Information System (INIS)

    Zhang, Yi; Sun, Song; Kang, Rui; Zhang, Jun; Zhang, Ningning; Yan, Wenhao; Xie, Wei; Ding, Jianjun; Bao, Jun; Gao, Chen

    2015-01-01

    Graphical abstract: - Highlights: • Bottom-mounted luminescent solar concentrators on dye-doped plates were studied. • The mechanism of transport process was proposed. • The fabricated luminescent solar concentrator achieved a gain of 1.38. • Power conversion efficiency of 5.03% was obtained with cell area coverage of 27%. • The lowest cost per watt of $1.89 was optimized with cell area coverage of 18%. - Abstract: Luminescent solar concentrators offer an attractive approach to concentrate sunlight economically without tracking, but the narrow absorption band of luminescent materials hinders their further development. This paper describes bottom-mounted luminescent solar concentrators on dye-doped polymethylmethacrylate plates that absorb not only the waveguided light but also the transmitted sunlight and partial fluorescent light in the escape cone. A series of bottom-mounted luminescent solar concentrators with size of 78 mm × 78 mm × 7 mm were fabricated and their gain and power conversion efficiency were investigated. The transport process of the waveguided light and the relationship between the bottom-mounted cells were studied to optimize the performance of the device. The bottom-mounted luminescent solar concentrator with cell area coverage of 9% displayed a cell gain of 1.38, to our best knowledge, which is the highest value for dye-doped polymethylmethacrylate plate luminescent solar concentrators. Power conversion efficiency as high as 5.03% was obtained with cell area coverage of 27%. Furthermore, the bottom-mounted luminescent solar concentrator was found to have a lowest cost per watt of $1.89 with cell area coverage of 18%. These results suggested that the fabricated bottom-mounted luminescent solar concentrator may have a potential in low-cost building integrated photovoltaic application

  19. Investigation of complexing of vitamine B-6 with rare earth ions by PMR and luminescent spectroscopy

    International Nuclear Information System (INIS)

    Buiklinskij, V.D.; Zelenov, V.I.; Zolin, V.F.; Koreneva, L.G.; Panyushkin, V.T.

    1981-01-01

    To investigate the complexing of pyridoxine (P), pyridoxal (PL) and pyridoxamine (PM) with lanthanide ions the changes of PMR spectra of ligands in the presence of cerium, praseodymium, neodymium, europium, gadolinium ions, as well as luminescence and absorption spectra of europium in the presence of ligands are used. Using the optical spectroscopy it has been shown that the PL and PM complexes do not have axial symmetry. The values of parameters of the crystalline field of the second order, determining the anisotropy of magnetic susceptibility of europium complexes are evaluated. With an aid of PMR and luminescence spectroscopy it is shown that lanthanide ions coordinate the hydroxy groups of ligands. In the case of P and especially PL oxygen of the substituent in position 4 takes part in the coordination. Using the PMR spectroscopy the difference of the substituent location near C4 in the PM complex from its location in the P and PL complexes as well as the difference in the position of lanthanide ion in the complexes of all the three ligands are detected. The reasons for the differences above are discussed [ru

  20. Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors

    Science.gov (United States)

    Kumar, Deepak; Verma, Kartikey; Verma, Shefali; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    NaYF4 is regarded as the best upconversion (UC) matrix owing to its low phonon energy, more chemical stability, and a superior refractive index. This review reports on the various synthesis techniques of lanthanide-doped NaYF4 phosphors for UC application. The UC intensity depends on different properties of the matrix and those are discussed in detail. Plasmon-enhanced luminescence UC of the lanthanide-doped NaYF4 core-shells structure is discussed based on a literature survey. The present review provides the information about how the UC intensity can be enhanced. The idea about the UC is then deliberately used for versatile applications such as luminescent materials, display devices, biomedical imaging and different security appliances. In addition, the present review demonstrates the recent trends of NaYF4 UC materials in solar cell devices. The role of NaYF4 phosphor to eradicate the spectral variance among the incident solar spectrum, semiconductor as well as the sub-band gap nature of the semiconductor materials is also discussed in detail. Considering the fact that the research status on NaYF4 phosphor for photovoltaic application is now growing, the present review is therefore very important to the researchers. More importantly, this may promote more interesting research platforms to investigate the realistic use of UC nanophosphors as spectral converters for solar cells.

  1. Investigation of chemical vapour deposition diamond detectors by X-ray micro-beam induced current and X-ray micro-beam induced luminescence techniques

    International Nuclear Information System (INIS)

    Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.

    2004-01-01

    Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of 'detector grade' artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency

  2. Detailed Analysis of Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T Cells after Proton Irradiation and Treatments with Oxidant Agents and Flavonoids

    Directory of Open Access Journals (Sweden)

    Irina Baran

    2012-01-01

    Full Text Available Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H2O2. 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H2O2 and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(PH level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G2/M arrest. Quercetin reduced apoptosis and prolonged the G2/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site.

  3. Positron-Induced Luminescence

    Science.gov (United States)

    Stenson, E. V.; Hergenhahn, U.; Stoneking, M. R.; Pedersen, T. Sunn

    2018-04-01

    We report on the observation that low-energy positrons incident on a phosphor screen produce significantly more luminescence than electrons do. For two different wide-band-gap semiconductor phosphors (ZnS:Ag and ZnO:Zn), we compare the luminescent response to a positron beam with the response to an electron beam. For both phosphors, the positron response is significantly brighter than the electron response, by a factor that depends strongly on incident energy (0-5 keV). Positrons with just a few tens of electron-volts of energy (for ZnS:Ag) or less (for ZnO:Zn) produce as much luminescence as is produced by electrons with several kilo-electron-volts. We attribute this effect to valence band holes and excited electrons produced by positron annihilation and subsequent Auger processes. These results demonstrate a valuable approach for addressing long-standing questions about luminescent materials.

  4. Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors

    International Nuclear Information System (INIS)

    Ince, R.; Narayanaswamy, R.

    2006-01-01

    Sensitivity, dynamic range and resolution have been calculated and compared from a range of analytes sensed in the literature using the techniques of interferometry, surface plasmon resonance (SPR) and luminescence. A detailed explanation of the physical and chemical/biological properties required of optical sensors is included along with the principle of operation of the sensors. Theoretical sensitivities of interferometry and SPR are also detailed along with parameters affecting these sensitivities. In the literature discussed in this review paper, the technique of luminescence, which relies intrinsically on 'labelling', offers the best resolutions for sensing of biomolecules (protein and DNA). Interference techniques offer the best resolutions for low molecular weight chemical liquids/vapours. Techniques which are 'label-free' are often desirable and it is demonstrated here that by combining the techniques of SPR with interferometry, it is possible to sense proteins with a resolution similar to that of luminescence. The future of chemo- and bio-sensing is discussed in terms of potential for multi-channel analysis, their continuous miniaturisation and their impending nanotechnology revolution

  5. On the correlation between annealing and variabilities in pulsed-luminescence from quartz

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2006-01-01

    Properties of luminescence lifetimes in quartz related to annealing between 500 and 900 deg. C have been investigated. The luminescence was pulse-stimulated at 470nm from sets of granular quartz annealed at 500, 600, 700, 800, and 900 deg. C. The lifetimes decrease with annealing temperature from about 42 to 33μs when the annealing temperature is increased from 500 to 900 deg. C. Luminescence lifetimes are most sensitive to duration of annealing at 600 deg. C, decreasing from 40.2+/-0.7μs by as much as 7μs when the duration of annealing is changed from 10 to 60min. However, at 800-900 deg. C lifetimes are essentially independent of annealing temperature at about 33μs. Increasing the exciting beta dose causes an increase in the lifetimes of the stimulated luminescence in the sample annealed at 800 deg. C but not in those annealed at either 500 or 600 deg. C. The temperature-resolved distribution of luminescence lifetimes is affected by thermal quenching of luminescence. These features may be accounted for with reference to two principal luminescence centres involved in the luminescence emission process

  6. An investigation of the sites occupied by atomic barium in solid xenon—A 2D-EE luminescence spectroscopy and molecular dynamics study

    Science.gov (United States)

    Davis, Barry M.; Gervais, Benoit; McCaffrey, John G.

    2018-03-01

    A detailed characterisation of the luminescence recorded for the 6p 1P1-6s 1S0 transition of atomic barium isolated in annealed solid xenon has been undertaken using two-dimensional excitation-emission (2D-EE) spectroscopy. In the excitation spectra extracted from the 2D-EE scans, two dominant thermally stable sites were identified, consisting of a classic, three-fold split Jahn-Teller band, labeled the blue site, and an unusual asymmetric 2 + 1 split band, the violet site. A much weaker band has also been identified, whose emission is strongly overlapped by the violet site. The temperature dependence of the luminescence for these sites was monitored revealing that the blue site has a non-radiative channel competing effectively with the fluorescence even at 9.8 K. By contrast, the fluorescence decay time of the violet site was recorded to be 4.3 ns and independent of temperature up to 24 K. The nature of the dominant thermally stable trapping sites was investigated theoretically with Diatomics-in-Molecule (DIM) molecular dynamics simulations. The DIM model was parameterized with ab initio multi-reference configuration interaction calculations for the lowest energy excited states of the BaṡXe pair. The simulated absorption spectra are compared with the experimental results obtained from site-resolved excitation spectroscopy. The simulations allow us to assign the experimental blue feature spectrum to a tetra-vacancy trapping site in the bulk xenon fcc crystal—a site often observed when trapping other metal atoms in rare gas matrices. By contrast, the violet site is assigned to a specific 5-atom vacancy trapping site located at a grain boundary.

  7. The nature of unusual luminescence in natural calcite, CaCO3

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Panczer, G.; Waychunas, G.; Porat, N.

    2008-11-01

    The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms, accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.

  8. Gain investigation of Perylene-Red-doped PMMA for stimulated luminescent solar concentrators.

    Science.gov (United States)

    Kaysir, Md Rejvi; Fleming, Simon; Argyros, Alexander

    2018-04-01

    Luminescent solar concentrators (LSCs) utilizing stimulated emission by a seed laser are a promising approach to overcome the limitations of conventional LSCs, with a significant reduction of the photovoltaic material. In our previous work, we demonstrated the principle of a stimulated LSC (s-LSC) and correspondingly developed a model for quantifying the output power of such a system, taking into account different important physical parameters. The model suggested Perylene Red (PR) dye as a potential candidate for s-LSCs. Here, we experimentally investigate the gain of PR-doped polymethyl methacrylate (PMMA) required for s-LSCs using a single pump wavelength (instead of the solar spectrum) as a proof of principle. The results found from the experiment are well matched with the previously developed numerical model except for gain saturation, which occurs at a comparatively small seed laser signal power. To investigate the gain saturation, two approaches were taken: investigating (i) spectral hole burning and (ii) triplet state absorption. Experimental investigation of spectral hole burning with PR dyes showed a small effect on the gain saturation. We developed a general state model considering triplet state absorption of the PR dyes for the second approach. The state model suggests that the PR dyes suffer from significant triplet state absorption loss, which obstructs the normal operation of the PR-based s-LSC system.

  9. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  10. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  11. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Kry, S. [UT MD Anderson Cancer Center (United States)

    2016-06-15

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  12. MO-A-BRB-01: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    Kry, S.

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  13. MO-A-BRB-00: TG191: Clinical Use of Luminescent Dosimeters

    International Nuclear Information System (INIS)

    2016-01-01

    This presentation will highlight the upcoming TG-191 report: Clinical Use of Luminescent Dosimeters. Luminescent dosimetry based on TLD and OSLD is a practical, accurate, and precise technique for point dosimetry in medical physics applications. The charges of Task Group 191 were to detail the methodologies for practical and optimal luminescent dosimetry in a clinical setting. This includes (1) To review the variety of TLD/OSL materials available, including features and limitations of each. (2) To outline the optimal steps to achieve accurate and precise dosimetry with luminescent detectors and to evaluate the uncertainty induced when less rigorous procedures are used. (3) To develop consensus guidelines on the optimal use of luminescent dosimeters for clinical practice. (4) To develop guidelines for special medically relevant uses of TLDs/OSLs (e.g., mixed field i.e. photon/neutron dosimetry, particle beam dosimetry, skin dosimetry). While this report provides general guidelines for arbitrary TLD and OSLD processes, the report, and therefore this presentation, provide specific guidance for TLD-100 (LiF:Ti,Mg) and nanoDot (Al2O3:C) dosimeters because of their prevalence in clinical practice. Learning Objectives: Understand the available dosimetry systems, and basic theory of their operation Understand the range of dose determination methodologies and the uncertainties associated with them Become familiar with special considerations for TLD/OSLD relevant for special clinical situations Learn recommended commissioning and QA procedures for these dosimetry systems.

  14. Luminescence spectra of lead tungstate, spodumene and topaz crystals

    International Nuclear Information System (INIS)

    Ramachandran, Vasuki

    2002-01-01

    A detailed set of thermoluminescence, cathodoluminescence and radioluminescence (TL, CLTL and RLTL) data of lead tungstate, Spodumene and Topaz have been reported for the first time over a wide temperature range from 25 to 500K. Lead tungstate (PbWO 4 ), a widely known scintillating material, gives TL glow peaks which are related to complex defect centres. Doping of this crystal with trivalent rare earth ions (La 3+ , Y 3+ ) reduces the slow component of the emission thereby making it more suitable for its applications. The pentavalent dopants on the other hand, enhance the green emission and quench the blue emission at temperatures 100K. The origin and the irradiation temperature definitely have an effect on the spectrum. No strong relationship could be derived from the dose dependence data. Two less studied minerals, Spodumene and Topaz have also been investigated with the luminescence techniques. The glow peak near 250degC is thought to have originated from Mn 2+ centres. As there are no ESR data available, the assignment of defect centres is rather difficult. Cr + acts as the quencher in green spodumene. Topaz had the same treatment as the other two sets of samples and the defect centre characterisation looks complex as each coloured sample gave different patterns of glow peaks. Cathodoluminescence whilst heating (CLTL) of all these samples showed some unusual features in the form of a luminescence intensity step which is believed to have originated from the presence of ice. Water, in nanoparticle size quantities, is present as a contaminant in the lattice and undergoes a phase transition at 170K from hexagonal to cubic structures. This phase change influences the luminescence efficiency of the host material and is reflected in the spectrum as a discontinuity in intensity. (author)

  15. Study of plant pigment concentration using synchronous luminescence spectroscopy

    International Nuclear Information System (INIS)

    Pawar, B.H.; Raghuvanshi, F.C.; Mahalle, N.S.; Munde, B.S.; Devhade, S.K.; Arsad, S.S.; Kadam, K.P.; Pachkawade, A.P.; Hiswankar, S.U.

    2006-01-01

    We have recorded the SL (Synchronous Luminescence) spectra emitted by several plant leaves. We investigate in detail SL spectra emitted by the leaf of the plants like Hibiscus Schizopetalus, Ficus Benghalensis, Ficus Religiosa and Ficus Glomerata and study the concentration of the pigments in the plant leaves and the mechanism of photosynthesis process taking place in the leaves. The SL spectra have several features which may help in revealing the density and structure of the molecules present in the samples. The SL spectra exhibit two, three, four and five peaked structure. The peak appear at different wavelengths and their spectral widths are also different. The chlorophyll, xanthophyll and carotene concentration may be obtained from the study of the spectra. The plant species may be identified from the study of SL spectroscopy. (author)

  16. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    International Nuclear Information System (INIS)

    Zakharko, Ya.M.; Luchechko, A.P.; Ubizskii, S.B.; Syvorotka, I.I.; Martynyuk, N.V.; Syvorotka, I.M.

    2007-01-01

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb 3+ ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb 3+ ion excitation, as well as the mechanism of lifetime shortening for the excited Yb 3+ luminescence have been discussed

  17. Resonance-shifting luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.

    2018-01-23

    An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.

  18. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  19. Feldspar, Infrared Stimulated Luminescence

    DEFF Research Database (Denmark)

    Jain, Mayank

    2014-01-01

    This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars.......This entry primarily concerns the characteristics and the origins of infrared-stimulated luminescence in feldspars....

  20. X-ray excited optical luminescence (XEOL) and its application to porous silicon

    International Nuclear Information System (INIS)

    Hill, D.A.

    1998-09-01

    X-ray Excited Optical Luminescence (XEOL) is investigated as a local structural probe of the light-emitting sites in porous silicon. A detailed microscopic model of the XEOL process in porous silicon is proposed. A central aspect of the technique is an assessment of the spatial separation between the primary photoionisation event and subsequent optical radiative recombination. By constructing a Monte Carlo simulation of hot electron propagation in silicon using both elastic and inelastic scattering cross-sections, the mean minimum range of luminescence excitation can be calculated. This range is estimated as 546±1A for the silicon K-edge (∼ 1839eV), but is reduced to 8.9±0.1A for the silicon L 2,3 -edge (∼ 99eV). From known porous silicon properties, it is concluded that this mean minimum range is comparable to the actual range of excitation. Hence, more localised structural information may be obtained from L 2,3 -edge XEOL measurements. This important difference between the two spectra has been neglected in previous studies. Simultaneous measurements of the XEOL and total electron yield (TEY) x-ray absorption spectra (XAS) have been conducted at both the silicon K-edge and L 2,3 -edge for various porous silicon samples and related materials. Measurements have been conducted at the Si K-edge on a rapid thermally oxidised (RTO) porous silicon sample. XEOL spectra yield two distinct luminescence bands in the visible region. From multi-bunch wavelength-selective XEOL measurements, it is concluded that there are blue luminescent defective silica sites together with a red luminescent site originating from silicon-like material. The spectral time decay curve under pulsed x-ray excitation gives two distinct decay components; one fast in the range of a few nanoseconds and the other slow in the range of microseconds. Time-resolved XEOL measurements in single-bunch mode show that the fast band mirrors the blue wavelength XEOL whereas the slow band correlates with the

  1. Study on the relationship of protease production and luminescence in Vibrio harveyi.

    Science.gov (United States)

    Nakayama, T; Nomura, N; Matsumura, M

    2006-07-01

    To demonstrate that Vibrio harveyi produces various types of toxins and how the production of those toxins is related with luminescence. Luminescence and toxicity of eight V. harveyi were evaluated. We demonstrated that all V. harveyi emitting luminescence were isolated from marine organisms and also showed that they were highly pathogenic when compared with culture collection V. harveyi based on cytotoxic assay test. On the contrary, V. harveyi isolated from shrimp farm showed no luminescence but showed high pathogenicity based on toxicity test. The effect of protease inhibitors on pathogenicity and luminescence was also investigated. We demonstrated that light emission of pathogenic V. harveyi remarkably decreased after addition of protease inhibitor. Furthermore, extracellular proteins from cell-free culture supernatant of luminescent and nonluminescent V. harveyi were compared using SDS-PAGE analysis. Results showed that there were differences in molecular weight and amount of proteins. Vibrio harveyi parasiting marine organisms have both luminescence and pathogenicity. Based on this study, luminescence and protease toxin activity in V. harveyi are related. Moreover, this paper clarified that V. harveyi produces various types of toxins. The current study demonstrated that V. harveyi produces two kinds of toxins, haemolysin and protease toxin. It may be clear roots of V. harveyi toxin.

  2. The double luminescence of Color Centers

    International Nuclear Information System (INIS)

    Baldacchini, Giuseppe

    2015-01-01

    An experiment on the luminescence of Color Centers (CCs) carried out in 1987 at the ENEA Laboratories in Frascati had a negative result, but subsequent investigations showed that it was not a failure but rather a discovery of a new phenomenon. Since the coming of lasers, CCs in alkali halides have been successfully used as optically active materials, in particular FA Centers. One of these centers, well known for its medium infrared laser emission at 77 K, cooled further to 2 K emitted in the near infrared and without laser effect. Further investigations showed that the double luminescence was a fundamental property unknown until that time. This important discovery was achieved in Frascati because of the existence since 1973 of a solid and extensive expertise in the field of CCs, which continued over time and later on applied to the modern miniaturized photonic devices [it

  3. Time-resolved measurements of luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Bradley B. [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); McShane, Michael J., E-mail: mcshane@tamu.edu [Department of Biomedical Engineering, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Program, 408 Mechanical Engineering Office Building, Spence Street, Texas A and M University, College Station, TX 77843 (United States)

    2013-12-15

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described.

  4. Time-resolved measurements of luminescence

    International Nuclear Information System (INIS)

    Collier, Bradley B.; McShane, Michael J.

    2013-01-01

    Luminescence sensing and imaging has become more widespread in recent years in a variety of industries including the biomedical and environmental fields. Measurements of luminescence lifetime hold inherent advantages over intensity-based response measurements, and advances in both technology and methods have enabled their use in a broader spectrum of applications including real-time medical diagnostics. This review will focus on recent advances in analytical methods, particularly calculation techniques, including time- and frequency-domain lifetime approaches as well as other time-resolved measurements of luminescence. -- Highlights: • Developments in technology have led to widespread use of luminescence lifetime. • Growing interest for sensing and imaging applications. • Recent advances in approaches to lifetime calculations are reviewed. • Advantages and disadvantages of various methods are weighed. • Other methods for measurement of luminescence lifetime also described

  5. Determination of molecular structures of aromatic hydrocarbons of crystal fractions of Noriysk crude by a series of luminescent-spectral methods

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblina, A.I.; Alekseyeva, T.A.; Barabadze, Sh.Sh.; Melikadze, L.D.; Teplitskaya, T.A.

    1979-01-01

    The structure of crystalline aromatic hydrocarbons isolated from the high boiling fraction (540-560 degrees) of Noriysk crude was studied using methods of luminescent-spectral analysis. The individual composition of the crystalline aromatic hydrocarbons was analyzed by a combination of fine structure luminescent spectroscopy and spectrofluorimetric methods in frozen matrices using spectra of fluorescence, phosphorescence and excitation of luminescence. The composite method used at 77 K is very effective and allows detailed characteristics of the molar-group composition of complex mixtures of petroleum aromatic hydrocarbons to the point of identification of individual components.

  6. Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4:Eu2+

    International Nuclear Information System (INIS)

    Wei, Yongbin; Wu, Zheng; Jia, Yanmin; Liu, Yongsheng

    2015-01-01

    Piezoelectrically-induced stress-luminescence in the CaAl 2 O 4 :Eu 2+ was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl 2 O 4 :Eu 2+ arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl 2 O 4 :Eu 2+ ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl 2 O 4 :Eu 2+ was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors

  7. Phosphorescence quantum yield determination with time-gated fluorimeter and Tb(III)-acetylacetonate as luminescence reference

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Fakultät für Physik, Universität Regensburg, Universitätsstrasse 31, D-93053 Regensburg (Germany)

    2013-03-29

    Highlights: ► Procedure for absolute phosphorescence quantum yield measurement is described. ► Experimental setup for absolute luminescence quantum yield standard calibration. ► Tb(acac){sub 3} proposed as phosphorescence quantum yield reference standard. ► Luminescence quantum yield of Tb(acac){sub 3} in cyclohexane measured. ► Luminescence lifetime of Tb(acac){sub 3} in cyclohexane measured. - Abstract: Phosphorescence quantum yield measurements of fluorescent and phosphorescent samples require the use of time-gated fluorimeters in order to discriminate against the fluorescence contribution. As reference standard a non-fluorescent luminescent compound is needed for absolute phosphorescence quantum yield determination. For this purpose the luminescence behavior of the rare earth chelate terbium(III)-acetylacetonate (Tb(acac){sub 3}) was studied (determination of luminescence quantum yield and luminescence lifetime). The luminescence quantum yield of Tb(acac){sub 3} was determined by using an external light source and operating the fluorimeter in chemo/bioluminescence mode with a fluorescent dye (rhodamine 6G in methanol) as reference standard. A procedure is developed for absolute luminescence (phosphorescence) quantum yield determination of samples under investigation with a time-gated fluorimeter using a non-fluorescent luminescent compound of known luminescence quantum yield and luminescence lifetime.

  8. Advantages and disadvantages of luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Olko, Pawel, E-mail: Pawel.Olko@ifj.edu.p [Institute of Nuclear Physics Polish Academy of Science (IFJ PAN), Krakow (Poland)

    2010-03-15

    Owing to their excellent dosimetric properties, luminescence detectors of ionizing radiation are now extensively applied in individual dosimetry services. The most frequently used personal dosemeters are based on Optically Stimulated Luminescence (OSL), radiophotoluminescence (RPL) or thermoluminescence (TL). Luminescence detectors have also found several applications in clinical dosimetry, especially around new radiation modalities in radiotherapy, such as Intensity Modulated Radiotherapy (IMRT) or ion beam radiotherapy. Requirements of luminescence detectors applied in individual and clinical dosimetry and some recent developments in luminescence of detectors and techniques leading to significant improvements of the functionality and accuracy of dosimetry systems are reviewed and discussed.

  9. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    International Nuclear Information System (INIS)

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-01-01

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  10. Holographic patterning of luminescent photopolymer nanocomposites

    International Nuclear Information System (INIS)

    Sakhno, Oksana V.; Smirnova, Tatiana N.; Goldenberg, Leonid M.; Stumpe, Joachim

    2008-01-01

    Volume phase gratings in the photopolymerisable composites, containing luminescent nanoparticles have been fabricated for the first time. Nanoparticles of LaPO 4 , doped by Ce 3+ and Tb 3+ ions (the trade name is REN-X-green) with high luminescence quantum yield were used as a luminescent inorganic additive. The holographic gratings in such materials are formed as a result of the diffusion distribution of the nanoparticles during exposure of photopolymerisable composites to interference pattern. The influence of the pre-polymer formulation and the holographic patterning parameters on the grating formation is comprehensively investigated. The use of the optimised pre-polymer syrup containing two monomers with sufficiently different polymerisation rates allows fabrication of gratings with diffraction efficiency up to 80% at low optical losses (< 5%) (20 μm film thickness). To obtain maximum diffraction efficiency the intensity and the period of the interference pattern were optimised for each formulation. In addition maximum diffraction efficiency was achieved with the nanocomposites containing 30-32 wt.% of nanoparticles. On the other hand the highest possible modulation of the nanoparticles' concentration was obtained for the concentration of about 20 wt.%. In this case maximum ordering of the nanoparticles in the polymer matrix is achieved. The photoluminescence of the nanoparticles within the homogeneous polymer film and within the grating has been measured. The example application of the photopolymerisable composite containing luminescence inorganic nanoparticles in holographic security technology has been demonstrated

  11. Application of Quantum Dot nanocrystal in Luminescent solar concentrators

    Science.gov (United States)

    Bakhoda, Shokoufeh; Khalaji Assadi, Morteza; Ahmadi Kandjani, Sohrab; Kayiem, Hussain H. Al; Hussain Bhat, Aamir

    2018-03-01

    The basic design of luminescent solar concentrator is a transparent plate doped with an appropriate luminescent material (organic dyes, quantum dots), which is able to absorb sunlight (direct and diffuse), and then guides photons produced by photoluminescence to its narrow edges where they are converted by photovoltaic cells. Unfortunately, LSCs have suffered from numerous efficiency losses. Therefore, new luminescent species and novel approaches are needed for its practical application. This paper deals with investigation of nonhazardous, environmental friendly luminescent species include CuInS2/ZnS core/shell QDs. The CuInS2/ZnS QDs possess advantages of Stocks shift as large as more than 130 nm and high photoluminescence quantum yield of 80%. The paper presents the effect of large stock shift CuInS2/ZnS QDs on reducing the reabsorption losses in LSC by using experimental investigation. The LSC sheets were fabricated by dispersing CuInS2/ZnS QDs particles in a polymethylmethacrylate waveguide. A series of LSCs (dimension 4.0 cm × 3.0 cm × 0.3cm) with different CuInS2/ZnS QDs particles concentration (0.015 and 0.03 wt.%) were fabricated and their optical properties (absorptions/emissions) were characterized. The results show that the CuInS2/ZnS QDs-LSC provides a promising way for the reduction of reabsorption losses in LSCs.

  12. Design, synthesis and characterization of a highly luminescent Eu-complex monomer featuring thenoyltrifluoroacetone and 5-acryloxyethoxymethyl-8-hydroxyquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Xu Cunjin [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China); College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Li Bogeng, E-mail: bgli@zju.edu.cn [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China); Wan Jintao; Bu Zhiyang [State Key Laboratory of Chemical Engineering, Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-08-15

    A multi-functional ligand, 5-acryloxyethoxymethyl-8-hydroxyquinoline (Hamq), was synthesized, which contained a polymerizable C=C double bond for the copolymerization with other vinyl monomers and acted as photon antenna able to transfer energy to Eu{sup 3+} ions effectively. The triplet state energy of Hamq was determined to be 22,370 cm{sup -1} via the phosphorescence spectra of Hamq and its gadolinium complex. The title complex monomer Eu(tta){sub 2}(amq) was prepared by coordination reaction of Hamq with europium isopropoxide and 2-thenoyltrifluoroacetone (Htta) in dry organic solvents under argon atmosphere and characterized by elemental analysis and IR spectrum. The photophysical properties of the complex were studied in detail with UV-vis, luminescence spectra, luminescence lifetime and quantum yield. The complex exhibited nearly monochromatic red emission at 612 nm, a remarkable luminescence quantum yield at room temperature (30.6%) upon ligand excitation and a long {sup 5}D{sub 0} lifetime (389 {mu}s), which indicated that the ligand Hamq could sensitize the luminescence of Eu(III) ion efficiently in Eu(tta){sub 2}(amq), resulting in a strong luminescence of its copolymer poly[MMA-co-Eu(TTA){sub 2}(amq)] under UV excitation. The excellent luminescence properties of the complex made it not only a promising light-conversion molecular device but also an excellent luminescent monomer. - Highlights: >iWe designed and synthesized a highly luminescent Eu-complex monomer. > Quantum yield and lifetime of the complex are 30.6% and 389 {mu}s, respectively. > Excellent luminescence of the complex made it an excellent luminescent monomer.

  13. Investigations of gamma irradiation on the properties of luminescent films of polycarbonate(PC) matrix doped with europium complex [Eu(tta)3(H2O)2

    International Nuclear Information System (INIS)

    Forster, Pedro L.; Lugao, Ademar B.; Martins, Natalia A.; Egute, Nayara S.; Parra, Duclerc F.; Brito, Hermi F.

    2009-01-01

    Luminescent lanthanide complexes have attracted much recent interest for their application as luminescent materials. The combination of unique spectroscopic properties from rare earth complexes associated to physical and chemical intrinsic properties of polymers became more attractive in the last years. A number of advantages of these substances have been reported or realized over the much studied conjugated polymers and nonlanthanide. Luminescent films composed by diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(tta) 3 (H 2 O) 2 ] doped into a polycarbonate (PC) matrix were prepared and irradiated at gamma radiation with 5, 10, and 20 kGy. The PC polymer was doped with 1% (w/w) of the Eu 3+ complex. The thermal properties was investigated by utilization of differential scanning calorimeter (DSC) changes in thermal stability was observed due to the addition of doping agent into the polycarbonate matrix. Changes in photophysical properties due of gamma radiation was observed by emission, excitation spectra and fourier transformed infrared spectra (FTIR). Based on the emission spectra of PC:1% Eu(tta)3 film were observed the characteristic bands arising from the 5 D 0 7 F J transitions of Eu 3+ ion (J=0-4), indicating the ability to obtain the luminescence films. (author)

  14. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Energy Technology Data Exchange (ETDEWEB)

    Magaryan, K.A., E-mail: xmagaros@gmail.com [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Mikhailov, M.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Karimullin, K.R. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); E.K. Zavoyski Kazan Physical-Technical Institute of RAS, 10/7 Sibirski trakt Str., Kazan 420029 (Russian Federation); Knyazev, M.V.; Eremchev, I.Y. [Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Naumov, A.V. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Vasilieva, I.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Klimusheva, G.V. [Institute of Physics, NAS of Ukraine, 46 Prospect Nauki, Kiev 03028 (Ukraine)

    2016-01-15

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm{sup 2}. Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  15. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    International Nuclear Information System (INIS)

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  16. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  17. Luminescence and micro-Raman investigations on inclusions of unusual habit in chrysoprase from Turkey

    International Nuclear Information System (INIS)

    Ayvacıklı, M.; Garcia-Guinea, J.; Jorge, A.; Akalın, İ.; Kotan, Z.; Can, N.

    2012-01-01

    Chemical analyses performed on chrysoprase from Turkey have shown many trace elements as well as rare earth impurities. Quantitative chemical analyses of inclusions in minerals can improve our understanding of the chemistry of surface. The environmental scanning electron microscope (ESEM) with an attached X-ray energy dispersive system (EDS) is capable of producing rapid and accurate major element chemical analyses of individual inclusions in crystals larger than about 30 μm in diameter. The samples were examined with lifetime-resolved and spatially-resolved cathodoluminescence (CL), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Spatially resolved CL results at room temperature were recorded for two different areas. Bulk area displays with low CL emission and pores contain iron phases such as chromite, hematite and anatase which cause the green color. For the raw data in the lifetime resolved CL spectrum, at least three broad emission bands were detected in a yellow band of the highest intensity at about 550 nm, a weaker orange band at about 650 nm, and a red band at 720 nm. It is assumed that there are links between the CL emissions and the presence of some transition metal and REE elements, but it is obvious that all trace elements do not play a direct role. Micro-Raman measurements were performed on chrysoprase and these showed a characteristic intensive Raman band peaked at 464 cm −1 which can be inferred to ν 2 doubly symmetric bending mode of [SiO 4 /M] centers. Raman spectrum of all inclusions found in the material are also given and discussed in detail. - Highlights: ► Luminescence and Raman investigations of Chrysoprase. ► Characteristic intensive Raman band peaked at 464 cm −1 . ► Ironed phases such as chromite, hematite and anatase.

  18. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2 Gas and Its Derivatives by Luminescence Turn-On Effect.

    Science.gov (United States)

    Wang, Meng; Guo, Lin; Cao, Dapeng

    2018-03-06

    Rapid and selective sensing of sulfur dioxide (SO 2 ) gas has attracted more and more attention because SO 2 not only causes environmental pollution but also severely affects the health of human beings. Here we report an amino-functionalized luminescent metal-organic framework (MOF) material (i.e., MOF-5-NH 2 ) and further investigate its sensing property for SO 2 gas and its derivatives as a luminescent probe. The results indicate that the MOF-5-NH 2 probe can selectively and sensitively sense SO 2 derivatives (i.e., SO 3 2- ) in real time by a luminescence turn-on effect with a lower detection limit of 0.168 ppm and a response time of less than 15 s. Importantly, the luminescence turn-on phenomenon can be observed by the naked eye. We also assembled MOF-5-NH 2 into a test paper to achieve the aim of portable detection, and the lower-limit concentration of the test paper for sensing SO 2 in real time was found to be about 0.05 ppm. Moreover, MOF-5-NH 2 also shows good anti-interference ability, strong luminescence stability, and reusability, which means that this material is an excellent sensing candidate. The amino functionalization may also provide a modification strategy to design luminescent sensors for other atmospheric pollutants.

  19. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    International Nuclear Information System (INIS)

    Goubard, F.; Vidal, F.; Bazzi, R.; Tillement, O.; Chevrot, C.; Teyssie, D.

    2007-01-01

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd 2 O 3 . These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films

  20. Scintillation and optical stimulated luminescence of Ce-doped CaF2

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi; Fukuda, Kentaro; Kawaguchi, Noriaki; Miyamoto, Yuka; Nanto, Hidehito

    2014-01-01

    Scintillation and optical stimulated luminescence of Ce 0.1–20% doped CaF 2 crystals prepared by Tokuyama Corp. were investigated. In X-ray induced scintillation spectra, luminescence due to Ce 3+ 5d–4f transition appeared around 320 nm with typically 40 ns decay time. By 241 Am 5.5 MeV α-ray irradiation, 0.1% doped one showed the highest scintillation light yield and the light yield monotonically decreased with Ce concentrations. Optically stimulated luminescence after X-ray irradiation was observed around 320 nm under 550 or 830 nm stimulation in all samples. As a result, intensities of optically stimulated luminescence were proportional to Ce concentrations. Consequently, scintillation and optically stimulated luminescence resulted to have a complementary relation in Ce-doped CaF 2 system. - Highlights: • Optical, scintillation, and OSL properties of Ce 0.1–20% doped CaF 2 were studied. • Scintillation light yield exhibited inverse proportionality to Ce concentrations. • OSL intensities showed proportionality to Ce concentrations. • Complementary relation of scintillation and OSL was experimentally confirmed

  1. Excitonic surface polaritons in luminescence from ZnTe crystals

    International Nuclear Information System (INIS)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G.

    1984-01-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ΔE/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated. (author)

  2. Excitonic surface polaritons in luminescence from ZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, M.S.; Bandura, V.M.; Matsko, M.G. (AN Ukrainskoj SSR, Kiev. Inst. Fiziki)

    1984-10-01

    The form and structure of reflection and exciton-polariton luminescence spectra of ZnTe crystals are studied in the region of the ground (n = 1) exciton state. The longitudinal-transverse splitting magnitude ..delta..E/sub LT/ is determined from the shape of the reflection spectra. A detected doublet structure of an emission band from the lower polariton branch is associated with the k-linear term. The evolution of bulk and surface polariton luminescence spectra versus temperature and wavelength of the exciting light is investigated.

  3. Luminescence of Ce doped oxygen crystalline compounds based on Hf and Ba

    CERN Document Server

    Borisevich, A E; Lecoq, P

    2003-01-01

    The luminescence properties of the Ce-doped hafnium and barium compounds have been investigated to determine their potential as heavy scintillation materials. Compounds have been prepared by solid state synthesis. All of them have shown a bright luminescence attributed to trivalent cerium. Emission bands are peaked in the 425-475nm spectral region at room temperature.

  4. Investigating the Interaction of Graphic Organizers and Seductive Details: Can a Graphic Organizer Mitigate the Seductive-Details Effect?

    Science.gov (United States)

    Rowland-Bryant, Emily; Skinner, Christopher H.; Skinner, Amy L.; Saudargas, Richard; Robinson, Daniel H.; Kirk, Emily R.

    2009-01-01

    The interaction between seductive details (SD) and a graphic organizer (GO) was investigated. Undergraduate students (n = 207) read a target-material passage about Freud's psychosexual stages. Depending on condition, the participants also read a biographical paragraph (SD-only), viewed a graphic organizer that linked the seductive details to the…

  5. New luminescence measurement facilities in retrospective dosimetry

    DEFF Research Database (Denmark)

    Lapp, Torben; Jain, Mayank; Thomsen, Kristina Jørkov

    2012-01-01

    ), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal.Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when......This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non...... radiation field is spatially non-uniform across the sample area. We document the effect of this correction method and further investigate on the effect of lifting the source to achieve a better dose-rate uniformity.Finally we summarise two recently-developed novel facilities to help investigate (i) the time...

  6. Creation of free excitons in solid krypton investigated by time-resolved luminescence spectroscopy

    International Nuclear Information System (INIS)

    Kisand, Vambola; Kirm, Marco; Negodin, Evgeni; Sombrowski, Elke; Steeg, Barbara; Vielhauer, Sebastian; Zimmerer, Georg

    2003-01-01

    The creation and relaxation of secondary excitons in solid Kr was investigated using energy-and time-resolved luminescence spectroscopy in the vacuum ultraviolet region. The spectrally selected emission of the free exciton (FE) was used as a probe for an investigation of the different exciton creation processes. Delayed FE creation via electron-hole recombination and 'prompt' (in terms of the time-resolution of the experiment) creation of excitons were separated. The 'prompt' creation of a FE appears in the region above threshold energy E th , which is equal to the sum of the band gap energy and the free exciton energy. 'Prompt' creation of excitons above E th is ascribed to a superposition of two processes: (i) creation of the electronic polaron complex (one-step process) and (ii) inelastic scattering of photoelectrons described in the framework of the multiple-parabolic-branch band model (two-step process). In addition, the ratio spectrum of the time-integrated FE and self-trapped exciton (STE) emission was analysed. The behaviour of the ratio spectrum is a proof that electron-hole recombination leads to STE states through FE states as precursors

  7. X-ray excited luminescence of polystyrene composites loaded with SrF{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Demkiv, T.M.; Halyatkin, O.O.; Vistovskyy, V.V. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Hevyk, V.B. [Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska St., 76019 Ivano-Frankivsk (Ukraine); Yakibchuk, P.M. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine); Gektin, A.V. [Institute for Scintillation Materials, NAS of Ukraine, 60 Lenina Ave, 61001 Kharkiv (Ukraine); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, 8a Kyryla i Mefodiya St., 79005 Lviv (Ukraine)

    2017-03-01

    The polystyrene film nanocomposites of 0.3 mm thickness with embedded SrF{sub 2} nanoparticles up to 40 wt% have been synthesized. The luminescent and kinetic properties of the polystyrene composites with embedded SrF{sub 2} nanoparticles upon the pulse X-ray excitation have been investigated. The luminescence intensity of the pure polystyrene scintillator film significantly increases when it is loaded with the inorganic SrF{sub 2} nanoparticles. The film nanocomposites show fast (∼2.8 ns) and slow (∼700 ns) luminescence decay components typical for a luminescence of polystyrene activators (p-Terphenyl and POPOP) and SrF{sub 2} nanoparticles, respectively. It is revealed that the fast decay luminescence component of the polystyrene composites is caused by the excitation of polystyrene by the photoelectrons escaped from the nanoparticles due to photoeffect, and the slow component is caused by reabsorption of the self-trapped exciton luminescence of SrF{sub 2} nanoparticles by polystyrene.

  8. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A., E-mail: azab2@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Duerkop, Axel [Institute of Analytical Chemistry, Chemo and Biosensors, Regensburg University, D-93040 Regensburg (Germany); Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. Black-Right-Pointing-Pointer Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. Black-Right-Pointing-Pointer A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. Black-Right-Pointing-Pointer The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA){sub 2} probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 {mu}M. The detection limits were 0.24-0.55 {mu}M for P3, P4, and P1 and 2.5 {mu}M for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA){sub 2} were evaluated. Positive and negative values of entropy ({Delta}S) and enthalpy ({Delta}H) changes for Eu(III)-(PDCA){sub 2}-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  9. Luminescence sensitivity changes in quartz

    CERN Document Server

    Wintle, A G

    1999-01-01

    In the luminescence dating of sedimentary or heated quartz, some heat treatment is usually applied to the sample immediately prior to the measurement of the optically stimulated luminescence. In this paper we report experiments on a 30,000-year-old sedimentary quartz, in which we use the luminescence response to a test dose to monitor the changes in sensitivity that are caused by holding the quartz at temperatures from 160 to 280 deg. C for times from 10 s to 22 h. For an optically bleached sample, the monitoring is by both optically stimulated luminescence and the 110 deg. C TL peak; both luminescence signals are shown to have the same sensitisation (i.e. activation energy) characteristics. For natural or laboratory irradiated samples only the 110 deg. C TL peak can be used; sensitivity increases of up to a factor of 1.3 and 3 are observed for the natural and laboratory irradiated aliquots, respectively. Up to four exponential components are used to deconvolve the sensitivity change data; the dominant compon...

  10. Luminescence in medical image science

    Energy Technology Data Exchange (ETDEWEB)

    Kandarakis, I.S., E-mail: kandarakis@teiath.gr

    2016-01-15

    Radiation detection in Medical Imaging is mostly based on the use of luminescent materials (scintillators and phosphors) coupled to optical sensors. Materials are employed in the form of granular screens, structured (needle-like) crystals and single crystal transparent blocks. Storage phosphors are also incorporated in some x-ray imaging plates. Description of detector performance is currently based on quality metrics, such as the Luminescence efficiency, the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS) and the Detective Quantum Efficiency (DQE) can be defined and evaluated. The aforementioned metrics are experimental evaluated for various materials in the form of screens. A software was designed (MINORE v1) to present image quality measurements in a graphical user interface (GUI) environment. Luminescence efficiency, signal and noise analysis are valuable tools for the evaluation of luminescent materials as candidates for medical imaging detectors. - Highlights: • Luminescence based medical imaging detectors. • Image science: MTF, NPS, DQE. • Phosphors screens light emission efficiency experimental evaluation. • Theoretical models for estimation of phosphor screen properties. • Software for medical image quality metrics.

  11. Plasmon-enhanced optically stimulated luminescence

    International Nuclear Information System (INIS)

    Guidelli, E. J.; Baffa, O.; Ramos, A. P.

    2015-10-01

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  12. Plasmon-enhanced optically stimulated luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Guidelli, E. J.; Baffa, O. [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Fisica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil); Ramos, A. P., E-mail: ederguidelli@gmail.com [Universidade de Sao Paulo, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Departamento de Quimica, Av. Bandeirantes 3900, 14040-901 Ribeirao Preto, Sao Paulo (Brazil)

    2015-10-15

    Full text: Optically Stimulated Luminescence dosimeters (OSLD) have been largely used for personal, medical, and industrial radiation dosimetry. Developing highly sensitive and small-sized radiation detectors and dosimeters is essential for improving spatial resolution and consequently diagnosis quality and treatment efficacy in the case of applications in radiodiagnosis and radiation therapy, for instance. Conventional methods to improve the OSLD sensitivity consist of doping and co-doping the host materials with atoms of other elements, thereby increasing the amount of trapping and/or luminescent centers. Our group is researching on the use of the plasmon properties of noble metal nanoparticles to increase OSL intensity. Upon incidence of a light beam with appropriate resonant wavelengths, the oscillation of the free electrons at the nanoparticle surface originates the Localized Surface Plasmons (LSP) and the consequent plasmon resonance band. The interaction between the LSP and the surrounding luminescent material leads to new optical properties largely employed for enhancing several luminescent processes. Here we will show our results regarding the use of LSP to increase OSLD sensitivity. The interaction between the traps/luminescent centers and the plasmons depends on the distance between them, on the plasmon resonance band intensity and position, as well as on the surrounding medium. Therefore, the plasmon-enhanced luminescence is a promising tool to develop more sensitive and miniaturized OSLD. (Author)

  13. Ion beam induced luminescence of germano-silicate optical fiber preform

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyunkyu; Kim, Jongyeol; Lee, Namho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Youngwoong; Han, Wontaek [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Markovic, Nikola; Jaksic, Milko [Ruder Boskovic Institute, Zagred (Croatia)

    2014-05-15

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives.

  14. Ion beam induced luminescence of germano-silicate optical fiber preform

    International Nuclear Information System (INIS)

    Jung, Hyunkyu; Kim, Jongyeol; Lee, Namho; Kim, Youngwoong; Han, Wontaek; Markovic, Nikola; Jaksic, Milko

    2014-01-01

    When an optical fiber is exposed to radiation, the attenuation (RIA, Radiation Induced Attenuation) in the optical fiber (OF) is increased because of the color centers which deteriorate the transmission property and generate the absorption loss. In order to understand the radiation induced defect, Ion Beam induced luminescence (IBIL) was introduced to investigate it. IBIL technique is to analyze IR/VIS/UV luminescence related to ion beam interaction with outer shell electrons involved in chemical bonds and structure defects of target atoms. So IBIL is sensitive to its chemical composition and has been used in analysis of material characterization, geological samples and cultural heritage objects. In silica material, four O atoms are surrounding one Si atom in tetrahedral coordination. In this study, the influence of Copper (Cu) and Cerium (Ce) dopants to germano silica core optical fibers were investigated under proton irradiation at RBI using Ion Beam induced luminescence (IBIL) method. To understand the radiation induced defect of optical fibers, IBIL were tested to a germano-silica core fiber under 2 MeV proton irradiation. Although a Cu or Ce dopant was not detected by IBIL technique, the relation between the amount of radiation and luminescence can be established. This experiment showed a potential technique of studying the effects and behavior of additive elements for silica core fiber. To increase the radiation resistance of optical fibers, further investigations are needed, i. e. the proper additives and its contents and an interaction mechanism between Ge-related defects and additives

  15. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    International Nuclear Information System (INIS)

    Cheah, S.F.; Lee, S.C.; Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z.

    2015-01-01

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer

  16. Crack luminescence as an innovative method for detection of fatigue damage

    Directory of Open Access Journals (Sweden)

    R. Makris

    2018-04-01

    Full Text Available Conventional non-destructive testing methods for crack detection provide just a snapshot of fatigue crack evolution at a specific location in the moment of examination. The crack luminescence coating realizes a clear visibility of the entire crack formation. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. Several different experiments show that due to the sensitive coating even the early stage of crack formation can be detected. That makes crack luminescence helpful for investigating the incipient crack opening behavior. Cracks can be detected and observed during operation of a structure, making it also very interesting for continuous monitoring. Crack luminescence is a passive method and no skilled professionals are necessary to detect cracks, as for conventional methods. The luminescent light is clearly noticeable by unaided eye observations and also by standard camera equipment, which makes automated crack detection possible as well. It is expected that crack luminescence can reduce costs and time for preventive maintenance and inspection.

  17. Synthesis and luminescent properties of PEO/lanthanide oxide nanoparticle hybrid films

    Energy Technology Data Exchange (ETDEWEB)

    Goubard, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)]. E-mail: fabrice.goubard@u-cergy.fr; Vidal, F. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Bazzi, R. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Tillement, O. [LPCML, Universite Lyon 1, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne (France); Nano-H, 23 rue Royal, 69001 Lyon (France); Chevrot, C. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France); Teyssie, D. [LPPI, Universite de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, 95031 Cergy-Pontoise cedex (France)

    2007-10-15

    In this study, we investigate the optical properties of lanthanide oxide nanoparticles dispersed in poly(ethylene oxide) (PEO) network as thermally stable polymeric films. The aim of this work is both to keep a good optical transparency in the visible domain and to obtain luminescent materials after incorporation of nanoparticles. For this purpose, we develop luminescent nanocrystals of oxides containing terbium ion as a doping element in Gd{sub 2}O{sub 3}. These sub-5-nm lanthanide oxides nanoparticles have been prepared by direct oxide precipitation in high-boiling polyalcohol solutions and characterized by luminescence spectroscopy. PEO/lanthanide oxide nanohybrid films are prepared by radical polymerization of poly(ethylene glycol) methacrylate after introduction of lanthanide oxide particles. As a first result; the obtained films present interesting luminescence properties with a very low lanthanide oxide content (up to 0.29 wt%). Furthermore, these films are still transparent and keep their original mechanical properties. Prior to describe the specific applications to optical use, we report here the dynamic mechanical analysis (DMA), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), and luminescent properties of. nanohybrid films.

  18. Novel Luminescent Multilayer Films Containing π-Conjugated Anionic Polymer with Electronic Microenvironment

    Directory of Open Access Journals (Sweden)

    Tianlei Wang

    2016-09-01

    Full Text Available Layered double hydroxides (LDHs, luminescent π-conjugated anionic polymer and montmorillonite (MMT were orderly assembled into luminescent multilayer films via layer-by-layer self-assembly method. The electronic microenvironment (EME, the structure of which is like a traditional capacitor, can be constructed by exfoliated LDHs or MMT nanosheets. In addition, the rigid inorganic laminated configuration can offer stable surroundings between the interlayers. As a result, we conclude that EME can extend the luminescent lifespans of multilayer films substantially, due to affecting relaxation times of π-conjugated anionic polymer. Consequently, because of the remarkable impact on better photoemission behaviors of luminescent π-conjugated anionic polymer, EME assembled by LDHs or MMT nanosheets have had high hopes attached to them. They are expected to have the potential for designing, constructing, and investigating novel light-emitting thin films.

  19. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Klimczak, M., E-mail: m.klimczak@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Sarnecki, J. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland)

    2009-12-15

    In this work, we investigate visible emission properties of dysprosium-doped yttrium aluminum garnet (YAG) waveguides prepared by the liquid phase epitaxy (LPE) method, which allowed obtaining samples of activator concentrations ranging from 0.2 at% up to ca. 18 at%. This unique set of Dy:YAG/YAG waveguides has been carefully examined by means of highly resolved laser spectroscopy to explore the luminescence properties in the visible (yellow-blue) part of spectrum. In particular, the low-temperature absorption spectra have been recorded and analyzed, giving a more detailed information on energy levels' positions in these crystals. The concentration-dependant emission spectra and fluorescence dynamics profiles have been collected under direct excitation, enabling analysis of multi-ion processes responsible for concentration quenching. This, in turn, enabled optimization of activator concentration with respect to yellow emission efficiency. Additionally, the possible IR to visible up-conversion pathways have been discussed, giving a starting point for further investigations.

  20. Luminescence and host lattice structure of crystalline micro and nanoparticles co-doped with lanthanide ions

    International Nuclear Information System (INIS)

    Zurba, Nadia Khaled; Ferreira, Jose Maria da Fonte

    2012-01-01

    This article reports the investigation of crystalline micro and nanoparticles codoped with lanthanide ions, aiming at correlate their host lattice structure and chemical composition to the luminescence features. For this purpose, five phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy coupled to energy dispersive X-ray (EDX) spectroscopy, and photoluminescence (PL) spectroscopy, namely performed by their chromatic coordinates, radiance, luminance and PL emission spectra. This type of investigation concerning the optical characterization of luminescent crystalline micro and nanoparticles doped with lanthanide ions might be useful for scientific and practical applications, such as in light-emitting devices, luminescent paintings, ceramics, sensors, in nanoscience and nanotechnology. (author)

  1. Absorption and luminescence of crystalline quartz under electron nanosecond irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, B P; Lisitsyn, V M; Stepanchuk, V N [Tomskij Politekhnicheskij Inst. (USSR)

    1981-02-01

    The purpose of the study is continuation of investigations of principal regularities of production and destruction of short-lived defects in quartz and accompanying luminescence under electron pulse irradiation. For investigation purposes samples of crystalline synthetic quartz have been used. The irradiation has been performed at 80-400 K temperatures by means of an electron pulse accelerator with parameters: electron flow pulse duration 10 ns, pulse current density up to 1000 A/cm/sup 2/, electron mean energy 200 keV. Temperature-time characteristics of absorption and luminescence spectrum are studied. It has been found that quartz irradiation by electron pulses of nanosecond duration leads to appearance of short-lived bands of optical absorption at 4.1 and 5.15 eV to which by kinetic parameters correspond luminescence bands at 2.6 and 3.1 eV, respectively. The enumerated absorption bands are induced by quartz irradiation independently of the prehistory and phase state of the sample and are caused obviously by intrinsic radiation defects. Possible models of such defects are suggested.

  2. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...... of the introduced polymer host matrix on the dosimetric properties was observed. Depth-dose measurements with the new detectors in a 142.66 MeV proton and 270.55 MeV/u carbon ion beam are presented as example applications. We used an RL protocol with saturated crystals allowing for time-effective measurements...... without sensitivity corrections. For protons, a relative luminescence efficiency hHCP of 0.715 0.014 was found in the Bragg peak. For carbon ions, a value of 0.498 0.001 was found in the entrance channel, 0.205 0.015 in the Bragg peak, and a mean of 0.413 0.050 in the tail region. The mean range...

  3. Near Infrared-Emitting Cr3+/Eu3+ Co-doped Zinc Gallogermanate Persistence Luminescent Nanoparticles for Cell Imaging

    Science.gov (United States)

    Wang, Qiaoqiao; Zhang, Shuyun; Li, Zhiwei; Zhu, Qi

    2018-02-01

    Near infrared (NIR)-emitting persistent luminescent nanoparticles have been developed as potential agents for bioimaging. However, synthesizing uniform nanoparticles with long afterglow for long-term imaging is lacking. Here, we demonstrated the synthesis of spinel structured Zn3Ga2Ge2O10:Cr3+ (ZGGO:Cr3+) and Zn3Ga2Ge2O10:Cr3+,Eu3+ (ZGGO:Cr3+,Eu3+) nanoparticles by a sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The samples were investigated via detailed characterizations by combined techniques of XRD, TEM, STEM, selected area electron diffraction, photoluminescence excitation (PLE)/photoluminescence (PL) spectroscopy, and temperature-dependent PL analysis. The single-crystalline nanoparticles are homogeneous solid solution, possessing uniform cubic shape and lateral size of 80-100 nm. Upon UV excitation at 273 nm, ZGGO:Cr3+,Eu3+ exhibited a NIR emission band at 697 nm (2E → 4A2 transition of distorted Cr3+ ions in gallogermanate), in the absence of Eu3+ emission. NIR persistent luminescence of the sample can last longer than 7200 s and still hold intense intensity. Eu3+ incorporation increased the persistent luminescence intensity and the afterglow time of ZGGO:Cr3+, but it did not significantly affect the thermal stability. The obtained ZGGO:Cr3+,Eu3+-NH2 nanoparticles possessed an excellent imaging capacity for cells in vitro.

  4. Luminescence of LiH(D):Ru monocrystals

    International Nuclear Information System (INIS)

    Sabirzyanov, A.A.; Oparin, D.V.; Pilipenko, G.I.; Gavrilov, F.F.

    1993-01-01

    Luminescence of lithium hydride (deuteride) activated by ruthenium is recorded for the first time. The features connected with the structure and oscillations of the basic lattice are detected in luminescence spectrum. The qualitative model of luminescence spectrum is suggested

  5. Mesoporous material grafted with luminescent molecules for the design of selective metal ion chemosensor

    International Nuclear Information System (INIS)

    Zhang Huidong; Zhang Ping; Ye Kaiqi; Sun Yinghui; Jiang Shimei; Wang Yue; Pang Wenqin

    2006-01-01

    Luminescent Schiff-base groups have been successfully grafted on the surface of mesoporous material MCM-48. The grafted Schiff-base groups were employed to prepare luminescent Schiff-base-Zn complex that was covalently bound to the MCM-48 surface. These luminescent mesoporous materials were characterized with X-ray, UV-VIS and emission spectroscopic methods. Experimental results demonstrated that MCM-48 modified with functional groups exhibited novel luminescent property. The chemosensing property of modified MCM-48 sample was investigated. It was demonstrated that the fluorescence of MCM-48 solid with Schiff-base groups could be completely quenched by Cu 2+ cation and this mesoporous material was suitable for sensing Cu 2+ cation in aqueous media

  6. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  7. Excitonic effects in the luminescence of quantum wells

    International Nuclear Information System (INIS)

    Deveaud, B.; Kappei, L.; Berney, J.; Morier-Genoud, F.; Portella-Oberli, M.T.; Szczytko, J.; Piermarocchi, C.

    2005-01-01

    We report on the origin of the excitonic luminescence in quantum wells. This study is carried out by time-resolved photoluminescence experiments performed on a very high-quality InGaAs quantum well sample in which the photoluminescence contributions at the energy of the exciton and at the band edge can be clearly separated and traced over a broad range of times and densities. This allows us to compare the two conflicting theoretical approaches to the question of the origin of the excitonic luminescence in quantum wells: the model of the exciton population and the model of the Coulomb correlated plasma. We measure the exciton formation time and we show the fast exciton formation and its dependence with carrier density. We are also able to give the boundaries of the Mott transition in our system, and to show the absence of observable renormalization of the gap below the onset of this transition. We detail the characteristics of the trion formation and evidence the possible formation of both positive and negative trions in the absence of any resident free carrier populations

  8. Luminescence properties of KCl:Ag{sup -} crystals excited near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, Taketoshi, E-mail: buri@p.s.osakafu-u.ac.jp [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka 599-8531 (Japan); Hirai, Takeshi [Department of Physical Science, Faculty of Science and Engineering, Ritsumeikan University, Noji Higashi 1-1-1, Kusatsu, Shiga 525-8577 (Japan)

    2012-02-15

    Luminescence properties of KCl single crystals doped with Ag{sup -} centers have been investigated under various excitation energies around the fundamental absorption edge at low temperatures. Under the excitation at 6.89 eV, which is lower than the intrinsic exciton energy by 0.87 eV, the A Prime luminescence band due to the intraionic transition in the Ag{sup -} ion is dominantly observed at 2.91 eV. On the other hand, the excitation at 6.66 eV induces a broad luminescence band at 2.60 eV in addition to the A Prime luminescence band. From the comparison with the localized excitons in KCl:I crystals, the 2.60 eV luminescence band is attributed to the two-center type localized exciton related with the Ag{sup -} ion. The adiabatic potential energy surfaces of the excited states in the Ag{sup -} center and the localized exciton in KCl:Ag{sup -} are discussed. - Highlights: Black-Right-Pointing-Pointer We study the luminescence properties of KCl single crystals doped with Ag{sup -} ions. Black-Right-Pointing-Pointer The excitation around the absorption edge induces a broad luminescence at 2.60 eV. Black-Right-Pointing-Pointer The 2.60 eV luminescence is attributed to the exciton localized at the Ag{sup -} ion. Black-Right-Pointing-Pointer The localized exciton has the two-center type configuration of the relaxed exciton.

  9. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  10. Real-time luminescence from Al2O3 fiber dosimeters

    International Nuclear Information System (INIS)

    Polf, J.C.; Yukihara, E.G.; Akselrod, M.S.; McKeever, S.W.S.

    2004-01-01

    The real-time luminescence signal from Al 2 O 3 single crystal fibers, monitored during simultaneous irradiation and optical stimulation, was investigated using computer simulations and experimental measurements. Both radioluminescence (RL) and optically stimulated luminescence (OSL) signals were studied. The simulations were performed initially using a simple one-trap/one-recombination-center energy band model, and then extended to include shallow and deep electron traps as well. Real-time luminescence experiments were performed for different radiation dose rates and optical stimulation powers using periodic laser stimulation of the samples through a fiber optic cable, and the experimental results were compared with the predictions from the computer simulations. The luminescence signal was observed, both theoretically and experimentally, to increase from its initial value to a steady-state level. The steady-state RL and OSL levels were found to be dependent on dose rate, the steady-state level of the real-time OSL being independent of laser power. It was also shown that the total integrated absorbed dose throughout the irradiation period can be determined by correcting the real-time OSL signal for depletion caused by each laser stimulation pulse. The effects of the shallow and deep traps on the time-dependence of the real-time luminescence signal were studied comparing the experimental data from several Al 2 O 3 fibers known to have different trapping state concentrations. The additional traps were found to slow the response of the real-time luminescence such that the time to reach steady state was increased as the additional traps were added

  11. Material for a luminescent solar concentrator

    Science.gov (United States)

    Andrews, L.J.

    1984-01-01

    A material for use in a luminescent solar concentrator, formed by ceramitizing the luminescent ion Cr/sup 3 +/ with a transparent ceramic glass containing mullite. The resultant material has tiny Cr/sup 3 +/-bearing crystallites dispersed uniformly through an amorphous glass. The invention combines the high luminescent efficiency of Cr/sup 3 +/ in the crystalline phase with the practical and economical advantages of glass technology.

  12. Investigation of the luminescent properties of terbium-anthranilate complexes and application to the determination of anthranilic acid derivatives in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, N.; Georges, J

    2003-01-10

    The luminescent properties of terbium complexes with furosemide (FR), flufenamic (FF) acid, tolfenamic (TF) acid and mefenamic (MF) acid have been investigated in aqueous solutions. For all four compounds, complexation occurs when the carboxylic acid of the aminobenzoic group is dissociated and is greatly favoured in the presence of trioctylphosphine oxide as co-ligand and Triton X-100 as surfactant. Under optimum conditions, luminescence of the lanthanide ion is efficiently sensitised and the lifetime of the {sup 5}D{sub 4} resonance level of terbium in the complex is ranging between 1 and 1.9 ms, against 0.4 ms for the aqua ion. The sensitivity of the method for the determination of anthranilic acid derivatives is improved by one to two orders of magnitude with respect to that achieved using native fluorescence or terbium-sensitised luminescence in methanol. The limits of detection are 2x10{sup -10}, 5x10{sup -10} and 2x10{sup -9} mol l{sup -1} for flufenamic acid, furosemide and tolfenamic acid, and mefenamic acid, respectively, with within-run RSD values of less than 1%. The method has been applied to the determination of flufenamic acid in spiked calf sera with and without sample pretreatment. Depending on the method and the analyte concentration, the recovery was ranging between 83 and 113% and the lowest concentration attainable in serum samples was close to 1x10{sup -7} mol l{sup -1}.

  13. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Science.gov (United States)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  14. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)–pyridine-2,6-dicarboxylic acid probe

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Duerkop, Axel; Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek

    2013-01-01

    Highlights: ► Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. ► Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. ► A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. ► The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)–pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol–water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)–(PDCA) 2 probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)–pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0–35.0 μM. The detection limits were 0.24–0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)–(PDCA) 2 were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)–(PDCA) 2 –P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  15. Application of pulse spectro- zonal luminescent method for the rapid method of material analysis

    International Nuclear Information System (INIS)

    Lisitsin, V.M.; Oleshko, V.I.; Yakovlev, A.N.

    2004-01-01

    luminescence. The spectra of a luminescence of various materials can be similar, and be defined by conditions in which there was a formation of a material, and also the structure of a material. Relaxation of luminescence of defects can be defined both fast and slow processes of the defect disintegration. Using of such method of the analysis of materials allows studying and creating a database of spectra of researched substances in details. Preliminary study has shown, that registration of a luminescence by the color digital camera with the subsequent analysis on a computer allows identifying and discriminating materials on their origin. These problems are pressing in geology for identification of minerals and in ecology for the analysis of pollution of the environment. The method becomes express if the the database of material spectra collect in a portable computer, and we have the portable electron accelerator. The present work allows explaining physicochemical and methodological bases of a luminescent method of the analysis with use the powerful small-sized pulse sources of accelerated electrons for excitation. Suggested methods are represented rather perspective for the analysis of pollution of the environment in connection with its wide opportunities, high speed of obtaining of results of the analysis

  16. Virulence of luminescent and non-luminescent isogenic vibrios towards gnotobiotic Artemia franciscana larvae and specific pathogen-free Litopenaeus vannamei shrimp.

    Science.gov (United States)

    Phuoc, L H; Defoirdt, T; Sorgeloos, P; Bossier, P

    2009-04-01

    This study was conducted to test the virulence of luminescent (L) and non-luminescent (NL) isogenic strains of Vibrio campbellii LMG21363, Vibrio harveyi BB120 (wild type) and quorum-sensing mutant strains derived from the wild type such as Vibrio harveyi BB152, BB170, MM30 and BB886. The NL strains could be obtained by culturing rifampicin-resistant luminescent strains in the dark under static condition. The virulence of the L and NL strains was tested in gnotobiotic Artemia franciscana larvae challenged with 10(4) CFU ml(-1) of bacteria. All luminescent isogenic tested strains showed higher virulence compared to the NL strains. The virulence of L and NL V. campbellii and V. harveyi BB120 was also tested in specific pathogen-free juvenile shrimp upon intramuscular injection with 10(6) CFU of bacteria. In contrast with Artemia, there was no significant difference in mortality between the groups challenged with L and NL strains (P > 0.05). The non-luminescent strains were not able to revert back to the luminescent state and quorum sensing did not influence this phenotypic shift. Luminescent Vibrio strains can switch to a non-luminescent state by culturing them in static conditions. The NL strains become less virulent as verified in Artemia. The luminescent state of Vibrio cells in a culture needs to be verified in order to assure maintenance of virulence.

  17. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  18. Efficient green luminescence of terbium oxalate crystals: A case study with Judd-Ofelt theory and single crystal structure analysis and the effect of dehydration on luminescence

    Science.gov (United States)

    Alexander, Dinu; Joy, Monu; Thomas, Kukku; Sisira, S.; Biju, P. R.; Unnikrishnan, N. V.; Sudarsanakumar, C.; Ittyachen, M. A.; Joseph, Cyriac

    2018-06-01

    Design and synthesis of Lanthanide based metal organic framework is a frontier area of research owing to their structural diversity enabling specific applications. The luminescence properties of rare earths, tuned by the structural features of Ln-MOFs are investigated extensively. Rare earth oxalates which can be synthesized in a facile method, ensuring the structural features of MOFs with excellent photoluminescence characteristics deserves much attention. This work is the first time report on the single crystal structure and Judd-Ofelt (JO) theoretical analysis - their correlation with the intense and sharp green luminescence of Terbium oxalate crystals. The intense green luminescence observed for Terbium oxalate crystals for a wide range of excitation from DUV to visible region despite the luminescence limiting factors are discussed. The absence of concentration quenching and lifting up of forbidden nature of f-f transitions, allowing direct excitation of Terbium ions is analysed with the help of JO theory and single crystal structure analysis. The JO analysis predicted the asymmetry of Terbium sites, allowing the electric dipole transitions and from the JO intensity parameters, promising spectroscopic parameters - emission cross section, branching ratio, gain band width and gain coefficient of the material were calculated. The single crystal structure analysis revealed the asymmetry of Tb sites and structure of Terbium oxalate is formed by the hydrogen bonded stacking of overlapped six Terbium membered rings connected by the oxalate ligands. The molecularly thick layers thus formed on the crystal surface are imaged by the atomic force microscopy. The presence of water channels in the structure and the effect of lattice water molecules on the luminescence intensity are also investigated.

  19. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan [Indira Ghandi Centre for Atomic Research, Tamil Nadu (India). Materials Chemistry Div.

    2017-10-01

    Luminescence from UO{sub 2}{sup 2+} (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y{sup 3+}; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  20. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    International Nuclear Information System (INIS)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan

    2017-01-01

    Luminescence from UO_2"2"+ (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y"3"+; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  1. Receptor-Targeted Luminescent Silver Bionanoparticles

    NARCIS (Netherlands)

    Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, van der Marte; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, van Fijs W.B.

    2016-01-01

    Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein

  2. Reflection measurements for luminescent powders

    Science.gov (United States)

    Kroon, R. E.

    2018-04-01

    Luminescent materials are useful in applications varying from lighting and display technologies to document security features and medical research, amongst many others. Measurement of the excitation range is an important consideration, and absorption bands are often determined from a decrease in the measured diffuse reflectance of the material using a ultraviolet-visible (UV-vis) spectrophotometer with an integrating sphere. Such a system may provide questionable results when used to measure the reflectance of a luminescence material, which is demonstrated for a Tb doped silica phosphor, because the system cannot differentiate between the reflected light and luminescence. It is shown that more reliable results are achieved for this phosphor by measuring the reflectance using a synchronous zero-offset scan in a fluorescence spectrometer equipped with an integrating sphere. This method is therefore recommended instead of traditional reflectance measurements using a UV-vis spectrophotometer for luminescent powders.

  3. Near-Infrared Quantum Cutting Long Persistent Luminescence

    OpenAIRE

    Zou, Zehua; Feng, Lin; Cao, Cheng; Zhang, Jiachi; Wang, Yuhua

    2016-01-01

    By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called ?near-infrared quantum cutting long persistent luminescence (NQPL)?, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Guided by the NQPL concept, we fabricate the first NQPL phosphor Ca2Ga2GeO7:Pr3+,Yb3+. It reveals that both the two-step energy transfer of model (I) and the one-step energy ...

  4. Piezoelectrically-induced stress-luminescence phenomenon in CaAl{sub 2}O{sub 4}:Eu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongbin [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Wu, Zheng, E-mail: wuzheng@zjnu.cn [College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 (China); Jia, Yanmin, E-mail: ymjia@zjnu.edu.cn [Department of Physics, Zhejiang Normal University, Jinhua 321004 (China); Liu, Yongsheng [Department of Physics, Shanghai University of Electric Power, Shanghai 200090 (China)

    2015-10-15

    Piezoelectrically-induced stress-luminescence in the CaAl{sub 2}O{sub 4}:Eu{sup 2+} was investigated. Blue light that was visible to the naked eye could be observed in the dark when a pulse force of ∼7.7 kN was applied to the sample. The intensity of the stress-luminescence strongly depended on the magnitude of the applied force during a pulse cycle. The intensity decreased with repetitive application of pulse stress and was completely recovered after irradiation with ultraviolet light. It is suggested that the stress-luminescence effect in CaAl{sub 2}O{sub 4}:Eu{sup 2+} arises from the piezoelectrically-induced de-trapping of the charge carriers. A CaAl{sub 2}O{sub 4}:Eu{sup 2+} ceramic that exhibits a stress-luminescence effect has potential applications in smart stress optically-sensing devices. - Highlights: • The strong induced stress-luminescence in CaAl{sub 2}O{sub 4}:Eu{sup 2+} was observed. • The stress-luminescent intensity strongly depends on the magnitude of force. • The stress-luminescence could be completely recovered after the UV irradiation. • The strong stress-luminescent effect is potential in stress-light sensors.

  5. Luminescence dating of Netherland's sediments

    NARCIS (Netherlands)

    Wallinga, J.; Davids, F.; Dijkmans, J.W.A.

    2007-01-01

    Over the last decades luminescence dating techniques have been developed that allow earth scientists to determine the time of deposition of sediments. In this contribution we revity: 1) the development of the methodology, 2) tests of the reliability of luminescence dating on Netherlands' sediments;

  6. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae

    Directory of Open Access Journals (Sweden)

    Tobias Bornhütter

    2016-04-01

    Full Text Available Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  7. Discuss on luminescence dose data analysis technology

    International Nuclear Information System (INIS)

    Ma Xinhua; Xiao Wuyun; Ai Xianyun; Shi Zhilan; Liu Ying

    2009-01-01

    This article describes the development of luminescence dose data measurement and processing technology. General design planning of luminescence dose data measurement and processing technology is put forward with the diverse demands. The emphasis is focused on dose data processing method, luminescence curve analysis method, using of network, mechanics of communication among computers, data base management system of individual dose in this paper. The main methods and skills used in this technology as well as their advantages are also discussed. And it offers general design references for development luminescence dose data processing software. (authors)

  8. The extended Beer-Lambert theory for ray tracing modeling of LED chip-scaled packaging application with multiple luminescence materials

    Science.gov (United States)

    Yuan, Cadmus C. A.

    2015-12-01

    Optical ray tracing modeling applied Beer-Lambert method in the single luminescence material system to model the white light pattern from blue LED light source. This paper extends such algorithm to a mixed multiple luminescence material system by introducing the equivalent excitation and emission spectrum of individual luminescence materials. The quantum efficiency numbers of individual material and self-absorption of the multiple luminescence material system are considered as well. By this combination, researchers are able to model the luminescence characteristics of LED chip-scaled packaging (CSP), which provides simple process steps and the freedom of the luminescence material geometrical dimension. The method will be first validated by the experimental results. Afterward, a further parametric investigation has been then conducted.

  9. A series of copper complexes with carbazole and oxadiazole moieties: Synthesis, characterization and luminescence performance

    Energy Technology Data Exchange (ETDEWEB)

    Bai Weiyang, E-mail: baiwy02@163.com [College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China); Sun Li [Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2012-10-15

    In this paper, various moieties of ethyl, carbazole and oxadiazole are attached to 2-thiazol-4-yl-1H-benzoimidazole to form a series of diamine ligands. Their corresponding Cu(I) complexes are also synthesized using bis(2-(diphenylphosphanyl)phenyl) ether as the auxiliary ligand. Crystal structures, thermal property, electronic nature and luminescence property of these Cu(I) complexes are discussed in detail. These Cu(I) complexes are found to be efficient green-emitting ones in solutions and the emissive parameters are improved largely by the incorporation of substituent moieties. Detailed analysis suggests that the effective suppression of solvent-induced exciplex quenching is responsible for this phenomenon. On the other hand, the introduction of substituent moieties exerts no obvious influence on molecular structure, thermal stability and emitting-energy of the Cu(I) complexes, owing to their absence from inner coordination sphere. - Highlights: Black-Right-Pointing-Pointer Diamine ligands with various moieties and Cu(I) complexes are synthesized. Black-Right-Pointing-Pointer Crystal structures and photophysical property are discussed in detail. Black-Right-Pointing-Pointer The incorporation of substituent moieties improves luminescence performance. Black-Right-Pointing-Pointer Solvent-induced exciplex quenching is suppressed by substituent moieties.

  10. Luminescence enhancement of uranyl ion by benzoic acid in acetonitrile

    International Nuclear Information System (INIS)

    Satendra Kumar; Maji, S.; Joseph, M.; Sankaran, K.

    2014-01-01

    Uranyl ion is known for its characteristic green luminescence and therefore luminescence spectroscopy is a suitable technique for characterizing different uranyl species. In aqueous medium, luminescence of uranyl ion is generally weak due to its quenching by water molecules and therefore in order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HCIO 4 have been widely used. The other method to enhance the uranyl luminescence is by ligand sensitized luminescence, a method well established for lanthanides. In this work, luminescence of uranyl ion is found to be enhanced by benzoic acid in acetonitrile medium. In aqueous medium benzoic acid does not enhance the uranyl luminescence although it forms 1:1 and 1:2 complexes with uranyl ion. Luminescence spectra of uranyl benzoate revealed that enhancement is due to sensitization of uranyl luminescence by benzoate ions. UV-Vis spectroscopy has been utilized to characterize the specie formed in the in acetonitrile medium. UV-Vis spectroscopy along with luminescence spectra revealed that the specie to be tribenzoate complex of uranyl (UO 2 (C 6 H 5 COO) 3 ) - having D 3 h symmetry. (author)

  11. Long-lived visible luminescence of UV LEDs and impact on LED excited time-resolved fluorescence applications

    International Nuclear Information System (INIS)

    Jin, D; Connally, R; Piper, J

    2006-01-01

    We report the results of a detailed study of the spectral and temporal properties of visible emission from three different GaN-based ultraviolet (UV) light emitting diodes (UV LEDs). The primary UV emission in the 360-380 nm band decays rapidly (less than 1 μs) following switch-off; however, visible luminescence (470-750 nm) with a decay lifetime of tens of microseconds was observed at approximately 10 -4 of the UV intensity. For applications of UV LEDs in time-resolved fluorescence (TRF) employing lanthanide chelates, the visible luminescence from the LEDs competes with the target Eu 3+ or Tb 3+ fluorescence in both spectral and temporal domains. A UV band-pass filter (Schott UG11 glass) was therefore used to reduce the visible luminescence of the UV LEDs by three orders of magnitude relative to UV output to yield a practical excitation source for TRF

  12. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    Directory of Open Access Journals (Sweden)

    Florian Mayer

    2018-01-01

    Full Text Available Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth. We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  13. Recent developments in luminescent solar concentrators

    Science.gov (United States)

    van Sark, W. G. J. H. M.

    2014-10-01

    High efficiency photovoltaic devices combine full solar spectrum absorption and effective generation and collection of charge carriers, while commercial success depends on cost effectiveness in manufacturing. Spectrum modification using down shifting has been demonstrated in luminescent solar concentrators (LSCs) since the 1970s, as a cheap alternative for standard c-Si technology. LSCs consist of a highly transparent plastic plate, in which luminescent species are dispersed, which absorb incident light and emit light at a red-shifted wavelength, with high quantum efficiency. Material issues have hampered efficiency improvements, in particular re-absorption of light emitted by luminescent species and stability of these species. In this contribution, approaches are reviewed on minimizing re-absorption, which should allow surpassing the 10% luminescent solar concentrator efficiency barrier.

  14. Review of present trends in luminescence research

    International Nuclear Information System (INIS)

    Williams, F.; Delaware Univ., Newark

    1981-01-01

    The difficulties of a comprehensive review of the broad and diverse branches of molecular and solid-state luminescence research are noted. This review is thus limited to selective topics. Some general concepts and trends are then introduced, including: luminescence excitation as a collective excitation of a many-body problem, encompassing in some cases the source and probe in its formulation; continuing trends towards extremal conditions of experiments and towards inhomogeneous and structured materials, from man-made superlattices to biological materials; and increased attention to applications of luminescence research to lamps, displays, solar devices and biological research. Representative recent and new specific research areas include: site selection spectroscopy and 'hole burning'; picosecond delayed coherent anti-Stokes Raman scattering; computer simulation of dynamical processes in luminescence; electron-hole expansion from the Fermi pressure of e-h plasmas; and hot electron phenomena and hot luminescence. Finally some pending problems in luminescence research, such as reconciling the configuration coordinate model and the electronic band theory and clarifying multi-phonon non-radiative processes, are discussed. (orig.)

  15. Time-resolved luminescence of Eu2+-aggregate centers in CsBr crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.V.; Turchak, R.M.; Voznjak, T.I.; Stryganjuk, G.B.

    2005-01-01

    The luminescence of Eu 2+ -V Cs dipole centers and CsEuBr 3 aggregate centers, as well as the features of the energy transfer to these centers by excitons have been studied in CsBr:Eu crystals by means of investigation of the time-resolved emission spectra and luminescence decay kinetics under excitation by synchrotron radiation at RT. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Flashphotolysis investigations of the influence of the ionic strength on the kinetics of energy transfer reactions. Investigation of the reaction of Tb(III)- and Eu(III)-trisdipicolinate with different charged iron compounds

    International Nuclear Information System (INIS)

    Dorle, A.

    1999-01-01

    Luminescent lanthanide complexes are especially important as labels for the investigation of biological substances. The rare earths are employed as probes and are often able to substitute more expensive radioactive labels. The kinetic investigations of the reactions of Tb(III)- and Eu(III)-trisdipicolinate (charge: 3**-) with different charged iron complexes as quenchers (charge: 3 - , 1 - , 2 + ) (solvent: H 2 O) at varying ionic strength give results that can help to find out more details about how the intermolecular energy transfer takes place. By creating a Stern-Volmer plot one can get the rate constant of the luminescent quenching: Plotting the rate constants of quenching taken from the timeresolved flashphotolysis measurement (y-axis) versus the concentration of the quencher (x-axis) the resulting slope equals a rate constant k 2 of 2 nd order. (author)

  17. Aspects of pre-dose and other luminescence phenomena in quartz absorbed dose estimation

    International Nuclear Information System (INIS)

    Adamiec, G.

    2000-01-01

    The understanding of all luminescence processes occurring in quartz is of paramount importance in the further development of robust absorbed dose estimation techniques (for the purpose of dating and retrospective dosimetry). The findings presented in this thesis, aid future improvements of absorbed dose estimation techniques using quartz by presenting investigations in the following areas: 1) interpretation of measurement results, 2) numerical modelling of luminescence in quartz, 3) phenomena needing inclusion in future physical models of luminescence. In the first part, the variability of properties of single quartz grains is examined. Through empirical and theoretical considerations, investigations are made of various problems of measurements of luminescence using multi-grain aliquots, and specifically areas where the heterogeneity of the sample at the inter-grain level may be misinterpreted at the multi-grain-aliquot level. The results obtained suggest that the heterogeneity of samples is often overlooked, and that such differences can have a profound influence on the interpretation of measurement results. Discussed are the shape of TL glow curves, OSL decay curves, dose response curves (including consequences for using certain signals as proxies for others), normalisation procedures and D E estimation techniques. Further, a numerical model of luminescence is proposed, which includes multiple R-centres and is used to describe the pre-dose sensitisation in quartz. The numerical model exhibits a broad-scale behaviour observed experimentally in a sample of annealed quartz. The shapes of TAC for lower (20 Gy) and higher doses (1 kGy) and the evolution with temperature of the isothermal sensitisation curves are qualitatively matched for the empirical and numerical systems. In the third area, a preliminary investigation of the properties of the '110 deg. C peak' in the 550 nm emission band, in annealed quartz is presented. These properties are in sharp contrast with

  18. Luminescence due to peptide linkage observed in L-cysteine molecules irradiated by infrared laser light

    Energy Technology Data Exchange (ETDEWEB)

    Tsujibayashi, Toru, E-mail: toru-t@cc.osaka-dent.ac.jp [Department of Physics, Osaka Dental University, 8-1 Kuzuha-hanazono, Hirakata, Osaka 573-1121 (Japan); Matsubara, Eiichi; Ichimiya, Masayoshi [Department of Physics, Osaka Dental University, 8-1 Kuzuha-hanazono, Hirakata, Osaka 573-1121 (Japan); Ohno, Nobuhito [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-Cho, Neyagawa, Osaka 572-8530 (Japan)

    2016-01-15

    The sequence of amino acids in peptide chains consisting of proteins is the most fundamental information of living things. A direct and nondestructive method of reading is highly required as an alternative to the method based on the gene analysis. Luminescence detection is a very sensitive tool for investigating various materials. In order to find characteristic luminescence of each amino acid we study L-cysteine and L-tyrosine using UV laser of 3.36 eV with pulse duration of 1.5 ps. In addition to a common 2.66 eV band of the luminescence we have found 2.89 eV band for L-cysteine and 2.92 eV band for L-tyrosine. It can be interpreted that the side chain makes difference on the luminescence by affecting the peptide linkage or carbonyl group. - Highlights: • Luminescence from L-cysteine and L-tyrosine are studied. • Analyzing the luminescence enables to distinguish those two amino acids. • The lifetimes and the peak photon energies under UV laser excitation are presented.

  19. Luminescence imaging of water during alpha particle irradiation

    Science.gov (United States)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  20. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  1. LUMINESCENT PROPERTIES OF SILICATE GLASSES WITH CERIUM IONS AND ANTIMONY

    Directory of Open Access Journals (Sweden)

    A. M. Klykova

    2014-05-01

    Full Text Available The paper deals with the results of an experimental study of luminescence excitation spectra and luminescence of silicate glasses containing cerium ions and antimony. The aim of this work was to study the features of the luminescence and the effect of UV irradiation and heat treatment on luminescence and the state of cerium ions and antimony in glass. We investigated glass system Na2O-ZnO-Al2O3-SiO2-NaF-NaBr with additives CeO2 and Sb2O3. Synthesis was carried out in platinum crucibles in the air at 14500C. The samples were polished glass plates with a thickness of 0.5-1 mm. UV irradiation was carried out with a mercury lamp having a wide range of radiation in the spectral range 240-390 nm. It was conducted in a Nabertherm muffle furnaces. Luminescence spectra and excitation spectra were measured using a spectrofluorimeter MPF-44A (PerkinElmer at the room temperature. Measured luminescence spectra were corrected in view of the spectral sensitivity of the photodetector for spectrofluorimeter. Adjustment of the excitation spectra for the spectral dependence of the intensity of the excitation source was not carried out. During the experiments it was found that in silicate glasses Sb3+ ions can exist in two energy states, which corresponds to a different environment with oxygen ions. Heat treatment of these glasses in an oxidizing atmosphere leads to an increase in ion concentration of Sb3+ ions with a greater amount of oxygen in the environment. In glasses containing antimony and cerium ions, ultraviolet irradiation causes a change in the valence of cerium ions and antimony, which is accompanied by luminescence quenching. Subsequent heat treatment of glass leads to the inverse processes and restore luminescence excitation spectra. The study of fluorescent properties of silicate glasses with cerium and antimony ions led to the conclusion of the practical significance of this work. Promising multifunctional materials can be created on the basis of

  2. Silica nanoparticles with a substrate switchable luminescence

    International Nuclear Information System (INIS)

    Bochkova, O D; Mustafina, A R; Fedorenko, S V; Konovalov, A I

    2011-01-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  3. Comparative study on upconversion luminescence and temperature sensing of α- and β-NaYF{sub 4}:Yb{sup 3+}/Er{sup 3+} nano-/micro-crystals derived from a microwave-assisted hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lili [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Li, Xiangping, E-mail: lixp@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Hua, Ruinian [College of Life Science, Dalian Nationalities University, Dalian 116600 (China); Li, Xuejing; Zheng, Hui; Sun, Jiashi; Zhang, Jinsu; Cheng, Lihong [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian 116026 (China)

    2015-11-15

    Yb{sup 3+}/Er{sup 3+} co-doped α- and β-phase NaYF{sub 4} nano-/micro-crystals were prepared through a microwave-assisted hydrothermal route. The crystal structure and microscopic morphology of the samples were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Frequency upconverted emissions from the two thermally coupled excited state {sup 2}H{sub 11/2} and {sup 4}S{sub 3/2} levels of Er{sup 3+} in both phases of phosphors were recorded at temperatures ranging from room temperature to 573 K under 980 nm infrared laser excitation. The time scanning upconversion spectra were investigated in detail to reveal the thermal effect induced by laser irradiation and the luminescent thermal stability of the two phases NaYF{sub 4} polycrystals. Comparison of the upconversion luminescence and the sensitivity between the two phases NaYF{sub 4} polycrystals indicated that β-phase NaYF{sub 4} won much stronger luminescent intensity, better luminescent thermal stability, and higher temperature sensitivity. - Highlights: • Yb{sup 3+}/Er{sup 3+} codoped NaYF{sub 4} were prepared by a microwave-assisted hydrothermal route. • The UC luminescence and temperature sensing properties were studied. • Comparison of the UCL and the sensitivity between α- and β-phase samples were done. • Thermal effect and UCL thermo-stability were studied by time scanning UCL spectra. • β-phase sample won much better luminescent and temperature sensing properties.

  4. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  5. Uranyl(VI) luminescence spectroscopy at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Steudtner, Robin; Franzen, Carola; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Surface Processes; Haubitz, Toni [Brandenburg Univ. of Technology, Cottbus-Senftenberg (Germany)

    2016-07-01

    We studied the influence of temperature and ionic strength on the luminescence characteristics (band position, decay time and intensity) of the free uranyl ion (UO{sub 2}{sup 2+}) in acidic aqueous solution. Under the chosen conditions an increasing temperature reduced both intensity and luminescence decay time of the UO{sub 2}{sup 2+} luminescence, but the individual U(VI) emission bands did not change.

  6. Insect wings as retrospective/accidental/forensic dosimeters: An optically stimulated luminescence investigation

    International Nuclear Information System (INIS)

    Kazakis, Nikolaos A.; Tsetine, Anastasia Th.; Kitis, George; Tsirliganis, Nestor C.

    2016-01-01

    Estimation of the radiation released during nuclear accidents or radiological terrorist events is imperative for the prediction of health effects following such an exposure. In addition, in several cases there is a need to identify the prior presence of radioactive materials at buildings or sites (nuclear forensics). To this direction, several materials have been the research object of numerous studies the last decade in an attempt to identify potentially new retrospective/accidental/forensic dosimeters. However, the studies targeting biological materials are limited and their majority is mainly focused on the luminescence behavior of human biological material. Consequently, the use of such materials in retrospective dosimetry presumes the exposure of humans in the radiation field. The present work constitutes the first attempt to seek non-human biological materials, which can be found in nature in abundance or in/on other living organisms. To this end, the present work investigates the basic optically stimulated luminescence behavior of insect wings, which exhibit several advantages compared to other materials. Insects are ubiquitous, have a short life expectancy and exhibit a low decomposition rate after their death. Findings of the present study are encouraging towards the potential use of insects' wings at retrospective/accidental/forensic dosimetry, since they exhibit linear OSL response over a wide dose range and imperceptible loss of signal several days after their irradiation when they are kept in dark. On the other hand, the calculated lower detection limit is not low enough to allow their use as emergency dosimeters when individuals are exposed to non-lethal doses. In addition, wings exhibit strong optical fading when they are exposed to daylight and thus special care should be taken during the sampling procedure in order to use the wings as accidental/forensic dosimeters, by seeking (dead) insects in dark places, such as behind furniture, equipment or in

  7. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: yjyang@mail.hust.edu.c [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-04-15

    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  8. Sub-ppb level detection of uranium using ligand sensitized luminescence

    International Nuclear Information System (INIS)

    Kumar, Satendra; Maji, S.; Joseph, M.; Sankaran, K.

    2015-01-01

    Uranyl ion (UO 2 2+ ) is known to exhibit weak luminescence in aqueous medium due to poor molar absorptivity and low quantum yield. In order to enhance the luminescence of uranyl ion in aqueous medium, luminescence enhancing reagents such as H 3 PO 4 , H 2 SO 4 , HClO 4 have been widely used. Like lanthanides, uranyl luminescence can also be sensitized by using some organic ligands. Pyridine 2,6-dicarboxylic acid (PDA) has shown enhancement of luminescence of uranyl in aqueous medium. Enhancement in intensity is due to sensitization of uranyl luminescence by PDA. In order to see the effect of non-aqueous medium, in this work, luminescence of uranyl-PDA complex has been studied in acetonitrile medium. More than one order luminescence enhancement has been observed compared to UO 2 2+ - PDA complex in aqueous medium. The lifetime of uranyl luminescence of the complex in acetonitrile medium is 90 μs which is very high compared to 10 μs in aqueous medium, suggesting that the luminescence enhancement is a result of reduction in non-radiative decay channels in acetonitrile medium. The large enhancement of uranyl luminescence of uranyl-PDA complex in acetonitrile medium can be used for ultra-trace level detection of uranium. Linearity in the luminescence intensity has been observed over the uranium concentration range of 5 to 80 ppb and the detection limit calculated using the criterion of 3 σ is ~ 0.2 ppb. (author)

  9. Optically stimulated luminescence dosimetry using natural and synthetic materials

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; McKeever, S.W.S.

    1996-01-01

    The application of optically stimulated luminescence (OSL) for use in radiation dosimetry is reviewed. A broad description is given of OSL techniques developed at Riso National Laboratory and at Oklahoma State University, and recent collaborative investigations on the properties of a variety...

  10. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd6MoO12:Eu3+

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Donglei; Huang, Yanlin; Kim, Sun Il; Yu, Young Moon; Seo, Hyo Jin

    2013-01-01

    A novel red-emitting nano-phosphor of Eu 3+ -doped Gd 6 MoO 12 was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition 5 D 0 → 7 F 2 of Eu 3+ ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd 6 MoO 12 :Eu 3+ nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips

  11. Laser-induced incandescence of suspended particles as a source of excitation of dye luminescence

    CERN Document Server

    Zelensky, S

    2003-01-01

    The interaction of pulsed YAG-Nd sup 3 sup + laser radiation with submicron light-absorbing particles suspended in an aqueous solution of Rhodamine 6G is investigated experimentally. The experiments demonstrate that the laser-induced incandescence of suspended particles excites the luminescence of the dissolved dye molecules. The mechanism of the luminescence excitation consists in the reabsorption of the thermal radiation within the volume of the sample cell. On the ground of this mechanism of excitation, a method of measurement of the luminescence quantum yield is proposed and realized. The method requires the knowledge of the geometrical parameters of the cell and does not require the use of reference samples.

  12. Luminescence of the SrCl2:Pr crystals under high-energy excitation

    International Nuclear Information System (INIS)

    Antonyak, O.T.; Voloshinovskii, A.S.; Vistovskyy, V.V.; Stryganyuk, G.B.; Kregel, O.P.

    2014-01-01

    The present research was carried out in order to elucidate the mechanisms of energy transfer from the crystal lattice to Pr 3+ ions in SrCl 2 . The luminescence excitation and emission spectra as well as luminescence kinetics of the SrCl 2 :Pr single crystals containing 0.2 mol% Pr were investigated at 300 and 10 K using the vacuum ultraviolet (VUV) synchrotron radiation. The X-ray excited luminescence spectra of the SrCl 2 :Pr (C Pr =0.2 and 0.5 mol%) and SrCl 2 :Pr, K (C Pr =1.5 mol%; C K =1.5 mol%) crystals were studied at 294 and 80 K. Under optical excitation of the samples in the Pr 3+ absorption bands, there were observed five fast ultraviolet emissions assigned to the 4f 1 5d→4f 2 transitions, and two long-wave bands corresponding to the f–f transitions. Furthermore, the intrinsic emission bands of SrCl 2 were observed at 10 K. The X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal containing 0.2 mol% Pr, besides intrinsic emission band near 400 nm, has got a long-wave band at about 490 nm of the Pr 3+ centers. There were not observed any emission bands of the Pr 3+ centers corresponding to the 4f 1 5d–4f 2 transitions in the X-ray excited luminescence spectrum of the SrCl 2 :Pr crystal. The possible mechanisms of energy transfer from the SrCl 2 matrix to the Pr 3+ centers are discussed. -- Highlights: • Spectral-luminescent properties of SrCl 2 :Pr have been investigated. • The identification of emission 4f–4f and 5d–4f bands of Pr 3+ ions was performed. • Adding of potassium prevents clustering of the Pr 3+ centers in the SrCl 2 :Pr, K crystals. • Under X-ray excitation at 80–300 K only Pr 3+ 4f–4f and intrinsic emission is observed

  13. Recent advances in thermoluminescence and photostimulated luminescence detection methods for irradiated foods

    International Nuclear Information System (INIS)

    Sanderson, D.C.W.; Carmichael, L.A.; Naylor, J.D.

    1996-01-01

    Thermoluminescence (TL) and photostimulated luminescence (PSL) are radiation-specific phenomena resulting from energy storage by trapped charge carriers in dielectric materials following irradiation. Releasing such stored energy by thermal or optical stimulation can result in detectable luminescence emission during the relaxation processes which follow. These approaches can be applied to inorganic components present either as inherent parts of foods or as adhering contaminants, and to bio-inorganic systems. The strengths of these techniques lies in their radiation-specificity, and the wide range of sample types which may by analysed. The Scottish Universities Research and Reactor Centre (SURRC) has been involved in the development and application of luminescence methods since 1986, during which time over 4000 analyses of more than 800 different food samples have been performed for research purposes, or in support of UK food labelling regulations. This paper discusses the present scope of luminescence techniques, and identifies areas where recent work has extended the range of applications, and indicates areas where further investigations may be worthwhile. (author)

  14. Luminescence properties of LiPrxCe1-xP4O12

    International Nuclear Information System (INIS)

    Shalapska, T.; Stryganyuka, G.; Trotsc, D.; Demkiv, T.; Gektin, A.; Voloshinovskii, A.; Dorenbos, P.

    2010-01-01

    LiPr 1-x Ce x P 4 O 12 (x=0, 0.002, 0.02; 0.1) powder samples were prepared using the melt solution technique. Luminescent parameters of LiPr 1-x Ce x P 4 O 12 phosphors have been investigated under ultraviolet-vacuum ultraviolet (3-12 eV) synchrotron radiation and X-rays excitation at room and near liquid He temperatures. Excitation luminescence spectra of Ce 3+ emission, luminescent spectra and decay curves from the lower excited state levels of the 4f 1 5d 1 and 5d 1 electronic configuration of the Pr 3+ and Ce 3+ , respectively, clearly indicate energy transfer from Pr 3+ to Ce 3+ . Energy migration proceeds via the Pr-sublattice followed by nonradiation transfer from Pr 3+ to Ce 3+ ions.

  15. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    Science.gov (United States)

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  16. Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosticher, Céline [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France); Viana, Bruno, E-mail: bruno.viana@chimie-paristech.fr [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75005 Paris (France); Maldiney, Thomas; Richard, Cyrille [Unité de Technologies Chimiques et Biologiques pour la Santé, CNRS, UMR 8258, Paris Cedex F-75270 (France); Inserm U1022, Paris Cedex F-75270 (France); Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris Cedex F-75270 (France); Chanéac, Corinne, E-mail: corinne.chaneac@upmc.fr [UPMC Univ Paris 06, CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France)

    2016-02-15

    Biocompatible nanoparticles possessing persistent luminescence properties offer attractive possibilities for in vivo imaging applications as it allows an excitation of the sensors outside the animal before injection and a long-lasting emission of light. Here we report the development of highly biocompatible calcium phosphate nanoparticles doped with europium, Mn{sup 2+} and Ln{sup 3+} (Ln{sup 3+}=Dy{sup 3+}, Pr{sup 3+}) ions synthesized by hydrothermal route and tailored to present red-near infrared persistent luminescence after UV excitation. Nanosize biphasic HAp/β-TCP compounds with sphere and rod-shaped were obtained. Two emission bands in the red-near infrared range were observed and attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transitions of Mn{sup 2+} ions in HAp/β-TCP. An annealing treatment in reductive atmosphere post-synthesis was essential to reveal persistent luminescence properties. Indeed, such thermal treatment allows reducing Eu{sup 3+} ions in Eu{sup 2+} ions and generating required defaults as oxygen vacancies in the crystal necessary for red emission in accordance with persistent luminescence mechanism. These nanoparticles have been tested for the first time for in vivo imaging on small animal as proof of concept of prospective highly biocompatible nanoprobes. - Highlights: • Biocompatible HAp/b-TCP nanoparticles with persistent luminescence are investigated. • Reducing step induced persistent luminescence. • Nanoparticles have been tested for the first time for in vivo imaging. • Persistent luminescence is observed after 10 min in vivo.

  17. Study of Polymeric Luminescent Blend (PC/PMMA) Doped with Europium Complex under Gamma-Iradiation

    International Nuclear Information System (INIS)

    Parra, D. F.

    2006-01-01

    Spectroscopic properties of blends formed by bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) doped with europium in organic complex were studied. Polymeric luminescent blends are potential materials for many applications; however, little information has been reported concerning the stability under thermal and radiation conditions. Luminescent films were synthesized from europium thenoyltrifluoroacetonate at different concentrations doped in PC/PMMA blends. Films produced of the luminescent polymer blend were irradiated in a 60 C o source. Their luminescent properties, in the solid state, as well as, the thermal oxidative resistance after gamma irradiation was investigated. These systems were characterized by elemental analysis, thermogravimetry (TGA), differential scanning calorimetry (DSC) and infrared spectroscopy (FTIR). Based on TGA data, the thermal stability of PC/PMMA:(tta)3 system is higher than the polymer blend. The DSC results indicated that those new systems are chemically stables. The emission spectra of the Eu 3 +-tta complex doped in the PC/PMMA recorded at 298 and 77 K exhibited the characteristic bands arising from the 5 D 0 →7 F J transitions (J = 0-6). The luminescence intensity decreases with increasing of precursor concentration in the doped polymer obtained by chemical reaction. This result is different from that of samples obtained by physical method in melting doping. The blend was irradiated under ionizing radiation of 60 C o source. After irradiation of the luminescent films the physical properties of luminescence, thermal and oxidative stability were evaluated.(Fapesp and Cnpq financial support)

  18. The dependence of luminescence lifetimes on additive irradiation in natural sedimentary quartz: sands from Santa Elina, Brazil

    International Nuclear Information System (INIS)

    Chithambo, M.L.; Ogundare, F.O.; Feathers, J.; Hong, D.G.

    2008-01-01

    Time-resolved luminescence and its component lifetimes have been measured from natural quartz in order to interpret the associated dynamics of luminescence emission. The influence of beta irradiation, and measurement temperature on the lifetimes have been investigated and parameters of the kinetics involved calculated. The results are explained by considering the extent of non-radiative processes and the role of charge transfer between several types of luminescence centres. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. The dependence of luminescence lifetimes on additive irradiation in natural sedimentary quartz: sands from Santa Elina, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L. [Department of Physics and Electronics, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Ogundare, F.O. [Department of Physics, University of Ibadan, Ibadan (Nigeria); Feathers, J. [Department of Anthropology, University of Washington, P.O. Box 353100, Seattle, WA 98195-3100 (United States); Hong, D.G. [Department of Physics, Kangwon National University, Chuncheon, Kangwon-Do 200-701 (Korea)

    2008-07-01

    Time-resolved luminescence and its component lifetimes have been measured from natural quartz in order to interpret the associated dynamics of luminescence emission. The influence of beta irradiation, and measurement temperature on the lifetimes have been investigated and parameters of the kinetics involved calculated. The results are explained by considering the extent of non-radiative processes and the role of charge transfer between several types of luminescence centres. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Sante Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  1. Optically stimulated luminescence (OSL) and some other luminescence images from granite slices exposed with radiations

    International Nuclear Information System (INIS)

    Hashimoto, T.; Notoya, S.; Ojima, T.; Hoteida, M.

    1995-01-01

    Optically stimulated luminescence (OSL) images of some X- and γ-irradiated granite slices were obtained using photon detection through a 570 nm bandpass filter with diode-laser excitation of 910 nm. Alternative photo-induced phosphorescence (PIP) images, which were colour photographed immediately after the sunlight exposure of slice samples, were also found to be helpful in the observation of the luminescence properties and to filter selection for OSL measurements. These OSL and PIP images were compared with some other colour luminescence images, including thermoluminescence images (TLCI) and after-glow images (AGCI). It was obvious that there exists a variety of coloured emissions derived mainly from feldspar constituents and these were found to be dependent on the geological history or metamorphism of the granites. (Author)

  2. Two luminescent frameworks constructed from lead(II) salts with carboxylate ligands containing dinuclear lead(II) units

    International Nuclear Information System (INIS)

    Zhu Xiandong; Li Xiaoju; Liu Qingyan; Lue Jian; Guo Zhengang; He Jinrun; Li Yafeng; Cao Rong

    2007-01-01

    Two luminescent Pb(II) coordination frameworks containing dinuclear lead(II) units, [Pb(PYDC)(H 2 O)] n (1) and [Pb(HPHT)] n (2) have been prepared by the self-assembly of lead(II) salts with pyridinecarboxylate and benzenecarboxylate. Single-crystal X-ray diffraction analyses reveal that compound 1 is a three-dimensional architecture consisting of Pb 2 O 2 dimeric building units, whereas compound 2 is a two-dimensional layer structure containing one-dimensional lead-oxide chains. The luminescent properties of 1 and 2 have been investigated in the solid state at room temperature, indicating structure-dependent photoluminescent properties of the coordination frameworks. - Graphical abstract: Two luminescent Pb(II) coordination frameworks, [Pb(PYDC)(H 2 O)] n (1) and [Pb(HPHT)] n (2) have been prepared. Single-crystal analyses reveal that compound 1 is a three-dimensional architecture consisting of Pb 2 O 2 dimeric building units, whereas compound 2 is a two-dimensional layer structure containing one-dimensional lead-oxide chains. The luminescent properties have been investigated, indicating structure-dependent photoluminescent properties of the coordination frameworks

  3. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  4. Luminescence enhancement in irradiated polyethylene

    International Nuclear Information System (INIS)

    Charlesby, A.; Owen, G.P.

    1976-01-01

    Results are presented for the luminescence decay in polyethylene following irradiation at liquid nitrogen temperature and its enhancement on application of an electric field. It is found that both the luminescence enhancement and its subsequent decay may be described by a model involving electron tunnelling from a monoenergetic trap distribution to the parent positive ion. The possible nature of the trap is briefly discussed. (author)

  5. Recombination luminescence from H centers and conversion of H centers into I centers in alkali iodides

    International Nuclear Information System (INIS)

    Berzina, B.J.

    1981-01-01

    The study is aimed at the search for H-plus-electron centers of luminescence and the investigation of the conversion of H- into I centers by the luminescence of H-plus-electron centers in alkali iodide crystals. KI, RbI and NaI crystals were studied at 12 K. H and F centers were created by irradiation with ultraviolet light corresponding to the absorption band of anion excitons. Then the excitation of electron centers by red light irradiation was followed. The spectra of stimulated recombination luminescence were studied. The luminescence of H-plus- electron centers had been observed and the conclusion was made that this center was formed on immobile H centers. In case of stable H centers the optically stimulated conversion of H centers into I centers occurs. The assumption is advanced on the spontaneous annihilation of near placed unstable F, H centers which leads to the creation of H-plus-electron luminescence centers and to the spontaneous H-I-centers conversion [ru

  6. Luminescent hybrid materials functionalized with lanthanide ethylenodiaminotetraacetate complexes containing β-diketonate as antenna ligands

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Franklin P.; Costa, Israel F.; Espínola, José Geraldo P.; Faustino, Wagner M.; Moura, Jandeilson L. [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Brito, Hermi F.; Paolini, Tiago B. [Departamento de Química Fundamental-Instituto de Química da Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Felinto, Maria Cláudia F.C. [Instituto de Pesquisas energéticas e Nucleares-IPEN, 05508-900 São Paulo, SP (Brazil); Teotonio, Ercules E.S., E-mail: teotonioees@quimica.ufpb.br [Departamento de Química-Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-02-15

    Three organic–inorganic hybrid materials based on silica gel functionalized with (3-aminopropyl)trimethoxysilane (APTS), [3-(2-aminoetilamino)-propil]-trimetoxissilano (DAPTS) and 3-[2-(2-aminoetilamino)etilamino] propiltrimetoxysilane (TAPTS) and subsequently modified with EDTA derivative were prepared by nonhomogeneous route and were then characterized. The resulting materials named SilXN-EDTA (X=1 for APTS, 2 for DAPTS and 3 for TAPTS) were used to obtain new lanthanide Ln{sup 3+}-β-diketonate (Ln{sup 3+}=Eu{sup 3+}, Gd{sup 3+} and Tb{sup 3+}) complexes covalently linked to the functionalized silica gel surfaces (named SilXN-EDTALn-dik, dik=tta, dbm, bzac and acac). The photophysical properties of the new luminescent materials were investigated and compared with those with similar system presenting water molecules coordinated to the lanthanide ions, SilXN-EDTALn-H{sub 2}O. The SilXN-EDTAEu-dik and SilXN-EDTATb-dik systems displayed characteristic red and green luminescence when excited by UV radiation. Furthermore, the quantitative results showed that the emission quantum efficiency (η), experimental intensity parameters Ω{sub 2} and Ω{sub 4}, and Einstein's emission coefficient (A{sub 0J}) of the SilXN-EDTAEu-dik materials were largely dependent on the ligands. Based on the luminescence data, the most efficient intramolecular energy transfer processes were found to the SilXN-EDTAEu-dik (dik: tta and dbm) and SilXN-EDTATb-acac materials, which exhibited more pure emission colors. These materials are promising red and green phosphors, respectively. - Highlights: • New highly luminescent hybrid materials containing lanthanide-EDTA complexes. • The effect of three silylanting agent on the adsorption and luminescent properties has been studied. • The luminescence sensitizing by different β-diketonate ligands have been investigated.

  7. Development of optically stimulated luminescence reader systems in BARC

    International Nuclear Information System (INIS)

    Kulkarni, M.S.

    2008-01-01

    BARC has very vast experience in the development of thermoluminescence (TL) reader systems both for routine personnel monitoring and research application. However, optically stimulated luminescence (OSL) related instrumentation is a recent development in BARC. The increasing popularity of OSL technique in the radiation dosimetry applications in the recent past has driven investigation and developmental programme in the OSL measurement facilities at BARC. As the consequence of the efforts directed towards the indigenous development of OSL reader system, OSL readers with various readout modes like continuous wave (CW) OSL mode, linear intensity modulated OSL (LM-OSL), pulsed OSL (POSL) have been developed. In addition to these conventional modes of operation a novel non-linear OSL mode (NL-OSL) has also been developed for the OSL measurements. This paper reviews the details of the development of OSL reader system including experience with high intensity blue/green LED stimulation light source and detection system. Also discussed are recently developed versatile integrated TL/OSL reader systems for TL and OSL measurements. (author)

  8. Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass

    International Nuclear Information System (INIS)

    Sun Hongtao; Zhanga Liyan; Zhang Junjie; Wen Lei; Yu Chunlei; Duan Zhongchao; Dai Shixun; Hu Lili; Jiang Zhonghong

    2005-01-01

    Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl 2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1 G 4 → 3 H 6 and 1 G 4 → 3 H 4 , respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers

  9. Cleavage Luminescence from Cleaved Indium Phosphide

    International Nuclear Information System (INIS)

    Dong-Guang, Li

    2008-01-01

    We outline the experiments performed to gain further information about the structure and properties of cleaved InP surfaces. The experiments involved detecting the luminescence produced after cleaving thin InP plates within a high vacuum, by a process of converting the luminescence to an electrical signal which could be amplified and measured accurately. The experimental results show that the detected luminescence durations from cleaved InP are usually only about 10μs. It is believed that this time represents the time of travel of the crack with the actual recombination time being much shorter. Strong signals could also be picked up from cleaved InP in air

  10. Luminescence of Quantum Dots by Coupling with Nonradiative Surface Plasmon Modes in a Scanning Tunneling Microscope

    International Nuclear Information System (INIS)

    Romero, M.J.; van de Lagemaat, J.

    2009-01-01

    The electronic coupling between quantum dots (QDs) and surface plasmons (SPs) is investigated by a luminescence spectroscopy based on scanning tunneling microscopy (STM). We show that tunneling luminescence from the dot is excited by coupling with the nonradiative plasmon mode oscillating at the metallic tunneling gap formed during the STM operation. This approach to the SP excitation reveals aspects of the SP-QD coupling not accessible to the more conventional optical excitation of SPs. In the STM, luminescence from the dot is observed when and only when the SP is in resonance with the fundamental transition of the dot. The tunneling luminescence spectrum also suggests that excited SP-QD hybrid states can participate in the excitation of QD luminescence. Not only the SP excitation regulates the QD luminescence but the presence of the dot at the tunneling gap imposes restrictions to the SP that can be excited in the STM, in which the SP cannot exceed the energy of the fundamental transition of the dot. The superior SP-QD coupling observed in the STM is due to the tunneling gap acting as a tunable plasmonic resonator in which the dot is fully immersed.

  11. Effect of ion-implantation enhanced intermixing on luminescence of InAs/InP quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Q; Barik, S; Tan, H H; Jagadish, C [Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, Australian National University, Canberra 0200 (Australia)

    2008-10-21

    Temperature dependent photoluminescence spectra of ion implanted InAs/InP quantum dots (QDs) followed by rapid thermal annealing were studied. By employing a recently developed luminescence model for localized states ensemble, the broadening of the distribution of the localized QD states was determined from the fitting to the luminescence peak energy positions. The broadening of the distribution of the localized QD states reduces due to ion-implantation enhanced intermixing. The contribution of carrier distribution within the localized QD states to the luminescence linewidth decreases after ion-implantation enhanced intermixing. The effect of doses and types of ions used for implantation were also investigated.

  12. Luminescent converter of neodymium laser radiation

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Golab, S.

    1992-01-01

    The new luminescent converter of neodymium laser radiation has been worked out. Activated inorganic compounds of ytterbium and erbium ions has been used as luminescent agent. The multi-component inorganic glass containing tellurium oxide as well as boron, sodium, magnesium and zinc oxides has been applied as a converter matrix

  13. Luminescent materials: probing the excited state of emission centers by spectroscopic methods

    International Nuclear Information System (INIS)

    Mihóková, E; Nikl, M

    2015-01-01

    We review recent methods employed to study the excited state of rare-earth centers in various luminescent and scintillating materials. The focus is on processes that help determine localization of the excited state within the material band gap, namely photoionization and thermally stimulated ionization. Then the tunneling process between the luminescence center and the trapping state is addressed. We describe the experimental implementation of methods recently developed to study these processes. We report theoretical models helping the data interpretation. We also present application to currently investigated materials. (topical review)

  14. Preparation and up-conversion luminescence of SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jun [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Zhang, Wei; Feng, Zhiqing; Tang, Dongxin; Na, Liyan [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu, E-mail: chenmbj@sohu.com [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2014-03-05

    Graphical abstract: The SrAlF{sub 5} nanorods co-doped with various Yb{sup 3+}/Er{sup 3+} concentrations was synthetized via a microemulsion-hydrothermal process for the first time. It was found that the optimum doping concentration of Yb{sup 3+} and Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence. Highlights: • SrAlF{sub 5}:Yb{sup 3+}/Er{sup 3+} nanorods were synthesized via a microemulsion-hydrothermal process. • Crystal structure and morphology were characterized by using XRD and FESEM. • The upconversion luminescence intensity depend on LD working current was studied. • The post heat-treatment could greatly improve upconversion luminescence. -- Abstract: Yb{sup 3+} and Er{sup 3+} co-doped SrAlF{sub 5} nanorods with average diameter of 35 nm and average length of 400 nm were synthesized via a microemulsion-hydrothermal process, and their crystal structure and morphology were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The optimum doping concentration of Yb{sup 3+}/Er{sup 3+} in SrAlF{sub 5} matrix was about 4 mol%. The upconversion luminescence intensity dependence on the laser diode (LD) working current was studied and the possible upconversion mechanism was analyzed. Furthermore, the temperature effect of upconversion luminescence was investigated. It was also found that the post heat-treatment could greatly improve upconversion luminescence.

  15. Chemisorptive luminescence on γ-irradiated magnesium oxide

    International Nuclear Information System (INIS)

    Breakspere, R.J.; Read, R.L.

    1976-01-01

    The intensity of a chemisorptive luminescence produced on MgO by oxygen at room temperature is increased by prior γ-irradiation of the MgO, under vacuum, before adsorption. This enhancement of the luminescence increases with radiation dose up to 1.9 x 10 6 rad and is attributed to the interaction between the F + sub (s) centres produced by the radiation and oxygen molecules arriving at the surface from the gas phase. In this work, the spectrum of the emitted luminescence could not be measured. (author)

  16. Luminescence and efficiency optimization of InGaN/GaN core-shell nanowire LEDs by numerical modelling

    Science.gov (United States)

    Römer, Friedhard; Deppner, Marcus; Andreev, Zhelio; Kölper, Christopher; Sabathil, Matthias; Strassburg, Martin; Ledig, Johannes; Li, Shunfeng; Waag, Andreas; Witzigmann, Bernd

    2012-02-01

    We present a computational study on the anisotropic luminescence and the efficiency of a core-shell type nanowire LED based on GaN with InGaN active quantum wells. The physical simulator used for analyzing this device integrates a multidimensional drift-diffusion transport solver and a k . p Schrödinger problem solver for quantization effects and luminescence. The solution of both problems is coupled to achieve self-consistency. Using this solver we investigate the effect of dimensions, design of quantum wells, and current injection on the efficiency and luminescence of the core-shell nanowire LED. The anisotropy of the luminescence and re-absorption is analyzed with respect to the external efficiency of the LED. From the results we derive strategies for design optimization.

  17. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  18. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Syamchand, S.S.; Sony, G.

    2015-01-01

    Lanthanide based nanoparticles are receiving great attention ought to their excellent luminescent and magnetic properties and find challenging biomedical applications. Among the luminescent lanthanide NPs, europium based NPs (Eu-NPs) are better candidates for immunoassay and imaging applications. The Eu-NPs have an edge over quantum dots (QDs) by means of their stable luminescence, long fluorescence lifetime, sharp emission peaks with narrow band width, lack of blinking and biocompatibility. This review surveys the synthesis and properties of a variety of Eu-NPs consolidated from different research articles, for their applications in medicine and biology. The exquisite luminescent properties of Eu-NPs are explored for developing biomedical applications such as immunoassay and bioimaging including multimodal imaging. The biomedical applications of Eu-NPs are mostly diagnostic in nature and mainly focus on various key analytes present in biological systems. The luminescent properties of europium enabled NPs are influenced by a number of factors such as the site symmetry, the metal nanoparticles, metal ions, quantum dots, surfactants, morphology of Eu-NPs, crystal defect, phenomena like antenna effect and physical parameters like temperature. Through this review we explore and assimilate all the factors which affect the luminescence in Eu-NPs and coil a new thread of parameters that control the luminescence in Eu-NPs, which would provide further insight in developing Eu-based nanoprobes for future biomedical prospects. - Highlights: • The review describes 14 major factors that influence the luminescence properties of europium enabled luminescent nanoparticles (Eu-NPs). • Surveys different types of europium containing nanoparticles that have been reported for their biomedical applications. • Eu-NPs are conveniently divided into four different categories, based on the type of the substrates involved. The four categories are (1) virgin Eu-substrate based NPs; (2

  19. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  20. Luminescent polymethyl methacrylate modified by gamma radiation

    International Nuclear Information System (INIS)

    Morais, Guilherme F.; Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F.

    2011-01-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C 2 F 4 ) in closed reactor for 48 hours. A second part was reacted with C 2 F 4 after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  1. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    Science.gov (United States)

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  2. Luminescence properties and energy transfer investigations of Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zaifa; Xu, Denghui, E-mail: xudh@btbu.edu.cn; Sun, Jiayue; Du, Jiangnan; Gao, Xuedong

    2016-09-15

    Highlights: • A phosphor Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} for UV-based white LEDs was firstly synthesized successfully. • The phase structure and photoluminescence properties of samples were studied in detail. • The energy transfer process from Ce{sup 3+} to Tb{sup 3+} ions was illustrated in detail. • Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor has potential applications as an UV-convertible phosphor for white light emitting diodes. - Abstract: A series of Ce{sup 3+} or Tb{sup 3+} doped and Ce{sup 3+}/Tb{sup 3+} co-doped Sr{sub 3}Lu(PO{sub 4}){sub 3} phosphors were prepared via the conventional high temperature solid-state reaction. The phase structure, photoluminescence and energy transfer properties of samples were studied in detail. The optimal proportion of Ce{sup 3+} single doping is 4 mol% with maximal fluorescence intensity. The Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor shows both a blue emission (428 nm) from Ce{sup 3+} and a yellowish-green emission (545 nm) from Tb{sup 3+} with considerable intensity under ultraviolet (UV) excitation (268 nm). The energy transfer from Ce{sup 3+} to Tb{sup 3+} ions takes place in the Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor on the basis of the analysis of the luminescence spectra. The energy transfer mechanism from Ce{sup 3+} to Tb{sup 3+} ions was proved to be dipole–dipole interaction. The energy transfer behaviors in Sr{sub 3}Lu(PO{sub 4}){sub 3}:Ce{sup 3+}, Tb{sup 3+} phosphor is also investigated by the lifetime measurement. The results show that this phosphor has potential applications for UV white-light LEDs.

  3. Oxide/polymer nanocomposites as new luminescent materials

    Science.gov (United States)

    Vollath, D.; Szabó, D. V.; Schlabach, S.

    2004-06-01

    It is demonstrated that nanocomposites, consisting of an electrically insulating oxide core and PMMA coating exhibit strong luminescence. This luminescence is connected to the interface, where PMMA is bond via a carboxylate bonding to the surface. In this case, luminescence is originated at the carbonyl group of the coating polymer. With decreasing particle size, this emission shows a blue shift, following a law inversely the ones found for quantum confinement systems. For semi-conducting oxides, such as ZnO, this interface related emission is found additionally to quantum confinement phenomena.

  4. Luminescence investigation of Cu(In,Ga)Se{sub 2}solar cells with different Ga-contents grown in a three-stage-process on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Kristin; Mueller, Mathias; Hempel, Thomas; Bertram, Frank; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Abou-Ras, Daniel; Rissom, Thorsten; Unold, Thomas; Schock, Hans-Werner [Helmholtz-Zentrum Berlin for Materials and Energy (Germany)

    2011-07-01

    A fundamental advantage of Cu(In,Ga)Se{sub 2} (CIGS) alloys as absorber materials in thin-film solar cells is their direct band gap energies which can be varied between 1.04 eV (CuInSe{sub 2}) and 1.68 eV (CuGaSe{sub 2}). Photoluminescence (PL) spectra of complete CIGS solar cells with a systematic variation of the Ga-content in the absorber layer will be presented. The CIGS cells investigated were grown on a Mo back contact sputtered on soda lime glass and have a Ga-concentration ranging over the entire range from CuInSe{sub 2} to CuGaSe{sub 2}. Samples with Ga-contents between 100 % and 33 % show two broad luminescence bands. In contrast, CuInSe{sub 2} exhibits only one broad luminescence band. Each band is composed of two or three different transitions. Varying excitation density over four orders of magnitude results for samples with Ga-content of 0 % and 33 % in a blueshift of the main peak with increasing excitation density. For higher Ga-concentrations, first a blue- and then a redshift of the dominating peak with increasing excitation density is visible. The temperature dependence of the PL spectra is investigated going from 4 K to 300 K.

  5. Detailed investigation of a time-of-flight neutron spectrometer

    International Nuclear Information System (INIS)

    Elevant, T.; Trostell, B.

    1981-02-01

    Properties of a neutron spectrometer and telescope, based on double neutron interaction in hydrogen based scintillators and neutron time-of-flight technique, have been investigated in detail. Theoretical scaling of the resolutions with the flight path length and scattering angle have been confirmed by experimental results. Important parameters in connection with calibration of the spectrometer are discussed and calculated relative resolutions of the ion temperature are shown when applied to a fusion deuterium plasma. (Auth.)

  6. Near-surface layer radiation color centers in lithium fluoride nanocrystals: Luminescence and composition

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P., E-mail: voitovich@imaph.bas-net.by; Kalinov, V.S.; Stupak, A.P.; Novikov, A.N.; Runets, L.P.

    2015-01-15

    Lithium fluoride nanocrystals are irradiated by gamma quanta at 77 K. The radiation color centers formed in a near-surface layer of nanocrystals are studied. Absorption, luminescence and luminescence excitation spectra of the surface defects have been measured. It has been found that the luminescence excitation spectra for aggregated surface centers consist of two or three bands with not very much different intensities. Reactions of the surface centers separately with electrons and with anion vacancies have been investigated. Numbers of anion vacancies and electrons entering into the centers composition have been established and it has been found that F{sub S1}, F{sub S1}{sup −}, F{sub S2}, F{sub S2}{sup −}, F{sub S3}{sup +} and F{sub S3} types of the surface centers are formed. The degree of luminescence polarization has been defined and it has been determined that the polarization degree for F{sub S2}{sup +} centers changes sign under transition from one excitation band to another. It has been shown that during irradiation at 77 K radiation-induced defects are formed more efficiently on the surface than in the bulk. - Highlights: • Radiative color centers were fabricated in lithium fluoride nanocrystals. • The unique absorption and luminescence characteristics are inherent in the centers. • The reactions of these centers with electrons and anion vacancies were studied. • The degree of luminescence polarization was defined. • Numbers of anion vacancies and electrons forming the centers were established.

  7. Luminescence of YbP3O9 upon excitation in the UV-VUV range

    International Nuclear Information System (INIS)

    Stryganyuk, G; Trots, D; Berezovskaya, I; Shalapska, T; Voloshinovskii, A; Dotsenko, V; Zimmerer, G

    2007-01-01

    X-ray powder diffraction and luminescence spectral-kinetic studies have been performed for ytterbium metaphosphate (YbP 3 O 9 ) in the 12-290 K temperature range. The diffraction investigation has shown YbP 3 O 9 to be of monoclinic P 2 1 /c structure at T = 12-290 K. Charge transfer luminescence originating from Yb 3+ ion has been revealed. The carrier confinement within the Yb 3+ charge transfer state is pronounced at T = 12 K. A tendency has been revealed for charge carriers in YbP 3 O 9 to be localized in a trapped exciton state at room temperature. The quenching mechanisms for Yb 3+ charge transfer luminescence and processes competing with the formation of the Yb 3+ charge transfer state are discussed

  8. Application of luminescence techniques in retrospective dosimetry

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Jungner, H.

    1999-01-01

    Luminescence signals measured from minerals within bricks or ceramic samples can provide information about the absorbed radiation dose. This feature has for several years been used in dating archaeological and geological samples and recently luminescence techniques have been intensively used far ...

  9. Soft X-ray excited optical luminescence from functional organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sham, T.K., E-mail: tsham@uwo.ca

    2015-10-01

    Highlights: • Many functional organic materials convert X-ray energy into visible light. • The X-ray induced luminescence (XEOL) across an absorption edge can be site and excitation channel specific. • XEOL is composition, morphology, size and crystallinity dependent. • XEOL using the time structure of a synchrotron can reveal the decay and energy transfer dynamics of the sample. • The combined use of XEOL and XAS in the analysis of functional organic materials is illustrated. - Abstract: This brief report reviews some of the recent findings in the study of synchrotron based X-ray excited optical luminescence (XEOL) from representative organic light emitting device (OLED) and related functional organic materials. The systems of interest include Alq{sub 3}, aluminium tris(8-hydroxylquinoline); Ru(bipy){sub 3}{sup 2+}, tris-(2,2-bipyridine) ruthenium(II); Ir(bpy){sub 3}, tris(2-phenyl-bipyridine)iridium; PVK (poly(N-vinylcarbazole)) and [Au{sub 2}(dppe)(bipy)]{sup 2+}, a Au(I) polymer containing 1,2-bis(diphenylphosphino)ethane and the 4,40-bipyridyl ligands, as well as TBPe (2,5,8,11-tetra-tert-butylperylene) polyhedral crystals and fluorescein isothiocyanate (FITC) and FITC-labelled proteins. It is shown that tunable and pulsed X-rays from synchrotron light sources enable the detailed tracking of the optical properties of organic functional materials by monitoring the luminescence in both the energy and time domain as the excitation energy is scanned across an element-specific absorption edge. The use of XEOL and X-ray absorption spectroscopy (XAS) in materials analysis is illustrated.

  10. Mechanical, spectral, and luminescence properties of ZnS:Mn doped PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Fontenot, Ross S. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Allison, Stephen W., E-mail: steve.allison@emergingmeasurements.com [Emerging Measurements, Collierville, TN 38017 (United States); Lynch, Kyle J, E-mail: kjlynch@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Hollerman, William A. [University of Louisiana at Lafayette, Department of Physics, PO Box 44210, Lafayette, LA 70504 (United States); Sabri, Firouzeh, E-mail: fsabri@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States)

    2016-02-15

    Zinc sulfide doped with manganese (ZnS:Mn) is one of the brightest triboluminescent materials known and has been studied for a variety of applications. The powder form of this material restricts its safe handling and utilization, which limits the range of applications that can take advantage of its unique properties. In this study, the tribo- and photo-luminescent properties as well as the mechanical properties of ZnS:Mn encapsulated in an inert and optically transparent elastomer – Sylgard 184, have been investigated and fully characterized. ZnS:Mn particles of 8.5 µm diameter were incorporated into the Sylgard 184 polymer matrix prior to the curing stage with increasing amounts targeting a final (mass) concentration of 5%, 15%, and 50%. Additionally, the effect of the ZnS:Mn particles on the overall surface properties of the encapsulating elastomer was investigated and reported here. It was observed that the triboluminescent emission from impact scales with phosphor concentration and was not affected by the encapsulating medium. - Highlights: • Polymer encapsulation effects on the luminescent properties of ZnS:Mn was investigated. • Sylgard 184 encapsulated with ZnS:Mn (5, 15, 50 wt%) were characterized. • The triboluminescent emission from impact, scales with phosphor concentration. • Effect of the elastomeric medium on luminescent properties of ZnS:Mn was determined. • The work presented here demonstrates the feasibility of ZnS:Mn-based flexible sensors.

  11. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  12. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    Science.gov (United States)

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  13. Structure, electronic properties, luminescence and chromaticity investigations of rare earth doped KMgBO{sub 3} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianghui; Cheng, Qijin [School of Energy Research, Xiamen University, Xiamen 361005 (China); Wu, Shunqing [Department of Physics, Xiamen University, Xiamen, 361005 (China); Zhuang, Yixi [College of Materials, Xiamen University, Xiamen 361005 (China); Guo, Ziquan; Lu, Yijun [Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China); Chen, Chao, E-mail: cchen@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen 361005 (China); Department of Physics, Xiamen University, Xiamen, 361005 (China); Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University, Xiamen 361005 (China)

    2015-09-01

    In this work, the optimization of the geometry and the electronic properties of the host matrix KMgBO{sub 3} were investigated using density functional theory, and the comprehensive photoluminescence and chromaticity properties on five rare earth ion-doped (RE = Ce{sup 3+}, Tm{sup 3+}, Tb{sup 3+}, Eu{sup 3+}, Dy{sup 3+}) KMgBO{sub 3} phosphors were also studied. By introducing RE ions into the KMgBO{sub 3} host, excellent purple, blue, green, red and white emitting light could be obtained under the near-ultraviolet light excitation. The results suggest that rare earth doped KMgBO{sub 3} phosphors are potential luminescence materials for the application in the near-ultraviolet white light-emitting diodes. - Highlights: • The electronic properties of the host matrix KMgBO{sub 3} were investigated. • The PL properties on rare earth ions doped KMgBO{sub 3} phosphors were studied. • The chromaticity properties on rare earth ions doped KMgBO{sub 3} samples were studied. • Tm{sup 3+} and Eu{sup 3+} doped KMgBO{sub 3} samples show higher color purity than commercial phosphors.

  14. Novel Mechano-Luminescent Sensors Based on Piezoelectric/Electroluminescent Composites

    Directory of Open Access Journals (Sweden)

    Yunzhang Fang

    2011-04-01

    Full Text Available A high-sensitivity mechano-luminescent sensor was fabricated on the basis of piezoelectric/electroluminescent composites. The working principle of this mechano-luminescent sensor was elucidated by analyzing the relationship between the piezoelectric-induced charges and the electroluminescent effects. When a stress is applied on the piezoelectric layer, electrical charges will be induced at both the top and bottom sides of the piezoelectric layer. The induced electrical charges will lead to a light output from the electroluminescent layer, thus producing a mechano-luminescence effect. By increasing the vibration strength or frequency applied, the mechano-luminescence output can be obviously enhanced. Mechano-luminescence sensors have potential in smart stress-to-light devices, such as foot-stress-distribution-diagnosis systems and dynamic-load-monitors for bridge hanging cables.

  15. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  16. Optically stimulated luminescence from quartz measured using the linear modulation technique

    DEFF Research Database (Denmark)

    Bulur, E.; Bøtter-Jensen, L.; Murray, A.S.

    2000-01-01

    The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonical...

  17. Increasing lanthanide luminescence by use of the RETEL effect.

    Science.gov (United States)

    Leif, Robert C; Vallarino, Lidia M; Becker, Margie C; Yang, Sean

    2006-08-01

    Luminescent lanthanide complexes produce emissions with the narrowest-known width at half maximum; however, their significant use in cytometry required an increase in luminescence intensity. The companion review, Leif et al., Cytometry 2006;69A:767-778, described a new technique for the enhancement of lanthanide luminescence, the Resonance Energy Transfer Enhanced Luminescence (RETEL) effect, which increases luminescence and is compatible with standard slide microscopy. The luminescence of the europium ion macrocyclic complex, EuMac, was increased by employing the RETEL effect. After adding the nonluminescent gadolinium ion complex of the thenoyltrifluoroacetonate (TTFA) ligand or the sodium salt of TTFA in ethanol solution, the EuMac-labeled sample was allowed to dry. Both a conventional arc lamp and a time-gated UV LED served as light sources for microscopic imaging. The emission intensity was measured with a CCD camera. Multiple time-gated images were summed with special software to permit analysis and effective presentation of the final image. With the RETEL effect, the luminescence of the EuMac-streptavidin conjugate increased at least six-fold upon drying. Nuclei of apoptotic cells were stained with DAPI and tailed with 5BrdUrd to which a EuMac-anti-5BrdU conjugate was subsequently attached. Time-gated images showed the long-lived EuMac luminescence but did not show the short-lived DAPI fluorescence. Imaging of DNA-synthesizing cells with an arc lamp showed that both S phase and apoptotic cells were labeled, and that their labeling patterns were different. The images of the luminescent EuMac and fluorescent DAPI were combined to produce a color image on a white background. This combination of simple chemistry, instrumentation, and presentation should make possible the inexpensive use of the lanthanide macrocycles, Quantum Dyes, as molecular diagnostics for cytological and histopathological microscopic imaging. (c) 2006 International Society for Analytical

  18. Luminescence and circularly polarized luminescence of macrocyclic Eu(III) and Tb(III) complexes embedded in xerogel and sol-gel SiO2 glasses

    International Nuclear Information System (INIS)

    Morita, M.; Rau, D.; Kai, T.

    2002-01-01

    Luminescence, time-resolved luminescence, circularly polarized luminescence (CPL) and decay profiles of Ln(III)(15-crownether-5) (Ln=Ce, Sm, Eu, Tb) and Tb(III)-(R),(S)-cyclen derivative complexes doped in xerogel and sol-gel silica glasses are measured at temperatures down to 10 K to characterize luminescence properties and the electronic structure in the excited states. Luminescence spectral profiles and calculation of crystal field parameters (B 0 (2) ,B 2 (2) ) in the 5 D 0 → 7 F J (J=1,2) transition give evidence of the fact that the pentagonal and planar structure of Eu(III) (15-crownether-5) does hold in xerogel and sol-gel glasses prepared at temperatures below 100 deg. C. As annealing temperatures are increased from 80 deg. C to 750 deg. C, Eu(III) complexes in sol-gel glasses are found to decompose gradually to SiO 2 :Eu 3+ . Tb(III)-(R) and (S)-cyclen derivative complexes in xerogel reveal at room temperature and 10 K sharp CPL spectra with luminescence dissymmetry factors g lum =-0.1 and 0.1, respectively. These complexes doped in sol-gel glasses represent luminescence characteristics of rare earth ions encapsulated in the nano-porous host

  19. Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment)

    Science.gov (United States)

    Vaisburd, D. I.; Kharitonova, S. V.

    1997-11-01

    A short high-power pulse of ionizing radiation creates a high concentration of nonequilibrium electrons and holes in a dielectric. They quickly lose their energy, generating a multiplicity of secondary quasiparticles: electron—hole pairs, excitons, plasmons, phonons of all types, and others. When the kinetic energy of an electron becomes less that some value EΔ≈(1.3-2)Eg it loses the ability to perform collisional ionization and electron excitations of the dielectric medium. Such an electron is said to be ionization-passive. It relaxes to the bottom of the lower conduction band by emitting phonons. Similarly a hole becomes ionization-passive when it “floats up” above some level EH and loses the ability for Auger ionization of the dielectric medium. It continues to float upward to the ceiling of the upper valance band only by emitting phonons. The concentrations of ionization-passive electrons and holes are larger by several orders of magnitude than those of the active electrons and holes and consequently make of a far larger contribution to many kinetic processes such as luminescence. Intraband and interband quantum transitions make the greatest contribution to the fundamental (independent of impurities and intrinsic defects) electromagnetic radiation of ionization-passive electrons and holes. Consequently the brightest types of purely fundamental luminescence of strongly nonequilibrium electrons and holes are intraband and interband luminescence. These forms of luminescence, discovered relatively recently, carry valuable information on the high-energy states of the electrons in the conduction band and of the holes in the valence band of a dielectric. Experimental investigations of these types of luminescence were made, mainly on alkali halide crystals which were excited by nanoseconal pulses of high-current-density electrons and by two-photon absorption of the ultraviolet harmonics of pulsed laser radiation beams of nanosecond and picosecond duration. The

  20. Systematic development of new thermoluminescence and optically stimulated luminescence materials

    Energy Technology Data Exchange (ETDEWEB)

    Yukihara, E.G., E-mail: eduardo.yukihara@okstate.edu [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Milliken, E.D.; Oliveira, L.C. [Physics Department, 145 Physical Sciences II, Oklahoma State University, Stillwater, OK 74078 (United States); Orante-Barron, V.R. [Departamento de Investigacion en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico (Mexico); Jacobsohn, L.G. [Center for Optical Materials Science and Engineering Technologies (COMSET), and School of Materials Science and Engineering, Clemson University, Clemson, SC (United States); Blair, M.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-01-15

    This paper presents an overview of a systematic study to develop new thermoluminescence (TL) and optically stimulated luminescence (OSL) materials using solution combustion synthesis (SCS) for applications such as personal OSL dosimetry, 2D dose mapping, and temperature sensing. A discussion on the material requirements for these applications is included. We present X-ray diffraction (XRD) data on single phase materials obtained with SCS, as well as radioluminescence (RL), TL and OSL data of lanthanide-doped materials. The results demonstrate the possibility of producing TL and OSL materials with sensitivity similar to or approaching those of commercial TL and OSL materials used in dosimetry (e.g., LiF:Mg,Ti and Al{sub 2}O{sub 3}:C) using SCS. The results also show that the luminescence properties can be improved by Li co-doping and annealing. The presence of an atypical TL background and anomalous fading are discussed and deserve attention in future investigations. We hope that these preliminary results on the use of SCS for production of TL and OSL materials are helpful to guide future efforts towards the development of new luminescence materials for different applications. - Highlights: Black-Right-Pointing-Pointer TL and OSL material produced with sensitivity similar to commercial materials. Black-Right-Pointing-Pointer Luminescence properties improved by Li co-doping and annealing. Black-Right-Pointing-Pointer The presence of atypical TL background and anomalous fading observed.

  1. Kinetics of infrared stimulated luminescence from feldspars

    DEFF Research Database (Denmark)

    Jain, Mayank; Sohbati, Reza; Guralnik, Benny

    2015-01-01

    thermal and optical, of the infrared stimulated luminescence signal from feldspar. Based on the application of this model, it is concluded that different infra-red stimulated luminescence emissions (UV, blue, yellow and far-red) follow the same kinetics, and, therefore, involve participation of the same...

  2. Luminescence and structural study of porous silicon films

    Science.gov (United States)

    Xie, Y. H.; Wilson, W. L.; Ross, F. M.; Mucha, J. A.; Fitzgerald, E. A.; Macaulay, J. M.; Harris, T. D.

    1992-03-01

    A combination of photoluminescence, TEM, and Fourier transform IR spectroscopy is used to investigate the luminescence properties of 3-micron thick, strongly emitting, and highly porous silicon films. TEMs indicate that these samples have structures of predominantly 6-7-nm size clusters. In the as-prepared films, there is a significant concentration of Si-H bonds which is gradually replaced by Si-O bonds during prolonged aging in air. Upon optical excitation these films exhibit strong visible emission, peaking at about 690 nm. The excitation edge is shown to be emission-wavelength dependent, revealing the inhomogeneous nature of both the initially photoexcited and luminescing species. The correlation of the spectral and structural information suggest that the source of the large blue shift of the visible emission compared to the bulk Si bandgap energy is due to quantum confinement in the nanometer-size Si clusters.

  3. Identifying irradiated flour by photo-stimulated luminescence technique

    International Nuclear Information System (INIS)

    Ros Anita Ahmad Ramli; Muhammad Samudi Yasir; Zainon Othman; Wan Saffiey Wan Abdullah

    2013-01-01

    Full-text: The photo-stimulated luminescence technique is recommended by European Committee for standardization for the detection food irradiation (EN 13751:2009). This study shows on luminescence technique to identify gamma irradiated five types of flour (corn flour, tapioca flour, wheat flour, glutinos rice flour and rice flour) at three difference dose levels in the range 0.2 - 1 kGy. The signal level is compare with two thresholds (700 and 5000). The majority of irradiated samples produce a strong signal above the upper threshold (5000 counts/ 60 s). All the control samples gave negative screening result while the signals below the lower threshold (700 counts/ 60s) suggest that the sample has not been irradiated. A few samples show the signal levels between the two thresholds (intermediate signals) suggest that further investigation. Reported procedure was also tested over 60 days, confirming the applicability and feasibility of proposed methods. (author)

  4. Process for obtaining luminescent glass layers

    International Nuclear Information System (INIS)

    Heindi, R.; Robert, A.

    1984-01-01

    Process for obtaining luminescent glass layers, application to the production of devices provided with said layers and to the construction of photoscintillators. The process comprises projecting onto a support, by cathodic sputtering, the material of at least one target, each target including silica and at least one chemical compound able to give luminescent centers, such as a cerium oxide, so as to form at least one luminescent glass layer of the said support. The layer or layers formed preferably undergo a heat treatment such as annealing in order to increase the luminous efficiency thereof. It is in this way possible to form a scintillating glass layer on the previously frosted entrance window of a photomultiplier in order to obtain an integrated photoscintillator

  5. Luminescent polymethyl methacrylate modified by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Guilherme F. [Faculdade de Tecnologia de Sao Paulo (FATEC-ZL), Sao Paulo, SP (Brazil); Forster, Pedro L.; Marchini, Leonardo G.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Thin films of PMMA (polymethyl methacrylate) doped with luminescent complexes have been studied and developed for applications in advanced technologies. The problem of stability of these films is focused in this study. Films stabilization by reaction with fluorinated monomers is a recent study that aims to increase its luminescence properties for long time. The films were prepared by dilution of PMMA in chloroform with addition of europium complex, at proportion of 5% by weight of polymer. The luminescent polymer films were obtained by casting. Thin layer slides of the film were separated in three parts. One was reacted with fluorinated monomers (C{sub 2}F{sub 4}) in closed reactor for 48 hours. A second part was reacted with C{sub 2}F{sub 4} after irradiation in gamma source at 5 kGy in simultaneous process. The last part was used as obtained. The luminescent polymer matrices were characterized using the techniques of infrared (FTIR) and thermogravimetry (TGA/DTG). Samples of the films were, in presence of fluorine monomers, exposed to ionizing radiation in dose of 5 kGy, for react with monomers in the doped polymer surface. In this case the effects of radiation were evaluated on the luminescent films. (author)

  6. Analytical investigations of thermoluminescence glow curve on quartz for luminescence dating

    International Nuclear Information System (INIS)

    Kim, K.B.; Hong, D.G.

    2015-01-01

    Investigations of bleaching and thermoluminescence (TL) response to radiation dose of quartz are importance in luminescence dating. Although such research has been extensively carried out for various types of quartz, most work was performed on the basis of TL intensity integrated for a particular temperature range on the glow curve, without any peak separation. In this study we investigated bleaching by a blue light stimulation and radiation dose behaviour for separated TL glow peaks of quartz, which are thermally stable, by using the computerized glow curve deconvolution (CGCD) method combined with the T_m–T_s_t_o_p method. The T_m–T_s_t_o_p method indicates that the glow curve of quartz is the superposition of at least seven components (P1–P7) in the temperature range between room temperature and 450 °C. A bleaching experiment for four thermally stable glow peaks (P4–P7) using a blue light stimulation revealed that the bleaching rate of peak P4 exhibits three different exponential decays, whereas the peaks P5, P6 and P7 are bleached with two different exponential decays. After bleaching of 12 h, the TL intensity of peaks P4, P5, P6 and P7 were reduced to approximately 6%, 16%, 26% and 68% of the initial value, respectively. Additionally, in a study of the radiation dose response of the four thermally stable glow peaks, all peaks have a similar pattern, which are well fitted by a single saturating exponential function. - Highlights: • We studied the physical characteristics of the separated TL glow peaks on quartz. • The kinetic parameters of each separated glow peak are evaluated by a CGCD method. • The separated peaks were bleached with two or three exponential decays. • The dose responses for the separated peaks showed a similar growth curve.

  7. Fabrication of luminescent porous silicon with stain etches and evidence that luminescence originates in amorphous layers

    Science.gov (United States)

    Fathauer, R. W.; George, T.; Ksendzov, A.; Lin, T. L.; Pike, W. T.; Vasquez, R. P.; Wu, Z.-C.

    1992-01-01

    Simple immersion of Si in stain etches of HF:HNO3:H2O or NaNO2 in aqueous HF was used to produce films exhibiting luminescence in the visible similar to that of anodically-etched porous Si. All of the luminescent samples consist of amorphous porous Si in at least the near surface region. No evidence was found for small crystalline regions within these amorphous layers.

  8. Optically stimulated luminescence techniques in retrospective dosimetry using single grains of quartz extracted from unheated materials

    Energy Technology Data Exchange (ETDEWEB)

    Joerkov Thomsen, Kristina

    2004-02-01

    This work investigates the possibility of applying optically stimulated luminescence (OSL) in retrospective dose determinations using unheated materials. It focuses on identifying materials suitable for use in assessment of doses absorbed as a consequence of radiation accidents (i.e. accident dosimetry). Special attention has been paid to quartz extracted from unheated building materials such as concrete and mortar. The single-aliquot regeneration-dose (SAR) protocol has been used to determine absorbed doses in small aliquots as well as single grains of quartz. It is shown that OSL measurements of single grains of quartz extracted from poorly-bleached building materials can provide useful information on radiation accident doses, even when the luminescence sensitivity is low. Sources of variance in well-bleached single grain dose distributions have been investigated in detail and it is concluded that the observed variability in the data is consistent with the sum (in quadrature) of a component, which depends on the number of photons detected from each grain, and a fixed component independent of light level. Dose depth profiles through laboratory irradiated concrete bricks have successfully been measured and minimum detection limits of less than 100 mGy are derived. Measurements of thermal transfer in single grains of poorly-bleached quartz show that thermal transfer is variable on a grain-to-grain basis and that it can be a source of variance in single-grain dose distributions. Furthermore, the potential of using common household and workplace chemicals, such as table salt, washing powder and water softener, in retrospective dosimetry has been investigated. It is concluded that such materials should be considered as retrospective dosimeters in the event of a radiation accident. (au)

  9. Persistent luminescence and thermoluminescence of UV/VIS -irradiated SrAl2O4: Eu2+, Dy3+ phosphor

    International Nuclear Information System (INIS)

    Pereyda-Pierre, C.; Meléndrez, R.; García, R.; Pedroza-Montero, M.; Barboza-Flores, M.

    2011-01-01

    The persistent luminescence and thermoluminescence properties of SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors excited with UV–VIS light in the 200–500 nm region were investigated. The thermoluminescence glow curve was found to be composed of peaks around 70, 125 and 245 °C. The persistent luminescence and thermoluminescence excitation spectra exhibited a broad band around 300–500 nm centered at 400 and 420 nm respectively. A linear behavior of the integrated thermoluminescence intensity and persistent luminescence versus irradiation time was found for the first 60 s. The charge detrapping from the 70 °C trapping levels was the major contributor to the observed persistent luminescence at room temperature. The SrAl 2 O 4 : Eu 2+ , Dy 3+ phosphors have suitable properties to be applied as storage and persistent luminescence UV–VIS irradiation dose phosphor. -- Highlights: ► SrAl 2 O 4 :Eu 2+ , Dy 3+ persistent luminescence and thermoluminescence was measured. ► The phosphor was irradiated with UV–VIS photons in the 200–500 nm wavelength range. ► SrAl 2 O 4 :Eu 2+ , Dy 3+ behaves adequately as persistent and storage UV–VIS dosimeter. ► The persistent luminescence dosimetry does not require heat or light stimulation.

  10. Controlled fabrication of luminescent and magnetic nanocomposites

    Science.gov (United States)

    Ma, Yingxin; Zhong, Yucheng; Fan, Jing; Huang, Weiren

    2018-03-01

    Luminescent and magnetic multifunctional nanocomposite is in high demand and widely used in many scales, such as drug delivery, bioseparation, chemical/biosensors, and so on. Although lots of strategies have been successfully developed for the demand of multifunctional nanocomposites, it is not easy to prepare multifunctional nanocomposites by using a simple method, and satisfy all kinds of demands simultaneously. In this work, via a facile and versatile method, luminescent nanocrystals and magnetic nanoparticles were successfully synthesized through self-assembly under vigorous stirring and ultrasonic treatment. These multifunctional nanocomposites are not only water stable but also find wide application such as magnetic separation and concentration with a series of moderate speed, multicolor fluorescence at different emission wavelength, high efficiency of the excitation and emission, and so on. By changing different kinds of luminescent nanocrystals and controlling the amount of luminescent and magnetic nanoparticles, a train of multifunctional nanocomposites was successfully fabricated via a versatile and robust method.

  11. Luminescence imaging using radionuclides: a potential application in molecular imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Il An, Gwang; Park, Se-Il; Oh, Jungmin; Kim, Hong Joo; Su Ha, Yeong; Wang, Eun Kyung; Min Kim, Kyeong; Kim, Jung Young; Lee, Jaetae; Welch, Michael J.; Yoo, Jeongsoo

    2011-01-01

    Introduction: Nuclear and optical imaging are complementary in many aspects and there would be many advantages when optical imaging probes are prepared using radionuclides rather than classic fluorophores, and when nuclear and optical dual images are obtained using single imaging probe. Methods: The luminescence intensities of various radionuclides having different decay modes have been assayed using luminescence imaging and in vitro luminometer. Radioiodinated Herceptin was injected into a tumor-bearing mouse, and luminescence and microPET images were obtained. The plant dipped in [ 32 P]phosphate solution was scanned in luminescence mode. Radio-TLC plate was also imaged in the same imaging mode. Results: Radionuclides emitting high energy β + /β - particles showed higher luminescence signals. NIH3T6.7 tumors were detected in both optical and nuclear imaging. The uptake of [ 32 P]phosphate in plant was easily followed by luminescence imaging. Radio-TLC plate was visualized and radiochemical purity was quantified using luminescence imaging. Conclusion: Many radionuclides with high energetic β + or β - particles during decay were found to be imaged in luminescence mode due mainly to Cerenkov radiation. 'Cerenkov imaging' provides a new optical imaging platform and an invaluable bridge between optical and nuclear imaging. New optical imaging probes could be easily prepared using well-established radioiodination methods. Cerenkov imaging will have more applications in the research field of plant science and autoradiography.

  12. The analysis of time-resolved optically stimulated luminescence: I. Theoretical considerations

    International Nuclear Information System (INIS)

    Chithambo, M L

    2007-01-01

    This is the first of two linked papers on the analysis of time-resolved optically stimulated luminescence. This paper focusses on a theoretical basis of analytical methods and on methods for interpretation of time-resolved luminescence spectra and calculation of luminescence throughput. Using a comparative analysis of the principal features of time-resolved luminescence and relevant analogues from steady state optical stimulation, formulae for configuring a measurement system for optimum performance are presented. We also examine the possible use of stretched-exponential functions for analysis of time-resolved optically stimulated luminescence spectra

  13. X-ray investigation of phosphors for black-white television

    International Nuclear Information System (INIS)

    Lazowy, B.

    1975-01-01

    The investigations of phosphors made by means of the powder diffraction method are presented. The diffraction patterns has been obtained by means of the DRON-1 diffractometer, using the Ksub(α) copper radiation and a nickel filter. Reflex intensity was estimated, indexing was made and lattice constants for particular structure types were calculated. The objects of the investigations were the phosphors from various firms of white luminescence and home phosphors of white, blue and yellow luminescence. On the base of the results it was found that all investigated phosphors of yellow luminescence belonged to the hexagonal system. These phosphors, depending on baking conditions, have structure of regular symmetry. The phosphors of white luminescence are a mixture of hexagonal and regular phase and any changes in elementary cell sizes were not observed. All phosphors of white luminescence have analogous structure, positions of all reflexes are identical, negligible differences in their intensities occur only, which proves somewhat different arrangement of atoms in mixed crystals. (author)

  14. Luminescence and radiocarbon dating of raised beach sediments, Bunger Hills, East Antarctica

    International Nuclear Information System (INIS)

    Augustinus, P.C.; Duller, G.A.T.

    2002-01-01

    Luminescence and radiocarbon dating of raised marine sediments from the Bunger Hills, East Antarctica, demonstrates that luminescence methods can be applied to such poorly bleached sediments as long as the luminescence behaviour of the sediments is understood. This is essential as the complete zeroing of the luminescence signal due to light exposure is required to allow an accurate age for the sediment accumulation. Unfortunately, independent checks on the luminescence ages are rare. In the present study, some independent age control is provided by AMS radiocarbon ages from shell obtained from and adjacent to the luminescence dated horizons, although the radiocarbon ages may suffer to some degree from variability in the marine reservoir effect. Application of the single aliquot luminescence technique to feldspar grains from the marine sediments demonstrated that the luminescence behaviour of the sediments was complex. For each sample, 18 replicate paleodose estimates were used to demonstrate whether the sediments were well bleached before deposition. Optically, well-bleached samples give younger luminescence ages, whilst poorly bleached samples often give excessively old ages compared to the associated radiocarbon-dated material. (author)

  15. Magnetic-luminescent spherical particles synthesized by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Michel, Norma L; Hirata, Gustavo A; Flores, Dora L

    2015-01-01

    The combination of magnetic and luminescent properties in a single particle system, opens-up a wide range of potential applications in biotechnology and biomedicine. In this work, we performed the synthesis of magnetic-luminescent Gd 2 O 3 :Eu 3+ @Fe 2 O 3 particles by ultrasonic spray pyrolysis performed in a tubular furnace. In order to achieve the composite formation, commercial superparamagnetic Fe 3 O 4 nanoparticles were coated with a luminescent Eu 3+ -doped Gd 2 O 3 shell in a low-cost one-step process. The spray pyrolysis method yields deagglomerated spherical shape magneto/luminescent particles. The photoluminescence spectra under UV excitation (λ Exc = 265 nm) of the magnetic Gd 2 O 3 :Eu 3+ @Fe 2 O 3 compound showed the characteristic red emission of Eu 3+ (λ Em = 612 nm). This magneto/luminescent system will find applications in biomedicine and biotechnology. (paper)

  16. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR...

  17. Luminescence Properties of Surface Radiation-Induced Defects in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Novikov, A. N.; Runets, L. P.; Stupak, A. P.

    2013-11-01

    Luminescence and luminescence excitation spectra are recorded for surface radiation-induced defects in lithium fluoride at temperatures of 77 and 293 K. The presence of three bands with relatively small intensity differences is a distinctive feature of the excitation spectrum. These bands are found to belong to the same type of defects. The positions of the peaks and the widths of the absorption and luminescence bands for these defects are determined. The luminescence decay time is measured. All the measured characteristics of these surface defects differ from those of previously known defects induced by radiation in the bulk of the crystals. It is found that the luminescence of surface defects in an ensemble of nanocrystals with different orientations is not polarized. The number of anion vacancies in the surface defects is estimated using the polarization measurements. It is shown that radiative scattering distorts the intensity ratios of the luminescence excitation bands located in different spectral regions.

  18. A luminescent metal-organic framework for sensing methanol in ethanol solution.

    Science.gov (United States)

    Jin, Zhao; He, Hongming; Zhao, Huanyu; Borjigin, Tsolmon; Sun, Fuxing; Zhang, Daming; Zhu, Guangshan

    2013-10-07

    A new luminescent Zn-MOF has been synthesized under hydrothermal condition using a semi-rigid ligand H3pcoip (4-(2-carboxyphenoxy)isophthalic acid) is reported. The luminescence properties of 1 in methanol, ethanol, and water have been investigated. Interestingly, compound 1 has a unique response to methanol compared to ethanol and water. Moreover, 1 displays a turn-on switching property triggered by methanol solvent molecules and a high sensitivity towards methanol concentration as low as 2 × 10(-7) (V(MeOH)/V(total)) in ethanol solution. The results indicate that the Zn-MOF has potential application as a sensor for detecting methanol in ethanol solution with excellent selectivity and high sensitivity.

  19. Two-step excitation structure changes of luminescence centers and strong tunable blue emission on surface of silica nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lei, E-mail: nanoyang@qq.com; Jiang, Zhongcheng; Dong, Jiazhang; Zhang, Liuqian [Hunan University, College of Materials Science and Engineering (China); Pan, Anlian, E-mail: anlian.pan@gmail.com; Zhuang, Xiujuan [Hunan University, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province (China)

    2015-10-15

    We report a scheme for investigating two-step stimulated structure change of luminescence centers. Amorphous silica nanospheres with uniform diameter of 9–15 nm have been synthesized by Stöber method. Strong hydroxyl-related infrared-absorption band is observed in infrared spectrum. The surface hydroxyl groups exert great influence on the luminescent behavior of silica. They provide stable and intermediate energy states to accommodate excitation electrons. The existence of these surface states reduces the energy barrier of photochemical reactions, creating conditions for two-step excitation process. By carefully examining excitation and emission process, the nearest excitation band is absent in both optical absorption spectrum and excitation spectrum. This later generated state confirms the generation of new luminescence centers as well as the existence of photochemical reactions. Stimulated by different energies, two-step excitation process impels different photochemical reactions, prompting generation of different lattice defects on surface area of silica. Thereby, tunable luminescence is achieved. After thermal treatment, strong gap excitation band appears with the disappearance of strong surface excitation band. Strong blue luminescence also disappears. The research is significance to precise introducing structural defects and controlling position of luminescence peaks.

  20. Exciton luminescence in CdxMn1-xTe compounds

    International Nuclear Information System (INIS)

    Caraman, M.; Gashin, P.; Metelitsa, Snejana; Nicorici, Valentina; Nicorici, A.

    2002-01-01

    The Cd x Mn 1-x Te (0.5 7 W/cm 2 . The luminescence spectra were observed at 78 K. The results of the study had shown that the presence of relatively narrow luminescence peaks localized in the region of the fundamental absorption edge is characteristic for these spectra and for the majority of the crystals a wide maximum in the long wavelength region is observed. The luminescence maxima with an accuracy of ∼ 5 meV correspond to the resonance energy of the excitons of the state with n=1 determined from the absorption spectra. Hence, these maxima can be considered as exciton luminescence stimulated either by the excitons of the state n=1 or bounded to the exciton ionization centers. From the analysis of the absorption and exciton luminescence spectra one can make a conclusion about the fact that the homogeneity extent of the crystals decreases from CdTe to the compounds with x= 0.8 - 0.7 and slightly increases at the x decrease to 0.5. The exciton luminescence lines in CdTe and Cd 0.99 Mn 0.01 Te crystals is shifting by 7 - 10 meV relatively to the lines of free excitons absorption. This fact is explained by the fact that in these crystals, probably, excitons bounding to the lattice inherited defects with the binding energy of 7 - 10 meV participate in the luminescence. In the long wavelength region a wide peak is observed on which the impurity lines are not displayed. In the luminescence spectra of CdTe with 0.1%. As crystals three maxima at 1.51 eV, 1.46 eV and 1.42 eV are revealed. For pure CdTe the maximum at 1.4 eV is also revealed. These maxima are explained by the luminescence through the recombination levels localized at 0.46 eV. (authors)

  1. Mitochondria Targeting with Luminescent Rhenium(I) Complexes.

    Science.gov (United States)

    Skiba, Joanna; Bernaś, Tytus; Trzybiński, Damian; Woźniak, Krzysztof; Ferraro, Giarita; Marasco, Daniela; Merlino, Antonello; Shafikov, Marsel Z; Czerwieniec, Rafał; Kowalski, Konrad

    2017-05-15

    Two new neutral fac -[Re(CO)₃(phen)L] compounds ( 1 , 2 ), with phen = 1,10-phenanthroline and L = O₂C(CH₂)₅CH₃ or O₂C(CH₂)₄C≡CH, were synthetized in one-pot procedures from fac -[Re(CO)₃(phen)Cl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, ¹H- and 13 C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria. To investigate the mechanism of mitochondrial staining, a new non-emissive compound, fac -[Re(CO)₃(phen)L], with L = O₂C(CH₂)₃((C₅H₅)Fe(C₅H₄), i.e., containing a ferrocenyl moiety, was synthetized and characterized ( 3 ). 3 shows the same mitochondrial accumulation pattern as 1 and 2 . Emission of 3 can only be possible when ferrocene-containing ligand dissociates from the metal center to produce a species containing the luminescent fac -[Re(CO)₃(phen)]⁺ core. The release of ligands from the Re center was verified in vitro through the conjugation with model proteins. These findings suggest that the mitochondria accumulation of compounds 1 - 3 is due to the formation of luminescent fac -[Re(CO)₃(phen)]⁺ products, which react with cellular matrix molecules giving secondary products and are uptaken into the negatively charged mitochondrial membranes. Thus, reported compounds feature a rare dissociation-driven mechanism of action with great potential for biological applications.

  2. Novel lanthanide doped micro- and mesoporous solids. Characterization of ion-host-interactions, species distribution and luminescence properties using time-resolved luminescence spectroscopy; Neuartige Lanthanoid-dotierte mikro- und mesoporoese Feststoffe. Charakterisierung von Ion-Wirt-Wechselwirkungen, Speziesverteilung und Lumineszenzeigenschaften mittels zeitaufgeloester Lumineszenzspektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Andre

    2010-12-15

    In this work lanthanide-doped microporous zeolites, microporous-mesoporous hybrid materials and mesoporous silicates were investigated regarding their luminescence properties and the ion-host-interactions using time-resolved luminescence spectroscopy. Thereby, time-resolved emission spectra (TRES) provide information in the wavelength and time domain. For the analysis of the TRES a broad set of analytic methods was applied and thus a corresponding ''toolbox'' developed. Fitting of the luminescence decays was performed with a discrete number of exponentials and supported by luminescence decay times distributions. Time-resolved area normalized emission spectra (TRANES), an advancement of TRES, could be used for the determination of the number of emissive lanthanide species in porous materials for the first time. Calculation of the decay-associated spectra (DAS) allowed the correlation of spectral information with luminescence decay times and thus delivered the luminescence spectra of the different europium species. For europium(III) we could use in addition the time-dependent asymmetry ratio and spectral evolution of the {sup 5}D{sub 0}-{sup 7}F{sub 0}-transition with time to obtain further information about the distribution of the lanthanide ions in the host material. Luminescence decay times and spectra allowed conclusions on the number of OH-oscillators in and the symmetry of the first coordination sphere. For the microporous and microporous-mesoporous materials were found different lanthanide species, which were characterized by the above mentioned methods. These lanthanide species can be found on different positions in the host material. One position is located deep in the pore system. Here, lanthanide ions are hardly accessible for water and mainly coordinated by framework oxygens. This results in long luminescence decay times and distorted coordination spheres. The second position can be found near or on the outer surface or in the

  3. Luminescence dating of the Zeketai loess section in the Ili Basin, northwestern China: Methodological considerations

    Science.gov (United States)

    Qin, Jintang; Zhou, Liping

    2018-04-01

    Loess deposits in Xinjiang, northwestern China are ideal archives for past environmental changes in the Westerlies-dominated central Asia. Among previous luminescence dating studies of loess in Xinjiang, few have attempted to systematically investigate the methodological aspects. In this study, we report results of a multiple-procedure luminescence dating of the Zeketai loess section in the Ili Basin, central Xinjiang. Optically stimulated luminescence (OSL) and post-infrared infrared stimulated luminescence (pIRIR) signals were used for quartz and polymineral grains of different sizes. The pIRIR ages obtained with two protocols agree well with each other and constrain the loess deposition between 50 ka and 88 ka. The OSL ages of fine-grained quartz are in stratigraphic order and range from 37 ka to 61 ka, but are ∼30% younger than the pIRIR295 ages of both fine and medium grained polyminerals. Although the causes of the discrepancy between the ages derived from different luminescence dating protocols are still to be understood, we stress that the quartz OSL ages of loess in this region are likely to be underestimated, especially for samples older than 40 ka. The polymineral or potassium feldspar pIRIR signal is recommended for dating loess in the Ili Basin, at least as an internal check.

  4. Ion irradiation effect of alumina and its luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Yasushi; Yamamoto, Shunya; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; My, N T

    1997-03-01

    The luminescence spectra of single crystalline alpha-alumina and ruby which has 0.02% of Cr{sub 2}O{sub 3} as a impurity, induced by 200 keV He{sup +} and Ar{sup +} irradiation were measured at room temperature as a function of irradiation dose. The analysis of the measured spectra showed the existence of three main luminescence features in the wavelength region of 250 to 350 nm, namely anionic color centers, F-center at 411 nm and F{sup +}-center at 330 nm and a band observed around 315 nm. As alpha-alumina was irradiated with He{sup +}, F-center and F{sup +}-center luminescence grew and decayed, but the behaviors of those were different from each other. It seems that a concentration quenching occurred on the F-center luminescence in the dose range above 1x10{sup 14} He/cm{sup 2}. Furthermore, F-center luminescence was strongly suppressed in ruby, compared with that in alumina. On the other hand, the luminescence band around 315 nm appeared only in the early stage of irradiation and did not show its growth part. The dose dependent behavior was similar to that of Cr{sup 3+} emission at 695 nm (R-line) in ruby in both cases of He{sup +} and Ar{sup +} irradiation. Based on the experimental results mentioned above, the processes of defect formation and excitation in alumina in the early stage of ion irradiation will be discussed. (author)

  5. Flight testing of a luminescent surface pressure sensor

    Science.gov (United States)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  6. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Plush, Sally E; Voelcker, Nicolas H

    2016-10-01

    Luminescence-based detection paradigms have key advantages over other optical platforms such as absorbance, reflectance or interferometric based detection. However, autofluorescence, low quantum yield and lack of photostability of the fluorophore or emitting molecule are still performance-limiting factors. Recent research has shown the need for enhanced luminescence-based detection to overcome these drawbacks while at the same time improving the sensitivity, selectivity and reducing the detection limits of optical sensors and biosensors. Nanostructures have been reported to significantly improve the spectral properties of the emitting molecules. These structures offer unique electrical, optic and magnetic properties which may be used to tailor the surrounding electrical field of the emitter. Here, the main principles behind luminescence and luminescence enhancement-based detections are reviewed, with an emphasis on europium complexes as the emitting molecule. An overview of the optical porous silicon microcavity (pSiMC) as a biosensing platform and recent proof-of-concept examples on enhanced luminescence-based detection using pSiMCs are provided and discussed.

  7. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  8. Thermoluminescence, luminescence optically stimulated and creation of defects in alkaline halogenides contaminated with Europium

    International Nuclear Information System (INIS)

    Barboza F, M.

    1999-01-01

    The alkaline halogenides have been subject matter of investigations related with the search of sensor materials for X-ray bidimensional images or optical memories. The understanding of the damage formation processes generated by ionizing and non-ionizing radiations is important for the correct design of devices that working as detectors and dosemeters of both type of radiations. In this work we present the investigation results related with the defects produced by the ionizing radiation type X and ultraviolet light in the range of 200-360 nm in crystals of KCl: Eu 2+ and KBr:Eu 2+ . It is examined the thermoluminescence and luminescence spectra with the purpose of identifying the exciton processes, owing to the excitation of the halogenide ions in which the primary defects correspond to the F and H centers. It has been found that the 400-600 nm emission is associated with the luminescence type that in his turn can be associated with autotrapped excitons perturbed by the impurity. On the other hand, it is examined the emission spectra of the luminescence optically stimulated in crystals of KBr: Eu 2+ and KCl: Eu 2+ finding too that such materials would be used as optical memories susceptible of to store information, and through of photostimulation to read this. It was determined that the F centers participate in the luminescence optically stimulated in these crystals, as well as too in the recombination processes responsible by the thermoluminescent emission. (Author)

  9. From plasmon-induced luminescence enhancement in gold nanorods to plasmon-induced luminescence turn-off: a way to control reshaping.

    Science.gov (United States)

    Molinaro, Céline; Marguet, Sylvie; Douillard, Ludovic; Charra, Fabrice; Fiorini-Debuisschert, Céline

    2018-04-24

    Two-photon luminescence (TPL) turn-off in small single gold nanorods (GNRs) exposed to increased resonant femtosecond laser excitation (800 nm wavelength, pulse energy density varying from 125 μJ cm-2 to 2.5 mJ cm-2) is investigated. The origin is shown to be a photo-induced decrease of the rod aspect ratio. This aspect ratio reduction could reasonably be assigned to gold atom diffusion away from the rod tips, where hot spots are localized. The two-photon luminescence signal can be recovered after a blue-shift of the incident excitation wavelength. No change in the excitation wavelength results in an out of resonance excitation of the rods and thus a reduced absorption, acting as feedback to stabilize the GNR shape and size. A theoretical analysis is presented evidencing limited thermal effects in the femtosecond regime for small nanoparticles, in good agreement with complementary topographic characterizations using scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show finally that TPL reveals itself as a highly sensitive tool to follow tiny changes resulting from the photo-induced reshaping of GNRs.

  10. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  11. Synthesis, structure and luminescence properties of lanthanide complex with a new tetrapodal ligand featuring salicylamide arms

    International Nuclear Information System (INIS)

    Song Xueqin; Wen Xiaoguang; Liu Weisheng; Wang Daqi

    2010-01-01

    A new tetrapodal ligand 1,1,1-tetrakis{[(2'-(2-furfurylaminoformyl))phenoxyl]methyl}methane (L) has been prepared and their coordination chemistry with Ln III ions has been investigated. The structure of {[Ln 4 L 3 (NO 3 ) 12 ].H 2 O} ∞ (Ln=Nd, Eu)] shows the binodal 4,3-connected three-dimensional interpenetration coordination polymers with topology of a (8 6 ) 3 (8 3 ) 4 notation. [DyL(NO 3 ) 3 (H 2 O) 2 ].0.5CH 3 OH and [ErL(NO 3 ) 3 (H 2 O) (CH 3 OH)].CH 3 COCH 3 is a 1:1 mononuclear complex with interesting supramolecular features. The structure of [NdL(H 2 O) 6 ].3ClO 4 .3H 2 O is a 2:1 mononuclear complex which further self-assembled through hydrogen bond to form a three-dimensional supramolecular structures. The result presented here indicates that both subtle variation of the terminal group and counter anions can be applied in the modulation of the overall molecular structures of lanthanide complex of salicylamide derivatives due to the structure specialties of this type of ligand. The luminescence properties of the Eu III complex are also studied in detail. - Grapical Abstract: We present here a series of zero- to three-dimensional lanthanide coordination structures and luminescence properties of Eu(III) complex of a new tetrapodal ligand.

  12. Determination of uranium by luminescent method (tablet variant)

    International Nuclear Information System (INIS)

    Sergeev, A.N.; Yufa, B.Ya.

    1985-01-01

    A new tablet variant of luminescent determination of uranium in rocks is developed. The analytical process includes the following operations: sample decomposition, uranium separation from luminescence quencher impurities, preparation of luminescent sample (tablet), photometry of the tablet. The method has two variants developed: the first one is characterized by a more hard decomposition, sample mass being 0.2 g; the second variant has a better detection limit (5x10 -6 %), the sample mass being 0.2-1 g. Procedures of the sample preparation for both variants of analysis are described

  13. K2SO4 and LiKSO4 crystals luminescence

    International Nuclear Information System (INIS)

    Charapiev, B.; Nurakhmetov, T.N.

    2002-01-01

    In the paper a nature of X-ray and tunnel luminescence in LiKSO 4 and Li 2 SO 4 ·H 2 O crystals are discussed. It is shown, that X-ray luminescence and Li 2 SO 4 ·H 2 O and LiKSO 4 appeals in the result of electrons recombination with auto-localized holes (SO 4 - ), and tunnel luminescence appeals at electrons transfer from ground state of electron center into hole center capture ground state. Under heating of irradiated crystal de-localized holes at recombination moment with electron capture centers are forming auto-localized excitons, which are disintegrating with photon emitting, and so X-ray luminescence spectrum and thermally induces luminescence peaks are coinciding. Nature of radiation appealing in LiKSO 4 at ultraviolet excitation is discussing

  14. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd{sub 6}MoO{sub 12}:Eu{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Wei, Donglei [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of); Huang, Yanlin [Soochow University, College of Chemistry, Chemical Engineering and Materials Science (China); Kim, Sun Il [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of); Yu, Young Moon [Pukyong National University, LED-Marin Convergence Technology R and BD Center (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Pukyong National University, Department of Physics and Interdisciplinary Program of Biomedical Engineering (Korea, Republic of)

    2013-09-15

    A novel red-emitting nano-phosphor of Eu{sup 3+}-doped Gd{sub 6}MoO{sub 12} was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition {sup 5}D{sub 0}{yields}{sup 7}F{sub 2} of Eu{sup 3+} ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd{sub 6}MoO{sub 12}:Eu{sup 3+} nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips.

  15. Time-resolved luminescence from quartz: An overview of contemporary developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chithambo, M.L., E-mail: m.chithambo@ru.ac.za [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Ankjærgaard, C. [Soil Geography and Landscape Group, Wageningen University Netherlands Centre for Luminescence Dating, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands (Netherlands); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States)

    2016-01-15

    Time-resolved optical stimulation of luminescence has become established as a key method for measurement of optically stimulated luminescence from quartz, feldspar and α-Al{sub 2}O{sub 3}:C, all materials of interest in dosimetry. The aim of time-resolved optical stimulation is to separate in time the stimulation and emission of luminescence. The luminescence is stimulated from a sample using a brief light pulse and the emission monitored during stimulation in the presence of scattered stimulating light or after pulsing, over photomultiplier noise only. Although the use of the method in retrospective dosimetry has been somewhat limited, the technique has been successfully applied to study mechanisms in the processes leading up to luminescence emission. The main means for this has been the temperature dependence of the luminescence intensity as well as the luminescence lifetimes determined from time-resolved luminescence spectra. In this paper we review some key developments in theory and applications to quartz including methods of evaluating lifetimes, techniques of evaluating kinetic parameters using both the dependence of luminescence intensity and lifetime on measurement temperature, and of lifetimes on annealing temperature. We then provide an overview of some notable applications such as separation of quartz signals from a quartz–feldspar admixture and the utility of the dynamic throughput, a measure of luminescence measured as a function of the pulse width. The paper concludes with some suggestions of areas where further exploration would advance understanding of dynamics of luminescence in quartz and help address some outstanding problems in its application.

  16. Luminescence properties of some food dye-stuffs

    International Nuclear Information System (INIS)

    Astanov, S.Kh.; Muminova, Z.A.; Urunov, R.G.

    2004-01-01

    The luminescence properties of the natural food dye-stuffs and vitamins in temperature range of 300-5.2 K are studied. On the basis of experimental data on quantum yields of the fluorescence, trans-cis-isomerization and luminescence of the molecular oxygen the main ways of the inactivation of electronic excitations in researching compounds have been defined. (author)

  17. Method and apparatus for reducing solvent luminescence background emissions

    Energy Technology Data Exchange (ETDEWEB)

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Santa Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  18. Enhancement of blue upconversion luminescence in hexagonal NaYF{sub 4}:Yb,Tm by using K and Sc ions

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Vishal, E-mail: vishal.kale@utu.fi; Soukka, Tero [University of Turku, Department of Biochemistry and Food Chemistry/Biotechnology (Finland); Hoelsae, Jorma; Lastusaari, Mika [University of Turku, Department of Chemistry (Finland)

    2013-08-15

    Hexagonal ({beta})-NaYF{sub 4} is recognized as one of the most efficient hosts for NIR to blue and green upconversion (UC). A new method to tune the blue UC emission in {beta}-NaYF{sub 4}:Yb,Tm nanocrystals through the possible substitution of the host material with different concentrations of K{sup +} and Sc{sup 3+} ions was investigated in detail. In this work, Na{sub 1-x}K{sub x}YF{sub 4}:Yb,Tm and NaY{sub 1-x}Sc{sub x}F{sub 4}:Yb,Tm nanocrystals were synthesized with varying Na:K and Y:Sc ratios. X-ray diffraction, transmission electron microscopy, and UC luminescence spectroscopy showed that size, morphology, and UC luminescence intensity were affected by the addition of K{sup +} and Sc{sup 3+} ions. Substituted ions disturbed the local symmetry and also resulted in changes in the crystal field. The distance between Yb{sup 3+} and Tm{sup 3+} was affected by different concentration of K{sup +} and Sc{sup 3+} ions, and those differences in the distance are responsible for tuning UC luminescence. This study revealed that when the concentration of K{sup +} and Sc{sup 3+} ions were nominally increased from 20 to 100 mol% during synthesis, hexagonal NaYF{sub 4} changed to structurally different KYF{sub 4} and Na{sub 3}ScF{sub 6} so that the solid solubility became difficult. We also demonstrate that the added K{sup +} does not enter into the NaYF{sub 4} lattice, but it still plays an important role by controlling the Na/R ratio. K{sup +} and Sc{sup 3+} ion concentration of 20 mol% during the synthesis was found to result in materials with size 30-35 nm, and shows ca. four times brighter UC emission than the previously reported lanthanide based nanocrystals. The enhancement in UC luminescence intensity makes upconversion nanophosphors versatile imaging tools for diagnosis.Graphical Abstract.

  19. Luminescent materials and their applications

    CERN Document Server

    Virk, Hardev Singh

    2015-01-01

    It is pertinent to note that Luminescence phenomenon has once again occupied a central stage with the announcement of Nobel Prize in October 2014 to three Japanese scientists. The discovery of Galium Nitride proved to be a revolutionary step forward in creation of Blue LEDs. With the advent of LED lamps we now have more long-lasting and more efficient alternatives to older light sources. The Volume under reference consists of 9 Chapters, written by experts in the area of Luminescent Materials. First 5 Chapters are contributed as Review Papers and the last 4 are based on Research Papers.Chapter

  20. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  1. Paper-based biodetection using luminescent nanoparticles.

    Science.gov (United States)

    Ju, Qiang; Noor, M Omair; Krull, Ulrich J

    2016-05-10

    Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer

  2. Luminescence properties of tetravalent uranium in aqueous solution

    International Nuclear Information System (INIS)

    Kirishima, A.; Kimura, T.; Nagaishi, R.; Tochiyama, O.

    2004-01-01

    The luminescence spectra of U 4+ in aqueous solutions were observed in the UV-VIS region at ambient and liquid nitrogen temperatures. The excitation spectrum indicates that the luminescence is arising from the deexcitation of a 5f electron at the 1 S 0 level and no other emissions of U 4+ in aqueous solutions were detected for other f-f transitions. All the luminescence peaks were assigned to the transitions from 1 S 0 to lower 5f levels. To estimate the luminescence lifetime, luminescence decay curves were measured using time-resolved laser-induced fluorescence spectroscopy. At room temperature, the decay curve indicated that the lifetime was shorter than 20 ns. On the other hand, the frozen sample of U 4+ in aqueous solution at liquid nitrogen temperature showed the same emission spectrum as at room temperature and its lifetime was 149 ns in H 2 O system and 198 ns in D 2 O system. The longer lifetime at liquid nitrogen temperature made it possible to measure the spectrum of U 4+ at the concentration as low as 10 -6 M. The difference in the anion species (ClO 4 - , Cl - , SO 4 2- ) affected the structure of the emission spectrum to some extent. (orig.)

  3. Determination of organophosphorus pesticides in water samples by using a new sensitive luminescent probe of Eu (III) complex

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A., E-mail: azab2@yahoo.com; Anwar, Z.M.; Rizk, M.A.; Khairy, Gasser M.; El-Asfoury, M.H.

    2015-01-15

    This work describes the application of fluorescence for investigating the interactions of Eu(III)-TAN-1,10 phenanthroline (where TAN=4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione) with pesticides Chlorpyrifos, Malathion, Endosulfan, Heptachlor. The complex was synthesized and characterized by elemental analysis, FTIR, x-ray spectroscopy, solid fluorescence and thermal analysis. The results indicated that the composition of this complex is [Eu(TAN){sub 2}(Phen)(H{sub 2}O){sub 2}]Cl. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence at pH=7.5. The interactions of Eu-complex with different pesticides (Chlorpyrifos, Malathion, Endosulfan, and Heptachlor) in aqueous medium have been investigated by fluorescence measurements. The luminescence intensity of the probe is quenched by Malathion and enhanced by (Endosulfan, Heptachlor, and Chlorpyrifos). Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 0.47, 1.02, 0.66, 0.64 µmol/L for Chlorpyrifos, Endosulfan, Heptachlor, and Malathion, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. The emission quantum yield (QY=0.71) of Eu(III)-complex was determined using tris (2,2'-bipyridyl) dichlororuthenium(II) hexahydrate. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, river, and waste water). - Highlights: • A new luminescent probe of Eu (III) complex has been developed for sensing some organophosphorus pesticides. • Four guest pesticides Chlorpyrifos, Malathion

  4. Determination of organophosphorus pesticides in water samples by using a new sensitive luminescent probe of Eu (III) complex

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Anwar, Z.M.; Rizk, M.A.; Khairy, Gasser M.; El-Asfoury, M.H.

    2015-01-01

    This work describes the application of fluorescence for investigating the interactions of Eu(III)-TAN-1,10 phenanthroline (where TAN=4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione) with pesticides Chlorpyrifos, Malathion, Endosulfan, Heptachlor. The complex was synthesized and characterized by elemental analysis, FTIR, x-ray spectroscopy, solid fluorescence and thermal analysis. The results indicated that the composition of this complex is [Eu(TAN) 2 (Phen)(H 2 O) 2 ]Cl. The luminescence properties of the complex in different solvents and at different pH values have been investigated. The results show that the complex exhibits more efficient luminescence at pH=7.5. The interactions of Eu-complex with different pesticides (Chlorpyrifos, Malathion, Endosulfan, and Heptachlor) in aqueous medium have been investigated by fluorescence measurements. The luminescence intensity of the probe is quenched by Malathion and enhanced by (Endosulfan, Heptachlor, and Chlorpyrifos). Direct methods for the determination of the pesticides under investigation have been developed using the luminescence variations of the probe in solution. The detection limits are 0.47, 1.02, 0.66, 0.64 µmol/L for Chlorpyrifos, Endosulfan, Heptachlor, and Malathion, respectively. The binding constants and thermodynamic parameters of the pesticides with probe were evaluated. The emission quantum yield (QY=0.71) of Eu(III)-complex was determined using tris (2,2'-bipyridyl) dichlororuthenium(II) hexahydrate. A thermodynamic analysis showed that the reaction is spontaneous with negative ΔG. Effect of some relevant interferents on the detection of pesticides has been investigated. The new method was applied to the determination of the pesticides in different types of water samples (tap, river, and waste water). - Highlights: • A new luminescent probe of Eu (III) complex has been developed for sensing some organophosphorus pesticides. • Four guest pesticides Chlorpyrifos, Malathion, Endosulfan, and

  5. [Synthesis of reserve polyhydroxyalkanoates by luminescent bacteria].

    Science.gov (United States)

    Boiandin, A N; Kalacheva, G S; Rodicheva, E K; Volova, T G

    2008-01-01

    The ability of marine luminescent bacteria to synthesize polyesters of hydroxycarboxylic acids (polyhydroxyalkanoates, PHA) as reserve macromolecules was studied. Twenty strains from the collection of the luminescent bacteria CCIBSO (WDSM839) of the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, assigned to different taxa (Photobacterium leiognathi, Ph. phosphoreum, Vibrio harveyi, and V. fischeri) were analyzed. The most productive strains were identified, and the conditions ensuring high polymer yields in batch culture (40-70% of the cell dry mass weight) were determined. The capacity of synthesizing two- and three-component polymers containing hydroxybutyric acid as the main monomer and hydroxyvaleric and hydroxyhexanoic acids was revealed in Ph. leiognathi and V. harveyi strains. The results allow luminescent microorganisms to be regarded as new producers of multicomponent polyhydroxyalkanoates.

  6. Mitochondria Targeting with Luminescent Rhenium(I Complexes

    Directory of Open Access Journals (Sweden)

    Joanna Skiba

    2017-05-01

    Full Text Available Two new neutral fac-[Re(CO3(phenL] compounds (1,2, with phen = 1,10-phenanthroline and L = O2C(CH25CH3 or O2C(CH24C≡CH, were synthetized in one-pot procedures from fac-[Re(CO3(phenCl] and the corresponding carboxylic acids, and were fully characterized by IR and UV-Vis absorption spectroscopy, 1H- and 13C-NMR, mass spectrometry and X-ray crystallography. The compounds, which display orange luminescence, were used as probes for living cancer HeLa cell staining. Confocal microscopy revealed accumulation of both dyes in mitochondria. To investigate the mechanism of mitochondrial staining, a new non-emissive compound, fac-[Re(CO3(phenL], with L = O2C(CH23((C5H5Fe(C5H4, i.e., containing a ferrocenyl moiety, was synthetized and characterized (3. 3 shows the same mitochondrial accumulation pattern as 1 and 2. Emission of 3 can only be possible when ferrocene-containing ligand dissociates from the metal center to produce a species containing the luminescent fac­[Re(CO3(phen]+ core. The release of ligands from the Re center was verified in vitro through the conjugation with model proteins. These findings suggest that the mitochondria accumulation of compounds 1–3 is due to the formation of luminescent fac-[Re(CO3(phen]+ products, which react with cellular matrix molecules giving secondary products and are uptaken into the negatively charged mitochondrial membranes. Thus, reported compounds feature a rare dissociation-driven mechanism of action with great potential for biological applications.

  7. Infrared (IR) stimulated luminescence from modern bricks in retrospective dosimetry applications

    International Nuclear Information System (INIS)

    Niedermayer, M.; Goeksu, H.Y.; Dalheimer, A.; Bayer, A.

    2000-01-01

    It has frequently been observed that certain roof tiles and bricks, especially from relatively modern European buildings, do not contain enough quartz grains in a suitable grain size range to permit dose reconstruction using thermoluminescence (TL) or optically stimulated luminescence (OSL) methods. In this paper the feasibility of using infrared-stimulated luminescence (IRSL) on the feldspar fraction of such bricks and tiles has been investigated. Appropriate preheating treatments were employed in order to select the most stable signals, and procedures were developed to enhance the signal to noise ratio. The possible effect of anomalous fading under application of these procedures was tested. In the dose range above 100 mGy, it has been demonstrated that using IRSL on the feldspar fraction of such material provides a feasible alternative to the use of green-light-stimulated luminescence (GLSL) on the quartz fraction, for the purposes of retrospective dosimetry. Furthermore, since the use of IRSL as described in this paper involves the measurement of polymineral fine grain fractions of bricks, a technique for the calibration of the built-in β source against the γ source in Secondary Standard Dosimetry facilities for routine use of the technique is described

  8. Correlation between room temperature luminescence and energy-transfer in Er–Au co-implanted silica

    Energy Technology Data Exchange (ETDEWEB)

    Cesca, T., E-mail: tiziana.cesca@unipd.it [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy); Kalinic, B.; Maurizio, C.; Scian, C. [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy); Trave, E.; Battaglin, G. [Department of Molecular Sciences and Nanosystems, Dorsoduro 2137, I-30123 Venice, Ca’ Foscari University of Venice (Italy); Mazzoldi, P.; Mattei, G. [Department of Physics and Astronomy and CNISM, via Marzolo 8, I-35131 Padova, University of Padova (Italy)

    2015-11-01

    We report on the room temperature photoluminescence characterization in the visible and near-infrared range of Er–Au co-implanted silica systems as a function of the annealing temperature. Besides the characteristic Er{sup 3+} emission at 1540 nm, the samples exhibit luminescence bands in the wavelength region 600–1400 nm related to the formation of ultra-small Au{sub N} aggregates with a number of atoms N less than 50 atoms. In particular, the correlation between such Au{sub N}-related luminescence and the enhancement of the Er{sup 3+} emission was investigated and an anti-correlation between the Er{sup 3+} luminescence at 1540 nm and an Au{sub N}-related band at 980 nm was revealed that represents a possible path for the energy-transfer from Au{sub N} nanoclusters to Er{sup 3+} ions, giving rise to the Er{sup 3+} sensitized emission.

  9. Study of carrier concentration in single InP nanowires by luminescence and Hall measurements

    International Nuclear Information System (INIS)

    Lindgren, David; Hultin, Olof; Heurlin, Magnus; Storm, Kristian; Borgström, Magnus T; Samuelson, Lars; Gustafsson, Anders

    2015-01-01

    The free electron carrier concentrations in single InP core–shell nanowires are determined by micro-photoluminescence, cathodoluminescence (CL) and Hall effect measurements. The results from luminescence measurements were obtained by solving the Fermi–Dirac integral, as well as by analyzing the peak full width at half maximum (FWHM). Furthermore, the platform used for Hall effect measurements, combined with spot mode CL spectroscopy, is used to determine the carrier concentrations at specific positions along single nanowires. The results obtained via luminescence measurements provide an accurate and rapid feedback technique for the epitaxial development of doping incorporation in nanowires. The technique has been employed on several series of samples in which growth parameters, such as V/III-ratio, temperature and dopant flows, were investigated in an optimization procedure. The correlation between the Hall effect and luminescence measurements for extracting the carrier concentration of different samples were in excellent agreement. (paper)

  10. Influence of Nanosized Silicon Oxide on the Luminescent Properties of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vitaliy Shvalagin

    2016-01-01

    Full Text Available For practical use of nanosized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of ZnO nanoparticles and obtain high-luminescent ZnO/SiO2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nanocrystals to the source solutions during the synthesis of ZnO nanoparticles. Then the quantum yield of luminescence of the obtained ZnO/SiO2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of ZnO nanocrystals on the surface of silica, which reduces the probability of separation of photogenerated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of ZnO nanoparticles. This way of increasing nano-ZnO luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  11. Proposed experiment to investigate use of heated optical fibers for tokamak diagnostics during D-T discharges

    International Nuclear Information System (INIS)

    Tighe, W.; Morgan, P.; Griscom, D.; Adler, H.; Cylinder, D.; Johnson, D.; Palladino, D.; Ramsey, A.

    1995-02-01

    A collaborative JET/TFTR study has been undertaken to investigate attenuation and luminescence effects due to neutron irradiation of optical fibers heated to 400 degrees C. It is expected that a significant improvement in fiber behavior will be observed due to thermal annealing. This technique may be important for use in fiber-related, tokamak diagnostics exposed to high neutron flux. The study will make use of aluminum jacketed, 600 μm diameter, all silica (F-doped cladding) fibers in lengths of 150 m. The fibers are prepared in 1 foot coils. Of the coils to be irradiated, one is heated constantly to 400 degrees C, a second is not heated, and a third is heated periodically. A fourth fiber coil is not to be irradiated. Spectrally and temporally resolved transmission and luminescence data under neutron irradiation during D-T discharges on TFTR will be obtained. An investigation of permanent and short term effects will be made. Experimental details along with initial results will be presented

  12. Luminescence of yttrium niobium-tantalate doubly activated by europium and/or terbium under X-ray and electron beam excitation

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, I.D., E-mail: arellano@utp.edu.co [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Nazarov, M.V. [Institute of Applied Physics, Academy of Sciences of Moldova, Republic of Moldova (Moldova, Republic of); School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Cortes, J.A. [Department of Physics, Technological University of Pereira, Vereda La Julita, Pereira (Colombia); Ahmad Fauzi, M.N [School of Materials and Mineral Resources Engineering Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2012-09-15

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O{sub 4} activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. The influence of these rare earth ions on the luminescence of yttrium niobium-tantalate phosphors was investigated. The luminescent properties were studied under X-ray and electron beam excitations. Under these excitations, the emission centers of the rare earth activators (Eu{sup 3+},Tb{sup 3+}) were found to contribute efficiently to the overall luminescence. Changing the mol concentration of the incorporated activators resulted in a broad variation of visible photoluminescence. Color cathodoluminescence images showed clearly the dependence of chromaticity on the different activators. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing a broad variation of visible photoluminescence from blue to red. - Highlights: Black-Right-Pointing-Pointer The Y(Ta,Nb)O{sub 4} phosphors were activated by rare earth ions such as Eu{sup 3+} and Tb{sup 3+}. Black-Right-Pointing-Pointer The phosphors were studied under X-ray and electron beam excitations. Black-Right-Pointing-Pointer The emission centers contribute efficiently to the overall luminescence. Black-Right-Pointing-Pointer Changing the concentration of the activators resulted in a broad luminescence.

  13. Luminescence characteristics of dental ceramics for retrospective dosimetry: a preliminary study

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Correcher, V.; Delgado, A.; Goksu, Y.; Huebner, S.

    2002-01-01

    Ceramic materials that are widely employed in dental prosthetics and repairs exhibit luminescent properties. Because of their use in the body, these materials are potentially of interest in situations where retrospective dosimetry for individuals is required but where monitoring was not planned. The luminescent properties of dental ceramics obtained in Germany, Spain and the UK were examined. Linear dose-response characteristics were obtained in the range <100 mGy to 10 Gy using thermoluminescence (TL), optically stimulated luminescence and infrared-stimulated luminescence measurement techniques. Measurements of time-resolved luminescence were also performed to examine the nature of the luminescence recombination under visible (470 nm) and IR (855 nm) stimulation. The results obtained by TL and optically stimulated techniques suggest that there may be deeper traps than previously observed in certain types of dental ceramic. Such traps may be less susceptible to optical and athermal fading than was reported in earlier studies. (author)

  14. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Ankjærgaard, Christina [Soil Geography and Landscape Group & Netherlands Centre for Luminescence dating, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); Jain, Mayank [Center for Nuclear Technologies, Technical University of Denmark, DTU Risø Campus, Roskilde (Denmark); Chithambo, Makaiko L. [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa)

    2016-09-15

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IRSL signals, both during and after short infrared stimulation pulses. The equations are developed using a recently proposed kinetic model, which describes localized electronic recombination via tunneling between trapped electrons and recombination centers in luminescent materials. Recombination is assumed to take place from the excited state of the trapped electron to the nearest-neighbor center within a random distribution of luminescence recombination centers. Different possibilities are examined within the model, depending on the relative importance of electron de-excitation and recombination. The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results.

  15. Luminescence dating at Rose cottage cave: a progress report

    CSIR Research Space (South Africa)

    Woodborne, S

    1997-10-01

    Full Text Available Deal with infrared-stimulated luminescence and thermoluminescence dates from Rose Cottage Cave in South Africa. Discrepancy between luminescence and radiocarbon dates; Concentration of radioactive elements in sediments before and after leaching...

  16. Luminescence basic concepts, applications and instrumentation

    CERN Document Server

    Virk, Hardev Singh

    2014-01-01

    The word luminescence was first used by a German physicist, Eilhardt Wiedemann, in 1888. He also classified luminescence into six kinds according to the method of excitation. No better basis of classification is available today. He recognized photoluminescence, thermoluminescence, electroluminescence, crystalloluminescence, triboluminescence, and chemiluminescence. The designations are obvious, characterized by the prefix. This Volume consists of 9 Chapters, including 8 Review Papers and one Case Study. The first two papers are based on OLEDs. Organic light emitting diodes (OLEDs) have been th

  17. Luminescent properties of terbium complex with phenylanthranilic acid

    International Nuclear Information System (INIS)

    Alakaeva, L.A.; Kalazhokova, I.A.; Naurzhanova, F.Kh.

    1990-01-01

    Existence of terbium luminescence reaction in complex with phenanthranilic acid (FAA) is ascertained. The optimal conditions of terbium complexing with FAA are found. The ratio of components in the complex is 1:1. The influence of foreign rare earth in terbium luminescence intensity in complex with FAA is studied

  18. Doped luminescent materials and particle discrimination using same

    Science.gov (United States)

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  19. Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host.

    Science.gov (United States)

    Kuznetsov, A S; Tikhomirov, V K; Moshchalkov, V V

    2012-09-10

    A mechanism for white luminescence of Ag nanoclusters dispersed in oxyfluoride glass host has been revealed by studying a temperature dependence of its polarization memory. The spectral dependence of the polarization memory indicates the presence of a variety of Ag nanoclusters, particularly emitting in the blue, green and red. Temperature activated intercluster energy transfer has been found responsible for white luminescence. The means for increasing luminescence quantum yield have been suggested. This efficient white luminescence may be used in highly demanded devices, such as luminescent lamps, displays, color phosphors for LEDs, photovoltaic devices based on down shifting of solar spectrum.

  20. Luminescent properties of LuAG:Yb and YAG:Yb single crystalline films grown by Liquid Phase Epitaxy method

    International Nuclear Information System (INIS)

    Zorenko, Yu; Zorenko, T.; Gorbenko, V.; Voznyak, T.; Popielarski, P.; Batentschuk, M.; Osvet, A.; Brabec, Ch; Kolobanov, V.; Spasky, D.; Fedorov, A.

    2016-01-01

    In this work, investigation of the spectroscopic parameters of the luminescence of Yb"3"+ ions in single crystalline films of Lu_3Al_5O_1_2 and Y_3Al_5O_1_2 garnets was performed using the synchrotron radiation excitation with the energy in the range of Yb"3"+ charge transitions (CT), exciton range and the onset of interband transitions of these garnets. The basic spectroscopic parameters of the Yb"3"+ CT luminescence in LuAG and YAG hosts were determined and summarized with taking into account the differences in the band gap structure of these garnets. - Highlights: • Single crystalline films of Yb doped LuAG and YAG garnets were grown by LPE method. • Yb"3"+ luminescence of LuAG:Yb and YAG:Yb film were studied using synchrotron radiation. • Basic parameters of Yb"3"+ charge transfer luminescence in LuAG and YAG were determined.

  1. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al 2 O 3 ). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al 2 O 3 :C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few μGy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al 2 O 3 . OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of the accident radiation was

  2. Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L

    2000-09-01

    This thesis summarises research and development of optically stimulated luminescence (OSL) and its applications by the author at Risoe National Laboratory, up to 1999. These developments have been directed primarily at retrospective accident dosimetry and luminescence dating. Experimental investigations include the studies of OSL properties of the natural minerals quartz and feldspars and the artificial materials porcelain and aluminium oxide (Al{sub 2}O{sub 3}). Blue light emitting diodes and infrared laser diodes are shown to provide simple and practical alternatives to broad-band light and visible laser stimulation. The development of OSL apparatus designed for the rapid measurement of single grains of phosphors also opens up a new area of luminescence measurement, allowing the detailed examination of dose distributions within a multiple-grain sample. This is of particular importance to the studies of incompletely reset geological sediments, and to accident dosimetry measurements using unheated materials. Al{sub 2}O{sub 3}:C single crystals are tested as environmental OSL dosemeters for assessing both the natural background photon radiation dose rates in the field and the natural dose rates inside bricks collected for accident dose evaluation. Environmental doses of the order of few {mu}Gy are measured with high precision. UV photo-stimulated luminescence spectra obtained from porcelain samples are used to confirm that the main component responsible for the OSL signal from porcelain is Al{sub 2}O{sub 3}. OSL single-aliquot regenerative-dose (SAR) techniques are used with quartz extracted from Chernobyl bricks to determine the accrued dose after the accident. This has improved the measurement precision significantly, from about 5-6 % using traditional methods to now less than 2 %. Depth-dose profiles measured in Chernobyl bricks are compared with those obtained in the laboratory using different gamma sources and these comparisons show that the average energy of

  3. Highly Sensitive Luminescence Assessment of Bile Acid Using a Balofloxacin-Europium(III) Probe in Micellar Medium

    International Nuclear Information System (INIS)

    Cai, Huan; Zhao, Fang; Si, Hailin; Zhang, Shuaishuai; Wang, Chunchun; Qi, Peirong

    2012-01-01

    A novel and simple method of luminescence enhancement effect for the determination of trace amounts of bile acid was proposed. The procedure was based on the luminescence intensity of the balofloxacin-europium(III) complex that could be strongly enhanced by bile acid in the presence of sodium dodecyl benzene sulfonate (SDBS). Under the optimum conditions, the enhanced luminescence intensity of the system exhibited a good linear relationship with the bile acid concentration in the range 5.0 Χ 10 -9 - 7.0 Χ 10 -7 mol L -1 with a detection limit of 1.3 Χ 10 -9 mol L.1 (3σ). The relative standard deviation (RSD) was 1.7% (n = 11) for 5.0 Χ 10 -8 mol L -1 bile acid. The applicability of the method to the determination of bile acid was demonstrated by investigating the effect of potential interferences and by analyzing human serum and urine samples. The possible enhancement mechanism of luminescence intensity in balofloxacin-europium(III)-bile acid-SDBS system was also discussed briefly

  4. A luminescence imaging system based on a CCD camera

    DEFF Research Database (Denmark)

    Duller, G.A.T.; Bøtter-Jensen, L.; Markey, B.G.

    1997-01-01

    Stimulated luminescence arising from naturally occurring minerals is likely to be spatially heterogeneous. Standard luminescence detection systems are unable to resolve this variability. Several research groups have attempted to use imaging photon detectors, or image intensifiers linked...... to photographic systems, in order to obtain spatially resolved data. However, the former option is extremely expensive and it is difficult to obtain quantitative data from the latter. This paper describes the use of a CCD camera for imaging both thermoluminescence and optically stimulated luminescence. The system...

  5. Luminescent microporous metal–organic framework with functional Lewis basic sites on the pore surface: Quantifiable evaluation of luminescent sensing mechanisms towards Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Cheng [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012 (China); Guo, Rui-Li; Zhang, Wen-Yan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Jiang, Chen [Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012 (China); Wang, Yao-Yu, E-mail: wyaoyu@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China)

    2016-11-15

    A systematic study has been conducted on a novel luminescent metal-organic framework, ([Zn(bpyp)(L-OH)]·DMF·2H{sub 2}O){sub n} (1), to explore its sensing mechanisms to Fe{sup 3+}. Structure analyses show that compound 1 exist pyridine N atoms and -OH groups on the pore surface for specific sensing of metal ions via Lewis acid-base interactions. On this consideration, the quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. This work not only achieves the quantitative evaluation of the luminescence quenching but also provides certain insights into the quenching process, and the possible mechanisms explored in this work may inspire future research and design of target luminescent metal-organic frameworks (LMOFs) with specific functions. - Graphical abstract: A systematic study has been conducted on a novel luminescent metal-organic framework to explore its sensing mechanisms to Fe{sup 3+}. The quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. - Highlights: • A novel porous luminescent MOF containing uncoordinated groups in interlayer channels was successfully synthesized. • The compound 1 can exhibit significant luminescent sensitivity to Fe{sup 3+}, which make its good candidate as luminescent sensor. • The corresponding dynamic and static quenching constants are calculated, achieving the quantification evaluation of the quenching process.

  6. Methods of producing luminescent images

    International Nuclear Information System (INIS)

    Broadhead, P.; Newman, G.A.

    1977-01-01

    A method is described for producing a luminescent image in a layer of a binding material in which is dispersed a thermoluminescent material. The layer is heated uniformly to a temperature of 80 to 300 0 C and is exposed to luminescence inducing radiation whilst so heated. The preferred exposing radiation is X-rays and preferably the thermoluminescent material is insensitive to electromagnetic radiation of wavelength longer than 300 mm. Information concerning preparation of the luminescent material is given in BP 1,347,672; this material has the advantage that at elevated temperatures it shows increased sensitivity compared with room temperature. At temperatures in the range 80 to 150 0 C the thermoluminescent material exhibits 'afterglow', allowing the image to persist for several seconds after the X-radiation has ceased, thus allowing the image to be retained for visual inspection in this temperature range. At higher temperatures, however, there is negligible 'afterglow'. The thermoluminescent layers so produced are particularly useful as fluoroscopic screens. The preferred method of heating the thermoluminescent material is described in BP 1,354,149. An example is given of the application of the method. (U.K.)

  7. The luminescence of CaWO4: Bi single crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Pashkovsky, M.; Voloshinovskii, A.; Kuklinski, B.; Grinberg, M.

    2006-01-01

    Influence of doping with Bi 3+ ions and Bi 3+ -Na + or Bi 3+ -Li + ions pairs on luminescence, emission kinetics and light yield of CaWO 4 crystals has been investigated. It has been shown that under excitation in the A-band at 272 and 287nm, related to the Bi 3+ ions absorption, the luminescence peaked at 468nm decaying with time τ=0.41μs is observed. For bismuth concentration 50-500ppm and the equimolar concentrations of the Bi 3+ ions accompanied by Na + or Li + ions compensators the significant suppression of the phosphorescence peaked at 520nm, related to the defect WO 3 -V O complex, and an improvement of scintillation characteristics of the CaWO 4 are noticed. Energy transfer from the defect WO 3 -V O and regular WO 4 2- oxy-anions to Bi 3+ ions have been observed at room temperatures and discussed

  8. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  9. Luminescence centers in bismuth orthogermanate

    International Nuclear Information System (INIS)

    Bordun, O.M.

    2001-01-01

    The luminescence and photoexcitation spectra of single crystals,ceramics,and thin films of Bi 4 Ce 3 O 1 2 are studied.The decomposition of the luminescence spectra into elementary components by the Alentsev-Fock method showed that they consist of three bands with maxima at 2.7,2.4,and 2.05 eV.The bands with maxima at 2.7 and 2.4 eV are assigned to the emission of self-trapped Frenkel excitons describing the excited state of a (BiO 6 ) 9- molecular ion. Emission bands with maxima at 2.0 5 eV are assigned to recombination on traps caused by structural defects

  10. Synthesis and luminescent properties of a novel green-emitting Tb (Ⅲ) complex based on amino-modified fluorine silicone oil and isophorone diisocyanate

    Science.gov (United States)

    Hao, Haixia; Chu, Yang; Yu, Zhenjiang; Xie, Hongde; Seo, Hyo Jin

    2017-10-01

    The novel luminescent polymer-rare earth complexes, denoted as (PFSi-IPDI)-Tb(Ⅲ)-Phen, have been successfully synthesized and can be made into flexible films. Amino-modified fluorine silicone oil-isophorone diisocyanate (PFSi-IPDI) was used as the host macromolecular ligand, and 1, 10-Phenanthroline (Phen) as the secondary small-molecular co-ligand. The luminescent lanthanide complexes were characterized by fourier transform infrared (FITR), scanning electron microscope (SEM), thermogravimetric analysis (TGA). The luminescent properties were investigated through photoluminescence excitation (PLE) and emission (PL) spectroscopy. FTIR analysis verifies the successful preparation and integration of PFSi-IPDI to Tb3+. The comparatively uniform morphological structure can be observed in the images of SEM. The polymer-rare earth complexes display the typical luminescence emission peaks under the excitation wavelength of 330 nm. From the decay curve, the short lifetime (about 0.89 ms) is observed for (PFSi-IPDI)-Tb(Ⅲ)-Phen (0.6 mol/L). Moreover, these luminescent polymer-rare earth complexes possess superior thermal stability (T5 > 195 °C). All the interesting results suggest the potential application of the luminescent polymer-rare earth complexes in green-emitting luminescent materials under high temperature.

  11. Quantitative analysis of time-resolved infrared stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Pagonis, Vasilis; Ankjærgaard, Christina; Jain, Mayank

    2016-01-01

    Time-resolved infrared-stimulated luminescence (TR-IRSL) from feldspar samples is of importance in the field of luminescence dating, since it provides information on the luminescence mechanism in these materials. In this paper we present new analytical equations which can be used to analyze TR-IR....... The equations are applied to experimental TR-IRSL data of natural feldspars, and good agreement is found between experimental and modeling results....

  12. A Radiation Dosimetry Method Using Pulsed Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Akselrod, M.S.; McKeever, S.W.S.

    1999-01-01

    A method for the determination of absorbed radiation dose is described based on pulsed optically stimulated luminescence (POSL). The method relies upon the stimulation of an irradiated sample with a train of light pulses from a suitable light source (e.g. a laser) using a wavelength which is within the range of wavelengths corresponding to the radiation-induced optical absorption in the irradiated sample. The subsequent emitted light, due to the detrapping of trapped charges and their subsequent recombination with charge of the opposite sign, is synchronously detected in the period between each stimulation pulse. The total luminescence is summed over the desired number of stimulation pulses and this forms the measured POSL signal. By monitoring the emitted light only in the period between stimulation pulses one can reduce the optical filtering required to discriminate between the stimulation light and the emission light; in this way a high measurement efficiency, and, therefore, a high radiation sensitivity (luminescence intensity per unit absorbed dose) is achieved. Key parameters in the method are the intrinsic luminescence lifetime for the material being used as the luminescent detector, the width of the optical stimulation pulse, and the period between pulses. For optimum operation the measurement parameters should be such that both the pulse width and the time between pulses are much less than the luminescence lifetime. By appropriate choice of the power of the optical stimulation, the frequency of the stimulation pulses, and the total stimulation period, one can also re-measure the absorbed dose several times. In this way, a re-read capability is available with the procedure. The method is illustrated using light from a 2nd-harmonic Nd:YAG laser, with irradiated, anion-deficient aluminium oxide as the luminescent detector material. (author)

  13. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  14. Luminescence decay of S Zn::Ag and O Zn:Ga scintillation detectors excited by a pulsed laser

    International Nuclear Information System (INIS)

    Romero, L.; Campos, J.

    1981-01-01

    In the present work a high sensitivity experimental set up for luminescence decay measurements in the 1 0 - 1 sec range has been developed. As an application, luminescence light decay In S Zn:Ag and 0Zn:Ga after excitation by a pulsed N 2 laser has been measured. In SZnrAg, measurements of total light decay was compared with donor acceptor pairs theory. In both substances, spectral evolution in the first 15 sec was investigated. (Author) 4 refs

  15. Luminescence induced by electrons outside zinc oxide nanoparticles driven by intense terahertz pulse trains

    International Nuclear Information System (INIS)

    Nagai, Masaya; Aono, Shingo; Ashida, Masaaki; Kawase, Keigo; Irizawa, Akinori; Isoyama, Goro

    2017-01-01

    We investigated the behaviours of electrons from ZnO nanoparticles via a strong terahertz field. Luminescence from ZnO nanoparticles and surrounding nitrogen molecules was observed when the nanoparticles were irradiated with a terahertz free-electron laser (FEL). These excitations arose from the collision of electrons released via field electron emission with the ZnO nanoparticles and neighbouring nitrogen molecules. The strong excitation frequency dependence of the luminescence reflected the kinetic energy and trajectory of electrons outside the nanoparticles. We also observed spectral changes in the luminescence during macropulses of the FEL, even though the carrier lifetime of the nanoparticles was shorter than the interval between the micropulses. These changes were caused by the nanoparticles becoming charged due to electron emission, resulting in the electrons being re-emitted outside the nanoparticles. The electrons outside the nanoparticles were accelerated more efficiently by the terahertz field than the electrons inside the nanoparticles, and thus the motion of these exterior electrons provided a new excitation path. (paper)

  16. Silica-modified luminescent LaPO4 :Eu@LaPO4 @SiO2 core/shell nanorods: Synthesis, structural and luminescent properties.

    Science.gov (United States)

    Ansari, Anees A

    2018-02-01

    Monoclinic-type tetragonal LaPO 4 :Eu (core) and LaPO 4 :Eu@LaPO 4 (core/shell) nanorods (NRs) were successfully prepared using a urea-based co-precipitation process under ambient conditions. An amorphous silica layer was coated around the luminescent core/shell NRs via the sol-gel process to improve their solubility and colloidal stability in aqueous and non-aqueous media. The prepared nano-products were systematically characterized by X-ray diffraction pattern, transmission electron microscopy, energy dispersive X-ray analysis, and FTIR, UV/Vis, and photoluminescence spectroscopy to examine their phase purity, crystal phase, surface chemistry, solubility and luminescence characteristics. The length and diameter of the nano-products were in the range 80-120 nm and 10-15 nm, respectively. High solubility of the silica-modified core/shell/Si NRs was found for the aqueous medium. The luminescent core NRs exhibited characteristic excitation and emission transitions in the visible region that were greatly affected by surface growth of insulating LaPO 4 and silica layers due to the multiphonon relaxation rate. Our luminescence spectral results clearly show a distinct difference in intensities for core, core/shell, and core/shell/Si NRs. Highly luminescent NRs with good solubility could be useful candidates for a variety of photonic-based biomedical applications. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Luminescence – structure relationships in MYP{sub 2}O{sub 7}:Eu{sup 3+} (M=K, Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Watras, A., E-mail: A.Watras@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw (Poland); Boutinaud, P. [Université Clermont Auvergne, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); Pązik, R.; Dereń, P.J. [Institute of Low Temperature and Structure Research, PAS, Okolna 2, 50-422 Wroclaw (Poland)

    2016-07-15

    In this work we present the series of MYP{sub 2}O{sub 7} phosphates doped with 3% of Eu{sup 3+} ions. All samples were prepared using wet-chemistry methods. The structural properties were characterized by XRD and Raman spectroscopy. The detailed spectroscopic properties like emission spectra at 10 and 300 K, VUV excitation spectra, luminescence kinetics and luminescence temperature quenching were performed to determine the influence of alkali metal ion. In MYP{sub 2}O{sub 7} compounds, the Eu{sup 3+} ions enter two different sites – one with C{sub 1} symmetry (Y{sup 3+} sites) and one with S{sub 4} site (M{sup +} site). All phosphors have a broad charge transfer (CT) absorption band located in the UV region (200–250 nm). The ratio between CT and 4f–4f bands is decreasing with increasing the alkali metal ion size. The mechanisms responsible of luminescence temperature quenching are thermalization of higher lying {sup 5}D{sub J} levels, energy transfer between two nearby Eu{sup 3+} sites and non-radiative losses on defects in the host lattices.

  18. Luminescence of Lanthanoides (Rare-earth elements) – Probes of structural variations in minerals

    International Nuclear Information System (INIS)

    Lenz, C.

    2015-01-01

    This cumulative PhD thesis summarises several individual studies on the luminescence of REE (rare-earth elements; i.e., trivalent lanthanoides), which are typically incorporated in accessory minerals such as zircon, titanite, monazite–(Ce) and xenotime–(Y). A main objective of these studies is to examine the powerfulness of REE luminescence-spectroscopy as structural probe. In particular, this concerns the potential use of REE3+ emissions in characterising structural disorder of their accessory host minerals as caused by radiation damage and/or compositional heterogeneity. Especially the former (i.e., mineral disorder due to radiation damage) is of interest to Earth and materials scientists, for instance for the understanding of changed physicochemical properties of initially crystalline materials that are affected by structural damage as caused by the radioactive decay of actinides. Moreover, a substantial contribution of the studies presented lies in the field of basic properties of the REE luminescence of natural accessory minerals. First, the investigations have addressed the identification of diverse REE species in diverse natural host minerals (which is done using synthetic REE-doped analogues). Second, factors that may bias the quantitative estimation of spectroscopic parameters have been studied, including effects of experimental parameters (crystal orientation and temperature) and the samples’ compositional heterogeneity. The results will be particularly useful to the growing community of Earth scientists who apply REE luminescence-spectroscopy in studying geological materials. (author) [de

  19. Thin-film luminescent concentrators for integrated devices: a cookbook.

    Science.gov (United States)

    Evenson, S A; Rawicz, A H

    1995-11-01

    A luminescent concentrator (LC) is a nonimaging optical device used for collecting light energy. As a result of its unique properties, a LC also offers the possibility of separating different portions of the spectrum and concentrating them at the same time. Hence, LC's can be applied to a whole range of problems requiring the collection, manipulation, and distribution or measurement of light. Further-more, as described in our previous research, thin-film LC elements can be deposited directly over sensor and processing electronics in the form of integrated LC devices. As an aid to further research, the materials and technology required to fabricate these thin-film LC elements through the use of an ultraviolet-curable photopolymer are documented in detail.

  20. Laser-induced luminescence of multilayer structures based on polyimides and CdSe and CdSe/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Chistyakov, A A; Dayneko, S V; Zakharchenko, K V; Kolesnikov, V A; Tedoradze, M G; Mochalov, K E; Oleinikov, V A

    2009-01-01

    Laser-induced luminescence of multilayer structures based on the solids of CdSe and CdSe/ZnS nanocrystals, different organic semiconductors and on the layers of organic semiconductors with embedded nanocrystals has been investigated. Drastic decrease of luminescence quantum yield is observed in the films of CdSe nanocrystals on organic semiconductors compared to those on optical glasses. The luminescence of the nanocrystals in the matrices of organic semiconductors and in multilayer structures is shown to be suppressed. The effects observed are explained by the transfer of photogenerated carriers from the nanocrystals to the molecules of organic semiconductors. The presence of the charge transfer is confirmed by a drastic increase in the conductivity (by 2 – 4 orders of magnitude) and in photovoltaic effect at the presence of CdSe and CdSe/ZnS nanocrystals in the structures under investigation. The prospects of using the multilayer structures for development new materials for solar cells are discussed

  1. Luminescence of La3+ and Sc3+ impurity centers in YAlO3 single-crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Voznyak, T.; Zorenko, T.; Nikl, M.; Nejezchleb, K.

    2008-01-01

    The luminescence of La Y 3+ and Sc Y 3+ and Sc Al 3+ centers created by lanthanum and scandium ions at Y 3+ and Al 3+ cation sites of YAlO 3 perovskite lattice was investigated. The features of emission of excitons localized at the mentioned centers in YAlO 3 :La and YAlO 3 :Sc single-crystalline films were analyzed by means of time-resolved emission spectroscopy and luminescence decay kinetics measurements under excitation by synchrotron radiation at 9 and 300 K

  2. Luminescence properties of Yb:Nd:Tm:KY3F10 nanophosphor and thermal treatment effects

    International Nuclear Information System (INIS)

    Gomes, Laércio; Linhares, Horácio Marconi da Silva M.D.; Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego; Ranieri, Izilda Marcia

    2015-01-01

    In this work, we present the spectroscopic properties of KY 3 F 10 (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates 1 G 4 (Tm 3+ ) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd 3+ to Tm 3+ ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the 1 G 4 level luminescence kinetic of Tm 3+ in Yb/Nd/Tm system revealed that the luminescence efficiency ( 1 G 4 ) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up 1 ) and (Nd×Yb×Tm) (Up 2 ) upconversion processes to the 1 G 4 luminescence are 33% (Up 1 ) and 67% for Up 2 . Up 2 process represented by Nd 3+ ( 4 F 3/2 )→Yb 3+ ( 2 F 7/2 ) followed by Yb 3+ ( 2 F 5/2 )→Tm ( 3 H 4 )→Tm 3+ ( 1 G 4 ) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF 4 and KY 3 F 10 bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the 1 G 4 luminescence efficiency strongly increases from 0.38% (T=25 °C) to 12% (T=400 °C). Results shown that the Nd 3+ ions distribution has a concentration

  3. Thermal dependence of luminescence lifetimes and radioluminescence in quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, V., E-mail: vpagonis@mcdaniel.edu [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Chithambo, M.L. [Department of Physics and Electronics, Rhodes University, PO BOX 94, Grahamstown 6140 (South Africa); Chen, R. [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Chruścińska, A. [Institute of Physics, Nicholas Copernicus University, 87-100 Toruń (Poland); Fasoli, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Li, S.H. [Department of Earth Sciences, The University of Hong Kong (Hong Kong); Martini, M. [Department of Materials Science, University of Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy); Ramseyer, K. [Institut für Geologie, Baltzerstrasse 1-3, 3012 Bern (Switzerland)

    2014-01-15

    During time-resolved optical stimulation experiments (TR-OSL), one uses short light pulses to separate the stimulation and emission of luminescence in time. Experimental TR-OSL results show that the luminescence lifetime in quartz of sedimentary origin is independent of annealing temperature below 500 °C, but decreases monotonically thereafter. These results have been interpreted previously empirically on the basis of the existence of two separate luminescence centers L{sub H} and L{sub L} in quartz, each with its own distinct luminescence lifetime. Additional experimental evidence also supports the presence of a non-luminescent hole reservoir R, which plays a critical role in the predose effect in this material. This paper extends a recently published analytical model for thermal quenching in quartz, to include the two luminescence centers L{sub H} and L{sub L}, as well as the hole reservoir R. The new extended model involves localized electronic transitions between energy states within the two luminescence centers, and is described by a system of differential equations based on the Mott–Seitz mechanism of thermal quenching. It is shown that by using simplifying physical assumptions, one can obtain analytical solutions for the intensity of the light during a TR-OSL experiment carried out with previously annealed samples. These analytical expressions are found to be in good agreement with the numerical solutions of the equations. The results from the model are shown to be in quantitative agreement with published experimental data for commercially available quartz samples. Specifically the model describes the variation of the luminescence lifetimes with (a) annealing temperatures between room temperature and 900 °C, and (b) with stimulation temperatures between 20 and 200 °C. This paper also reports new radioluminescence (RL) measurements carried out using the same commercially available quartz samples. Gaussian deconvolution of the RL emission spectra was

  4. Terbium and dysprosium complexes luminescence at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meshkova, S B; Kravchenko, T B; Kononenko, L.I.; Poluehktov, N S [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1979-01-01

    The variation is studied of the luminescence intensity of terbium and dysprosium complexes used in the analysis as solutions are cooled down to the liquid nitrogen temperature. Three groups of methods have been studied: observation of fluorescence of aqueous solutions, precipitate and extract suspensions in organic solvents. The brightest luminescence and greatest increase in luminescence intensity are observed at freezing of complex solvents with 1,2-dioxybenzene-3,5-disulfonic acid (DBSA) and iminodiacetic acid (IDA) and DBSA+EDTA, as well as in the case of benzene extracting of complexes with phenanthroline and salicylic acid. Otherwise the intensity increases 2-14-fold and for the complex of terbium with acetoacetic ester 36-fold.

  5. Difference in luminescence sensitivity of coarse-grained quartz from deserts of northern China

    International Nuclear Information System (INIS)

    Zheng, C.X.; Zhou, L.P.; Qin, J.T.

    2009-01-01

    The luminescence sensitivity of coarse quartz extracted from desert sands in northern China was investigated. In general, the western deserts' samples are shown to be less sensitive than samples from the eastern deserts with respect to both OSL and the 110 deg. C TL peak. However, internal scatter among different aliquots of the same sample is observed for these two signals, which have already been normalized by weight. Laboratory dosing/bleach experiments indicate that earth surface processes, such as repeated burial and transportation can cause the sensitivity change and suggest that they may be responsible for the internal scatter. An intrinsic property of quartz was explored via the luminescence response to thermal activation to a maximum temperature of 700 deg. C. The thermal activation curves obtained with quartz from western and central deserts are similar, except one sample from Gurbantungut, which follows the pattern of eastern samples. The differences in quartz luminescence sensitivity exhibited by OSL/110 deg. C TL sensitivity and response to thermal activation are in accordance with the published results of geochemical studies.

  6. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  7. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Jain, Mayank; Tidemand-Lichtenberg, Peter

    2012-01-01

    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (700–1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also...

  8. Unclonable Security Codes Designed from Multicolor Luminescent Lanthanide-Doped Y2O3 Nanorods for Anticounterfeiting.

    Science.gov (United States)

    Kumar, Pawan; Nagpal, Kanika; Gupta, Bipin Kumar

    2017-04-26

    The duplicity of important documents has emerged as a serious problem worldwide. Therefore, many efforts have been devoted to developing easy and fast anticounterfeiting techniques with multicolor emission. Herein, we report the synthesis of multicolor luminescent lanthanide-doped Y 2 O 3 nanorods by hydrothermal method and their usability in designing of unclonable security codes for anticounterfeiting applications. The spectroscopic features of nanorods are probed by photoluminescence spectroscopy. The Y 2 O 3 :Eu 3+ , Y 2 O 3 :Tb 3+ , and Y 2 O 3 :Ce 3+ nanorods emit hypersensitive red (at 611 nm), strong green (at 541 nm), and bright blue (at 438 nm) emissions at 254, 305, and 381 nm, respectively. The SEM and TEM/HRTEM results reveal that these nanorods have diameter and length in the range of 80-120 nm and ∼2-5 μm, respectively. The two-dimensional spatially resolved photoluminescence intensity distribution in nanorods is also investigated by using confocal photoluminescence microscopic technique. Further, highly luminescent unclonable security codes are printed by a simple screen printing technique using luminescent ink fabricated from admixing of lanthanide doped multicolor nanorods in PVC medium. The prospective use of these multicolor luminescent nanorods provide a new opportunity for easily printable, highly stable, and unclonable multicolor luminescent security codes for anti-counterfeiting applications.

  9. Quantitative luminescence imaging system

    Science.gov (United States)

    Erwin, David N.; Kiel, Johnathan L.; Batishko, Charles R.; Stahl, Kurt A.

    1990-01-01

    The QLIS images and quantifies low-level chemiluminescent reactions in an electromagnetic field. It is capable of real time nonperturbing measurement and simultaneous recording of many biochemical and chemical reactions such as luminescent immunoassays or enzyme assays. The system comprises image transfer optics, a low-light level digitizing camera with image intensifying microchannel plates, an image process or, and a control computer. The image transfer optics may be a fiber image guide with a bend, or a microscope, to take the light outside of the RF field. Output of the camera is transformed into a localized rate of cumulative digitalized data or enhanced video display or hard-copy images. The system may be used as a luminescent microdosimetry device for radiofrequency or microwave radiation, as a thermal dosimeter, or in the dosimetry of ultra-sound (sonoluminescence) or ionizing radiation. It provides a near-real-time system capable of measuring the extremely low light levels from luminescent reactions in electromagnetic fields in the areas of chemiluminescence assays and thermal microdosimetry, and is capable of near-real-time imaging of the sample to allow spatial distribution analysis of the reaction. It can be used to instrument three distinctly different irradiation configurations, comprising (1) RF waveguide irradiation of a small Petri-dish-shaped sample cell, (2) RF irradiation of samples in a microscope for the microscopie imaging and measurement, and (3) RF irradiation of small to human body-sized samples in an anechoic chamber.

  10. Thermally stimulated luminescence in ZnMoO{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Degoda, V.Ya.; Kogut, Ya.P.; Moroz, I.M. [Kyiv National Taras Shevchenko University, MSP 03680 Kyiv (Ukraine); Danevich, F.A. [Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine)

    2017-03-15

    Thermally stimulated luminescence in ZnMoO{sub 4} crystals after X-ray irradiation at temperatures 8 K, 85 K and 295 K was studied. A theoretical model of crystal phosphor with three types of traps (shallow, phosphorescent and deep) is proposed. Simple analytic solutions of the kinetic equations system describing localized electrons on the traps and holes on recombination centres were obtained by using approximations accepted in the classic theories of crystal phosphors. Analytical curves describing thermally stimulated luminescence were obtained. A substantial effect of the different traps concentrations ratios on the thermally stimulated luminescence and conductivity peaks shapes is shown. A good agreement of the theoretical curves with the experimental data for the thermally stimulated luminescence peak at 114 K is obtained.

  11. Influence of Nano sized Silicon Oxide on the Luminescent Properties of Zn O Nanoparticles

    International Nuclear Information System (INIS)

    Shvalagin, V.; Grodziuk, G.; Kurmach, M.; Granchak, V.; Sarapulova, O.; Sherstiuk, V.

    2016-01-01

    For practical use of nano sized zinc oxide as the phosphor its luminescence quantum yields should be maximized. The aim of this work was to enhance luminescent properties of Zn O nanoparticles and obtain high-luminescent Zn O/SiO 2 composites using simpler approaches to colloidal synthesis. The luminescence intensity of zinc oxide nanoparticles was increased about 3 times by addition of silica nano crystals to the source solutions during the synthesis of Zn O nanoparticles. Then the quantum yield of luminescence of the obtained Zn O/SiO 2 composites is more than 30%. Such an impact of silica is suggested to be caused by the distribution of Zn O nano crystals on the surface of silica, which reduces the probability of separation of photo generated charges between the zinc oxide nanoparticles of different sizes, and as a consequence, there is a significant increase of the luminescence intensity of Zn O nanoparticles. This way of increasing nano-Zn O luminescence intensity facilitates its use in a variety of devices, including optical ultraviolet and visible screens, luminescent markers, antibacterial coatings, luminescent solar concentrators, luminescent inks for security printing, and food packaging with abilities of informing consumers about the quality and safety of the packaged product.

  12. Container Verification Using Optically Stimulated Luminescence

    International Nuclear Information System (INIS)

    Tanner, Jennifer E.; Miller, Steven D.; Conrady, Matthew M.; Simmons, Kevin L.; Tinker, Michael R.

    2008-01-01

    Containment verification is a high priority for safeguards containment and surveillance. Nuclear material containers, safeguards equipment cabinets, camera housings, and detector cable conduit are all vulnerable to tampering. Even with a high security seal on a lid or door, custom-built hinges and interfaces, and special colors and types of finishes, the surfaces of enclosures can be tampered with and any penetrations repaired and covered over. With today's technology, these repairs would not be detected during a simple visual inspection. Several suggested solutions have been to develop complicated networks of wires, fiber-optic cables, lasers or other sensors that line the inside of a container and alarm when the network is disturbed. This results in an active system with real time evidence of tampering but is probably not practical for most safeguards applications. A more practical solution would be to use a passive approach where an additional security feature was added to surfaces which would consist of a special coating or paint applied to the container or enclosure. One type of coating would incorporate optically stimulated luminescent (OSL) material. OSL materials are phosphors that luminesce in proportion to the ionizing radiation dose when stimulated with the appropriate optical wavelengths. The OSL fluoresces at a very specific wavelength when illuminated at another, very specific wavelength. The presence of the pre-irradiated OSL material in the coating is confirmed using a device that interrogates the surface of the enclosure using the appropriate optical wavelength and then reads the resulting luminescence. The presence of the OSL indicates that the integrity of the surface is intact. The coating itself could be transparent which would allow the appearance of the container to remain unchanged or the OSL material could be incorporated into certain paints or epoxies used on various types of containers. The coating could be applied during manufacturing

  13. Luminescence and excited state dynamics of Bi{sup 3+} centers in Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Babin, V. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Chernenko, K., E-mail: nuclearphys@yandex.ru [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Peter the Great Saint-Petersburg Polytechnic University, Polytekhnicheskaya 29, 195251 St. Petersburg (Russian Federation); Lipińska, L. [Institute of Electronic Materials Technology, Wólczyńska 133, 01919 Warsaw (Poland); Mihokova, E.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16200 Prague (Czech Republic); Schulman, L.S. [Physics Department, Clarkson University, Potsdam, NY 13699-5820 (United States); Shalapska, T. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Suchocki, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Physics, University of Bydgoszcz, Weyssenhoffa 11, 85072 Bydgoszcz (Poland); Zazubovich, S. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Zhydachevskii, Ya. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Lviv Polytechnic National University, Bandera 12, 79646 Lviv (Ukraine)

    2015-11-15

    Photoluminescence of Y{sub 2}O{sub 3}:Bi nanopowder synthesized by the modified sol–gel method is studied using time-resolved luminescence spectroscopy in the 4.2–300 K temperature range. Bi{sup 3+} ions are substituted for Y{sup 3+} ions in two different crystal lattice sites, one having S{sub 6} symmetry (Bi(S{sub 6})) and the other C{sub 2} symmetry (Bi(C{sub 2})). The luminescence characteristics of these two centers are found to have strongly different electron–phonon interactions. The luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers peak at 3.04 eV and 2.41 eV, respectively, and arise from the radiative decay of the triplet relaxed excited state (RES) of Bi{sup 3+} ions. The model and structure of the RES, responsible for the luminescence of Bi(S{sub 6}) and Bi(C{sub 2}) centers in Y{sub 2}O{sub 3}:Bi, as well as radiative and nonradiative processes, taking place in the excited states of these centers, are investigated. The parameters of the triplet RES (the separation between the metastable and radiative levels and probabilities of radiative and nonradiative transitions from these levels) are determined. Low-temperature quenching of the triplet luminescence of these centers is explained by nonradiative quantum tunneling transitions from the metastable minima of their triplet RES to closely located defect- or exciton-related levels. - Highlights: • Photoluminescence of Bi{sup 3+} centers of two types in Y{sub 2}O{sub 3}:Bi is investigated. • Bi(S{sub 6}) and Bi(C{sub 2}) centers reveal strongly different electron–phonon interaction. • Radiative and nonradiative processes in their triplet excited states are clarified. • Low-temperature luminescence quenching in Bi(S{sub 6}) and Bi(C{sub 2}) centers is studied. • New fast weak ≈2.9 eV emission is suggested to arise from Bi(C{sub 2}) centers.

  14. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  15. Metal-enhanced luminescence: Current trend and future perspectives- A review

    International Nuclear Information System (INIS)

    Ranjan, Rajeev; Esimbekova, Elena N.; Kirillova, Maria A.; Kratasyuk, Valentina A.

    2017-01-01

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  16. Metal-enhanced luminescence: Current trend and future perspectives- A review

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan, Rajeev [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Esimbekova, Elena N., E-mail: esimbekova@yandex.ru [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation); Kirillova, Maria A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Kratasyuk, Valentina A. [Laboratory of Bioluminescent Biotechnologies, Department of Biophysics, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Prospect, Krasnoyarsk 660041 (Russian Federation); Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok 50/50, Krasnoyarsk 660036 (Russian Federation)

    2017-06-08

    Optically enhanced biosensing strategies are prerequisites for developing miniature and highly sensitive multiplexed analytical platforms. Such smart biosensing systems are highly promising for use in the fields of biomedicine and environmental monitoring. Optical signal enhancement during bioassays is attributed to the complex opto-electronic interactions of incoming photonic signals at the nanomaterial interface. Research on the use of metals other than gold and silver for such purposes tends to extend the spectral window to observe luminescence enhancement effects. Such manifold increase in luminescence may be explained by the principles of plasmon coupling, directional emission led high collection efficiency, Rayleigh scattering and related opto-electronic events. The present review begins with a mechanistic description of important phenomena associated with metal-induced luminescence enhancement, particularly focusing on the origin of metal-enhanced luminescence. This review further analyses the hybrid nanostructure capabilities responsible for maintaining unique opto-electronic properties during bio-functionalisation. Current research trends in this area, future scope of this field for designing useful bioassays and concluding remarks are then discussed. - Highlights: • Nanomaterials significantly differ from their bulk counterparts. • Strong and pronounced photophysical effects at the metal surface provide opportunities for designing novel biosensors. • Metal-enhanced luminescence increases the quantum yield of luminescent reactions. • Under optimal conditions, plasmon coupling enhances the optical effects at the nanometal surface.

  17. Luminescence imaging of water during proton-beam irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya 462-8508 (Japan)

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  18. Luminescence imaging of water during proton-beam irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2015-01-01

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy

  19. Influence of sample oxidation on the nature of optical luminescence from porous silicon

    International Nuclear Information System (INIS)

    Coulthard, I.; Antel, W. J. Jr.; Freeland, J. W.; Sham, T. K.; Naftel, S. J.; Zhang, P.

    2000-01-01

    Site-selective luminescence experiments were performed upon porous-silicon samples exposed to varying degrees of oxidation. The source of different luminescence bands was determined to be due to either quantum confinement in nanocrystalline silicon or defective silicon oxide. Of particular interest is the defective silicon-oxide luminescence band found at 2.1 eV, which was found to frequently overlap with a luminescence band from nanocrystalline silicon. Some of the historical confusion and debate with regards to the source of luminescence from porous silicon can be attributed to this overlap. (c) 2000 American Institute of Physics

  20. Luminescence and surface properties of Tb3+ doped Sr3(VO4)2 nanophosphors

    International Nuclear Information System (INIS)

    Bedyal, A.K.; Kumar, Vinay; Sharma, Vishal

    2013-01-01

    In this paper, we present a detailed investigation of the luminescence and surface properties of Tb 3+ doped Sr 3 (VO 4 ) 2 nanocrystalline phosphors, synthesized by the combustion method. X-ray diffraction (XRD) peaks in the patterns corresponding to the reflection of rhombohedral pure phase of Sr 3 (VO 4 ) 2 . The average particle sizes have been found in the range of 30-34 nm. Scanning electron microscopy (SEM) indicated that an agglomerated peanut like morphology was obtained. Photoluminescence (PL) spectroscopy has been utilized to investigate the spectral properties of the phosphor. Under 237 nm excitation, it shows several bands centered at 487, 544, 588 and 624 nm, which result from 5 D 4 → 7 F J (J = 6, 5, 4 and 3) transitions of Tb 3+ , and the green emission band ( 5 D 4 → 7 F 5 ) located at 544 nm is dominant. The chemical states and homogeneous dopants' distribution in the host were analyzed with X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (TOF-SIMS), respectively. A ToF-SIMS imaging shows an uniform distribution of Tb 3+ in the Sr 3 (VO 4 ) 2 . (author)

  1. Hormesis response of marine and freshwater luminescent bacteria to metal exposure

    Directory of Open Access Journals (Sweden)

    KAILI SHEN

    2009-01-01

    Full Text Available The stimulatory effect of low concentrations of toxic chemicals on organismal metabolism, referred to as hormesis, has been found to be common in the widely used luminescence bioassay. This paper aims to study the hormesis phenomenon in both marine and freshwater luminescent bacteria, named Photobacterium phosphorem and Vibrio qinghaiensis. The effects of Cu (II, Zn (II, Cd (II and Cr (VI on luminescence of these two bacteria were studied for 0 to 75 minutes exposure by establishing dose- and time-response curves. A clear hormesis phenomenon was observed in all four testing metals at low concentrations under the condition of luminescence assays.

  2. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  3. Low-Energy Electron-Stimulated Luminescence of Thin H20 and D20 Layers on Pt(111)

    International Nuclear Information System (INIS)

    Petrik, Nikolay G.; Kimmel, Greg A.

    2005-01-01

    The electron-stimulated luminescence (ESL) from amorphous solid water and crystalline ice films deposited on Pt(111) at 100 K is investigated as a function of the film thickness, incident electron energy (5 ? 1000 eV), isotopic composition, and film structure. The ESL emission spectrum has a characteristic double-peaked shape that has been attributed to a transition between a superexcited state ( ) and the dissociative, first excited state ( ) in water: Comparing the electron-stimulated luminescence and O2 electron-stimulated desorption (ESD) yields versus incident electron energy, we find the ESL threshold blue-shifted from the O2 ESD threshold by ∼3 eV, which is close to the center of the emission spectrum near 400 nm and supports the assignment for the ESL. For thin films, radiative and non-radiative interactions with the substrate tend to quench the luminescence. The luminescence yield increases with coverage since the interactions with the substrate become less important. The ESL yield from D2O is ∼ 4 times higher than from H2O. Using layered films of H2O and D2O, this sizable isotopic effect on the ESL is exploited to spatially profile the luminescence emission within the ASW films. These experiments show that most of the luminescence is emitted from within the penetration depth of the incident electron. However, the results depend on the order of the isotopes in the film, and this asymmetry can be modeled by assuming some migration of the excited states within the film. The ESL is very sensitive to defects and structural changes in solid water, and the emission yield is significantly higher from amorphous films than from crystalline ice

  4. Investigation of the influence of silver and tin on the luminescence of trivalent europium ions in glass

    International Nuclear Information System (INIS)

    Jimenez, J.A.; Lysenko, S.; Liu, H.; Fachini, E.; Cabrera, C.R.

    2010-01-01

    Europium-doped aluminophosphate glasses prepared by the melt-quenching technique have been studied by photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). The effects of silver and tin doping, and of further thermal processing on Eu 3+ ions luminescence have been assessed. For the glass system containing only europium, Eu 3+ PL observed under UV excitation is suggested to occur through energy transfer from the excited glass host. After silver and tin doping, an enhanced UV excited Eu 3+ PL has been indicated to occur essentially due to radiative energy transfer from isolated Ag + ions and/or two fold-coordinated Sn centers. Since thermal processing of the material leads to a quenching effect on Eu 3+ PL and Ag nanoparticles (NPs) formation due to reduction of silver ions by tin, XPS was employed in order to investigate the possibility for Eu 3+ →Eu 2+ reduction during HT as a potential source of the PL decrease. The data points towards Ag NPs as main responsible for the observed weakening of Eu 3+ PL.

  5. Luminescence imaging of water during carbon-ion irradiation for range estimation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Aichi 461-8673 (Japan); Akagi, Takashi; Yamashita, Tomohiro [Hygo Ion Beam Medical Center, Hyogo 679-5165 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2016-05-15

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  6. Luminescence imaging of water during carbon-ion irradiation for range estimation

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Morishita, Yuki; Sekihara, Eri; Akagi, Takashi; Yamashita, Tomohiro; Toshito, Toshiyuki

    2016-01-01

    Purpose: The authors previously reported successful luminescence imaging of water during proton irradiation and its application to range estimation. However, since the feasibility of this approach for carbon-ion irradiation remained unclear, the authors conducted luminescence imaging during carbon-ion irradiation and estimated the ranges. Methods: The authors placed a pure-water phantom on the patient couch of a carbon-ion therapy system and measured the luminescence images with a high-sensitivity, cooled charge-coupled device camera during carbon-ion irradiation. The authors also carried out imaging of three types of phantoms (tap-water, an acrylic block, and a plastic scintillator) and compared their intensities and distributions with those of a phantom containing pure-water. Results: The luminescence images of pure-water phantoms during carbon-ion irradiation showed clear Bragg peaks, and the measured carbon-ion ranges from the images were almost the same as those obtained by simulation. The image of the tap-water phantom showed almost the same distribution as that of the pure-water phantom. The acrylic block phantom’s luminescence image produced seven times higher luminescence and had a 13% shorter range than that of the water phantoms; the range with the acrylic phantom generally matched the calculated value. The plastic scintillator showed ∼15 000 times higher light than that of water. Conclusions: Luminescence imaging during carbon-ion irradiation of water is not only possible but also a promising method for range estimation in carbon-ion therapy.

  7. Luminescence study of spodumene

    International Nuclear Information System (INIS)

    Isotani, S.; Fujii, A.T.; Antonini, R.; Pontuschka, W.M.; Rabani, S.R.; Furtado, W.W.

    1990-02-01

    A comparative study is made of the luminescence of five kinds of spodumene from Minas Gerais, Brazil, studied previously by optical absorption spectroscopy. Natural gemstones are used which, in the course of the experiments, were irradiated with X-rays. (L.C.) [pt

  8. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  9. Biosynthesis of myristic acid in luminescent bacteria

    International Nuclear Information System (INIS)

    Byers, D.M.

    1987-01-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with [ 14 C] acetate in a nutrient-depleted medium accumulated substantial tree [ 14 C]fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with [ 14 C]acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition

  10. Intrinsic and defect related luminescence in double oxide films of Al–Hf–O system under soft X-ray and VUV excitation

    Energy Technology Data Exchange (ETDEWEB)

    Pustovarov, V.A., E-mail: vpustovarov@bk.ru [Ural Federal University, 19 Mira Street, 620002 Yekaterinburg (Russian Federation); Smirnova, T.P.; Lebedev, M.S. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Science, Novosibirsk 630090 (Russian Federation); Gritsenko, V.A. [Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk National Research University, 2 Pirogova Street, 630090 Novosibirsk (Russian Federation); Kirm, M. [Institute of Physics, University of Tartu, 14c Ravila, 50411 Tartu (Estonia)

    2016-02-15

    Low temperature time-resolved luminescence spectra in the region of 2.5–9.5 eV under soft X-ray excitation as well as time-resolved luminescence excitation spectra in the UV–VUV region (3.7–12 eV) of solid solutions Al{sub x}Hf{sub y}O{sub 1−x−y} thin films were investigated. The values of x and Al/Hf ratio were determined from X-ray photoelectron srectroscopy data. Hafnia films and films mixed with alumina were grown in a flow-type chemical vapor deposition reactor with argon as a carrier gas. In addition, pure alumina films were prepared by the atomic layer deposition method. A strong emission band with the peak position at 4.4 eV and with the decay time in the μs-range was revealed for pure hafnia films. The emission peak at 7.74 eV with short nanosecond decay kinetics was observed in the luminescence spectra for pure alumina films. These emission bands were ascribed to the radiative decay of self-trapped excitons (an intrinsic luminescence) in pure HfO{sub 2} and Al{sub 2}O{sub 3} films, respectively. Along with intrinsic host emission, defect related luminescence bands with a larger Stokes shift were observed. In the emission spectra of the solid solution films (x=4; 17; 20 at%) the intrinsic emission bands are quenched and only the luminescence of defects (an anion vacancies) was observed. Based on transformation of the luminescence spectra and ns-luminescence decay kinetics, as well as changes in the time-resolved luminescence and luminescence excitation spectra, the relaxation processes in the films of solid solution are discussed. - Highlights: • Low temperature time−resolved PL spectra were studied in a broad range (1.5−9.5 eV). • We carried out a luminescent control of point defects (anion vacancies) and self−trapped excitons. • We observed photoluminescence of excitons bound on defects. • We observed changes of photoluminescence properties with varying ratio components.

  11. Structural and luminescence effects of Ga co-doping on Ce-doped yttrium aluminate based phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ayvacikli, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Canimoglu, A. [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Muresan, L.E., E-mail: laura_muresan2003@yahoo.com [Babes Bolyai University, Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Barbu Tudoran, L. [Babes Bolyai University, Electronic Microscopy Centre, Clinicilor 37, 400006 Cluj Napoca (Romania); Garcia Guinea, J. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karabulut, Y. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jorge, A. [Museo Nacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karali, T. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Can, N., E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Jazan University, Physics Department, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-05-05

    Herein, we primarily focus on luminescence spectrum measurements of various types of green emitting yttrium aluminate phosphors modified with gallium (Y{sub 3}Al{sub 5-x}Ga{sub x}O{sub 12}) synthesised by solid state reaction. The luminescent emission of samples depends on sample temperature and excitation radiation such as incident X-ray, electron and laser beam. Here, we measured radioluminescence (RL), cathodoluminescence (CL), photoluminescence (PL) along with XRD in order to clarify relationship between lattice defects and the spectral luminescence emissions. The RL and CL spectra of YAG:Ce exhibit an emission band ranging from 300 to 450 nm related to Y{sub Al} antisite defects. The broad emission band of garnet phosphors is shifted from 526 nm to 498 nm with increasing of Ga{sup 3+} content, while full width at half maximum (FWHM) of the band tends to be greater than the width of unmodified YAG:Ce garnet. Deconvolution of the spectrum reveals that three emission bands centred at 139, 234 and 294 °C occur in aluminate host garnets. - Highlights: • We present preparation of YAG:Ce{sup 3+}, Ga{sup 3+} phosphors by a solid state reaction method. • The shape and size of phosphor particles were investigated. • The luminescence properties were studied by different excitation sources.

  12. Effect of particle size and morphology on the properties of luminescence in ZnWO4

    International Nuclear Information System (INIS)

    Lisitsyn, V.M.; Valiev, D.T.; Tupitsyna, I.A.; Polisadova, E.F.; Oleshko, V.I.; Lisitsyna, L.A.; Andryuschenko, L.A.; Yakubovskaya, A.G.; Vovk, O.M.

    2014-01-01

    We investigated pulsed photoluminescence and pulsed cathodoluminescence in ZnWO 4 crystals and composite materials based on dispersed powders of zinc tungstate in the polymer matrix. It is shown that the size of crystal particles affects the luminescence decay time in excitation by electron and laser radiation. The decay time obtained for the composite material with nanoparticles 25 nm and 100 nm in size is equal to 5 µs and 7 µs, respectively. Relative values of the light yield of composite containing zinc tungstate crystals in the form of rods are found to be larger in comparison with crystallites in the form of grains. The mechanisms of luminescence recombination in laser and electron excitation are discussed. - Highlights: • Pulsed photoluminescence and pulsed cathodoluminescence spectra and decay kinetics of nano- and microcrystals of zinc tungstate in the organosilicic matrix compared to a single crystal were studied. • The luminescence decay kinetics and life-time of the excited state depend on the size of particles in the composite materials and on the type of excitation. • The probability of excitation of luminescence centers responsible for the band at 490 nm is higher which is apparently due to the larger capture cross-section and quantum yield

  13. Splitting of the luminescent excited state of the uranyl ion

    International Nuclear Information System (INIS)

    Flint, C.D.; Sharma, P.; Tanner, P.A.

    1982-01-01

    The luminescence spectra of some uranyl compounds has been studied. It has been proposed that the splitting of the luminescent excited state of the uranyl ion is due to a descent in symmetry experienced by the uranyl ion when it is placed in a crystal field. In recent years there has been developed a highly successful model of the electronic structure of the uranyl ion. In this paper the authors use this model to interpret the luminescence spectra of a variety of uranyl compounds

  14. Luminescence dating on Mars: OSL characteristics of Martian analogue materials and GCR dosimetry

    DEFF Research Database (Denmark)

    Jain, M.; Andersen, C.E.; Bøtter-Jensen, L.

    2006-01-01

    , and sedimentary precipitates such as sulphates and chlorides. We present here a preliminary investigation of the luminescence characteristics (sensitivity, dose response, fading) of some Martian analogue mineral and rock samples. These materials are likely to be zeroed by the solar UV light (200-300nm) under sub...

  15. Structure, luminescence and thermal quenching properties of Eu doped Sr{sub 2−x}Ba{sub x}Si{sub 5}N{sub 8} red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H.; Chen, L.; Zhou, X.F.; Liu, R.H., E-mail: griremlrh@126.com; Zhuang, W.D.

    2017-02-15

    Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasing x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs). - Graphical abstract: Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} solid solutions were prepared by the solid-state reaction method. The structure, luminescence and thermal quenching properties with varying Ba/Sr ratio were investigated in detail. - Highlights: • The stucture and luminescence properties of Eu doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were investigated. • The samples with the intermediate compositions(x=1.0,1.5) show better stability than the end members of both Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Ba{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. • The possible mechanism for the improvement of thermal quenching properties was proposed.

  16. Luminescence of two-dimensional ordered array of the ZnO quantum nanodots, obtained by means of the synthetic opal

    International Nuclear Information System (INIS)

    Gruzintsev, A.N.; Volkov, V.T.; Emelchenko, G.A.; Karpov, I.A.; Maslov, W.M.; Michailov, G.M.; Yakimov, E.E.

    2004-01-01

    The luminescence properties of ZnO films of different thickness obtained on a synthetic opal were investigated. Several narrow peaks in the exciton emission region related to the size quantum effect of the electron wave functions were detected. Two-dimensional ordered array of ZnO quantum dots formed inside the opal pores on the second sphere layer were found by the atomic force microscopy (AFM) and angle dependence of the luminescence spectra

  17. Sensitive luminescent determination of DNA using the terbium(III)-difloxacin complex

    International Nuclear Information System (INIS)

    Yegorova, Alla V.; Scripinets, Yulia V.; Duerkop, Axel; Karasyov, Alexander A.; Antonovich, Valery P.; Wolfbeis, Otto S.

    2007-01-01

    The interaction of the terbium-difloxacin complex (Tb-DFX) with DNA has been examined by using UV-vis absorption and luminescence spectroscopy. The Tb-DFX complex shows an up to 85-fold enhancement of luminescence intensity upon titration with DNA. The long decay times allow additional detection schemes like time-resolved measurements in microplate readers to enhance sensitivity by off-gating short-lived background luminescence. Optimal conditions are found at equimolar concentrations of Tb 3+ and DFX (0.1 or 1 μM) at pH 7.4. Under these conditions, the luminescence intensity is linearly dependent on the concentration of ds-DNAs and ss-DNA between 1-1500 ng mL -1 and 4.5-270 ng mL -1 , respectively. The detection limit is 0.5 ng mL -1 for ds-DNAs and 2 ng mL -1 for ss-DNA. The mechanism for the luminescence enhancement was also studied

  18. Novel and easy access to highly luminescent Eu and Tb doped ultra-small CaF2, SrF2 and BaF2 nanoparticles - structure and luminescence.

    Science.gov (United States)

    Ritter, Benjamin; Haida, Philipp; Fink, Friedrich; Krahl, Thoralf; Gawlitza, Kornelia; Rurack, Knut; Scholz, Gudrun; Kemnitz, Erhard

    2017-02-28

    A universal fast and easy access at room temperature to transparent sols of nanoscopic Eu 3+ and Tb 3+ doped CaF 2 , SrF 2 and BaF 2 particles via the fluorolytic sol-gel synthesis route is presented. Monodisperse quasi-spherical nanoparticles with sizes of 3-20 nm are obtained with up to 40% rare earth doping showing red or green luminescence. In the beginning luminescence quenching effects are only observed for the highest content, which demonstrates the unique and outstanding properties of these materials. From CaF 2 :Eu10 via SrF 2 :Eu10 to BaF 2 :Eu10 a steady increase of the luminescence intensity and lifetime occurs by a factor of ≈2; the photoluminescence quantum yield increases by 29 to 35% due to the lower phonon energy of the matrix. The fast formation process of the particles within fractions of seconds is clearly visualized by exploiting appropriate luminescence processes during the synthesis. Multiply doped particles are also available by this method. Fine tuning of the luminescence properties is achieved by variation of the Ca-to-Sr ratio. Co-doping with Ce 3+ and Tb 3+ results in a huge increase (>50 times) of the green luminescence intensity due to energy transfer Ce 3+ → Tb 3+ . In this case, the luminescence intensity is higher for CaF 2 than for SrF 2 , due to a lower spatial distance of the rare earth ions.

  19. Unique Chiral Interpenetrating d-f Heterometallic MOFs as Luminescent Sensors.

    Science.gov (United States)

    Wu, Zhi-Lei; Dong, Jie; Ni, Wei-Yan; Zhang, Bo-Wen; Cui, Jian-Zhong; Zhao, Bin

    2015-06-01

    One novel three-dimensional (3D) 3d-4f metal-organic framework (MOF), [TbZn(L)(CO3)2(H2O)]n (1) [HL = 4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine], has been successfully synthesized and structurally characterized. Structural analysis shows that compound 1 features a unique chiral interpenetrating 3D framework for the first time. The resulting crystals of 1 are composed of enantiomers 1a (P41) and 1b (P43), as was clearly confirmed by the crystal structure and the corresponding circular dichroism (CD) analyses of eight randomly selected crystals. The investigations on CD spectra based on every single crystal clearly assigned the Cotton effect signals. The powder X-ray diffraction measurement of 1 after being immersed in common solvents reveals that 1 possess excellent solvent stability. Furthermore, luminescent studies imply that 1 displays highly selective luminescent sensing of aldehydes, such as formol, acetaldehyde, and propanal.

  20. A luminescent nisin biosensor

    Science.gov (United States)

    Immonen, Nina; Karp, Matti

    2006-02-01

    Nisin is a lantibiotic, an antibacterial peptide produced by certain Lactococcus lactis strains that kills or inhibits the growth of other bacteria. Nisin is widely used as a food preservative, and its long-time use suggests that it can be generally regarded as safe. We have developed a method for determining the amount of nisin in food samples that is based on luminescent biosensor bacteria. Bacterial luciferase operon luxABCDE was inserted into plasmid pNZ8048, and the construct was transformed by electroporation into Lc. lactis strain NZ9800, whose ability to produce nisin has been erased by deletion of the gene nisA. The operon luxABCDE has been modified to be functional in gram-positive bacteria to confer a bioluminescent phenotype without the requirement of adding an exogenous substrate. In the plasmid pNZ8048, the operon was placed under control of the nisin-inducible nisA promoter. The chromosomal nisRK genes of Lc. lactis NZ9800 allow it to sense nisin in the environment and relay this signal via signal transduction proteins NisK and NisR to initiate transcription from nisA promoter. In the case of our sensor bacteria, this leads to production of luciferase and, thus, luminescence that can be directly measured from living bacteria. Luminescence can be detected as early as within minutes of induction. The nisin assay described here provides a detection limit in the sub-picogram level per ml, and a linear area between 1 - 1000 pg/ml. The sensitivity of this assay exceeds the performance of all previously published methods.

  1. AgesGalore-A software program for evaluating spatially resolved luminescence data

    International Nuclear Information System (INIS)

    Greilich, S.; Harney, H.-L.; Woda, C.; Wagner, G.A.

    2006-01-01

    Low-light luminescence is usually recorded by photomultiplier tubes (PMTs) yielding integrated photon-number data. Highly sensitive CCD (charged coupled device) detectors allow for the spatially resolved recording of luminescence. The resulting two-dimensional images require suitable software for data processing. We present a recently developed software program specially designed for equivalent-dose evaluation in the framework of optically stimulated luminescence (OSL) dating. The software is capable of appropriate CCD data handling, parameter estimation using a Bayesian approach, and the pixel-wise fitting of functions for time and dose dependencies to the luminescence signal. The results of the fitting procedure and the equivalent-dose evaluation can be presented and analyzed both as spatial and as frequency distributions

  2. Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency

    NARCIS (Netherlands)

    Desmet, L.; Ras, A.J.M.; Boer, de D.K.G.; Debije, M.G.

    2012-01-01

    We report conversion efficiencies of experimental single and dual light guide luminescent solar concentrators. We have built several 5¿¿cm×5¿¿cm and 10¿¿cm×10¿¿cm luminescent solar concentrator (LSC) demonstrators consisting of c-Si photovoltaic cells attached to luminescent light guides of Lumogen

  3. Dating Last Interglacial Coastal Systems Using New Feldspar Luminescence Technologies

    Science.gov (United States)

    Lamothe, M.

    2017-12-01

    The recent explosion in new luminescence dating technologies offers new opportunities to explore Quaternary marine coastal facies and landforms. However, tectonic and climatic processes controlling the development of Pleistocene coastal lithosomes are commonly obscured by their poorly constrained geological age. Luminescence dating of feldspar probes one order of magnitude deeper into geological time than radiocarbon and more than 5 times the current age range of quartz optically-stimulated luminescence, routinely used in luminescence dating. However, feldspar luminescence stimulated by infrared photons (eg IRSL) is hampered by anomalous fading. Successful correction methods developed by us over the last 15 years did produce sound chronologies but the fading-corrected ages carried large uncertainties. New approaches initiated by other laboratories, mainly in Europe, have isolated high temperature post-IRSL luminescence as this signal seems to be only slightly affected by fading. However, the gain in stability seems to be lessened due to bleachibility issues, generating age overestimations. We developed a novel protocol known as post-isothermal IRSL dating (Pit-IR) that focuses on a dual system of luminescence signals, probing low (50C) and medium (225C) temperature IRSL signals following isothermal treatments of various intensities. These protocols have been tested on Last interglacial coastal sediments in strikingly different GIA contexts along the Atlantic coastal areas of SE USA as well as from Morocco, Brazil and LIG sites in the Mediterranean basin. A systematic analysis of these results would suggest that a) falling-stages sequences are more commonly preserved as the OSL/IRSL ages are preferentially dating from the end of the MIS5e high stand and b) MIS5a marine sediments may be detectable away from areas generally thought to be affected by peripheral bulge collapse.

  4. Practical Implementation, Characterization and Applications of a Multi-Colour Time-Gated Luminescence Microscope

    Science.gov (United States)

    Zhang, Lixin; Zheng, Xianlin; Deng, Wei; Lu, Yiqing; Lechevallier, Severine; Ye, Zhiqiang; Goldys, Ewa M.; Dawes, Judith M.; Piper, James A.; Yuan, Jingli; Verelst, Marc; Jin, Dayong

    2014-10-01

    Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y2O2S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.

  5. Luminescence from Ce in sol-gel SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Seed Ahmed, H.A.A.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Koao, L.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Nagpure, I.M.; Gusowski, M.A. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa); Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, IB51, Box 339, Bloemfontein 9300 (South Africa)

    2012-05-15

    The sol-gel process provides an attractive low temperature alternative to the melt process for producing Ce-doped silica, but reports of the emission wavelength have not been consistent. In this paper, luminescence measurements using a variety of excitation methods, including cathodoluminescence not yet reported by other researchers, are compared and evaluated in the light of previously published data. Several papers report luminescence around 350 nm but emission near this wavelength was not found from our samples. This luminescence originates from Ce that has not yet been incorporated in the silica and is found in samples that have not undergone high temperature annealing. Our photoluminescence results from samples annealed in a reducing atmosphere suggest that emission from Ce incorporated in the silica lattice occurs near 455 nm, and some indication of the emission from Ce in amorphous clusters at 400 nm is also found. However, our results also confirm earlier indications that intrinsic defects in silica can create photoluminescence near both these wavelengths, which can make identification of the luminescence due to Ce difficult. Finally, it has been found that samples which have been annealed in air, and therefore display poor photoluminescence because most of the Ce occurs in the tetravalent form, are luminescent under electron beam excitation. It is suggested that during cathodoluminescence measurements Ce{sup 4+} ions capture electrons to form excited Ce{sup 3+} ions from which the luminescence originates.

  6. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  7. Investigations on luminescence behavior of Er3+/Yb3+ co-doped boro-tellurite glasses

    Science.gov (United States)

    Maheshvaran, K.; Arunkumar, S.; Venkata Krishnaiah, K.; Marimuthu, K.

    2015-01-01

    Er3+/Yb3+ co-doped boro-tellurite glasses with the chemical composition 30TeO2+(24 - x)B2O3 + 15SrO + 10BaO + 10Li2O + 10LiF + 1Er2O3 + xYb2O3 (where x = 0, 0.1, 0.5, 1 and 2 in wt%) have been prepared and their luminescence behavior were studied and reported. Absorption spectral measurements have been used to derive the Judd-Ofelt (JO) intensity parameters from the experimental and calculated oscillator strength values following the JO theory. The various lasing parameters such as stimulated emission cross-section (σEp), experimental and calculated branching ratios (βR) and radiative lifetime (τcal) for the 2H9/2 → 4I15/2, 4S3/2 → 4I15/2 and 4I13/2 → 4I15/2 emission transitions were determined using the JO intensity parameters. The absorption and emission cross-section values for the 4I13/2 → 4I15/2 emission band have been calculated using McCumbar theory and the Gain cross-section for the 4I13/2 → 4I15/2 emission transition also obtained. The upconversion emission mechanism have been studied through various energy transfer processes and the intensity of the upconversion emission transitions are found to increase with the increase in Yb3+ ion concentration. The luminescence decay curves corresponding to the 4I13/2 → 4I15/2 transition of the Er3+/Yb3+ co-doped boro-tellurite glasses under 980 nm excitation wavelength have also been studied and reported in the present work.

  8. Lanthanide-doped luminescent nanomaterials from fundamentals to bioapplications

    CERN Document Server

    Chen, Xueyuan; Tu, Datao

    2014-01-01

    Lanthanide-Doped Luminescent Nanomaterials reviews the latest advances in the development of lanthanide-doped luminescent inorganic nanoparticles for potential bioapplications. This book covers the chemical and physical fundamentals of these nanoparticles, such as the controlled synthesis methodology, surface modification chemistry, optical physics, and their promising applications in diverse bioassays, with an emphasis on heterogeneous and homogeneous in-vitro biodetection of tumor biomarkers. This book is intended for those readers who are interested in systematically understanding the materials design strategy, optical behavior of lanthanide ions, and practical bioapplications of lanthanide nanoparticles. It primarily focuses on the interdisciplinary frontiers in chemistry, physics and biological aspects of luminescent nanomaterials. All chapters were written by scientists active in this field and for a broad audience, providing both beginners and advanced researchers with comprehensive information on the ...

  9. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    Science.gov (United States)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of

  10. Luminescent properties of Y3Al5−xGaxO12:Ce crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Zorenko, T.; Malinowski, P.; Sidletskiy, O.; Neicheva, S.

    2014-01-01

    Absorption, luminescent and scintillation properties of Ce 3+ doped Y 3 Al 5−x Ga x O 12 crystals with Ga content in the x=1–5 range were investigated in this work and compared with the properties of YAG:Ce crystals. Apart from the traditional spectral methods (absorption, cathodoluminescence and light yield measurements), the intrinsic and Ce 3+ related luminescence of Y 3 Al 5−x Ga x O 12 :Ce solid-solution were also investigated using the luminescent spectroscopy under excitation by synchrotron radiation in the 3.7–25 eV range. We show that the optical properties Y 3 Al 5−x Ga x O 12 :Ce garnets monotonically change with increasing the Ga content in the x=0–3 range due to preferable localization of Ga ions in the tetrahedral position of the garnet lattice. At the highest Ga concentration (x>3) the deviation of the optical properties of Y 3 Al 5−x Ga x O 12 :Ce garnets is observed from the respective properties of these crystals with Ga content in the x=0–3 range due to occupation by Ga ions of the octahedral position in the garnet host. - Highlights: • Different dependence of optical properties of Y 3 Al 5−x Ga x O 12 :Ce crystals on Ga content in x=0–3 and 3–5 ranges. • Elimination of the luminescence of Y Al antisite defects in Y 3 Al 5−x Ga x O 12 :Ce crystals at x>2. • Significant improvement of the scintillation properties of Y 3 Al 5−x Ga x O 12 :Ce crystals at x=2 and 3 in comparison with YAG:Ce

  11. The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging.

    Science.gov (United States)

    Verri, G

    2009-06-01

    The photo-induced luminescence properties of Egyptian blue, Han blue and Han purple were investigated by means of near-infrared digital imaging. These pigments emit infrared radiation when excited in the visible range. The emission can be recorded by means of a modified commercial digital camera equipped with suitable glass filters. A variety of visible light sources were investigated to test their ability to excite luminescence in the pigments. Light-emitting diodes, which do not emit stray infrared radiation, proved an excellent source for the excitation of luminescence in all three compounds. In general, the use of visible radiation emitters with low emission in the infrared range allowed the presence of the pigments to be determined and their distribution to be spatially resolved. This qualitative imaging technique can be easily applied in situ for a rapid characterisation of materials. The results were compared to those for Egyptian green and for historical and modern blue pigments. Examples of the application of the technique on polychrome works of art are presented.

  12. The research of characteristic difference of selected frequency luminescence for desert sand

    International Nuclear Information System (INIS)

    Liu Chao; Wei Mingjian; Li Huhou

    2011-01-01

    The characters of selected frequency luminescence of four groups of samples from Badain Jaran desert are measured by BG2003 luminescence spectrograph. The measurement subjects include selected frequency optical stimulate luminescence spectrum, selected frequency thermoluminescence spectrum and the dose response curve. A double-peak map is obtained by the result from all groups of data and spectrum. The difference is emerged between each group. The optical stimulate luminescence and thermoluminescence is applied in the measurement process. The dispersion of photon count on every response wavelength is analyzed. Based on the analysis, a better result can be gained by selected frequency thermoluminescence. (authors)

  13. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  14. Thermal quenching of luminescence processes in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Duller, G.A.T.

    1995-01-01

    , which display very different behaviour. The first involves the internal transitions of common transition metal ions. The second is typical of centres not displaying excited states within the band gap that are likely to arise from direct recombination between the conduction band and the ground state......The technique of optically stimulated luminescence has important uses in the dose evaluation of irradiated feldspars. The luminescence process involves the eviction of electrons from donor traps, charge transfer through the conduction band, and recombination at acceptor sites; each...

  15. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region; Etude des processus d`absorption et de transfert d`energie au sein de materiaux inorganiques luminescents dans le domaine UV et VUV

    Energy Technology Data Exchange (ETDEWEB)

    Mayolet, A

    1995-11-29

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the `impurity bound exciton` model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author) 134 refs.

  16. Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: Structure and luminescence properties

    Science.gov (United States)

    Ma, Mengjiao; Li, Congcong; Shu, Dengkun; Wang, Chaohua; Xi, Peng

    2018-02-01

    A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4 × 106 a.u.) and long fluorescence lifetime (1.302 ms), owing to the favorable degree of energy matching between the triplet excited level of the ligand and the resonant level of Tb(III) ions. Based on the analysis of three-dimensional luminescence spectra, the as-prepared Tb(III) complex can be effectively excited in the range of 250-310 nm, and it shows high color purity, with a bright green appearance.

  17. Luminescent chiral ionic Ir(III) complexes: Synthesis and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Loredana, E-mail: loredana.ricciardi@unical.it [CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, 87036 Arcavacata di Rende (CS) (Italy); La Deda, Massimo; Ionescu, Andreea; Godbert, Nicolas; Aiello, Iolinda; Ghedini, Mauro [MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM and CR INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Arcavacata di Rende (CS) (Italy); Fusè, Marco, E-mail: marco.fuse@unimi.it [Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Golgi 19, 20133 Milano (Italy); Rimoldi, Isabella; Cesarotti, Edoardo [Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Golgi 19, 20133 Milano (Italy)

    2016-02-15

    Three homologous series of luminescent octahedral ionic Ir(III) complexes (1–12) with a dual stereogenic center of general formula {sup Δ,Λ} {sup (R,S)}[(ppy){sub 2}Ir(R-campy)]X, where ppy=2-phenylpyridine, R-campy=2-methyl-5,6,7,8-tetrahydroquinolin-8-amine (Me-campy) or 8-amino-5,6,7,8-tetrahydroquinolines (H-campy) and as counterions X{sup −}=Cl{sup −} or CH{sub 3}COO{sup −} have been synthesized and characterized. The NMR characterization of each complex highlighted the diastereoisomeric purity and the absolute configuration has been confirmed by Electronic Circular Dichroism spectroscopy. The absorption and the luminescence properties of the compounds in solution and in solid state have been investigated by UV–vis, steady-state emission and time-correlated single-photon counting spectroscopy. The obtained results from the 12 compounds highlight the difficult to correlate photophysical properties in solution to the stereochemistry, while excited states decay studies of the solid state samples indicate a correlation between photophysics and packing mode which is affected by the different stereochemistry. - Highlights: • Luminescent chiral ionic Ir(III) complexes have been synthesized and characterized. • Presence in the same structure of two stereogenic centers. • Use of camphorsulfonate as resolving anion to obtain enantiomerically pure samples. • Stereoisomers produce aggregates with different emitting properties. • Lifetimes from solid samples show the presence of AIPE.

  18. Influence of Impurities on the Luminescence of Er3+ Doped BaTiO3 Nanophosphors

    Directory of Open Access Journals (Sweden)

    G. D. Webler

    2014-01-01

    Full Text Available The influence of the presence of barium carbonate (BaCO3 phase on the luminescence properties of barium titanate nanocrystals (BaTiO3 powders was investigated. Structural and optical characterizations of erbium (Er3+ doped BaTiO3 synthesized by the sol-emulsion-gel were performed. Using Fourier transform infrared spectroscopy and X-ray powder diffraction, we identified the presence of impurities related to BaCO3 and quantified its fraction. It was observed that the presence of BaCO3 phase, even at low levels, depletes significantly the infrared-to-visible upconverted luminescence efficiency of the produced nanopowders.

  19. A luminescence lifetime assisted ratiometric fluorimeter for biological applications

    Science.gov (United States)

    Lam, Hung; Kostov, Yordan; Rao, Govind; Tolosa, Leah

    2009-12-01

    In general, the most difficult task in developing devices for fluorescence ratiometric sensing is the isolation of signals from overlapping emission wavelengths. Wavelength discrimination can be achieved by using monochromators or bandpass filters, which often lead to decreased signal intensities. The result is a device that is both complex and expensive. Here we present an alternative system—a low-cost standalone optical fluorimeter based on luminescence lifetime assisted ratiometric sensing (LARS). This paper describes the principle of this technique and the overall design of the sensor device. The most significant innovation of LARS is the ability to discriminate between two overlapping luminescence signals based on differences in their luminescence decay rates. Thus, minimal filtering is required and the two signals can be isolated despite significant overlap of luminescence spectra. The result is a device that is both simple and inexpensive. The electronic circuit employs the lock-in amplification technique for the signal processing and the system is controlled by an onboard microcontroller. In addition, the system is designed to communicate with external devices via Bluetooth.

  20. Luminescence dating of the lacustrine record of Vršac (Carpathian Basin, Serbia) - implications for a palaeoenvironmetal reconstruction

    Science.gov (United States)

    Klasen, N.; Zeeden, C.; Markovic, S.; Fischer, P.; Lehmkuhl, F.; Schulte, P.; Bösken, J.; Hambach, U.; Vött, A.

    2017-12-01

    The Carpathian Basin is one of the key areas to investigate the influence of the continental, Mediterranean and Atlantic climate interaction over Europe. The available Upper Pleistocene and Holocene geoarchives in the region are mainly loess-paleosol records. Long lacustrine records are sparse and do not always span the whole last glacial cycle. In the area around Vršac, we drilled a 10 m core to contribute to the palaeoenvironmental reconstruction of the Carpathian Basin. Electrical Resistivity Tomography (ERT) was used to find the best-suited drilling location. We applied luminescence and radiocarbon dating, because a robust chronology is important for the interpretation of the sedimentary record. Pulsed OSL measurements were carried out to identify the best sampling positions. We expect runoff from the catchment being the main source of the lacustrine sediments, because coarse fluvial input is absent. Knowledge about the depositional conditions is important in luminescence dating to evaluate partial bleaching prior to deposition, which may cause age overestimation. Therefore, we compared infrared stimulated luminescence (IRSL) signals with post infrared infrared stimulated luminescence (pIRIR) signals, which bleach at different rates. Estimation of a representative water content has major influence on the age estimate, but remains challenging in luminescence dating. We measured the present day water content as well as the saturation water content, to account for variations over time. Luminescence and radiocarbon ages differ greatly from each other. According to the laboratory experiments, luminescence dating was reliable and we conclude that radiocarbon ages were underestimated because of an intrusion of younger organic material. The initial results demonstrated the potential of the drill core. Integrating more proxy data will be useful to enhance the importance of the geoarchive at Vršac for a better understanding of the last glacial cycle in the Carpathian

  1. Dependence of (anomalous) fading of infra-red stimulated luminescence on trap occupancy in feldspars

    DEFF Research Database (Denmark)

    Morthekai, P.; Jain, Mayank; Gach, Grzegorz

    2013-01-01

    Dose dependency of anomalous fading of infra-red stimulated luminescence (IRSL) from feldspars has been investigated using radiations of different ionisation qualities. The rate of fading of the IRSL signal after proton irradiation (9.4–30%/decade) is on an average almost twice compared...

  2. Luminescence excitation characteristics of Ca-, Na- and K-aluminosilicates (feldspars), in the stimulation range 20-500 eV: optical detection of XAS

    CERN Document Server

    Poolton, N R J; Quinn, F M; Pantos, E; Andersen, C E; Bøtter-Jensen, L; Johnsen, O; Murray, A S

    2003-01-01

    We demonstrate that the visible/UV luminescence from common feldspar crystals (NaAlSi sub 3 O sub 8 , KAlSi sub 3 O sub 8 and CaAl sub 2 Si sub 2 O sub 8) can be used to detect detailed L-edge and associated near-edge absorption structure of the main constituent atoms (Ca, K, Na, Al, Si), when exciting in the energy range 20-500 eV. Comparisons of the spectral features are drawn with similar measurements made on the associated materials SiO sub 2 , Al sub 2 O sub 3 and CaCO sub 3. The potential for using optically detected x-ray absorption spectroscopy as a method for identifying the luminescent components of mixed mineral samples is considered.

  3. Characterization and luminescent properties of thermally annealed olivines

    International Nuclear Information System (INIS)

    Colin-Garcia, Maria; Correcher, Virgilio; Garcia-Guinea, Javier; Heredia-Barbero, Alejandro; Roman-Lopez, Jesus; Ortega-Gutierrez, Fernando; Negron-Mendoza, Alicia; Ramos-Bernal, Sergio

    2013-01-01

    Olivine is an iron-magnesium solid solution silicate (Mg,Fe) 2 SiO 4 and it is probably one of the most abundant mineral phase in the Solar System, it is present in the primitive carbonaceous meteorites (i.e Allende), and in ordinary chondritic meteorite, comets or terrestrial planets. The olivine grains in those bodies have been exposed to different radiation sources like UV, electrons, cosmic radiation, etc. Here, we explore the effect of ionizing and non ionizing radiation on the luminescence emission of the two well-characterised olivine samples from Mexico and Spain by means of cathodoluminescence and thermoluminescence. The analyses by X-ray dispersive energies in the scanning electron microscopy show differences between the samples in the amount of iron and magnesium and also show traces of rare elements. Olivine exhibits spectral cathodoluminescence emissions of low intensity, explained for the quenching of the luminescence of the iron, and sharp signals assigned as impurities. Cathodoluminescence and thermoluminescence glow curves of the natural, and UV induced olivine samples were obtained. Our results show that thermal treatments at 1100 °C change the mineral molecular structure and the luminescence properties of this mineral phase. These results confirm an active participation of physical factors influencing the luminescent properties of olivine. -- Highlights: ► Luminescent properties of two olivines samples (Mexican and Spanish) were explored. ► EDS show different iron and magnesium content and traces of rare elements on both. ► Olivine exhibits spectral CL emissions of low intensity due to the quenching of iron. ► Treatments at 1100 °C change the mineral structure and its response to UV radiation

  4. Synthesis and luminescent properties of Y(As, Nb, P, V)O4:Eu3+ red phosphors by combinatorial chemistry method

    International Nuclear Information System (INIS)

    Zeon, Il Woon; Park, Hee Dong; Sohn, Kee Sun; Ryu, Seung Kon

    2001-01-01

    Eu doped YRO 4 (R=As, Nb, P, V)red phosphors were prepared by the combinatorial chemistry method. The quaternary material library of tetrahedron-type composition array was designed to investigate the luminescence of the host material under UV and VUV excitations (254, 147 nm). The photoluminescent characteristics of the samples were comparable to the commercially available red phosphors such as (Y, Gd)BO 3 :Eu 3+ and Y 2 O 3 :Eu 3+ . In view of the luminescence yield, V rich region was found to be optimum under UV excitation. But the results under VUV excitation were different from those of UV excitation, the samples of the composition containing a large amount of P shows the highest luminescence. Especially, higher luminescence was obtained in Y 0.9 (As 0.06 Nb 0.06 P 0.83 V 0.06 )O 4 :Eu 0.1 phosphors than commercial (Y, Gd)BO 3 red phosphors under 147 nm excitation

  5. Study of the absorption and energy transfer processes in inorganic luminescent materials in the UV and VUV region

    International Nuclear Information System (INIS)

    Mayolet, A.

    1995-01-01

    In order to find a green emitting phosphor showing high quantum efficiency and a short decay time which can be used in the color Plasma Display Panels developed by Thomson-TTE-TIV company, a VUV spectrophotometer built at IPN Orsay, using the synchrotron radiation from the SUPER-ACO storage ring as an excitation source, allow us the simultaneous recording of the luminescence excitation and diffuse reflectivity spectra of the inorganic compounds in the UV-VUV range. In addition, this experimental set-up enable us to determine the luminescence quantum efficiency of phosphors in the whole energy range of investigation. The chemical synthesis of rare-earth ortho-- and metaborate and rare-earth ortho- and metaphosphate doped with trivalent lanthanide ions cerium, praseodymium, europium and terbium have been made. The energy variation of the thresholds of the luminescence excitation mechanisms in function of the nature and the structure of the host matrix is discussed. We have determined the influence of the nephelauxetic effect and the crystal field intensity on the energy of the f-d inter-configuration transitions. The variation of the luminescence quantum efficiency of the dopant ion is interpreted through the 'impurity bound exciton' model. The systematic comparison of the cerium and terbium trivalent ions spectroscopic properties in the Y(AG)G host lattice series stands to reason that the self-ionized state of the luminescent center plays an important role in the rate of the non radiative relaxation. It is the redox power of the host matrix which imposes to the luminescent center, the energy of this state. (author)

  6. Characterization and Luminescence Properties of Color-Tunable Dy3+-Doped BaY2ZnO5 Nanophosphors

    Science.gov (United States)

    Sonika; Khatkar, S. P.; Khatkar, Avni; Kumar, Rajesh; Taxak, V. B.

    2015-01-01

    Dy3+-doped BaY2ZnO5 nanophosphors were successfully synthesized by use of a solution combustion process. The effects of sintering temperature and dysprosium concentration on the structural and luminescence characteristics of the phosphors were investigated. X-ray diffraction (XRD) analysis confirmed the formation of pure orthorhombic BaY2ZnO5 with the space group Pbnm at 1100°C. Morphological investigation revealed spherical nanoparticles with smooth surfaces. The luminescence features of the nanophosphor were studied by use of photoluminescence excitation (PLE) and photoluminescence emission (PL), with luminescence decay curves and color ( x, y) coordinates. On excitation at 355 nm, BaY2ZnO5 nanophosphor doped with trivalent dysprosium ion emits white light as a mixture of blue (4F9/2 → 6H15/2) and yellow (4F9/2 → 6H13/2) emission. Concentration quenching is explained on the basis of cross-relaxation between intermediate Dy3+ states. Thus, BaY2ZnO5:Dy3+ nanophosphor may be suitable for producing efficient white light for ultraviolet-light-emitting diodes (UV-LEDs), fluorescent lamps, and a variety of optical display panels.

  7. A study of luminescence and absorption spectra of GaP

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Abdel Wahab, S.M.

    1994-08-01

    Experimental luminescence and absorption spectra of GaP at room temperature are presented. A theoretical analysis has been performed on the luminescence and absorption spectra in GaP. The experimental data are in good agreement with the theoretical results. (author). 18 refs, 8 figs

  8. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    Science.gov (United States)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  9. Study of the luminescence properties of a natural amazonite

    Energy Technology Data Exchange (ETDEWEB)

    Correcher, V., E-mail: v.correcher@ciemat.es [CIEMAT, Av. Complutense 22, Madrid 28040 (Spain); Garcia-Guinea, J. [Museo Nacional de Ciencias Naturales, CSIC, C/Jose Gutierrez Abascal 2, Madrid 28006 (Spain)

    2011-09-15

    Most gemstones, being natural materials (silicates, carbonates, phosphates, etc.), exhibit luminescence emission. This property could be potentially employed for personal dosimetry in the case of radiation accident or radiological terrorism where conventional monitoring has not been established. We, herein, report on the thermoluminescence (TL), radioluminescence (RL) and infra-red stimulated luminescence (IRSL) response of a well-characterised natural amazonite (KAlSi{sub 3}O{sub 8}) that, due to its bright blue-green colour when polished, is used as a gemstone. The luminescence emission wavelengths, intensities and thermal kinetics of the amazonite luminescence curves reveal that the ultraviolet band measured on amazonite aliquots is similar to other common K-rich feldspars. On this basis, one can conclude (i) association between twinning and the UV-blue TL emission can be related to structural defects located in the twin-domain boundaries where ionic alkali-self-diffusion, irreversible water losses and irreversible dehydroxylation processes can be involved. (ii) Amazonite exhibits a complex structure with several planar defects (twinning and exsolution interphases which can hold hydroxyl groups, water molecules, etc.) and point defects (impurities, Na, Pb, Mn, etc.) that can act as luminescence centres, and in fact, green and red emissions are respectively associated with the presence of Mn and Fe impurities. Finally, (iv) the thermal stability tests performed on the TL emission of the amazonite confirm a continuum in the trap distribution, i.e. progressive changes in the glow curve shape, intensity and temperature position of the maximum peak.

  10. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    Science.gov (United States)

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  11. ZnO Luminescence and scintillation studied via photoexcitation, X-ray excitation, and gamma-induced positron spectroscopy

    Science.gov (United States)

    Ji, J.; Colosimo, A. M.; Anwand, W.; Boatner, L. A.; Wagner, A.; Stepanov, P. S.; Trinh, T. T.; Liedke, M. O.; Krause-Rehberg, R.; Cowan, T. E.; Selim, F. A.

    2016-08-01

    The luminescence and scintillation properties of ZnO single crystals were studied by photoluminescence and X-ray-induced luminescence (XRIL) techniques. XRIL allowed a direct comparison to be made between the near-band emission (NBE) and trap emissions providing insight into the carrier recombination efficiency in the ZnO crystals. It also provided bulk luminescence measurements that were not affected by surface states. The origin of a green emission, the dominant trap emission in ZnO, was then investigated by gamma-induced positron spectroscopy (GIPS) - a unique defect spectroscopy method that enables positron lifetime measurements to be made for a sample without contributions from positron annihilation in the source materials. The measurements showed a single positron decay curve with a 175 ps lifetime component that was attributed to Zn vacancies passivated by hydrogen. Both oxygen vacancies and hydrogen-decorated Zn vacancies were suggested to contribute to the green emission. By combining scintillation measurements with XRIL, the fast scintillation in ZnO crystals was found to be strongly correlated with the ratio between the defect luminescence and NBE. This study reports the first application of GIPS to semiconductors, and it reveals the great benefits of the XRIL technique for the study of emission and scintillation properties of materials.

  12. Iron control of the Vibrio fischeri luminescence system in Escherichia coli.

    Science.gov (United States)

    Dunlap, P V

    1992-01-01

    Iron influences luminescence in Vibrio fischeri; cultures iron-restricted for growth rate induce luminescence at a lower optical density (OD) than faster growing, iron-replete cultures. An iron restriction effect analogous to that in V. fischeri (slower growth, induction of luminescence at a lower OD) was established using Escherichia coli tonB and tonB+ strains transformed with recombinant plasmids containing the V. fischeri lux genes (luxR luxICDABEG) and grown in the presence and absence of the iron chelator ethylenediamine-di(o-hydroxylphenyl acetic acid) (EDDHA). This permitted the mechanism of iron control of luminescence to be examined. A fur mutant and its parent strain containing the intact lux genes exhibited no difference in the OD at induction of luminescence. Therefore, an iron-binding repressor protein apparently is not involved in iron control of luminescence. Furthermore, in the tonB and in tonB+ strains containing lux plasmids with Mu dI(lacZ) fusions in luxR, levels of beta-galactosidase activity (expression from the luxR promoter) and luciferase activity (expression from the luxICDABEG promoter) both increased by a similar amount (8-9 fold each for tonB, 2-3 fold each for tonB+) in the presence of EDDHA. Similar results were obtained with the luxR gene present on a complementing plasmid. The previously identified regulatory factors that control the lux system (autoinducer-LuxR protein, cyclic AMP-cAMP receptor protein) differentially control expression from the luxR and luxICDABEG promoters, increasing expression from one while decreasing expression from the other. Consequently, these results suggest that the effect of iron on the V. fischeri luminescence system is indirect.

  13. Green and red luminescence in co-precipitation synthesized Pr:LuAG nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Arun; Kumar, K. Ashok; Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai–600 025, Tamil Nadu (India); Asokan, K. [Materials Science Group, Inter University Accelerator Centre, New Delhi-110067 (India)

    2016-05-06

    Pr:LuAG nanophosphor is an effective candidate in magnetic resonance imaging coupled positron emission tomography (MRI-PET) for medical imaging and scintillator applications. LuAG:Pr (0.05, 0.15 mol%) nanoscale ceramic powders were synthesized by co-precipitation method using urea as precipitant. Effect of antisite defect on structure and luminescence behavior was investigated. Pr:LuAG nanoceramic powders are found crystallized in cubic structure by high temperature calcination at 1400 °C and it shows antisite defect. HR-SEM analysis revealed spherically shaped Pr:LuAG nanoceramic particulate powders with ∼100 nm size. By the excitation at 450 nm, Pr:LuAG nanophosphor exhibit green to red luminescence in the wavelength range of 520 to 680 nm, which is originated from multiplet transition of Pr{sup 3+} ions.

  14. Luminescent properties of Ln3+ doped tellurite glasses containing AlF3

    Science.gov (United States)

    Walas, Michalina; Pastwa, Agata; Lewandowski, Tomasz; Synak, Anna; Gryczyński, Ignacy; Sadowski, Wojciech; Kościelska, Barbara

    2016-09-01

    The low-phonon energy tellurite glasses TeO2-BaO-Bi2O3 and TeO2-BaO-Bi2O3-AlF3 triply doped with Eu3+, Tb3+, Tm3+ ions in two different molar ratios were synthesized using melt-quenching technique. Their structure and luminescence properties were widely investigated by X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence Spectroscopy (PL). The luminescence spectra of Eu3+, Tb3+, Tm3+ co-doped glasses show apart of the bands corresponding to the 4f-4f transitions of lanthanide ions also band corresponding to glass matrix. AlF3 doping increases emission intensity, although to improve overall emission color further studies on molar composition of samples and the molar ratio of the components should be carried out.

  15. Peculiarities of luminescence of low-temperature-deformed cadmium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Negrij, V.D.; Osip' yan, Yu.A. (AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela)

    1982-02-01

    Spatially resolved photoluminescence of CdS crystals deformed at low temperatures is investigated. It is revealed that production and movement of certain dislocations, i. e. microplastic deformation take place in the crystal under the effect of uniaxial loading F >= 10 kG/mm/sup 3/ at 6 K. Dislocations during their movement in the sliding planes produce specific defects in the crystalline lattice which, being the effective centres of irradiation recombination with characteristic radiation spectrum are presented in the form of luminescent traces which passed through the dislocation crystal. A group of symmetry of these centers is determined by means of piesospectroscopic investigations of the obtained radiation spectrum.

  16. Contribution to numerical radiology. Study of a bidimensional imaging device that use Electrically Stimulated Luminescence. The case of mammography

    International Nuclear Information System (INIS)

    Ayral, Jean-Luc

    1990-01-01

    Projection radiography is in a fast change period. This work describes the study and demonstration of a new type of 2D flat X-Ray sensor for mammography and delivering a digital signal. X-ray transmission study of breast tissues leads to: a- definition of X-Ray photons properties for optimized signal-to-noise ratio, and b-specifications of a 2D X-Ray sensor such as mean exposure, dynamic range and pixel size. Then the X-Ray detection processes using a direct or a delayed luminescence mechanism are reviewed. The detailed analysis of the different ways for detecting visible photons is combined with the System specifications (pixel size, image reading time) in order to characterize (from a signal-to-noise ratio aspect) an X-Ray imaging system integrating a delayed luminescence property. The imaging plate and associated luminescent material are specified by their minimum X-Ray absorption and conversion gain. The Gudden- Pohl effect, or Electrically Stimulated Luminescence (ESL) is experimentally studied and quantified under X-Ray excitation in ZnCdS: Cu, Al materials. An original UV sensitization technique opens us the way to highly reproducible results and large sensitivity. The obtained information storage time in the material is compatible with a delayed image reading. These results allow the achievement of an X-Ray imaging demonstrator integrating the ESL imaging plate, an intensified CCD sensor and the sensitization technique. First images are obtained. Further conception of real dimension X-Ray imaging System for mammography is described. (author) [fr

  17. Study of the luminescence properties of dental materials for their use in accidental dosimetry

    International Nuclear Information System (INIS)

    Veronese, Ivan; Cantone, Marie C.; Guzzi, Gianpaolo

    2008-01-01

    Full text: The current social and political situation in many world areas and the increasing hostilities between countries and cultures have accentuated the risk of a malicious use of ionising radiations. Terrorist attacks with the intentional disseminations of radioactive materials in urban settlements may involve a large number of persons, and a rapid estimation of the severity of the exposure is required for undertaking suitable protective actions and supporting decision making. Promising methodologies for a prompt dose evaluation, are those exploiting the luminescence and dosimetric properties of objects and materials which can be easily found in the contaminated area. Among these objects, dental materials have the advantage to be on contact with human body and they could therefore represent individual dosimeters in case of accidental exposure to ionising radiation. The interest in the use of dental ceramics for dosimetric purposes dates back to late 1970, however, it is only through the use of high-sensitive experimental techniques and instrumentation today available, that the potentiality of such materials as accidental dosimeters can be exploited. Moreover, innovative materials are being continuously introduced into the market, containing new additives and pigments with peculiar optical properties. In this study, Thermally Stimulated Luminescence (TSL) and Optically Stimulated Luminescence (OSL) techniques are applied to investigate the luminescence and dosimetric properties of several dental materials, including resins, glass and feldspatic ceramics, and also zirconia and alumina based ceramics, being their use widely increased in the recent years in substitution of metal cores. (author)

  18. Fabrication of bright and thin Zn₂SiO₄ luminescent film for electron beam excitation-assisted optical microscope.

    Science.gov (United States)

    Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa

    2015-07-13

    We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.

  19. Spectroscopic investigation on europium doped heavy metal borate glasses for red luminescent application

    Energy Technology Data Exchange (ETDEWEB)

    Hegde, Vinod; Wagh, Akshatha; Kamath, Sudha D. [Manipal University, Department of Physics, Manipal Institute of Technology, Manipal (India); Hegde, Hemanth [Manipal University, Department of Chemistry, Manipal Institute of Technology, Manipal (India); Vishwanath, C.S.D. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2017-05-15

    The present study explores a new borate family glasses based on 10ZnO-5Na{sub 2}O-10Bi{sub 2}O{sub 3}-(75 - x) B{sub 2}O{sub 3}-xEu{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1, 1.5, 2, 3 mol%) composition, synthesized by rapid melt quench technique. Prepared glasses were subjected to the density and refractive index measurements and their values were used to calculate other physical properties of the glass matrix as a function of Eu{sup 3+} concentration. XRD confirmed amorphous nature of the glasses. FTIR spectra in the absorption mode were recorded in the 400-4000 cm{sup -1} region to identify different functional groups in the glass matrix. Deconvoluted FTIR spectra showed increase in BO{sub 4} units with rise in europium content which confirmed the 'network strengthener' role of europium ions by creating bridging oxygens (BOs). Optical properties were investigated for their luminescence behavior through various spectroscopic techniques such as UV-Vis-NIR absorption, excitation, emission, decay profiles, and color measurements at room temperature. Lasing properties of the glasses like total radiative life time, branching ratio, emission cross section, and optical gain were obtained from the calculated Judd-Ofelt (Ω{sub 2},Ω{sub 4}) intensity parameters. From the measured values of emission, cross sections, branching ratios, life times, strong photoluminescence features, and CIE chromaticity coordinates, 0.5 mol% of Eu{sup 3+} ions doped ZnNaBiB glasses showed optimum performance and are potential candidate for red light generation at 613 nm. (orig.)

  20. Thermally and optically stimulated luminescence of early medieval blue-green glass mosaics

    Energy Technology Data Exchange (ETDEWEB)

    Galli, A. E-mail: anna.galli@mater.unimib.it; Martini, M.; Montanari, C.; Sibilia, E

    2004-12-01

    The preliminary results of a study related to luminescent mechanisms in glass mosaic tesserae are presented. The samples came from a medieval glass deposit found during archaeological excavations in the S. Lorenzo Church in Milan. Energy Dispersive X-rays Fluorescence (EDXRF) measurements were performed to obtain information on the elemental composition of the materials. Thermally Stimulated Luminescence (TSL, both conventional and wavelength resolved) and Optically Stimulated Luminescence (OSL) analyses allowed to get information about traps and luminescence centres. The observed luminescence characteristics were close to that of quartz, showing the presence of an easy to bleach trap (300 deg. C, 1.95 eV) and of a hard to bleach trap (350 deg. C, 2.20 eV); charge transfer phenomena, involving the low-temperature peaks have been observed. There is a strong indication that the easy to bleach traps are responsible for both OSL and TSL emission at 300 deg. C.

  1. Thermally and optically stimulated luminescence of early medieval blue-green glass mosaics

    International Nuclear Information System (INIS)

    Galli, A.; Martini, M.; Montanari, C.; Sibilia, E.

    2004-01-01

    The preliminary results of a study related to luminescent mechanisms in glass mosaic tesserae are presented. The samples came from a medieval glass deposit found during archaeological excavations in the S. Lorenzo Church in Milan. Energy Dispersive X-rays Fluorescence (EDXRF) measurements were performed to obtain information on the elemental composition of the materials. Thermally Stimulated Luminescence (TSL, both conventional and wavelength resolved) and Optically Stimulated Luminescence (OSL) analyses allowed to get information about traps and luminescence centres. The observed luminescence characteristics were close to that of quartz, showing the presence of an easy to bleach trap (300 deg. C, 1.95 eV) and of a hard to bleach trap (350 deg. C, 2.20 eV); charge transfer phenomena, involving the low-temperature peaks have been observed. There is a strong indication that the easy to bleach traps are responsible for both OSL and TSL emission at 300 deg. C

  2. Optical stimulated luminescence (OSL) dating

    International Nuclear Information System (INIS)

    Banerjee, D.

    1999-01-01

    Since the pioneering work by Huntley et al. (1985), optical dating is being increasingly recognised as an important technique for establishing a time frame of deposition of sediments (Aitken, 1998). Optical dating differs from thermoluminescence (TL) dating in that visible/infrared light from lasers or LEDs (light-emitting-diodes) is used as a means of stimulation, in contrast to thermal stimulation. It has several advantages over TL dating: (i) the resetting of the OSL (optically stimulated luminescence) clock is more effective than that of TL clock; for sediments transported under water or in other situations where the sediment grains have undergone inhomogeneous bleaching, this property ensures that ages based on optical dating are generally more reliable than TL ages, (ii) the optical dating technique is non-destructive, and multiple readouts of the optical signal is possible; this feature has resulted in the development of single-aliquot and single-grain protocols (Murray and Wintle, 1999; Banerjee et al. 1999), (iii) the sample is not heated as in TL; thus, spurious luminescence is avoided and there is a significant reduction in blackbody radiation. Dating of materials which change phase on heating is also practical, and finally, (iv) thermal quenching of luminescence is negligible, allowing accurate estimation of kinetic parameters using standard techniques and providing access to deep OSL traps. This characteristic may be helpful in extending the limits of optical dating beyond the last 150 ka from a global point of view

  3. An optically stimulated luminescence study of porcelain related to radiation dosimetry

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Jungner, H.

    1995-01-01

    Stokes and anti-Stokes shifted in energy. Glazing is shown in some cases to be considerably more sensitive as a radiation dosemeter than the main porcelain ceramic. By comparison with the properties of artifical phosphors, the principal luminescent matrix is identified as being Al2O3......This article describes the essential features regarding the photo-stimulated luminescence of porcelain: both the main ceramic and glazing materials are studied. In each case, radiation dose dependent signals are observed, superimposed on dose independent luminescence transitions that are both...

  4. Optically stimulated luminescence dosimetry with gypsum wallboard (drywall)

    International Nuclear Information System (INIS)

    Thompson, J. W.; Burdette, K. E.; Inrig, E. L.; Dewitt, R.; Mistry, R.; Rink, W. J.; Boreham, D. R.

    2010-01-01

    Gypsum wallboard (drywall) represents an attractive target for retrospective dosimetry by optically stimulated luminescence (OSL) in the event of a radiological accident or malicious use of nuclear material. In this study, wallboard is shown to display a radiation-induced luminescence signal (RIS) as well as a natural background signal (NS), which is comparable in intensity to the RIS. Excitation and emission spectra show that maximum luminescence intensity is obtained for stimulation with blue light-emitting diodes (470 nm) and for detection in the ultraviolet region (290-370 nm). It is necessary to decrease the optical stimulation power dramatically in order to adequately separate the RIS from the interfering background signal. The necessary protocols are developed for accurately measuring the absorbed dose as low as 500 mGy and demonstrate that the RIS decays logarithmically with storage time, with complete erasure expected within 1-4 d. (authors)

  5. Luminescence and color center distributions in K3YB6O12:Ce3+ phosphor

    International Nuclear Information System (INIS)

    Yang, Li; Wan, Yingpeng; Weng, Honggen; Huang, Yanlin; Chen, Cuili; Seo, Hyo Jin

    2016-01-01

    Polycrystalline Ce 3+ -doped K 3 YB 6 O 12 (1–14 mol%) phosphors were prepared by facile chemical sol–gel synthesis. The phase formation of the phosphors was confirmed by x-ray powder diffraction (XRD) analysis. The photoluminescence excitation spectra (PLE), emission spectra (PL) and the luminescence decay curves were tested. Under the near-UV light, the phosphors present the emission from blue color to yellowish green due to the allowed 4 f  –5 d transitions of Ce 3+ ions. The absolute quantum efficiency (QE) of K 3 YB 6 O 12 :Ce 3+ can reach 53% under the excitation of near-UV light. The luminescence thermal quenching of the phosphor was investigated by the temperature-dependent spectra. The crystallographic site of Ce 3+ ions in the lattice was identified and discussed on the basis of luminescence characteristics and structural data. There is only one isolated Ce 3+ center occupying the Y(II) sites in the lightly doped samples presenting a typical doublet emission profile. While the Ce 3+ multi-centers could be created with the enhancement of the doping levels, which could induce the distinct red-shift of the spectra due to the dipole–dipole interactions. The result in this work could be useful for the further investigation of other rare earth ions in this host. (paper)

  6. A novel 3D nanoarchitecture of PrVO4 phosphor: Selective synthesis, characterization, and luminescence behavior

    International Nuclear Information System (INIS)

    Thirumalai, J.; Chandramohan, R.; Vijayan, T.A.

    2011-01-01

    Graphical abstract: Nanostructures of tetragonal PrVO 4 with novel 3D hierarchical architectures self-assembled nanorods were successfully synthesized by a hydrothermal method in ethylenediamine tetra-acetic acid (EDTA) mediated processes are ideal functional components for next generation luminescent devices. Research highlights: → Synthesis of self-assembled 3D nanoarchitecture of PrVO 4 phosphor. → Using template-free hydrothermal method. → pH, temperature and capping molecules control morphology of the products. → Detailed structural, morphology and luminescence were studied. - Abstract: Nanostructures of tetragonal PrVO 4 with novel 3D hierarchical architectures self-assembled nanorods were successfully synthesized by a hydrothermal method in ethylenediamine tetra-acetic acid (EDTA) mediated processes. Comprehensive structural, morphological studies like X-ray diffraction, scanning and transmission electron microscopy were employed to characterize the as-obtained products. In the hydrothermal process, EDTA not only acts as a chelating reagent to facilitate the formation of PrVO 4 , but also acts as a surface capping agent to adhere to the newly created surface and to promote the crystal splitting. The formation mechanisms of nanorods to hierarchical architectures were proposed on the basis of a series of surfactant and time-dependent experiments. Photoluminescence (PL) studies of PrVO 4 showed strong red emission upon UV illumination, and this implied potential application in the luminescent field. A possible growth mechanism of the sheaf-like PrVO 4 hierarchical nanocrystals is proposed and discussed.

  7. Luminescent screens

    International Nuclear Information System (INIS)

    Lu, C.-I.

    1982-01-01

    Luminescent screens which are useful for such purposes as intensifying screens for radiographs are comprised of a support bearing a layer of finely divided particles of a phosphor dispersed in a cross-linked polymeric matrix formed by heat-curing of a coating composition comprising an unsaturated cross-linkable polymer, a polymerizable acrylic monomer, a thermoplastic polyurethane elastomer, and a heat-activatable polymerization initiator. The phosphor layer includes voids formed by evaporation of an evaporable component which is present in the coating composition from which such layer is formed. (author)

  8. Comparison of the luminescent properties of Lu3Al5O12:Pr crystals and films under synchrotron radiation excitation

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Voznyak, T.; Nizankovskiy, S.

    2016-01-01

    The work is dedicated to comparative investigation of the luminescent properties of Lu 3 Al 5 O 12 :Pr(LuAG:Pr) single crystals and single crystalline films using excitation by synchrotron radiation with an energy of 3.7–25 eV in the exciton range of LuAG host. We have found that the differences in the excitation spectra and luminescence decay kinetics of LuAG:Pr crystals and films are caused by involving the LuAl antisite defects and oxygen vacancies in the crystals and Pb 2+ flux related dopants in the films in the excitation processes of the Pr 3+ luminescence. Taking into account these differences, we have determined the energy structure of the Pr 3+ ions in LuAG host and estimated the differences in the energies of creation of excitons bound with the isolated Pr 3+ ions in LuAG:Pr films and the dipole Pr–LuAl antisite defect centers in the crystal counterpart. - Highlights: • Comparison of the luminescent properties of LuAG:Pr single crystals and films. • Superposition of the Pr 3+ and defect centers luminescence of LuAG:Pr crystal. • Different creation energies of an excitons bound with the Pr 3+ in LuAG:Pr crystals and films. • More faster decay kinetics of the Pr 3+ luminescence in LuAG:Pr films. • Low content of slow emission component in LuAG:Pr films.

  9. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, J., E-mail: jakub.cizek@mff.cuni.cz; Hruška, P.; Melikhova, O.; Procházka, I. [Department of Low-Temperature Physics, Charles University in Prague, V Holešovičkách 2, CZ-180 00, Prague 8 (Czech Republic); Valenta, J. [Department of Chemical Physics and Optics, Charles University in Prague, Ke Karlovu 3, CZ-121 16, Prague 2 (Czech Republic); Novotný, M.; Bulíř, J. [Academy of Science of the Czech Republic, Institute of Physics, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2015-06-22

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  10. Origin of green luminescence in hydrothermally grown ZnO single crystals

    International Nuclear Information System (INIS)

    Čížek, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Valenta, J.; Novotný, M.; Bulíř, J.

    2015-01-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration

  11. Origin of green luminescence in hydrothermally grown ZnO single crystals

    Science.gov (United States)

    Čížek, J.; Valenta, J.; Hruška, P.; Melikhova, O.; Procházka, I.; Novotný, M.; Bulíř, J.

    2015-06-01

    Combining photoluminescence and positron annihilation studies of hydrothermally grown ZnO crystals with stoichiometry varied by controlled annealing enabled us to clarify the origin of green luminescence. It was found that green luminescence in ZnO has multiple origins and consists of a band at 2.3(1) eV due to recombination of electrons of the conduction band by zinc vacancy acceptors coupled with hydrogen and a band at 2.47(2) eV related to oxygen vacancies. The as-grown ZnO crystals contain zinc vacancies associated with hydrogen and exhibit a green luminescence at 2.3(1) eV. Annealing in Zn vapor removed zinc vacancies and introduced oxygen vacancies. This led to disappearance of the green luminescence band at 2.3(1) eV and appearance of a green emission at higher energy of 2.47(2) eV. Moreover, the color of the crystal was changed from colorless to dark red. In contrast, annealing of the as-grown crystal in Cd vapor did not remove zinc vacancies and did not cause any significant change of green luminescence nor change in coloration.

  12. Optically stimulated luminescence in retrospective dosimetry

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Murray, A.S.

    2002-01-01

    Since the beginning of the 1990s the exploration of optically stimulated luminescence in retrospective accident dosimetry has driven an intensive investigation and development programme at Ris deg. into measurement facilities and techniques. This paper reviews some of the outcomes of this programme, including the evaluation of the single-aliquot regenerative-dose measurement protocol with brick quartz and the determination of dose-depth profiles in building materials as a guide to determining the mean energy of the incident radiation. Investigations into heated materials are most advanced, and a lower detection limit for quartz extracted from Chernobyl bricks was determined to be <10 mGy. The first results from the measurement of doses in unheated building materials such as mortar and concrete are also discussed. Both small-aliquot and single-grain techniques have been used to assess accident doses in these cement based building materials more commonly found in workplaces. Finally some results of a preliminary investigation of the OSL properties of household chemicals are discussed with reference to their potential as accident dosemeters. (author)

  13. Features of the core-valence luminescence and electron energy band structure of A1-xCsxCaCl3 (A = K,Rb) crystals

    International Nuclear Information System (INIS)

    Chornodolskyy, Ya; Stryganyuk, G; Syrotyuk, S; Voloshinovskii, A; Rodnyi, P

    2007-01-01

    From luminescence spectroscopy of CsCaCl 3 , Rb 1-x Cs x CaCl 3 and K 1-x Cs x CaCl 3 crystals, we have found evidence for intrinsic and impurity core-valence luminescence due to the radiative recombination of valence electrons with the holes of intrinsic or impurity 5p Cs + core states. The structural similarity of core-valence luminescence spectra has been revealed for the A 1-x Cs x CaCl 3 (A = K,Rb) crystals investigated. The electron energy structure of the CsCaCl 3 crystal has been calculated using the pseudopotential approach taking into account the gradient corrections for the exchange-correlation energy. The calculated density of the electronic states of CsCaCl 3 has been compared with corresponding parameters obtained from the analysis of core-valence luminescence spectra

  14. Superposition of the luminescence spectra of free and bound excitons in ZnP2-D48

    International Nuclear Information System (INIS)

    Stamov, Ion; Nemerenco, Lucretia; Ivanenco, Iurii; Syrbu, Nicolae

    2011-01-01

    The luminescence spectra of ZnP 2 tetragonal crystals doped Mn, Sn, Cd, Sb at 10 K emission lines of bound excitons is detected. In the spectra non-phonon emission lines of bound and free excitons and their phonon replicas is isolated. The emission lines by the levels of the axial center are described. The composition of the luminescence of free and bound excitons at the axial center is investigated. In the region of phonon replicas of free excitons observed enhancement of lines due to forbidden transitions involving the recombination of excitons. A model of optic recombination transitions of the axial centre is proposed

  15. Development and measurement of luminescence properties of Ce-doped Cs2LiGdBr6 crystals irradiated with X-ray, γ-ray and proton beam

    Science.gov (United States)

    Jang, Jonghun; Kim, H. J.; Rooh, Gul; Kim, Sunghwan

    2017-12-01

    The effect of higher Ce-concentration on the luminescence and scintillation properties of Cs2LiGdBr6 single crystals are studied. We used the Bridgman method for the growth of Ce-doped Cs2LiGdBr6 single crystals. Luminescence properties of the grown crystals are measured by X-ray and proton excitations. We measured the pulse height and fluorescence decay time spectra of Cs2LiGdBr6:Ce3+ with a bi-alkali photo multiplier tube (PMT) under γ-ray excitation from 137Cs source. Improvements in the scintillation properties are observed with the increase of Ce-concentration in the lattice. Detailed procedure of the crystal growth is also discussed.

  16. High-resolution light microscopy using luminescent nanoparticles.

    Science.gov (United States)

    Ohulchanskyy, Tymish Y; Roy, Indrajit; Yong, Ken-Tye; Pudavar, Haridas E; Prasad, Paras N

    2010-01-01

    This review presents recent progress in the development of the luminescent nanoparticles for confocal and multiphoton microscopy. Four classes of nanomaterials are discussed: (1) silica-based nanoparticles doped with fluorescent molecules, (2) gold nanoparticles, (3) semiconductor nanocrystals (quantum dots/rods), and (4) nanophosphors. Special considerations are given to recently developed imaging nanoprobes, such as (1) organically modified silica (ORMOSIL) nanoparticles doped with two-photon absorbing fluorophores, which exhibit aggregation-enhanced fluorescence (AEF), and (2) nanophosphors (ceramic nanoparticles containing luminescent lanthanoid ions). Advantages and disadvantages of every class of nanomaterials and their specific applications are briefly discussed.

  17. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  18. Preparation, characterization and luminescence of nanocrystalline Y2O3:Ho

    International Nuclear Information System (INIS)

    Biljan, Tomislav; Gajovic, Andreja; Meic, Zlatko; Mestrovic, Ernest

    2007-01-01

    Nanocrystalline Y 2 O 3 :Ho was synthesized by solution combustion method with ethylene glycol as fuel. Material was characterized using powder X-ray diffraction and transmission electron microscopy (TEM). X-ray diffraction and TEM showed that the material is nanostructured. Luminescence properties were studied using Raman spectrometers with excitation in near infrared (NIR) and visible regions. The visible and NIR luminescence spectra of nanocrystalline Y 2 O 3 :Ho show some important differences from those of bulk material. The convenience of using Raman instruments for studying luminescence of lanthanide ions is demonstrated

  19. Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose

    International Nuclear Information System (INIS)

    Jursinic, Paul A.

    2010-01-01

    Purpose: A new type of in vivo dosimeter, an optically stimulated luminescent dosimeter (OSLD), has now become commercially available for clinical use. The OSLD is a plastic disk infused with aluminum oxide doped with carbon (Al 2 O 3 :C). Crystals of Al 2 O 3 :C, when exposed to ionizing radiation, store energy that is released as luminescence (420 nm) when the OSLD is illuminated with stimulation light (540 nm). The intensity of the luminescence depends on the dose absorbed by the OSLD and the intensity of the stimulation light. The effects of accumulated dose on OSLD response were investigated. Methods: The OSLDs used in this work were nanodot dosimeters, which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x rays and gamma rays from Co-60 and Ir-192. The signal on the OSLDs after irradiation is removed by optical annealing with a 150 W tungsten-halogen lamp or a 14 W compact fluorescent lamp was investigated. Results: It was found that OSLD response to dose was supralinear and this response was altered with the amount of accumulated dose to the OSLD. The OSLD response can be modeled by a quadratic and an exponential equation. For accumulated doses up to 60 Gy, the OSLD sensitivity (counts/dose) decreases and the extent of supralinear increases. Above 60 Gy of accumulated dose the sensitivity increases and the extent of supralinearity decreases or reaches a plateau, depending on how the OSLDs were optically annealed. With preirradiation of OSLDs with greater than 1 kGy, it is found that the sensitivity reaches a plateau 2.5 folds greater than that of an OSLD with no accumulated dose and the supralinearity disappears. A regeneration of the luminescence signal in the dark after full optical annealing occurs with a half time of about two days. The extent of this regeneration signal depends on the amount of accumulated dose. Conclusions: For in vivo dosimetric measurements, a precision of ±0.5% can be

  20. Luminescent properties of LuPO4-Pr and LuPO4-Eu nanoparticles

    International Nuclear Information System (INIS)

    Vistovskyy, V.; Malyi, T.; Vas’kiv, A.; Chylii, M.; Mitina, N.; Zaichenko, A.; Gektin, A.; Voloshinovskii, A.

    2016-01-01

    Spectral-luminescence parameters of LuPO 4 -Eu and LuPO 4 -Pr nanoparticles of different sizes are studied upon excitation by the synchrotron radiation with photon energies 4–40 eV. Influence of the nanoparticle size on Eu 3+ and Pr 3+ impurity luminescence is analyzed for intracenter and recombination excitation. It is shown that the luminescence intensity of impurities in the case of recombination excitation significantly stronger decreases with decreasing of nanoparticle size compared to intracenter excitation. This feature is explained by the influence of thermalization length to nanoparticle size ratio on the recombination luminescence. Electron recombination luminescence inherent for LuPO 4 -Eu nanoparticles shows a weaker dependence on the nanoparticle size than the hole one in LuPO 4 -Pr nanoparticles. The difference between energy states of praseodymium impurity ions in nanoparticles of different sizes is revealed.

  1. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    International Nuclear Information System (INIS)

    Altabella, L.; Spinelli, A.E.; Boschi, F.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure

  2. Effect of High-Temperature Annealing on Yellow and Blue Luminescence of Undoped GaN

    International Nuclear Information System (INIS)

    Chai Xu-Zhao; Zhou Dong; Liu Bin; Xie Zi-Li; Han Ping; Xiu Xiang-Qian; Chen Peng; Lu Hai; Zhang Rong; Zheng You-Dou

    2015-01-01

    The effect of high-temperature annealing on the yellow and blue luminescence of the undoped GaN is investigated by photoluminescence (PL) and x-ray photoelectron spectroscopy (XPS). It is found that the band-edge emission in the GaN apparently increases, and the yellow luminescence (YL) and blue luminescence (BL) bands dramatically decrease after annealing at 700°C. At the annealing temperature higher than 900°C, the YL and BL intensities show an enhancement for the nitrogen annealed GaN. This fact should be attributed to the increment of the Ga and N vacancies in the GaN decomposition. However, the integrated PL intensity of the oxygen annealed GaN decreases at the temperature ranging from 900°C to 1000°C. This results from the capture of many photo-generated holes by high-density surface states. XPS characterization confirms that the high-density surface states mainly originate from the incorporation of oxygen atoms into GaN at the high annealing temperature, and even induces the 0.34eV increment of the upward band bending for the oxygen annealed GaN at 1000°C. (paper)

  3. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    Science.gov (United States)

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Construction of order mesoporous (Eu–La)/ZnO composite material and its luminescent characters

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Na; Liu, Yu; Li, Zi-Wei [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Yu, Hui, E-mail: yh2001101@163.com [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Bai, Hao-tian [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Xia, Long, E-mail: xialong_aron@163.com [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Feng, Da-wei [Changchun University of Science and Technology Science Park, Changchun 130022 (China); Guangdong College of Business and Technology, Zhaoqing 526020 (China); Zhang, Hong-bo; Dong, Xiang-ting; Wang, Tian-yang; Han, Ji; Wu, Rong-yi; Zhang, Qi [School of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2016-09-15

    For the first time, the order mesoporous zinc oxide was synthesized by a soft template synthesis method. The Eu and La phosphate were introduced into the prepared mesoporous zinc oxide by the high temperature solid phase method, and got the mesoporous rare earth/zinc oxide composite materials. The luminescence characters of the materials were studied. The influences of La to Eu luminescent properties had been studied, and the optimum proportion of Eu and La was discussed. The influences of La and Eu to ZnO luminescence properties were also been studied. La phosphate had the large influence to Eu luminescent. ZnO had a strong emission peak at 469 nm, which overlapped with the {sup 7}F{sub 0}–{sup 5}D{sub 2} transition excitation peak of Eu at 465 nm. It indicated that the effective energy transfer happened between ZnO and Eu, which strongly enhanced the luminescence intensity of Eu. At the same time, the Eu and La phosphates could regulate the defect density of ZnO, which could regulate the luminescent intensity of ZnO, and realized the adjustment of luminescent color between green and red light.

  5. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    Science.gov (United States)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir; Tischler, Jonathan R.; Tisdale, William A.; Walker, Brian J.

    2017-12-12

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  6. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  7. Appearance of high submerged cavitating jet: The cavitation phenomenon and sono luminescence

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available In order to study jet structure and behaviour of cloud cavitation within time and space, visualization of highly submerged cavitating water jet has been done using Stanford Optics 4 Quick 05 equipment, through endoscopes and other lenses with Drello3244 and Strobex Flash Chadwick as flashlight stroboscope. This included obligatory synchronization with several types of techniques and lenses. Images of the flow regime have been taken, allowing calculation of the non-dimensional cavitation cloud length under working conditions. Consequently a certain correlation has been proposed. The influencing parameters, such as; injection pressure, downstream pressure and cavitation number were experimentally proved to be very significant. The recordings of sono-luminescence phenomenon proved the collapsing of bubbles everywhere along the jet trajectory. In addition, the effect of temperature on sono-luminescence recordings was also a point of investigation. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  8. An attempt at determining Des of glacial sediments using different luminescence methods

    International Nuclear Information System (INIS)

    Ou Xianjiao; Lai Zhongping; Zeng Lanhua

    2013-01-01

    Background: Absolute dating is the key technical issue of Quaternary glacial research. Optically stimulated luminescence (OSL) has been increasingly applied to Quaternary glacial dating in recent years. However, problems such as insufficient bleaching, low luminescence sensitivity, high thermal transfer effect, etc, still remain. Purpose: In order to investigate the applicability of equivalent dose (D e ) determination of glacial sediments by different OSL methods, six samples were collected from the Yingpu Valley of eastern Qinghai-Tibetan Plateau (two samples from modern glacial sediments, three from moraines and glacial terrace attributed to Neoglacial and one from a moraine attributed to the last glaciation). Methods: The D e s were determined by SAR combined SGC technique, using three methods: quartz large aliquot (6 mm) BSL, small aliquot (2/3 mm) BSL and polymineral IRSL. Results: D e s determined by SGC are consistent with D e s determined by SAR protocol. Comparison of three methods shows that IRSL D e >large aliquot BSL D e >small aliquot BSL D e . D e s of polymineral IRSL are obviously higher than quartz BSL. Conclusions: It is obviously that feldspar is more difficult to reset than quartz, thus is not suitable for dating glacial sediments in this region. Quartz large aliquot method is suitable for well bleached glacial samples. Due to the low luminescence sensitivity of quartz, small aliquot method showed poor luminescence characteristics. Moreover, this method cannot distinguish the poor bleached grains in this measurement. However, it is possible that quartz small aliquot, even single grain method could be used to date older or brighter glacial samples. More works are required to solve the problems we have encountered in dating low sensitivity glacial sediments. (authors)

  9. Luminescence and ultrafast phenomena in InGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Viswanath, Annamraju Kasi; Lee, J.I.; Kim, S.T.; Yang, G.M.; Lee, H.J.; Kim, Dongho

    2007-01-01

    High quality In 0.13 Ga 0.87 N/GaN multiple quantum wells (MQWs) on (0001) sapphire substrate were fabricated by MOCVD method. The quantum well thickness is as thin as 10 A, and the barrier thickness is 50 A. We have investigated these ultrathin MQWs by continuous wave (cw) and time-resolved spectroscopy in the picosecond time scales in a wide temperature range from 10 to 290 K. In the luminescence spectrum at 10 K, we observed a broad peak at 3.134 eV which was attributed to the quantum wells emission of InGaN. The full width at half maximum of this peak was 129 meV at 10 K and the broadening at low temperatures which was mostly inhomogeneous was thought to be due to compositional fluctuations and interfacial disorder in the alloy. We also observed an intense and narrow peak at 3.471 eV due to the GaN barrier. The temperature dependence of the luminescence was studied and the peak positions and the intensities of the different peaks were obtained. The activation energy of the InGaN quantum well emission peak was estimated as 69 meV. From the measurements of luminescence intensities and lifetimes at various temperatures, radiative and non-radiative recombination lifetimes were deduced. The results were explained by considering only the localization of the excitons due to potential fluctuations

  10. Lanthanum lead boro-tellurite glasses doped with samarium trioxide for luminescent devices application

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-04-01

    Boro-tellurite based glasses (10La2O3-(20-x) TeO2-30PbO-40B2O3-xSm2O3) (x = 0, 0.5, 1.0 and 2.0 mol %) doped with different concentrations of Sm3+ ions has been investigated. The optical properties have been studied through spectroscopic measurements such as absorption and luminescence. Absorption spectra reveals nine peaks due to 6H5/2→6P3/2, 4I3/2+4F5/2+4I11/2, 6F11/2, 6F9/2, 6F7/2, 6F5/2, 6F3/2, 6H15/2, and 6H13/2 transitions. Luminescence spectra under the excitation of 403 nm display four emission bands due to 4G5/2→6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions of Sm3+ ions. Among them 6H7/2 bright orange -red is more intense which proves that the present glasses are potential candidates for luminescent device applications in visible range as well as optical fibre communication since its refractive index is 1.65 high compared to other glasses.

  11. Influence of pulse-height discrimination threshold for photon counting on the accuracy of singlet oxygen luminescence measurement

    International Nuclear Information System (INIS)

    Lin, Huiyun; Chen, Defu; Wang, Min; Lin, Juqiang; Li, Buhong; Xie, Shusen

    2011-01-01

    Direct measurement of near-infrared (NIR) luminescence around 1270 nm is the golden standard of singlet oxygen ( 1 O 2 ) identification. In this study, the influence of pulse-height discrimination threshold on measurement accuracy of the 1 O 2 luminescence that is generated from the photoirradiation of meso-tetra (N-methyl-4-pyridyl) morphine tetra-tosylate (TMPyP) in aqueous solution was investigated by using our custom-developed detection system. Our results indicate that the discrimination threshold has a significant influence on the absolute 1 O 2 luminescence counts, and the optimal threshold for our detection system is found to be about − 41.2 mV for signal discrimination. After optimization, the derived triplet-state and 1 O 2 lifetimes of TMPyP in aqueous solution are found to be 1.73 ± 0.03 and 3.70 ± 0.04 µs, respectively, and the accuracy of measurement was further independently demonstrated using the laser flash photolysis technique

  12. Contribution to digital radiography. Study of a 2D X-ray sensor for mammography using the electrically-stimulated-luminescence effect

    International Nuclear Information System (INIS)

    Ayral, Jean-Luc

    1990-01-01

    Radiography is in a fast change period. This work describes the study and demonstration of a new type of 2D flat X-Ray sensor for mammography and delivering a digital signal. X-ray transmission study of breast tissues leads to: a-definition of X-Ray photons properties for optimized signal-to-noise ratio, and b-specifications of a 2D X-Ray sensor such as mean exposure, dynamic range and pixel size. Then the X-Ray detection processes using a direct or a delayed luminescence mechanism are reviewed. The detailed analysis of the different ways for detecting visible photons is combined with the system specifications (pixel size, image reading time) in order to characterize (from a signal-to-noise ratio aspect) an X-Ray imaging system integrating a delayed luminescence property. The imaging plate and associated luminescent material are specified by their minimum X-Ray absorption and conversion gain. The Gudden-Pohl effect, or Electrically Stimulated Luminescence (ESL) is experimentally studied and quantified under X-Ray excitation in ZnCdS: Cu, Al materials. An original UV sensitization technique opens us the way to highly reproducible results and large sensitivity. The obtained information storage time in the material is compatible with a delayed image reading. These results allow the achievement of an X-Ray imaging demonstrator integrating the ESL imaging plate, an intensified CCD sensor and the sensitization technique. First images are obtained. Further conception of real dimension X-Ray imaging system for mammography is described. (author) [fr

  13. Testing optically stimulated luminescence dating on sand-sized quartz of deltaic deposits from the Sperchios delta plain, central Greece

    Directory of Open Access Journals (Sweden)

    Evangelos Tsakalos

    2018-04-01

    Full Text Available This study reports on the first investigation into the potential of luminescence dating to establish a chronological framework for the depositional sequences of the Sperchios delta plain, central Greece. A series of three borehole cores (20 m deep and two shallow cores (4 m deep, from across the delta plain, were extracted, and samples were collected for luminescence dating. The luminescence ages of sand-sized quartz grains were obtained from small aliquots of quartz, using the Single-Aliquot Regenerative-dose (SAR protocol. The equivalent dose determination included a series of tests and the selection of the Minimum Age Model (MAM as the most appropriate statistical model. This made it possible to confirm the applicability of quartz Optically Stimulated Luminescence (OSL dating to establish absolute chronology for deltaic sediments from the Sperchios delta plain.Testing age results of the five cores showed that the deltaic sediments were deposited during the Holocene. A relatively rapid deposition is implied for the top ∼14 m possibly as a result of the deceleration in the rate of the sea-level rise and the transition to terrestrial conditions, while on the deeper parts, the reduced sedimentation rate may indicate a lagoonal or coastal environment. Keywords: Luminescence dating, Holocene, Sedimentation rates, Deltaic deposits, Sperchios delta plain, Central Greece

  14. Luminescence properties of Yb:Nd:Tm:KY{sub 3}F{sub 10} nanophosphor and thermal treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Laércio, E-mail: lgomes@ipen.br [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Linhares, Horácio Marconi da Silva M.D. [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil); Ichikawa, Rodrigo Uchida; Martinez, Luis Gallego [Departamento de Ciências dos Materiais, Instituto de Pesquisas Energéticas e Nucleares (Brazil); Ranieri, Izilda Marcia [Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Butantã, P.O. Box 11049, São Paulo, SP o5422-970 (Brazil)

    2015-01-15

    In this work, we present the spectroscopic properties of KY{sub 3}F{sub 10} (KY3F) nanocrystals activated with thulium and codoped with ytterbium and neodymium ions. The most important processes that lead to the thulium upconversion emissions in the blue region were identified. A time-resolved luminescence spectroscopy technique was employed to measure the luminescence decays and to determine the most important mechanisms involved in the upconversion process that populates {sup 1}G{sub 4} (Tm{sup 3+}) excited states. Analysis of the energy-transfer processes dynamics using selective pulsed-laser excitations in Yb:Nd:Tm, Nd:KY3F nanocrystals shows that the direct energy transfer from Nd{sup 3+} to Tm{sup 3+} ions is the mechanism responsible for the 78% of the blue upconversion luminescence in the Yb:Nd:Tm:KY3F when compared with the Yb:Nd:Tm:KY3F bulk crystal for an laser excitation at 802 nm. An investigation of the {sup 1}G{sub 4} level luminescence kinetic of Tm{sup 3+} in Yb/Nd/Tm system revealed that the luminescence efficiency ({sup 1}G{sub 4}) starts with a very low value (0.38%) for the synthesized nanocrystal (as grown) and strongly increases to 97% after thermal treatment at 550 °C for 6 h under argon flow. As a consequence of the thermal treatment at T=550 °C, the contributions of the (Nd×Tm) (Up{sub 1}) and (Nd×Yb×Tm) (Up{sub 2}) upconversion processes to the {sup 1}G{sub 4} luminescence are 33% (Up{sub 1}) and 67% for Up{sub 2}. Up{sub 2} process represented by Nd{sup 3+} ({sup 4}F{sub 3/2})→Yb{sup 3+} ({sup 2}F{sub 7/2}) followed by Yb{sup 3+} ({sup 2}F{sub 5/2})→Tm ({sup 3}H{sub 4})→Tm{sup 3+} ({sup 1}G{sub 4}) was previously reported as the main mechanism to produce the blue luminescence in Yb:Nd:Tm:YLiF{sub 4} and KY{sub 3}F{sub 10} bulk crystals. Results of X-ray diffraction analysis of nanopowder using the Rietveld method reveled that crystallite sizes remain unchanged (12–14 nm) after thermal treatments with T≤400 °C, while the

  15. Investigation of nanoeffect on wear of details and ties of oilfield devices

    International Nuclear Information System (INIS)

    Shahbazov, E.G.; Shafiyev, Sh.Sh.

    2010-01-01

    The investigations have been carried out at SOCAR on the study of nanoparticles effect on the corrosion of metallic surfaces. It was defined that corrosion rate decreases as a result.It is stated in the article that nanotechnology applications have prospects for protection of details and ties of oilfield equipment. It is necessary to work out special programs for this case. The authors had an attempt to form the main aspects of such programs.

  16. Redox-induced reversible luminescence switching of cerium-doped upconversion nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanan [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xiao, Qingbo, E-mail: qbxiao2011@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Wang, Jian [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Xi, Yonglan [Laboratory for Agricultural Wastes Treatment and Recycling Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing 210014 (China); Li, Fujin [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Feng, Yamin [College of Sciences, Shanghai University, Shanghai 200444 (China); International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China); Shi, Liyi [College of Sciences, Shanghai University, Shanghai 200444 (China); Lin, Hongzhen, E-mail: hzlin2010@sinano.ac.cn [International Laboratory for Adaptive Bio-nanotechnology, Suzhou Institute of Nano-tech and Nano-bionics (SINANO), Chinese Academy of Science, Suzhou 215123 (China)

    2016-05-15

    Smart upconversion nanophosphors (UCNPs) that can be reversibly switched between two or more luminescent states by certain external stimuli have attracted considerable attention due to their great potential in biological applications. Here we report for the first time a type of redox-switchable UCNPs by codoping NaGdF{sub 4}:Yb/Er nanorods with the redox-active Ce{sup 3+}/Ce{sup 4+} ion pairs. A reversible switching of their UC luminescence intensity was observed upon the variation of the surrounding redox environments. We show solid proof that the luminescence switching is caused by the tailoring of the NaGdF{sub 4} host crystal structure in response to changing redox state of the codoped cerium ions. A proof-of-concept example is further demonstrated by using these UCNPs for probing the dynamical variation of redox environments in biological tissues. - Highlights: • Synthesis of upconversion nanoparticles doped with Ce{sup 3+}/Ce{sup 4+} ions. • The precise and reversible modification of crystal structure by redox reactions. • Tuning the upconversion luminescence by tailoring the crystal structure.

  17. Mechanism of band-edge luminescence in cuprous iodide single crystals

    International Nuclear Information System (INIS)

    Gao, Pan; Gu, Mu; Liu, Xi; Liu, Bo; Zheng, Yan-Qing; Shi, Er-Wei; Shi, Jun-Yan; Zhang, Guo-bin

    2014-01-01

    Highlights: • The luminescence properties of CuI crystals are influenced by the quality of the as-grown crystals. • The emission peaks of free-exciton and bound-exciton are observed in the CuI single crystals. • The ultrafast component luminescence is warranted to the donor-acceptor pair recombination. • The exciton absorption and electron excitation multiplication processes were observed in CuI. - Abstract: The photoluminescence spectra of CuI crystals using synchrotron radiation as an excitation light source were obtained at 60 K. The emission peaks at 405, 415, 420 and 443 nm were observed. The possible origins of these peaks were discussed by the temperature dependence of luminescence spectra for CuI material. Meanwhile, the photoluminescence spectra of CuI powder with different excitation intensity were measured and the ultrafast luminescence component of CuI crystals was warranted to be attributed to the recombination of donor acceptor pair. Furthermore, the excitation process was studied by measuring the photoluminescence excitation spectra of CuI crystals and powder

  18. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  19. Luminescence and scintillation properties of LuPO4-Ce nanoparticles

    International Nuclear Information System (INIS)

    Vistovskyy, V.; Malyy, T.; Pushak, A.; Vas’kiv, A.; Shapoval, A.; Mitina, N.; Gektin, A.; Zaichenko, A.; Voloshinovskii, A.

    2014-01-01

    Study of the spectral-luminescence parameters of LuPO 4 -Ce nanoparticles upon the excitation by X-ray quanta and synchrotron radiation with photon energies of 4–25 eV was performed. Nanoparticles with mean size about a=35 nm and nanoparticles with size less than 12 nm reveal the different structures of cerium centers. Luminescence efficiency of LuPO 4 -Ce nanoparticles of a 4 -Ce nanoparticles studied using synchrotron and X-ray excitation. • Different structure of Ce 3+ -centers has been revealed for LuPO 4 -Ce nanoparticles. • Luminescence of LuPO 4 -Ce with size less than 12 nm is strongly quenched upon the X-ray excitation

  20. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    Science.gov (United States)

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  1. Delayed luminescence in a multiparameter approach to evaluation and reduction of radiobiological risks

    Science.gov (United States)

    Grasso, Rosaria; Cammarata, Francesco Paolo; Minafra, Luigi; Marchese, Valentina; Russo, Giorgio; Manti, Lorenzo; Musumeci, Francesco; Scordino, Agata

    2017-07-01

    In the framework of the research project ETHICS "Pre-clinical experimental and theoretical studies to improve treatment and protection by charged particles" funded by the National Nuclear Physics Institute, Italy, we studied the phenomenon called delayed luminescence emitted by non-tumorigenic breast epithelial MCF10A cell line after proton irradiation at different doses (0.5, 2, 6, 9 Gy). The aim is to found possible correlations between delayed luminescence and in vitro damaging induced by ion irradiation. The first results of this research show that the delayed luminescence kinetics is proton dose dependent. An interesting correlation between delayed luminescence and clonogenic potential was observed.

  2. Luminescent Afterglow Behavior in the M2Si5N8: Eu Family (M = Ca, Sr, Ba

    Directory of Open Access Journals (Sweden)

    Koen Van den Eeckhout

    2011-05-01

    Full Text Available Persistent luminescent materials are able to emit light for hours after being excited. The majority of persistent phosphors emit in the blue or green region of the visible spectrum. Orange- or red-emitting phosphors, strongly desired for emergency signage and medical imaging, are scarce. We prepared the nitrido-silicates Ca2Si5N8:Eu (orange, Sr2Si5N8:Eu (reddish, Ba2Si5N8:Eu (yellowish orange, and their rare-earth codoped variants (R = Nd, Dy, Sm, Tm through a solid state reaction, and investigated their luminescence and afterglow properties. In this paper, we describe how the persistent luminescence is affected by the type of codopant and the choice and ratio of the starting products. All the materials exhibit some form of persistent luminescence, but for Sr2Si5N8:Eu,R this is very weak. In Ba2Si5N8:Eu the afterglow remains visible for about 400 s, and Ca2Si5N8:Eu,Tm shows the brightest and longest afterglow, lasting about 2,500 s. For optimal persistent luminescence, the dopant and codopant should be added in their fluoride form, in concentrations below 1 mol%. A Ca3N2 deficiency of about 5% triples the afterglow intensity. Our results show that Ba2Si5N8:Eu(,R and Ca2Si5N8:Eu(,R are promising persistent phosphors for applications requiring orange or red light.

  3. Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in Polyvinyl Alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gagandeep; Verma, R.K.; Rai, D.K. [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India); Rai, S.B., E-mail: sbrai49@yahoo.co.in [Laser and Spectroscopy Laboratory, Department of Physics, Banaras Hindu University, India 221005 (India)

    2012-07-15

    Silver (Ag) nanoparticles (NPs) were prepared by laser ablation in water with an aim to enhance the luminescence of rare earth coordinated complex in polymer host. A fixed concentration of the complex containing Samarium (Sm), Salicylic acid (Sal) and 1, 10-phenanthroline (Phen) were combined with different concentrations of silver NPs in PolyVinyl Alcohol at room temperature. Absorption spectrum and XRD patterns of the sample show that the Sm(Sal){sub 3}Phen complex is accompanied by Ag NPs. The luminescence from the complex was recorded in the presence and absence of Ag NPs using two different excitation wavelengths viz. 400 and 355 nm. Of these, 400 nm radiation falls in the surface plasmon resonance of Ag NPs. It was found that the Ag NPs led to a significant enhancement in luminescence of the complex. Surprisingly, a high concentration of Ag NPs tends to quench the luminescence. - Highlights: Black-Right-Pointing-Pointer Sm complex with Ag nanoparticles in PVA was prepared at room temperature. Black-Right-Pointing-Pointer UV-vis absorption and XRD confirms the presence of Sm complex and Ag NPs. Black-Right-Pointing-Pointer Enhancement in luminescence of complex was observed with Ag NPs. Black-Right-Pointing-Pointer Coupling between radiative transitions of Sm and SPR of NPs enhances the emission. Black-Right-Pointing-Pointer The higher concentration of Ag NPs quenches the luminescence of the complex.

  4. Direct and indirect dating of gypsum occurrences in deserts using luminescence methods

    International Nuclear Information System (INIS)

    Nagar, Y.C.; Juyal, N.; Singhyi, A.K.; Kocurek, G.; Wadhawan, S.K.

    2005-01-01

    In the present study we have made an attempt to directly date gypsum or provide indirect age estimate for gypsum formation through dating the associated sediments (quartz) using the luminescence dating technique. In the direct dating of gypsum, we explored the Optically Stimulated Luminescence (OSL) and Thermally Stimulated Luminescence (TL) behaviour of gypsum. The associated sediments (indirect dating) were dated using the traces of quartz extract from gypsum (concentration 0.1% ) and the underlying and overlying quartz sand in playa

  5. Anomalous enhancement of nanodiamond luminescence upon heating

    Science.gov (United States)

    Khomich, A. A.; Kudryavtsev, O. S.; Dolenko, T. A.; Shiryaev, A. A.; Fisenko, A. V.; Konov, V. I.; Vlasov, I. I.

    2017-02-01

    Characteristic photoluminescence (PL) of nanodiamonds (ND) of different origin (detonation, HPHT, extracted from meteorite) was studied in situ at high temperatures in the range 20-450 °C. Luminescence was excited using 473 nm laser and recorded in the range 500-800 nm. In contrast to decrease of point defect PL in bulk diamond with temperature, we found that the ND luminescence related to ND surface defects increases almost an order of magnitude upon heating to 200-250 °C. The observed effect reveals that water adsorbed on ND surfaces efficiently quenches PL; water desorption on heating leads to dramatic increase of the radiative de-excitation.

  6. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fruetel, Julia A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hayden, Carl C. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Buckley, Heather L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Arnold, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  7. Luminescent properties of Al2O3: Tb powders

    International Nuclear Information System (INIS)

    Esparza G, A.E.; Garcia, M.; Falcony, C.; Azorin N, J.

    2000-01-01

    In this work the photo luminescent and cathode luminescent characteristics of aluminium oxide (Al 2 O 3 ) powders impurified with terbium (Tb) were studied for their use in dosimetry. The optical, structural, morphological characteristics of the powders as function of variation in the impurity concentration and the annealing temperature will be presented. As regards the optical properties of powders (photoluminescence and cathode luminescence) it was observed a characteristic emission associated with radiative transitions between electron energy levels of terbium, the spectra associated with this emission consists of several peaks associated with such transitions. In the structural and morphological characterization (X-ray diffraction and scanning electron microscopy) it was appreciated that in accordance the annealing temperature of powders is augmented it is evident the apparition of certain crystalline phases. The results show that this is a promissory material for radiation dosimetry. (Author)

  8. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2011-01-01

    . Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal......Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub......-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic...

  9. Temperature dependence of luminescence from silica glasses under in-reactor and 60Co gamma-ray irradiation

    Science.gov (United States)

    Takahara, Shogo; Yoshida, Tomoko; Tanabe, Tetuo; , Tatuya, Ii; Hirano, Masahiro; Okada, Moritami

    2004-06-01

    In order to investigate the temperature effects on the dynamic radiation damaging process, we have carried out in situ measurements of in-reactor luminescence (IRL) and gamma-ray induced luminescence (GIL) of a silica glass at temperatures ranging from 70 K to 370 K. Both luminescence spectra were found to consist of two broad emission centers at 3.1 eV and 4.1 eV with an additional temperature independent emission around 2.5 eV. The 2.5 eV emission different from the other two showed long tail to the lower energy side and was attributed to the Cherenkov radiation. The 3.1 eV band was attributed to a B 2 β oxygen deficient center on the basis of our photoluminescence measurement. The intensity of the 3.1 eV IRL increased with increasing temperature up to ca. 200 K and saturated above 200 K, which is clearly different from the reported temperature dependence of 3.1 eV photoluminescence, suggesting the existence of some different relaxation mechanism of excited electron under ionizing radiations.

  10. Performance of a novel multiple-signal luminescence sediment tracing method

    Science.gov (United States)

    Reimann, Tony

    2014-05-01

    Optically Stimulated Luminescence (OSL) is commonly used for dating sediments. Luminescence signals build up due to exposure of mineral grains to natural ionizing radiation, and are reset when these grains are exposed to (sun)light during sediment transport and deposition. Generally, luminescence signals can be read in two ways, potentially providing information on the burial history (dating) or the transport history (sediment tracing) of mineral grains. In this study we use a novel luminescence measurement procedure (Reimann et al., submitted) that simultaneously monitors six different luminescence signals from the same sub-sample (aliquot) to infer the transport history of sand grains. Daylight exposure experiments reveal that each of these six signals resets (bleaches) at a different rate, thus allowing to trace the bleaching history of the sediment in six different observation windows. To test the feasibility of luminescence sediment tracing in shallow-marine coastal settings we took eight sediment samples from the pilot mega-nourishment Zandmotor in Kijkduin (South-Holland). This site provides relatively controlled conditions as the morphological evolution of this nourishment is densely monitored (Stive et al., 2013). After sampling the original nourishment source we took samples along the seaward facing contour of the spit that was formed from August 2011 (start of nourishment) to June 2012 (sampling). It is presumed that these samples originate from the source and were transported and deposited within the first year after construction. The measured luminescence of a sediment sample was interpolated onto the daylight bleaching curve of each signal to assign the Equivalent Exposure Time (EET) to a sample. The EET is a quantitative measure of the full daylight equivalent a sample was exposed to during sediment transport, i.e. the higher the EET the longer the sample has been transported or the more efficient it has been exposed to day-light during sediment

  11. Luminescent, magnetic and ferroelectric properties of noncentrosymmetric chain-like complexes composed of nine-coordinate lanthanide ions.

    Science.gov (United States)

    Li, Xi-Li; Chen, Chun-Lai; Xiao, Hong-Ping; Wang, Ai-Ling; Liu, Cai-Ming; Zheng, Xianjun; Gao, Li-Jun; Yang, Xiao-Gang; Fang, Shao-Ming

    2013-11-21

    Reaction of the chiral ligand (-)-4,5-pinenepyridyl-2-pyrazine (L) with Ln(hfac)3·2H2O precursors [hfac(-) = 1,1,1,5,5,5-hexafluoroacetylacetonate, Ln = Sm(3+) (1), Eu(3+) (2), Tb(3+) (3) and Dy(3+) (4)] in methanol solution led to the formation of four noncentrosymmetric lanthanide complexes with the general formula [Ln(hfac)3L]n·H2O. The single-crystal X-ray diffraction analyses revealed that they are isostructural and take a one-dimensional (1D) chain structure based on the Ln(hfac)3L repeating units, in which the nine-coordinate Ln(3+) ions reside in a tricapped trigonal prism (TTP) environment never reported in previous 1D chain lanthanide complexes. The investigations of their photophysical properties showed that complexes 1, and 3 exhibit characteristic emissions of Sm(3+), Eu(3+) and Tb(3+) ions with respective luminescent lifetime values of 0.065, 1.066 and 0.129 ms, while complex 4 does not display any emission. The different luminescent intensities and lifetimes among them were further discussed in detail. Moreover, the magnetic properties of complexes 1-4 were assessed with a special emphasis on the Dy(3+) complex 4. Alternating-current (ac) magnetic susceptibility measurements indicated that field-induced two-step slow magnetic relaxation processes were observed in 4, indicating the single-molecule magnet (SMM) behavior of 4. In addition, the noncentrosymmetric complexes 1-4 crystallizing in the same polar point group (Cs) exhibit both ferroelectric and nonlinear optical properties at room temperature. All these features make them multifunctional crystalline molecule materials.

  12. Synthesis and luminescence properties of hybrid organic-inorganic transparent titania thin film activated by in-situ formed lanthanide complexes

    International Nuclear Information System (INIS)

    Wang Yige; Wang Li; Li Huanrong; Liu Peng; Qin Dashan; Liu Binyuan; Zhang Wenjun; Deng Ruiping; Zhang Hongjie

    2008-01-01

    Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film. TEM image shows that the in-situ formed lanthanide complexes were homogeneously distributed throughout the whole thin film. The quantum yield and the number of water coordinated to lanthanide metal center have been theoretically determined based on the luminescence data. - Graphical abstract: Novel stable luminescent organic-inorganic hybrid titania thin film with high transparency activated by in-situ formed lanthanide complexes have been obtained at room temperature via a simple one-pot synthesis approach by using TTFA-modified titanium precursor with amphiphilic triblock copolymer P123. The obtained hybrid thin film displays bright red (or green), near-monochromatic luminescence due to the in-situ formed lanthanide complex

  13. Luminescence behavior of the dibenzoyl methane europium(III) complexes in sol-gel derived host materials

    International Nuclear Information System (INIS)

    Wang Feng; Fan Xianping; Wang Minquan; Zhang Xianghua

    2005-01-01

    The luminescence behavior of the dibenzoyl methane europium(III) complexes (Eu(DBM) 3 ) in sol-gel derived host materials have been investigated. The steady-state excitation and emission spectra and the time-resolved spectra of the 1% EuCl 3 and 3% DBM co-doped gel indicated an efficient ligand-to-metal energy transfer. The Eu(DBM) 3 complexes in the gel showed longer 5 D 0 lifetimes in comparison with Eu(DBM) 3 .3H 2 O complexes. The luminescence intensity of the 1% EuCl 3 and 3% DBM co-doped gel decreased continuously with increasing temperature and time of heat treatment, which indicated the gradual decomposition of the Eu(DBM) 3 complexes in the gel during heat treatment

  14. Analysis of structure origin and luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glass.

    Science.gov (United States)

    Chen, Fangze; Jing, Xufeng; Wei, Tao; Wang, Fengchao; Tian, Ying; Xu, Shiqing

    2014-08-14

    The near infrared luminescence properties of Yb(3+)-Er(3+) co-doped fluorophosphate glasses have been investigated. The various effects on structure and 1.53 μm emission were analyzed as a function of Yb(3+) concentration. The energy transfer mechanism was proposed. High measured lifetime (10.75 ms), large effective full widths at half maximum (73.71 nm) and large gain per unit length (62.8 × 10(-)(24)cm(2)s) have been achieved in prepared glass. The present glass co-doped with 6mol% YbF3 and 2 mol% ErF3 showed magnificent luminescence properties for telecommunication application. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Science.gov (United States)

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  16. Synthesis of yttrium silicate luminescent materials by sol-gel method

    International Nuclear Information System (INIS)

    Arkhipov, D.V.; Vasina, O.Yu.; Popovich, N.V.; Galaktionov, S.S.; Soshchin, N.P.

    1996-01-01

    Several yttrium-silicate composition with Y 2 O 3 content within 44-56% have been synthesized. it is ascertained that employment of sol-gel technique permits preparation of luminescent materials on yttrium silicate basis, which compare favourably with bath-produced specimens. The influence of phase composition of sol-gel phosphors on basic performance indices: intensity and luminescence spectrum, has been analyzed

  17. Neutron dosimetry using optically stimulated luminescence

    International Nuclear Information System (INIS)

    Miller, S.D.; Eschbach, P.A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron-induced proton recoils for radiation dosimetry is a well-known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years at Pacific Northwest laboratories (PNL) has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one-year period, and the capability of analyzing single grains within a hydrogenous matrix. 4 refs., 10 figs

  18. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method

    International Nuclear Information System (INIS)

    Luo Xixian; Cao Wanghe; Zhou Lixin

    2007-01-01

    ZnS:Ag and (Zn,Cd)S:Ag nanoparticles with particle sizes of about 50 and 150 nm have been prepared by hydrothermal method. The effects of hydrothermal process on the physical and luminescence characteristics are investigated. The photoluminescence intensities of hydrothermal treatment ZnS:Ag samples are 10 times higher than that of non-treated samples after annealing at 800 deg. C

  19. Blue-green luminescent CdZnSeS nanocrystals synthesized with activated alkyl thiol

    International Nuclear Information System (INIS)

    Xia Xing; Liu Zuli; Du Guihuan; Li Yuebin; Ma Ming; Yao Kailun

    2012-01-01

    Semiconductor nanocrystals with blue-green luminescence are potentially useful in various applications, but the preparation has not been easy compared to regular semiconductor nanocrystals with emission in the orange-red range. In this research alloyed CdZnSeS nanocrystals with luminescence covering the wavelength range from 430 to 560 nm are obtained by a one-step method with the assistance of alkyl thiol compound 1-dodecanethiol, which serves both as the sulfur source and surface ligand. The luminescence of CdZnSeS nanocrystals can be tuned from blue to green by altering the Cd:Zn molar ratio. Besides, the amount of 1-dodecanethiol in the reaction mixture can influence the emission wavelength by restricting the growth of nanocrystals. The dual control of both particle composition and size has enabled the tuning of luminescence to cover the blue-green spectral window. This research presents a convenient method to synthesize nanocrystals with tunable blue-green emission; these materials can be useful in advanced technologies such as photovoltaics, lighting and display. - Highlights: → Obtained blue-green luminescent nanocrystals by a one-step process. → Alkyl thiol used as a sulfur source and a surface stabilizer to control particle size. → Luminescence color of NCs could be easily tuned by changing their composition and particle size simultaneously.

  20. New polymers containing BF2-benzoylacetonate groups. Synthesis, luminescence, excimer and exciplex formation

    International Nuclear Information System (INIS)

    Fedorenko, Elena V.; Mirochnik, Anatolii G.; Beloliptsev, Anton Yu.

    2017-01-01

    In the present study, a new synthetic method for the functionalization of polystyrene (PS) and (styrene-methyl methacrylate) copolymer has been developed. Using the new method, polymers containing BF 2 -benzoylacetonate groups have been obtained through double acylation by acetic anhydride with boron trifluoride. Luminescence of the produced polymers in solutions and films has been studied. Quantum yields of polymer solution luminescence are significantly higher than those of the low-molecular-weight analog – boron difluoride benzoylacetonate. For the polymer, in which styrene fragments are separated by methyl methacrylate groups, at low concentrations of the polymer in solution one observes the monomer luminescence of BF 2 -benzoylacetonate groups, while at high concentrations – the excimer luminescence. In case of PS-based polymers, in which BF 2 -benzoylacetonate groups and phenyl rings are not separated, in diluted solutions one observes the fluorescence of the intramolecular exciplexes, while at the concentration increase – the luminescence of intermolecular exciplexes. The ability of excimer formation is responsible for the increased photostability of the produced polymers. - Highlights: •Polymers containing BF 2 -benzoylacetonate groups have been synthesized. •Luminescence of the produced polymers in solutions and films has been studied. •Formation of excimers and exciplexes in solution has been revealed. •Formation of excimers in films increases their photostability.

  1. Luminescence sensitivity changes in quartz as a result of annealing

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Agersnap Larsen, N.; Mejdahl, V.

    1995-01-01

    archaeological samples show very different OSL sensitivities. In this paper we report on studies of the effect of high temperature annealing on the OSL and phototransferred TL (PTTL) signals from sedimentary and synthetic quartz. A dramatic enhancement of both OSL and PTTL sensitivity was found especially...... in the temperature range 500-800 degrees C. Computer simulations of the possible effects are shown to produce data that agree in all essential details with the experimental observations. It is further demonstrated that the enhanced OSL sensitivity as a function of annealing temperature is not a pre-dose effect....... of magnitude less per unit radiation than that for heated material. The reason these temperature-induced sensitivity changes occur in quartz is presently not well understood. This phenomenon is also seen in the related area of luminescence dating in which sedimentary quartz and quartz from heated...

  2. Porous glasses as a host of luminescent materials, their applications and site selective determination

    Energy Technology Data Exchange (ETDEWEB)

    Reisfeld, Renata, E-mail: renata.reisfeld@mail.huji.ac.il [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Jasinska, Bozena [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Levchenko, Viktoria [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Gorgol, Marek [Institute of Physics, Maria Curie-Sklodowska University, Pl. M. Curie-Skłodowsskiej 1, 20-031 Lublin (Poland); Saraidarov, Tsiala; Popov, Inna [Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904 (Israel); Antropova, Tatiana [I. V. Grebenshchikov Institute of the Chemistry of Silicates, Russian Academy of Sciences, Nab. Makarova, 2, Liter B, Saint-Petersburg 199034 (Russian Federation); Rysiakiewicz-Pasek, Ewa [Institute of Physics, Wroclaw University of Technology, W. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2016-01-15

    The site selective distribution of pore sizes in pure porous glasses and glasses doped by a luminescent colorant is determined by luminescent spectroscopy, SEM, SAXS and PALS. The potential applications of the studied materials as environmental and biological sensors are outlined. We suggest how luminescent porous glasses doped by complexes of Gd can act as solid scintillators in tracing elementary particles like neutrino. - Highlights: • Porous glasses are a medium for large number of luminescent materials. • Size distribution of empty and filled pores is studied. • The validity of data obtained by different methods is analyzed.

  3. Charged defects during alpha-irradiation of actinide oxides as revealed by Raman and luminescence spectroscopy

    International Nuclear Information System (INIS)

    Mohun, R.; Desgranges, L.; Léchelle, J.; Simon, P.; Guimbretière, G.; Canizarès, A.; Duval, F.; Jegou, C.; Magnin, M.; Clavier, N.; Dacheux, N.; Valot, C.; Vauchy, R.

    2016-01-01

    We have recently evidenced an original Raman signature of alpha irradiation-induced defects in UO 2 . In this study, we aim to determine whether the same signature also exists in different actinide oxides, namely ThO 2 and PuO 2 . Sintered UO 2 and ThO 2 were initially irradiated with 21 MeV He 2+ ions using a cyclotron device and were subjected to an in situ luminescence experiment followed by Raman analysis. In addition, a PuO 2 sample which had accumulated self-irradiation damage due to alpha particles was investigated only by Raman measurement. Results obtained for the initially white ThO 2 showed that a blue color appeared in the irradiated areas as well as luminescence signals during irradiation. However, Raman spectroscopic analysis showed the absence of Raman signature in ThO 2 . In contrast, the irradiated UO 2 and PuO 2 confirmed the presence of the Raman signature but no luminescence peaks were observed. The proposed mechanism involves electronic defects in ThO 2 , while a coupling between electronic defects and phonons is required to explain the Raman spectra for UO 2 and PuO 2 .

  4. PROPERTIES OF Eu3+ LUMINESCENCE IN THE MONOCLINIC Ba2MgSi2O7

    Directory of Open Access Journals (Sweden)

    Shansh an Yao

    2011-09-01

    Full Text Available Red-emitting phosphors Ba2-xMgSi2O7: Eux3+ was prepared by combustion-assisted synthesis method and an efficient red emission under near-ultraviolet (UV was observed. The luminescence and crystallinity were investigated using luminescence spectrometry and X-ray diffractometer. The emission spectrum shows that the most intense peak is located at 614 nm, which corresponds to the 5D0 → 7F2 transitions of Eu3+. The phosphor has two main excitation peaks located at 394 and 465 nm, which match the emission of UV and blue light-emitting diodes, respectively. The effect of Eu3+ concentration on the emission spectrum of Ba2MgSi2O7:Eu3+ phosphor was studied. The results showed that the emission intensity increased with increasing Eu3+ concentration, and then decreased because of concentration quenching. The critical quenching concentration of Eu3+ in Ba2MgSi2O7: Eu3+ phosphor is about 0.05 mol. The mechanism of concentration quenching of Ba2MgSi2O7: Eu3+ luminescence is energy transfer between Eu3+ ions casued by the dipole-dipole interaction.

  5. Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature

    International Nuclear Information System (INIS)

    Chithambo, M.L.

    2015-01-01

    The influence of annealing, irradiation dose, preheating and measurement temperature on luminescence lifetimes has been studied in quartz annealed at 1000 °C. The measurements were supplemented by studies on quartz annealed at 900 and 800 °C. Lifetimes increase with dose as well as with temperature and duration of annealing between 800 and 1000 °C. Preheating produces the same effect. The changes are accounted for in terms of hole-transfer from the non-radiative luminescence centre to and between radiative centres. The influence of measurement temperature on lifetimes depends on whether the stimulation is carried out from ambient to 200 °C or otherwise. This result is unlike that in quartz annealed at or below 500 °C where lifetimes are independent of the direction of heating. In particular, lifetimes decrease monotonically when measurements are made from 20 to 200 °C but not when recorded from 200 to 20 °C. The latter produces a pattern resembling that in quartz annealed up to 500 °C. The results are concluded as evidence of thermal effects on separate luminescence centres. In support of this, different values of the activation energy for thermal quenching were found for each supposed luminescence centre. The change of the corresponding luminescence intensity with temperature is also qualitatively consistent with this notion. - Highlights: • Luminescence lifetimes in natural quartz annealed beyond its second phase inversion temperature is reported. • Lifetimes increase with dose, annealing between 800 and 1000 °C, and preheating. • Lifetimes under stimulation temperature are affected by direction of heating. • Changes are accounted for in terms of hole-transfer luminescence centres.

  6. Luminescence of water or ice as a new detection method for magnetic monopoles

    Directory of Open Access Journals (Sweden)

    Pollmann Anna Obertacke

    2017-01-01

    We present analysis techniques to use luminescence in neutrino telescopes and discuss experimental setups to measure the light yield of luminescence for the particular conditions in neutrino detectors.

  7. Luminescent Dinuclear Ruthenium Terpyridine Complexes with a Bis-Phenylbenzimidazole Spacer.

    Science.gov (United States)

    Mondal, Debiprasad; Biswas, Sourav; Paul, Animesh; Baitalik, Sujoy

    2017-07-17

    A conjugated bis-terpyridine bridging ligand, 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-6-(2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-benzo[d]imidazol-6-yl)-1H-benzo[d] imidazole (tpy-BPhBzimH 2 -tpy), was designed in this work by covalent coupling of 3,3'-diaminobenzidine and two 4'-(p-formylphenyl)-2,2':6',2″-terpyridine units to synthesize a new series of bimetallic Ru(II)-terpyridine light-harvesting complexes. Photophysical and electrochemical properties were modulated by the variation of the terminal ligands in the complexes. The new compounds were thoroughly characterized by 1 H NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Absorption spectra of the complexes consist of very strong ligand-centered π-π* and n-π* transitions in the UV, metal-to-ligand, and intraligand charge transfer bands in the visible regions. Steady-state and time-resolved emission spectral measurements indicate that the complexes exhibit moderately intense luminescence at room temperature within the spectral domain of 653-687 nm having luminescence lifetimes in the range between 6.3 and 55.2 ns, depending upon terminal tridentate ligand and solvent. Variable-temperature luminescence measurements suggest substantial increase of the energy gap between luminescent 3 metal-to-ligand charge transfer state and nonluminescent 3 metal centered in the complexes compared to the parent [Ru(tpy) 2 ] 2+ . Each of the three bimetallic complexes exhibits only one reversible couple in the positive potential window with almost no detectable splitting corresponding to simultaneous oxidation of the two remote Ru centers. All the complexes possess a number of imidazole NH protons, which became sufficiently acidic upon metal ion coordination. By utilizing these NH protons, we thoroughly studied anion recognition properties of the complexes in pure organic as well as predominantly aqueous media through multiple optical channels and spectroscopic methods. Finally

  8. Advances in luminescence instrument systems

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Bulur, E.; Duller, G.A.T.

    2000-01-01

    We report on recent advances in the development of luminescence measurement systems and techniques at Riso. These include: (1) optical stimulation units based on new-generation powerful blue light (470 nm) emitting diodes providing up to 28 mW/cm(2) for OSL measurements; (2) an infrared (830 nm...

  9. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  10. High-temperature peaks of thermostimulated luminescence in the ammonium halogens

    International Nuclear Information System (INIS)

    Kim, L.M.; Musenova, Eh.K.; Mukhamedrakhimov, K.U.

    2003-01-01

    The ammonium halogen crystals (AHC) are the close analogs of the alkali halogen crystals by the type of chemical bonds and crystal lattice structure. The ammonium halogen after irradiation by X-rays within 80-300 K range have two peaks of thermo-stimulation luminescence. Its maximums in dependence of anions type are in the 110-120 K and 170-180 K ranges. The first range is related with activation of auto-localized holes migration, and the second one - with the NH 3 + defects decay. Experimentally is established, that the pure ammonium halogens have memory about the previous irradiation at heating up to 300 K. After repeat irradiation the recombination luminescence high-temperature peak's shoulder is appearing. The second luminescence peak's shoulder revealing does not depend on the impurity center nature. It is known, that in the AHC there is the next thermo-stimulation luminescence peak within 340-360 K. The thermal annealing of this peak leads to the memory effect disappearance. So, the observing phenomenon is related with own defect of the matrix in the cation sublattice. Experimentally is established, that at a room temperature the AHC memorizing about previous irradiation during 20 h

  11. Ab initio calculations of cross luminescence materials

    International Nuclear Information System (INIS)

    Kanchana, V.

    2016-01-01

    Abintio calculations have been performed to study the structural, electronic, and optical properties of ABX 3 (A=alkali, B=alkaline-earth, and X=halide) compounds. The ground state properties are calculated using the pseudopotential method with the inclusion of van der Waals interaction, which we find inevitable in reproducing the experimental structure properties in alkali iodides because of its layered structure. All calculations were performed using the Full-Potential Linearized Augmented Plane Wave method. The band structures are plotted with various functionals and we find the newly developed Tran and Blaha modified Becke-Johnson potential to improve the band gap significantly. The optical properties such as complex dielectric function, refractive index, and absorption spectra are calculated which clearly reveal the optically isotropic nature of these materials though being structurally anisotropic, which is the key requirement for ceramic scintillators. Cross luminescence materials are very interesting because of its fast decay. One of the major criteria for the cross luminescence to happen is the energy difference between valence band and next deeper core valence band being lesser when compared to energy gap of the compound, so that radiative electronic transition may occur between valence band and core valence band. We found this criteria to be satisfied in all the studied compounds leading to cross luminescence except for KSrI 3 , RbSrI 3 . The present study suggest that among the six compounds studied, CsSrI 3 , CsMgCl 3 , CsCaCl 3 , and CsSrCl 3 compounds are cross luminescence materials, which is well explained from the band structure, optical properties calculations. Chlorides are better scintillators that iodides and CsMgCl 3 is found to be promising one among the studied compounds. Apart from these materials we have also discussed electronic structure and optical properties of other scintillator compounds. (author)

  12. Process for producing a self luminescent material

    Energy Technology Data Exchange (ETDEWEB)

    Abe, E

    1962-01-28

    A self luminescent material is produced by a process comprising applying a hydroxide or fluoride of promethium-147 suspended in a medium of paraffinic acid to the surface of a fluorescent body. Promethium-147 decays with a half-life of 2.6 years and emits beta-rays but not alpha- and gamma-rays so that it is suitable for manufacturing self luminescent materials. A chloride of promethium-147 cannot be employed because its structure is destroyed by acids. Although fluorides and hydroxides of promethium-147 are difficult to mix with the fluorescent body material, they become mixable when paraffinic acids containing from 12 to 20 carbon atoms, (for example, steric acid, palmitic acid and margaric acid) are used as a medium. In embodiments, the self luminescent materials are prepared by either neutralization of a promethium-147 chloride solution having a specific radioactivity of 1.2 c/cc. with an ammonium hydroxide solution to form gelatinous hydroxide, or the reaction of a promethium-147 chloride solution with H/sub 2/SiF/sub 6/ by heating at 80/sup 0/C to form a fluoride of promethium-147. The products have a specific radioactivity of 8 to 12 mc/g. These products are suspended in vehicles of polystyrene and methacrylic resin to produce the self luminescent coating materials. Tests show that the initical brightness is comparatively high, the decreasing rate of brightness is small, no blackening effects by alpha-rays occur and costs are low. The brightness of the coating containing promethium-147 is 82-85 after 5 days, 100-105 after 100 days and 82-92 after 180 days. With respect to the coating containing radium the values are 31-70 after 5 days, 28-49 after 100 days and 19-31 after 180 days.

  13. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    P R, Chithira; Theresa John, Teny, E-mail: teny@goa.bits-pilani.ac.in

    2017-05-15

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH{sup -}] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  14. The influence of vacuum and annealing on the visible luminescence in ZnO nanoparticles

    International Nuclear Information System (INIS)

    P R, Chithira; Theresa John, Teny

    2017-01-01

    The ZnO nanoparticles synthesized by a simple solution based chemical bath deposition method were characterized using different experimental techniques. Photoluminescence (PL) studies were performed in ambient as well as in vacuum conditions. The emission spectra exhibit two bands corresponding to UV emission at 380 nm and a wide visible luminescence centered at 571 nm due to surface defects in ambient conditions. Under vacuum condition, the spectra show a reduction in the intensity of the wide visible luminescence and an enhancement in the UV emission. These nanoparticles were annealed at high temperatures in air. The wide visible luminescence remains at the same intensity in both ambient and in vacuum condition for the annealed samples indicating that some of the surface adsorbed defects are removed due to annealing. Fourier Transform Infrared Spectroscopy (FTIR) and Electron Spin Resonance (ESR) results reveal the presence of [OH - ] related groups on the surface of the samples. An analysis of the O1s peak in ZnO using X-ray Photoelectron Spectroscopy (XPS) measurement confirms the presence of intrinsic defects such as oxygen related vacancies and adsorbed oxygen species in the sample. Our investigation shows that the green emission observed in ZnO samples is primarily due to oxygen vacancies.

  15. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  16. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  17. Mathematical characterization of continuous wave infrared stimulated luminescence signals (CW-IRSL) from feldspars

    International Nuclear Information System (INIS)

    Pagonis, V.; Phan, Huy; Goodnow, Rebecca; Rosenfeld, Sara; Morthekai, P.

    2014-01-01

    Continuous-wave infrared stimulated luminescence signals (CW-IRSL) from feldspars have been the subject of many experimental studies, due to their importance in luminescence dating and dosimetry. Accurate mathematical characterization of the shape of these CW-IRSL signals in feldspars is of practical and theoretical importance, especially in connection with “anomalous fading” of luminescence signals in dating studies. These signals are known to decay in a non-exponential manner and their exact mathematical shape as a function of stimulation time is an open research question. At long stimulation times the IRSL decay has been shown experimentally to follow a power law of decay, and previous researchers have attempted to fit the overall shape of these signals empirically using the well known Becquerel function (or compressed hyperbola decay law). This paper investigates the possibility of fitting CW-IRSL curves using either the Becquerel decay law, or a recently developed analytical equation based on localized electronic recombination of donor–acceptor pairs in luminescent materials. It is shown that both mathematical approaches can give excellent fits to experimental CW-IRSL curves, and the precision of the fitting process is studied by analyzing a series of curves measured using a single aliquot of a feldspar sample. Both fitting equations are solutions of differential equations involving numerically similar time dependent recombination probabilities k(t). It is concluded that both fitting equations provide approximately equivalent mathematical descriptions of the CW-IRSL curves in feldspars, and can be used as mathematical representations of the shape of CW-IRSL signals. - Highlights: • Feldspar CW-IRSL curves fitted using Becquerel decay law and new analytical equation. • Both mathematical approaches give excellent fits to experimental CW-IRSL curves. • Series of experimental CW-IRSL curves analyzed using both fitting expressions. • The time

  18. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes

    International Nuclear Information System (INIS)

    Liu Mingjing; Ye Zhiqiang; Xin Chenglong; Yuan Jingli

    2013-01-01

    Highlights: ► A lanthanide complex-based ratiometric luminescent pH sensor was developed. ► The sensor can luminously respond to pH in weakly acidic to neutral media. ► The sensor can be used for monitoring pH with time-resolved luminescence mode. ► The sensor can be also used for monitoring pH with absorbance mode. ► The utility of the sensor for the luminescent cell imaging was demonstrated. - Abstract: Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu 3+ and Tb 3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu 3+ is strongly dependent on the pH values in weakly acidic to neutral media (pK a = 5.8, pH 4.8–7.5), while that of HTTA–Tb 3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu 3+ and HTTA–Tb 3+ (the HTTA–Eu 3+ /Tb 3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb 3+ emission at 540 nm to its Eu 3+ emission at 610 nm, I 540nm /I 610nm , as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu 3+ /Tb 3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A 290nm /A 325nm , as a signal. This feature enables the HTTA–Eu 3+ /Tb 3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the

  19. Luminescence properties of uranyl-acetate species

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Hannes; Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Stumpf, Thorsten [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) was applied to characterize uranium(VI)- acetate species based on their luminescence properties. In contrast to previous interpretations, no indications were detected for the existence of the 1: 3 complex.

  20. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  1. Single fiber temperature probe configuration using anti-Stokes luminescence from Cr:GdAlO3

    Science.gov (United States)

    Eldridge, Jeffrey I.

    2018-06-01

    Single-photon excitation of anti-Stokes-shifted emission from a thermographic phosphor allows operation of a luminescence decay-based single fiber temperature probe with negligible interference from background fiber-generated Raman scattering. While single fiber probe configurations for luminescence-based fiber optic thermometers offer advantages of simple design, compactness, and superior emission light collection efficiency, their effective use has been limited by interference from Raman scattering in the fiber probe and excitation delivery fiber that produces distortion of the luminescence decay that follows the excitation pulse. The near elimination of interference by background fiber-generated Raman scattering was demonstrated by incorporating a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor as the sensing element at the end of a single fiber luminescence decay-based thermometer and detecting anti-Stokes-shifted luminescence centered at 542 or 593 nm produced by 695 nm excitation. Measurements were performed using both silica (up to 1150 °C) and single-crystal YAG (up to 1200 °C) fiber-based thermometers. Selection of emission detection centered at 542 nm greatly benefited the YAG fiber probe measurements by practically eliminating detection of otherwise significant luminescence from Cr3+ impurities in the YAG fiber. For both the silica and YAG fiber probes, the relative benefit of adopting single-photon excitation of anti-Stokes-shifted luminescence was evaluated by comparison with results obtained by conventional 532 nm excitation of Stokes-shifted luminescence.

  2. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... to blast loadings. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF. ISSN: 1112-9867.

  3. Luminescence and structure of manganese(II) halogenides. Pt. 1

    International Nuclear Information System (INIS)

    Oelkrug, D.; Kempny, W.

    1976-01-01

    The luminescence decay times tau and luminescence intensities I of the mixed crystals Mnsub(x)Cdsub(1-x)Hal 2 (Hal = Bl, Br, J; x 6 -octahedra and of some compounds A 2 MnHal 4 (A = large cation) with unlinked MnHal 4 -tetrahedra were investigated between 4.2 K and 295 K. In Osub(h)-coordinated compounds tau decreases with increasing temperature, most strongly in the iodide namely by a factor of five. On the other hand I correspondingly increases to the same extent so that in all cases I x tau = const. That justifies the assumption of quantum yields independent of temperature with the ideal value of one. In Tsub(d)-coordinated compounds tau and I taken as such are constant in the whole temperature range. The Osub(h) - Tsub(d) contrast in tau and I is attributed to oscillator strengths either dependent on temperature or constant. In the case of MnHal 6 coordination the dependency on temperature may be expressed by the function ctgh(hνc/2kT), (νsub(J) = 80, νsub(Br) = 140, νsub(Cl) = 190 cm -1 ), νsup(Hal) very well corresponding with the mean value of the odd optical k = 0 phonons in the CdHal 2 lattice. (orig.) [de

  4. Evaluation of one-step luminescent cyanoacrylate fuming.

    Science.gov (United States)

    Khuu, Alicia; Chadwick, Scott; Spindler, Xanthe; Lam, Rolanda; Moret, Sébastien; Roux, Claude

    2016-06-01

    One-step luminescent cyanoacrylates have recently been introduced as an alternative to the conventional cyanoacrylate fuming methods. These new techniques do not require the application of a luminescent post-treatment in order to enhance cyanoacrylate-developed fingermarks. In this study, three one-step polymer cyanoacrylates: CN Yellow Crystals (Aneval Inc.), PolyCyano UV (Foster+Freeman Ltd.) and PECA Multiband (BVDA), and one monomer cyanoacrylate: Lumikit™ (Crime Scene Technology), were evaluated against a conventional two-step cyanoacrylate fuming method (Cyanobloom (Foster+Freeman Ltd.) with rhodamine 6G stain). The manufacturers' recommended conditions or conditions compatible with the MVC™ 1000/D (Foster+Freeman Ltd.) were assessed with fingermarks aged for up to 8 weeks on non-porous and semi-porous substrates. Under white light, Cyanobloom generally gave better development than the one-step treatments across the substrates. Similarly when viewed under the respective luminescent conditions, Cyanobloom with rhodamine 6G stain resulted in improved contrast against the one-step treatments except on polystyrene, where PolyCyano UV and PECA Multiband gave better visualisation. Rhodamine 6G post-treatment of one-step samples did not significantly enhance the contrast of any of the one-step treatments against Cyanobloom/rhodamine 6G-treated samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

    International Nuclear Information System (INIS)

    Eliseeva, Svetlana V.; Golovach, Iurii P.; Liasotskyi, Valerii S.; Antonovich, Valery P.; Petoud, Stéphane; Meshkova, Svetlana B.

    2016-01-01

    Most of the existing optical methods for Cu II detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of Cu II ions based on both visible (Tb III , Eu III ) and near-infrared (Nd III , Yb III ) emission. Quantum yields of the characteristic Ln III emission signals increases by at least two-orders of magnitude upon addition of Cu II into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of Cu II ions does not significantly affect the energy positions of the singlet (32,260 cm −1 ) and triplet (25,640–25,970 cm −1 ) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce Cu II to Cu I has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards Cu II over other transition metal ions: the addition of divalent Zn II , Cd II , Pd II , Ni II , Co II or trivalent Fe III , Ga III , In III ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of Cu II results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the

  6. Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence.

    Science.gov (United States)

    Zhang, Kun; Xie, Xiaoji; Li, Hongyu; Gao, Jiaxin; Nie, Li; Pan, Yue; Xie, Juan; Tian, Dan; Liu, Wenlong; Fan, Quli; Su, Haiquan; Huang, Ling; Huang, Wei

    2017-09-01

    Although proton conductors derived from metal-organic frameworks (MOFs) are highly anticipated for various applications including solid-state electrolytes, H 2 sensors, and ammonia synthesis, they are facing serious challenges such as poor water stability, fastidious working conditions, and low proton conductivity. Herein, we report two lanthanide-oxalate MOFs that are highly water stable, with so far the highest room-temperature proton conductivity (3.42 × 10 -3 S cm -1 ) under 100% relative humidity (RH) among lanthanide-based MOFs and, most importantly, luminescent. Moreover, the simultaneous response of both the proton conductivity and luminescence intensity to RH allows the linkage of proton conductivity with luminescence intensity. This way, the electric signal of proton conductivity variation versus RH will be readily translated to optical signal of luminescence intensity, which can be directly visualized by the naked eye. If proper lanthanide ions or even transition-metal ions are used, the working wavelengths of luminescence emissions can be further extended from visible to near infrared light for even wider-range applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation and luminescence properties of terbium-doped lanthanum oxide nanofibers by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Song Lixin; Du Pingfan [Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018 (China); Xiong Jie, E-mail: jxiong@zstu.edu.cn [Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018 (China); Fan Xiaona; Jiao Yuxue [Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University), Ministry of Education, Hangzhou 310018 (China)

    2012-01-15

    Terbium-doped lanthanum oxide (La{sub 2}O{sub 3}:Tb{sup 3+}) nanofibers were prepared by electrospinning followed by calcination at high temperature. Thermogravimetric analyzer (TGA), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) were used to characterize the obtained fibers. The results reveal that the nanofibers have an average diameter of ca. 95{+-}25 nm and are composed of pure La{sub 2}O{sub 3} phase. Under the excitation of 274 nm light, the La{sub 2}O{sub 3}:Tb{sup 3+} nanofibers exhibit the characteristic emission resulting from the {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=3, 4, 5, 6) transitions of Tb{sup 3+} ions. And the PL emission intensity is stronger than that of their nanoparticle counterparts. - Highlights: > Tb{sup 3+}-doped La{sub 2}O{sub 3} (La{sub 2}O{sub 3}:Tb{sup 3+}) fluorescent nanofibers were prepared via a simple electrospinning technique. > Luminescent properties and other characteristics of the nanofibers were investigated in details. > Potential applications of La{sub 2}O{sub 3}:Tb{sup 3+} nanofibers and electrospinning technique described in this paper are suggested.

  8. Spectral luminescence and geochemistry of coral aragonite: Effects of whole-core treatment

    NARCIS (Netherlands)

    Nagtegaal, R.; Grove, C.A.; Kasper, S.; Zinke, J.; Brummer, G.J.A.

    2012-01-01

    Luminescent and geochemical properties of coral skeletons are increasingly used for time-series analysis to resolve past and ongoing changes in environmental and climatic conditions. Corals also contain non-skeletal matter which not only quenches luminescence but is also reported to compromise

  9. Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar

    DEFF Research Database (Denmark)

    Guralnik, Benny; Li, Bo; Jain, Mayank

    2015-01-01

    the growth and decay of laboratory-regenerated luminescence signals. Here we review a selection of common models describing the response of infrared stimulated luminescence (IRSL) of feldspar to constant radiation and temperature as administered in the laboratory. We use this opportunity to introduce...

  10. Synthesis and luminescence of Eu3+ and Tb3+ complexes with novel calix[4]arene ligands carrying 2,2'-bipyridine subunits

    International Nuclear Information System (INIS)

    Sabbatini, N.; Guardigli, M.; Manet, I.; Ungaro, R.; Casnati, A.; Fischer, C.; Ziessel, R.; Ulrich, G.

    1995-01-01

    Eu 3+ and Tb 3+ complexes with novel branched calix[4]arene ligands incorporating 2,2' -bipyridine subunits functionalized in the 6- or 5,5'-positions have been synthesized and their photophysical properties investigated. High luminescence intensity was obtained for the Eu 3+ complex of the calix[4]arene ligand carrying four 5,5' -substituted- 2,2' -bipyridines, which has high molar extinction coefficients (ε max 39 600 M -1 cm -1 ) and a high luminescence quantum yield (15%). (authors). 12 refs., 2 figs., 1 tab

  11. Kinetic study of Tb/sup 3 +/(/sup 5/D/sub 3/) luminescence in phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anisimov, V.A.; Dmitryuk, A.V.; Karapetyan, G.O.

    1986-01-01

    This paper presents precise determinations of the kinetics of terbium luminescence over a broad dynamic range, in order to refine the mechanism of concentration quenching of the Tb/sup 3 +/(/sup 5/D/sub 3/) luminescence in glasses. After establishing the mechanism of Tb/sup 3 +/(/sup 5/D/sub 3/) luminescence quenching by the iteration method, the authors determine the value of the parameter for an arbitrary concentration of the activator. Results of this study show that the mechanism of concentration quenching of luminescence is static dipole-dipole interaction of terbium ions.

  12. Infrared to visible upconversion luminescence in Er3+/Yb3+ co-doped CeO2 inverse opal

    International Nuclear Information System (INIS)

    Yang, Zhengwen; Wu, Hangjun; Liao, Jiayan; Li, Wucai; Song, Zhiguo; Yang, Yong; Zhou, Dacheng; Wang, Rongfei; Qiu, Jianbei

    2013-01-01

    Highlights: • UC emission of Er 3+ was modified by introducing the structure of inverse opal. • Color tuning of CeO 2 :Yb, Er inverse opal was realized by inhibition of UC emission. • Two-photon excitation processes were observed in CeO 2 :Yb, Er inverse opal. -- Abstract: Infrared to visible upconversion luminescence has been investigated in Er 3+ /Yb 3+ co-doped CeO 2 inverse opal. Under the excitation of 980 nm diode lasers, visible emissions centered at 525, 547, 561, 660 and 680 nm are observed, which are assigned to the Er 3+ transitions of 2 H 11/2 → 4 I 15/2 (525 nm), 4 S 3/2 → 4 I 15/2 (547, 561 nm), 4 F 9/2 → 4 I 15/2 (660 and 680 nm), respectively. The effect of photonic band gap on the upconversion luminescence intensity was also obtained. Additionally, the upconversion luminescence mechanism was studied. The dependence of Er 3+ upconversion emission intensity on pump power reveals that it is a two-photon excitation process

  13. Sol-gel synthesis and luminescent properties of red-emitting Y(P,V)O4:Eu(3+) phosphors.

    Science.gov (United States)

    Zhang, Xinguo; Zhou, Fangxiang; He, Pei; Zhang, Min; Gong, Menglian

    2016-02-01

    Eu(3+)-activated Y(P,V)O4 phosphors were prepared by the EDTA sol-gel method, and the corresponding morphologies and luminescent properties were investigated. The sample particles were relatively spheroid with size of 2-3 µm and had a smooth surface. The excitation spectra for Y(P,V)O4:Eu(3+) consisted of three strong excitation bands in the 200-350 nm range, which were attributed to a Eu(3+)- O(2-) charge-transfer band and (1)A1-(1) T1/(1) T2 transitions in VO4(3-). The as-synthesized phosphors exhibited a highly efficient red luminescence at 613 nm due to the Eu(3+5) D0-(7) F2 electric dipole transition. With the increase in the V(5+)/P(5+) ratio, the luminescence intensity of the red phosphor under UV excitation was greatly improved due to enhanced VO4(3-) → Eu(3+) energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Luminescence and scintillation enhancement of Y2O3:Tm transparent ceramic through post-fabrication thermal processing

    International Nuclear Information System (INIS)

    Chapman, M.G.; Marchewka, M.R.; Roberts, S.A.; Schmitt, J.M.; McMillen, C.; Kucera, C.J.; DeVol, T.A.; Ballato, J.; Jacobsohn, L.G.

    2015-01-01

    The effects of post-fabrication thermal processing in O 2 flux on the luminescence and scintillation of a Y 2 O 3 :Tm transparent ceramic were investigated. The results showed that the strategy of post-fabrication processing can be beneficial to the performance of the ceramics, depending on the cumulative processing time. After the first hour of processing, about 40% enhancement in the luminescence output together with about 20% enhancement in the scintillation light yield were obtained. The enhancements were tentatively assigned to the incorporation of oxygen into vacancy sites. Longer cumulative processing times lead to the incorporation of oxygen as interstitials that is detrimental to scintillation light yield but not to luminescence output. This work also revealed that thermoluminescence measurements are a useful tool to predict scintillation light yield of Y 2 O 3 :Tm. - Highlights: • Scintillation and PL enhancement of transparent ceramics through thermal processing. • First thermoluminescence measurements of Y 2 O 3 :Tm above room temperature. • Observation of correlation between TL and scintillation light yield results

  15. Development of a ratiometric time-resolved luminescence sensor for pH based on lanthanide complexes.

    Science.gov (United States)

    Liu, Mingjing; Ye, Zhiqiang; Xin, Chenglong; Yuan, Jingli

    2013-01-25

    Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4'-hydroxy-2,2':6',2''-terpyridine-6,6''-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu(3+) and Tb(3+) complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA-Eu(3+) is strongly dependent on the pH values in weakly acidic to neutral media (pK(a) = 5.8, pH 4.8-7.5), while that of HTTA-Tb(3+) is pH-independent. This unique luminescence response allows the mixture of HTTA-Eu(3+) and HTTA-Tb(3+) (the HTTA-Eu(3+)/Tb(3+) mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb(3+) emission at 540 nm to its Eu(3+) emission at 610 nm, I(540 nm)/I(610 nm), as a signal. Moreover, the UV absorption spectrum changes of the HTTA-Eu(3+)/Tb(3+) mixture at different pHs (pH 4.0-7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A(290 nm)/A(325 nm), as a signal. This feature enables the HTTA-Eu(3+)/Tb(3+) mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA-Eu(3+) and HTTA-Tb(3+) into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Author Details

    African Journals Online (AJOL)

    Author Details. Journal Home > Advanced Search > Author Details. Log in or Register to get access to full text downloads. ... No 3S (2017): Special Issue - Articles Experimental and numerical investigation on blast wave propagation in soil structure. Abstract PDF · Vol 9, No 3S (2017): Special Issue - Articles Simulation on ...

  17. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  18. Identification of yellow luminescence centers in Be-doped GaN through pressure-dependent studies

    Science.gov (United States)

    Teisseyre, Henryk; Lyons, John L.; Kaminska, Agata; Jankowski, Dawid; Jarosz, Dawid; Boćkowski, Michał; Suchocki, Andrzej; Van de Walle, Chris G.

    2017-06-01

    Effective acceptor doping of wide-band-gap semiconductors is still an outstanding problem. Beryllium has been suggested as a shallow acceptor in GaN, but despite sporadic announcements, Be-induced p-type doping has never been practically realized. Be-doped GaN possesses two luminescence bands; one at 3.38 eV and a second near 2.2 eV at an energy close to that of the parasitic yellow luminescence often found in undoped GaN crystals. We have performed high hydrostatic pressure studies of bulk, Be-doped gallium nitride crystals using the diamond anvil cell technique. We observed a splitting of the yellow luminescence line under hydrostatic pressure into two components, one which is strongly dependent on applied pressure and another whose pressure dependence is more modest. Together with hybrid functional calculations, we attribute the strongly-varying component to the beryllium-oxygen complex. The second component of the yellow luminescence possesses very similar pressure behavior to the yellow luminescence observed in undoped samples grown by the same method, behavior which we find consistent with the CN acceptor. At higher pressure, we observe the vanishing of yellow luminescence and a rapid increase in luminescence intensity of the UV line. We explain this as the pressure-induced transformation of the Be-O complex from a highly localized state with large lattice relaxation to a delocalized state with limited lattice relaxation.

  19. A portable luminescence dating instrument

    DEFF Research Database (Denmark)

    Kook, M.H.; Murray, A.S.; Lapp, Torben

    2011-01-01

    We describe a portable luminescence reader suitable for use in remote localities in the field. The instrument weighs about 8kg and is based around a 30mm bialkali photomultiplier detecting signals through a glass filter centered on 340nm. Stimulation is by 470nm blue LEDs (24W in total) operating...

  20. Effect of structure, size and copper doping on the luminescence properties of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Kamal, Ch. Satya [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Mishra, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Patel, Dinesh K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, 9190401 (Israel); Rao, K. Ramachandra, E-mail: drkrcr@gmail.com [Crystal Growth and Nanoscience Research Centre, Government College (A), Rajahmundry, Andhra Pradesh 533 105 (India); Sudarsan, V., E-mail: vsudar@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Vatsa, R.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    Highlights: • Blue and green emission intensity form ZnS is sensitive to crystallographic form. • For ZnS nanoparticles, emission characteristics are not affected by copper doping. • Cu solubility poor in ZnS nanoparticles compared to corresponding bulk. - Abstract: Luminescence properties of wurtzite and cubic forms of bulk ZnS have been investigated in detail and compared with that of ZnS nanoparticles. Blue emission observed in both hexagonal and cubic forms of undoped bulk ZnS is explained based on electron–hole recombination involving electron in conduction band and hole trapped in Zn{sup 2+} vacancies where as green emission arises due to electron hole recombination from Zn{sup 2+} and S{sup 2−} vacancies. Conversion of wurtzite form to cubic form is associated with relative increase in intensity of green emission due to increased defect concentration brought about by high temperature heat treatment. Copper doping in ZnS, initially leads to formation of both Cu{sub Zn} and Cu{sub i} (interstitial copper) centers, and latter to mainly Cu{sub Zn} centers as revealed by variation in relative intensities of blue and green emission from the samples.