WorldWideScience

Sample records for luciferase reporter genes

  1. High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.

    Science.gov (United States)

    Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert

    2018-01-01

    Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.

  2. A novel luciferase knock-in reporter system for studying transcriptional regulation of the human Sox2 gene.

    Science.gov (United States)

    Xiao, Dan; Zhang, Weifeng; Li, Yan; Liu, Kuan; Zhao, Junli; Sun, Xiaohong; Shan, Linlin; Mao, Qinwen; Xia, Haibin

    2016-02-10

    Sox2 is an important transcriptional factor that has multiple functions in stem cell maintenance and tumorigenesis. To investigate the transcriptional regulation of the Sox2 gene, a luciferase knock-in reporter system was established in HEK293 cells by placing the luciferase gene in the genome under the control of the Sox2 gene promoter using a transcription activator-like effector nuclease (TALEN)-mediated genome editing technique. PCR and Southern blot results confirmed the site-specific integration of a single copy of the exogenous luciferase gene into the genome. To prove the reliability and sensitivity of this novel luciferase knock-in system, a CRISPR/Cas transcription activation system for the Sox2 gene was constructed and applied to the knock-in system. The results indicated that luciferase activity was directly correlated with the activity of the Sox2 endogenous promoter. This novel system will be a useful tool to study the transcriptional regulation of Sox2, and has great potential in medical and industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae.

    Science.gov (United States)

    Masser, Anna E; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan; Andréasson, Claes

    2016-05-01

    Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon-optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half-lives of 40 and 5 min, respectively. The commercial substrate Nano-Glo® is compatible with detection of yNluc bioluminescence in yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.

  4. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters.

    OpenAIRE

    Buckley, SM; Delhove, JM; Perocheau, DP; Karda, R; Rahim, AA; Howe, SJ; Ward, NJ; Birrell, MA; Belvisi, MG; Arbuthnot, P; Johnson, MR; Waddington, SN; McKay, TR

    2015-01-01

    The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruse...

  5. R/L, a double reporter mouse line that expresses luciferase gene upon Cre-mediated excision, followed by inactivation of mRFP expression.

    Science.gov (United States)

    Jia, Junshuang; Lin, Xiaolin; Lin, Xia; Lin, Taoyan; Chen, Bangzhu; Hao, Weichao; Cheng, Yushuang; Liu, Yu; Dian, Meijuan; Yao, Kaitai; Xiao, Dong; Gu, Weiwang

    2016-10-01

    The Cre/loxP system has become an important tool for the conditional gene knockout and conditional gene expression in genetically engineered mice. The applications of this system depend on transgenic reporter mouse lines that provide Cre recombinase activity with a defined cell type-, tissue-, or developmental stage-specificity. To develop a sensitive assay for monitoring Cre-mediated DNA excisions in mice, we generated Cre-mediated excision reporter mice, designated R/L mice (R/L: mRFP(monomeric red fluorescent protein)/luciferase), express mRFP throughout embryonic development and adult stages, while Cre-mediated excision deletes a loxP-flanked mRFP reporter gene and STOP sequence, thereby activating the expression of the second reporter gene luciferase, as assayed by in vivo and ex vivo bioluminescence imaging. After germ line deletion of the floxed mRFP and STOP sequence in R/L mice by EIIa-Cre mice, the resulting luciferase transgenic mice in which the loxP-mRFP-STOP-loxP cassette is excised from all cells express luciferase in all tissues and organs examined. The expression of luciferase transgene was activated in liver of RL/Alb-Cre double transgenic mice and in brain of RL/Nestin-Cre double transgenic mice when R/L reporter mice were mated with Alb-Cre mice and Nestin-Cre mice, respectively. Our findings reveal that the double reporter R/L mouse line is able to indicate the occurrence of Cre-mediated excision from early embryonic to adult lineages. Taken together, these findings demonstrate that the R/L mice serve as a sensitive reporter for Cre-mediated DNA excision both in living animals and in organs, tissues, and cells following necropsy.

  6. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    Science.gov (United States)

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  7. In Vivo Imaging of Retinoic Acid Receptor Activity using a Sodium/Iodide Symporter and Luciferase Dual Imaging Reporter Gene

    Directory of Open Access Journals (Sweden)

    Min Kyung So

    2004-07-01

    Full Text Available Retinoic acids are natural derivatives of vitamin A, and play important roles in modulating tumor cell growth by regulating differentiation, thus suggesting the potential use of these derivatives in cancer therapy and prevention. To visualize the intranuclear responses of functional retinoic acid receptors, we have developed a dual-imaging reporter gene system based on the use of sodium/iodide symporter (NIS and luciferase in cancer cell lines. NIS and luciferase genes were linked with an internal ribosome entry site, and placed under the control of an artificial cis-acting retinoic acid responsive element (pRARE/NL. After retinoic acid treatment, I-125 uptake by pRARE/NL transfected cells was found to have increased by up to about five times that of nontreated cells. The bioluminescence intensity of pRARE/NL transfected cells showed dose-dependency. In vivo luciferase images showed higher intensity in retinoic acid treated SK-RARE/NL tumors, and scintigraphic images of SK-RARE/NL tumors showed increased Tc-99m uptake after retinoic acid treatment. The NIS/luciferase imaging reporter system was sufficiently sensitive to allow the visualization of intranuclear retinoic acid receptor activity. This cis-enhancer imaging reporter system may be useful in vitro and in vivo for the evaluation of retinoic acid responses in such areas as cellular differentiation and chemoprevention.

  8. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Gabriel Rinaldi

    2008-07-01

    Full Text Available The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite-host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC. We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP, and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth

  9. a positive control plasmid for reporter gene assay

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... qualification as a positive control for luciferase reporter gene assays. Key words: Reporter gene plasmid, luciferase assay, cytomegalovirus promoter/enhancer, human melanoma cell line. INTRODUCTION. Reporter genes, often called reporters, have become a precious tool in studies of gene expression ...

  10. Flexible Measurement of Bioluminescent Reporters Using an Automated Longitudinal Luciferase Imaging Gas- and Temperature-optimized Recorder (ALLIGATOR).

    Science.gov (United States)

    Crosby, Priya; Hoyle, Nathaniel P; O'Neill, John S

    2017-12-13

    Luciferase-based reporters of cellular gene expression are in widespread use for both longitudinal and end-point assays of biological activity. In circadian rhythms research, for example, clock gene fusions with firefly luciferase give rise to robust rhythms in cellular bioluminescence that persist over many days. Technical limitations associated with photomultiplier tubes (PMT) or conventional microscopy-based methods for bioluminescence quantification have typically demanded that cells and tissues be maintained under quite non-physiological conditions during recording, with a trade-off between sensitivity and throughput. Here, we report a refinement of prior methods that allows long-term bioluminescence imaging with high sensitivity and throughput which supports a broad range of culture conditions, including variable gas and humidity control, and that accepts many different tissue culture plates and dishes. This automated longitudinal luciferase imaging gas- and temperature-optimized recorder (ALLIGATOR) also allows the observation of spatial variations in luciferase expression across a cell monolayer or tissue, which cannot readily be observed by traditional methods. We highlight how the ALLIGATOR provides vastly increased flexibility for the detection of luciferase activity when compared with existing methods.

  11. A Dual Luciferase Reporter System for B. burgdorferi Measures Transcriptional Activity during Tick-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Philip P. Adams

    2017-05-01

    Full Text Available Knowledge of the transcriptional responses of vector-borne pathogens at the vector-pathogen interface is critical for understanding disease transmission. Borrelia (Borreliella burgdorferi, the causative agent of Lyme disease in the United States, is transmitted by the bite of infected Ixodes sp. ticks. It is known that B. burgdorferi has altered patterns of gene expression during tick acquisition, persistence and transmission. Recently, we and others have discovered in vitro expression of RNAs found internal, overlapping, and antisense to annotated open reading frames in the B. burgdorferi genome. However, there is a lack of molecular genetic tools for B. burgdorferi for quantitative, strand-specific, comparative analysis of these transcripts in distinct environments such as the arthropod vector. To address this need, we have developed a dual luciferase reporter system to quantify B. burgdorferi promoter activities in a strand-specific manner. We demonstrate that constitutive expression of a B. burgdorferi codon-optimized Renilla reniformis luciferase gene (rlucBb allows normalization of the activity of a promoter of interest when fused to the B. burgdorferi codon-optimized Photinus pyralis luciferase gene (flucBb on the same plasmid. Using the well characterized, differentially regulated, promoters for flagellin (flaBp, outer surface protein A (ospAp and outer surface protein C (ospCp, we document the efficacy of the dual luciferase system for quantitation of promoter activities during in vitro growth and in infected ticks. Cumulatively, the dual luciferase method outlined herein is the first dual reporter system for B. burgdorferi, providing a novel and highly versatile approach for strand-specific molecular genetic analyses.

  12. Evaluation of Gaussia luciferase and foot-and-mouth disease virus 2A translational interrupter chimeras as polycistronic reporters for transgene expression.

    Science.gov (United States)

    Puckette, Michael; Burrage, Thomas; Neilan, John G; Rasmussen, Max

    2017-06-12

    The Gaussia princeps luciferase is used as a stand-alone reporter of transgene expression for in vitro and in vivo expression systems due to the rapid and easy monitoring of luciferase activity. We sought to simultaneously quantitate production of other recombinant proteins by transcriptionally linking the Gaussia princeps luciferase gene to other genes of interest through the foot-and-mouth disease virus 2A translational interrupter sequence. We produced six plasmids, each encoding a single open reading frame, with the foot-and-mouth disease virus 2A sequence placed either N-terminal or C-terminal to the Gaussia princeps luciferase gene. Two plasmids included novel Gaussia princeps luciferase variants with the position 1 methionine deleted. Placing a foot-and-mouth disease virus 2A translational interrupter sequence on either the N- or C-terminus of the Gaussia princeps luciferase gene did not prevent the secretion or luminescence of resulting chimeric luciferase proteins. We also measured the ability of another polycistronic plasmid vector with a 2A-luciferase sequence placed downstream of the foot-and-mouth disease virus P1 and 3C protease genes to produce of foot-and-mouth disease virus-like particles and luciferase activity from transfected cells. Incorporation of the 2A-luciferase sequence into a transgene encoding foot-and-mouth disease virus structural proteins retained luciferase activity and the ability to form virus-like particles. We demonstrated a mechanism for the near real-time, sequential, non-destructive quantitative monitoring of transcriptionally-linked recombinant proteins and a valuable method for monitoring transgene expression in recombinant vaccine constructs.

  13. Characterization of CG6178 gene product with high sequence similarity to firefly luciferase in Drosophila melanogaster.

    Science.gov (United States)

    Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi

    2004-03-31

    This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.

  14. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species

    International Nuclear Information System (INIS)

    Manning, Gillian E.; Farmahin, Reza; Crump, Doug; Jones, Stephanie P.; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2012-01-01

    Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R 2 ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect their relative

  15. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay

    Energy Technology Data Exchange (ETDEWEB)

    Schiliro, Tiziana, E-mail: tiziana.schiliro@unito.it [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Porfido, Arianna [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Spina, Federica; Varese, Giovanna Cristina [Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino (Italy); Gilli, Giorgio [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy)

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17{beta}-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35 {+-} 1.68 ng/L pre-ozonation and 0.72 {+-} 0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18 {+-} 3.54 ng/L pre-ozonation and 2.53 {+-} 2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p < 0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67 {+-} 26% and 52 {+-} 27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S = 0.650, p = 0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms. -- Highlights: Black-Right-Pointing-Pointer The two in vitro tests are suited for oestrogenic activity assessment in textile WWTP. Black-Right-Pointing-Pointer There is a significant correlation between the results of the two in vitro tests. Black-Right-Pointing-Pointer The oestrogenic activity of the effluent is reduced by ozonation. Black-Right-Pointing-Pointer The input of estrogenic substances into the river via textile WWTP is low.

  16. Luciferase genes cloned from the unculturable luminous bacteroid symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi.

    Science.gov (United States)

    Haygood, M G; Cohn, D H

    1986-01-01

    Light organs of anomalopid (flashlight) fish contain luminous bacteroids that have never been cultured and, consequently, have been difficult to study. We have characterized the luciferase (lux) region of DNA extracted from light organs of the Caribbean flashlight fish Kryptophanaron alfredi by hybridization of cloned Vibrio harveyi lux genes to restriction-endonuclease-digested, light organ DNA. Comparison of the hybridization pattern of light organ DNA with that of DNA of a putative symbiotic isolate provides a method for identifying the authentic luminous symbiont regardless of its luminescence, and was used to reject one such isolate. Light organ DNA was further used to construct a cosmid clone bank and the luciferase genes were isolated. Unlike other bacterial luciferase genes, the genes were not expressed in Escherichia coli. When placed under the control of the E. coli trp promoter, the genes were transcribed but no luciferase was detected, suggesting a posttranscriptional block to expression.

  17. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles

    International Nuclear Information System (INIS)

    Xin, Lili; Wang, Jianshu; Zhang, Leshuai W.; Che, Bizhong; Dong, Guangzhu; Fan, Guoqiang; Cheng, Kaiming

    2016-01-01

    The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag + ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock produced a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4 h of recovery, the relative luciferase activity was > 98 × the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5 nm) AgNPs were more potent in luciferase induction than the larger (50 and 75 nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag + ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs. - Highlights: • We established the stable HSPA1A promoter-driven luciferase reporter cells. • Silver nanoparticles induced dose-dependent increases in luciferase activity. • HSPA1A promoter activity is a sensitive and responsive indicator of oxidative stress. • HepG2-luciferase

  18. Development of HSPA1A promoter-driven luciferase reporter gene assays in human cells for assessing the oxidative damage induced by silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Lili, E-mail: llxin@suda.edu.cn [School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu (China); Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123 (China); Wang, Jianshu [Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu (China); Zhang, Leshuai W. [School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 215123 (China); Che, Bizhong; Dong, Guangzhu [School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou 215123, Jiangsu (China); Fan, Guoqiang; Cheng, Kaiming [Suzhou Industrial Park Centers for Disease Control and Prevention, 58 Suqian Road, Suzhou, Jiangsu (China)

    2016-08-01

    The exponential increase in the total number of engineered nanoparticles in consumer products requires novel tools for rapid and cost-effective toxicology screening. In order to assess the oxidative damage induced by nanoparticles, toxicity test systems based on a human HSPA1A promoter-driven luciferase reporter in HepG2, LO2, A549, and HBE cells were established. After treated with heat shock and a group of silver nanoparticles (AgNPs) with different primary particle sizes, the cell viability, oxidative damage, and luciferase activity were determined. The time-dependent Ag{sup +} ions release from AgNPs in cell medium was also evaluated. Our results showed that heat shock produced a strong time-dependent induction of relative luciferase activity in the four luciferase reporter cells. Surprisingly, at 4 h of recovery, the relative luciferase activity was > 98 × the control level in HepG2-luciferase cells. Exposure to different sizes of AgNPs resulted in activation of the HSPA1A promoter in a dose-dependent manner, even at low cytotoxic or non-cytotoxic doses. The smaller (5 nm) AgNPs were more potent in luciferase induction than the larger (50 and 75 nm) AgNPs. These results were generally in accordance with the oxidative damage indicated by malondialdehyde concentration, reactive oxygen species induction and glutathione depletion, and Ag{sup +} ions release in cell medium. Compared with the other three luciferase reporter cells, the luciferase signal in HepG2-luciferase cells is obviously more sensitive and stable. We conclude that the luciferase reporter cells, especially the HepG2-luciferase cells, could provide a valuable tool for rapid screening of the oxidative damage induced by AgNPs. - Highlights: • We established the stable HSPA1A promoter-driven luciferase reporter cells. • Silver nanoparticles induced dose-dependent increases in luciferase activity. • HSPA1A promoter activity is a sensitive and responsive indicator of oxidative stress. • HepG2

  19. A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD{sub 50} of polychlorinated biphenyls in avian species

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Gillian E., E-mail: gmann017@uottawa.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Farmahin, Reza, E-mail: mfarm070@uottawa.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Jones, Stephanie P., E-mail: stephanie.jones@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Klein, Jeff, E-mail: jeffery@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Konstantinov, Alex, E-mail: alex@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Potter, Dave, E-mail: dpotter@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3M5 (Canada); Kennedy, Sean W., E-mail: sean.kennedy@ec.gc.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada)

    2012-09-15

    Birds differ in sensitivity to the embryotoxic effects of polychlorinated biphenyls (PCBs), which complicates environmental risk assessments for these chemicals. Recent research has shown that the identities of amino acid residues 324 and 380 in the avian aryl hydrocarbon receptor 1 (AHR1) ligand binding domain (LBD) are primarily responsible for differences in avian species sensitivity to selected dibenzo-p-dioxins and furans. A luciferase reporter gene (LRG) assay was developed in our laboratory to measure AHR1-mediated induction of a cytochrome P450 1A5 reporter gene in COS-7 cells transfected with different avian AHR1 constructs. In the present study, the LRG assay was used to measure the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and PCBs 126, 77, 105 and 118 on luciferase activity in COS-7 cells transfected with AHR1 constructs representative of 86 avian species in order to predict their sensitivity to PCB-induced embryolethality and the relative potency of PCBs in these species. The results of the LRG assay indicate that the identity of amino acid residues 324 and 380 in the AHR1 LBD are the major determinants of avian species sensitivity to PCBs. The relative potency of PCBs did not differ greatly among AHR1 constructs. Luciferase activity was significantly correlated with embryolethality data obtained from the literature (R{sup 2} ≥ 0.87, p < 0.0001). Thus, the LRG assay in combination with the knowledge of a species' AHR1 LBD sequence can be used to predict PCB-induced embryolethality in potentially any avian species of interest without the use of lethal methods on a large number of individuals. -- Highlights: ► PCB embryolethality in birds can be predicted from a species' AHR1 genotype. ► The reporter gene assay is useful for predicting species sensitivity to PCBs. ► The relative potency of PCBs does not appear to differ between AHR1 genotypes. ► Contamination of PCB 105 and PCB 118 did not affect

  20. Tibetan Firefly Luciferase with Low Temperature Adaptation.

    Science.gov (United States)

    Mitani, Yasuo; Futahashi, Ryo; Liu, Zichao; Liang, Xingcai; Ohmiya, Yoshihiro

    2017-03-01

    Fireflies are widespread all over the world and a numerous numbers of luciferases have been isolated and characterized. In this study, we identified and characterized the luciferase and luciferase-like genes from a Tibetan firefly collected in Shangri-La, China. The altitude of this area is more than 3300 m. We saw this Tibetan firefly flying with strong luminescence after sunset at ~10°C. We analyzed the transcriptome of Tibetan firefly using head, thorax, abdomen (without light organ), and light organ tissue by RNA sequencing. We identified one luciferase gene, which was almost identical to luciferase from fireflies Pyrocoelia species, and expressed specifically in the light organ. Interestingly, the optimal temperature of the Tibetan firefly recombinant luciferase was 10°C. The K m for D-luciferin and ATP of the recombinant luciferase was 23 and 154 μm, respectively. The optimal pH was around 7.0-7.5. The emission peak was 556 nm at pH 8.0, while it shifted to 606 nm at pH 6.0. We also found a luciferase-like gene with 43% identical amino acids to the Tibetan firefly luciferase, which was scarcely expressed in any portion of the adult body. No luciferase activity was detected for this luciferase-like protein. © 2016 The American Society of Photobiology.

  1. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    International Nuclear Information System (INIS)

    Li Hongwei; Li Jinzhong; Helm, Gregory A.; Pan Dongfeng

    2005-01-01

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10 9 PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases

  2. Luciferase assay to study the activity of a cloned promoter DNA fragment.

    Science.gov (United States)

    Solberg, Nina; Krauss, Stefan

    2013-01-01

    Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.

  3. Adenovirus-assisted lipofection: efficient in vitro gene transfer of luciferase and cytosine deaminase to human smooth muscle cells.

    Science.gov (United States)

    Kreuzer, J; Denger, S; Reifers, F; Beisel, C; Haack, K; Gebert, J; Kübler, W

    1996-07-01

    Smooth muscle cells (SMC) are a central cell type involved in multiple processes of coronary artery diseases including restenosis and therefore are major target cells for different aspects of gene transfer. Previous attempts to transfect primary arterial cells using different techniques like liposomes, CaPO4 and electroporation resulted in only low transfection efficiency. The development of recombinant adenoviruses dramatically improved the delivery of foreign genes into different cell types including SMC. However, cloning and identification of recombinants remain difficult and time-consuming techniques. The present study demonstrates that a complex consisting of reporter plasmid encoding firefly luciferase (pLUC), polycationic liposomes and replication-deficient adenovirus was able to yield very high in vitro transfection of primary human smooth muscle cells under optimized conditions. The technique of adenovirus-assisted lipofection (AAL) increases transfer and expression of plasmid DNA in human smooth muscle cells in vitro up to 1000-fold compared to lipofection. To verify the applicability of AAL for gene transfer into human smooth muscle cells we studied a gene therapy approach to suppress proliferation of SMC in vitro, using the prokaryotic cytosine deaminase gene (CD) which enables transfected mammalian cells to deaminate 5-fluorocytosine (5-FC) to the highly toxic 5-fluorouracil (5-FU). The effect of a transient CD expression on RNA synthesis was investigated by means of a cotransfection with a RSV-CD expression plasmid and the luciferase reporter plasmid. Western blot analysis demonstrated high expression of CD protein in transfected SMC. Cotransfected SMC demonstrated two-fold less luciferase activity in the presence of 5-FC (5 mmol/l) after 48 h compared to cells transfected with a non-CD coding plasmid. The data demonstrate that a transient expression of CD could be sufficient to reduce the capacity of protein synthesis in human SMC. This simple and

  4. Development and Validation of a Novel Dual Luciferase Reporter Gene Assay to Quantify Ebola Virus VP24 Inhibition of IFN Signaling

    Directory of Open Access Journals (Sweden)

    Elisa Fanunza

    2018-02-01

    Full Text Available The interferon (IFN system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24 is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE. Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z′- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance.

  5. Relative quantification of protein-protein interactions using a dual luciferase reporter pull-down assay system.

    Directory of Open Access Journals (Sweden)

    Shuaizheng Jia

    Full Text Available The identification and quantitative analysis of protein-protein interactions are essential to the functional characterization of proteins in the post-proteomics era. The methods currently available are generally time-consuming, technically complicated, insensitive and/or semi-quantitative. The lack of simple, sensitive approaches to precisely quantify protein-protein interactions still prevents our understanding of the functions of many proteins. Here, we develop a novel dual luciferase reporter pull-down assay by combining a biotinylated Firefly luciferase pull-down assay with a dual luciferase reporter assay. The biotinylated Firefly luciferase-tagged protein enables rapid and efficient isolation of a putative Renilla luciferase-tagged binding protein from a relatively small amount of sample. Both of these proteins can be quantitatively detected using the dual luciferase reporter assay system. Protein-protein interactions, including Fos-Jun located in the nucleus; MAVS-TRAF3 in cytoplasm; inducible IRF3 dimerization; viral protein-regulated interactions, such as MAVS-MAVS and MAVS-TRAF3; IRF3 dimerization; and protein interaction domain mapping, are studied using this novel assay system. Herein, we demonstrate that this dual luciferase reporter pull-down assay enables the quantification of the relative amounts of interacting proteins that bind to streptavidin-coupled beads for protein purification. This study provides a simple, rapid, sensitive, and efficient approach to identify and quantify relative protein-protein interactions. Importantly, the dual luciferase reporter pull-down method will facilitate the functional determination of proteins.

  6. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta

    DEFF Research Database (Denmark)

    Hermanrud, Christina; Ryner, Malin; Luft, Thomas

    2016-01-01

    a normal distribution for the majority of runs, allowing a parametric approach for cut-point calculation to be used, where NAb positive samples could be identified with 95% confidence. An analysis of means and variances indicated that a floating cut-point should be used for all assays. The assays......Neutralizing anti-drug antibodies (NAbs) against therapeutic interferon beta (IFNβ) in people with multiple sclerosis (MS) are measured with cell-based bioassays. The aim of this study was to redevelop and validate two luciferase reporter-gene bioassays, LUC and iLite, using a cut-point approach...... to identify NAb positive samples. Such an approach is favored by the pharmaceutical industry and governmental regulatory agencies as it has a clear statistical basis and overcomes the limitations of the current assays based on the Kawade principle. The work was conducted following the latest assay guidelines...

  7. Application of the dual-luciferase reporter assay to the analysis of promoter activity in Zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Mulero Victoriano

    2008-10-01

    Full Text Available Abstract Background The dual-luciferase assay has been widely used in cell lines to determine rapidly but accurately the activity of a given promoter. Although this strategy has proved very useful, it does not allow the promoter and gene function to be analyzed in the context of the whole organism. Results Here, we present a rapid and sensitive assay based on the classical dual-luciferase reporter technique which can be used as a new tool to characterize the minimum promoter region of a gene as well as the in vivo response of inducible promoters to different stimuli. We illustrate the usefulness of this system for studying both constitutive (telomerase and inducible (NF-κB-dependent promoters. The flexibility of this assay is demonstrated by induction of the NF-κB-dependent promoters using simultaneous microinjection of different pathogen-associated molecular patterns as well as with the use of morpholino-gene mediated knockdown. Conclusion This assay has several advantages compared with the classical in vitro (cell lines and in vivo (transgenic mice approaches. Among others, the assay allows a rapid and quantitative measurement of the effects of particular genes or drugs in a given promoter in the context of a whole organism and it can also be used in high throughput screening experiments.

  8. Reporter gene expression in fish following cutaneous infection with pantropic retroviral vectors.

    Science.gov (United States)

    Paul, T A; Burns, J C; Shike, H; Getchell, R; Bowser, P R; Whitlock, K E; Casey, J W

    2001-06-01

    A central issue in gene delivery systems is choosing promoters that will direct defined and sustainable levels of gene expression. Pantropic retroviral vectors provide a means to insert genes into either somatic or germline cells. In this study, we focused on somatic cell infection by evaluating the activity of 3 promoters inserted by vectors into fish cell lines and fish skin using pantropic retroviruses. In bluegill and zebrafish cell lines, the highest levels of luciferase expression were observed from the 5' murine leukemia virus long terminal repeat of the retroviral vector. The Rous sarcoma virus long terminal repeat and cytomegalovirus early promoter, as internal promoters, generated lower levels of luciferase. Luciferase reporter vectors infected zebrafish skin, as measured by the presence of viral DNA, and expressed luciferase. We infected developing walleye dermal sarcomas with retroviral vectors to provide an environment with enhanced cell proliferation, a condition necessary for integration of the provirus into the host genome. We demonstrated a 4-fold to 7-fold increase in luciferase gene expression in tumor tissue over infections in normal walleye skin.

  9. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    International Nuclear Information System (INIS)

    Hofmann, M.; Gazdhar, A.; Weitzel, T.; Schmid, R.; Krause, T.

    2006-01-01

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and humans

  10. PET/CT imaging of human somatostatin receptor 2 (hsstr2) as reporter gene for gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, M. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)]. E-mail: Michael.Hofmann@insel.ch; Gazdhar, A. [Division of Pulmonary Medicine, University Hospital Bern (Switzerland); Weitzel, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland); Schmid, R. [Division of Thoracic Surgery, University Hospital Bern (Switzerland); Krause, T. [Molecular Imaging and Therapy Group (MIT-Bern), Clinic of Nuclear Medicine, Inselspital, Medical School Bern (Switzerland)

    2006-12-20

    Localized information on region-selective gene expression in small animals is widely obtained by use of reporter genes inducing light emission. Using these reporter genes for imaging deep inside the human body fluorescent probes are hindered by attenuation, scattering and possible fluorescence quenching. This can be overcome by use of radio-peptide receptors as reporter genes. Therefore, the feasibility of the somatostatin receptor 2 expression vector system for expression imaging was checked against a control vector containing luciferase gene. For in vivo transduction of vector DNA into the rat forelimb muscles the in vivo electroporation technique was chosen because of its high regio-selectivity. The gene expression was imaged by high-sensitive CCD camera (luciferase activity) and by PET/CT using a Ga-68-DOTATOC as radio peptide probe. The relative sstr2 expression was enhanced by gene transduction at maximum to a factor of 15. The PET/CT images could be fully quantified. The above demonstrated feasibility of radio-peptide PET/CT reporter gene imaging may serve in the future as a tool for full quantitative understanding of regional gene expression, especially in large animals and human000.

  11. Uptake kinetics and biodistribution of C-14-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction : impact on bioluminescence based reporter gene imaging

    NARCIS (Netherlands)

    Berger, Frank; Paulmurugan, Ramasamy; Bhaumik, Srabani; Gambhir, Sanjiv Sam

    2008-01-01

    Purpose Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter

  12. Effects of Epigenetic Modulation on Reporter Gene Expression: Implications for Stem Cell Imaging

    Science.gov (United States)

    Krishnan, Manickam; Park, Jinha M.; Cao, Feng; Wang, Dongxu; Paulmurugan, Ramasay; Tseng, Jeffrey R.; Gonzalgo, Mark L.; Gambhir, Sanjiv S.; Wu, Joseph C.

    2013-01-01

    Tracking stem cell localization, survival, differentiation, and proliferation following transplantation in living subjects is essential for understanding stem cell biology and physiology. In this study, we investigated the long-term stability of reporter gene expression in an embryonic rat cardiomyoblast cell line and the role of epigenetic modulation on reversing reporter gene silencing. Cells were stably transfected with plasmids carrying cytomegalovirus promoter driving firefly luciferase reporter gene (CMV-Fluc) and passaged repeatedly for 3–8 months. Within the highest expressor clone, the firefly luciferase activity decreased progressively from passage-1 (843±28) to passage-20 (250±10) to passage-40 (44±3) to passage-60 (3±1 RLU/µg) (P<0.05 vs. passage-1). Firefly luciferase activity was maximally rescued by treatment with 5-azacytidine (DNA methyltransferase inhibitor) compared to trichostatin A (histone deacetylase inhibitor) and retinoic acid (transcriptional activator) (P<0.05). Increasing dosages of 5-azacytidine treatment led to higher levels of firefly luciferase mRNA (RT-PCR) and protein (Western blots) and inversely lower levels of methylation in the CMV promoter (DNA nucleotide sequence). These in vitro results were extended to in vivo bioluminescence imaging (BLI) of cell transplant in living animals. Cells treated with 5-azacytidine were monitored for 2 weeks compared to 1 week for untreated cells (P<0.05). These findings should have important implications for reporter gene-based imaging of stem cell transplantation. PMID:16246867

  13. Environmental Application of Reporter-Genes Based Biosensors for Chemical Contamination Screening

    Directory of Open Access Journals (Sweden)

    Matejczyk Marzena

    2014-12-01

    Full Text Available The paper presents results of research concerning possibilities of applications of reporter-genes based microorganisms, including the selective presentation of defects and advantages of different new scientific achievements of methodical solutions in genetic system constructions of biosensing elements for environmental research. The most robust and popular genetic fusion and new trends in reporter genes technology – such as LacZ (β-galactosidase, xylE (catechol 2,3-dioxygenase, gfp (green fluorescent proteins and its mutated forms, lux (prokaryotic luciferase, luc (eukaryotic luciferase, phoA (alkaline phosphatase, gusA and gurA (β-glucuronidase, antibiotics and heavy metals resistance are described. Reporter-genes based biosensors with use of genetically modified bacteria and yeast successfully work for genotoxicity, bioavailability and oxidative stress assessment for detection and monitoring of toxic compounds in drinking water and different environmental samples, surface water, soil, sediments.

  14. Reporter gene assay for the quantification of the activity and neutralizing antibody response to TNFα antagonists

    DEFF Research Database (Denmark)

    Lallemand, Christophe; Kavrochorianou, Nadia; Steenholdt, Casper

    2011-01-01

    A cell-based assay has been developed for the quantification of the activity of TNFα antagonists based on human erythroleukemic K562 cells transfected with a NFκB regulated firefly luciferase reporter-gene construct. Both drug activity and anti-drug neutralizing antibodies can be quantified...... with a high degree of precision within 2h, and without interference from cytokines and other factors known to activate NFκB. The assay cells also contain the Renilla luciferase reporter gene under the control of a constitutive promoter that allows TNFα-induced firefly luciferase activity to be normalized...... relative to Renilla luciferase expression. Thus, results are independent of cell number or differences in cell viability, resulting in intra and inter assay coefficients of variation of 10% or less. Normalization of results relative to the expression of an internal standard also provides a means...

  15. Transgenic Mouse Model Harboring the Transcriptional Fusion Ccl20-Luciferase as a Novel Reporter of Pro-Inflammatory Response

    Science.gov (United States)

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691

  16. Human CRF2 α and β splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay

    International Nuclear Information System (INIS)

    Ardati, A.; Goetschy, V.; Gottowick, J.; Henriot, S.; Deuschle, U.; Kilpatrick, G.J.; Valdenaire, O.

    1999-01-01

    Corticotropin releasing factor (CRF) receptors belong to the super-family of G protein-coupled receptors. These receptors are classified into two subtypes (CRF 1 and CRF 2 ). Both receptors are positively coupled to adenylyl cyclase but they have a distinct pharmacology and distribution in brain. Two isoforms belonging to the CRF 2 subtype receptors, CRF 2α and CRF 2β , have been identified in rat and man. The neuropeptides CRF and urocortin mediate their actions through this CRF G protein-coupled receptor family. In this report, we describe the pharmacological characterization of the recently identified hCRF 2β receptor. We have used radioligand binding with [ 125 I]-tyr 0 -sauvagine and a gene expression assay in which the firefly luciferase gene expression is under the control of cAMP responsive elements. Association kinetics of [ 125 I]-tyr 0 -sauvagine binding to the hCRF 2β receptor were monophasic while dissociation kinetics were biphasic, in agreement with the kinetics results obtained with the hCRF 2α receptor. Saturation binding analysis revealed two affinity states in HEK 293 cells with binding parameters in accord with those determined kinetically and with parameters obtained with the hCRF 2α receptor. A non-hydrolysable GTP analog, Gpp(NH)p, reduced the high affinity binding of [ 125 I]-tyr 0 -sauvagine to both hCRF 2 receptor isoforms in a similar manner. The rank order of potency of CRF agonist peptides in competition experiments was identical for both hCRF 2 α-helical CRF (9-41) oCRF). Similarly, agonist potency was similar for the two isoforms when studied using the luciferase gene reporter system. The peptide antagonist α-helical CRF (9-41) exhibited a non-competitive antagonism of urocortin-stimulated luciferase expression with both hCRF 2 receptor isoforms. Taken together, these results indicate that the pharmacological profiles of the CRF 2 splice variants are identical. This indicates that the region of the N-terminus that varies

  17. Third-generation Ah receptor-responsive luciferase reporter plasmids: amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness.

    Science.gov (United States)

    He, Guochun; Tsutsumi, Tomoaki; Zhao, Bin; Baston, David S; Zhao, Jing; Heath-Pagliuso, Sharon; Denison, Michael S

    2011-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene-based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts.

  18. Cloning and characterization of luciferase from a Fijian luminous click beetle.

    Science.gov (United States)

    Mitani, Yasuo; Futahashi, Ryo; Niwa, Kazuki; Ohba, Nobuyoshi; Ohmiya, Yoshihiro

    2013-01-01

    Luminous click beetle is distributed almost exclusively in Central and South America with a single genus in Melanesia. Among these click beetles, the description of Melanesian species has been fragmentary, and its luciferase gene and phylogenetic relation to other click beetles still remain uncertain. We collected a living luminous click beetle, Photophorus jansonii in Fiji. It emits green-yellow light from two spots on the pronotum and has no ventral luminous organ. Here, we cloned a luciferase gene from this insect by RT-PCR. The deduced amino acid sequence showed high identity of ~85% to the luciferases derived from other click beetle species. The luciferase of the Fijian click beetle was produced as a recombinant protein to characterize its biochemical properties. The Km for D-luciferin and ATP were 173 and 270 μm, respectively. The luciferase was pH-insensitive and the spectrum measured at pH 8.0 showed a peak at 559 nm, which was in the range of green-yellow light as seen in the luminous spot of the living Fijian click beetle. The Fijian click beetle luciferase was assigned to the Elateridae clade by a phylogenetic analysis, but it made a clearly different branch from Pyrophorus group examined in this study. © 2013 The American Society of Photobiology.

  19. Firefly luciferase gene contains a cryptic promoter

    Czech Academy of Sciences Publication Activity Database

    Vopálenský, V.; Mašek, T.; Horváth, Ondřej; Vicenová, B.; Mokrejš, M.; Pospíšek, M.

    2008-01-01

    Roč. 14, č. 9 (2008), s. 1720-1729 ISSN 1355-8382 Grant - others:GAČR(CZ) GA204/03/1487; GAČR(CZ) GA301/07/0607; Mšk(CZ) LC06066 Program:LC Institutional research plan: CEZ:AV0Z50520514 Keywords : luciferase * cryptic promoter * hepatitis C virus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.018, year: 2008

  20. Relationship of the luminous bacterial symbiont of the Caribbean flashlight fish, Kryptophanaron alfredi (family Anomalopidae) to other luminous bacteria based on bacterial luciferase (luxA) genes.

    Science.gov (United States)

    Haygood, M G

    1990-01-01

    Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a lux AB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase alpha subunit gene luxA) of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G + C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.

  1. Computational analysis and functional expression of ancestral copepod luciferase.

    Science.gov (United States)

    Takenaka, Yasuhiro; Noda-Ogura, Akiko; Imanishi, Tadashi; Yamaguchi, Atsushi; Gojobori, Takashi; Shigeri, Yasushi

    2013-10-10

    We recently reported the cDNA sequences of 11 copepod luciferases from the superfamily Augaptiloidea in the order Calanoida. They were classified into two groups, Metridinidae and Heterorhabdidae/Lucicutiidae families, by phylogenetic analyses. To elucidate the evolutionary processes, we have now further isolated 12 copepod luciferases from Augaptiloidea species (Metridia asymmetrica, Metridia curticauda, Pleuromamma scutullata, Pleuromamma xiphias, Lucicutia ovaliformis and Heterorhabdus tanneri). Codon-based synonymous/nonsynonymous tests of positive selection for 25 identified copepod luciferases suggested that positive Darwinian selection operated in the evolution of Heterorhabdidae luciferases, whereas two types of Metridinidae luciferases had diversified via neutral mechanism. By in silico analysis of the decoded amino acid sequences of 25 copepod luciferases, we inferred two protein sequences as ancestral copepod luciferases. They were expressed in HEK293 cells where they exhibited notable luciferase activity both in intracellular lysates and cultured media, indicating that the luciferase activity was established before evolutionary diversification of these copepod species. © 2013.

  2. A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β.

    Science.gov (United States)

    Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo

    2015-10-01

    During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Human CRF{sub 2} {alpha} and {beta} splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay

    Energy Technology Data Exchange (ETDEWEB)

    Ardati, A. [Rhone-Poulenc Rorer, Cardiovascular Biology, NW4, 500 Arcola Road, Collegeville, PA (United States); Goetschy, V.; Gottowick, J.; Henriot, S.; Deuschle, U.; Kilpatrick, G.J. [Central Nervous System, Pharma Division, F. Hoffmann-La Roche AG, CH-4070 Basel (Switzerland); Valdenaire, O. [Cardiovascular Research, Pharma Division, F. Hoffmann-La Roche AG, CH-4070 Basel (Switzerland)

    1999-03-14

    Corticotropin releasing factor (CRF) receptors belong to the super-family of G protein-coupled receptors. These receptors are classified into two subtypes (CRF{sub 1} and CRF{sub 2}). Both receptors are positively coupled to adenylyl cyclase but they have a distinct pharmacology and distribution in brain. Two isoforms belonging to the CRF{sub 2} subtype receptors, CRF{sub 2{alpha}} and CRF{sub 2{beta}}, have been identified in rat and man. The neuropeptides CRF and urocortin mediate their actions through this CRF G protein-coupled receptor family. In this report, we describe the pharmacological characterization of the recently identified hCRF{sub 2{beta}} receptor. We have used radioligand binding with [{sup 125}I]-tyr{sup 0}-sauvagine and a gene expression assay in which the firefly luciferase gene expression is under the control of cAMP responsive elements. Association kinetics of [{sup 125}I]-tyr{sup 0}-sauvagine binding to the hCRF{sub 2{beta}} receptor were monophasic while dissociation kinetics were biphasic, in agreement with the kinetics results obtained with the hCRF{sub 2{alpha}} receptor. Saturation binding analysis revealed two affinity states in HEK 293 cells with binding parameters in accord with those determined kinetically and with parameters obtained with the hCRF{sub 2{alpha}} receptor. A non-hydrolysable GTP analog, Gpp(NH)p, reduced the high affinity binding of [{sup 125}I]-tyr{sup 0}-sauvagine to both hCRF{sub 2} receptor isoforms in a similar manner. The rank order of potency of CRF agonist peptides in competition experiments was identical for both hCRF{sub 2}{alpha}-helical CRF{sub (9-41)}oCRF). Similarly, agonist potency was similar for the two isoforms when studied using the luciferase gene reporter system. The peptide antagonist {alpha}-helical CRF{sub (9-41)} exhibited a non-competitive antagonism of urocortin-stimulated luciferase expression with both hCRF{sub 2} receptor isoforms. Taken together, these results indicate that the

  4. Two panels of steroid receptor luciferase reporter cell lines for compound profiling

    Czech Academy of Sciences Publication Activity Database

    Sedlák, David; Paguio, A.; Bartůněk, Petr

    2011-01-01

    Roč. 14, č. 2 (2011), s. 248-266 ISSN 1386-2073 R&D Projects: GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520514 Keywords : nuclear hormone receptor * steroid receptor * cell-based luciferase reporter assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.785, year: 2011

  5. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  6. Re-engineering of Bacterial Luciferase; For New Aspects of Bioluminescence.

    Science.gov (United States)

    Kim, Da-Som; Choi, Jeong-Ran; Ko, Jeong-Ae; Kim, Kangmin

    2018-01-01

    Bacterial luminescence is the end-product of biochemical reactions catalyzed by the luciferase enzyme. Nowadays, this fascinating phenomenon has been widely used as reporter and/or sensors to detect a variety of biological and environmental processes. The enhancement or diversification of the luciferase activities will increase the versatility of bacterial luminescence. Here, to establish the strategy for luciferase engineering, we summarized the identity and relevant roles of key amino acid residues modulating luciferase in Vibrio harveyi, a model luminous bacterium. The current opinions on crystal structures and the critical amino acid residues involved in the substrate binding sites and unstructured loop have been delineated. Based on these, the potential target residues and/or parameters for enzyme engineering were also suggested in limited scale. In conclusion, even though the accurate knowledge on the bacterial luciferase is yet to be reported, the structure-guided site-directed mutagenesis approaches targeting the regulatory amino acids will provide a useful platform to re-engineer the bacterial luciferase in the future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice.

    Science.gov (United States)

    Tehrani, A M; Hwang, S-K; Kim, T-H; Cho, C-S; Hua, J; Nah, W-S; Kwon, J-T; Kim, J-S; Chang, S-H; Yu, K-N; Park, S-J; Bhandari, D R; Lee, K-H; An, G-H; Beck, G R; Cho, M-H

    2007-03-01

    Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.

  8. Identification and Functional Analysis of Gene Regulatory Sequences Interacting with Colorectal Tumor Suppressors

    DEFF Research Database (Denmark)

    Dahlgaard, Katja; Troelsen, Jesper

    2018-01-01

    Several tumor suppressors possess gene regulatory activity. Here, we describe how promoter and promoter/enhancer reporter assays can be used to characterize a colorectal tumor suppressor proteins’ gene regulatory activity of possible target genes. In the first part, a bioinformatic approach...... of the quick and efficient In-Fusion cloning method, and how to carry out transient transfections of Caco-2 colon cancer cells with the produced luciferase reporter plasmids using polyethyleneimine (PEI). A plan describing how to set up and carry out the luciferase expression assay is presented. The luciferase...... to identify relevant gene regulatory regions of potential target genes is presented. In the second part, it is demonstrated how to prepare and carry out the functional assay. We explain how to clone the bioinformatically identified gene regulatory regions into luciferase reporter plasmids by the use...

  9. Third-Generation Ah Receptor–Responsive Luciferase Reporter Plasmids: Amplification of Dioxin-Responsive Elements Dramatically Increases CALUX Bioassay Sensitivity and Responsiveness

    Science.gov (United States)

    He, Guochun; Tsutsumi, Tomoaki; Zhao, Bin; Baston, David S.; Zhao, Jing; Heath-Pagliuso, Sharon; Denison, Michael S.

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene–based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts. PMID:21775728

  10. Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays

    NARCIS (Netherlands)

    Legler, J.; Dennekamp, M.; Vethaak, A.D.; Brouwer, A.; Koeman, J.H.; Burg, van der B.; Murk, A.J.

    2002-01-01

    Sediments may be the ultimate sink for persistent (xeno-) estrogenic compounds released into the aquatic environment. Sediment-associated estrogenic potency was measured with an estrogen receptor-mediated luciferase reporter gene (ER-CALUX) assay and compared with a recombinant yeast screen. The

  11. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  12. A small scale cell culture system to analyze mechanobiology using reporter gene constructs and polyurethane dishes

    DEFF Research Database (Denmark)

    Seefried, Lothar; Mueller-Deubert, Sigrid; Wentzer, Thomas Schwarz

    2010-01-01

    of mechanotransduction and its crosstalk with biochemically induced signal transduction, AP1 and SP1 luciferase reporter gene constructs were cloned and transfected into various cell lines and primary cells. A newly developed bioreactor and small-scale 24-well polyurethane dishes were used to apply cyclic stretching...

  13. Gene silencing in primary and metastatic tumors by small interfering RNA delivery in mice: quantitative analysis using melanoma cells expressing firefly and sea pansy luciferases.

    Science.gov (United States)

    Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu

    2005-07-20

    Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells.

  14. Development of an androgen reporter gene assay (AR-LUX) utilizing a human cell line with an endogenously regulated androgen receptor

    NARCIS (Netherlands)

    Blankvoort, B.M.G.; Groene, E.M. de; Meeteren-Kreikamp, A.P. van; Witkamp, R.F.; Rodenburg, R.J.T.; Aarts, J.M.M.J.G.

    2001-01-01

    The aim of the work described in this report is to develop and characterize a cell-based androgen reporter assay. For this purpose, the androgen receptor (AR) expressing human breast cancer cell line T47D was stably transfected with a luciferase gene under transcriptional control of the PB-ARE-2

  15. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta.

    Science.gov (United States)

    Hermanrud, Christina; Ryner, Malin; Luft, Thomas; Jensen, Poul Erik; Ingenhoven, Kathleen; Rat, Dorothea; Deisenhammer, Florian; Sørensen, Per Soelberg; Pallardy, Marc; Sikkema, Dan; Bertotti, Elisa; Kramer, Daniel; Creeke, Paul; Fogdell-Hahn, Anna

    2016-03-01

    Neutralizing anti-drug antibodies (NAbs) against therapeutic interferon beta (IFNβ) in people with multiple sclerosis (MS) are measured with cell-based bioassays. The aim of this study was to redevelop and validate two luciferase reporter-gene bioassays, LUC and iLite, using a cut-point approach to identify NAb positive samples. Such an approach is favored by the pharmaceutical industry and governmental regulatory agencies as it has a clear statistical basis and overcomes the limitations of the current assays based on the Kawade principle. The work was conducted following the latest assay guidelines. The assays were re-developed and validated as part of the "Anti-Biopharmaceutical Immunization: Prediction and analysis of clinical relevance to minimize the risk" (ABIRISK) consortium and involved a joint collaboration between four academic laboratories and two pharmaceutical companies. The LUC assay was validated at Innsbruck Medical University (LUCIMU) and at Rigshospitalet (LUCRH) Copenhagen, and the iLite assay at Karolinska Institutet, Stockholm. For both assays, the optimal serum sample concentration in relation to sensitivity and recovery was 2.5% (v/v) in assay media. A Shapiro-Wilk test indicated a normal distribution for the majority of runs, allowing a parametric approach for cut-point calculation to be used, where NAb positive samples could be identified with 95% confidence. An analysis of means and variances indicated that a floating cut-point should be used for all assays. The assays demonstrated acceptable sensitivity for being cell-based assays, with a confirmed limit of detection in neat serum of 1519 ng/mL for LUCIMU, 814 ng/mL for LUCRH, and 320 ng/mL for iLite. Use of the validated cut-point assay, in comparison with the previously used Kawade method, identified 14% more NAb positive samples. In conclusion, implementation of the cut-point design resulted in increased sensitivity to detect NAbs. However, the clinical significance of these low

  16. Introduction of optical reporter gene into cancer and immune cells using lentiviral vector

    International Nuclear Information System (INIS)

    Min, Jung Joon; Le, Uyenchi N.; Moon, Sung Min; Heo, Young Jun; Song, Ho Chun; Bom, Hee Seung; Kim, Yeon Soo

    2004-01-01

    For some applications such as gene therapy or reporter gene imaging, a gene has to be introduced into the organism of interest. Adenoviral vectors are capable of transducing both replicating and non-dividing cells. The adenoviral vectors do not integrate their DNA into host DNA, but do lead to an immune response. Lentiviruses belong to the retrovirus family and are capable of infecting both dividing and non-dividing cells. The human immunodeficiency virus (HIV) is an example of a lentavirus. A disabled HIV virus has been developed and could be used for in vivo gene delivery. A portion of the viral genome which encodes for accessory proteins canbe deleted without affecting production of the vector and efficiency of infection. Lentiviral delivery into various rodent tissues shows sustained expression of the transgene of up to six months. Furthermore, there seems to be little or no immune response with these vectors. These lentiviral vectors hold significant promise for in vivo gene delivery. We constructed lentiviral vector encoding firefly luciferase (Fluc) and eGFP. Fluc-eGFP fusion gene was inserted into multiple cloning sites of pLentiM1.3 vector. Reporter gene (Fluc-eGFP) was designed to be driven by murine CMV promoter with enhanced efficacy of transgene expression as compared to human CMV promoter. We transfected pLenti1.3-Fluc into human cervix cancer cell line (HeLa) and murine T lymphocytes. We also constructed adenovirus encoding Fluc and transfected to HeLa and T cells. This LentiM1.3-Fluc was transfected into HeLa cells and murine T lymphocytes in vitro, showing consistent expression of eGFP under the fluorescence microscopy from the 2nd day of transfection. Firefly luciferase reporter gene was not expressed in immune cells when it is mediated by adenovirus. Lentivirus was validated as a useful vector for both immune and cancer cells

  17. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.

    Science.gov (United States)

    Ebrahimi, Mehdi; Hosseinkhani, Saman; Heydari, Akbar; Khavari-Nejad, Ramazan Ali; Akbari, Jafar

    2012-10-01

    Firefly luciferase catalyzes production of light from luciferin in the presence of Mg(2+)-ATP and oxygen. This enzyme has wide range of applications in biotechnology and development of biosensors. The low thermal stability of wild-type firefly luciferase is a limiting factor in most applications. Improvements in activity and stability of few enzymes in the presence of ionic liquids were shown in many reports. In this study, kinetic and thermal stability of firefly luciferase from Photinus pyralis in the presence of three tetramethylguanidine-based ionic liquids was investigated. The enzyme has shown improved activity in the presence of [1, 1, 3, 3-tetramethylguanidine][acetate], but in the presence of [TMG][trichloroacetate] and [TMG][triflouroacetate] activity, it decreased or unchanged significantly. Among these ionic liquids, only [TMG][Ac] has increased the thermal stability of luciferase. Incubation of [TMG][Ac] with firefly luciferase brought about with decrease of K(m) for ATP.

  18. Use of luciferase probes to measure ATP in living cells and animals.

    Science.gov (United States)

    Morciano, Giampaolo; Sarti, Alba Clara; Marchi, Saverio; Missiroli, Sonia; Falzoni, Simonetta; Raffaghello, Lizzia; Pistoia, Vito; Giorgi, Carlotta; Di Virgilio, Francesco; Pinton, Paolo

    2017-08-01

    ATP, the energy exchange factor that connects anabolism and catabolism, is required for major reactions and processes that occur in living cells, such as muscle contraction, phosphorylation and active transport. ATP is also the key molecule in extracellular purinergic signaling mechanisms, with an established crucial role in inflammation and several additional disease conditions. Here, we describe detailed protocols to measure the ATP concentration in isolated living cells and animals using luminescence techniques based on targeted luciferase probes. In the presence of magnesium, oxygen and ATP, the protein luciferase catalyzes oxidation of the substrate luciferin, which is associated with light emission. Recombinantly expressed wild-type luciferase is exclusively cytosolic; however, adding specific targeting sequences can modify its cellular localization. Using this strategy, we have constructed luciferase chimeras targeted to the mitochondrial matrix and the outer surface of the plasma membrane. Here, we describe optimized protocols for monitoring ATP concentrations in the cytosol, mitochondrial matrix and pericellular space in living cells via an overall procedure that requires an average of 3 d. In addition, we present a detailed protocol for the in vivo detection of extracellular ATP in mice using luciferase-transfected reporter cells. This latter procedure may require up to 25 d to complete.

  19. A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging.

    Directory of Open Access Journals (Sweden)

    Silvia Miretti

    Full Text Available BACKGROUND: Osteosarcoma (OSA is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c murine OSA model, using a cell line derived from a spontaneous murine tumor. METHODOLOGY: The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. PRINCIPAL FINDINGS: Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. CONCLUSIONS: This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation.

  20. In Vivo Determination of Vitamin D Function Using Transgenic Mice Carrying a Human Osteocalcin Luciferase Reporter Gene

    Directory of Open Access Journals (Sweden)

    Tomoko Nakanishi

    2013-01-01

    Full Text Available Vitamin D is an essential factor for ossification, and its deficiency causes rickets. Osteocalcin, which is a noncollagenous protein found in bone matrix and involved in mineralization and calcium ion homeostasis, is one of the major bone morphogenetic markers and is used in the evaluation of osteoblast maturation and osteogenic activation. We established transgenic mouse line expressing luciferase under the control of a 10-kb osteocalcin enhancer/promoter sequence. Using these transgenic mice, we evaluated the active forms of vitamins D2 and D3 for their bone morphogenetic function by in vivo bioluminescence. As the result, strong activity for ossification was observed with 1α,25-hydroxyvitamin D3. Our mouse system can offer a feasible detection method for assessment of osteogenic activity in the development of functional foods and medicines by noninvasive screening.

  1. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity.

    NARCIS (Netherlands)

    Boerboom, A.M.A.; Vermeulen, M.; Woude, H. van der; Bremer, B.I.; Lee-Hilz, Y.Y.; Kampman, E.; Bladeren, P.J. van; Rietjens, I.M.C.M.; Aarts, J.

    2006-01-01

    The electrophile-responsive element (EpRE) is a transcriptional enhancer involved in cancer-chemoprotective gene expression modulation by certain food components. Two stably transfected luciferase reporter cell lines were developed, EpRE(hNQO1)-LUX and EpRE(mGST-Ya)-LUX, based on EpRE sequences from

  2. Newly constructed stable reporter cell lines for mechanistic studies on electrophile-responsive element-mediated gene expression reveal a role for flavonoid planarity

    NARCIS (Netherlands)

    Boerboom, A.M.J.F.; Vermeulen, M.; Woude, H. van der; Bremer, B.I.; Lee-Hilz, Y.Y.; Kampman, E.; Bladeren, P.J. van; Rietjens, I.M.C.M.; Aarts, J.M.M.J.G.

    2006-01-01

    The electrophile-responsive element (EpRE) is a transcriptional enhancer involved in cancer-chemoprotective gene expression modulation by certain food components. Two stably transfected luciferase reporter cell lines were developed, EpRE(hNQO1)-LUX and EpRE(mGST-Ya)-LUX, based on EpRE sequences from

  3. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  4. Combined image guided monitoring the pharmacokinetics of rapamycin loaded human serum albumin nanoparticles with a split luciferase reporter

    Science.gov (United States)

    Wang, Fu; Yang, Kai; Wang, Zhe; Ma, Ying; Gutkind, J. Silvio; Hida, Naoki; Niu, Gang; Tian, Jie

    2016-02-01

    Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery carriers upon administration in the blood circulation, which complicates the interpretation of image findings. Herein we applied a genetically encoded luciferase reporter in conjunction with near infrared (NIR) fluorophores to investigate the respective PK profiles of a drug and its carrier in a biodegradable drug delivery system. In this system, a prototype hydrophobic agent, rapamycin (Rapa), was encapsulated into human serum albumin (HSA) to form HSA Rapa nanoparticles, which were then labeled with Cy5 fluorophore to facilitate the fluorescence imaging of HSA carrier. Meanwhile, we employed transgenetic HN12 cells that were modified with a split luciferase reporter, whose bioluminescence function is regulated by Rapa, to reflect the PK profile of the encapsulated agent. It was interesting to discover that there existed an obvious inconsistency of PK behaviors between HSA carrier and rapamycin in vitro and in vivo through near infrared fluorescence imaging (NIFRI) and bioluminescence imaging (BLI) after treatment with Cy5 labeled HSA Rapa. Nevertheless, HSA Rapa nanoparticles manifested favorable in vivo PK and tumor suppression efficacy in a follow-up therapeutic study. The developed strategy of combining a molecular reporter and a fluorophore in this study could be extended to other drug delivery systems to provide profound insights for non-invasive real-time evaluation of PK profiles of drug-loaded nanoparticles in pre-clinical studies.Imaging guided techniques have been increasingly employed to investigate the pharmacokinetics (PK) and biodistribution of nanoparticle based drug delivery systems. In most cases, however, the PK profiles of drugs could vary significantly from those of drug delivery

  5. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki [System Instruments Co., Ltd., 776-2 Komiya-cho, Hachioji, Tokyo 192-0031 (Japan); Noda, Mamoru; Igimi, Shizunobu [Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ikebukuro, Kazunori, E-mail: ikebu@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2013-11-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10{sup 6} copies.

  6. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    International Nuclear Information System (INIS)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-01-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10 6 copies

  7. Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays

    OpenAIRE

    Ryo Nishihara; Masahiro Abe; Shigeru Nishiyama; Daniel Citterio; Koji Suzuki; Sung Bae Kim

    2017-01-01

    Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups ...

  8. Fe65 does not stabilize AICD during activation of transcription in a luciferase assay

    International Nuclear Information System (INIS)

    Huysseune, Sandra; Kienlen-Campard, Pascal; Octave, Jean-Noel

    2007-01-01

    The APP intracellular domain (AICD) could be involved in signaling via interaction with the adaptor protein Fe65, and with the histone acetyl transferase Tip60. However, the real function of AICD and Fe65 in regulation of transcription remains controversial. In this study, the human APPGal4 fusion protein was expressed in CHO cells and the transcriptional activity of AICDGal4 was measured in a luciferase-based reporter assay. AICDGal4 was stabilized by expression of Fe65 and levels of AICDGal4 controlled luciferase activity. On the contrary, when human APP was expressed in CHO cells, coexpression of Fe65 increased luciferase activity without affecting the amount of AICD fragment. AICD produced from APP was protected from degradation by orthophenanthroline, but not by lactacystine, indicating that AICD is not a substrate of the chymotryptic activity of the proteasome. It is concluded that Fe65 can control luciferase activity without stabilizing the labile AICD fragment

  9. Effect of external and internal factors on the expression of reporter genes driven by the N resistance gene promoter.

    Science.gov (United States)

    Kathiria, Palak; Sidler, Corinne; Woycicki, Rafal; Yao, Youli; Kovalchuk, Igor

    2013-07-01

    The role of resistance (R) genes in plant pathogen interaction has been studied extensively due to its economical impact on agriculture. Interaction between tobacco mosaic virus (TMV) and the N protein from tobacco is one of the most widely used models to understand various aspects of pathogen resistance. The transcription activity governed by N gene promoter is one of the least understood elements of the model. In this study, the N gene promoter was cloned and fused with two different reporter genes, one encoding β-glucuronidase (N::GUS) and another, luciferase (N::LUC). Tobacco plants transformed with the N::GUS or N::LUC reporter constructs were screened for homozygosity and stable expression. Histochemical analysis of N::GUS tobacco plants revealed that the expression is organ specific and developmentally regulated. Whereas two week old plants expressed GUS in midveins only, 6-wk-old plants also expressed GUS in leaf lamella. Roots did not show GUS expression at any time during development. Experiments to address effects of external stress were performed using N::LUC tobacco plants. These experiments showed that N gene promoter expression was suppressed when plants were exposed to high but not low temperatures. Expression was also upregulated in response to TMV, but no changes were observed in plants treated with SA.

  10. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  11. Luciferase-Specific Coelenterazine Analogues for Optical Contamination-Free Bioassays.

    Science.gov (United States)

    Nishihara, Ryo; Abe, Masahiro; Nishiyama, Shigeru; Citterio, Daniel; Suzuki, Koji; Kim, Sung Bae

    2017-04-19

    Spectral overlaps among the multiple optical readouts commonly cause optical contamination in fluorescence and bioluminescence. To tackle this issue, we created five-different lineages of coelenterazine (CTZ) analogues designed to selectively illuminate a specific luciferase with unique luciferase selectivity. In the attempt, we found that CTZ analogues with ethynyl or styryl groups display dramatically biased bioluminescence to specific luciferases and pHs by modifying the functional groups at the C-2 and C-6 positions of the imidazopyradinone backbone of CTZ. The optical contamination-free feature was exemplified with the luciferase-specific CTZ analogues, which illuminated anti-estrogenic and rapamycin activities in a mixture of optical probes. This unique bioluminescence platform has great potential for specific and high throughput imaging of multiple optical readouts in bioassays without optical contamination.

  12. Aerosol-delivered programmed cell death 4 enhanced apoptosis, controlled cell cycle and suppressed AP-1 activity in the lungs of AP-1 luciferase reporter mice.

    Science.gov (United States)

    Hwang, S-K; Jin, H; Kwon, J T; Chang, S-H; Kim, T H; Cho, C-S; Lee, K H; Young, M R; Colburn, N H; Beck, G R; Yang, H-S; Cho, M-H

    2007-09-01

    The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.

  13. Luciferase inactivation in the luminous marine bacterium Vibrio harveyi.

    Science.gov (United States)

    Reeve, C A; Baldwin, T O

    1981-06-01

    Luciferase was rapidly inactivated in stationary-phase cultures of the wild type of the luminous marine bacterium Vibrio harveyi, but was stable in stationary-phase cultures of mutants of V. harveyi that are nonluminous without exogenous aldehyde, termed the aldehyde-deficient mutants. The inactivation in the wild type was halted by cell lysis and was slowed or stopped by O2 deprivation or by addition of KCN and NaF or of chloramphenicol. If KCN and NaF or chloramphenicol were added to a culture before the onset of luciferase inactivation, then luciferase inactivation did not occur. However, if these inhibitors were added after the onset of luciferase inactivation, then luciferase inactivation continued for about 2 to 3 h before the inactivation process stopped. The onset of luciferase inactivation in early stationary-phase cultures of wild-type cell coincided with a slight drop in the intracellular adenosine 5'-triphosphate (ATP) level from a relatively constant log-phase value of 20 pmol of ATP per microgram of soluble cell protein. Addition of KCN and NaF to a culture shortly after this drop in ATP caused a rapid decrease in the ATP level to about 4 pmol of ATP per microgram whereas chloramphenicol added at this same time caused a transient increase in ATP level to about 25 pmol/microgram. The aldehyde-deficient mutant (M17) showed a relatively constant log-phase ATP level identical with that of the wild-type cells, but rather than decreasing in early stationary phase, the ATP level increased to a value twice that in log-phase cells. We suggest that the inactivation of luciferase is dependent on the synthesis of some factor which is produced during stationary phase and is itself unstable, and whose synthesis is blocked by chloramphenicol or cyanide plus fluoride.

  14. Super RLuc8: A novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission.

    Science.gov (United States)

    Rahnama, Somaieh; Saffar, Behnaz; Kahrani, Zahra Fanaei; Nazari, Mahboobeh; Emamzadeh, Rahman

    2017-01-01

    Renilla luciferase is a bioluminescent enzyme which is broadly used as a reporter protein in molecular biosensors. In this study, a novel luciferase with desired light emission wavelength and thermostability is reported. The results indicated that the new luciferase, namely super RLuc8, had a red-shifted spectrum and showed stable light emission. Super RLuc8 showed a 10-fold (p-value=0.0084) increase in the thermostability at 37°C after 20min incubation, in comparison to the native enzyme. The optimum temperature of the mutant increased from 30 to 37°C. Molecular dynamics simulation analysis indicated that the increased thermostability was most probably caused by a better structural compactness and more local rigidity in the regions out of the emitter site. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  16. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Viorel Simion

    Full Text Available MicroRNAs (miRNAs are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.

  17. Positive radionuclide imaging of miRNA expression using RILES and the human sodium iodide symporter as reporter gene is feasible and supports a protective role of miRNA-23a in response to muscular atrophy.

    Science.gov (United States)

    Simion, Viorel; Sobilo, Julien; Clemoncon, Rudy; Natkunarajah, Sharuja; Ezzine, Safia; Abdallah, Florence; Lerondel, Stephanie; Pichon, Chantal; Baril, Patrick

    2017-01-01

    MicroRNAs (miRNAs) are key players in many biological processes and are considered as an emerging class of pharmacology drugs for diagnosis and therapy. However to fully exploit the therapeutic potential of miRNAs, it is becoming crucial to monitor their expression pattern using medical imaging modalities. Recently, we developed a method called RILES, for RNAi-Inducible Luciferase Expression System that relies on an engineered regulatable expression system to switch-ON the expression of the luciferase gene when a miRNA of interest is expressed in cells. Here we investigated whether replacing the luciferase reporter gene with the human sodium iodide symporter (hNIS) reporter gene will be also suited to monitor the expression of miRNAs in a clinical setting context. We provide evidence that radionuclide imaging of miRNA expression using hNIS is feasible although it is not as robust as when the luciferase reporter gene is used. However, under appropriate conditions, we monitored the expression of several miRNAs in cells, in the liver and in the tibialis anterior muscle of mice undergoing muscular atrophy. We demonstrated that radiotracer accumulation in transfected cells correlated with the induction of hNIS and with the expression of miRNAs detected by real time PCR. We established the kinetic of miRNA-23a expression in mice and demonstrated that this miRNA follows a biphasic expression pattern characterized by a loss of expression at a late time point of muscular atrophy. At autopsy, we found an opposite expression pattern between miRNA-23a and one of the main transcriptional target of this miRNA, APAF-1, and as downstream target, Caspase 9. Our results report the first positive monitoring of endogenously expressed miRNAs in a nuclear medicine imaging context and support the development of additional work to establish the potential therapeutic value of miRNA-23 to prevent the damaging effects of muscular atrophy.

  18. Downstream reporter gene imaging for signal transduction pathway of dopamine type 2 receptor

    International Nuclear Information System (INIS)

    Le, Uyenchi N.; Min, Jung Joon; Moon, Sung Min; Bom, Hee Seung

    2004-01-01

    The Dopamine 2 receptor (D2R) signal pathway regulates gene expression by phosphorylation of proteins including cAMP reponse element-binding protein (CREB), a transcription factor. In this study, we developed a reporter strategy using the GAL4 fusion CREB to assess the phosphorylation of CREB, one of the targets of the D2R signal transduction pathway. We used three plasmids: GAL4 fusion transactivator (pCMV-CREB), firefly luciferase reporter with GAL4 binding sites (pG5-FLUC), and D2R plasmid (pCMV-D2R). Group 1 293T cells were transiently transfected with pCMV-CREB and pG5-FLUC, and group 2 cells were transfected with all three plasmids. Transfected cells were stimulated with different concentrations of dopamine (0-200 M). For animal studies, group 1 and 2 cells (1x10 6 ) were subcutaneously injected on the left and right thigh of six nude mice, respectively. Dopamine stimiulation was performed with intraperitoneal injection of L-DOPA incombination with carbidopa, a peripheral DOPA decarboxylase inhibitor. Bioluminescence optical imaging studies were performed before and after L-DOPA injection. In cell culture studies, group 1 cells showed strong luciferase activity which implies direct activation of the signaling pathway due to growth factors contained in culture medium. Group 2 cells showed strong luciferase activity and a further increase after administration of dopamine. In animal studies, group 1 and 2 cells showed bioluminescence signal before L-DOPA injection, but signal from group 2 cells significantly increased 12 h after L-DOPA injection. The signal from group 1 cells disappeared thereafter, but group 2 cells continued to show signal until 36 h of L-DOPA injection. This study demonstrates imaging of the D2R signal transduction pathway and should be useful for noninvasive imaging of downstream effects of G-coupled protein pathways

  19. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    Science.gov (United States)

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Enhancement of gene expression under hypoxic conditions using fragments of the human vascular endothelial growth factor and the erythropoietin genes

    International Nuclear Information System (INIS)

    Shibata, Toru; Akiyama, Nobutake; Noda, Makoto; Sasai, Keisuke; Hiraoka, Masahiro

    1998-01-01

    Purpose: Selective gene expression in response to tumor hypoxia may provide new avenues, not only for radiotherapy and chemotherapy, but also for gene therapy. In this study, we have assessed the extent of hypoxia responsiveness of various DNA constructs by the luciferase assay to help design vectors suitable for cancer therapy. Materials and Methods: Reporter plasmids were constructed with fragments of the human vascular endothelial growth factor (VEGF) and the erythropoietin (Epo) genes encompassing the putative hypoxia-responsive elements (HRE) and the pGL3 promoter vector. Test plasmids and the control pRL-CMV plasmid were cotransfected into tumor cells by the calcium phosphate method. After 6 h hypoxic treatment, the reporter assay was performed. Results: The construct pGL3/VEGF containing the 385 bp fragment of the 5' flanking region in human VEGF gene showed significant increases in luciferase activity in response to hypoxia. The hypoxic/aerobic ratios were about 3-4, and 8-12 for murine and human tumor cells, respectively. Despite the very high degree of conservation among the HREs of mammalian VEGF genes, murine cells showed lower responsiveness than human cells. We next tested the construct pGL3/Epo containing the 150 bp fragment of the 3' flanking region in the Epo gene. Luciferase activity of pGL3/Epo was increased with hypoxia only in human cell lines. The insertion of 5 copies of the 35-bp fragments derived from the VEGF HREs and 32 bp of the E1b minimal promoter resulted in maximal enhancement of hypoxia responsiveness. Conclusions: The constructs with VEGF or Epo fragments containing HRE may be useful for inducing specific gene expression in hypoxic cells. Especially, the application of multiple copies of the HREs and an E1b minimal promoter appears to have the advantage of great improvement in hypoxia responsiveness

  1. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future.

  2. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  3. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    Science.gov (United States)

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

  4. Construction and characterization of a recombinant yellow fever virus stably expressing Gaussia luciferase

    Directory of Open Access Journals (Sweden)

    TELISSA C. KASSAR

    Full Text Available ABSTRACT Yellow fever is an arthropod-borne viral disease that still poses high public health concerns, despite the availability of an effective vaccine. The development of recombinant viruses is of utmost importance for several types of studies, such as those aimed to dissect virus-host interactions and to search for novel antiviral strategies. Moreover, recombinant viruses expressing reporter genes may greatly facilitate these studies. Here, we report the construction of a recombinant yellow fever virus (YFV expressing Gaussia luciferase (GLuc (YFV-GLuc. We show, through RT-PCR, sequencing and measurement of GLuc activity, that stability of the heterologous gene was maintained after six passages. Furthermore, a direct association between GLuc expression and viral replication was observed (r2=0.9967, indicating that measurement of GLuc activity may be used to assess viral replication in different applications. In addition, we evaluated the use of the recombinant virus in an antiviral assay with recombinant human alfa-2b interferon. A 60% inhibition of GLuc expression was observed in cells infected with YFV-GLuc and incubated with IFN alfa-2b. Previously tested on YFV inhibition by plaque assays indicated a similar fold-decrease in viral replication. These results are valuable as they show the stability of YFV-GLuc and one of several possible applications of this construct.

  5. The disulfide-rich Metridia luciferase refolded from E. coli inclusion bodies reveals the properties of a native folded enzyme produced in insect cells.

    Science.gov (United States)

    Markova, Svetlana V; Larionova, Marina D; Gorbunova, Darya A; Vysotski, Eugene S

    2017-10-01

    The bioluminescence of a marine copepod Metridia longa is determined by a small secreted coelenterazine-dependent luciferase that uses coelenterazine as a substrate of enzymatic reaction to generate light (λ max =480nm). To date, four different isoforms of the luciferase differing in size, sequences, and properties have been cloned by functional screening. All of them contain ten conserved Cys residues that suggests up to five SS intramolecular bonds per luciferase molecule. Whereas the use of copepod luciferases as bioluminescent reporters in biomedical research in vivo is growing from year to year, their application for in vitro assays is still limited by the difficulty in obtaining significant amounts of luciferase. The most cost-effective host for producing recombinant proteins is Escherichia coli. However, prokaryotic and eukaryotic cells maintain the reductive environment in cytoplasm that hinders the disulfide bond formation and consequently the proper folding of luciferase. Here we report the expression of the MLuc7 isoform of M. longa luciferase in E. coli cells and the efficient procedure for refolding from inclusion bodies yielding a high-active monomeric protein. Furthermore, in a set of identical experiments we demonstrate that bioluminescent and structural features of MLuc7 produced in bacterial cells are identical to those of MLuc7 isoform produced from culture medium of insect cells. Although the yield of high-purity protein is only 6mg/L, the application of E. coli cells to produce the luciferase is simpler and more cost-effective than the use of insect cells. We expect that the suggested technology of Metridia luciferase production allows obtaining of sufficient amounts of protein both for the development of novel in vitro analytical assays with the use of MLuc7 as a label and for structural studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    International Nuclear Information System (INIS)

    Merkle, Thomas J.; O'Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H.

    2004-01-01

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage

  7. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

    2004-10-04

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

  8. Efficient in vivo gene transfer to xenotransplanted human skin by lentivirus-mediated, but not by AAV-directed, gene delivery

    DEFF Research Database (Denmark)

    Jakobsen, Maria Vad; Askou, Anne Louise; Dokkedahl, Karin Stenderup

    skin graft, and firefly luciferase expression was observed primarily in neighboring tissue beneath or surrounding the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin...... graft only. The study demonstrates limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo....

  9. Identification of a functional element in the promoter of the silkworm (Bombyx mori) fat body-specific gene Bmlp3.

    Science.gov (United States)

    Xu, Hanfu; Deng, Dangjun; Yuan, Lin; Wang, Yuancheng; Wang, Feng; Xia, Qingyou

    2014-08-01

    30K proteins are a group of structurally related proteins that play important roles in the life cycle of the silkworm Bombyx mori and are largely synthesized and regulated in a time-dependent manner in the fat body. Little is known about the upstream regulatory elements associated with the genes encoding these proteins. In the present study, the promoter of Bmlp3, a fat body-specific gene encoding a 30K protein family member, was characterized by joining sequences containing the Bmlp3 promoter with various amounts of 5' upstream sequences to a luciferase reporter gene. The results indicated that the sequences from -150 to -250bp and -597 to -675bp upstream of the Bmlp3 transcription start site were necessary for high levels of luciferase activity. Further analysis showed that a 21-bp sequence located between -230 and -250 was specifically recognized by nuclear factors from silkworm fat bodies and BmE cells, and could enhance luciferase reporter-gene expression 2.8-fold in BmE cells. This study provides new insights into the Bmlp3 promoter and contributes to the further clarification of the function and developmental regulation of Bmlp3. Copyright © 2014. Published by Elsevier B.V.

  10. The Evolution of the Bacterial Luciferase Gene Cassette (lux as a Real-Time Bioreporter

    Directory of Open Access Journals (Sweden)

    Gary Sayler

    2012-01-01

    Full Text Available The bacterial luciferase gene cassette (lux is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted.

  11. HisB as novel selection marker for gene targeting approaches in Aspergillus niger.

    Science.gov (United States)

    Fiedler, Markus R M; Gensheimer, Tarek; Kubisch, Christin; Meyer, Vera

    2017-03-08

    For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.

  12. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    Science.gov (United States)

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-09-02

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.; Laptenok, Sergey P.; DeSa, Richard J.; Naumov, Pance; Solntsev, Kyril M.

    2016-01-01

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  14. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  15. Mechanosensitive promoter region in the human HB-GAM gene

    DEFF Research Database (Denmark)

    Liedert, Astrid; Kassem, Moustapha; Claes, Lutz

    2009-01-01

    Mechanical loading is essential for maintaining bone mass in the adult skeleton. However, the underlying process of the transfer of the physical stimulus into a biochemical response, which is termed mechanotransduction is poorly understood. Mechanotransduction results in the modulation of gene...... cells. Analysis of the human HB-GAM gene upstream regulatory region with luciferase reporter gene assays revealed that the upregulation of HB-GAM expression occurred at the transcriptional level and was mainly dependent on the HB-GAM promoter region most upstream containing three potential AP-1 binding...

  16. A dual-color luciferase assay system reveals circadian resetting of cultured fibroblasts by co-cultured adrenal glands.

    Directory of Open Access Journals (Sweden)

    Takako Noguchi

    Full Text Available In mammals, circadian rhythms of various organs and tissues are synchronized by pacemaker neurons in the suprachiasmatic nucleus (SCN of the hypothalamus. Glucocorticoids released from the adrenal glands can synchronize circadian rhythms in other tissues. Many hormones show circadian rhythms in their plasma concentrations; however, whether organs outside the SCN can serve as master synchronizers to entrain circadian rhythms in target tissues is not well understood. To further delineate the function of the adrenal glands and the interactions of circadian rhythms in putative master synchronizing organs and their target tissues, here we report a simple co-culture system using a dual-color luciferase assay to monitor circadian rhythms separately in various explanted tissues and fibroblasts. In this system, circadian rhythms of organs and target cells were simultaneously tracked by the green-emitting beetle luciferase from Pyrearinus termitilluminans (ELuc and the red-emitting beetle luciferase from Phrixothrix hirtus (SLR, respectively. We obtained tissues from the adrenal glands, thyroid glands, and lungs of transgenic mice that expressed ELuc under control of the promoter from a canonical clock gene, mBmal1. The tissues were co-cultured with Rat-1 fibroblasts as representative target cells expressing SLR under control of the mBmal1 promoter. Amplitudes of the circadian rhythms of Rat-1 fibroblasts were potentiated when the fibroblasts were co-cultured with adrenal gland tissue, but not when co-cultured with thyroid gland or lung tissue. The phases of Rat-1 fibroblasts were reset by application of adrenal gland tissue, whereas the phases of adrenal gland tissue were not influenced by Rat-1 fibroblasts. Furthermore, the effect of the adrenal gland tissue on the fibroblasts was blocked by application of a glucocorticoid receptor (GR antagonist. These results demonstrate that glucocorticoids are strong circadian synchronizers for fibroblasts and that

  17. The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase.

    Directory of Open Access Journals (Sweden)

    Katie J Herbst

    2009-05-01

    Full Text Available Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA.We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc variants in a population of cells and also in single cells. Using 10 microM of luciferase substrate and 10 microM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (+/-15% and 54% (+/-14% of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8.The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential effects of experimental conditions on a cell

  18. [miR-143 inhibits cell proliferation through targeted regulating the expression of K-ras gene in HeLa cells].

    Science.gov (United States)

    Qin, H X; Cui, H K; Pan, Y; Hu, R L; Zhu, L H; Wang, S J

    2016-12-23

    Objective: To explore the effect of microRNA miR-143 on the proliferation of cervical cancer HeLa cells through targeted regulating the expression of K-ras gene. Methods: The luciferase report carrier containing wild type 3'-UTR of K-ras gene (K-ras-wt) or mutated 3'-UTR of the K-ras (K-ras-mut) were co-transfected with iR-143 mimic into the HeLa cells respectively, and the targeting effect of miR-143 in the transfectants was verified by the dual luciferase report system. HeLa cells were also transfected with miR-143 mimic (miR-143 mimic group), mimic control (negative control group), and miR-143 mimic plus K-ras gene (miR-143 mimic+ K-ras group), respectively. The expression of miR-143 in the transfected HeLa cells was detected by real-time PCR (RT-PCR), and the expression of K-ras protein was detected by Western blot. The cell proliferation activity of each group was examined by MTT assay. In addition, human cervical cancer tissue samples ( n =5) and cervical intraepithelial neoplasia tissue samples ( n =5) were also examined for the expression of miR-143 and K-ras protein by RT-PCR and Western blot, respectively. Results: The luciferase report assay showed that co-transfection with miR-143 mimic decreased the luciferase activity of the K-ras-wt significantly, but did not inhibit the luciferase activity of the K-ras-mut. The expression of miR-143 in the HeLa cells transfected with miR-143 mimic was significantly higher than that in the HeLa cells transfected with the mimic control (3.31±0.45 vs 0.97±0.22, P cell proliferative activity of the miR-143 mimic group was significantly lower than that of the negative control group ( P cell proliferative activity of the miR-143 mimic+ K-ras group was also significantly lower than the control group ( P HeLa cells through targeted regulating the expression of K-ras gene. In human cervical cancer tissues of a small sample set, the expression of miR-143 is downregulated, and the expression of K-ras is upregulated.

  19. F-18 Labeled Diabody-Luciferase Fusion Proteins for Optical-ImmunoPET

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Anna M. [Univ. of California, Los Angeles, CA (United States)

    2013-01-18

    The goal of the proposed work is to develop novel dual-labeled molecular imaging probes for multimodality imaging. Based on small, engineered antibodies called diabodies, these probes will be radioactively tagged with Fluorine-18 for PET imaging, and fused to luciferases for optical (bioluminescence) detection. Performance will be evaluated and validated using a prototype integrated optical-PET imaging system, OPET. Multimodality probes for optical-PET imaging will be based on diabodies that are dually labeled with 18F for PET detection and fused to luciferases for optical imaging. 1) Two sets of fusion proteins will be built, targeting the cell surface markers CEA or HER2. Coelenterazine-based luciferases and variant forms will be evaluated in combination with native substrate and analogs, in order to obtain two distinct probes recognizing different targets with different spectral signatures. 2) Diabody-luciferase fusion proteins will be labeled with 18F using amine reactive [18F]-SFB produced using a novel microwave-assisted, one-pot method. 3) Sitespecific, chemoselective radiolabeling methods will be devised, to reduce the chance that radiolabeling will inactivate either the target-binding properties or the bioluminescence properties of the diabody-luciferase fusion proteins. 4) Combined optical and PET imaging of these dual modality probes will be evaluated and validated in vitro and in vivo using a prototype integrated optical-PET imaging system, OPET. Each imaging modality has its strengths and weaknesses. Development and use of dual modality probes allows optical imaging to benefit from the localization and quantitation offered by the PET mode, and enhances the PET imaging by enabling simultaneous detection of more than one probe.

  20. Detailed assessment of gene activation levels by multiple hypoxia-responsive elements under various hypoxic conditions.

    Science.gov (United States)

    Takeuchi, Yasuto; Inubushi, Masayuki; Jin, Yong-Nan; Murai, Chika; Tsuji, Atsushi B; Hata, Hironobu; Kitagawa, Yoshimasa; Saga, Tsuneo

    2014-12-01

    HIF-1/HRE pathway is a promising target for the imaging and the treatment of intractable malignancy (HIF-1; hypoxia-inducible factor 1, HRE; hypoxia-responsive element). The purposes of our study are: (1) to assess the gene activation levels resulting from various numbers of HREs under various hypoxic conditions, (2) to evaluate the bidirectional activity of multiple HREs, and (3) to confirm whether multiple HREs can induce gene expression in vivo. Human colon carcinoma HCT116 cells were transiently transfected by the constructs containing a firefly luciferase reporter gene and various numbers (2, 4, 6, 8, 10, and 12) of HREs (nHRE+, nHRE-). The relative luciferase activities were measured under various durations of hypoxia (6, 12, 18, and 24 h), O2 concentrations (1, 2, 4, 8, and 16 %), and various concentrations of deferoxamine mesylate (20, 40, 80, 160, and 320 µg/mL growth medium). The bidirectional gene activation levels by HREs were examined in the constructs (dual-luc-nHREs) containing firefly and Renilla luciferase reporter genes at each side of nHREs. Finally, to test whether the construct containing 12HRE and the NIS reporter gene (12HRE-NIS) can induce gene expression in vivo, SPECT imaging was performed in a mouse xenograft model. (1) gene activation levels by HREs tended to increase with increasing HRE copy number, but a saturation effect was observed in constructs with more than 6 or 8 copies of an HRE, (2) gene activation levels by HREs increased remarkably during 6-12 h of hypoxia, but not beyond 12 h, (3) gene activation levels by HREs decreased with increasing O2 concentrations, but could be detected even under mild hypoxia at 16 % O2, (4) the bidirectionally proportional activity of the HRE was confirmed regardless of the hypoxic severity, and (5) NIS expression driven by 12 tandem copies of an HRE in response to hypoxia could be visualized on in vivo SPECT imaging. The results of this study will help in the understanding and assessment of

  1. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  2. Development of microLIPS (Luciferase Immunoprecipitation Systems): a novel microfluidic assay for rapid serum antibody detection

    Science.gov (United States)

    Chandrangsu, Matt; Burbelo, Peter D.; Iadarola, Michael J.; Smith, Paul D.; Morgan, Nicole Y.

    2012-06-01

    There is considerable interest in the development of rapid, point-of-care antibody detection for the diagnosis of infectious and auto-immune diseases. In this paper, we present work on the development of a self-contained microfluidic format for the Luciferase Immunoprecipitation Systems (LIPS) assay. Whereas the majority of immunoassays for antigen-specific antibodies employ either bacteria- or yeast-expressed proteins and require the use of secondary antibodies, the LIPS technique uses a fusion protein comprised of a Renilla luciferase reporter and the antigen of interest produced via mammalian cell culture, ensuring the addition of mammalian post-translational modifications. Patient serum is mixed with the fusion protein and passed over immobilized Protein A/G; after washing, the only remaining luciferase-tagged antigens are those retained by specific antibodies. These can be quantitatively measured using chemiluminescence upon the introduction of coelenterazine. The assay has been successfully employed for a wide variety of diseases in a microwell format. We report on a recent demonstration of rapid HSV-2 diagnosis with the LIPS assay in a microfluidic format, using one microliter of serum and obtaining results in under ten minutes. We will also discuss recent progress on two fronts, both aimed at the deployment of this technology in the field: first, simplifying assay operation through the automation of flow control using power-free means; and second, efforts to increase signal levels, primarily through strategies to increase antibody binding capacity, in order to move towards portable battery powered electronics.

  3. Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice

    Directory of Open Access Journals (Sweden)

    Hill Colin

    2008-09-01

    Full Text Available Abstract Background Probiotics such as bifidobacteria have been shown to maintain a healthy intestinal microbial balance and help protect against infections. However, despite these benefits, bifidobacteria still remain poorly understood at the biochemical, physiological and especially the genetic level. Herein we describe, for the first time, the development of a non-invasive luciferase-based reporter system for real-time tracking of Bifidobacterium species in vivo. Results The reporter vector pLuxMC1 is based on the recently described theta-type plasmid pBC1 from B. catenatulatum 1 and the luxABCDE operon from pPL2lux 2. Derivatives of pLuxMC1, harbouring a bifidobacterial promoter (pLuxMC2 as well as a synthetically derived promoter (pLuxMC3 3 placed upstream of luxABCDE, were constructed and found to stably replicate in B. breve UCC2003. The subsequent analysis of these strains allowed us to assess the functionality of pLuxMC1 both in vitro and in vivo. Conclusion Our results demonstrate the potential of pLuxMC1 as a real-time, non-invasive reporter system for Bifidobacterium. It has also allowed us, for the first time, to track the colonisation potential and persistence of this probiotic species in real time. An interesting and significant outcome of the study is the identification of the caecum as a niche environment for B. breve UCC2003 within the mouse gastrointestinal tract (GI tract.

  4. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    Science.gov (United States)

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  5. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    Science.gov (United States)

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  6. Co-regulation of the atrial natriuretic factor and cardiac myosin light chain-2 genes during alpha-adrenergic stimulation of neonatal rat ventricular cells. Identification of cis sequences within an embryonic and a constitutive contractile protein gene which mediate inducible expression.

    Science.gov (United States)

    Knowlton, K U; Baracchini, E; Ross, R S; Harris, A N; Henderson, S A; Evans, S M; Glembotski, C C; Chien, K R

    1991-04-25

    To study the mechanisms which mediate the transcriptional activation of cardiac genes during alpha adrenergic stimulation, the present study examined the regulated expression of three cardiac genes, a ventricular embryonic gene (atrial natriuretic factor, ANF), a constitutively expressed contractile protein gene (cardiac MLC-2), and a cardiac sodium channel gene. alpha 1-Adrenergic stimulation activates the expression and release of ANF from neonatal ventricular cells. As assessed by RNase protection analyses, treatment with alpha-adrenergic agonists increases the steady-state levels of ANF mRNA by greater than 15-fold. However, a rat cardiac sodium channel gene mRNA is not induced, indicating that alpha-adrenergic stimulation does not lead to an increase in the expression of all cardiac genes. Studies employing a series of rat ANF luciferase and rat MLC-2 luciferase fusion genes identify 315- and 92-base pair cis regulatory sequences within an embryonic gene (ANF) and a constitutively expressed contractile protein gene (MLC-2), respectively, which mediate alpha-adrenergic-inducible gene expression. Transfection of various ANF luciferase reporters into neonatal rat ventricular cells demonstrated that upstream sequences which mediate tissue-specific expression (-3003 to -638) can be segregated from those responsible for inducibility. The lack of inducibility of a cardiac Na+ channel gene, and the segregation of ANF gene sequences which mediate cardiac specific from those which mediate inducible expression, provides further insight into the relationship between muscle-specific and inducible expression during cardiac myocyte hypertrophy. Based on these results, a testable model is proposed for the induction of embryonic cardiac genes and constitutively expressed contractile protein genes and the noninducibility of a subset of cardiac genes during alpha-adrenergic stimulation of neonatal rat ventricular cells.

  7. Simian virus 40 vectors for pulmonary gene therapy

    Directory of Open Access Journals (Sweden)

    Oppenheim Ariella

    2007-10-01

    Full Text Available Abstract Background Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS. Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40 vectors for pulmonary gene therapy. Methods Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP. SV40 vectors carrying the luciferase reporter gene (SV/luc were administered intratracheally immediately after sepsis induction. Sham operated (SO as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by in vivo light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C. Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector. Results Luc expression measured by in vivo light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response. Conclusion In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of in vivo transduction of alveolar type II cells and may thus become a future therapeutic tool.

  8. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang; Xiao, Shaobo; Chen, Huanchun

    2014-01-01

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis

  9. A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junwei; Zhang, Huan; Fang, Liurong; Xi, Yongqiang; Zhou, Yanrong; Luo, Rui; Wang, Dang, E-mail: wangdang511@126.com; Xiao, Shaobo; Chen, Huanchun

    2014-10-03

    Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.

  10. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  11. High-throughput screening of effective siRNAs using luciferase-linked chimeric mRNA.

    Directory of Open Access Journals (Sweden)

    Shen Pang

    Full Text Available The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression.

  12. pLIVE-EGFP: A liver specific vector carrying the EGFP reporter for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... system for monitoring gene expression, intracellular protein trafficking or localization. Several types of reporter systems, such as secretory alkaline phosphatase (SEAP), luciferase, β-galactosidase, or fluorescent proteins (FPs), have been widely applied in these researches (Naylor,. 1999; Branchini, et al., ...

  13. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo

    International Nuclear Information System (INIS)

    Rivera, Angel A.; Wang Minghui; Suzuki, Kaori; Uil, Taco G.; Krasnykh, Victor; Curiel, David T.; Nettelbeck, Dirk M.

    2004-01-01

    The expression of therapeutic genes by oncolytic viruses is a promising strategy to improve viral oncolysis, to augment gene transfer compared with a nonreplicating adenoviral vector, or to combine virotherapy and gene therapy. Both the mode of transgene expression and the locale of transgene insertion into the virus genome critically determine the efficacy of this approach. We report here on the properties of oncolytic adenoviruses which contain the luciferase cDNA fused via an optimized internal ribosome entry site (IRES) to the immediate early adenoviral gene E1A (AdΔE1AIL), the early gene E2B (AdΔE2BIL), or the late fiber gene (AdΔfiberIL). These viruses showed distinct kinetics of transgene expression and luciferase activity. Early after infection, luciferase activities were lower for these viruses, especially for AdΔE2BIL, compared with nonreplicating AdTL, which contained the luciferase gene expressed from the strong CMV promoter. However, 6 days after infection, luciferase activities were approximately four (AdΔE1AIL) to six (AdΔfiberIL) orders of magnitude higher than for AdTL, reflecting virus replication and efficient transgene expression. Similar results were obtained in vivo after intratumoral injection of AdΔE2BIL, AdΔfiberIL, and AdTL. AdΔfiberIL and the parental virus, Ad5-Δ24, resulted in similar cytotoxicity, but AdΔE2BIL and AdΔE1AIL were slightly attenuated. Disruption of the expression of neighboring viral genes by insertion of the transgene was minimal for AdΔE2BIL and AdΔfiberIL, but substantial for AdΔE1AIL. Our observations suggest that insertion of IRES-transgene cassettes into viral transcription units is an attractive strategy for the development of armed oncolytic adenoviruses with defined kinetics and strength of transgene expression

  14. Screening to Identify Commonly Used Chinese Herbs That Affect ERBB2 and ESR1 Gene Expression Using the Human Breast Cancer MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Jen-Hwey Chiu

    2014-01-01

    Full Text Available Aim. Our aim the was to screen the commonly used Chinese herbs in order to detect changes in ERBB2 and ESR1 gene expression using MCF-7 cells. Methods. Using the MCF-7 human breast cancer cell line, cell cytotoxicity and proliferation were evaluated by MTT and trypan blue exclusion assays, respectively. A luciferase reporter assay was established by transient transfecting MCF-7 cells with plasmids containing either the ERBB2 or the ESR1 promoter region linked to the luciferase gene. Chinese herbal extracts were used to treat the cells at 24 h after transfection, followed by measurement of their luciferase activity. The screening results were verified by Western blotting to measure HER2 and ERα protein expression. Results. At concentrations that induced little cytotoxicity, thirteen single herbal extracts and five compound recipes were found to increase either ERBB2 or ESR1 luciferase activity. By Western blotting, Si-Wu-Tang, Kuan-Shin-Yin, and Suan-Tsao-Ren-Tang were found to increase either HER2 or ERα protein expression. In addition, Ligusticum chuanxiong was shown to have a great effect on ERBB2 gene expression and synergistically with estrogen to stimulate MCF-7 cell growth. Conclusion. Our results provide important information that should affect clinical treatment strategies among breast cancer patients who are receiving hormonal or targeted therapies.

  15. Visualization of the Dynamics of Gene Expression in the Living Mouse

    Directory of Open Access Journals (Sweden)

    Amy Ryan

    2004-01-01

    Full Text Available Reporter genes can monitor the status and activity of recombinant genomes in a diverse array of organisms, from bacteria and yeast to plants and animals. We have combined luciferase reporter genes with a conditional gene expression system based on regulatory elements from the lac Operon of Escherichia coli to visualize the dynamics of gene expression in realtime in the living mouse. Using this technology, we have determined the rate of gene induction and repression, the level of target gene activity in response to different doses of inducer, and the schedule of induction during early embryogenesis of both the endogenous and the experimentally manipulated programs of mammalian gene expression associated with the HD/Hdh locus. The combination of in vivo imaging and lac regulation is a powerful tool for generating conditional transgenic mice that can be screened rapidly for optimal regulation and expression patterns, and for monitoring the induction and repression of regulated genes noninvasively in the living animal.

  16. Imaging reporter gene for monitoring gene therapy

    International Nuclear Information System (INIS)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L.; Tamgac, G.

    2002-01-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  17. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Olivier Sandre

    2017-02-01

    Full Text Available The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.

  18. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging

    International Nuclear Information System (INIS)

    Ponomarev, Vladimir; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Tourkova, Vilia; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Ivanova, Anna; Blasberg, Ronald; Balatoni, Julius; Bornmann, William; Gelovani Tjuvajev, Juri

    2004-01-01

    Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (Δ45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or Δ45HSV1-tk/GFP/luciferase (Δ45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-Δ45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-Δ45-TGL cells compared to nontransduced control cells. The Ki of 14 C-FIAU was 0.49±0.02, 0.51±0.03, and 0.003±0.001 ml/min/g in U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [ 131 I]FIAU (7.4 MBq/animal) or [ 124 I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity

  19. A Multisampling Reporter System for Monitoring MicroRNA Activity in the Same Population of Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chen Huang

    2009-01-01

    Full Text Available MicroRNAs (miRNAs downregulate gene expression by binding to the partially complementary sites in the 3′ untranslated region (UTR of target mRNAs. Several methods, such as Northern blot analysis, quantitative real-time RT-PCR, microarray, and the luciferase reporter system, are commonly used to quantify the relative level or activity of miRNAs. The disadvantage of these methods is the requirement for cell lysis, which means that several sets of wells/dishes of cells must be prepared to monitor changes in miRNA activity in time-course studies. In this study, we developed a multisampling reporter system in which two secretable bioluminescence-generating enzymes are employed, one as a reporter and the other as an internal control. The reporters consist of a pair of vectors containing the Metridia luciferase gene, one with and one without a duplicated miRNA targeting sequence at their 3′UTR, while the other vector coding for the secreted alkaline phosphatase gene is used as an internal control. This method allows miRNA activity to be monitored within the same population of cells over time by withdrawing aliquots of the culture medium. The practicability and benefits of this system are addressed in this report.

  20. Polymorphisms in promoter sequences of MDM2, p53, and p16INK4a genes in normal Japanese individuals

    Directory of Open Access Journals (Sweden)

    Yasuhito Ohsaka

    2010-01-01

    Full Text Available Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16INK4a genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C nucleotide position in the p53 gene. The Japanese individuals also exhibited p16INK4a polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16INK4a differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.

  1. A functional polymorphism of the TNF-α gene that is associated with type 2 DM

    International Nuclear Information System (INIS)

    Susa, Shinji; Daimon, Makoto; Sakabe, Jun-Ichi; Sato, Hidenori; Oizumi, Toshihide; Karasawa, Shigeru; Wada, Kiriko; Jimbu, Yumi; Kameda, Wataru; Emi, Mitsuru; Muramatsu, Masaaki; Kato, Takeo

    2008-01-01

    To examine the association of the tumor necrosis factor-α (TNF-α) gene region with type 2 diabetes (DM), 11 single-nucleotide polymorphisms (SNPs) of the region were analyzed. The initial study using a sample set (148 cases vs. 227 controls) showed a significant association of the SNP IVS1G + 123A of the TNF-α gene with DM (p = 0.0056). Multiple logistic regression analysis using an enlarged sample set (225 vs. 716) revealed the significant association of the SNP with DM independently of any clinical traits examined (OR: 1.49, p = 0.014). The functional relevance of the SNP were examined by the electrophoretic mobility shift assays using nuclear extracts from the U937 and NIH3T3 cells and luciferase assays in these cells with Simian virus 40 promoter- and TNF-α promoter-reporter gene constructs. The functional analyses showed that YY1 transcription factor bound allele-specifically to the SNP region and, the IVS1 + 123A allele had an increase in luciferase expression compared with the G allele

  2. Expression of PKA inhibitor (PKI) gene abolishes cAMP-mediated protection to endothelial barrier dysfunction.

    Science.gov (United States)

    Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D

    1999-09-01

    We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.

  3. Advances in study of reporter gene imaging for monitoring gene therapy

    International Nuclear Information System (INIS)

    Mu Chuanjie; Zhou Jiwen

    2003-01-01

    To evaluate the efficiency of gene therapy, it is requisite to monitor localization and expression of the therapeutic gene in vivo. Monitoring expression of reporter gene using radionuclide reporter gene technique is the best method. Adenoviral vectors expressing reporter gene are constructed using gene fusion, bicistronic, double promoter or bidirectional transcriptional recombination techniques, and transferred into target cells and tissues, then injected radiolabeled reporter probes which couple to the reporter genes. The reporter genes can be imaged invasively, repeatedly, quantitatively with γ-camera, PET and SPECT. Recently, several reporter gene and reporter probe systems have been used in studies of gene therapy. The part of them has been used for clinic trials

  4. Horizontal gene transfer from macrophages to ischemic muscles upon delivery of naked DNA with Pluronic block copolymers.

    Science.gov (United States)

    Mahajan, Vivek; Gaymalov, Zagit; Alakhova, Daria; Gupta, Richa; Zucker, Irving H; Kabanov, Alexander V

    2016-01-01

    Intramuscular administration of plasmid DNA (pDNA) with non-ionic Pluronic block copolymers increases gene expression in injected muscles and lymphoid organs. We studied the role of immune cells in muscle transfection upon inflammation. Local inflammation in murine hind limb ischemia model (MHLIM) drastically increased DNA, RNA and expressed protein levels in ischemic muscles injected with pDNA/Pluronic. The systemic inflammation (MHLIM or peritonitis) also increased expression of pDNA/Pluronic in the muscles. When pDNA/Pluronic was injected in ischemic muscles the reporter gene, Green Fluorescent Protein (GFP) co-localized with desmin(+) muscle fibers and CD11b(+) macrophages (MØs), suggesting transfection of MØs along with the muscle cells. P85 enhanced (∼ 4 orders) transfection of MØs with pDNA in vitro. Moreover, adoptively transferred MØs were shown to pass the transgene to inflamed muscle cells in MHLIM. Using a co-culture of myotubes (MTs) and transfected MØs expressing a reporter gene under constitutive (cmv-luciferase) or muscle specific (desmin-luciferase) promoter we demonstrated that P85 enhances horizontal gene transfer from MØ to MTs. Therefore, MØs can play an important role in muscle transfection with pDNA/Pluronic during inflammation, with both inflammation and Pluronic contributing to the increased gene expression. pDNA/Pluronic has potential for therapeutic gene delivery in muscle pathologies that involve inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Manning, Gillian E., E-mail: gmann017@uottawa.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Mundy, Lukas J., E-mail: lukas.mundy@ec.gc.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Jones, Stephanie P., E-mail: stephanie.jones@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Chiu, Suzanne, E-mail: suzanne.chiu@ec.gc.ca [Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada); Klein, Jeff, E-mail: jeffery@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3chsM5 (Canada); Konstantinov, Alex, E-mail: alex@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3chsM5 (Canada); Potter, Dave, E-mail: dpotter@well-labs.com [Wellington Laboratories Inc., Research Division, Guelph, ON, Canada N1G 3chsM5 (Canada); Kennedy, Sean W., E-mail: sean.kennedy@ec.gc.ca [Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5 (Canada); Environment Canada, National Wildlife Research Centre, Ottawa, ON, Canada K1A 0H3 (Canada)

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, in combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of

  6. Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

    International Nuclear Information System (INIS)

    Manning, Gillian E.; Mundy, Lukas J.; Crump, Doug; Jones, Stephanie P.; Chiu, Suzanne; Klein, Jeff; Konstantinov, Alex; Potter, Dave; Kennedy, Sean W.

    2013-01-01

    Avian-specific toxic equivalency factors (TEFs) were developed by the World Health Organization to simplify environmental risk assessments of dioxin-like compounds (DLCs), but TEFs do not account for differences in the toxic and biochemical potencies of DLCs among species of birds. Such variability may be due to differences in species sensitivity to individual DLCs. The sensitivity of avian species to DLCs was recently associated with the identity of amino acids 324 and 380 in the aryl hydrocarbon receptor 1 (AHR1) ligand binding domain. A luciferase reporter gene (LRG) assay, measuring AHR1-mediated induction of a cytochrome P450 1A5 (CYP1A5) reporter gene, in combination with a species' AHR1 ligand binding domain sequence, were also shown to predict avian species sensitivity to polychlorinated biphenyls (PCBs) and PCB relative potency in a given species. The goals of the present study were to (1) characterize the concentration-dependent effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin and PCBs 126, 77, 105 and 118 on induction of ethoxyresorufin O-deethylase (EROD) activity and CYP1A4/5 mRNA in chicken, ring-necked pheasant and Japanese quail embryo hepatocytes and (2) compare these in vitro results to those previously generated by the LRG assay and in ovo toxicity studies. EROD activity and CYP1A4/5 mRNA expression data support and complement the findings of the LRG assay. CYP1A enzyme activity and mRNA expression were significantly correlated both with luciferase activity and in ovo toxicity induced by PCBs. Relative potency values were generally similar between the LRG and EROD assays and indicate that the relative potency of some PCBs may differ among species. -- Highlights: ► The chicken isn't the most sensitive species to CYP1A induction by PCB 105 and 118. ► The relative potency of PCBs differs between avian species. ► EROD activity was correlated with luciferase activity from the LRG assay. ► EROD activity was a better predictor of toxicity than CYP

  7. [Establishment of an iRFP and luciferase dual-color fluorescence-traced hepatocellular carcinoma transplantation model in nude mice].

    Science.gov (United States)

    Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai

    2017-11-01

    Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.

  8. Step-wise addition of disulfide bridge in firefly luciferase controls color shift through a flexible loop: a thermodynamic perspective.

    Science.gov (United States)

    Nazari, Mahboobeh; Hosseinkhani, Saman; Hassani, Leila

    2013-02-01

    Multi-color bioluminescence is developed using the introduction of single/double disulfide bridges in firefly luciferase. The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by the luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase sequence and assay conditions. It has been proposed that the stability of a protein may increase through the introduction of a disulfide bridge that decreases the configurational entropy of unfolding. Single and double disulfide bridges are introduced into Photinus pyralis firefly luciferase to make separate mutant enzymes with a single/double bridge (C(81)-A(105)C, L(306)C-L(309)C, P(451)C-V(469)C; C(81)-A(105)C/P(451)C-V(469)C, and A(296)C-A(326)C/P(451)C-V(469)C). By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red or kept in different extents. The bioluminescence color shift occurred with displacement of a critical loop in the luciferase structure without any change in green emitter mutants. Thermodynamic analysis revealed that among mutants, L(306)C-L(309)C shows a remarkable stability against urea denaturation and also a considerable increase in kinetic stability and a clear shift in bioluminescence spectra towards red.

  9. Effect of ATRX and G-Quadruplex Formation by the VNTR Sequence on α-Globin Gene Expression.

    Science.gov (United States)

    Li, Yue; Syed, Junetha; Suzuki, Yuki; Asamitsu, Sefan; Shioda, Norifumi; Wada, Takahito; Sugiyama, Hiroshi

    2016-05-17

    ATR-X (α-thalassemia/mental retardation X-linked) syndrome is caused by mutations in chromatin remodeler ATRX. ATRX can bind the variable number of tandem repeats (VNTR) sequence in the promoter region of the α-globin gene cluster. The VNTR sequence, which contains the potential G-quadruplex-forming sequence CGC(GGGGCGGGG)n , is involved in the downregulation of α-globin expression. We investigated G-quadruplex and i-motif formation in single-stranded DNA and long double-stranded DNA. The promoter region without the VNTR sequence showed approximately twofold higher luciferase activity than the promoter region harboring the VNTR sequence. G-quadruplex stabilizers hemin and TMPyP4 reduced the luciferase activity, whereas expression of ATRX led to a recovery in reporter activity. Our results demonstrate that stable G-quadruplex formation by the VNTR sequence downregulates the expression of α-globin genes and that ATRX might bind to and resolve the G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  11. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides.

    Science.gov (United States)

    Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger

    2004-12-15

    A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.

  12. Cloning the uteroglobin gene promoter from the relic volcano rabbit (Romerolagus diazi) reveals an ancient estrogen-response element.

    Science.gov (United States)

    Acosta-MontesdeOca, Adriana; Zariñán, Teresa; Macías, Héctor; Pérez-Solís, Marco A; Ulloa-Aguirre, Alfredo; Gutiérrez-Sagal, Rubén

    2012-05-01

    To gain further insight on the estrogen-dependent transcriptional regulation of the uteroglobin (UG) gene, we cloned the 5'-flanking region of the UG gene from the phylogenetically ancient volcano rabbit (Romerolagus diazi; Rd). The cloned region spans 812 base pairs (bp; -812/-1) and contains a noncanonical TATA box (TACA). The translation start site is 48 bp downstream from the putative transcription initiation site (AGA), and is preceded by a consensus Kozak box. Comparison of the Rd-UG gene with that previously isolated from rabbits (Oryctolagus cuniculus) showed 93% in sequence identity as well as a number of conserved cis-acting elements, including the estrogen-response element (ERE; -265/-251), which differs from the consensus by two nucleotides. In MCF-7 cells, 17β-estradiol (E(2)) induced transcription of a luciferase reporter driven by the Rd-UG promoter in a similar manner as in an equivalent rabbit UG reporter; the Rd-UG promoter was 30% more responsive to E(2) than the rabbit promoter. Mutagenesis studies on the Rd-ERE confirmed this cis-element as a target of E(2) as two luciferase mutant reporters of the Rd-promoter, one with the rabbit and the other with the consensus ERE, were more responsive to the hormone than the wild-type reporter. Gel shift and super-shift assays showed that estrogen receptor-α indeed binds to the imperfect palindromic sequence of the Rd-ERE. Copyright © 2012 Wiley Periodicals, Inc.

  13. Promoter polymorphisms in genes involved in porcine myogenesis influence their transcriptional activity.

    Science.gov (United States)

    Bongiorni, Silvia; Tilesi, Francesca; Bicorgna, Silvia; Iacoponi, Francesca; Willems, Daniela; Gargani, Maria; D'Andrea, MariaSilvia; Pilla, Fabio; Valentini, Alessio

    2014-11-07

    Success of meat production and selection for improvement of meat quality is among the primary aims in animal production. Meat quality traits are economically important in swine; however, the underlying genetic nature is very complex. Therefore, an improved pork production strongly depends on identifying and studying how genetic variations contribute to modulate gene expression. Promoters are key regions in gene modulation as they harbour several binding motifs to transcription regulatory factors. Therefore, polymorphisms in these regions are likely to deeply affect RNA levels and consequently protein synthesis. In this study, we report the identification of single nucleotide polymorphisms (SNPs) in promoter regions of candidate genes involved in development, cellular differentiation and muscle growth in Sus scrofa. We identified SNPs in the promoter regions of genes belonging to the Myogenic Regulatory Factors (MRF) gene family (the Myogenic Differentiation gene, MYOD1) and to Growth and Differentiation Factors (GDF) gene family (Myostatin gene, MSTN, GDF8), in Casertana and Large White breeds. The purpose of this study was to investigate if polymorphisms in the promoters could affect the transcriptional activity of these genes. With this aim, we evaluated in vitro the functional activity of the luciferase reporter gene luc2 activity, driven by two constructs carrying different promoter haplotypes. We tested the effects of the G302A (U12574) transition on the promoter efficiency in MYOD1 gene. We ascertained a difference in transcription efficiency for the two variants. A stronger activity of the A-carrying construct is more evident in C2C12. The luciferase expression driven by the MYOD1-A allelic variant displayed a 3.8-fold increased transcriptional activity. We investigated the activity of two haplotype variants (AY527152) in the promoter of GDF8 gene. The haploptype-1 (A435-A447-A879) up-regulated the expression of the reporter gene by a two-fold increase, and

  14. Radionuclide reporter gene imaging

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon [School of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2004-04-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases.

  15. Radionuclide reporter gene imaging

    International Nuclear Information System (INIS)

    Min, Jung Joon

    2004-01-01

    Recent progress in the development of non-invasive imaging technologies continues to strengthen the role of molecular imaging biological research. These tools have been validated recently in variety of research models, and have been shown to provide continuous quantitative monitoring of the location(s), magnitude, and time-variation of gene expression. This article reviews the principles, characteristics, categories and the use of radionuclide reporter gene imaging technologies as they have been used in imaging cell trafficking, imaging gene therapy, imaging endogenous gene expression and imaging molecular interactions. The studies published to date demonstrate that reporter gene imaging technologies will help to accelerate model validation as well as allow for clinical monitoring of human diseases

  16. Role of promoter element in c-mpl gene expression induced by TPO.

    Science.gov (United States)

    Sunohara, Masataka; Morikawa, Shigeru; Fuse, Akira; Sato, Iwao

    2013-01-01

    Thrombopoietin (TPO) and its receptor, c-Mpl, play the crucial role for the development of megakaryocyte and considered to regulate megakaryocytopoiesis. Previously we reported that TPO increased the c-mpl promoter activity determined by a transient expression system using a vector containing the luciferase gene as a reporter and the expression of the c-mpl gene is modulated by transcription through a protein kinase C (PKC)-dependent pathway in the megakaryoblastic cells. In this research, to elucidate the required elements in c-mpl promoter, the promoter activity of the deletion constructs and site-directed mutagenesis were measured by a transient transfection assay system. Destruction of -77GATA in c-mpl promoter decreased the activity by 22.8%. Our study elucidated that -77GATA involved in TPO-induced c-mpl gene expression in a human megakaryoblastic cell line, CMK.

  17. Cardiac Gene Expression Knockdown Using Small Inhibitory RNA-Loaded Microbubbles and Ultrasound.

    Directory of Open Access Journals (Sweden)

    Jonathan A Kopechek

    Full Text Available RNA interference has potential therapeutic value for cardiac disease, but targeted delivery of interfering RNA is a challenge. Custom designed microbubbles, in conjunction with ultrasound, can deliver small inhibitory RNA to target tissues in vivo. The efficacy of cardiac RNA interference using a microbubble-ultrasound theranostic platform has not been demonstrated in vivo. Therefore, our objective was to test the hypothesis that custom designed microbubbles and ultrasound can mediate effective delivery of small inhibitory RNA to the heart. Microbubble and ultrasound mediated cardiac RNA interference was tested in transgenic mice displaying cardiac-restricted luciferase expression. Luciferase expression was assayed in select tissues of untreated mice (n = 14. Mice received intravenous infusion of cationic microbubbles bearing small inhibitory RNA directed against luciferase (n = 9 or control RNA (n = 8 during intermittent cardiac-directed ultrasound at mechanical index of 1.6. Simultaneous echocardiography in a separate group of mice (n = 3 confirmed microbubble destruction and replenishment during treatment. Three days post treatment, cardiac luciferase messenger RNA and protein levels were significantly lower in ultrasound-treated mice receiving microbubbles loaded with small inhibitory RNA directed against luciferase compared to mice receiving microbubbles bearing control RNA (23±7% and 33±7% of control mice, p<0.01 and p = 0.03, respectively. Passive cavitation detection focused on the heart confirmed that insonification resulted in inertial cavitation. In conclusion, small inhibitory RNA-loaded microbubbles and ultrasound directed at the heart significantly reduced the expression of a reporter gene. Ultrasound-targeted destruction of RNA-loaded microbubbles may be an effective image-guided strategy for therapeutic RNA interference in cardiac disease.

  18. Knock-in Luciferase Reporter Mice for In Vivo Monitoring of CREB Activity.

    Directory of Open Access Journals (Sweden)

    Dmitry Akhmedov

    Full Text Available The cAMP response element binding protein (CREB is induced during fasting in the liver, where it stimulates transcription of rate-limiting gluconeogenic genes to maintain metabolic homeostasis. Adenoviral and transgenic CREB reporters have been used to monitor hepatic CREB activity non-invasively using bioluminescence reporter imaging. However, adenoviral vectors and randomly inserted transgenes have several limitations. To overcome disadvantages of the currently used strategies, we created a ROSA26 knock-in CREB reporter mouse line (ROSA26-CRE-luc. cAMP-inducing ligands stimulate the reporter in primary hepatocytes and myocytes from ROSA26-CRE-luc animals. In vivo, these animals exhibit little hepatic CREB activity in the ad libitum fed state but robust induction after fasting. Strikingly, CREB was markedly stimulated in liver, but not in skeletal muscle, after overnight voluntary wheel-running exercise, uncovering differential regulation of CREB in these tissues under catabolic states. The ROSA26-CRE-luc mouse line is a useful resource to study dynamics of CREB activity longitudinally in vivo and can be used as a source of primary cells for analysis of CREB regulatory pathways ex vivo.

  19. Development of a cell-based reporter assay for screening of inhibitors of hypoxia-inducible factor 2-induced gene expression.

    Science.gov (United States)

    Woldemichael, Girma M; Vasselli, James R; Gardella, Roberta S; McKee, Tawnya C; Linehan, W Marston; McMahon, James B

    2006-09-01

    Reporter cell lines have been developed for the identification of inhibitors of gene expression enhanced by hypoxia-inducible factor 2, which has been implicated as a transcription factor involved in the tumorigenesis of clear cell renal carcinoma. Stably transformed reporter clones of the human renal clear cell carcinoma cell line 786-O were generated by transfection or retroviral infection. Luciferase reporter expression in the vectors used was driven by either the natural human vascular endothelial growth factor (VEGF) promoter-enhancer or by the VEGF and the human endothelial nitric oxide synthase enhancers modulating minimal human cytomegalovirus promoter. Utility of the generated reporter cell lines was validated by introducing the von Hippel-Lindau protein complex and testing for reporter inducibility by hypoxia. The dynamic range in reporter activity under hypoxic stress was found to be at least 30- to 40-fold, with a signal-to-noise ratio of 60:1. Properties of the cell lines such as tolerance to up to 3% DMSO, signal stability with multiple in vitro passages, and utility in both 96- and 384-well plate formats indicated their suitability for use in a high-throughput screen. In addition, the potential use of these reporter lines in the evaluation of high-throughput screening hits in vivo in various mice models has been demonstrated.

  20. Robust Lentiviral Gene Delivery But Limited Transduction Capacity of Commonly Used Adeno-Associated Viral Serotypes in Xenotransplanted Human Skin.

    Science.gov (United States)

    Jakobsen, Maria; Askou, Anne Louise; Stenderup, Karin; Rosada, Cecilia; Dagnæs-Hansen, Frederik; Jensen, Thomas G; Corydon, Thomas J; Mikkelsen, Jacob Giehm; Aagaard, Lars

    2015-08-01

    Skin is an easily accessible organ, and therapeutic gene transfer to skin remains an attractive alternative for the treatment of skin diseases. Although we have previously documented potent lentiviral gene delivery to human skin, vectors based on adeno-associated virus (AAV) rank among the most promising gene delivery tools for in vivo purposes. Thus, we compared the potential usefulness of various serotypes of recombinant AAV vectors and lentiviral vectors for gene transfer to human skin in a xenotransplanted mouse model. Vector constructs encoding firefly luciferase were packaged in AAV capsids of serotype 1, 2, 5, 6, 8, and 9 and separately administered by intradermal injection in human skin transplants. For all serotypes, live bioimaging demonstrated low levels of transgene expression in the human skin graft, and firefly luciferase expression was observed primarily in neighboring tissue outside of the graft. In contrast, gene delivery by intradermally injected lentiviral vectors was efficient and led to extensive and persistent firefly luciferase expression within the human skin graft only. The study demonstrates the limited capacity of single-stranded AAV vectors of six commonly used serotypes for gene delivery to human skin in vivo.

  1. Ultrasound Backscatter Microscopy Image-Guided Intraventricular Gene Delivery at Murine Embryonic Age 9.5 and 10.5 Produces Distinct Transgene Expression Patterns at the Adult Stage

    Directory of Open Access Journals (Sweden)

    Jiwon Jang

    2013-11-01

    Full Text Available In utero injection of a retroviral vector into the embryonic telencephalon aided by ultrasound backscatter microscopy permits introduction of a gene of interest at an early stage of development. In this study, we compared the tissue distribution of gene expression in adult mice injected with retroviral vectors at different embryonic ages in utero. Following ultrasound image-guided gene delivery (UIGD into the embryonic telencephalon, adult mice were subjected to whole-body luciferase imaging and immunohistochemical analysis at 6 weeks and 1 year postinjection. Luciferase activity was observed in a wide range of tissues in animals injected at embryonic age 9.5 (E9.5, whereas animals injected at E10.5 showed brain-localized reporter gene expression. These results suggest that mouse embryonic brain creates a closed and impermeable structure around E10. Therefore, by injecting a transgene before or after E10, transgene expression can be manipulated to be local or systemic. Our results also provide information that widens the applicability of UIGD beyond neuroscience studies.

  2. Induction of human adiponectin gene transcription by telmisartan, angiotensin receptor blocker, independently on PPAR-γ activation

    International Nuclear Information System (INIS)

    Moriuchi, Akie; Yamasaki, Hironori; Shimamura, Mika; Kita, Atsushi; Kuwahara, Hironaga; Fujishima, Keiichiro; Satoh, Tsuyoshi; Fukushima, Keiko; Fukushima, Tetsuya; Hayakawa, Takao; Mizuguchi, Hiroyuki; Nagayama, Yuji; Abiru, Norio; Kawasaki, Eiji; Eguchi, Katsumi

    2007-01-01

    Adiponectin, an adipose tissue-specific plasma protein, has been shown to ameliorate insulin resistance and inhibit the process of atherosclerosis. Recently, several reports have stated that angiotensin type 1 receptor blockers (ARBs), increase adiponectin plasma level, and ameliorate insulin resistance. Telmisartan, a subclass of ARBs, has been shown to be a partial agonist of the peroxisome proliferator-activated receptor (PPAR)-γ, and to increase the plasma adiponectin level. However, the transcriptional regulation of the human adiponectin gene by telmisartan has not been determined yet. To elucidate the effect of telmisartan on adiponectin, the stimulatory regulation of human adiponectin gene by telmisartan was investigated in 3T3-L1 adipocytes, utilizing adenovirus-mediated luciferase reporter gene-transferring technique. This study indicates that telmisartan may stimulate adiponectin transcription independent of PPAR-γ

  3. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  4. Plasmodium falciparum transfected with ultra bright NanoLuc luciferase offers high sensitivity detection for the screening of growth and cellular trafficking inhibitors.

    Directory of Open Access Journals (Sweden)

    Mauro F Azevedo

    Full Text Available Drug discovery is a key part of malaria control and eradication strategies, and could benefit from sensitive and affordable assays to quantify parasite growth and to help identify the targets of potential anti-malarial compounds. Bioluminescence, achieved through expression of exogenous luciferases, is a powerful tool that has been applied in studies of several aspects of parasite biology and high throughput growth assays. We have expressed the new reporter NanoLuc (Nluc luciferase in Plasmodium falciparum and showed it is at least 100 times brighter than the commonly used firefly luciferase. Nluc brightness was explored as a means to achieve a growth assay with higher sensitivity and lower cost. In addition we attempted to develop other screening assays that may help interrogate libraries of inhibitory compounds for their mechanism of action. To this end parasites were engineered to express Nluc in the cytoplasm, the parasitophorous vacuole that surrounds the intraerythrocytic parasite or exported to the red blood cell cytosol. As proof-of-concept, these parasites were used to develop functional screening assays for quantifying the effects of Brefeldin A, an inhibitor of protein secretion, and Furosemide, an inhibitor of new permeation pathways used by parasites to acquire plasma nutrients.

  5. Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

    International Nuclear Information System (INIS)

    Erdmann, Kati; Kaulke, Knut; Thomae, Cathleen; Huebner, Doreen; Sergon, Mildred; Froehner, Michael; Wirth, Manfred P; Fuessel, Susanne

    2014-01-01

    Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction

  6. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene.

    Science.gov (United States)

    Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji

    2006-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.

  7. SIRT3 is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR-Positive Mammary Tumors Connecting Metabolism and Carcinogenesis Mitochondrial Tumor Suppressor. Revision

    Science.gov (United States)

    2013-11-01

    dependent gene expression, as shown by co-transfection assays using an HRE luciferase reporter (Fig. 4b, bar 1 vs. 2). In addition, exposure to NAC...transfected with p3x- HRE -luciferase with or without NAC or stigmatellin and 40 hours afterwards luciferase levels were determined. (c) MTCLT3

  8. HSI2/VAL1 PHD-like domain promotes H3K27 trimethylation to repress the expression of seed maturation genes and complex transgenes in Arabidopsis seedlings.

    Science.gov (United States)

    Veerappan, Vijaykumar; Chen, Naichong; Reichert, Angelika I; Allen, Randy D

    2014-11-01

    The novel mutant allele hsi2-4 was isolated in a genetic screen to identify Arabidopsis mutants with constitutively elevated expression of a glutathione S-transferase F8::luciferase (GSTF8::LUC) reporter gene in Arabidopsis. The hsi2-4 mutant harbors a point mutation that affects the plant homeodomain (PHD)-like domain in HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2 (HSI2)/VIVIPAROUS1/ABI3-LIKE1 (VAL1). In hsi2-4 seedlings, expression of this LUC transgene and certain endogenous seed-maturation genes is constitutively enhanced. The parental reporter line (WT LUC ) that was used for mutagenesis harbors two independent transgene loci, Kan R and Kan S . Both loci express luciferase whereas only the Kan R locus confers resistance to kanamycin. Here we show that both transgene loci harbor multiple tandem insertions at single sites. Luciferase expression from these sites is regulated by the HSI2 PHD-like domain, which is required for the deposition of repressive histone methylation marks (H3K27me3) at both Kan R and Kan S loci. Expression of LUC and Neomycin Phosphotransferase II transgenes is associated with dynamic changes in H3K27me3 levels, and the activation marks H3K4me3 and H3K36me3 but does not appear to involve repressive H3K9me2 marks, DNA methylation or histone deacetylation. However, hsi2-2 and hsi2-4 mutants are partially resistant to growth inhibition associated with exposure to the DNA methylation inhibitor 5-aza-2'-deoxycytidine. HSI2 is also required for the repression of a subset of regulatory and structural seed maturation genes in vegetative tissues and H3K27me3 marks associated with most of these genes are also HSI2-dependent. These data implicate HSI2 PHD-like domain in the regulation of gene expression involving histone modifications and DNA methylation-mediated epigenetic mechanisms.

  9. In vivo PET imaging with 18F-FHBG of hepatoma cancer gene therapy using herpes simplex virus thymidine kinase and ganciclovir

    International Nuclear Information System (INIS)

    Lee, TaeSup; Kim, JunYoup; Moon, ByungSeok; Kang, JooHyun; Song, Inho; Kwon, HeeChung; Kim, KyungMin; Cheon, GiJeong; Choi, ChangWoon; Lim, SangMoo

    2007-01-01

    Monitoring gene expression in vivo to evaluate the gene therapy efficacy is a critical issue for scientists and physicians. Non-invasive nuclear imaging can offer information regarding the level of gene expression and its location when an appropriate reporter gene is constructed in the therapeutic gene therapy. Herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is the most common reporter gene and is used in cancer gene therapy by activating relatively nontoxic compounds, such as acyclovir or ganciclovir (GCV), to induce cell death. In this study, we investigate the feasibility of monitoring cancer gene therapy using retroviral vector transduced HSV1-tk and GCV, in vitro cellular uptake and in vivo animal studies, including biodistribution and small animal positron emission tomography (PET) imaging, were performed in HSV1-tk and luciferase (Luc)-transduced MCA-TK/Luc and enhanced green fluorescent protein (eGFP)-transduced MCA-eGFP hepatoma cell lines

  10. Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances

    Science.gov (United States)

    Brennan, Jennifer; Tillitt, Donald E.

    2018-01-01

    There is a need to adapt cell bioassays to 384-well and 1536-well formats instead of the traditional 96-well format as high-throughput screening (HTS) demands increase. However, the sensitivity and performance of the bioassay must be re-verified in these higher micro-well plates, and verification of cell health must also be HT (high-throughput). We have adapted two commonly used human breast luciferase transactivation cell bioassays, the recently re-named estrogen agonist/antagonist screening VM7Luc4E2 cell bioassay (previously designated BG1Luc4E2) and the androgen/glucocorticoid screening MDA-kb2 cell bioassay, to 384-well formats for HTS of endocrine-active substances (EASs). This cost-saving adaptation includes a fast, accurate, and easy measurement of protein amount in each well via the fluorescamine assay with which to normalize luciferase activity of cell lysates without requiring any transfer of the cell lysates. Here we demonstrate that by accounting for protein amount in the cell lysates, antagonistic agents can easily be distinguished from cytotoxic agents in the MDA-kb2 and VM7Luc4E2 cell bioassays. Additionally, we demonstrate via the fluorescamine assay improved interpretation of luciferase activity in wells along the edge of the plate (the so-called “edge effect”), thereby increasing usable wells to the entire plate, not just interior wells.

  11. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    Directory of Open Access Journals (Sweden)

    Xinxia Zhao

    2016-03-01

    Full Text Available Myostatin (MSTN is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs in tandem with single-stranded DNA oligonucleotides (ssODNs. We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  12. P53 Mutation Analysis to Predict Tumor Response in Patients Undergoing Neoadjuvant Treatment for Locally Advanced Breast Cancer

    Science.gov (United States)

    2006-10-01

    then sequenced (for GeneChip- positiv SSCP (for GeneChip-negative). We have received a total of 43 core breast biopsy DNA samples from the UNC... quantitative luciferase reporter. Both reporters exploit a “rheostatable” promoter for p53 expression and utilize the “delitto perfetto” in vivo... quantitative luciferase-based assay is also being used to characterize the altered function sistent an tion T mutants in greater detail. Preliminary

  13. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  14. SIRT3 is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR-Positive Mammary Tumors Connecting Metabolism and Carcinogenesis SIRT3 is a Mitochondrial Tumor Suppressor

    Science.gov (United States)

    2012-09-01

    well as HIF-1α dependent gene expression, as shown by co-transfection assays using an HRE luciferase reporter (Fig. 4b, bar 1 vs. 2). In addition...MEFs were co-transfected with p3x- HRE -luciferase with or without NAC or stigmatellin and 40 hours afterwards luciferase levels were determined. (c

  15. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells.

    Science.gov (United States)

    Zhang, Zhong-Lin; Shin, Margaret; Zou, Xiaolu; Huang, Jianzhi; Ho, Tun-hua David; Shen, Qingxi J

    2009-05-01

    Abscisic acid (ABA) and gibberellins (GAs) control several developmental processes including seed maturation, dormancy, and germination. The antagonism of these two hormones is well-documented. However, recent data from transcription profiling studies indicate that they can function as agonists in regulating the expression of many genes although the underlying mechanism is unclear. Here we report a rice WRKY gene, OsWRKY24, which encodes a protein that functions as a negative regulator of both GA and ABA signaling. Overexpression of OsWRKY24 via particle bombardment-mediated transient expression in aleurone cells represses the expression of two reporter constructs: the beta-glucuronidase gene driven by the GA-inducible Amy32b alpha-amylase promoter (Amy32b-GUS) and the ABA-inducible HVA22 promoter (HVA22-GUS). OsWRKY24 is unlikely a general repressor because it has little effect on the expression of the luciferase reporter gene driven by a constitutive ubiquitin promoter (UBI-Luciferase). As to the GA signaling, OsWRKY24 differs from OsWRKY51 and -71, two negative regulators specifically function in the GA signaling pathway, in several ways. First, OsWRKY24 contains two WRKY domains while OsWRKY51 and -71 have only one; both WRKY domains are essential for the full repressing activity of OsWRKY24. Second, binding of OsWRKY24 to the Amy32b promoter appears to involve sequences in addition to the TGAC cores of the W-boxes. Third, unlike OsWRKY71, OsWRKY24 is stable upon GA treatment. Together, these data demonstrate that OsWRKY24 is a novel type of transcriptional repressor that inhibits both GA and ABA signaling.

  16. SIRT3 is a Mitochondrial Tumor Suppressor and Genetic Loss Results in a Murine Model for ER/PR Positive Mammary Tumors Connecting Metabolism and Carcinogenesis

    Science.gov (United States)

    2011-09-01

    as well as HIF-1 dependent gene expression, as shown by co-transfection assays using an HRE luciferase reporter (Fig. 4b, bar 1 vs. 2). In...antibody. (b) MEFs were co-transfected with p3x- HRE -luciferase with or without NAC or stigmatellin and 40 hours afterwards luciferase levels were

  17. Steady-state fluorescence and phosphorescence spectroscopic studies of bacterial luciferase tryptophan mutants.

    Science.gov (United States)

    Li, Z; Meighen, E A

    1994-09-01

    Bacterial luciferase, which catalyzes the bioluminescence reaction in luminous bacteria, consists of two nonidentical polypeptides, α and β. Eight mutants of luciferase with each of the tryptophans replaced by tyrosine were generated by site-directed mutagenesis and purified to homogeneity. The steady-state tryptophan fluorescence and low-temperature phosphorescence spectroscopic properties of these mutants were characterized. In some instances, mutation of only a single tryptophan residue resulted in large spectral changes. The tryptophan residues conserved in both the α and the β subunits exhibited distinct fluorescence emission properties, suggesting that these tryptophans have different local enviroments. The low-temperature phosphorescence data suggest that the tryptophans conserved in bot the α and the β subunits are not located at the subunit interface and/or involved in subunit interactions. The differences in the spectral properties of the mutants have provided useful information on the local environment of the individual tryptophan residues as well as on the quaternary structure of the protein.

  18. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  19. Human reporter genes: potential use in clinical studies

    International Nuclear Information System (INIS)

    Serganova, Inna; Ponomarev, Vladimir; Blasberg, Ronald

    2007-01-01

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  20. Liver lipid molecules induce PEPCK-C gene transcription and attenuate insulin action

    International Nuclear Information System (INIS)

    Chen Guoxun

    2007-01-01

    Cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) plays key roles in gluconeogenesis, glyceroneogenesis, and cataplerosis. Experiments were designed to examine the effects of endogenous lipid molecules from rat livers on the expression of PEPCK-C gene in primary rat hepatocytes. The lipid extracts prepared from livers of Zucker fatty, lean, and Wistar rats induced the expression levels of PEPCK-C transcripts. Insulin-mediated reduction of PEPCK-C gene expression was attenuated by the same treatment. The lipid extracts induced the relative luciferase activity of reporter gene constructs that contain a 2.2-kb 5' promoter fragment of PEPCK-C gene, but not the construct that contains only the 3' untranslated region (UTR) of its mRNA. The estimated half life of PEPCK-C transcripts in the presence of the lipid extract is the same as that in the absence of it. My results demonstrate for the first time that endogenous lipid molecules induce PEPCK-C gene transcription and attenuate insulin action in liver

  1. In vitro gene imaging by luciferase to detect the expression and effect of human tumor necrosis factor related apoptosis-inducing ligand in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Zhao Na; Cui Jianling; Guo Zhiyuan; Guo Zhiping; Sun Yingcai; Liu Jicun

    2009-01-01

    Objective: To detect the expression and effect of human tumor necrosis factor related apoptosis-inducing ligand(hTRAIL) in vitro by using a novel double expressing adenoviral vector encoding hTRAIL and firefly luciferase (luc) gene (Ad-hTRAIL-luc), in which luc was used as reporter gene. Methods: A549 cells were transduced with the adenoviral vector encoding enhanced green fluorescent protein (EGFP) gene (Ad-EGFP) at variable multiplicity of infection (MOI). Adenoviral transduction efficiency was determined 48 h later. A549 cells were transduced with Ad-hTRAIL-luc at variable MOI, and the following tests were performed 48h later, respectively: the expressive ratio of hTRAIL and the apoptotic ratio of A549 cells were measured by flow cytometer; counts per minute (cpm) of luminescence were measured by scintillation counters. A549 cells were transduced with Ad-luc at variable MOI, and cpm of luminescence was measured by scintillation counters 48 h later. After A549 cells were transduced with Ad-hTRAIL-luc, the expressive ratio of hTRAIL, the apoptotic ratio of A549 cells and cpm of luminescence were analyzed by one-way ANOVA. The positive ratio of EGFP and cpm of luminescence (Ad-luc) were analyzed by nonparametric ANOVA. Results: After A549 cells were transfected with Ad-hTRAIL-luc, the expressive ratio of hTRAIL on the cell membrane of the groups were (2.37±0.04)%, (3.16±0.03)%, (3.64± 0.03)%, (3.96±0.02)%, (4.24±0.02)%, (4.34±0.02)% respectively, which showed significant difference between each other (P<0.01); and the apoptotic ratio of A549 cells were (1.52±0.04)%, (2.93±0.02)%, (3.39±0.02)%, (3.64±0.02)%, (3.86±0.02)%, (4.08±0.02)%, (4.20± 0.02)%, respectively, and it showed significant difference between each other (P<0.01); cpm of luminescence were 465 561 ± 26 801, 1 038 576 ± 29 417, 937 655 ± 23 197, 786 432 ± 20 028, 524 288 ± 16 338, 401 566 ± 15 961, respectively, and it also showed significant difference between each other (P<0

  2. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  3. Exogenous reference gene normalization for real-time reverse transcription-polymerase chain reaction analysis under dynamic endogenous transcription.

    Science.gov (United States)

    Johnston, Stephen; Gallaher, Zachary; Czaja, Krzysztof

    2012-05-15

    Quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is widely used to investigate transcriptional changes following experimental manipulations to the nervous system. Despite the widespread utilization of qPCR, the interpretation of results is marred by the lack of a suitable reference gene due to the dynamic nature of endogenous transcription. To address this inherent deficiency, we investigated the use of an exogenous spike-in mRNA, luciferase, as an internal reference gene for the 2(-∆∆Ct) normalization method. To induce dynamic transcription, we systemically administered capsaicin, a neurotoxin selective for C-type sensory neurons expressing the TRPV-1 receptor, to adult male Sprague-Dawley rats. We later isolated nodose ganglia for qPCR analysis with the reference being either exogenous luciferase mRNA or the commonly used endogenous reference β-III tubulin. The exogenous luciferase mRNA reference clearly demonstrated the dynamic expression of the endogenous reference. Furthermore, variability of the endogenous reference would lead to misinterpretation of other genes of interest. In conclusion, traditional reference genes are often unstable under physiologically normal situations, and certainly unstable following the damage to the nervous system. The use of exogenous spike-in reference provides a consistent and easily implemented alternative for the analysis of qPCR data.

  4. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals.

    Science.gov (United States)

    Gabriel, Gabriele V M; Viviani, Vadim R

    2016-12-01

    Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.

  5. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  6. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  7. Thrombin-induced, TNFR-dependent miR-181c downregulation promotes MLL1 and NF-κB target gene expression in human microglia.

    Science.gov (United States)

    Yin, Min; Chen, Zhiying; Ouyang, Yetong; Zhang, Huiyan; Wan, Zhigang; Wang, Han; Wu, Wei; Yin, Xiaoping

    2017-06-29

    Controlling thrombin-driven microglial activation may serve as a therapeutic target for intracerebral hemorrhage (ICH). Here, we investigated microRNA (miRNA)-based regulation of thrombin-driven microglial activation using an in vitro thrombin toxicity model applied to primary human microglia. A miRNA array identified 22 differential miRNA candidates. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) identified miR-181c as the most significantly downregulated miRNA. TargetScan analysis identified mixed lineage leukemia-1 (MLL1) as a putative gene target for miR-181c. qRT-PCR was applied to assess tumor necrosis factor-alpha (TNF-α), miR-181c, and MLL1 levels following thrombin or proteinase-activated receptor-4-specific activating peptide (PAR4AP) exposure. Anti-TNF-α antibodies and tumor necrosis factor receptor (TNFR) silencing were employed to test TNF-α/TNFR dependence. A dual-luciferase reporter system and miR-181c mimic transfection assessed whether mir-181c directly binds to and negatively regulates MLL1. Nuclear factor kappa-B (NF-κB)-dependent luciferase reporter assays and NF-κB target gene expression were assessed in wild-type (MLL1+) and MLL1-silenced cells. Thrombin or PAR4AP-induced miR-181c downregulation (p < 0.05) and MLL1 upregulation (p < 0.05) that were dependent upon TNF-α/TNFR. miR-181c decreased wild-type MLL1 3'-UTR luciferase reporter activity (p < 0.05), and a miR-181c mimic suppressed MLL1 expression (p < 0.05). Thrombin treatment increased, while miR-181c reduced, NF-κB activity and NF-κB target gene expression in both wild-type (MLL1+) and MLL1-silenced cells (p < 0.05). Thrombin-induced, TNF-α/TNFR-dependent miR-181c downregulation promotes MLL1 expression, increases NF-κB activity, and upregulates NF-κB target gene expression. As miR-181c opposes thrombin's stimulation of pro-inflammatory NF-κB activity, miR-181c mimic therapy may show promise in controlling thrombin

  8. Assays for noninvasive imaging of reporter gene expression

    International Nuclear Information System (INIS)

    Gambhir, S.S.; Barrio, J.R.; Herschman, H.R.; Phelps, M.E.

    1999-01-01

    Repeated, noninvasive imaging of reporter gene expression is emerging as a valuable tool for monitoring the expression of genes in animals and humans. Monitoring of organ/cell transplantation in living animals and humans, and the assessment of environmental, behavioral, and pharmacologic modulation of gene expression in transgenic animals should soon be possible. The earliest clinical application is likely to be monitoring human gene therapy in tumors transduced with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) suicide gene. Several candidate assays for imaging reporter gene expression have been studied, utilizing cytosine deaminase (CD), HSV1-tk, and dopamine 2 receptor (D2R) as reporter genes. For the HSV1-tk reporter gene, both uracil nucleoside derivatives (e.g., 5-iodo-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil [FIAU] labeled with 124 I, 131 I ) and acycloguanosine derivatives {e.g., 8-[ 18 F]fluoro-9-[[2-hydroxy-1-(hydroxymethyl)ethoxy]methyl]guanine (8-[ 18 F]-fluoroganciclovir) ([ 18 F]FGCV), 9-[(3-[ 18 F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([ 18 F]FHPG)} have been investigated as reporter probes. For the D2R reporter gene, a derivative of spiperone {3-(2'-[ 18 F]-Fluoroethyl)spiperone ([ 18 F]FESP)} has been used with positron emission tomography (PET) imaging. In this review, the principles and specific assays for imaging reporter gene expression are presented and discussed. Specific examples utilizing adenoviral-mediated delivery of a reporter gene as well as tumors expressing reporter genes are discussed

  9. Indirect imaging of cardiac-specific transgene expression using a bidirectional two-step transcriptional amplification strategy

    DEFF Research Database (Denmark)

    Chen, I Y; Gheysens, O; Ray, S

    2010-01-01

    in a cardiac cell line and the myocardium, while minimizing expression in non-cardiac cell lines and the liver. In vitro, the TSTA system significantly enhanced cTnT-mediated reporter gene expression with moderate preservation of cardiac specificity. After intramyocardial and hydrodynamic tail vein delivery...... genes, firefly luciferase (fluc) and Renilla luciferase (hrluc), driven by the cardiac troponin T (cTnT) promoter. The vector was characterized in vitro and in living mice using luminometry and bioluminescence imaging to assess its ability to mediate strong, correlated reporter gene expression...

  10. Development of a Positive-readout Mouse Model of siRNA Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Mark Stevenson

    2013-01-01

    Full Text Available Development of RNAi-based therapeutics has the potential to revolutionize treatment options for a range of human diseases. However, as with gene therapy, a major barrier to progress is the lack of methods to achieve and measure efficient delivery for systemic administration. We have developed a positive-readout pharmacodynamic transgenic reporter mouse model allowing noninvasive real-time assessment of siRNA activity. The model combines a luciferase reporter gene under the control of regulatory elements from the lac operon of Escherichia coli. Introduction of siRNA targeting lac repressor results in increased luciferase expression in cells where siRNA is biologically active. Five founder luciferase-expressing and three founder Lac-expressing lines were generated and characterized. Mating of ubiquitously expressing luciferase and lac lines generated progeny in which luciferase expression was significantly reduced compared with the parental line. Administration of isopropyl β-D-1-thiogalactopyranoside either in drinking water or given intraperitoneally increased luciferase expression in eight of the mice examined, which fell rapidly when withdrawn. Intraperitoneal administration of siRNA targeting lac in combination with Lipofectamine 2000 resulted in increased luciferase expression in the liver while control nontargeting siRNA had no effect. We believe a sensitive positive readout pharmacodynamics reporter model will be of use to the research community in RNAi-based vector development.

  11. Advances in study of molecular imaging reporte gene systems

    International Nuclear Information System (INIS)

    Wu Tao; An Rui

    2010-01-01

    The use of molecular imaging reporter gene systems has allowed gene therapy to move from the laboratory to the clinical application, which provides methodology to monitor the expression of therapeutic gene noninvasively and achieve quantitative outcome in vivo. Recently, the radionuclide reporter gene still is the focus many studies, but MRI and optical reporter gene have gradually played a important part in reporter gene systems. On the basis of combination of multi-subject, for example applied chemistry and molecular biology, more and more new modified reporter genes and molecular probes have spread out. This paper mainly introduces the advantages and disadvantages of reporter gene system and development trends. (authors)

  12. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro

    International Nuclear Information System (INIS)

    Emter, Roger; Ellis, Graham; Natsch, Andreas

    2010-01-01

    In vitro tests are needed to replace animal tests to screen for the skin sensitization potential of chemicals. Skin sensitizers are electrophilic molecules and the Nrf2-electrophile-sensing pathway comprising the repressor protein Keap1, the transcription factor Nrf2 and the antioxidant response element (ARE) is emerging as a toxicity pathway induced by skin sensitizers. Previously, we screened a large set of chemicals in the reporter cell line AREc32, which contains an eight-fold repeat of the rat GSTA2 ARE-sequence upstream of a luciferase reporter gene in the human breast cancer cell line MCF7. This approach was now further developed to bring it closer to the conditions in the human skin and to propose a fully standardized assay. To this end, a luciferase reporter gene under control of a single copy of the ARE-element of the human AKR1C2 gene was stably inserted into HaCaT keratinocytes. A standard operating procedure was developed whereby chemicals are routinely tested at 12 concentrations in triplicate for significant induction of gene activity. We report results from this novel assay on (i) a list of reference chemicals published by ECVAM, (ii) the ICCVAM list of chemicals for validation of alternative endpoints in the LLNA and (iii) on a more general list of 67 chemicals derived from the ICCVAM database. For comparison, peptide reactivity data are presented for the same chemicals. The results indicate a good predictive value of this approach for hazard identification. Its technical simplicity, the high-throughput format and the good predictivity may make this assay a candidate for rapid validation to meet the tight deadline to replace animal tests for skin sensitization by 2013 set by the European authorities.

  13. Dioxin-like activity of brominated dioxins as individual compounds or mixtures in in vitro reporter gene assays with rat and mouse hepatoma cell lines.

    Science.gov (United States)

    Suzuki, G; Nakamura, M; Michinaka, C; Tue, N M; Handa, H; Takigami, H

    2017-10-01

    In vitro reporter gene assays detecting dioxin-like compounds have been developed and validated since the middle 1990's, and applied to the determination of dioxin-like activities in various samples for their risk management. Data on characterizing the potency of individual brominated dioxins and their activity in mixture with chlorinated dioxins are still limited on the cell-based assay. This study characterized the dioxin-like activities of the 32 brominated dioxins, such as polybrominated dibenzo-p-dioxins, polybrominated dibenzofurans (PBDFs), coplanar polybrominated biphenyls, mixed halogenated dibenzo-p-dioxins and dibenzofurans (PXDFs), as a sole component or in a mixture by DR-CALUX (dioxin-responsive chemically activated luciferase expression) using the rat hepatoma H4IIE cell line and XDS-CALUX (xenobiotic detection systems-chemically activated luciferase expression) assays using the mouse hepatoma H1L6.1 cell line. The 2,3,7,8-TCDD-relative potencies (REPs) of most of the brominated dioxins were within a factor of 10 of the WHO toxicity equivalency factor (WHO-TEF) for the chlorinated analogues. The REPs of a few PXDFs were an order of magnitude higher than the corresponding WHO-TEFs, indicating their toxicological importance. Results with reconstituted mixtures suggest that the activity of brominated and chlorinated dioxins in both CALUX assays was dose-additive. Thus, obtained results indicated the applicability of the CALUX assays as screening tools of brominated dioxins together with their chlorinated analogues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Reporter gene imaging: potential impact on therapy

    International Nuclear Information System (INIS)

    Serganova, Inna; Blasberg, Ronald

    2005-01-01

    Positron emission tomography (PET)-based molecular-genetic imaging in living organisms has enjoyed exceptional growth over the past 5 years; this is particularly striking since it has been identified as a new discipline only within the past decade. Positron emission tomography is one of three imaging technologies (nuclear, magnetic resonance and optical) that has begun to incorporate methods that are established in molecular and cell biology research. The convergence of these disciplines and the wider application of multi-modality imaging are at the heart of this success story. Most current molecular-genetic imaging strategies are 'indirect,' coupling a 'reporter gene' with a complimentary 'reporter probe.' Reporter gene constructs can be driven by constitutive promoter elements and used to monitor gene therapy vectors and the efficacy of trans gene targeting and transduction, as well as to monitor adoptive cell-based therapies. Inducible promoters can be used as 'sensors' to regulate the magnitude of reporter gene expression and can be used to provide information about endogenous cell processes. Reporter systems can also be constructed to monitor mRNA stabilization and specific protein-protein interactions. Promoters can be cell specific and restrict transgene expression to certain tissue and organs. The translation of reporter gene imaging to specific clinical applications is discussed. Several examples that have potential for patient imaging studies in the near future include monitoring adenoviral-based gene therapy, oncolytic herpes virus therapy, adoptive cell-based therapies and Salmonella-based tumor-targeted cancer therapy and imaging. The primary translational applications of noninvasive in vivo reporter gene imaging are likely to be (a) quantitative monitoring of the gene therapy vector and the efficacy of transduction in clinical protocols, by imaging the location, extent and duration of transgene expression; (b) monitoring cell trafficking, targeting

  15. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor.

    Science.gov (United States)

    Nuñez, S B; Medin, J A; Braissant, O; Kemp, L; Wahli, W; Ozato, K; Segars, J H

    1997-03-14

    Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.

  16. Spatial Distribution of Transgenic Protein After Gene Electrotransfer to Porcine Muscle

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Corydon, Thomas; Hojman, Pernille

    2012-01-01

    Abstract Gene electrotransfer is an effective nonviral technique for delivery of plasmid DNA into tissues. From a clinical perspective, muscle is an attractive target tissue as long-term, high-level transgenic expression can be achieved. Spatial distribution of the transgenic protein following gene...... electrotransfer to muscle in a large animal model has not yet been investigated. In this study, 17 different doses of plasmid DNA (1-1500 μg firefly luciferase pCMV-Luc) were delivered in vivo to porcine gluteal muscle using electroporation. Forty-eight hours post treatment several biopsies were obtained from...... each transfection site in order to examine the spatial distribution of the transgenic product. We found a significantly higher luciferase activity in biopsies from the center of the transfection site compared to biopsies taken adjacent to the center, 1 and 2 cm along muscle fiber orientation (p...

  17. Design of PEI-conjugated bio-reducible polymer for efficient gene delivery.

    Science.gov (United States)

    Nam, Joung-Pyo; Kim, Soyoung; Kim, Sung Wan

    2018-07-10

    The poly(cystaminebis(acrylamide)-diaminohexane) (poly(CBA-DAH)) was designed previously as a bio-reducible efficient gene delivery carrier. However, the high weight ratio required to form the polyplexes between poly(CBA-DAH) with pDNA is still a problem that needs to be addressed. To solve this problem and increase the transfection efficiency, poly(ethylenimine) (PEI, 1.8 kDa) was conjugated to poly(CBA-DAH) via disulfide bond. The PEI conjugated poly(CBA-DAH) (PCDP) can bind with pDNA at a very low weight ratio of 0.5 and above, like PEI 25 kDa, and form the polyplexes with nano-size (102-128 nm) and positive surface charge (27-34 mV). PCDP and PCDP polyplexes had negligible cytotoxicity and indicated similar or better cellular uptake than the comparison groups such as PEI 25 kDa and Lipofectamine® polyplexes. To confirm the transfection efficiency, the plasmid DNA (pDNA) encoded with the luciferase reporter gene (gWiz-Luc) and green fluorescent protein reporter gene (GFP) were used and treated with PCDP into the A549, Huh-7, and Mia PaCa-2 cells. PCDP/pDNA polyplexes showed highest transfection efficiency in all tested cell lines. In the luciferase assay, PCDP polyplexes showed 10.2 times higher gene transfection efficiency than Lipofectamine® polyplexes in mimic in vivo conditions (30% FBS, A549 cells). The VEGF siRNA expressing plasmid (pshVEGF), which is constructed as a therapeutic gene by our previous work, was delivered by PCDP into the cancer cells. The VEGF gene expression of PCDP/pshVEGF polyplexes was dramatically lower than control and the VEGF gene silencing efficiencies of PCDP/pshVEGF (w/w; 10/1) polyplexes were 54% (A549 cells), 77% (Huh-7 cells), and 66% (Mia PaCa-2 cells). In addition, PCDP/pshVEGF had reduced cell viability rates of about 31% (A549 cells), 39% (Huh-7 cells), and 42% (Mia PaCa-2 cells) and showed better results than all comparison groups. In the transfection efficiency and VEGF silencing assay, PCDP polyplexes showed

  18. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element.

    OpenAIRE

    Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R

    1994-01-01

    We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E...

  19. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    Science.gov (United States)

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar

  20. Establishment of a luciferase assay-based screening system: Fumitremorgin C selectively inhibits cellular proliferation of immortalized astrocytes expressing an active form of AKT

    International Nuclear Information System (INIS)

    Wang Lei; Sasai, Ken; Akagi, Tsuyoshi; Tanaka, Shinya

    2008-01-01

    The AKT pathway is frequently activated in glioblastoma, and as such, inhibitors of this pathway could prove very useful as anti-glioblastoma therapies. Here we established immortalized astrocytes expressing Renilla luciferase as well as those expressing both an active form of AKT and firefly luciferase. Since both luciferase activities represent the numbers of corresponding cell lines, novel inhibitors of the AKT pathway can be identified by treating co-cultures containing the two types of luciferase-expressing cells with individual compounds. Indeed, such a screening system succeeded in identifying fumitremorgin C as an efficient inhibitor of the AKT pathway, which was further confirmed by the ability of fumitremorgin C to selectively inhibit the growth of immortalized astrocytes expressing an active form of AKT. The present study proposes a broadly applicable approach for identifying therapeutic agents that target the pathways and/or molecules responsible for cancer development

  1. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    Science.gov (United States)

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer

    International Nuclear Information System (INIS)

    Desjardins, Sylvie; Beauparlant, Joly Charles; Labrie, Yvan; Ouellette, Geneviève; INHERIT BRCAs; Durocher, Francine

    2009-01-01

    The Nijmegen Breakage Syndrome is a chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency, and increased frequency of cancers. Familial studies on relatives of these patients indicated that they also appear to be at increased risk of cancer. In a candidate gene study aiming at identifying genetic determinants of breast cancer susceptibility, we undertook the full sequencing of the NBN gene in our cohort of 97 high-risk non-BRCA1 and -BRCA2 breast cancer families, along with 74 healthy unrelated controls, also from the French Canadian population. In silico programs (ESEfinder, NNSplice, Splice Site Finder and MatInspector) were used to assess the putative impact of the variants identified. The effect of the promoter variant was further studied by luciferase gene reporter assay in MCF-7, HEK293, HeLa and LNCaP cell lines. Twenty-four variants were identified in our case series and their frequency was further evaluated in healthy controls. The potentially deleterious p.Ile171Val variant was observed in one case only. The p.Arg215Trp variant, suggested to impair NBN binding to histone γ-H2AX, was observed in one breast cancer case and one healthy control. A promoter variant c.-242-110delAGTA displayed a significant variation in frequency between both sample sets. Luciferase reporter gene assay of the promoter construct bearing this variant did not suggest a variation of expression in the MCF-7 breast cancer cell line, but indicated a reduction of luciferase expression in both the HEK293 and LNCaP cell lines. Our analysis of NBN sequence variations indicated that potential NBN alterations are present, albeit at a low frequency, in our cohort of high-risk breast cancer cases. Further analyses will be needed to fully ascertain the exact impact of those variants on breast cancer susceptibility, in particular for variants located in NBN promoter region

  3. Screening of molecular cell targets for carcinogenic heterocyclic aromatic amines by using CALUX® reporter gene assays.

    Science.gov (United States)

    Steinberg, Pablo; Behnisch, Peter A; Besselink, Harrie; Brouwer, Abraham A

    2017-06-01

    Heterocyclic aromatic amines (HCAs) are compounds formed when meat or fish are cooked at high temperatures for a long time or over an open fire. To determine which pathways of toxicity are activated by HCAs, nine out of the ten HCAs known to be carcinogenic in rodents (2-amino-9H-pyrido[2,3-b]indole (AαC), 2-aminodipyrido[1,2-a:3',2-d]imidazole (Glu-P-2), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2)) were tested in the estrogen receptor α (ERα), androgen receptor (AR), glucocorticoid receptor (GR), peroxisome proliferator-activated receptor γ2 (PPARγ2), polycyclic aromatic hydrocarbons (PAH), Nrf2, and p53 CALUX® reporter gene assays. Trp-P-1 was the only HCA that led to a positive response in the ERα, PPARγ2, and Nrf2 CALUX® assays. In the PAH CALUX® assay, Trp-P-2, MeAαC, and AαC induced luciferase activity to a greater extent than MeIQ and PhIP. In the p53 CALUX® assay without a coupled metabolic activation, only Trp-P-1 and Trp-P-2 enhanced luciferase expression; when a metabolic activation step was coupled to the p53 CALUX® assay, Trp-P-1, Glu-P-2, MeIQ, MeIQx, and PhIP induced a positive response. No HCA was positive in the AR and GR CALUX® assays. Taken together, the results obtained show that the battery of CALUX® assays performed in the present study can successfully be used to screen for molecular cell targets of carcinogenic compounds such as HCAs.

  4. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element.

    Science.gov (United States)

    Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R

    1994-10-01

    We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E-box (CACGTG) sequences. Gel shift-oligonucleotide competition experiments with nuclear extracts from cells stably transfected with a temperature-sensitive v-src gene demonstrate that the CGTCACGTG sequence can bind proteins at both the ATF/CRE and E-box sequences. Dominant-negative CREB and Myc proteins that bind DNA, but do not transactivate, block v-src induction of a luciferase reporter driven by the first 80 nucleotides of the TIS10/PGS2 promoter. Mutational analysis distinguishes which TIS10/PGS2 cis-acting element mediates pp60v-src induction. E-box mutation has no effect on the fold induction in response to pp60v-src. In contrast, ATF/CRE mutation attenuates the pp60v-src response. Antibody supershift and methylation interference experiments demonstrate that CREB and at least one other ATF transcription factor in these extracts bind to the TIS10/PGS2 ATF/CRE element. Expression of a dominant-negative ras gene also blocks TIS10/PGS2 induction by v-src. Our data suggest that Ras mediates pp60v-src activation of an ATF transcription factor, leading to induced TIS10/PGS2 expression via the ATF/CRE element of the TIS10/PGS2 promoter. This is the first description of v-src activation of gene expression via an ATF/CRE element.

  5. Investigation progress of PET reporter gene imaging

    International Nuclear Information System (INIS)

    Chen Yumei; Huang Gang

    2006-01-01

    Molecular imaging for gene therapy and gene expression has been more and more attractive, while the use of gene therapy has been widely investigated and intense research have allowed it to the clinical setting in the last two-decade years. In vivo imaging with positron emission tomography (PET) by combination of appropriate PET reporter gene and PET reporter probe could provide qualitative and quantitative information for gene therapy. PET imaging could also obtain some valuable parameters not available by other techniques. This technology is useful to understand the process and development of gene therapy and how to apply it into clinical practice in the future. (authors)

  6. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.

    Science.gov (United States)

    Campbell, Zachary T; Weichsel, Andrzej; Montfort, William R; Baldwin, Thomas O

    2009-07-07

    Bacterial luciferase from Vibrio harveyi is a heterodimer composed of a catalytic alpha subunit and a homologous but noncatalytic beta subunit. Despite decades of enzymological investigation, structural evidence defining the active center has been elusive. We report here the crystal structure of V. harveyi luciferase bound to flavin mononucleotide (FMN) at 2.3 A. The isoalloxazine ring is coordinated by an unusual cis-Ala-Ala peptide bond. The reactive sulfhydryl group of Cys106 projects toward position C-4a, the site of flavin oxygenation. This structure also provides the first data specifying the conformations of a mobile loop that is crystallographically disordered in both prior crystal structures [(1995) Biochemistry 34, 6581-6586; (1996) J. Biol. Chem. 271, 21956 21968]. This loop appears to be a boundary between solvent and the active center. Within this portion of the protein, a single contact was observed between Phe272 of the alpha subunit, not seen in the previous structures, and Tyr151 of the beta subunit. Substitutions at position 151 on the beta subunit caused reductions in activity and total quantum yield. Several of these mutants were found to have decreased affinity for reduced flavin mononucleotide (FMNH(2)). These findings partially address the long-standing question of how the beta subunit stabilizes the active conformation of the alpha subunit, thereby participating in the catalytic mechanism.

  7. Polymorphisms in CISH gene are associated with persistent hepatitis B virus infection in Han Chinese population.

    Science.gov (United States)

    Hu, Zhangyong; Yang, Jinliang; Wu, Yangping; Xiong, Guolian; Wang, Yali; Yang, Jun; Deng, Lan

    2014-01-01

    Cytokine-inducible SRC homology 2 domain protein (CISH) is the first member of the suppressors of cytokine signaling (SOCS) protein family. An association between multiple CISH polymorphisms and susceptibility to infectious diseases has been reported. This study aimed to investigate the possible association of these single nucleotide polymorphisms (SNPs) in CISH gene with different outcomes of Hepatitis B virus (HBV) infection. 1019 unrelated Chinese Han subjects, including 240 persistent asymptomatic HBV carriers, 217 chronic hepatitis B patients, 137 HBV-related liver cirrhosis patients, and 425 cases of spontaneously recovered HBV as controls, were studied. Four SNPs (rs622502, rs2239751, rs414171 and rs6768300) in CISH gene were genotyped with the snapshot technique. Transcriptional activity of the CISH promoter was assayed in vitro using the dual-luciferase reporter assay system. At position rs414171, A allele and AA genotype frequencies were significantly higher in the HBV-resolved group as compared to the persistent HBV infection group. At position rs2239751, TT genotype was further observed in the HBV-resolved group. Using asymptomatic HBV carriers as controls, our results indicated that the rs414171 and rs2239751 polymorphisms were unrelated to HBV progression. The other two SNPs (rs622502 and rs6768300) showed no association with persistent HBV infection. Haplotype analysis revealed that the GGCA haplotype was associated with spontaneous clearance of HBV in this population. Moreover, luciferase activity was significantly higher in the PGL3-Basic-rs414171T construct as compared to the PGL3-Basic-rs414171A construct (pCISH gene were associated with persistent HBV infection in Han Chinese population, but not with HBV progression.

  8. Efficient gene transfer into silkworm larval tissues by a combination of sonoporation and lipofection.

    Science.gov (United States)

    Lee, Jae Man; Takahashi, Masateru; Mon, Hiroaki; Koga, Katsumi; Kawaguchi, Yutaka; Kusakabe, Takahiro

    2005-11-01

    Sonoporation (ultrasound treatment) provides a new and attractive nonviral way of in vivo gene transfer. To access the applicability of this method to the silkworm, Bombyx mori, we have compared the efficiencies of gene transfer by means of lipofection (using an appropriate agent, PDD111), sonoporation (ditto, FluoroGene), and lipofection followed by sonoporation. By these methods, a luciferase expression plasmid was found to be markedly transferred into the haemocoel of newly ecdysed fifth instar silkworm larvae, and also into other tissues although with lower rates compared with the haemocoel. In terms of luciferase activity, the efficiencies of transgene by lipofection plus sonoporation were approximately 6 (hemocytes), 20 (silk glands), 8 (mid-gut), 38 (fat body), 10 (Malpighian tubules), 33 (ovaries), and 16 (testes) times as high as those by lipofection or sonoporation alone. These results demonstrated that the present method is useful to introduce the exogenous DNA into insect organs in vivo.

  9. Determination of relative assay response factors for toxic chlorinated and brominated dioxins/furans using an enzyme immunoassay (EIA) and a chemically-activated luciferase gene expression cell bioassay (CALUX).

    Science.gov (United States)

    Samara, Fatin; Gullett, Brian K; Harrison, Robert O; Chu, Andrew; Clark, George C

    2009-04-01

    Determination of toxic activity requires knowledge of both the concentration and toxicity to evaluate the risk for adverse human health and environmental effects. A chemically-activated luciferase gene expression cell bioassay system (CALUX) and an antibody-based method enzyme immunoassay (EIA) were used to detect the dioxin-like response of several polybrominated, polychlorinated, and polybrominated/chlorinated dibenzo-p-dioxins/furans (PBDDs/Fs, PCDDs/Fs, and PBCDDs/Fs, respectively). It has been suggested that the biological activity of the brominated and mixed bromo/chloro compounds is similar to their chlorinated analogues (measured by binding to the Ah receptor). PBDD/F, PCDD/F, and PBCDD/F laboratory standards exhibited biological activity ranging over three orders of magnitude. The highest relative potency (REP) values from CALUX analysis, when compared to 2,3,7,8-TCDD, were 2,3,7,8-TBDD at 0.99 (+/-0.07), 1,2,3,7,8-PeCDD at 0.69, and 2-Br-3,7,8-TriCDD at 0.72 (+/-0.02). Cross-reactivities were calculated using EIA for several PBDDs/Fs and PBCDDs. The highest percent cross-reactivity was found for 2,3,7,8-TBDD at 138 (+/-34%), and 2,3,7-TriBDD at 84 (+/-36%).

  10. Detection of luciferase gene sequences in nonluminescent bacteria from the Chesapeake Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chun, J.; Ravel, J.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    in all cases were confirmed by PCR of DNA extracts and Southern hybridization analyses, using an internal probe for confirmation of luxA amplification products. Sequence analysis of luxA genes from three nonluminescent bacteria isolated from...

  11. Epigenetic Control of Prolyl and Asparaginyl Hydroxylases in Prostate Cancer

    Science.gov (United States)

    2011-07-01

    melanoma, renal carcinoma and breast cancer cell lines. Furthermore, we show that neither HIF-1a protein levels nor hypoxic response through an HRE ...constitutively expressed gene to control for equivalent DNase digestion between the cell lines examined. HRE -Luciferase assay Cell lines ,85% confluent in 60...mm dishes were transfected with an HRE -luciferase reporter vector [19] (2.5 mg) and Renilla luciferase (1.5 mg) according to Lipofectamine 2000

  12. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    International Nuclear Information System (INIS)

    Nalcacioglu, Remziye; Marks, Hendrik; Vlak, Just M.; Demirbag, Zihni; Oers, Monique M. van

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an immediate-early gene and confirmed that the major capsid protein (MCP) is a late gene. Transcription of DNApol initiated 35 nt upstream and that of MCP 14 nt upstream of the translational start site. In a luciferase reporter gene assay both promoters were active only when cells were infected with CIV. For DNApol sequences between position -27 and -6, relative to the transcriptional start site, were essential for promoter activity. Furthermore, mutation of a G within the sequence TTGTTTT located just upstream of the DNApol transcription initiation site reduced the promoter activity by 25%. Sequences crucial for MCP promoter activity are located between positions -53 and -29

  13. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Science.gov (United States)

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  14. Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation.

    Directory of Open Access Journals (Sweden)

    Jian-Feng Li

    Full Text Available Protein-protein interactions (PPIs constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.

  15. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  16. Insertion of liver enriched transcription factor hepatocyte nuclear factor-4 (HNF-4) in a vector which contains simian virus (SV40) promoter

    International Nuclear Information System (INIS)

    Al-Nbaheen, M.; Pourzand, C.; Tyrrell, R.M.

    2006-01-01

    One way of targeting gene expression in vivo is to control transcription using a tissue-specific regulatory system. Tissue specific promoters or enhancers are in use in transgenic animals and could be utilized in medical for gene therapy. At present the usual method for selection of a tissue-specific promoter is to identify a gene, which is expressed at unusually high level in the target tissue, and then to use the promoter for this gene to drive expression of another therapeutic gene in the target tissue. This approach is logical but does not always lead to high levels of gene expression. A second approach is to investigate the scope for discovery of synthetic specific promoters using a target tissue. The objective of the work described in this paper was to use both approach to design plasmid DNA expression vectors that would carry liver-specific promoter/enhancer linked to reporter gene (i.e. luciferase). Then transfect these vectors to both liver-derived and non-liver cell lines. This is followed by evaluation of the liver-specificity of each construct by measuring the basal level expression of the reporter gene (i.e. luciferase activity) in both cell lines. Hepatocyte nuclear factor-4 (HNF-4) is liver-enriched transcription factor used to design new synthetic enhancers by inserting a tandem array of 1', 3' or 5' repeats of the HNF-4 binding site upstream of the SV40 promoter linked to the luciferase reporter gene within an Epstein-Barr virus (EBV)-based vector, p 706. The results of transfection revealed that unexpectedly the HNF-4 binding sites in these constructs act as a repressor rather than enhancer of the liver-specific expression of the luciferase gene. (author)

  17. The evolutionary process of mammalian sex determination genes focusing on marsupial SRYs.

    Science.gov (United States)

    Katsura, Yukako; Kondo, Hiroko X; Ryan, Janelle; Harley, Vincent; Satta, Yoko

    2018-01-16

    Maleness in mammals is genetically determined by the Y chromosome. On the Y chromosome SRY is known as the mammalian male-determining gene. Both placental mammals (Eutheria) and marsupial mammals (Metatheria) have SRY genes. However, only eutherian SRY genes have been empirically examined by functional analyses, and the involvement of marsupial SRY in male gonad development remains speculative. In order to demonstrate that the marsupial SRY gene is similar to the eutherian SRY gene in function, we first examined the sequence differences between marsupial and eutherian SRY genes. Then, using a parsimony method, we identify 7 marsupial-specific ancestral substitutions, 13 eutherian-specific ancestral substitutions, and 4 substitutions that occurred at the stem lineage of therian SRY genes. A literature search and molecular dynamics computational simulations support that the lineage-specific ancestral substitutions might be involved with the functional differentiation between marsupial and eutherian SRY genes. To address the function of the marsupial SRY gene in male determination, we performed luciferase assays on the testis enhancer of Sox9 core (TESCO) using the marsupial SRY. The functional assay shows that marsupial SRY gene can weakly up-regulate the luciferase expression via TESCO. Despite the sequence differences between the marsupial and eutherian SRY genes, our functional assay indicates that the marsupial SRY gene regulates SOX9 as a transcription factor in a similar way to the eutherian SRY gene. Our results suggest that SRY genes obtained the function of male determination in the common ancestor of Theria (placental mammals and marsupials). This suggests that the marsupial SRY gene has a function in male determination, but additional experiments are needed to be conclusive.

  18. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Huarong Guo

    2012-09-01

    Full Text Available p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase and pRL-CMV-luc (CMV promoter linked to Renilla luciferase into marine flatfish flounder gill (FG cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation, but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl phthalate (DEHP, a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner.

  19. An Efficient Agrobacterium-Mediated Transformation of Strawberry cv. Camarosa by a Dual Plasmid System

    Directory of Open Access Journals (Sweden)

    Fatemeh Haddadi

    2015-02-01

    Full Text Available An Agrobacterium-mediated transformation method was applied to introduce the luciferase reporter gene under the control of the CaMV35S promoter in the pGreen0049 binary vector into strawberry cv. Camarosa. The in vitro regeneration system of strawberry leaves to be used in the transformation was optimized using different TDZ concentrations in MS medium. TDZ at 16 µM showed the highest percentage (100% of shoot formation and the highest mean number of shoots (24 produced per explant. Studies on the effects of different antibiotics, namely timentin, cefotaxime, carbenicillin and ampicillin, on shoot regeneration of strawberry leaf explants showed the best shoot regeneration in the presence of 300 mg/L timentin and 150 mg/L cefotaxime. Assessment of the different factors affecting Agrobacterium mediated-transformation of strawberry with the luciferase gene showed the highest efficiency of putative transformant production (86% in the treatment with no preculture, bacterial OD600 of 0.6 and the addition of 150 mg/L cefotaxime in the pre-selection and selection media. The presence of the luciferase gene in the plant genome was verified by the luciferase reporter gene assay, nested PCR amplification and dot blot of genomic DNA isolated from the young leaves of each putatively transformed plantlet.

  20. Dual monitoring using 124I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    International Nuclear Information System (INIS)

    Lee, T. S.; Kim, J. H.; Kwon, H. C.

    2007-01-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[ 124 I] iodouracil ( 124 I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ( 124 I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, 124 I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, 124 I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by 124 I-FIAU PET imaging. 124 I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. 124 I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials

  1. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    Science.gov (United States)

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null

  2. Optimization of conditions for gene delivery system based on PEI

    Directory of Open Access Journals (Sweden)

    Roya Cheraghi

    2017-01-01

    Full Text Available Objective(s: PEI based nanoparticle (NP due to dual capabilities of proton sponge and DNA binding is known as powerful tool for nucleic acid delivery to cells. However, serious cytotoxicity and complicated conditions, which govern NPs properties and its interactions with cells practically, hindered achievement to high transfection efficiency. Here, we have tried to optimize the properties of PEI/ firefly luciferase plasmid complexes and cellular condition to improve transfection efficiency. Materials and Methods: For this purpose, firefly luciferase, as a robust gene reporter, was complexed with PEI to prepare NPs with different size and charge. The physicochemical properties of nanoparticles were evaluated using agarose gel retardation and dynamic light scattering.  MCF7 and BT474 cells at different confluency were also transfected with prepared nanoparticles at various concentrations for short and long times. Results: The branched PEI can instantaneously bind to DNA and form cationic NPs. The results demonstrated the production of nanoparticles with size about 100-500 nm dependent on N/P ratio. Moreover, increase of nanoparticles concentration on the cell surface drastically improved the transfection rate, so at a concentration of 30 ng/ìl, the highest transfection efficiency was achieved. On the other side, at confluency between 40-60%, the maximum efficiency was obtained. The result demonstrated that N/P ratio of 12 could establish an optimized ratio between transfection efficiency and cytotoxicity of PEI/plasmid nanoparticles. The increase of NPs N/P ratio led to significant cytotoxicity. Conclusion: Obtained results verified the optimum conditions for PEI based gene delivery in different cell lines.

  3. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon; Seo, Kyuhwa; Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Il Je, E-mail: skek023@dhu.ac.kr [MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbukdo 712-715 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2013-08-15

    Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK.

  4. Resveratrol inhibits LXRα-dependent hepatic lipogenesis through novel antioxidant Sestrin2 gene induction

    International Nuclear Information System (INIS)

    Jin, So Hee; Yang, Ji Hye; Shin, Bo Yeon; Seo, Kyuhwa; Shin, Sang Mi; Cho, Il Je; Ki, Sung Hwan

    2013-01-01

    Liver X receptor-α (LXRα), a member of the nuclear receptor superfamily of ligand-activated transcription factors, regulates de novo fatty acid synthesis that leads to stimulate hepatic steatosis. Although, resveratrol has beneficial effects on metabolic disease, it is not known whether resveratrol affects LXRα-dependent lipogenic gene expression. This study investigated the effect of resveratrol in LXRα-mediated lipogenesis and the underlying molecular mechanism. Resveratrol inhibited the ability of LXRα to activate sterol regulatory element binding protein-1c (SREBP-1c) and thereby inhibited target gene expression in hepatocytes. Moreover, resveratrol decreased LXRα–RXRα DNA binding activity and LXRE-luciferase transactivation. Resveratrol is known to activate Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK), although its precise mechanism of action remains controversial. We found that the ability of resveratrol to repress T0901317-induced SREBP-1c expression was not dependent on AMPK and Sirt1. It is well established that hepatic steatosis is associated with antioxidant and redox signaling. Our data showing that expression of Sestrin2 (Sesn2), which is a novel antioxidant gene, was significantly down-regulated in the livers of high-fat diet-fed mice. Moreover, resveratrol up-regulated Sesn2 expression, but not Sesn1 and Sesn3. Sesn2 overexpression repressed LXRα-activated SREBP-1c expression and LXRE-luciferase activity. Finally, Sesn2 knockdown using siRNA abolished the effect of resveratrol in LXRα-induced FAS luciferase gene transactivation. We conclude that resveratrol affects Sesn2 gene induction and contributes to the inhibition of LXRα-mediated hepatic lipogenesis. - Highlights: • We investigated the effect of resveratrol in LXRα-mediated lipogenesis. • Resveratrol attenuated the ability of the LXRα-mediated lipogenic gene expression. • Resveratrol’s effects on T090-induced lipogenesis is not dependent on Sirt1 or AMPK.

  5. Polymorphisms in CISH gene are associated with persistent hepatitis B virus infection in Han Chinese population.

    Directory of Open Access Journals (Sweden)

    Zhangyong Hu

    Full Text Available BACKGROUND AND AIM: Cytokine-inducible SRC homology 2 domain protein (CISH is the first member of the suppressors of cytokine signaling (SOCS protein family. An association between multiple CISH polymorphisms and susceptibility to infectious diseases has been reported. This study aimed to investigate the possible association of these single nucleotide polymorphisms (SNPs in CISH gene with different outcomes of Hepatitis B virus (HBV infection. METHODS: 1019 unrelated Chinese Han subjects, including 240 persistent asymptomatic HBV carriers, 217 chronic hepatitis B patients, 137 HBV-related liver cirrhosis patients, and 425 cases of spontaneously recovered HBV as controls, were studied. Four SNPs (rs622502, rs2239751, rs414171 and rs6768300 in CISH gene were genotyped with the snapshot technique. Transcriptional activity of the CISH promoter was assayed in vitro using the dual-luciferase reporter assay system. RESULTS: At position rs414171, A allele and AA genotype frequencies were significantly higher in the HBV-resolved group as compared to the persistent HBV infection group. At position rs2239751, TT genotype was further observed in the HBV-resolved group. Using asymptomatic HBV carriers as controls, our results indicated that the rs414171 and rs2239751 polymorphisms were unrelated to HBV progression. The other two SNPs (rs622502 and rs6768300 showed no association with persistent HBV infection. Haplotype analysis revealed that the GGCA haplotype was associated with spontaneous clearance of HBV in this population. Moreover, luciferase activity was significantly higher in the PGL3-Basic-rs414171T construct as compared to the PGL3-Basic-rs414171A construct (p<0.001. CONCLUSION: Two SNPs (rs414171 and rs2239751 in the CISH gene were associated with persistent HBV infection in Han Chinese population, but not with HBV progression.

  6. Micro-RNA Binding Site Polymorphisms in the WFS1 Gene Are Risk Factors of Diabetes Mellitus.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Elek

    Full Text Available The absolute or relative lack of insulin is the key factor in the pathogenesis of diabetes mellitus. Although the connection between loss of function mutations of the WFS1 gene and DIDMOAD-syndrome including diabetes mellitus underpins the significance of wolframin in the pathogenesis, exact role of WFS1 polymorphic variants in the development of type 1 and type 2 diabetes has not been discovered yet. In this analysis, 787 patients with diabetes and 900 healthy people participated. Genotyping of the 7 WFS1 SNPs was carried out by TaqMan assays. Association study was performed by χ2-test in combination with correction for multiple testing. For functional analysis, the entire 3' UTR of the WFS1 gene was subcloned in a pMIR-Report plasmid and relative luciferase activities were determined. Linkage disequilibrium analysis showed a generally high LD within the investigated region, however the rs1046322 locus was not in LD with the other SNPs. The two miR-SNPs, rs1046322 and rs9457 showed significant association with T1DM and T2DM, respectively. Haplotype analysis also confirmed the association between the 3' UTR loci and both disease types. In vitro experiments showed that miR-185 reduces the amount of the resulting protein, and rs9457 miRSNP significantly influences the rate of reduction in a luciferase reporter assay. Genetic variants of the WFS1 gene might contribute to the genetic risk of T1DM and T2DM. Furthermore demonstrating the effect of rs9457 in binding of miR-185, we suggest that the optimal level of wolframin protein, potentially influenced by miR-regulation, is crucial in normal beta cell function.

  7. Micro-RNA Binding Site Polymorphisms in the WFS1 Gene Are Risk Factors of Diabetes Mellitus

    Science.gov (United States)

    Elek, Zsuzsanna; Németh, Nóra; Nagy, Géza; Németh, Helga; Somogyi, Anikó; Hosszufalusi, Nóra; Sasvári-Székely, Mária; Rónai, Zsolt

    2015-01-01

    The absolute or relative lack of insulin is the key factor in the pathogenesis of diabetes mellitus. Although the connection between loss of function mutations of the WFS1 gene and DIDMOAD-syndrome including diabetes mellitus underpins the significance of wolframin in the pathogenesis, exact role of WFS1 polymorphic variants in the development of type 1 and type 2 diabetes has not been discovered yet. In this analysis, 787 patients with diabetes and 900 healthy people participated. Genotyping of the 7 WFS1 SNPs was carried out by TaqMan assays. Association study was performed by χ 2-test in combination with correction for multiple testing. For functional analysis, the entire 3’ UTR of the WFS1 gene was subcloned in a pMIR-Report plasmid and relative luciferase activities were determined. Linkage disequilibrium analysis showed a generally high LD within the investigated region, however the rs1046322 locus was not in LD with the other SNPs. The two miR-SNPs, rs1046322 and rs9457 showed significant association with T1DM and T2DM, respectively. Haplotype analysis also confirmed the association between the 3’ UTR loci and both disease types. In vitro experiments showed that miR-185 reduces the amount of the resulting protein, and rs9457 miRSNP significantly influences the rate of reduction in a luciferase reporter assay. Genetic variants of the WFS1 gene might contribute to the genetic risk of T1DM and T2DM. Furthermore demonstrating the effect of rs9457 in binding of miR-185, we suggest that the optimal level of wolframin protein, potentially influenced by miR-regulation, is crucial in normal beta cell function. PMID:26426397

  8. Dual monitoring using {sup 124}I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. S.; Kim, J. H.; Kwon, H. C. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[{sup 124}I] iodouracil ({sup 124}I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ({sup 124}I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, {sup 124}I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, {sup 124}I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by {sup 124}I-FIAU PET imaging. {sup 124}I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. {sup 124}I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials.

  9. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    Directory of Open Access Journals (Sweden)

    Leclerc Xavier

    2009-04-01

    Full Text Available Abstract Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1. Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.

  10. Probing the emitter site of Renilla luciferase using small organic molecules; an attempt to understand the molecular architecture of the emitter site.

    Science.gov (United States)

    Salehi, Farajollah; Emamzadeh, Rahman; Nazari, Mahboobeh; Rasa, Seyed Mohammad Mahdi

    2016-12-01

    Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the K m changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Genetic basis of prune belly syndrome: screening for HNF1β gene.

    Science.gov (United States)

    Granberg, Candace F; Harrison, Steven M; Dajusta, Daniel; Zhang, Shaohua; Hajarnis, Sachin; Igarashi, Peter; Baker, Linda A

    2012-01-01

    Although the cause of prune belly syndrome is unknown, familial evidence suggests a genetic component. Recently 2 nonfamilial cases of prune belly syndrome with chromosome 17q12 deletions encompassing the HNF1β gene have made this a candidate gene for prune belly syndrome. To date, there has been no large-scale screening of patients with prune belly syndrome for HNF1β mutations. We assessed the role of HNF1β in prune belly syndrome by screening for genomic mutations with functional characterization of any detected mutations. We studied patients with prune belly syndrome who were prospectively enrolled in our Pediatric Genitourinary DNA Repository since 2001. DNA from patient samples was amplified by polymerase chain reaction, sequenced for coding and splice regions of the HNF1β gene, and compared to control databases. We performed functional assay testing of the ability of mutant HNF1β to activate a luciferase construct with an HNF1β DNA binding site. From 32 prune belly syndrome probands (30 males, 2 females) HNF1β sequencing detected a missense mutation (V61G) in 1 child with prune belly syndrome. Absent in control databases, V61G was previously reported in 2 patients without prune belly syndrome who had congenital genitourinary anomalies. Functional testing showed similar luciferase activity compared to wild-type HNF1β, suggesting the V61G substitution does not disturb HNF1β function. One genomic HNF1β mutation was detected in 3% of patients with prune belly syndrome but found to be functionally normal. Thus, functionally significant HNF1β mutations are uncommon in prune belly syndrome, despite case reports of HNF1β deletions. Further genetic study is necessary, as identification of the genetic basis of prune belly syndrome may ultimately lead to prevention and improved treatments for this rare but severe syndrome. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    Science.gov (United States)

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cloning and characterization of the 5'-flanking region of the Ehox gene

    International Nuclear Information System (INIS)

    Lee, Woon Kyu; Kim, Yong-Man; Malik, Nasir; Ma Chang; Westphal, Heiner

    2006-01-01

    The paired-like homeobox-containing gene Ehox plays a role in embryonic stem cell differentiation and is highly expressed in the developing placenta and thymus. To understand the mechanisms of regulation of Ehox gene expression, the 5'-flanking region of the Ehox gene was isolated from a mouse BAC library. 5'-RACE analysis revealed a single transcriptional start site 130 nucleotides upstream of the translation initiation codon. Transient transfection with a luciferase reporter gene under the control of serially deleted 5'-flanking sequences revealed that the nt -84 to -68 region contained a positive cis-acting element for efficient expression of the Ehox gene. Mutational analysis of this region and oligonucleotide competition in the electrophoretic mobility shift assay revealed the presence of a CCAAT box, which is a target for transcription nuclear factor Y (NFY). NFY is essential for positive gene regulation. No tissue-specific enhancer was identified in the 1.9-kb 5'-flanking region of the Ehox gene. Ehox is expressed during the early stages of embryo development, specifically in Brain at 9.5 dpc, as well as during the late stages of embryo development. These results suggest that NFY is an essential regulatory factor for Ehox transcriptional activity, which is important for the post-implantation stage of the developing embryo

  14. In Vivo Tumor Gene Delivery Using Novel Peptideticles: pH-Responsive and Ligand Targeted Core-Shell Nanoassembly.

    Science.gov (United States)

    Alipour, Mohsen; Majidi, Asia; Molaabasi, Fatemeh; Sheikhnejad, Reza; Hosseinkhani, Saman

    2018-04-30

    Modulating cancer causing genes with nucleic acid based-molecules as cutting-edge approaches need efficient delivery systems to succeed in clinic. Herein, we report design and fabrication of a novel tissue penetrating Peptideticle with charge-structure switching in tumor microenvironment for an effective gene delivery. The comparative in vitro studies indicate that peptideticles identify and bind to tumor endothelial cells and efficiently penetrate into multicellular tumor spheroid. In addition, negatively charged peptideticle at pH 7.4, prevent unwanted interaction while it's sharp charge-structure switching at pH 6.2-6.9 (e.g.in tumor tissue) facilitates malignant cells penetration. More importantly, upon systemic administration into tumor bearing mice, peptideticles effectively localized in tumor tissue and delivered luciferase gene with a 200-fold higher efficiency compared to their non-pH-responsive counterparts. In conclusion, this study presents a robust nanoassembly of safe materials for high efficient tumor gene delivery. This article is protected by copyright. All rights reserved. © 2018 UICC.

  15. Application of luciferase assay for ATP to antimicrobial drug susceptibility

    Science.gov (United States)

    Chappelle, E. W.; Picciolo, G. L.; Vellend, H.; Tuttle, S. A.; Barza, M. J.; Weinstein, L. (Inventor)

    1977-01-01

    The susceptibility of bacteria, particularly those derived from body fluids, to antimicrobial agents is determined in terms of an ATP index measured by culturing a bacterium in a growth medium. The amount of ATP is assayed in a sample of the cultured bacterium by measuring the amount of luminescent light emitted when the bacterial ATP is reacted with a luciferase-luciferin mixture. The sample of the cultured bacterium is subjected to an antibiotic agent. The amount of bacterial adenosine triphosphate is assayed after treatment with the antibiotic by measuring the luminescent light resulting from the reaction. The ATP index is determined from the values obtained from the assay procedures.

  16. Optical Imaging of Tumor Hypoxia and Evaluation of Efficacy of a Hypoxia-Targeting Drug in Living Animals

    Directory of Open Access Journals (Sweden)

    Hiroshi Harada

    2005-07-01

    Full Text Available Solid tumors containing more hypoxic regions show a more malignant phenotype by increasing the expression of genes encoding angiogenic and metastatic factors. Hypoxia-inducible factor-1 (HIF-1 is a master transcriptional activator of such genes, and thus, imaging and targeting hypoxic tumor cells where HIF-1 is active are important in cancer therapy. In the present study, HIF-1 activity was monitored via an optical in vivo imaging system by using a luciferase reporter gene under the regulation of an artificial HIF-1-dependent promoter, 5HRE. To monitor tumor hypoxia, we isolated a stable reporter-transfectant, HeLa/5HRE-Luc, which expressed more than 100-fold luciferase in response to hypoxic stress, and observed bioluminescence from its xenografts. Immunohistochemical analysis of the xenografts with a hypoxia marker, pimonidazole, confirmed that the luciferase-expressing cells were hypoxic. Evaluation of the efficacy of a hypoxia-targeting prodrug, TOP3, using this optical imaging system revealed that hypoxic cells were significantly diminished by TOP3 treatment. Immunohistochemical analysis of the TOP3-treated xenografts confirmed that hypoxic cells underwent apoptosis and were removed after TOP3 treatment. These results demonstrate that this model system using the 5HRE-luciferase reporter construct provides qualitative information (hypoxic status of solid tumors and enables one to conveniently evaluate the efficacy of cancer therapy on hypoxia in malignant solid tumors.

  17. The nature of the GRE influences the screening for GR-activity enhancing modulators.

    Directory of Open Access Journals (Sweden)

    Karen Dendoncker

    Full Text Available Glucocorticoid resistance (GCR, i.e. unresponsiveness to the beneficial anti-inflammatory activities of the glucocorticoid receptor (GR, poses a serious problem in the treatment of inflammatory diseases. One possible solution to try and overcome GCR, is to identify molecules that prevent or revert GCR by hyper-stimulating the biological activity of the GR. To this purpose, we screened for compounds that potentiate the dexamethasone (Dex-induced transcriptional activity of GR. To monitor GR transcriptional activity, the screen was performed using the lung epithelial cell line A549 in which a glucocorticoid responsive element (GRE coupled to a luciferase reporter gene construct was stably integrated. Histone deacetylase inhibitors (HDACi such as Vorinostat and Belinostat are two broad-spectrum HDACi that strongly increased the Dex-induced luciferase expression in our screening system. In sharp contrast herewith, results from a genome-wide transcriptome analysis of Dex-induced transcripts using RNAseq, revealed that Belinostat impairs the ability of GR to transactivate target genes. The stimulatory effect of Belinostat in the luciferase screen further depends on the nature of the reporter construct. In conclusion, a profound discrepancy was observed between HDACi effects on two different synthetic promoter-luciferase reporter systems. The favorable effect of HDACi on gene expression should be evaluated with care, when considering them as potential therapeutic agents. GEO accession number GSE96649.

  18. Assembly of two transgenes in an artificial chromatin domain gives highly coordinated expression in tobacco

    NARCIS (Netherlands)

    Mlynárová, L.; Loonen, A.; Mietkiewska, E.; Jansen, R.C.; Nao, J.P.

    2002-01-01

    The chromatin loop model predicts that genes within the same chromatin domain exhibit coordinated regulation. We here present the first direct experimental support for this model in plants. Two reporter genes, the E. coli ß-glucuronidase gene and the firefly luciferase gene, driven by different

  19. Assembly of Two Transgenes in an Artificial Chromatin Domain Gives Highly Coordinated Expression in Tobacco

    NARCIS (Netherlands)

    Mlynárová, Ludmila; Loonen, Annelies; Mietkiewska, Elzbieta; Jansen, Ritsert C.; Nap, Jan-Peter

    The chromatin loop model predicts that genes within the same chromatin domain exhibit coordinated regulation. We here present the first direct experimental support for this model in plants. Two reporter genes, the E. coli β-glucuronidase gene and the firefly luciferase gene, driven by different

  20. v-src Induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element

    Energy Technology Data Exchange (ETDEWEB)

    Xie, W.; Fletcher, B.S.; Andersen, R.D.; Herschman, H.R. [Univ. of California, Los Angeles, CA (United States)

    1994-10-01

    The authors recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factor and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5{prime} of the TIS10/PGS2 transcription start site that mediates pp60{sup v-src} induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E-box (CACGTG) sequences. Gel shift-oligonucleotide competition experiments with nuclear extracts from cells stably transfected with a temperature-sensitive v-src gene demonstrate that the CGTCACGTG sequence can bind proteins at both the AFT/CRE and E-box sequences. Dominant-negative CREB and Myc proteins that bind DNA, but do not transactivate, block v-src induction of a luciferase reporter driven by the first 80 nucleotides of the TIS10/PGS2 promoter. Mutational analysis distinguishes which TIS10/PGS2 cis-acting element mediates pp60{sup v-src} induction. E-box mutation has no effect on the fold induction in response to pp60{sup v-src}. In contrast, ATF/CRE mutation attenuates the pp{sup v-src} response. Antibody supershift and methylation interference experiments demonstrate that CREB and at least one other ATF transcription factor in these extracts bind to the TIS10/PGS2 ATF/CRE element. Expression of a dominant-negative ras gene also blocks TIS10/PGS2 induction by v-src. The data suggest that Ras mediates pp60{sup v-src} activation of an ATF transcription factor, leading to induced TIS10/PGS2 expression via the ATF/CRE element of the TIS10/PGS2 promoter. This is the first description of v-src activation of gene expression via an ATF/CRE element. 64 refs., 8 figs.

  1. A two-cassette reporter system for assessing target gene translation and target gene product inclusion body formation

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a dual cassette reporter system capable of assessing target gene translation and target gene product folding. The present invention further relates to vectors and host cells comprising the dual cassette reporter system. In addition the invention relates to the use...... of the dual cassette reporter system for assessing target gene translation and target gene product folding....

  2. Identification of the Drosophila skpA gene as a novel target of the transcription factor DREF

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Ida, Hiroyuki; Yoshida, Hideki; Yamaguchi, Masamitsu

    2006-01-01

    SKPa is component of a Drosophila SCF complex that functions in combination with the ubiquitin-conjugating enzyme UbcD1. skpA null mutation results in centrosome overduplication, unusual chromatin condensation, defective endoreduplication and cell-cycle progression. While the molecular mechanisms that regulate expression of the skpA gene are poorly understood, the DNA replication-related element (DRE) and the DRE-binding factor (DREF) play important roles in regulating proliferation-related genes in Drosophila and DRE (5'-TATCGATA) and DRE-like (5'-CATCGATT) sequences were here found to be involved in skpA promoter activity. Thus both luciferase transient expression assays in cultured Drosophila S2 cells using skpA promoter-luciferase fusion plasmids and anti-lacZ immunostaining of various tissues from transgenic third instar larvae carrying the skpA promoter-lacZ fusion genes provided supportive evidence. Furthermore, anti-SKPa immunostaining of eye imaginal discs from flies overexpressing DREF showed ectopic expression of protein in the region posterior to the morphogenetic furrow where DREF is overexpressed. Knockdown of DREF in some tissues where SKPa distribution is well known almost completely abrogated the skpA gene expression. These findings, taken together, indicate that the Drosophila skpA gene is a novel target of the transcription factor DREF

  3. A trans-acting enhancer modulates estrogen-mediated transcription of reporter genes in osteoblasts.

    Science.gov (United States)

    Sasaki-Iwaoka, H; Maruyama, K; Endoh, H; Komori, T; Kato, S; Kawashima, H

    1999-02-01

    The presence of bone-specific estrogen agonists and discovery of the osteoblast-specific transcription factor (TF), Cbfa1, together with the discovery of synergism between a TF Pit-1 and estrogen receptor alpha (ERalpha) on rat prolactin gene, led to investigation of Cbfa1 in the modulation of osteoblast-specific actions of estrogen. Reverse transcribed-polymerase chain reaction demonstrated expression of Cbfa1 in the osteoblastic cell lines, MG63, ROS17/2.8, and MC3T3E1, but not in nonosteoblastic cell lines, MCF7, C3H10T1/2, and HeLa. An ER expression vector and a series of luciferase (Luc) reporter plasmids harboring the Cbfa1 binding site OSE2 (the osteoblast-specific cis element in the osteocalcin promoter) and palindromic estrogen response elements (EREs) were cotransfected into both osteoblastic and nonosteoblastic cells. OSE2 worked as a cis- acting element in osteoblastic cells but not nonosteoblastic cells, whereas EREs were cis- acting in all cell lines. Synergistic transactivation was observed in osteoblastic cells only when both ERE and OSE2 were placed in juxtaposition to the promoter. Forced expression of Cbfa1 in C3H10T1/2 cells also induced synergism. Tamoxifen, a partial agonist/antagonist of estrogen, acted as an osteoblast-specific agonist in cells transfected with a promoter containing ERE and acted synergistically with a promoter containing the ERE-OSE2 enhancer combination. These results support the idea that bone-specific TFs modulate the actions of estrogen in a tissue-specific manner.

  4. Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase.

    Directory of Open Access Journals (Sweden)

    Patrizia Pellegatti

    2008-07-01

    Full Text Available There is growing awareness that tumour cells build up a "self-advantageous" microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP.Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours.Our results show that ATP in the tumour interstitium is in the hundreds micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.

  5. [Effect of transcription activity regulated by VNTR-ZNF and -14C/T variants in the promoter region of ATP-binding cassette transporter 1 in HepG2 cells].

    Science.gov (United States)

    Gao, Shenxia; Zhao, Lili; Zhang, Ying; Mao, Yongmin

    2016-10-01

    To explore the effect of VNTR-ZNF and -14C/T variants of the promoter region of the ABCA1 gene on the transcription activity of genes in vitro. The recombinants were constructed by ligating DNA fragment containing VNTR-ZNF ACCCC inserted/deleted allele with or without -14C/T substitution fragments with a PGL2-basic vector containing luciferase reporter gene. The recombinants were then transfected into HepG2 cells using the cationic lipid method. After 48 h, transfected cells were collected and used to detect the luciferase activity. Luciferase activity of PGL2-ZNF-ACCCCDel was greater than that of PGL2-ZNF-ACCCCIns. Luciferase activity of PGL2-ZNFDel-14C was greater than that of PGL2-ZNFDel-14T, PGL2-ZNFIns-14C, PGL2-ZNFIns-14T. Compared with the insertion type, the ACCCC-deleted type of VNTR-ZNF can significantly enhance the transcription activity of ABCA1. And co-transfection of -14 C allele can further enhance this activity.

  6. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    Science.gov (United States)

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  7. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    Energy Technology Data Exchange (ETDEWEB)

    Suyari, Osamu; Ida, Hiroyuki [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2009-05-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-{beta}-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  9. Identification of the Drosophila Mes4 gene as a novel target of the transcription factor DREF

    International Nuclear Information System (INIS)

    Suyari, Osamu; Ida, Hiroyuki; Yoshioka, Yasuhide; Kato, Yasuko; Hashimoto, Reina; Yamaguchi, Masamitsu

    2009-01-01

    The Mes4 gene has been identified as one of the maternal Dorsal target genes in Drosophila. In the present study, we found a DNA replication-related element (DRE, 5'-TATCGATA) in the Mes4 promoter recognized by the DRE-binding factor (DREF). Luciferase transient expression assays in S2 cells using Mes4 promoter-luciferase fusion plasmids revealed that the DRE sequence is essential for Mes4 promoter activity. Requirement of DRE for Mes4 promoter activity was further confirmed by anti-β-galactosidase antibody-staining of various tissues from transgenic flies carrying Mes4 promoter-lacZ fusion genes. Furthermore, wild type Mes4 promoter activity was decreased by 40% in DREF-depleted S2 cells. These results indicate that DREF positively regulates Mes4 gene expression. Band mobility shift analyses using Kc cell nuclear extracts further indicated that the DRE sequence in the Mes4 promoter is especially important for binding to DREF. Moreover, specific binding of DREF to the involved genomic region could be demonstrated by chromatin immunoprecipitation assays using anti-DREF antibodies. These results, taken together, indicate that the DRE/DREF system activates transcription of the Mes4 gene. In addition, knockdown of the Mes4 gene in wing imaginal discs using the GAL4-UAS system caused an atrophied wing phenotype, suggesting that Mes4 is required for wing morphogenesis.

  10. Effect of a Novel Nonviral Gene Delivery of BMP-2 on Bone Healing

    Directory of Open Access Journals (Sweden)

    P. Schwabe

    2012-01-01

    Full Text Available Background. Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG for the stimulation of bone healing. Methods. In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. Results. In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 – day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. Conclusion. A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe.

  11. Combining Optical Reporter Proteins with Different Half-lives to Detect Temporal Evolution of Hypoxia and Reoxygenation in Tumors

    Directory of Open Access Journals (Sweden)

    Pierre Danhier

    2015-12-01

    Full Text Available Here we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc and a variant of the enhanced green fluorescent protein (EGFP. Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE. The cells constitutively expressed tdTomato red fluorescent protein. For validating the imaging strategy, cells were incubated under hypoxia (1% O2 for 48 hours and then reoxygenated. The luciferase activity of PC3-HRE-EGFP/HRE-ODD-luc/tdtomato cells detected by bioluminescent imaging rapidly decreased after reoxygenation, whereas EGFP levels in these cells remained stable for several hours. After in vitro validation, PC3-HRE-EGFP/HRE-ODD-luc/tdtomato tumors were implanted subcutaneously and orthotopically in nude male mice and imaged in vivo and ex vivo using optical imaging in proof-of-principle studies to demonstrate differences in optical patterns between EGFP expression and bioluminescence. This novel "timer" imaging strategy of combining the short-lived ODD-luciferase and the long-lived EGFP can provide a time frame of HRE activation in PC3 prostate cancer cells and will be useful to understand the temporal changes in hypoxia and HIF activity during cancer progression and following treatments including HIF targeting strategies.

  12. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    Science.gov (United States)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  13. Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging

    International Nuclear Information System (INIS)

    Kenanova, Vania; Barat, Bhaswati; Olafsen, Tove; Chatziioannou, Arion; Herschman, Harvey R.; Wu, Anna M.; Braun, Jonathan

    2009-01-01

    Reporter genes can provide a way of noninvasively assessing gene activity in vivo. However, current reporter gene strategies may be limited by the immunogenicity of foreign reporter proteins, endogenous expression, or unwanted biological activity. We have developed a reporter gene based on carcinoembryonic antigen (CEA), a human protein with limited normal tissue expression. To construct a CEA reporter gene for PET, a CEA minigene (N-A3) was fused to the extracellular and transmembrane domains of the human FcγRIIb receptor. The NA3-FcγRIIb recombinant gene, driven by a CMV promoter, was transfected in Jurkat (human T cell leukemia) cells. Expression was analyzed by flow cytometry, immunohistochemistry (IHC), and microPET imaging. Flow cytometry identified Jurkat clones stably expressing NA3-FcγRIIb at low, medium, and high levels. High and medium NA3-FcγRIIb expression could also be detected by Western blot. Reporter gene positive and negative Jurkat cells were used to establish xenografts in athymic mice. IHC showed staining of the tumor with high reporter gene expression; medium and low N-A3 expression was not detected. MicroPET imaging, using an anti-CEA 124 I-labeled single-chain Fv-Fc antibody fragment, demonstrated that only high N-A3 expression could be detected. Specific accumulation of activity was visualized at the N-A3 positive tumor as early as 4 h. MicroPET image quantitation showed tumor activity of 1.8 ± 0.2, 15.2 ± 1.3, and 4.6 ± 1.2 percent injected dose per gram (%ID/g) at 4, 20, and 48 h, respectively. Biodistribution at 48 h demonstrated tumor uptake of 4.8 ± 0.8%ID/g. The CEA N-A3 minigene has the potential to be used as a reporter gene for imaging cells in vivo. (orig.)

  14. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    Science.gov (United States)

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  15. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression

    International Nuclear Information System (INIS)

    Carlin, Sean; Pugachev, Andrei; Sun Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C. Clifton; Humm, John L.

    2009-01-01

    Purpose: To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer 18 F-fluoromisonidazole ( 18 F-FMISO). Methods: Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe 124 I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil ( 124 I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between 124 I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe 18 F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with 124 I-FIAU (3 h before sacrifice) and 18 F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between 18 F-FMISO and 124 I-FIAU on a pixel-by-pixel basis was performed. Results: Correlation coefficients between 124 I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between 18 F-FMISO and 124 I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. Conclusions: We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of

  16. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  17. The progress of PET based reporter gene imaging

    International Nuclear Information System (INIS)

    Zhao Wei; Zhang Xiuli

    2005-01-01

    More than two decades of intense research have allowed gene therapy to move from the laboratory to the clinical setting, where its use for the treatment of human pathologies has been considerably increased in the last years. However, many crucial questions remain to be solved in this challenging field. In vivo imaging with positron emission tomography (PET) by combination of the appropriate PET reporter gene and PET reporter probe could provide invaluable qualitative and quantitative information to answer multiple unsolved questions about gene therapy. PET imaging could be used to define parameters not available by other techniques that are of substantial interest not only for the proper understanding of the gene therapy process, but also for its future development and clinical application in humans. (authors)

  18. Piper betle induces phase I & II genes through Nrf2/ARE signaling pathway in mouse embryonic fibroblasts derived from wild type and Nrf2 knockout cells.

    Science.gov (United States)

    Wan Hasan, Wan Nuraini; Kwak, Mi-Kyoung; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2014-02-23

    Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice. WT and N0 cells were treated with 5 and 10 μg/ml of PB for 10 and 12-h for the determination of nuclear translocation of Nrf2 protein. Luciferase reporter gene activity was performed to evaluate the antioxidant response element (ARE)-induction by PB. Real-time PCR and Western blot were conducted on both WT and N0 cells after PB treatment for the determination of antioxidant enzymes [superoxide dismutase (SOD1) and heme-oxygenase (HO-1)], phase I oxidoreductase enzymes [ quinone oxidoreductase (NQO1)] and phase II detoxifying enzyme [glutathione S-transferase (GST)]. Nuclear translocation of Nrf2 by PB in WT cells was better after 10 h incubation compared to 12 h. Real time PCR and Western blot analysis showed increased expressions of Nrf2, NQO1 and GSTA1 genes with corresponding increases in glutathione, NQO1 and HO-1 proteins in WT cells. Reporter gene ARE was stimulated by PB as shown by ARE/luciferase assay. Interestingly, PB induced SOD1 gene and protein expressions in N0 cells but not in WT cells. The results of this study confirmed that PB activated Nrf2-ARE signaling pathway which subsequently induced some phase I oxidoreductase, phase II detoxifying and antioxidant genes expression via ARE reporter gene involved in the Nrf2 pathway with the

  19. Advances of reporter gene imaging monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Pei Zhijun; Zhang Yongxue

    2010-01-01

    Stem cell transplantation in the treatment of various tissue damage or degenerative diseases are research hotspots both at home and abroad. However, ignorance of the homing, differentiation and functional expression of the stem cell in vivo influence the further development of stem cell therapy. As an important component of molecular imaging technology, reporter gene imaging dynamically monitors the change of stem cell in vivo via monitoring the expression of transfected reporter gene. This paper briefly describes the latest research progress and the future development trend of the monitoring of reporter gene imaging in stem cell therapy in vivo. (authors)

  20. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    Science.gov (United States)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  1. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  2. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  3. Rescue the failed half-ZFN by a sensitive mammalian cell-based luciferase reporter system.

    Directory of Open Access Journals (Sweden)

    Weifeng Zhang

    Full Text Available ZFN technology is a powerful research tool and has been used for genome editing in cells lines, animals and plants. The generation of functional ZFNs for particular targets in mammalian genome is still challenging for an average research group. The modular-assembly method is relatively fast, easy-to-practice but has a high failure rate. Some recent studies suggested that a ZFP with low binding activity might be able to form a working ZFN pair with another binding active half-ZFP. In order to unveil the potential ZFP candidates among those with low binding activities, this paper established a highly sensitive mammalian cell-based transcriptional reporter system to assess the DNA binding activities of ZFPs by inserting multiple copies of ZFN target sequence fragment (TSF of an interested gene (e. g., hPGRN or hVEGF. Our results showed that this system increased the screening sensitivity up to 50-fold and markedly amplified the differences in the binding activities between different ZFPs. We also found that the targeted chromosomal gene repair efficiency of each hPGRN or hVEGF ZFN pair was in proportion with the combination of the binding activities of the ZFL (Left zinc finger and ZFR (Right zinc finger. A hPGRN ZFR with low binding ability was able to form a biological active ZFN if combined with a hPGRN ZFL with relatively high binding ability. Lastly, site-specific genome editing by hPGRN ZFNs generated by this system was confirmed by sequencing, and the PGRN knock-out cell line showed significantly decreased cell growth compared with the control. Our system will provide a valuable tool for further optimizing the nucleases with regard to specificity and cytotoxicity.

  4. Developmentally regulated expression of reporter gene in adult ...

    Indian Academy of Sciences (India)

    pression of reporter gene in adult brain specific GAL4 enhancer traps of. Drosophila ... genes based on their expression pattern, thus enabling us to overcome the ... order association and storage centres of olfactory learning and memory, and ...

  5. A Luciferase-Expressing Leishmania braziliensis Line That Leads to Sustained Skin Lesions in BALB/c Mice and Allows Monitoring of Miltefosine Treatment Outcome.

    Directory of Open Access Journals (Sweden)

    Adriano C Coelho

    2016-05-01

    Full Text Available Leishmania braziliensis is the most prevalent species isolated from patients displaying cutaneous and muco-cutaneous leishmaniasis in South America. However, there are difficulties for studying L. braziliensis pathogenesis or response to chemotherapy in vivo due to the natural resistance of most mouse strains to infection with these parasites. The aim of this work was to develop an experimental set up that could be used to assess drug efficacy against L. braziliensis. The model was tested using miltefosine.A L. braziliensis line, originally isolated from a cutaneous leishmaniasis patient, was passaged repeatedly in laboratory rodents and further genetically manipulated to express luciferase. Once collected from a culture of parasites freshly transformed from amastigotes, 106 wild type or luciferase-expressing stationary phase promastigotes were inoculated subcutaneously in young BALB/c mice or golden hamsters. In both groups, sustained cutaneous lesions developed at the site of inoculation, no spontaneous self- healing being observed 4 months post-inoculation, if left untreated. Compared to the wild type line features, no difference was noted for the luciferase-transgenic line. Infected animals were treated with 5 or 15 mg/kg/day miltefosine orally for 15 days. At the end of treatment, lesions had regressed and parasites were not detected. However, relapses were observed in animals treated with both doses of miltefosine.Here we described experimental settings for a late-healing model of cutaneous leishmaniasis upon inoculation of a luciferase-expressing L. braziliensis line that can be applied to drug development projects. These settings allowed the monitoring of the transient efficacy of a short-term miltefosine administration.

  6. Identification of functional SNPs in the 5-prime flanking sequences of human genes

    Directory of Open Access Journals (Sweden)

    Lenhard Boris

    2005-02-01

    Full Text Available Abstract Background Over 4 million single nucleotide polymorphisms (SNPs are currently reported to exist within the human genome. Only a small fraction of these SNPs alter gene function or expression, and therefore might be associated with a cell phenotype. These functional SNPs are consequently important in understanding human health. Information related to functional SNPs in candidate disease genes is critical for cost effective genetic association studies, which attempt to understand the genetics of complex diseases like diabetes, Alzheimer's, etc. Robust methods for the identification of functional SNPs are therefore crucial. We report one such experimental approach. Results Sequence conserved between mouse and human genomes, within 5 kilobases of the 5-prime end of 176 GPCR genes, were screened for SNPs. Sequences flanking these SNPs were scored for transcription factor binding sites. Allelic pairs resulting in a significant score difference were predicted to influence the binding of transcription factors (TFs. Ten such SNPs were selected for mobility shift assays (EMSA, resulting in 7 of them exhibiting a reproducible shift. The full-length promoter regions with 4 of the 7 SNPs were cloned in a Luciferase based plasmid reporter system. Two out of the 4 SNPs exhibited differential promoter activity in several human cell lines. Conclusions We propose a method for effective selection of functional, regulatory SNPs that are located in evolutionary conserved 5-prime flanking regions (5'-FR regions of human genes and influence the activity of the transcriptional regulatory region. Some SNPs behave differently in different cell types.

  7. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    Science.gov (United States)

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. (c) 2006 Wiley-Liss, Inc.

  8. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology

    Directory of Open Access Journals (Sweden)

    Qisheng Zuo

    2016-06-01

    Full Text Available The present study established an efficient genome editing approach for the construction of stable transgenic cell lines of the domestic chicken (Gallus gallus domesticus. Our objectives were to facilitate the breeding of high-yield, high-quality chicken strains, and to investigate gene function in chicken stem cells. Three guide RNA (gRNAs were designed to knockout the C2EIP gene, and knockout efficiency was evaluated in DF-1 chicken fibroblasts and chicken ESCs using the luciferase single-strand annealing (SSA recombination assay, T7 endonuclease I (T7EI assay, and TA clone sequencing. In addition, the polyethylenimine-encapsulated Cas9/gRNA plasmid was injected into fresh fertilized eggs. At 4.5 d later, frozen sections of the embryos were prepared, and knockout efficiency was evaluated by the T7EI assay. SSA assay results showed that luciferase activity of the vector expressing gRNA-3 was double that of the control. Results of the T7EI assay and TA clone sequencing indicated that Cas9/gRNA vector-mediated gene knockdown efficiency was approximately 27% in both DF-1 cells and ESCs. The CRISPR/Cas9 vector was also expressed in chicken embryos, resulting in gene knockdown in three of the 20 embryos (gene knockdown efficiency 15%. Taken together, our results indicate that the CRISPR/Cas9 system can mediate stable gene knockdown at the cell and embryo levels in domestic chickens.

  9. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated with tradit......Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... with traditional methods of immunization, but little is known on its efficacy in fish. The luciferase and lacZ reporter genes were used to characterize expression of plasmid-encoded genes in rainbow trout and zebra fish injected intramuscularly. For a given dose of DNA, the luciferase activity was higher in fish...... than in mouse muscle. The enzyme activity in fish peaked with 1 μg of DNA and remained constant for over 12 weeks, but it was not limited to the injected muscle since luciferase activity was also detected in the gills. Thin sections of rainbow trout muscle injected with the lacZ reporter gene showed...

  10. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  11. The human tartrate-resistant acid phosphatase (TRAP): involvement of the hemin responsive elements (HRE) in transcriptional regulation.

    Science.gov (United States)

    Fleckenstein, E C; Dirks, W G; Drexler, H G

    2000-02-01

    The biochemical properties and protein structure of the tartrate-resistant acid phosphatase (TRAP), an iron-containing lysosomal glycoprotein in cells of the mononuclear phagocyte system, are well known. In contrast, little is known about the physiology and genic structure of this unique enzyme. In some diseases, like hairy cell leukemia, Gaucher's disease and osteoclastoma, cytochemically detected TRAP expression is used as a disease-associated marker. In order to begin to elucidate the regulation of this gene we generated different deletion constructs of the TRAP 5'-flanking region, placed them upstream of the luciferase reporter gene and assayed them for their ability to direct luciferase expression in human 293 cells. Treatment of these cells with the iron-modulating reagents transferrin and hemin causes opposite effects on the TRAP promoter activity. Two regulatory GAGGC tandem repeat sequences (the hemin responsive elements, HRE) within the 5'-flanking region of the human TRAP gene were identified. Studies with specific HRE-deletion constructs of the human TRAP 5'-flanking region upstream of the luciferase reporter gene document the functionality of these HRE-sequences which are apparently responsible for mediating transcriptional inhibition upon exposure to hemin. In addition to the previously published functional characterization of the murine TRAP HRE motifs, these results provide the first description of a new iron/hemin-responsive transcriptional regulation in the human TRAP gene.

  12. Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats.

    Science.gov (United States)

    Yokoo, T; Kamimura, K; Suda, T; Kanefuji, T; Oda, M; Zhang, G; Liu, D; Aoyagi, Y

    2013-08-01

    The development of a safe and reproducible gene delivery system is an essential step toward the clinical application of the hydrodynamic gene delivery (HGD) method. For this purpose, we have developed a novel electric power-driven injection system called the HydroJector-EM, which can replicate various time-pressure curves preloaded into the computer program before injection. The assessment of the reproducibility and safety of gene delivery system in vitro and in vivo demonstrated the precise replication of intravascular time-pressure curves and the reproducibility of gene delivery efficiency. The highest level of luciferase expression (272 pg luciferase per mg of proteins) was achieved safely using the time-pressure curve, which reaches 30 mm Hg in 10 s among various curves tested. Using this curve, the sustained expression of a therapeutic level of human factor IX protein (>500 ng ml(-1)) was maintained for 2 months after the HGD of the pBS-HCRHP-FIXIA plasmid. Other than a transient increase in liver enzymes that recovered in a few days, no adverse events were seen in rats. These results confirm the effectiveness of the HydroJector-EM for reproducible gene delivery and demonstrate that long-term therapeutic gene expression can be achieved by automatic computer-controlled hydrodynamic injection that can be performed by anyone.

  13. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, Haruka; Yoshimura, Takeshi [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan); Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp [Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu 514-8507 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.

  14. Development and characterization of a green fluorescent protein-based rat cell bioassay system for detection of AH receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bin; Denison, M. [California Univ., Davis, CA (United States). Dept. of Environmental Toxicology

    2004-09-15

    Proper epidemiological, risk assessment and exposure analysis of TCDD and related HAHs requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). While high-resolution instrumental analysis techniques are established for these chemicals, these procedures are very costly, time-consuming and are impractical for large scale sampling studies. Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take the advantage of the ability of these chemicals to activate one or more aspects of the AhR-dependent mechanism of action. One of the most sensitive bioassay systems developed to date is the so-called CALUX (Chemically Activated Luciferase Expression) assay, which is based on novel recombinant cell lines that contain a stably transfected dioxin (AhR)-responsive firefly luciferase gene. Treatment of these cells with TCDD and related HAHs and polycyclic aromatic hydrocarbons (PAHs), as well as other AhR ligands, results in induction of reporter gene expression in a time-, dose-, AhR-, and chemical-specific manner. The level of reporter gene expression correlates with the total concentration of the TCDD-like AhR inducers (agonists) present in the sample. Although the firefly luciferase reporter gene contributes to the high degree of sensitivity of the assay, it also has limitations with respect to our need for a rapid and inexpensive bioassay for high-throughput screening analysis. Accordingly, we previously developed a stably transfected murine cell line containing an AhRresponsive enhanced green fluorescent protein (EGFP) reporter gene. This cell line provided us with a high-throughput cell bioassay system for identification and characterization of AhR agonists and antagonists. Here we have extended these studies and describe the development, optimization, and

  15. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  16. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    Science.gov (United States)

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  17. Inhibition of metastatic tumor growth in mouse lung by repeated administration of polyethylene glycol-conjugated catalase: quantitative analysis with firefly luciferase-expressing melanoma cells.

    Science.gov (United States)

    Hyoudou, Kenji; Nishikawa, Makiya; Umeyama, Yukari; Kobayashi, Yuki; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2004-11-15

    To develop a novel and effective approach to inhibit tumor metastasis based on controlled delivery of catalase, we first evaluated the characteristics of the disposition and proliferation of tumor cells. Then, we examined the effects of polyethylene glycol-conjugated catalase (PEG-catalase) on tumor metastasis. On the basis of the results obtained, PEG-catalase was repetitively administered to completely suppress the growth of tumor cells. Murine melanoma B16-BL6 cells were stably transfected with firefly luciferase gene to obtain B16-BL6/Luc cells. These cells were injected intravenously into syngeneic C57BL/6 mice. PEG-catalase was injected intravenously, and the effect was evaluated by measuring the luciferase activity as the indicator of the number of tumor cells. At 1 hour after injection of B16-BL6/Luc cells, 60 to 90% of the injected cells were recovered in the lung. The numbers decreased to 2 to 4% at 24 hours, then increased. An injection of PEG-catalase just before inoculation significantly reduced the number of tumor cells at 24 hours. Injection of PEG-catalase at 1 or 3 days after inoculation was also effective in reducing the cell numbers. Daily dosing of PEG-catalase greatly inhibited the proliferation and the number assayed at 14 days after inoculation was not significantly different from the minimal number observed at 1 day, suggesting that the growth had been markedly suppressed by the treatment. These findings indicate that sustained catalase activity in the blood circulation can prevent the multiple processes of tumor metastasis in the lung, which could lead to a state of tumor dormancy.

  18. Phytol directly activates peroxisome proliferator-activated receptor α (PPARα) and regulates gene expression involved in lipid metabolism in PPARα-expressing HepG2 hepatocytes

    International Nuclear Information System (INIS)

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kato, Sota; Egawa, Kahori; Ebisu, Shogo; Moriyama, Tatsuya; Fushiki, Tohru; Kawada, Teruo

    2005-01-01

    The peroxisome proliferator-activated receptor (PPAR) is one of the indispensable transcription factors for regulating lipid metabolism in various tissues. In our screening for natural compounds that activate PPAR using luciferase assays, a branched-carbon-chain alcohol (a component of chlorophylls), phytol, has been identified as a PPARα-specific activator. Phytol induced the increase in PPARα-dependent luciferase activity and the degree of in vitro binding of a coactivator, SRC-1, to GST-PPARα. Moreover, the addition of phytol upregulated the expression of PPARα-target genes at both mRNA and protein levels in PPARα-expressing HepG2 hepatocytes. These findings indicate that phytol is functional as a PPARα ligand and that it stimulates the expression of PPARα-target genes in intact cells. Because PPARα activation enhances circulating lipid clearance, phytol may be important in managing abnormalities in lipid metabolism

  19. Absence of mutation at the 5'-upstream promoter region of the TPM4 gene from cardiac mutant axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Denz, Christopher R; Zhang, Chi; Jia, Pingping; Du, Jianfeng; Huang, Xupei; Dube, Syamalima; Thomas, Anish; Poiesz, Bernard J; Dube, Dipak K

    2011-09-01

    Tropomyosins are a family of actin-binding proteins that show cell-specific diversity by a combination of multiple genes and alternative RNA splicing. Of the 4 different tropomyosin genes, TPM4 plays a pivotal role in myofibrillogenesis as well as cardiac contractility in amphibians. In this study, we amplified and sequenced the upstream regulatory region of the TPM4 gene from both normal and mutant axolotl hearts. To identify the cis-elements that are essential for the expression of the TPM4, we created various deletion mutants of the TPM4 promoter DNA, inserted the deleted segments into PGL3 vector, and performed promoter-reporter assay using luciferase as the reporter gene. Comparison of sequences of the promoter region of the TPM4 gene from normal and mutant axolotl revealed no mutations in the promoter sequence of the mutant TPM4 gene. CArG box elements that are generally involved in controlling the expression of several other muscle-specific gene promoters were not found in the upstream regulatory region of the TPM4 gene. In deletion experiments, loss of activity of the reporter gene was noted upon deletion which was then restored upon further deletion suggesting the presence of both positive and negative cis-elements in the upstream regulatory region of the TPM4 gene. We believe that this is the first axolotl promoter that has ever been cloned and studied with clear evidence that it functions in mammalian cell lines. Although striated muscle-specific cis-acting elements are absent from the promoter region of TPM4 gene, our results suggest the presence of positive and negative cis-elements in the promoter region, which in conjunction with positive and negative trans-elements may be involved in regulating the expression of TPM4 gene in a tissue-specific manner.

  20. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation

    International Nuclear Information System (INIS)

    Anstett, A.

    2005-09-01

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-κB are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-κB binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-κB specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  1. Identification and characterization of the Luc2-type luciferase in the Japanese firefly, Luciola parvula, involved in a dim luminescence in immobile stages.

    Science.gov (United States)

    Bessho-Uehara, Manabu; Oba, Yuichi

    2017-09-01

    Nocturnal Japanese fireflies, Luciola parvula, emit from their lanterns a yellow light, one of the most red-shifted colors found among fireflies. Previously, we isolated and characterized two different types of luciferase gene, Luc1 and Luc2, from the fireflies Luciola cruciata and Luciola lateralis; Luc1 is responsible for the green-yellow luminescence of larval and adult lanterns, whereas Luc2 is responsible for the dim greenish glow of eggs and pupal bodies. The biological role of firefly lanterns in adults is related to sexual communication, but why the eggs and pupae glow remains uncertain. In this study, we isolated the gene Luc2 from L. parvula, and compared its expression profiles and enzymatic characteristics with those of Luc1. A semi-quantitative reverse transcription polymerase chain reaction showed that Luc1 was predominantly expressed in larvae, prepupae, pupae and adults, whereas Luc2 was expressed in eggs, prepupae, pupae and adult females. Enzymatic analyses showed that the luminescent color of Luc1 matches the visual sensitivity of L. parvula eyes, whereas that of Luc2 is very different from it. These results suggest that the biological role of Luc2 expressed in immobile stages is not intraspecific communication. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Visualization of ecdysteroid activity using a reporter gene in the crustacean, Daphnia.

    Science.gov (United States)

    Asada, Miki; Kato, Yasuhiko; Matsuura, Tomoaki; Watanabe, Hajime

    2014-02-01

    Ecdysone is a hormone known to play a pivotal role in crustaceans and insects. In order to evaluate the ecdysone activities in the environment and within the organism, we have developed a biomonitoring Daphnia strain by introducing a reporter gene. In this study, the ecdysone response element was inserted in the upstream region of a reporter gene, and the DNA construct was injected into Daphnia eggs. The expression of the reporter gene was detected during the early embryonic development stage. In addition, when the eggs expressing the reporter gene were exposed to ecdysone, there was enhanced expression of the reporter gene at detectable levels, while the presence of an antagonist led to its downregulation. These results suggested that this system could be potentially developed for monitoring ecdysone activities in media. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway.

    Science.gov (United States)

    Escher, Beate I; Dutt, Mriga; Maylin, Erin; Tang, Janet Y M; Toze, Simon; Wolf, C Roland; Lang, Matti

    2012-11-01

    The reporter gene assay AREc32 is based on the induction of the Nrf2 mediated oxidative stress response pathway in the human breast cancer cell line MCF7, where eight copies of the antioxidant response element (ARE) are linked to a reporter gene encoding for luciferase. The Nrf2-ARE pathway is responsive to many chemicals that cause oxidative stress, among them a large number of pesticides and skin irritants. We adopted and validated the AREc32 bioassay for water quality testing. tert-Butylhydroquinone served as the positive control, phenol as the negative control and other reactive chemicals were assessed for their specificity. An environmentally relevant reference chemical, benzo(a)pyrene was the most potent inducer of all tested chemicals. The concentration causing an induction ratio (IR) of 1.5 (EC(IR1.5)) was chosen as the effect benchmark value. The assay was applied to 21 water samples ranging from sewage to drinking water, including secondary treatment and various tertiary treatment options (ozonation, biologically activated carbon filtration, membrane filtration, reverse osmosis, advanced oxidation, chlorination, chloramination). The samples were enriched by solid phase extraction. In most samples the oxidative stress response was far more sensitive than cytotoxicity. The primary and secondary treated effluent exceeded the effect threshold IR 1.5 at a relative enrichment factor (REF) of 1, i.e., the native samples were active. All tertiary treated samples were less potent and their EC(IR1.5) lay between REF 1 and 10. The Nrf2 pathway was induced at a REF of approximately 10 for surface waters and drinking water, and above this enrichment cytotoxicity took over in most samples and quenched the induction. The blank (ultrapure water run through the sample enrichment process) was cytotoxic at an REF of 100, which is the limit of concentrations range that can be evaluated. Treatment typically decreased both the cytotoxicity and oxidative stress response apart

  4. miRNAs may regulate GABAergic transmission associated genes in aged rats with anesthetics-induced recognition and working memory dysfunction.

    Science.gov (United States)

    Shan, Ligang; Ma, Duo; Zhang, Chengshen; Xiong, Wei; Zhang, Yi

    2017-09-01

    Isoflurane and sevoflurane are widely used anesthetics in surgery and administration of these anesthetics could lead to postoperative cognitive dysfunction (POCD). However, the mechanisms remain unclear. Aged Wistar rats were exposed to isoflurane and sevoflurane for 2 or 4h. Recognition memory and spatial working memory were measured using Novel object recognition (NOR) and Y-maze test, respectively. Apoptotic cells were detected by TUNEL staining. miRNA expression was measured by Real-time PCR while protein expression was measured by Western blot. Dual-Luciferase reporter assay was used to establish the direct relationship between miRNAs and Gabra5 and gephyrin gene expression. Exposure to isoflurane and sevoflurane for 2 or 4h significantly decreased the NOR index in the NOR test and spontaneous alternations in arm entries in the Y-maze test in aged rats. TUNEL staining showed that isoflurane and sevoflurane administration significantly induced apoptosis in the mPFC and hippocampus. The protein level of α5 GABA A receptor (α5GABA A R), gephyrin, and dystrophin were significantly increased, whereas the expression of miR-30a, miR-31, miR-190a, and miR-190b was significantly decreased in the hippocampus and mPFC in aged rats exposed to isoflurane and sevoflurane compared to control rats. The protein levels of α5GABA A R, gephyrin, and dystrophin protein in the hippocampus and the mPFC significantly correlated with NOR index and spontaneous alternations. Dual-Luciferase reporter assay showed that miR-30a and miR-190a/b mimics significantly inhibited Gabra5 and gephyrin gene expression, respectively. There might be a miRNAs-GABAergic transmission pathway which may be involved in the pathophysiological alteration in anesthetics-induced POCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Variant in GALNT3 Gene Linked with Reduced Coronary Artery Disease Risk in Chinese Population.

    Science.gov (United States)

    Guo, Liwei; Li, Duan; Li, Mengting; Li, Lin; Huang, Yanmei

    2017-07-01

    Our previous study found expression of GALNT3 gene was reduced in coronary artery disease (CAD) patients, and it contributed to endothelial injury by regulating apoptosis and matrix metalloproteinase (MMP) expression. GALNT3 gene may be a potential target for future therapeutic intervention of CAD. However, none reports linking the GALNT3 gene to susceptibility of CAD. This study investigated the variant associations of GALNT3 gene and CAD. Thirteen single nucleotide polymorphism (SNP) in and around the GALNT3 gene were tagged and analyzed in CAD patients (n = 1515) and control individuals (n = 5019), and the SNPs with CAD were tested with multiple logistic regression analysis in an additive genetic model (with one degree of freedom) after adjusting for age and sex. Expression of GALNT3 gene was detected by real-time PCR and Western blot. Luciferase reporter assays were used to detect the allele-specific effect of rs4621175 on transcriptional activity. Two GALNT3 markers, rs13427924 and rs4621175, were significantly associated with CAD (odds ratio [OR] = 0.87, p = 1.01 × 10 -3 and OR = 0.75, p = 2.51 × 10 -4 , respectively), and the risk A allele of rs4621175 was associated with lower GALNT3 expression in both mRNA and protein level; also, A allele showed decreased reporter activity. In addition, we found the level of GALNT3 negatively correlated with MMP-2 gene expression. This study identified GALNT3 as a novel gene that rendered patients susceptible to CAD, and the A allele of a disease-associated variant rs4621175 linked reduced CAD risk through decreased GALNT3 expression. These results confirmed the role of GALNT3 gene in CAD and provided new insights into the genetic regulation of the GALNT3 gene with respect to the pathogenesis of CAD.

  6. The location and nature of general anesthetic binding sites on the active conformation of firefly luciferase; a time resolved photolabeling study.

    Directory of Open Access Journals (Sweden)

    Sivananthaperumal Shanmugasundararaj

    Full Text Available Firefly luciferase is one of the few soluble proteins that is acted upon by a wide variety of general anesthetics and alcohols; they inhibit the ATP-driven production of light. We have used time-resolved photolabeling to locate the binding sites of alcohols during the initial light output, some 200 ms after adding ATP. The photolabel 3-azioctanol inhibited the initial light output with an IC50 of 200 µM, close to its general anesthetic potency. Photoincorporation of [(3H]3-azioctanol into luciferase was saturable but weak. It was enhanced 200 ms after adding ATP but was negligible minutes later. Sequencing of tryptic digests by HPLC-MSMS revealed a similar conformation-dependence for photoincorporation of 3-azioctanol into Glu-313, a residue that lines the bottom of a deep cleft (vestibule whose outer end binds luciferin. An aromatic diazirine analog of benzyl alcohol with broader side chain reactivity reported two sites. First, it photolabeled two residues in the vestibule, Ser-286 and Ile-288, both of which are implicated with Glu-313 in the conformation change accompanying activation. Second, it photolabeled two residues that contact luciferin, Ser-316 and Ser-349. Thus, time resolved photolabeling supports two mechanisms of action. First, an allosteric one, in which anesthetics bind in the vestibule displacing water molecules that are thought to be involved in light output. Second, a competitive one, in which anesthetics bind isosterically with luciferin. This work provides structural evidence that supports the competitive and allosteric actions previously characterized by kinetic studies.

  7. Advances in study of perpes simplex virus type 1-thymidine kinase reporter gene imaging

    International Nuclear Information System (INIS)

    Liu Ying; Lan Xiaoli; Zhang Yongxue

    2007-01-01

    Radionuclide reporter gene imaging is an effect way to provide qualitative and quantitative information for gene therapy. There are three systems of reporter gene including kinase reporter gene. perpes simplex virus type 1-thymidine kinase (HSV1-tk) has perfect physical and chemical characteristic which is suit for imaging as reporter gene. It has been widely investigated and intensively researched. Two substrates of HSV1-tk are purine nucleosite derivant and acyclovir derivant, which can also be used as reporter probes of HSV1-tk. (authors)

  8. LncRNA Taurine-Upregulated Gene 1 Promotes Cell Proliferation by Inhibiting MicroRNA-9 in MCF-7 Cells.

    Science.gov (United States)

    Zhao, Xiao-Bo; Ren, Guo-Sheng

    2016-12-01

    This study was designed to investigate the role of taurine-upregulated gene 1 ( TUG1 ) in MCF-7 breast cancer cells and the molecular mechanism involved in the regulation of microRNA-9 (miR-9). The expression of TUG1 in breast cancer tissues and cells was evaluated using quantitative reverse transcription polymerase chain reaction. Cell viability was examined using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay; cell cycle progression and apoptosis were analyzed using flow cytometry. A dual luciferase reporter assay was used to detect the relationship between TUG1 and miR-9. The expression of methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was measured by western blot. Higher expression of TUG1 was observed in breast cancer tissues and cell lines than in the corresponding controls. TUG1 knockdown reduced proliferation, suppressed cell cycle progression, and promoted apoptosis of MCF-7 cells. The dual luciferase reporter assay showed that TUG1 could negatively regulate the expression of miR-9. MiR-9 inhibition abrogated the effect of TUG1 knockdown on the proliferation, cell cycle progression, and apoptosis of MCF-7 cells. TUG1 positively regulated the expression of MTHFD2 in breast cancer cells. TUG1 knockdown was significantly associated with decreased cell proliferation and it promoted apoptosis of breast cancer cells through the regulation of miR-9.

  9. Advances of reporter gene monitoring stem cell therapy

    International Nuclear Information System (INIS)

    Zhou Xiang; Yin Hongyan; Zhang Yifan

    2010-01-01

    Stem cell therapy research has made great progress, demonstrating a broad application prospects. However, stem cell therapy as a new disease treatment, there are still many problems to be solved. Reporter gene imaging is a rapid development in recent years, a non-invasive, sensitive method of monitoring of stem cells, in particular radionuclide reporter gene imaging has high sensitivity and specificity of the advantages of strong and can carry out imaging of deep tissue and repeat imaging, is a tracer in vivo conditions, the most promising stem cell transplantation technique, showing good prospects for development. (authors)

  10. The Induction Effect of Am80 and TSA on ESC Differentiation via Regulation of Stra8 in Chicken.

    Science.gov (United States)

    Zhang, Yani; Zuo, Qisheng; Liu, Zhiyong; Li, Dong; Tang, Beibei; Xiao, Tian-Rong; Lian, Chao; Wang, Yingjie; Jin, Kai; Wang, Yilin; Zhang, Wenhui; Li, Bichun

    2015-01-01

    Stra8 encodes stimulated by retinoic acid gene 8, a protein that is important for initiation of meiosis in mammals and birds. This study was aimed at identifying the active control area of chicken STRA8 gene core promoter, to screen optimum inducers of the STRA8 gene, thus to enhance the differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells. Fragments of chicken STRA8 gene promoter were cloned into fluorescent reporter plasmids and transfected into DF-1 cells. Then Dual-Luciferase® Reporter Assay System was used to identify the activity of the STRA8 gene under different inducers. Our studies showed that the promoter fragment -1055 bp to +54 bp of Suqin chicken Stra8 revealed the strongest activity. The dual-luciferase® reporter showed that Tamibarotene (Am80) and TrichostatinA (TSA) could significantly enhance STRA8 transcription. The in vitro inductive culture of chicken ESCs demonstrated that spermatogonial stem cells (SSC)-like cells appeared and Integrinβ1 protein was expressed on day 10, indicating that Am80 and TSA can promote ESCs differentiation into SSCs via regulation of Stra8.

  11. A novel reporter system for neutralizing and enhancing antibody assay against dengue virus.

    Science.gov (United States)

    Song, Ke-Yu; Zhao, Hui; Jiang, Zhen-You; Li, Xiao-Feng; Deng, Yong-Qiang; Jiang, Tao; Zhu, Shun-Ya; Shi, Pei-Yong; Zhang, Bo; Zhang, Fu-Chun; Qin, E-De; Qin, Cheng-Feng

    2014-02-18

    Dengue virus (DENV) still poses a global public health threat, and no vaccine or antiviral therapy is currently available. Antibody plays distinct roles in controlling DENV infections. Neutralizing antibody is protective against DENV infection, whereas sub-neutralizing concentration of antibody can increase DENV infection, termed antibody-dependent enhancement (ADE). Plaque-based assay represents the most widely accepted method measuring neutralizing or enhancing antibodies. In this study, a novel reporter virus-based system was developed for measuring neutralization and ADE activity. A stable Renilla luciferase reporter DENV (Luc-DENV) that can produce robust luciferase signals in BHK-21 and K562 cells were used to establish the assay and validated against traditional plaque-based assay. Luciferase value analysis using various known DENV-specific monoclonal antibodies showed good repeatability and a well linear correlation with conventional plaque-based assays. The newly developed assay was finally validated with clinical samples from infected animals and individuals. This reporter virus-based assay for neutralizing and enhancing antibody evaluation is rapid, lower cost, and high throughput, and will be helpful for laboratory detection and epidemiological investigation for DENV antibodies.

  12. Improved osteogenic vector for non-viral gene therapy

    Directory of Open Access Journals (Sweden)

    ARA Hacobian

    2016-03-01

    Full Text Available Therapeutic compensation of deficient bone regeneration is a challenging task and a topic of on-going search for novel treatment strategies. One promising approach for improvement involves non-viral gene delivery using the bone morphogenetic protein-2 (BMP-2 gene to provide transient, local and sustained expression of the growth factor. However, since efficiency of non-viral gene delivery is low, this study focused on the improvement of a BMP-2 gene expression system, aiming for compensation of poor transfection efficiency. First, the native BMP-2 gene sequence was modified by codon optimisation and altered by inserting a highly truncated artificial intron (96 bp. Transfection of multiple cell lines and rat adipose-derived mesenchymal stem cells with plasmids harbouring the improved BMP-2 sequence led to a several fold increased expression rate and subsequent osteogenic differentiation. Additionally, comparing expression kinetics of elongation factor 1 alpha (EF1α promoter with a state of the art CMV promoter revealed significantly higher BMP-2 expression when under the influence of the EF1α promoter. Results obtained by quantification of bone markers as well as osteogenic assays showed reduced sensitivity to promoter silencing effects of the EF1α promoter in rat adipose-derived mesenchymal stem cells. Finally, screening of several protein secretion signals using either luciferase or BMP-2 as reporter protein revealed no superior candidates for potential replacement of the native BMP-2 secretion signal. Taken together, by enhancing the exogenous BMP-2 expression system, low transfection efficiencies in therapeutic applications can be compensated, making safe non-viral systems even more suitable for tissue regeneration approaches.

  13. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma.

    Science.gov (United States)

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-07-21

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene's expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.

  14. CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yani Zhang

    Full Text Available An efficient genome editing approach had been established to construct the stable transgenic cell lines in the domestic chicken (Gallus gallus domesticus at present. Our objectives were to investigate gene function in the differentiation process of chicken embryonic stem cells (ESCs into spermatogonial stem cells(SSCs. Three guides RNA (gRNAs were designed to knockout the Stra8 gene, and knockout efficiency was evaluated in domestic chicken cells using cleavage activity of in vitro transcription of gRNA, Luciferase-SSA assay, T7 endonuclease I assay(T7E1 and TA clone sequence. In addition, the Cas9/gRNA plasmid was transfected into ESCs to confirm the function of Stra8. SSA assay results showed that luciferase activity of the vector expressing gRNA-1 and gRNA- 2 was higher than that of gRNA-3. TA clone sequencing showed that the knockdown efficiency was 25% (10/40 in DF-1 cells, the knockdown efficiency was 23% (9/40 in chicken ESCs. T7E1 assay indicated that there were cleavage activity for three individuals, and the knockdown efficiency was 12% (3/25. Cell morphology, qRT-PCR, immunostaining and FCS indicated that Cas9/gRNA not only resulted in the knockout of Stra8 gene, but also suggested that the generation of SSCs was blocked by the Stra8 gene knockdown in vitro. Taken together, our results indicate that the CRISPR/Cas9 system could mediate stable Stra8 gene knockdown in domestic chicken's cells and inhibit ECSs differentiation into SSCs.

  15. Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes.

    Science.gov (United States)

    Takeda, M; Saito, Y; Sekine, R; Onitsuka, I; Maeda, R; Maéno, M

    2000-06-01

    We demonstrated previously that Xmsx-1 is involved in mesoderm patterning along the dorso-ventral axis, under the regulation of BMP-4 signaling. When Xmsx-1 RNA was injected into the dorsal blastomeres, a mass of muscle tissue formed instead of notochord. This activity was similar to that of Xwnt-8 reported previously. In this study, we investigated whether the activity of Xmsx-1 is related to the ventralizing signal and myogenesis promoting factor, Xwnt-8. Whole-mount in situ hybridization showed that Xmsx-1, Xwnt-8, and XmyoD were expressed in overlapping areas, including the ventro-lateral marginal zone at mid-gastrula stage. The expression of XmyoD was induced by the ectopic expression of either Xmsx-1 or Xwnt-8 in dorsal blastomeres, and Xwnt-8 was induced by the ectopic expression of Xmsx-1. On the other hand, the expression of Xmsx-1 was not affected by the loading of pCSKA-Xwnt-8 or dominant-negative Xwnt-8 (DN-Xwnt-8) RNA. In addition, Xmsx-1 RNA did not abrogate the formation of notochord if coinjected with DN-Xwnt-8 RNA. These results suggest that Xmsx-1 functions upstream of the Xwnt-8 signal. Furthermore, the antagonistic function of Xmsx-1 to the expression of organizer genes, such as Xlim-1 and goosecoid, was shown by in situ hybridization analysis and luciferase reporter assay using the goosecoid promoter construct. Finally if Xmsx-1/VP-16 fusion RNA, which was expected to function as a dominant-negative Xmsx-1, was injected into ventral blastomeres, a partial secondary axis formed in a significant number of embryos. In such embryos, the activity of luciferase, under the control of goosecoid promoter sequence, was significantly elevated at gastrula stage. These results led us to conclude that Xmsx-1 plays a central role in establishing dorso-ventral axis in gastrulating embryo, by suppressing the expression of organizer genes.

  16. Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300).

    OpenAIRE

    Shetty, S; Takahashi, T; Matsui, H; Ayengar, R; Raghow, R

    1999-01-01

    The TATA-less murine Msx1 promoter contains two Msx1-binding motifs, located at -568 to -573 and +25 to +30, and is subject to potent autorepression [Takahashi, Guron, Shetty, Matsui and Raghow (1997) J. Biol. Chem. 272, 22667-22678]. To investigate the molecular mechanism by which Msx1 represses the activity of its own promoter, we transfected C2C12 myoblasts with Msx1-promoter-luciferase constructs and assessed reporter gene activity, with and without the exogenous expression of Msx1. We de...

  17. Resveratrol stimulates c-Fos gene transcription via activation of ERK1/2 involving multiple genetic elements.

    Science.gov (United States)

    Thiel, Gerald; Rössler, Oliver G

    2018-06-05

    The polyphenol resveratrol is found in many plant and fruits and is a constituent of our diet. Resveratrol has been proposed to have chemopreventive and anti-inflammatory activities. On the cellular level, resveratrol activates stimulus-regulated transcription factors. To identify resveratrol-responsive elements within a natural gene promoter, the molecular pathway leading to c-Fos gene expression by resveratrol was dissected. The c-Fos gene encodes a basic region leucine zipper transcription factor and is a prototype of an immediate-early gene that is regulated by a wide range of signaling molecules. We analyzed chromatin-integrated c-Fos promoter-luciferase reporter genes where transcription factor binding sites were destroyed by point mutations or deletion mutagenesis. The results show that mutation of the binding sites for serum response factor (SRF), activator protein-1 (AP-1) and cAMP response element binding protein (CREB) significantly reduced reporter gene transcription following stimulation of the cells with resveratrol. Inactivation of the binding sites for signal transducer and activator of transcription (STAT) or ternary complex factors did not influence resveratrol-regulated c-Fos promoter activity. Thus, the c-Fos promoter contains three resveratrol-responsive elements, the cAMP response element (CRE), and the binding sites for SRF and AP-1. Moreover, we show that the transcriptional activation potential of the c-Fos protein is increased in resveratrol-stimulated cells, indicating that the biological activity of c-Fos is elevated by resveratrol stimulation. Pharmacological and genetic experiments revealed that the protein kinase ERK1/2 is the signal transducer that connects resveratrol treatment with the c-Fos gene. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Non-invasive imaging using reporter genes altering cellular water permeability

    Science.gov (United States)

    Mukherjee, Arnab; Wu, Di; Davis, Hunter C.; Shapiro, Mikhail G.

    2016-12-01

    Non-invasive imaging of gene expression in live, optically opaque animals is important for multiple applications, including monitoring of genetic circuits and tracking of cell-based therapeutics. Magnetic resonance imaging (MRI) could enable such monitoring with high spatiotemporal resolution. However, existing MRI reporter genes based on metalloproteins or chemical exchange probes are limited by their reliance on metals or relatively low sensitivity. Here we introduce a new class of MRI reporters based on the human water channel aquaporin 1. We show that aquaporin overexpression produces contrast in diffusion-weighted MRI by increasing tissue water diffusivity without affecting viability. Low aquaporin levels or mixed populations comprising as few as 10% aquaporin-expressing cells are sufficient to produce MRI contrast. We characterize this new contrast mechanism through experiments and simulations, and demonstrate its utility in vivo by imaging gene expression in tumours. Our results establish an alternative class of sensitive, metal-free reporter genes for non-invasive imaging.

  19. In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system

    International Nuclear Information System (INIS)

    Allegra, Danilo; Mertens, Daniel

    2011-01-01

    Research highlights: → Posttranscriptional regulation of miRNA processing is difficult to quantify. → Our in-vivo processing assay can quantify Drosha cleavage in live cells. → It is based on luciferase reporters fused with pri-miRNAs. → The assay validates the processing defect caused by a mutation in pri-16-1. → It is a sensitive method to quantify pri-miRNA cleavage by Drosha in live cells. -- Abstract: The RNAse III Drosha is responsible for the first step of microRNA maturation, the cleavage of primary miRNA to produce the precursor miRNA. Processing by Drosha is finely regulated and influences the amount of mature microRNA in a cell. We describe in the present work a method to quantify Drosha processing activity in-vivo, which is applicable to any microRNA. With respect to other methods for measuring Drosha activity, our system is faster and scalable, can be used with any cellular system and does not require cell sorting or use of radioactive isotopes. This system is useful to study regulation of Drosha activity in physiological and pathological conditions.

  20. Identification and functional characterization of the TAB2 gene from Litopenaeus vannamei.

    Science.gov (United States)

    Wang, Sheng; Li, Haoyang; Qian, Zhe; Song, Xuan; Zhang, Zijian; Zuo, Hongliang; Xu, Xiaopeng; Weng, Shaoping; He, Jianguo; Li, Chaozheng

    2015-10-01

    In Drosophila, TAB2, an important intermediate in the IMD signaling pathway, plays critical roles in the innate immune response in response to bacterial and viral infection. However, the role of TAB-related proteins in the immune response of shrimp has not yet been established. Here, we reported the identification of a TAB2-like gene in Litopenaeus vannamei designated as LvTAB2. The full-length cDNA of LvTAB2 was 2160 bp with an open reading frame of 1827 bp, which encoded a putative protein of 608 amino acids including a ubiquitin binding domain (CUE) at the N-terminal and a Zinc Finger domain (ZnF) at the C-terminus. Real-time RT-PCR analysis showed that LvTAB2 was expressed in all tested tissues and the expression levels of LvTAB2 in gills and hemocytes were positively induced in response to LPS, Vibrio parahemolyticus and White Spot Syndrome Virus (WSSV) challenges. Dual luciferase reporter assays demonstrated that LvTAB2 was able to induce the expression of antimicrobial peptide (AMP) genes, including Drosophila Attacin A and shrimp Penaeidins. Interestingly, over-expression of LvTAB2 could up-regulate the promoter activities of L. vannamei Vago1, Vago3 and Vago4 genes in S2 cells. To our knowledge, it was the first report that TAB2 participated in innate immune signaling to regulate the expression of Vago genes in invertebrates. Moreover, RNAi-mediated knockdown of LvTAB2 enhanced sensitivity of L. vannamei to Vibrio parahaemolyticus infection and caused elevated virus loads after WSSV infection. We suggested that the LvTAB2 may play important roles in the shrimp innate immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56.

    Science.gov (United States)

    Duffy, Margaret R; Alonso-Padilla, Julio; John, Lijo; Chandra, Naresh; Khan, Selina; Ballmann, Monika Z; Lipiec, Agnieszka; Heemskerk, Evert; Custers, Jerome; Arnberg, Niklas; Havenga, Menzo; Baker, Andrew H; Lemckert, Angelique

    2018-01-01

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  2. Terminator Operon Reporter: combining a transcription termination switch with reporter technology for improved gene synthesis and synthetic biology applications.

    Science.gov (United States)

    Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison

    2016-05-25

    Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology.

  3. Repetitive Imaging of Reporter Gene Expression in the Lung

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Richard

    2003-10-01

    Full Text Available Positron emission tomographic imaging is emerging as a powerful technology to monitor reporter transgene expression in the lungs and other organs. However, little information is available about its usefulness for studying gene expression over time. Therefore, we infected 20 rats with a replication-deficient adenovirus containing a fusion gene encoding for a mutant Herpes simplex virus type-1 thymidine kinase and an enhanced green fluorescent protein. Five additional rats were infected with a control virus. Pulmonary gene transfer was performed via intratracheal administration of vector using a surfactant-based method. Imaging was performed 4–6 hr, and 4, 7, and 10 days after gene transfer, using 9-(4-[18F]-fluoro-3-hydroxymethylbutylguanine, an imaging substrate for the mutant kinase. Lung tracer uptake assessed with imaging was moderately but significantly increased 4–6 hr after gene transfer, was maximal after 4 days, and was no longer detectable by 10 days. The temporal pattern of transgene expression measured ex vivo with in vitro assays of thymidine kinase activity and green fluorescent protein was similar to imaging. In conclusion, positron emission tomography is a reliable new tool to evaluate the onset and duration of reporter gene expression noninvasively in the lungs of intact animals.

  4. Development of a radiation-responsive gene expression system

    International Nuclear Information System (INIS)

    Ogawa, Ryohei; Morii, Akihiro; Watanabe, Akihiko

    2013-01-01

    We have obtained a promoter enhancing expression of a gene of our interest connected downstream after activation in response to radiation stimulation and it could be used in radiogenetic therapy, a combination between radiotherapy and gene therapy. The promoter has been chosen out of a library of DNA fragments constructed by connecting the TATA box to randomly combined binding sequences of transcription factors that are activated in response to radiation. Although it was shown that the promoter activation was cell type specific, it turned out that radiation responsive promoters could be obtained for a different type of cells by using another set of transcription factor binding sequences, suggesting that the method would be feasible to obtain promoters functioning in any type of cells. Radiation reactivity of obtained promoters could be improved by techniques such as random introduction of point mutations. The improved promoters significantly enhanced expression of the luciferase gene connected downstream in response to radiation even in vivo, in addition, a gene cassette composed of one such promoter and the fcy::fur gene was confirmed useful for suicide gene therapy as shown in vitro simulation experiment, suggesting possible clinical application. (author)

  5. Type 1 plaminogen activator inhibitor gene: Functional analysis and glucocorticoid regulation of its promoter

    International Nuclear Information System (INIS)

    Van Zonneveld, A.J.; Curriden, S.A.; Loskutoff, D.J.

    1988-01-01

    Plasminogen activator inhibitor type 1 is an important component of the fibrinolytic system and its biosynthesis is subject to complex regulation. To study this regulation at the level of transcription, the authors have identified and sequenced the promoter of the human plasminogen activator inhibitor type 1 gene. Nuclease protection experiments were performed by using endothelial cell mRNA and the transcription initiation (cap) site was established. Sequence analysis of the 5' flanking region of the gene revealed a perfect TATA box at position -28 to position -23, the conserved distance from the cap site. Comparative functional studies with the firefly luciferase gene as a reporter gene showed that fragments derived from this 5' flanking region exhibited high promoter activity when transfected into bovine aortic endothelial cells and mouse Ltk - fibroblasts but were inactive when introduced into HeLa cells. These studies indicate that the fragments contain the plasminogen activator inhibitor type 1 promoter and that it is expressed in a tissue-specific manner. Although the fragments were also silent in rat FTO2B hepatoma cells, their promoter activity could be induced up to 40-fold with the synthetic glucocorticoid dexamethasone. Promoter deletion mapping experiments and studies involving the fusion of promoter fragments to a heterologous gene indicated that dexamethasone induction is mediated by a glucocorticoid responsive element with enhancer-like properties located within the region between nucleotides -305 and +75 of the plasminogen activator inhibitor type 1 gene

  6. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages.

    Directory of Open Access Journals (Sweden)

    Fattah Sotoodehnejadnematalahi

    Full Text Available Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM, and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold by long term hypoxia (5 days than by 1 day of hypoxia (48 fold. We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K, LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression.

  7. Cardiac-Specific Gene Expression Facilitated by an Enhanced Myosin Light Chain Promoter

    Directory of Open Access Journals (Sweden)

    Wolfgang Boecker

    2004-04-01

    Full Text Available Background: Adenoviral gene transfer has been shown to be effective in cardiac myocytes in vitro and in vivo. A major limitation of myocardial gene therapy is the extracardiac transgene expression. Methods: To minimize extracardiac gene expression, we have constructed a tissue-specific promoter for cardiac gene transfer, namely, the 250-bp fragment of the myosin light chain-2v (MLC-2v gene, which is known to be expressed in a tissue-specific manner in ventricular myocardium followed by a luciferase (luc reporter gene (Ad.4 × MLC250.Luc. Rat cardiomyocytes, liver and kidney cells were infected with Ad.4 × MLC.Luc or control vectors. For in vivo testing, Ad.4 × MLC250.Luc was injected into the myocardium or in the liver of rats. Kinetics of promoter activity were monitored over 8 days using a cooled CCD camera. Results: In vitro: By infecting hepatic versus cardiomyocyte cells, we found that the promoter specificity ratio (luc activity in cardiomyocytes per liver cells was 20.4 versus 0.9 (Ad.4 × MLC250.Luc vs. Ad.CMV. In vivo: Ad.4 × MLC250.Luc significantly reduced luc activity in liver (38.4-fold, lung (16.1-fold, and kidney (21.8-fold versus Ad.CMV (p = .01; whereas activity in the heart was only 3.8-fold decreased. The gene expression rate of cardiomyocytes versus hepatocytes was 7:1 (Ad.4 × MLC.Luc versus 1:1.4 (Ad.CMV.Luc. Discussion: This new vector may be useful to validate therapeutic approaches in animal disease models and offers the perspective for selective expression of therapeutic genes in the diseased heart.

  8. Molecular MR imaging of cancer gene therapy. Ferritin transgene reporter takes the stage

    International Nuclear Information System (INIS)

    Hasegawa, Sumitaka; Furukawa, Takako; Saga, Tsuneo

    2010-01-01

    Molecular imaging using magnetic resonance (MR) imaging has been actively investigated and made rapid progress in the past decade. Applied to cancer gene therapy, the technique's high spatial resolution allows evaluation of gene delivery into target tissues. Because noninvasive monitoring of the duration, location, and magnitude of transgene expression in tumor tissues or cells provides useful information for assessing therapeutic efficacy and optimizing protocols, molecular imaging is expected to become a critical step in the success of cancer gene therapy in the near future. We present a brief overview of the current status of molecular MR imaging, especially in vivo reporter gene imaging using ferritin and other reporters, discuss its application to cancer gene therapy, and present our research of MR imaging detection of electroporation-mediated cancer gene therapy using the ferritin reporter gene. (author)

  9. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  10. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Il Chung [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  11. Imaging gene expression in real-time using aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilchung [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster than in yeast precultured in glucose containing media. IMAGEtag RNA has relatively short half-life (5.5 min) in yeast. For imaging, the yeast cells are incubated with their ligands that are labeled with fluorescent dyes. To increase signal to noise, ligands have been separately conjugated with the FRET (Förster resonance energy transfer) pairs, Cy3 and Cy5. With these constructs, the transcribed aptamers can be imaged after activation of the promoter by galactose. FRET was confirmed with three different approaches, which were sensitized emission, acceptor photobleaching and donor lifetime by FLIM (fluorescence lifetime imaging

  12. Reporter gene bioassays in environmental analysis.

    Science.gov (United States)

    Köhler, S; Belkin, S; Schmid, R D

    2000-01-01

    In parallel to the continuous development of increasingly more sophisticated physical and chemical analytical technologies for the detection of environmental pollutants, there is a progressively more urgent need also for bioassays which report not only on the presence of a chemical but also on its bioavailability and its biological effects. As a partial fulfillment of that need, there has been a rapid development of biosensors based on genetically engineered bacteria. Such microorganisms typically combine a promoter-operator, which acts as the sensing element, with reporter gene(s) coding for easily detectable proteins. These sensors have the ability to detect global parameters such as stress conditions, toxicity or DNA-damaging agents as well as specific organic and inorganic compounds. The systems described in this review, designed to detect different groups of target chemicals, vary greatly in their detection limits, specificity, response times and more. These variations reflect on their potential applicability which, for most of the constructs described, is presently rather limited. Nevertheless, present trends promise that additional improvements will make microbial biosensors an important tool for future environmental analysis.

  13. Preliminary studies on gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan; Gao Yabing; Xiong Chengqi; Long Jianyin; Wang Huixin; Peng Ruiyun; Cui Xuemei

    2001-01-01

    Objective: To observed the efficiency of gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats. Methods: TGFβ1 sense and antisense gene expression vectors and adenovirus transfer vector were introduced into rat bronchus by way of intratracheal instillation. Results: At day 1.5 after TGFβ1 sense and antisense gene transfer, PCR amplification using neo gene-specific primer from lung tissue DNA was all positive. After day 5.5, 67% (2/3) of lung tissue DNA was positive. RNA dot blot hybridization indicated that TGFβ1 mRNA content of lung tissue transfected with pMAMneo-antiTGFβ1 gene decreased. Detection of lung hydroxyproline (Hyp) content after day 35 of gene transfer showed that even in lung of rats received pMAMneo-AntiTGFβ1 lipid complexes it raised remarkably (P 9 pfu/ml were instilled into bronchus at 0.5 ml per rat. After day 2 day 6, the lung tissues of all six rats (three per each group )expressed the transfected luciferase gene by luminometer. Conclusion: Cationic lipid-mediated TGFβ1 antisense gene therapy was a simple and easy method. It can slow down the course of pathogenesis of lung fibrosis. Replication-deficient recombinant adenovirus-mediated gene therapy of lung diseases is a good and efficient method

  14. Investigation of the mechanisms by which UV irradiation activates the tyrosinase gene

    International Nuclear Information System (INIS)

    Bao, Y.

    2000-04-01

    Tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) are the enzymes involved in melanin pigment synthesis. They are expressed specifically in melanocytic cells. UV irradiation is the major physiological stimulant of melanogenesis. Tyrosinase is the rate-limiting enzyme in melanin synthesis and its activity is regulated by UV irradiation in melanocytes. The molecular mechanism underlying the activation of tyrosinase by UV is still not clear. In this thesis, the effects of UV irradiation on tyrosinase, TRP-1 and TRP-2 gene expression in mouse B16 melanoma cells were studied as well as the effects of UV irradiation on the activity of the tyrosinase promoter in mouse, and human melanoma cells. UV irradiation caused an increase in tyrosinase mRNA level, without change in either TRP-1 or TRP-2 mRNA levels, as determined by Northern blot analysis. In order to determine whether UV- induced increase of tyrosinase mRNA expression involved modulation of tyrosinase promoter activity, transient transfection approaches involving a series of constructs containing either chloramphenicol acetyl transferase (CAT) or luciferase reporter genes linked to different lengths of the tyrosinase gene- promoter were used. UV irradiation specifically induced CAT gene expression from both the mouse and the human tyrosinase promoters, suggesting that UV irradiation induced the transcription of the tyrosinase gene. These observations indicated that the promoter region between -250 and -150 bp of the human tyrosinase promoter may contain important cis-regulatory elements involved in the UV response. To localise the cis-regulatory elements responsible for the UV response of the tyrosinase promoter, the 100-bp between -250 bp and -150 bp of the tyrosinase promoter was inserted upstream of a CAT reporter. It was shown that transcription from the 100-bp promoter fragment was activated by UV irradiation. Mutations of a potential cAMP response element (CRE) motif

  15. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.

    Science.gov (United States)

    Ma, Melissa; Crump, Doug; Farmahin, Reza; Kennedy, Sean W

    2015-02-01

    A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals. © 2014 SETAC.

  16. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    International Nuclear Information System (INIS)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-01

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  17. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data

    DEFF Research Database (Denmark)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme

    2018-01-01

    activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system......Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds......, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter...

  18. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei Wei [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006 (China); Tong, Hui Li; Sun, Xiao Feng; Hu, Qian; Yang, Yu; Li, Shu Feng [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Yan, Yun Qin, E-mail: yanyunqin@sohu.com [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Li, Guang Peng [The Key Laboratory of Mammal Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021 (China)

    2015-08-07

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1.

  19. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  20. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene.

    Science.gov (United States)

    Rim, Jong S; Kozak, Leslie P

    2002-09-13

    Thermogenesis against cold exposure in mammals occurs in brown adipose tissue (BAT) through mitochondrial uncoupling protein (UCP1). Expression of the Ucp1 gene is unique in brown adipocytes and is regulated tightly. The 5'-flanking region of the mouse Ucp1 gene contains cis-acting elements including PPRE, TRE, and four half-site cAMP-responsive elements (CRE) with BAT-specific enhancer elements. In the course of analyzing how these half-site CREs are involved in Ucp1 expression, we found that a DNA regulatory element for NF-E2 overlaps CRE2. Electrophoretic mobility shift assay and competition assays with the CRE2 element indicates that nuclear proteins from BAT, inguinal fat, and retroperitoneal fat tissue interact with the CRE2 motif (CGTCA) in a specific manner. A supershift assay using an antibody against the CRE-binding protein (CREB) shows specific affinity to the complex from CRE2 and nuclear extract of BAT. Additionally, Western blot analysis for phospho-CREB/ATF1 shows an increase in phosphorylation of CREB/ATF1 in HIB-1B cells after norepinephrine treatment. Transient transfection assay using luciferase reporter constructs also indicates that the two half-site CREs are involved in transcriptional regulation of Ucp1 in response to norepinephrine and cAMP. We also show that a second DNA regulatory element for NF-E2 is located upstream of the CRE2 region. This element, which is found in a similar location in the 5'-flanking region of the human and rodent Ucp1 genes, shows specific binding to rat and human NF-E2 by electrophoretic mobility shift assay with nuclear extracts from brown fat. Co-transfections with an Nfe2l2 expression vector and a luciferase reporter construct of the Ucp1 enhancer region provide additional evidence that Nfe2l2 is involved in the regulation of Ucp1 by cAMP-mediated signaling.

  1. Feasibility of sodium/iodide symporter gene as a new imaging reporter gene: comparison with HSV1-tk

    International Nuclear Information System (INIS)

    Shin, Jae Hoon; Chung, June-Key; Lee, Yong Jin; Kim, Kwang Il; Kang, Joo Hyun; Jeong, Jae Min; Lee, Dong Soo; Kim, Chul Woo; Lee, Myung Chul

    2004-01-01

    Positron emission tomography (PET) imaging reporter genes, such as HSV1-tk and D 2 receptor genes, make it possible to visualise gene expression non-invasively and repetitively in vivo. However, these systems require the synthesis of complicated substrates and the availability of expensive PET equipment. Expression of the sodium/iodide symporter (NIS) gene can be easily monitored with radioiodines and technetium-99m using a gamma camera. To evaluate the possibility of using NIS as an imaging reporter gene, we compared its characteristics with those of the conventional HSV1-tk gene. The CM cell line was made by transfecting the HSV1-tk gene into CT-26 (mouse colon carcinoma cell line). The CTN and CMN cell lines were then made by transfecting the NIS gene into CT-26 and CM. We measured the uptake of iodine-125 iodovinyldeoxyuridine ([ 125 I]IVDU) and 125 I to evaluate the expression of the HSV1-tk and NIS genes, respectively. Each cell line was injected into four flank sites in Balb/c mice. The biodistribution study was performed after intravenously injecting [ 125 I]IVDU and 131 I, and 131 I scintigraphy was performed for the evaluation of NIS expression. In vitro studies indicated that CTN and CMN had 40- to 79-fold and 150- to 256-fold higher uptake of 125 I than CT-26 and CM, respectively. Furthermore, CM and CMN showed 57- to 69-fold higher uptake of [ 125 I]IVDU than CT-26 and CTN. NIS gene expression and 125 I accumulation were found to be directly correlated (R 2 =0.923), as were HSV1-tk gene expression and [ 125 I]IVDU accumulation (R 2 =0.956). Calculated signal per unit NIS and HSV1-tk mRNA expression was 23,240±3,755 cpm and 34,039±5,346 cpm, respectively. In vivo study indicated that CTN and CMN had 2.3- and 5.8-fold higher uptake of 131 I than CT-26 and CM, and 1.8- and 3.5-fold higher uptake of [ 125 I]IVDU than CT-26 and CTN. Scintigraphy using 131 I easily visualised CTN and CMN tumours. In conclusion, the NIS gene may be viewed as an imaging

  2. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3' untranslated region and intronic cis-elements.

    Science.gov (United States)

    Muhle, Rebecca A; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J; Muhle, Michael E; Fidock, David A

    2009-11-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitised erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilising the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var subtelomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronised parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may result from the integrated UpsA promoter being largely silenced by the neighbouring cg6 promoter. Our analyses also revealed that the DownsA 3' untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA-promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyse promoter activity of Group A var genes, which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of var

  3. Enhanced transfection by antioxidative polymeric gene carrier that reduces polyplex-mediated cellular oxidative stress.

    Science.gov (United States)

    Lee, Min Sang; Kim, Nak Won; Lee, Kyuri; Kim, Hongtae; Jeong, Ji Hoon

    2013-06-01

    To test the hypothesis in which polyplex-induced oxidative stress may affect overall transfection efficiency, an antioxidative transfection system minimizing cellular oxidative stress was designed for enhanced transfection. An amphiphilic copolymer (PEI-PLGA) was synthesized and used as a micelle-type gene carrier containing hydrophobic antioxidant, α-tocopherol. Cellular oxidative stress and the change of mitochondrial membrane potential after transfection was measured by using a fluorescent probe (H₂DCFDA) and lipophilic cationic probe (JC-1), respectively. Transfection efficiency was determined by measuring a reporter gene (luciferase) expression level. The initial transfection study with conventional PEI/plasmid DNA polyplex showed significant generation of reactive oxygen species (ROS). The PEI-PLGA copolymer successfully carried out the simultaneous delivery of α-tocopherol and plasmid DNA (PEI-PLGA/Toco/pDNA polyplex) into cells, resulting in a significant reduction in cellular ROS generation after transfection and helped to maintain the mitochondrial membrane potential (ΔΨ). In addition, the transfection efficiency was dramatically increased using the antioxidative transfection system. This work showed that oxidative stress would be one of the important factors that should be considered in designing non-viral gene carriers and suggested a possible way to reduce the carrier-mediated oxidative stress, which consequently leads to enhanced transfection.

  4. The silkworm Bombyx mori cuticular protein CPR55 gene is regulated by the transcription factor βFTZ-F1

    Directory of Open Access Journals (Sweden)

    Md. Saheb Ali

    2016-01-01

    Full Text Available The insect cuticle is composed of various proteins and formed during the moult under a complex biological process that depends on the cross talk between hormone levels and gene expression. In the present study, we aimed to clarify the ecdysone-dependent temporal regulation mechanisms of cuticular proteins expression and the underlying control of Bombyx mori metamorphosis. The expression of CPR55 was observed from the W3 early stage and peaked at pupation when the ecdysteroid titre declined. CPR55 was induced by the ecdysone pulse, and their expression peaked at 24 h after transfer to a hormone free medium. Transcripts of CPR55 were neither observed after the 20E pulse treatment in the presence of cycloheximide nor after the addition of 20E in V4 wing discs. We analysed the upstream region of the CPR55 gene using a transient reporter assay with a gene gun system which identified only one βFTZ-F1 binding site important for cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of this element in the context of the 589-bp promoter fragment drastically decreased the reporter activity. The nuclear protein bound to βFTZ-F1 sites was identified by an electrophoretic mobility shift assay suggesting that CPR55 expression was regulated by βFTZ-F1 through the ecdysone pulse. The results confirmed that transcription factor, BmβFTZ-F1, binds to the cis-regulatory elements in the promoter of the gene coding for cuticle protein, CPR55, and regulates its expression during B. mori metamorphosis.

  5. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    Science.gov (United States)

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  6. A var gene promoter implicated in severe malaria nucleates silencing and is regulated by 3’ untranslated region and intronic cis-elements

    Science.gov (United States)

    Muhle, Rebecca A.; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J.; Muhle, Michael E.; Fidock, David A.

    2009-01-01

    Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitized erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilizing the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var sub-telomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronized parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may well result from the integrated UpsA promoter being largely silenced by the neighboring cg6 promoter. Our analyses also revealed that the DownsA 3’ untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyze promoter activity of Group A var genes which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of

  7. Identification and characterization of a silencer regulatory element in the 3'-flanking region of the murine CD46 gene.

    Science.gov (United States)

    Nomura, M; Tsujimura, A; Begum, N A; Matsumoto, M; Wabiko, H; Toyoshima, K; Seya, T

    2000-01-01

    The murine membrane cofactor protein (CD46) gene is expressed exclusively in testis, in contrast to human CD46, which is expressed ubiquitously. To elucidate the mechanism of differential CD46 gene expression among species, we cloned entire murine CD46 genomic DNA and possible regulatory regions were placed in the flanking region of the luciferase reporter gene. The reporter gene assay revealed a silencing activity not in the promoter, but in the 3'-flanking region of the gene and the silencer-like element was identified within a 0.2-kb region between 0.6 and 0.8 kb downstream of the stop codon. This silencer-like element was highly similar to that of the pig MHC class-I gene. The introduction of a mutation into this putative silencer element of murine CD46 resulted in an abrogation of the silencing effect. Electrophoretic mobility-shift assay indicated the presence of the binding molecule(s) for this silencer sequence in murine cell lines and tissues. A size difference of the protein-silencer-element complex was observed depending upon the solubilizers used for preparation of the nuclear extracts. A mutated silencer sequence failed to interact with the binding molecules. The level of the binding factor was lower in the testicular germ cells compared with other organs. Thus the silencer element and its binding factor may play a role in transcriptional regulation of murine CD46 gene expression. These results imply that the effects of the CD46 silencer element encompass the innate immune and reproductive systems, and in mice may determine the testicular germ-cell-dominant expression of CD46. PMID:11023821

  8. Evolutionary analysis of the kinesin light chain genes in the yellow fever mosquito Aedes aegypti: gene duplication as a source for novel early zygotic genes.

    Science.gov (United States)

    Biedler, James K; Tu, Zhijian

    2010-07-08

    The maternal zygotic transition marks the time at which transcription from the zygotic genome is initiated and a subset of maternal RNAs are progressively degraded in the developing embryo. A number of early zygotic genes have been identified in Drosophila melanogaster and comparisons to sequenced mosquito genomes suggest that some of these early zygotic genes such as bottleneck are fast-evolving or subject to turnover in dipteran insects. One objective of this study is to identify early zygotic genes from the yellow fever mosquito Aedes aegypti to study their evolution. We are also interested in obtaining early zygotic promoters that will direct transgene expression in the early embryo as part of a Medea gene drive system. Two novel early zygotic kinesin light chain genes we call AaKLC2.1 and AaKLC2.2 were identified by transcriptome sequencing of Aedes aegypti embryos at various time points. These two genes have 98% nucleotide and amino acid identity in their coding regions and show transcription confined to the early zygotic stage according to gene-specific RT-PCR analysis. These AaKLC2 genes have a paralogous gene (AaKLC1) in Ae. aegypti. Phylogenetic inference shows that an ortholog to the AaKLC2 genes is only found in the sequenced genome of Culex quinquefasciatus. In contrast, AaKLC1 gene orthologs are found in all three sequenced mosquito species including Anopheles gambiae. There is only one KLC gene in D. melanogaster and other sequenced holometabolous insects that appears to be similar to AaKLC1. Unlike AaKLC2, AaKLC1 is expressed in all life stages and tissues tested, which is consistent with the expression pattern of the An. gambiae and D. melanogaster KLC genes. Phylogenetic inference also suggests that AaKLC2 genes and their likely C. quinquefasciatus ortholog are fast-evolving genes relative to the highly conserved AaKLC1-like paralogs. Embryonic injection of a luciferase reporter under the control of a 1 kb fragment upstream of the AaKLC2.1 start

  9. Evolutionary analysis of the kinesin light chain genes in the yellow fever mosquito Aedes aegypti: gene duplication as a source for novel early zygotic genes

    Directory of Open Access Journals (Sweden)

    Tu Zhijian

    2010-07-01

    Full Text Available Abstract Background The maternal zygotic transition marks the time at which transcription from the zygotic genome is initiated and a subset of maternal RNAs are progressively degraded in the developing embryo. A number of early zygotic genes have been identified in Drosophila melanogaster and comparisons to sequenced mosquito genomes suggest that some of these early zygotic genes such as bottleneck are fast-evolving or subject to turnover in dipteran insects. One objective of this study is to identify early zygotic genes from the yellow fever mosquito Aedes aegypti to study their evolution. We are also interested in obtaining early zygotic promoters that will direct transgene expression in the early embryo as part of a Medea gene drive system. Results Two novel early zygotic kinesin light chain genes we call AaKLC2.1 and AaKLC2.2 were identified by transcriptome sequencing of Aedes aegypti embryos at various time points. These two genes have 98% nucleotide and amino acid identity in their coding regions and show transcription confined to the early zygotic stage according to gene-specific RT-PCR analysis. These AaKLC2 genes have a paralogous gene (AaKLC1 in Ae. aegypti. Phylogenetic inference shows that an ortholog to the AaKLC2 genes is only found in the sequenced genome of Culex quinquefasciatus. In contrast, AaKLC1 gene orthologs are found in all three sequenced mosquito species including Anopheles gambiae. There is only one KLC gene in D. melanogaster and other sequenced holometabolous insects that appears to be similar to AaKLC1. Unlike AaKLC2, AaKLC1 is expressed in all life stages and tissues tested, which is consistent with the expression pattern of the An. gambiae and D. melanogaster KLC genes. Phylogenetic inference also suggests that AaKLC2 genes and their likely C. quinquefasciatus ortholog are fast-evolving genes relative to the highly conserved AaKLC1-like paralogs. Embryonic injection of a luciferase reporter under the control of a

  10. Novel redox nanomedicine improves gene expression of polyion complex vector

    Directory of Open Access Journals (Sweden)

    Kazuko Toh, Toru Yoshitomi, Yutaka Ikeda and Yukio Nagasaki

    2011-01-01

    Full Text Available Gene therapy has generated worldwide attention as a new medical technology. While non-viral gene vectors are promising candidates as gene carriers, they have several issues such as toxicity and low transfection efficiency. We have hypothesized that the generation of reactive oxygen species (ROS affects gene expression in polyplex supported gene delivery systems. The effect of ROS on the gene expression of polyplex was evaluated using a nitroxide radical-containing nanoparticle (RNP as an ROS scavenger. When polyethyleneimine (PEI/pGL3 or PEI alone was added to the HeLa cells, ROS levels increased significantly. In contrast, when (PEI/pGL3 or PEI was added with RNP, the ROS levels were suppressed. The luciferase expression was increased by the treatment with RNP in a dose-dependent manner and the cellular uptake of pDNA was also increased. Inflammatory cytokines play an important role in ROS generation in vivo. In particular, tumor necrosis factor (TNF-α caused intracellular ROS generation in HeLa cells and decreased gene expression. RNP treatment suppressed ROS production even in the presence of TNF-α and increased gene expression. This anti-inflammatory property of RNP suggests that it may be used as an effective adjuvant for non-viral gene delivery systems.

  11. A Novel FOXE1 Mutation (R73S) in Bamforth–Lazarus Syndrome Causing Increased Thyroidal Gene Expression

    Science.gov (United States)

    Carré, Aurore; Hamza, Rasha T.; Kariyawasam, Dulanjalee; Guillot, Loïc; Teissier, Raphaël; Tron, Elodie; Castanet, Mireille; Dupuy, Corinne; El Kholy, Mohamed; Polak, Michel

    2014-01-01

    Background: Homozygous loss-of-function mutations in the FOXE1 gene have been reported in several patients with partial or complete Bamforth–Lazarus syndrome: congenital hypothyroidism (CH) with thyroid dysgenesis (usually athyreosis), cleft palate, spiky hair, with or without choanal atresia, and bifid epiglottis. Here, our objective was to evaluate potential functional consequences of a FOXE1 mutation in a patient with a similar clinical phenotype. Methods: FOXE1 was sequenced in eight patients with thyroid dysgenesis and cleft palate. Transient transfection was performed in HEK293 cells using the thyroglobulin (TG) and thyroid peroxidase (TPO) promoters in luciferase reporter plasmids to assess the functional impact of the FOXE1 mutations. Primary human thyrocytes transfected with wild type and mutant FOXE1 served to assess the impact of the mutation on endogenous TG and TPO expression. Results: We identified and characterized the function of a new homozygous FOXE1 missense mutation (p.R73S) in a boy with a typical phenotype (athyreosis, cleft palate, and partial choanal atresia). This new mutation located within the forkhead domain was inherited from the heterozygous healthy consanguineous parents. In vitro functional studies in HEK293 cells showed that this mutant gene enhanced the activity of the TG and TPO gene promoters (1.5-fold and 1.7-fold respectively vs. wild type FOXE1; p<0.05), unlike the five mutations previously reported in Bamforth–Lazarus syndrome. The gain-of-function effect of the FOXE1-p.R73S mutant gene was confirmed by an increase in endogenous TG production in primary human thyrocytes. Conclusion: We identified a new homozygous FOXE1 mutation responsible for enhanced expression of the TG and TPO genes in a boy whose phenotype is similar to that reported previously in patients with loss-of-function FOXE1 mutations. This finding further delineates the role for FOXE1 in both thyroid and palate development, and shows that enhanced gene

  12. [Myocardial single photon emission tomography imaging of reporter gene expression in rabbits].

    Science.gov (United States)

    Liu, Ying; Lan, Xiao-li; Zhang, Liang; Wu, Tao; Jiang, Ri-feng; Zhang, Yong-xue

    2009-06-01

    To explore the feasibility of single photon emission computed tomography (SPECT) detection of heart reporter gene expression and observed the optimal transfecting titer and imaging time by using herpes simplex virus 1-thymidine kinase (HSV1-tk) as reporter gene and 131I-2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (131I-FIAU) as reporter probe in rabbit myocardium. The recombinant Ad-tk carrying HSV1-tk gene and adenovirus (Ad) as vector was constructed and intramyocardially injected to rabbits at various concentrations (1 x 10(9) pfu, 5 x 10(8) pfu, 1 x 10(8) pfu, 5 x 10(7) pfu, 1 x 10(7) pfu). Two days later, rabbits were injected with 600 microCi 131I-FIAU in ear-margin vein and then underwent SPECT myocardium imaging for detection of HSV1-tk expression at 6 h, 24 h, 48 h and 72 h after injection, rabbits with 1 x 10(9) pfu Ad-tk injection were imaged at 96 h and 120 h. Rabbits were sacrificed after imaging and the total myocardial 131I-FIAU accumulation was quantified in percent of injected dose per gram myocardium (% ID/g). The myocardial Ad-tk expression was determined with RT-PCR. Reporter gene was detected by SPECT imaging in the injection site while not detected in the control myocardium and site remote from injection. RT-PCR results also evidenced HSV1-tk express in the injection site. The SPECT target/nontarget ratio was correlated with ex vivo gamma-counting (r2 = 0.933, Ppfu by SPECT imaging. The cardiac SPECT reporter gene imaging with HSV1-tk as reporter gene and 131I-FIAU as reporter probe is feasible.

  13. The cardiac calsequestrin gene transcription is modulated at the promoter by NFAT and MEF-2 transcription factors.

    Directory of Open Access Journals (Sweden)

    Rafael Estrada-Avilés

    Full Text Available Calsequestrin-2 (CASQ2 is the main Ca2+-binding protein inside the sarcoplasmic reticulum of cardiomyocytes. Previously, we demonstrated that MEF-2 and SRF binding sites within the human CASQ2 gene (hCASQ2 promoter region are functional in neonatal cardiomyocytes. In this work, we investigated if the calcineurin/NFAT pathway regulates hCASQ2 expression in neonatal cardiomyocytes. The inhibition of NFAT dephosphorylation with CsA or INCA-6, reduced both the luciferase activity of hCASQ2 promoter constructs (-3102/+176 bp and -288/+176 bp and the CASQ2 mRNA levels in neonatal rat cardiomyocytes. Additionally, NFATc1 and NFATc3 over-expressing neonatal cardiomyocytes showed a 2-3-fold increase in luciferase activity of both hCASQ2 promoter constructs, which was prevented by CsA treatment. Site-directed mutagenesis of the -133 bp MEF-2 binding site prevented trans-activation of hCASQ2 promoter constructs induced by NFAT overexpression. Chromatin Immunoprecipitation (ChIP assays revealed NFAT and MEF-2 enrichment within the -288 bp to +76 bp of the hCASQ2 gene promoter. Besides, a direct interaction between NFAT and MEF-2 proteins was demonstrated by protein co-immunoprecipitation experiments. Taken together, these data demonstrate that NFAT interacts with MEF-2 bound to the -133 bp binding site at the hCASQ2 gene promoter. In conclusion, in this work, we demonstrate that the Ca2+-calcineurin/NFAT pathway modulates the transcription of the hCASQ2 gene in neonatal cardiomyocytes.

  14. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  15. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4α

    International Nuclear Information System (INIS)

    Klapper, Maja; Boehme, Mike; Nitz, Inke; Doering, Frank

    2007-01-01

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4α (HNF-4α), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4α binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4α by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4α, that are both candidate genes for diabetes type 2, may be a powerful approach

  16. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, Maja [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Boehme, Mike [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Nitz, Inke [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany); Doering, Frank [Molecular Nutrition, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, D-24118 Kiel (Germany)

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  17. Evaluation of the Luciferase Assay-Based In Vitro Elicitation Test for Serum IgE

    Directory of Open Access Journals (Sweden)

    Ryosuke Nakamura

    2012-01-01

    Results: The area under the ROC curves was highest in the EXiLE test (0.977, followed by CAP-FEIA (0.926 and degranulation (0.810. At an optimal cutoff range (1.648-1.876 calculated from the ROC curve of the EXiLE test, sensitivity and specificity were 0.944 and 0.917, respectively. A 95% positive predictive value was given at a cutoff level of 2.054 (fold increase in luciferase expression by logistic regression analysis. Conclusions: In contrast to in vivo tests, the EXiLE test appears to be a useful tool in diagnosing patients suspected of having IgE-dependent EW allergy without the risk of severe systemic reactions.

  18. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    Science.gov (United States)

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  19. Regulation of laminin beta2 chain gene expression in human cancer cell lines

    DEFF Research Database (Denmark)

    Durkin, M E; Nielsen, F C; Loechel, F

    2001-01-01

    of the human laminin beta2 chain gene generates two isoforms of the 5' untranslated region of the beta2 chain mRNA. The translational efficiencies of the two laminin beta2 chain leaders did not differ significantly, when assayed by polysome profile analysis of endogenous clone A cell beta2 chain m......RNA, transient transfection of chimeric beta2 chain leader/luciferase expression plasmids in clone A cells, and translation of in vitro synthesized RNAs in rabbit reticulocyte lysates....

  20. In situ preparation of magnetic nonviral gene vectors and magnetofection in vitro

    International Nuclear Information System (INIS)

    Shi Yunfeng; Pang Yan; Su Yue; Zhu Xinyuan; Yan Deyue; Zhou Linzhu; Xiao Wangchuan; Wang Xiaoliang; Gu Hongchen; Wang Ruibin; Li Huiqin; Zhu Bangshang

    2010-01-01

    Magnetic nonviral gene vectors were in situ prepared in the presence of ferrous salts and hyperbranched poly(ethylenimine)s (HPEI) with different molecular weights. HPEI, one of the most promising nonviral vectors, was not only utilized as the nanoreactor and stabilizer to prepare magnetic nanoparticles, but also skillfully used as a base supplier to avoid introducing alkali hydroxide or ammonia. Magnetic nonviral gene vectors with various magnetite contents and saturation magnetizations were obtained by changing the weight ratio of HPEI to FeSO 4 ·7H 2 O and the molecular weight of HPEI. MTT assays suggested that the resulting magnetite/HPEI gene vectors had lower cytotoxicity compared with pure HPEI. The magnetite/HPEI nonviral gene vectors were used for magnetofection. It was found that the luciferase expression level mediated by magnetite/HPEI in COS-7 cells under a magnetic gradient field was approximately 13-fold greater than that of standard HPEI transfection.

  1. Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells.

    Science.gov (United States)

    Bastonero, Sonia; Gargouri, Myriem; Ortiou, Sandrine; Guéant, Jean-Louis; Merten, Marc D

    2005-11-01

    In vivo, tracheal gland serous cells highly express the cystic fibrosis transmembrane conductance regulator (cftr) gene. This gene is mutated in the lethal monogenic disease cystic fibrosis (CF). Clinical trials in which the human CFTR cDNA was delivered to the respiratory epithelia of CF patients have resulted in weak and transient gene expression. As CF is characterized by mucus inspissation, airway infection, and severe inflammation, we tested the hypothesis that inflammation and especially two cytokines involved in the Th1/Th2 inflammatory response, interleukin 4 (IL-4) and TNFalpha, could inhibit gene transfer efficiency using a model of human CF tracheal gland cells (CF-KM4) and Lipofectamine reagent as a transfection reagent. The specific secretory defects of CF-KM4 cells were corrected by Lipofectamine-mediated human CFTR gene transfer. However, this was altered when cells were pre-treated with IL-4 and TNFalpha. Inhibition of luciferase reporter gene expression by IL-4 and TNFalpha pre-treated CF-KM4 cells was measured by activity and real-time RT-PCR. Both cytokines induced similar and synergistic inhibition of transgene expression and activity. This cytokine-mediated inhibition could be prevented by anti-inflammatory agents such as glucocorticoids but not by non-steroidal (NSAI) agents. This data suggests that an inflammatory context generated by IL-4 and TNFalpha can inhibit human CFTR gene transfer in CF tracheal gland cells and that glucocorticoids may have a protecting action. Copyright (c) 2005 John Wiley & Sons, Ltd.

  2. Enhancing the response of CALUX and CAFLUX cell bioassays for quantitative detection of dioxin-like compounds

    Science.gov (United States)

    ZHAO, Bin; BASTON, David S.; KHAN, Elaine; SORRENTINO, Claudio; DENISON, Michael S.

    2011-01-01

    Reporter genes produce a protein product in transfected cells that can be easily measured in intact or lysed cells and they have been extensively used in numerous basic and applied research applications. Over the past 10 years, reporter gene assays have been widely accepted and used for analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like compounds in various types of matrices, such as biological, environmental, food and feed samples, given that high-resolution instrumental analysis techniques are impractical for large-scale screening analysis. The most sensitive cell-based reporter gene bioassay systems developed are the mechanism-based CALUX (Chemically Activated Luciferase Expression) and CAFLUX (Chemically Activated Fluorescent Expression) bioassays, which utilize recombinant cell lines containing stably transfected dioxin (AhR)-responsive firefly luciferase or enhanced green fluorescent protein (EGFP) reporter genes, respectively. While the current CALUX and CAFLUX bioassays are very sensitive, increasing their lower limit of sensitivity, magnitude of response and dynamic range for chemical detection would significantly increase their utility, particularly for those samples that contain low levels of dioxin-like HAHs (i.e., serum). In this study, we report that the addition of modulators of cell signaling pathways or modification of cell culture conditions results in significant improvement in the magnitude and overall responsiveness of the existing CALUX and CAFLUX cell bioassays. PMID:21394221

  3. Adaptation of Clostridium difficile toxin A for use as a protein translocation system

    Energy Technology Data Exchange (ETDEWEB)

    Kern, Stephanie M. [Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202 (United States); Feig, Andrew L., E-mail: afeig@chem.wayne.edu [Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202 (United States)

    2011-02-25

    Research highlights: {yields} Catalytic domain of TcdA was replaced by a luciferase reporter. {yields} Each functional domain retains activity in the context of the fusion protein. {yields} We provide evidence that reporter proteins are delivered into vero cells. {yields} System releases cargo into the cytosol, providing a powerful new biotechnology tool. -- Abstract: A cellular delivery system is a useful biotechnology tool, with many possible applications. Two derivatives of Clostridium difficile toxin A (TcdA) have been constructed (GFP-TcdA and Luc-TcdA), by fusing reporter genes to functional domains of TcdA, and evaluated for their ability to translocate their cargo into mammalian cells. The cysteine protease and receptor binding domains of TcdA have been examined and found to be functional when expressed in the chimeric construct. Whereas GFP failed to internalize in the context of the TcdA fusion, significant cellular luciferase activity was detected in vero cell lysates after treatment with Luc-TcdA. Treatment with bafilomycin A1, which inhibits endosomal acidification, traps the luciferase activity within endosomes. To further understand these results, clarified lysates were subjected to molecular weight sieving, demonstrating that active luciferase was released from Luc-TcdA after translocation and internal processing.

  4. Adaptation of Clostridium difficile toxin A for use as a protein translocation system

    International Nuclear Information System (INIS)

    Kern, Stephanie M.; Feig, Andrew L.

    2011-01-01

    Research highlights: → Catalytic domain of TcdA was replaced by a luciferase reporter. → Each functional domain retains activity in the context of the fusion protein. → We provide evidence that reporter proteins are delivered into vero cells. → System releases cargo into the cytosol, providing a powerful new biotechnology tool. -- Abstract: A cellular delivery system is a useful biotechnology tool, with many possible applications. Two derivatives of Clostridium difficile toxin A (TcdA) have been constructed (GFP-TcdA and Luc-TcdA), by fusing reporter genes to functional domains of TcdA, and evaluated for their ability to translocate their cargo into mammalian cells. The cysteine protease and receptor binding domains of TcdA have been examined and found to be functional when expressed in the chimeric construct. Whereas GFP failed to internalize in the context of the TcdA fusion, significant cellular luciferase activity was detected in vero cell lysates after treatment with Luc-TcdA. Treatment with bafilomycin A1, which inhibits endosomal acidification, traps the luciferase activity within endosomes. To further understand these results, clarified lysates were subjected to molecular weight sieving, demonstrating that active luciferase was released from Luc-TcdA after translocation and internal processing.

  5. A novel tandem reporter quantifies RNA polymerase II termination in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ayan Banerjee

    2009-07-01

    Full Text Available Making the correct choice between transcription elongation and transcription termination is essential to the function of RNA polymerase II, and fundamental to gene expression. This choice can be influenced by factors modifying the transcription complex, factors modifying chromatin, or signals mediated by the template or transcript. To aid in the study of transcription elongation and termination we have developed a transcription elongation reporter system that consists of tandem luciferase reporters flanking a test sequence of interest. The ratio of expression from the reporters provides a measure of the relative rates of successful elongation through the intervening sequence.Size matched fragments containing the polyadenylation signal of the human beta-actin gene (ACTB and the human beta-globin gene (HBB were evaluated for transcription termination using this new ratiometric tandem reporter assay. Constructs bearing just 200 base pairs on either side of the consensus poly(A addition site terminated 98% and 86% of transcription for ACTB and HBB sequences, respectively. The nearly 10-fold difference in read-through transcription between the two short poly(A regions was eclipsed when additional downstream poly(A sequence was included for each gene. Both poly(A regions proved very effective at termination when 1100 base pairs were included, stopping 99.6% of transcription. To determine if part of the increased termination was simply due to the increased template length, we inserted several kilobases of heterologous coding sequence downstream of each poly(A region test fragment. Unexpectedly, the additional length reduced the effectiveness of termination of HBB sequences 2-fold and of ACTB sequences 3- to 5-fold.The tandem construct provides a sensitive measure of transcription termination in human cells. Decreased Xrn2 or Senataxin levels produced only a modest release from termination. Our data support overlap in allosteric and torpedo mechanisms

  6. LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression.

    Directory of Open Access Journals (Sweden)

    Nicholas S Kirkby

    Full Text Available There are two schools of thought regarding the cyclooxygenase (COX isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF1α and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF1α, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.

  7. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  8. Considerations for potency equivalent calculations in the Ah receptor-based CALUX bioassay: normalization of superinduction results for improved sample potency estimation.

    Science.gov (United States)

    Baston, David S; Denison, Michael S

    2011-02-15

    The chemically activated luciferase expression (CALUX) system is a mechanistically based recombinant luciferase reporter gene cell bioassay used in combination with chemical extraction and clean-up methods for the detection and relative quantitation of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like halogenated aromatic hydrocarbons in a wide variety of sample matrices. While sample extracts containing complex mixtures of chemicals can produce a variety of distinct concentration-dependent luciferase induction responses in CALUX cells, these effects are produced through a common mechanism of action (i.e. the Ah receptor (AhR)) allowing normalization of results and sample potency determination. Here we describe the diversity in CALUX response to PCDD/Fs from sediment and soil extracts and not only report the occurrence of superinduction of the CALUX bioassay, but we describe a mechanistically based approach for normalization of superinduction data that results in a more accurate estimation of the relative potency of such sample extracts. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Early growth response 4 is involved in cell proliferation of small cell lung cancer through transcriptional activation of its downstream genes.

    Directory of Open Access Journals (Sweden)

    Taisuke Matsuo

    Full Text Available Small cell lung cancer (SCLC is aggressive, with rapid growth and frequent bone metastasis; however, its detailed molecular mechanism remains poorly understood. Here, we report the critical role of early growth factor 4 (EGR4, a DNA-binding, zinc-finger transcription factor, in cell proliferation of SCLC. EGR4 overexpression in HEK293T cells conferred significant upregulation of specific splice variants of the parathyroid hormone-related protein (PTHrP gene, resulting in enhancement of the secretion of PTHrP protein, a known mediator of osteolytic bone metastasis. More importantly, depletion of EGR4 expression by siRNA significantly suppressed growth of the SCLC cell lines, SBC-5, SBC-3 and NCI-H1048. On the other hand, introduction of EGR4 into NIH3T3 cells significantly enhanced cell growth. We identified four EGR4 target genes, SAMD5, RAB15, SYNPO and DLX5, which were the most significantly downregulated genes upon depletion of EGR4 expression in all of the SCLC cells examined, and demonstrated the direct recruitment of EGR4 to their promoters by ChIP and luciferase reporter analysis. Notably, knockdown of the expression of these genes by siRNA remarkably suppressed the growth of all the SCLC cells. Taken together, our findings suggest that EGR4 likely regulates the bone metastasis and proliferation of SCLC cells via transcriptional regulation of several target genes, and may therefore be a promising target for the development of anticancer drugs for SCLC patients.

  10. [miR-182 promotes cell proliferation of cervical cancer cells by targeting adenomatous polyposis coli (APC) gene].

    Science.gov (United States)

    Li, Pei; Hu, Jing; Zhang, Ying; Li, Jianping; Dang, Yunzhi; Zhang, Rui; Wei, Lichun; Shi, Mei

    2018-02-01

    Objective To investigate the role and mechanism of microRNA-182 (miR-182) in the proliferation of cervical cancer cells. Methods With liposome-mediated transient transfection method, the level of miR-182 in HeLa and SiHa cells was increased or decreased. CCK-8 assay and colony formation assay were used to observe the effect of miR-182 on the proliferation of cervical cancer cells. Using bioinformatics predictions, real-time quantitative PCR, and dual luciferase reporter assay, we clarified the role of miR-182 in posttranscriptional regulation of adenomatous polyposis coli (APC) gene and its effect on the downstream molecules (c-Myc and cyclin D1) of Wnt singling pathway. Results Up-regulation of miR-182 significantly promoted the proliferation of cervical cancer cells, while down-regulation of miR-182 significantly inhibited the proliferation of cervical cancer cells. Over-expression of miR-182 inhibited the expression of APC gene in cervical cancer cells and the regulation of miR-182 affected the expression of canonical Wnt signaling pathway downstream molecules in cervical cancer cells. Conclusion The miR-182 stimulates canonical Wnt signaling pathway by targeting APC gene and enhances the proliferation of cervical cancer cells.

  11. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-01-01

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin S45F -dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  12. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  13. A novel binary T-vector with the GFP reporter gene for promoter characterization.

    Directory of Open Access Journals (Sweden)

    Shu-Ye Jiang

    Full Text Available Several strategies have been developed to clone PCR fragments into desired vectors. However, most of commercially available T-vectors are not binary vectors and cannot be directly used for Agrobacterium-mediated plant genetic transformation. In this study, a novel binary T-vector was constructed by integrating two AhdI restriction sites into the backbone vector pCAMBIA 1300. The T-vector also contains a GFP reporter gene and thus, can be used to analyze promoter activity by monitoring the reporter gene. On the other hand, identification and characterization of various promoters not only benefit the functional annotation of their genes but also provide alternative candidates to be used to drive interesting genes for plant genetic improvement by transgenesis. More than 1,000 putative pollen-specific rice genes have been identified in a genome-wide level. Among them, 67 highly expressed genes were further characterized. One of the pollen-specific genes LOC_Os10g35930 was further surveyed in its expression patterns with more details by quantitative real-time reverse-transcription PCR (qRT-PCR analysis. Finally, its promoter activity was further investigated by analyzing transgenic rice plants carrying the promoter::GFP cassette, which was constructed from the newly developed T-vector. The reporter GFP gene expression in these transgenic plants showed that the promoter was active only in mature but not in germinated pollens.

  14. Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-equol-induced activation of Nrf2/ARE in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available S-(-equol, a natural product of the isoflavone daidzein, has been reported to offer cytoprotective effects with respect to the cardiovascular system, but how this occurs is unclear. Interestingly, S-(-equol is produced by the human gut, suggesting a role in physiological processes. We report that treatment of human umbilical vein endothelial cells and EA.hy926 cells with S-(-equol induces ARE-luciferase reporter gene activity that is dose and time dependent. S-(-equol (10-250 nM increases nuclear factor-erythroid 2-related factor 2 (Nrf2 as well as gene products of Nrf2 target genes heme oxygenase-1 (HO-1 and NAD(PH (nicotinamide-adenine-dinucleotide-phosphate quinone oxidoreductase 1 (NQO1. Endothelial cells transfected with an HA-Nrf2 expression plasmid had elevated HA-Nrf2, HO-1, and NQO1 in response to S-(-equol exposure. S-(-equol treatment affected Nrf2 mRNA only slightly but significantly increased HO-1 and NQO1 mRNA. The pretreatment of cells with specific ER inhibitors or PI3K/Akt (ICI182,780 and LY294002 increased Nrf2, HO-1, and NQO1 protein, impaired nuclear translocation of HA-Nrf2, and decreased ARE-luciferase activity. Identical experiments were conducted with daidzein, which had effects similar to S-(-equol. In addition, DPN treatment (an ERβ agonist induced the ARE-luciferase reporter gene, promoting Nrf2 nuclear translocation. Cell pretreatment with an ERβ antagonist (PHTPP impaired S-(-equol-induced Nrf2 activation. Pre-incubation of cells followed by co-treatment with S-(-equol significantly improved cell survival in response to H2O2 or tBHP and reduced apoptotic and TUNEL-positively-stained cells. Notably, the ability of S-(-equol to protect against H2O2-induced cell apoptosis was attenuated in cells transfected with an siRNA against Nrf2. Thus, beneficial effects of S-(-equol with respect to cytoprotective antioxidant gene activation may represent a novel strategy to prevent and treat cardiovascular diseases.

  15. Biological Education of IVFRU and FIAU for HSV1-TK Reporter Gene Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Hee; Kim, Eun Jung; Lee, Eun Ah; Lee, Jong Chan; Choi, Tae Hyun; Lee, Kyo Chul; An, Gwang Il; Cheon, Gi Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    The Herpes Simplex Virus Type1-thymidine kinase (HSV1-TK) system is a useful gene therapy monitoring method. HSV1-TK is one of the most widely used effector gene systems used for imaging gene expression, in association with its use as a reporter gene. It has resulted the development of a number of radiolabeled HSV1-TK substrates for the non-invasive detection of HSV1-TK expression. In non-invasive imaging of the HSV1-TK system, many nucleoside derivatives have been developed as prodrugs for tumor proliferation imaging or as anti-viral drugs. Prodrug activation or sucide gene therapy has been shown to be successful in potentiating the therapeutic index by sensitizing genetically modified tumor cells to various prodrugs or enhancing the action of commonly used chemotherapeutic agents. The most studied prodrug activation approaches involve transfection of tumors with HSV1-TK gene. (Z)-5-(2-iodovinyl)-2'-fluoro- 2'-deoxyuridine (IVFRU) possesses a 2'-fluoro substituent in the ribose configuration, is considered to protect IVFRU from enzyme mediated degradation in vivo. It is obviously potential substrates for HSV1-TK imaging. 2'-Fiuoro-2'-deoxy-1-{beta}-D-arabinofuranosyl- 5-iodo-uridine (FIAU), an anticancer drug widely used in clinical practice, is an analogue of thymidine. In a series of studies using adenovirus vector for gene transfer described the appropriate combination of exogenously introduced HSV1-TK as a 'marker/reporter gene' and radiolabelled FIAU as a 'marker substrate/reporter probe' for monitoring gene therapy and gene expression.

  16. Biological Education of IVFRU and FIAU for HSV1-TK Reporter Gene Monitoring

    International Nuclear Information System (INIS)

    Hong, Su Hee; Kim, Eun Jung; Lee, Eun Ah; Lee, Jong Chan; Choi, Tae Hyun; Lee, Kyo Chul; An, Gwang Il; Cheon, Gi Jeong

    2006-01-01

    The Herpes Simplex Virus Type1-thymidine kinase (HSV1-TK) system is a useful gene therapy monitoring method. HSV1-TK is one of the most widely used effector gene systems used for imaging gene expression, in association with its use as a reporter gene. It has resulted the development of a number of radiolabeled HSV1-TK substrates for the non-invasive detection of HSV1-TK expression. In non-invasive imaging of the HSV1-TK system, many nucleoside derivatives have been developed as prodrugs for tumor proliferation imaging or as anti-viral drugs. Prodrug activation or sucide gene therapy has been shown to be successful in potentiating the therapeutic index by sensitizing genetically modified tumor cells to various prodrugs or enhancing the action of commonly used chemotherapeutic agents. The most studied prodrug activation approaches involve transfection of tumors with HSV1-TK gene. (Z)-5-(2-iodovinyl)-2'-fluoro- 2'-deoxyuridine (IVFRU) possesses a 2'-fluoro substituent in the ribose configuration, is considered to protect IVFRU from enzyme mediated degradation in vivo. It is obviously potential substrates for HSV1-TK imaging. 2'-Fiuoro-2'-deoxy-1-β-D-arabinofuranosyl- 5-iodo-uridine (FIAU), an anticancer drug widely used in clinical practice, is an analogue of thymidine. In a series of studies using adenovirus vector for gene transfer described the appropriate combination of exogenously introduced HSV1-TK as a 'marker/reporter gene' and radiolabelled FIAU as a 'marker substrate/reporter probe' for monitoring gene therapy and gene expression

  17. hNIS-IRES-eGFP Dual Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Jiantu Che

    2005-04-01

    Full Text Available The human and rodent sodium iodide symporters (NIS have recently been cloned and are being investigated as potential therapeutic and reporter genes. We have extended this effort by constructing an internal ribosomal entry site (IRES-linked human NIS (hNIS-enhanced green fluorescent protein (eGFP hybrid reporter gene for both nuclear and optical imaging. A self-inactivating retroviral vector, termed pQCNIG, containing hNIS-IRES-eGFP dual reporter gene, driven by a constitutive CMV promoter, was constructed and used to generate RG2-pQCNIG cells and RG2-pQCNIG tumors. 131I-iodide and 99mTcO4-pertechnetate accumulation studies plus fluorescence microscopy and intensity assays were performed in vitro, and gamma camera imaging studies in RG2-pQCNIG and RG2 tumor-bearing athymic rats were performed. RG2-pQCNIG cells expressed high levels of hNIS protein and showed high intensity of eGFP fluorescence compared with RG2 wild-type cells. RG2-pQCNIG cells accumulated Na131I and 99mTcO4– to a 50:1 and a 170:1 tissue/medium ratio at 10 min, compared with 0.8:1.2 tissue/medium ratio in wild-type RG2 cells. A significant correlation between radiotracer accumulation and eGFP fluorescence intensity was demonstrated. RG2-pQCNIG and RG2 tumors were readily differentiated by in vivo gamma camera imaging; radiotracer uptake increased in RG2-pQCNIG but declined in RG2 tumors over the 50-min imaging period. Stomach and thyroid were the major organs of radionuclide accumulation. The IRES-linked hNIS-eGFP dual reporter gene is functional and stable in transduced RG2-pQCNIG cells. Optical and nuclear imaging of tumors produced from these cell lines provides the opportunity to monitor tumor growth and response to therapy. These studies indicate the potential for a wider application of hNIS reporter imaging and translation into patient studies using radioisotopes that are currently available for human use for both SPECT and PET imaging.

  18. The E-screen test and the MELN gene-reporter assay used for determination of estrogenic activity in fruits and vegetables in relation to pesticide residues.

    Science.gov (United States)

    Schilirò, Tiziana; Porfido, Arianna; Longo, Annalisa; Coluccia, Sara; Gilli, Giorgio

    2013-12-01

    Endocrine-disrupting chemicals (EDCs) may lead to adverse systemic effects by interfering with normal hormone homeostasis, and diet is considered to be among the main routes of EDC exposure. The present study investigated the total estrogenic activity of fruits and vegetables by calculating the 17-β-estradiol equivalent quantity (EEQ) using two in vitro tests: the human breast cancer cell line (MCF-7 BUS) proliferation assay (E-screen test) and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay. Of the 24 analyzed fruits and vegetables, 14 contained from 1 to 4 pesticide residues in concentrations ranging from 0.02 to 1.19 ppm, whereas the other 10 did not contain any pesticide residues. The EEQ values for all positive samples ranged from 0.010 to 0.616 μg/100g for the above in vitro tests. Our study demonstrates that estrogenic activity was present in fruits and vegetables and that the concentration of allowable pesticide residues and EEQ values were positively correlated; however, no correlation was found by comparing the estrogenic activity and the intrinsic content of phytoestrogens obtained from the available literature. A theoretical adult dietary intake of 0.7-0.9 ng EEQ/L/day from fruits and vegetables was calculated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    Directory of Open Access Journals (Sweden)

    Mallya Meera

    2008-09-01

    Full Text Available Abstract Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD. This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC. This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C and not on their own.

  20. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  1. Local Gene Delivery System by Bubble Liposomes and Ultrasound Exposure into Joint Synovium

    Directory of Open Access Journals (Sweden)

    Yoichi Negishi

    2011-01-01

    Full Text Available Recently, we have developed novel polyethylene glycol modified liposomes (bubble liposomes; BL entrapping an ultrasound (US imaging gas, which can work as a gene delivery tool with US exposure. In this study, we investigated the usefulness of US-mediated gene transfer systems with BL into synoviocytes in vitro and joint synovium in vivo. Highly efficient gene transfer could be achieved in the cultured primary synoviocytes transfected with the combination of BL and US exposure, compared to treatment with plasmid DNA (pDNA alone, pDNA plus BL, or pDNA plus US. When BL was injected into the knee joints of mice, and US exposure was applied transcutaneously to the injection site, highly efficient gene expression could be observed in the knee joint transfected with the combination of BL and US exposure, compared to treatment with pDNA alone, pDNA plus BL, or pDNA plus US. The localized and prolonged gene expression was also shown by an in vivo luciferase imaging system. Thus, this local gene delivery system into joint synovium using the combination of BL and US exposure may be an effective means for gene therapy in joint disorders.

  2. TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    Xu Xuewen

    2011-01-01

    Full Text Available Abstract Background TEAD1 (TEA domain family member 1 is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown. Results In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1. Conclusions Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.

  3. Constant pH Accelerated Molecular Dynamics Investigation of the pH Regulation Mechanism of Dinoflagellate Luciferase.

    Science.gov (United States)

    Donnan, Patrick H; Ngo, Phong D; Mansoorabadi, Steven O

    2018-01-23

    The bioluminescence reaction in dinoflagellates involves the oxidation of an open-chain tetrapyrrole by the enzyme dinoflagellate luciferase (LCF). The activity of LCF is tightly regulated by pH, where the enzyme is essentially inactive at pH ∼8 and optimally active at pH ∼6. Little is known about the mechanism of LCF or the structure of the active form of the enzyme, although it has been proposed that several intramolecularly conserved histidine residues in the N-terminal region are important for the pH regulation mechanism. Here, constant pH accelerated molecular dynamics was employed to gain insight into the conformational activation of LCF induced by acidification.

  4. SPECT imaging of cardiac reporter gene expression in living rabbits

    International Nuclear Information System (INIS)

    Liu Ying; Lan Xiaoli; Zhang Liang; Wu Tao; Jiang Rifeng; Zhang Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine kinase (HSVI-tk) reporter gene in rabbits myocardium by using the reporter probe 131 I-2'-fluoro-2'-deoxy-l-β-D-arabinofuranosyl-5-iodouracil ( 131 I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131 I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1xl0 9 , 5x10 8 , 1x10 8 , 5x10 7 and 1x10 7 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1x10 9 , 5x10 8 , 1x10 8 , 5x10 7 , 1x10 7 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131 I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse transcription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSVI-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131 I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images quality was obtained at 24-48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5x10 7 pfu of virus titer. The result could be set better in 1-5x10 8 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSVI-tk/ 131 I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter

  5. Early Infantile Leigh-like Gene Defects Have a Poor Prognosis: Report and Review

    Directory of Open Access Journals (Sweden)

    Majid Alfadhel

    2017-10-01

    Full Text Available Solute carrier family 19 (thiamine transporter, member 3 ( SCL19A3 gene defect produces an autosomal recessive neurodegenerative disorder associated with different phenotypes and acronyms. One of the common presentations is early infantile lethal Leigh-like syndrome. We report a case of early infantile Leigh-like SLC19A3 gene defects of patients who died at 4 months of age with no response to a high dose of biotin and thiamine. In addition, we report a novel mutation that was not reported previously. Finally, we review the literature regarding early infantile Leigh-like SLC19A3 gene defects and compare the literature with our patient.

  6. Comparison of in vitro hormone activities of novel flame retardants TBB, TBPH and their metabolites TBBA and TBMEPH using reporter gene assays.

    Science.gov (United States)

    Klopčič, Ivana; Skledar, Darja Gramec; Mašič, Lucija Peterlin; Dolenc, Marija Sollner

    2016-10-01

    The anti-androgenic and anti-thyroid hormonal activities of the two novel brominated flame retardants, TBB and TBPH and of their metabolites TBBA and TBMEPH have been compared using the luciferase reporter gene assays. Only the parent compounds TBB and TBPH exhibited anti-glucocorticoid activity with IC50 values of 1.9 μM and 0.3 μM. Furthermore, mode of action for these two compounds is by direct competing to the glucocorticoid receptor (GR) with IC50 values of 0.03 μM and 0.002 μM. All four tested compounds possess anti-androgenic and anti-thyroid hormonal activities, without agonist activities on the respective receptors. Anti-androgenic activities with IC50 values of 43.5 μM, 0.1 μM, 47.5 μM and 1.3 μM were found for TBB, TBPH, TBBA and TBMEPH. The anti-thyroid hormonal IC50 values of 37.5 μM, 0.1 μM, 22.8 μM and 32.3 μM for TBB, TBPH, TBBA and TBMEPH, together with the above quoted results, indicate that metabolism can modify anti-androgenic, anti-glucocorticoid and anti-thyroid hormonal effects of these novel brominated flame retardants. Furthermore, the parent flame retardants are shown to be able to disrupt the function of the GR as antagonists by direct competition to the receptor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A luciferase-based assay for rapid assessment of drug activity against Mycobacterium tuberculosis including monitoring of macrophage viability.

    Science.gov (United States)

    Larsson, Marie C; Lerm, Maria; Ängeby, Kristian; Nordvall, Michaela; Juréen, Pontus; Schön, Thomas

    2014-11-01

    The intracellular (IC) effect of drugs against Mycobacterium tuberculosis (Mtb) is not well established but increasingly important to consider when combining current and future multidrug regimens into the best possible treatment strategies. For this purpose, we developed an IC model based on a genetically modified Mtb H37Rv strain, expressing the Vibrio harvei luciferase (H37Rv-lux) infecting the human macrophage like cell line THP-1. Cells were infected at a low multiplicity of infection (1:1) and subsequently exposed to isoniazid (INH), ethambutol (EMB), amikacin (AMI) or levofloxacin (LEV) for 5days in a 96-well format. Cell viability was evaluated by Calcein AM and was maintained throughout the experiment. The number of viable H37Rv-lux was determined by luminescence and verified by a colony forming unit analysis. The results were compared to the effects of the same drugs in broth cultures. AMI, EMB and LEV were significantly less effective intracellularly (MIC90: >4mg/L, 8mg/L and 2mg/L, respectively) compared to extracellularly (MIC90: 0.5mg/L for AMI and EMB; 0.25mg/L for LEV). The reverse was the case for INH (IC: 0.064mg/L vs EC: 0.25mg/L). In conclusion, this luciferase based method, in which monitoring of cell viability is included, has the potential to become a useful tool while evaluating the intracellular effects of anti-mycobacterial drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. NGX6 gene mediated by promoter methylation as a potential molecular marker in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Shen Shourong

    2010-04-01

    Full Text Available Abstract Background Nasopharyngeal carcinoma associated gene 6 (NGX6 is down-regulated in most colon cancer cell lines and tumor tissues when compared with their normal tissue samples. As a novel suppress tumor gene, it could inhibit colon cancer cell growth and cell cycle progression. However, little is known about the transcriptional mechanisms controlling NGX6 gene expression. Recent findings suggest that epigenetic inactivation of multiple tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC. In this study, we explored the role of DNA methylation in regulation of NGX6 transcription. Methods In the present study, we cloned the NGX6 promoter with characteristics of a CpG island by luciferase reporter assay. Then, the CpG methylation status around the NGX6 promoter region in colon cancer cell lines and colorectal tumor tissues was examined by methylation-specific PCR and bisulfite DNA sequencing. Finally, 5-Aza-2'-deoxycytidine (5-Aza-dC treatment was used to confirm the correlation between NGX6 promoter methylation and its gene inactivation. Results The sequence spanning positions -157 to +276 was identified as the NGX6 promoter, in which no canonical TATA boxes were found, while two CAAT boxes and GC boxes were discovered. Methylation status was observed more frequently in 40 colorectal cancer samples than in 40 adjacent normal mucosa samples (18/40 versus 7/40; P Conclusions Down-regulation of NGX6 gene is related to the promoter methylation. DNA methylation of NGX6 promoter might be a potential molecular marker for diagnosis or prognosis, or serve as a therapeutic target.

  9. SRY-box-containing gene 2 regulation of nuclear receptor tailless (Tlx) transcription in adult neural stem cells.

    Science.gov (United States)

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M; Evans, Ronald M; Gage, Fred H

    2012-02-17

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs.

  10. SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells*

    Science.gov (United States)

    Shimozaki, Koji; Zhang, Chun-Li; Suh, Hoonkyo; Denli, Ahmet M.; Evans, Ronald M.; Gage, Fred H.

    2012-01-01

    Adult neurogenesis is maintained by self-renewable neural stem cells (NSCs). Their activity is regulated by multiple signaling pathways and key transcription factors. However, it has been unclear whether these factors interplay with each other at the molecular level. Here we show that SRY-box-containing gene 2 (Sox2) and nuclear receptor tailless (TLX) form a molecular network in adult NSCs. We observed that both Sox2 and TLX proteins bind to the upstream region of Tlx gene. Sox2 positively regulates Tlx expression, whereas the binding of TLX to its own promoter suppresses its transcriptional activity in luciferase reporter assays. Such TLX-mediated suppression can be antagonized by overexpressing wild-type Sox2 but not a mutant lacking the transcriptional activation domain. Furthermore, through regions involved in DNA-binding activity, Sox2 and TLX physically interact to form a complex on DNAs that contain a consensus binding site for TLX. Finally, depletion of Sox2 revealed the potential negative feedback loop of TLX expression that is antagonized by Sox2 in adult NSCs. These data suggest that Sox2 plays an important role in Tlx transcription in cultured adult NSCs. PMID:22194602

  11. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.

    2016-06-14

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  12. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    KAUST Repository

    Rao, Pavitra N.; Santos, Jorge M.; Pain, Arnab; Templeton, Thomas J.; Mair, Gunnar R.

    2016-01-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  13. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Delta-like 1/fetal antigen 1(DLK1/FA1) inhibits BMP2 induced osteoblast differentiation through modulation of NFκB signaling pathway

    DEFF Research Database (Denmark)

    Qiu, Weimin; Abdallah, Basem; Kassem, Moustapha

    DLK1/FA1 (delta-like 1/fetal antigen-1) is a negative regulator of bone mass that acts to inhibit osteoblast differentiation and stimulate osteoclast differentiation. However, the molecular mechanisms underlying these effects are not known. Thus, we studied the effect of DLK1/FA1 on different...... osteogenic factors-induced osteoblast differentiation. We identified DLK1/FA1 as an inhibitor of BMP2-induced osteogenesis in mouse myoblast C2C12 cells. Stable overexpression of DLK1/FA1 in C2C12 cells or the addition of its soluble form protein FA1 significantly inhibited BMP2-induced osteogenesis...... as assessed by reduced Alp activity and osteogenic gene expression including Alp, Col1a1, Runx2 and Bglap. In addition, DLK1/FA1 inhibited BMP signaling as demonstrated by reduced gene expression of BMP-responsive genes: Junb and Id1, reduced BMP2 induced luciferase activity in C2C12 BMP luciferase reporter...

  15. mQTL-seq and classical mapping implicates the role of an AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family gene in Ascochyta blight resistance of chickpea.

    Science.gov (United States)

    Kumar, Kamal; Purayannur, Savithri; Kaladhar, Vemula Chandra; Parida, Swarup Kumar; Verma, Praveen Kumar

    2018-03-01

    Ascochyta blight (AB) caused by the fungal pathogen Ascochyta rabiei is a serious foliar disease of chickpea (Cicer arietinum L.). Despite many genetic studies on chickpea-Ascochyta interaction, genome-wide scan of chickpea for the identification of AB-associated quantitative trait loci (QTLs) and their gene(s) has not been accomplished. To elucidate narrow QTLs for AB resistance, here, we report the use of multiple QTL-sequencing approach on 2 sets of extreme AB phenotype bulks derived from Cicer intraspecific and interspecific crosses. Two major QTLs, qABR4.1 and qABR4.2, and a minor QTL, qABR4.3, were identified on assembled chickpea pseudomolecule 4. We narrowed qABR4.1 to a "robust region" at 4.568-4.618 Mb through mapping on a larger intraspecific cross-derived population and comparative analysis. Among 4 genes, the CaAHL18 gene showed higher expression under Ascochyta stress in AB resistant parent suggesting that it is the candidate gene under "robust qABR4.1." Dual-luciferase assay with CaAHL18 polymorphic cis-regulatory sequences showed that allelic variation is associated with higher expression. Thus, our findings on chickpea-Ascochyta interaction have narrowed down AB resistance associated QTLs on chickpea physical map. The narrowed QTLs and gene-associated markers will help in biotechnological and breeding programs for chickpea improvement. © 2018 John Wiley & Sons Ltd.

  16. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  17. Reconstructing Dynamic Promoter Activity Profiles from Reporter Gene Data.

    Science.gov (United States)

    Kannan, Soumya; Sams, Thomas; Maury, Jérôme; Workman, Christopher T

    2018-03-16

    Accurate characterization of promoter activity is important when designing expression systems for systems biology and metabolic engineering applications. Promoters that respond to changes in the environment enable the dynamic control of gene expression without the necessity of inducer compounds, for example. However, the dynamic nature of these processes poses challenges for estimating promoter activity. Most experimental approaches utilize reporter gene expression to estimate promoter activity. Typically the reporter gene encodes a fluorescent protein that is used to infer a constant promoter activity despite the fact that the observed output may be dynamic and is a number of steps away from the transcription process. In fact, some promoters that are often thought of as constitutive can show changes in activity when growth conditions change. For these reasons, we have developed a system of ordinary differential equations for estimating dynamic promoter activity for promoters that change their activity in response to the environment that is robust to noise and changes in growth rate. Our approach, inference of dynamic promoter activity (PromAct), improves on existing methods by more accurately inferring known promoter activity profiles. This method is also capable of estimating the correct scale of promoter activity and can be applied to quantitative data sets to estimate quantitative rates.

  18. Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: a case for bolus injections.

    Science.gov (United States)

    Sanches, Pedro Gomes; Mühlmeister, Mareike; Seip, Ralf; Kaijzel, Eric; Löwik, Clemens; Böhmer, Marcel; Tiemann, Klaus; Grüll, Holger

    2014-12-10

    Localized gene delivery has many potential clinical applications. However, the nucleic acids (e.g. pDNA and siRNA) are incapable of passively crossing the endothelium, cell membranes and other biological barriers which must be crossed to reach their intracellular targets. A possible solution is the use of ultrasound to burst circulating microbubbles inducing transient permeabilization of surrounding tissues which mediates nucleic acid extravasation and cellular uptake. In this study we report on an optimization of the ultrasound gene delivery technique. Naked pDNA (200 μg) encoding luciferase and SonoVue® microbubbles were co-injected intravenously in mice. The hindlimb skeletal muscles were exposed to ultrasound from a non-focused transducer (1 MHz, 1.25 MPa, PRI 30s) and injection protocols and total amounts as well as ultrasound parameters were systemically varied. Gene expression was quantified relative to a control using a bioluminescence camera system at day 7 after sonication. Bioluminescence ratios in sonicated/control muscles of up to 101× were obtained. In conclusion, we were able to specifically deliver genetic material to the selected skeletal muscles and overall, the use of bolus injections and high microbubble numbers resulted in increased gene expression reflected by stronger bioluminescence signals. Based on our data, bolus injections seem to be required in order to achieve transient highly concentrated levels of nucleic acids and microbubbles at the tissue of interest which upon ultrasound exposure should lead to increased levels of gene delivery. Thus, ultrasound mediated gene delivery is a promising technique for the clinical translation of localized drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter.

    Science.gov (United States)

    Li, Peizhen; Wang, Bo; Cao, Dandan; Liu, Yuezhong; Zhang, Quanqi; Wang, Xubo

    2017-10-01

    PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Noninvasive In Vitro Monitoring System Reporting Skeletal Muscle Differentiation.

    Science.gov (United States)

    Öztürk-Kaloglu, Deniz; Hercher, David; Heher, Philipp; Posa-Markaryan, Katja; Sperger, Simon; Zimmermann, Alice; Wolbank, Susanne; Redl, Heinz; Hacobian, Ara

    2017-01-01

    Monitoring of cell differentiation is a crucial aspect of cell-based therapeutic strategies depending on tissue maturation. In this study, we have developed a noninvasive reporter system to trace murine skeletal muscle differentiation. Either a secreted bioluminescent reporter (Metridia luciferase) or a fluorescent reporter (green fluorescent protein [GFP]) was placed under the control of the truncated muscle creatine kinase (MCK) basal promoter enhanced by variable numbers of upstream MCK E-boxes. The engineered pE3MCK vector, coding a triple tandem of E-Boxes and the truncated MCK promoter, showed twentyfold higher levels of luciferase activation compared with a Cytomegalovirus (CMV) promoter. This newly developed reporter system allowed noninvasive monitoring of myogenic differentiation in a straining bioreactor. Additionally, binding sequences of endogenous microRNAs (miRNAs; seed sequences) that are known to be downregulated in myogenesis were ligated as complementary seed sequences into the reporter vector to reduce nonspecific signal background. The insertion of seed sequences improved the signal-to-noise ratio up to 25% compared with pE3MCK. Due to the highly specific, fast, and convenient expression analysis for cells undergoing myogenic differentiation, this reporter system provides a powerful tool for application in skeletal muscle tissue engineering.

  1. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    Directory of Open Access Journals (Sweden)

    Schnitzler Christine E

    2012-12-01

    Full Text Available Abstract Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria and comb jellies (Phylum Ctenophora. The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light

  2. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    Science.gov (United States)

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  3. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanli [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Li, Hui [The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science Technology, Wuhan, 430000 (China); Zhang, Xiaoju [Department of Respiratory Medicine, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Shang, Jia [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Kang, Yi, E-mail: kykangyi@163.com [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China)

    2016-01-29

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  4. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    International Nuclear Information System (INIS)

    Zeng, Yanli; Li, Hui; Zhang, Xiaoju; Shang, Jia; Kang, Yi

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  5. Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils.

    Science.gov (United States)

    Cheng, Hsiao-Ying; Masiello, Caroline A; Del Valle, Ilenne; Gao, Xiaodong; Bennett, George N; Silberg, Jonathan J

    2018-03-16

    Fluorescent proteins are ubiquitous tools that are used to monitor the dynamic functions of natural and synthetic genetic circuits. However, these visual reporters can only be used in transparent settings, a limitation that complicates nondisruptive measurements of gene expression within many matrices, such as soils and sediments. We describe a new ratiometric gas reporting method for nondisruptively monitoring gene expression within hard-to-image environmental matrices. With this approach, C 2 H 4 is continuously synthesized by ethylene forming enzyme to provide information on viable cell number, and CH 3 Br is conditionally synthesized by placing a methyl halide transferase gene under the control of a conditional promoter. We show that ratiometric gas reporting enables the creation of Escherichia coli biosensors that report on acylhomoserine lactone (AHL) autoinducers used for quorum sensing by Gram-negative bacteria. Using these biosensors, we find that an agricultural soil decreases the bioavailable concentration of a long-chain AHL up to 100-fold. We also demonstrate that these biosensors can be used in soil to nondisruptively monitor AHLs synthesized by Rhizobium leguminosarum and degraded by Bacillus thuringiensis. Finally, we show that this new reporting approach can be used in Shewanella oneidensis, a bacterium that lives in sediments.

  6. Detection of anabolic androgenic steroid abuse in doping control using mammalian reporter gene bioassays.

    Science.gov (United States)

    Houtman, Corine J; Sterk, Saskia S; van de Heijning, Monique P M; Brouwer, Abraham; Stephany, Rainer W; van der Burg, Bart; Sonneveld, Edwin

    2009-04-01

    Anabolic androgenic steroids (AAS) are a class of steroid hormones related to the male hormone testosterone. They are frequently detected as drugs in sport doping control. Being similar to or derived from natural male hormones, AAS share the activation of the androgen receptor (AR) as common mechanism of action. The mammalian androgen responsive reporter gene assay (AR CALUX bioassay), measuring compounds interacting with the AR can be used for the analysis of AAS without the necessity of knowing their chemical structure beforehand, whereas current chemical-analytical approaches may have difficulty in detecting compounds with unknown structures, such as designer steroids. This study demonstrated that AAS prohibited in sports and potential designer AAS can be detected with this AR reporter gene assay, but that also additional steroid activities of AAS could be found using additional mammalian bioassays for other types of steroid hormones. Mixtures of AAS were found to behave additively in the AR reporter gene assay showing that it is possible to use this method for complex mixtures as are found in doping control samples, including mixtures that are a result of multi drug use. To test if mammalian reporter gene assays could be used for the detection of AAS in urine samples, background steroidal activities were measured. AAS-spiked urine samples, mimicking doping positive samples, showed significantly higher androgenic activities than unspiked samples. GC-MS analysis of endogenous androgens and AR reporter gene assay analysis of urine samples showed how a combined chemical-analytical and bioassay approach can be used to identify samples containing AAS. The results indicate that the AR reporter gene assay, in addition to chemical-analytical methods, can be a valuable tool for the analysis of AAS for doping control purposes.

  7. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene.

    Directory of Open Access Journals (Sweden)

    Nóra Németh

    Full Text Available Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769 and two SNPs in the 3' UTR (rs3746544 and rs1051312 of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901 using PCR-RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T-T 3' UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3' UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels.

  8. Minimal-length Synthetic shRNAs Formulated with Lipid Nanoparticles are Potent Inhibitors of Hepatitis C Virus IRES-linked Gene Expression in Mice

    Directory of Open Access Journals (Sweden)

    Anne Dallas

    2013-01-01

    Full Text Available We previously identified short synthetic shRNAs (sshRNAs that target a conserved hepatitis C virus (HCV sequence within the internal ribosome entry site (IRES of HCV and potently inhibit HCV IRES-linked gene expression. To assess in vivo liver delivery and activity, the HCV-directed sshRNA, SG220 was formulated into lipid nanoparticles (LNP and injected i.v. into mice whose livers supported stable HCV IRES-luciferase expression from a liver-specific promoter. After a single injection, RNase protection assays for the sshRNA and 3H labeling of a lipid component of the nanoparticles showed efficient liver uptake of both components and long-lasting survival of a significant fraction of the sshRNA in the liver. In vivo imaging showed a dose-dependent inhibition of luciferase expression (>90% 1 day after injection of 2.5 mg/kg sshRNA with t1/2 for recovery of about 3 weeks. These results demonstrate the ability of moderate levels of i.v.-injected, LNP-formulated sshRNAs to be taken up by liver hepatocytes at a level sufficient to substantially suppress gene expression. Suppression is rapid and durable, suggesting that sshRNAs may have promise as therapeutic agents for liver indications.

  9. Using fusions with luxAB from Vibrio harveyi MAV to quantify induction and catabolite repression of the xyl operon in Staphylococcus carnosus TM300.

    Science.gov (United States)

    Sizemore, C; Geissdörfer, W; Hillen, W

    1993-03-01

    The luxA,B genes from the Gram-negative marine bacterium Vibrio harveyi MAV were used in Staphylococcus carnosus TM300 as a reporter system for regulated expression of xylose utilization. The luciferase genes were fused to the xyl operon from Staphylococcus xylosus C2a. Expression of bioluminescence was induced through addition of xylose and repressed in the presence of glucose. A method to quantitate bioluminescence directly from the culture is described.

  10. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage.

    Science.gov (United States)

    Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M

    2014-08-01

    We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.

  11. Identification of DNA-binding proteins that interact with the 5'-flanking region of the human D-amino acid oxidase gene by pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Tran, Diem Hong; Shishido, Yuji; Chung, Seong Pil; Trinh, Huong Thi Thanh; Yorita, Kazuko; Sakai, Takashi; Fukui, Kiyoshi

    2015-12-10

    D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. GAL4 enhancer trap strains with reporter gene expression during ...

    Indian Academy of Sciences (India)

    the development of adult brain in Drosophila melanogaster. C. R. VENKATESH ... vous system (CNS), at different time points during the pupal stage—a critical .... in frontal view, with further reduced reporter gene expression. Orthodenticle and ...

  13. A minimal murine Msx-1 gene promoter. Organization of its cis-regulatory motifs and their role in transcriptional activation in cells in culture and in transgenic mice.

    Science.gov (United States)

    Takahashi, T; Guron, C; Shetty, S; Matsui, H; Raghow, R

    1997-09-05

    To dissect the cis-regulatory elements of the murine Msx-1 promoter, which lacks a conventional TATA element, a putative Msx-1 promoter DNA fragment (from -1282 to +106 base pairs (bp)) or its congeners containing site-specific alterations were fused to luciferase reporter and introduced into NIH3T3 and C2C12 cells, and the expression of luciferase was assessed in transient expression assays. The functional consequences of the sequential 5' deletions of the promotor revealed that multiple positive and negative regulatory elements participate in regulating transcription of the Msx-1 gene. Surprisingly, however, the optimal expression of Msx-1 promoter in either NIH3T3 or C2C12 cells required only 165 bp of the upstream sequence to warrant detailed examination of its structure. Therefore, the functional consequences of site-specific deletions and point mutations of the cis-acting elements of the minimal Msx-1 promoter were systematically examined. Concomitantly, potential transcriptional factor(s) interacting with the cis-acting elements of the minimal promoter were also studied by gel electrophoretic mobility shift assays and DNase I footprinting. Combined analyses of the minimal promoter by DNase I footprinting, electrophoretic mobility shift assays, and super shift assays with specific antibodies revealed that 5'-flanking regions from -161 to -154 and from -26 to -13 of the Msx-1 promoter contains an authentic E box (proximal E box), capable of binding a protein immunologically related to the upstream stimulating factor 1 (USF-1) and a GC-rich sequence motif which can bind to Sp1 (proximal Sp1), respectively. Additionally, we observed that the promoter activation was seriously hampered if the proximal E box was removed or mutated, and the promoter activity was eliminated completely if the proximal Sp1 site was similarly altered. Absolute dependence of the Msx-1 minimal promoter on Sp1 could be demonstrated by transient expression assays in the Sp1-deficient

  14. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  15. Development and evaluation of an efficient heterologous gene knock-in reporter system in Lactococcus lactis.

    Science.gov (United States)

    Lu, Yifei; Yan, Hongxiang; Deng, Jiezhong; Huang, Zhigang; Jin, Xurui; Yu, Yanlan; Hu, Qiwen; Hu, Fuquan; Wang, Jing

    2017-09-18

    Lactococcus lactis is a food grade probiotics and widely used to express heterologous proteins. Generally, target genes are knocked into the L. lactis genome through double-crossover recombination to express heterologous proteins stably. However, creating marker-less heterologous genes knocked-in clones is laborious. In this study, an efficient heterologous gene knock-in reporter system was developed in L. lactis NZ9000. Our knock-in reporter system consists of a temperature-sensitive plasmid pJW and a recombinant L. lactis strain named NZB. The pJW contains homologous arms, and was constructed to knock-in heterologous genes at a fixed locus of NZ9000 genome. lacZ (β-galactosidase) gene was knocked into the chromosome of NZ9000 as a counter-selective marker through the plasmid pJW to generate NZB. The engineered NZB strain formed blue colonies on X-Gal plate. The desired double-crossover mutants formed white colonies distinctive from the predominantly blue colonies (parental and plasmid-integrated clones) when the embedded lacZ was replaced with the target heterologous genes carried by pJW in NZB. By using the system, the heterologous gene knocked-in clones are screened by colony phenotype change rather than by checking colonies individually. Our new knock-in reporter system provides an efficient method to create heterologous genes knocked-in clones.

  16. Mipu1, a novel direct target gene, is involved in hypoxia inducible factor 1-mediated cytoprotection.

    Directory of Open Access Journals (Sweden)

    Kangkai Wang

    Full Text Available Mipu1 (myocardial ischemic preconditioning up-regulated protein 1, recently identified in our lab, is a novel zinc-finger transcription factor which is up-regulated during ischemic preconditioning. However, it is not clear what transcription factor contributes to its inducible expression. In the present study, we reported that HIF-1 regulates the inducible expression of Mipu1 which is involved in the cytoprotection of HIF-1α against oxidative stress by inhibiting Bax expression. Our results showed that the inducible expression of Mipu1 was associated with the expression and activation of transcription factor HIF-1 as indicated by cobalt chloride (CoCl2 treatment, HIF-1α overexpression and knockdown assays. EMSA and luciferase reporter gene assays showed that HIF-1α bound to the hypoxia response element (HRE within Mipu1 promoter region and promoted its transcription. Moreover, our results revealed that Mipu1 inhibited the expression of Bax, an important pro-apoptosis protein associated with the intrinsic pathway of apoptosis, elevating the cytoprotection of HIF-1 against hydrogen peroxide (H2O2-mediated injury in H9C2 cells. Our findings implied that Bax may be a potential target gene of transcription factor Mipu1, and provided a novel insight for understanding the cytoprotection of HIF-1 and new clues for further elucidating the mechanisms by which Mipu1 protects cell against pathological stress.

  17. PPARγ induces growth inhibition and apoptosis through upregulation of insulin-like growth factor-binding protein-3 in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.Y. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, M.S.; Lee, M.K. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, J.S.; Yi, H.K. [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Nam, S.Y. [Department of Alternative Therapy, Jeonju University, Jeonju (Korea, Republic of); Lee, D.Y.; Hwang, P.H. [Department of Pediatrics, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Biomedical Research Institute, School of Medicine, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2015-01-13

    Peroxisome proliferator activator receptor-gamma (PPARγ) is a ligand-activated transcriptional factor involved in the carcinogenesis of various cancers. Insulin-like growth factor-binding protein-3 (IGFBP-3) is a tumor suppressor gene that has anti-apoptotic activity. The purpose of this study was to investigate the anticancer mechanism of PPARγ with respect to IGFBP-3. PPARγ was overexpressed in SNU-668 gastric cancer cells using an adenovirus gene transfer system. The cells in which PPARγ was overexpressed exhibited growth inhibition, induction of apoptosis, and a significant increase in IGFBP-3 expression. We investigated the underlying molecular mechanisms of PPARγ in SNU-668 cells using an IGFBP-3 promoter/luciferase reporter system. Luciferase activity was increased up to 15-fold in PPARγ transfected cells, suggesting that PPARγ may directly interact with IGFBP-3 promoter to induce its expression. Deletion analysis of the IGFBP-3 promoter showed that luciferase activity was markedly reduced in cells without putative p53-binding sites (-Δ1755, -Δ1795). This suggests that the critical PPARγ-response region is located within the p53-binding region of the IGFBP-3 promoter. We further demonstrated an increase in PPARγ-induced luciferase activity even in cells treated with siRNA to silence p53 expression. Taken together, these data suggest that PPARγ exhibits its anticancer effect by increasing IGFBP-3 expression, and that IGFBP-3 is a significant tumor suppressor.

  18. Anti-inflammatory effects of Zea mays L. husk extracts.

    Science.gov (United States)

    Roh, Kyung-Baeg; Kim, Hyoyoung; Shin, Seungwoo; Kim, Young-Soo; Lee, Jung-A; Kim, Mi Ok; Jung, Eunsun; Lee, Jongsung; Park, Deokhoon

    2016-08-19

    Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.

  19. Transcription regulation of the vegf gene by the BMP/Smad pathway in the angioblast of zebrafish embryos

    International Nuclear Information System (INIS)

    He Chen; Chen Xiaozhuo

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen that is critically involved in vasculogenesis, angiogenesis, and hematopoiesis. However, what and how transcription factors participate in the regulation of vegf gene expression are not fully understood. Here we report the cloning and sequencing of the zebrafish vegf promoter which revealed that the promoter contains a number of bone morphogenetic protein (BMP)-activated Smad binding elements (SBE), implicating Smad1 and Smad5 in the regulation of BMP-induced expression of vegf. Electrophoretic mobility shift assays of adding recombinant Smad proteins to the SBE-containing DNA oligonucleotides that represent portions of zebrafish vegf promoter resulted in mobility shift of the oligonucleotides. These changes demonstrate potential interactions between Smad1/5 and the vegf promoter. Reporter activity assays using the wild-type or SBE-deleted vegf promoters to drive the luciferase reporter gene expression revealed that Smad1 stimulated while Smad5 repressed the vegf promoter activity in zebrafish embryos. These data indicate that the BMP/Smad signaling pathway is involved in the regulation of zebrafish vegf transcription. In addition, we demonstrate that transgenic expression of human BMP4 in zebrafish embryos induced an expansion of the posterior intermediate cell mass (ICM, also commonly called blood island), a population of cells containing endothelial and hematopoietic precursors. In the expanded ICM, vegf and VEGF receptor 2 (flk-1) were ectopically co-expressed, suggesting that an autocrine/paracrine regulation of vegf expression may exist and contribute to the BMP-induced hemangiogenic cell proliferation

  20. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    Science.gov (United States)

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  1. Development and application of hepatitis C reporter viruses with genotype 1 to 7 core-nonstructural protein 2 (NS2) expressing fluorescent proteins or luciferase in modified JFH1 NS5A

    DEFF Research Database (Denmark)

    Gottwein, Judith M; Jensen, Tanja B; Mathiesen, Christian K

    2011-01-01

    to 2a(J6) tagged with EGFP, DsRed-Express2, mCherry, or Renilla luciferase (RLuc), yielding peak supernatant infectivity titers of 4 to 5 log(10) focus-forming units (FFU)/ml. 2a(J6) with ¿40 or ¿25 was fully viable in Huh7.5 cells. In human liver chimeric mice, 2a(J6)-EGFP¿40 acquired various...... deletions in EGFP, while 2a(J6)¿40 did not show an impaired viability. We further developed panels of JFH1-based genotype 1 to 7 core-NS2 recombinants expressing EGFP- or RLuc-NS5A¿40 fusion proteins. In cell culture, the different EGFP recombinants showed growth characteristics comparable to those...

  2. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    Science.gov (United States)

    Gambhir, Sanjiv [Portola Valley, CA; Pritha, Ray [Mountain View, CA

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  3. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    Science.gov (United States)

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  4. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    Science.gov (United States)

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  5. Application of firefly luciferase assay for adenosine triphosphate (ATP) to antimicrobial drug sensitivity testing

    Science.gov (United States)

    Picciolo, G. L.; Tuttle, S. A.; Schrock, C. G.; Deming, J. W.; Barza, M. J.; Wienstein, L.; Chappelle, E. W.

    1977-01-01

    The development of a rapid method for determining microbial susceptibilities to antibiotics using the firefly luciferase assay for adenosine triphosphate (ATP) is documented. The reduction of bacterial ATP by an antimicrobial agent was determined to be a valid measure of drug effect in most cases. The effect of 12 antibiotics on 8 different bacterial species gave a 94 percent correlation with the standard Kirby-Buer-Agar disc diffusion method. A 93 percent correlation was obtained when the ATP assay method was applied directly to 50 urine specimens from patients with urinary tract infections. Urine samples were centrifuged first to that bacterial pellets could be suspended in broth. No primary isolation or subculturing was required. Mixed cultures in which one species was predominant gave accurate results for the most abundant organism. Since the method is based on an increase in bacterial ATP with time, the presence of leukocytes did not interfere with the interpretation of results. Both the incubation procedure and the ATP assays are compatible with automation.

  6. Induction of Gastrin Expression in Gastrointestinal Cells by Hypoxia or Cobalt Is Independent of Hypoxia-Inducible Factor (HIF)

    OpenAIRE

    Xiao, Lin; Kovac, Suzana; Chang, Mike; Shulkes, Arthur; Baldwin, Graham S.; Patel, Oneel

    2012-01-01

    Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporte...

  7. Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery.

    Science.gov (United States)

    Xiao, Bo; Wan, Ying; Wang, Xiaoyu; Zha, Qichen; Liu, Haoming; Qiu, Zhiye; Zhang, Shengmin

    2012-03-01

    A series of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride (HTCC) samples with various degrees of quaternization ranging from 12.4 to 43.7% was synthesized. The structures and properties of HTCC were investigated by FT-IR, (1)H NMR, conductometric titration and XRD analysis. It was found that HTCC had a more amorphous structure than chitosan. HTCC samples showed significantly lower cytotoxicity than polyethyleneimine in HepG2 and HeLa cell lines. The samples spontaneously formed complexes with pGL3 luciferase plasmid. These complexes had desirable particle sizes (160-300 nm) and zeta potentials (10.8-18.7 mV) when the weight ratios of HTCC to plasmid altered in the range of 3:1-20:1. In vitro gene transfection results indicated that HTCC had significantly high transfection efficiency compared with chitosan for delivering pGL3 luciferase plasmid to HeLa cells. The results suggest that HTCC could be a promising non-viral vector for safe and efficient DNA delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    Science.gov (United States)

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  9. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    Science.gov (United States)

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  10. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells

    International Nuclear Information System (INIS)

    Hung, C.-F.; Cheng, T.-L.; Wu, R.-H.; Teng, C.-F.; Chang, W.-T.

    2006-01-01

    RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells

  11. Vaccine-Induced Plasma IgA Specific for the C1 Region of the HIV-1 Envelope Blocks Binding and Effector Function of IgG

    Science.gov (United States)

    2013-05-28

    vaccines containing ALVAC-HIV (vCP1521) (Sanofi Pasteur ) and AIDSVAX B/E (Global Solutions for Infectious Diseases, South San Francisco, CA). Peripheral...Renilla luciferase reporter gene and preserves all viral ORFs (30). The Env-IMC-LucR viruses were subtype A/E NL-LucR.T2A-AE.CM235-ecto (IMCCM235; GenBank

  12. p13 from group II baculoviruses is a killing-associated gene

    Directory of Open Access Journals (Sweden)

    Yipeng Qi

    2012-12-01

    Full Text Available p13 gene was first described in Leucania separata multinuclearpolyhedrosis virus (Ls-p13 several years ago, but the functionof P13 protein has not been experimentally investigated todate. In this article, we indicated that the expression of p13from Heliothis armigera single nucleocapsid nucleopolyhedrovirus(Ha-p13 was regulated by both early and late promoter.Luciferase assay demonstrated that the activity of Ha-p13promoter with hr4 enhancer was more than 100 times inheterologous Sf9 cells than that in nature host Hz-AM1 cells.Both Ls-P13 and Ha-P13 are transmembrane proteins. Confocalmicroscopic analysis showed that both mainly located in thecytoplasm membrane at 48 h. Results of RNA interferenceindicated that Ha-p13 was a killing-associated gene for hostinsects H. armigera. The AcMNPV acquired the mentionedkilling activity and markedly accelerate the killing rate whenexpressing Ls-p13. In conclusion, p13 is a killing associatedgene in both homologous and heterologous nucleopolyhedrovirus.

  13. Effect of secretory pathway gene overexpression on secretion of a fluorescent reporter protein in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Schalén, Martin; Anyaogu, Diana Chinyere; Hoof, Jakob Blæsbjerg

    2016-01-01

    roles in the process have been identified through transcriptomics. The assignment of function to these genes has been enabled in combination with gene deletion studies. In this work, 14 genes known to play a role in protein secretion in filamentous fungi were overexpressed in Aspergillus nidulans....... The background strain was a fluorescent reporter secreting mRFP. The overall effect of the overexpressions could thus be easily monitored through fluorescence measurements, while the effects on physiology were determined in batch cultivations and surface growth studies. Results: Fourteen protein secretion...... pathway related genes were overexpressed with a tet-ON promoter in the RFP-secreting reporter strain and macromorphology, physiology and protein secretion were monitored when the secretory genes were induced. Overexpression of several of the chosen genes was shown to cause anomalies on growth, micro...

  14. In Vitro Transduction and Target-Mutagenesis Efficiency of HIV-1 pol Gene Targeting ZFN and CRISPR/Cas9 Delivered by Various Plasmids and/or Vectors: Toward an HIV Cure.

    Science.gov (United States)

    Okee, Moses; Bayiyana, Alice; Musubika, Carol; Joloba, Moses L; Ashaba-Katabazi, Fred; Bagaya, Bernard; Wayengera, Misaki

    2018-01-01

    Efficiency of artificial restriction enzymes toward curing HIV has only been separately examined, using differing delivery vehicles. We compared the in vitro transduction and target-mutagenesis efficiency of consortium plasmid and adenoviral vector delivered HIV-1 pol gene targeting zinc finger nuclease (ZFN) with CRISPR/Cas, Custom-ZFN, CRISPR-Cas-9, and plasmids and vectors (murCTSD_pZFN, pGS-U-gRNA, pCMV-Cas-D01A, Ad5-RGD); cell lines (TZM-bl and ACH-2/J-Lat cells); and the latency reversing agents prostratin, suberoylanilide hydroxamic acid, and phorbol myristate acetate. Cell lines were grown in either Dulbecco's modified Eagle's medium or Roswell Park Memorial Institute with the antibiotics kanamycin, zeocin, and efavirenz. Efficiency was assayed by GFP/luciferase activity and/or validated by yeast MEL1 reporter assay, CEL1 restriction fragment assay, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Ad5-RGD vectors had better transduction efficiency than murCTSD and pGS-U-gRNA/pCMV-Cas-D01A plasmids. CRISPR/Cas9 exhibited better target-mutagenesis efficiency relative to ZFN (delivered by either plasmid or Ad5 vector) based on gel electrophoresis of pol gene amplicons within ACH-2 and J-Lat cells. Ad-5-RGD vectors enhanced target mutagenesis of ZFN, relative to murCTSD_pZFN plasmids, to levels of CRISPR/Cas9 plasmids. Similar reduction of luciferase activity among TZM-bl treated with Ad5-ZFN vectors relative to CRISPR/Cas-9 and murCTSD_pZFN plasmids was observed on challenge with HIV-1. qRT-PCR of HIV-1 pol gene transcripts affirmed that Ad5 (RGD) vectors enhanced target mutagenesis of ZFN. Whereas CRISPR/Cas-9 may possess inherent superior target-mutagenesis efficiency; the efficiency of ZFN (off-target toxicity withstanding) can be enhanced by altering delivery vehicle from plasmid to Ad5 (RGD) vectors.

  15. Naturally occurring mutations in the human 5-lipoxygenase gene promoter that modify transcription factor binding and reporter gene transcription.

    Science.gov (United States)

    In, K H; Asano, K; Beier, D; Grobholz, J; Finn, P W; Silverman, E K; Silverman, E S; Collins, T; Fischer, A R; Keith, T P; Serino, K; Kim, S W; De Sanctis, G T; Yandava, C; Pillari, A; Rubin, P; Kemp, J; Israel, E; Busse, W; Ledford, D; Murray, J J; Segal, A; Tinkleman, D; Drazen, J M

    1997-03-01

    Five lipoxygenase (5-LO) is the first committed enzyme in the metabolic pathway leading to the synthesis of the leukotrienes. We examined genomic DNA isolated from 25 normal subjects and 31 patients with asthma (6 of whom had aspirin-sensitive asthma) for mutations in the known transcription factor binding regions and the protein encoding region of the 5-LO gene. A family of mutations in the G + C-rich transcription factor binding region was identified consisting of the deletion of one, deletion of two, or addition of one zinc finger (Sp1/Egr-1) binding sites in the region 176 to 147 bp upstream from the ATG translation start site where there are normally 5 Sp1 binding motifs in tandem. Reporter gene activity directed by any of the mutant forms of the transcription factor binding region was significantly (P < 0.05) less effective than the activity driven by the wild type transcription factor binding region. Electrophoretic mobility shift assays (EMSAs) demonstrated the capacity of wild type and mutant transcription factor binding regions to bind nuclear extracts from human umbilical vein endothelial cells (HUVECs). These data are consistent with a family of mutations in the 5-LO gene that can modify reporter gene transcription possibly through differences in Sp1 and Egr-1 transactivation.

  16. Hypoxia-inducible factor-1α regulates chemotactic migration of pancreatic ductal adenocarcinoma cells through directly transactivating the CX3CR1 gene.

    Directory of Open Access Journals (Sweden)

    Tiansuo Zhao

    Full Text Available CX3CR1 is an important chemokine receptor and regulates the chemotactic migration of pancreatic ductal adenocarcinoma (PDAC cells. Up to now, its regulatory mechanism remains largely undefined. Here, we report that hypoxia upregulates the expression of CX3CR1 in pancreatic cancer cells. When hypoxia-inducible factor (HIF-1α expression was knocked down in vitro and in vivo, the expression of CX3CR1 was significantly decreased. Chromatin immunoprecipitation assay demonstrated that HIF-1α bound to the hypoxia-response element (HRE; 5'-A/GCGTG-3' of CX3CR1 promoter under normoxia, and this binding was significantly enhanced under hypoxia. Overexpression of HIF-1α significantly upregulated the expression of luciferase reporter gene under the control of the CX3CR1 promoter in pancreatic cancer cells. Importantly, we demonstrated that HIF-1α may regulate cancer cell migration through CX3CR1. The HIF-1α/CX3CR1 pathway might represent a valuable therapeutic target to prevent invasion and distant metastasis in PDAC.

  17. A genetic screen for bioluminescence genes in the fungus Armillaria mellea, through the use of Agrobacterium tumefaciens-mediated random insertional mutagenesis

    Science.gov (United States)

    Bioluminescence is reported from 71 saprobic species of fungi from four, distant lineages in the order Agaricales. Analyses of the fungal luminescent chemistry shows that all four lineages share a functionally conserved substrate and luciferase, indicating that the bioluminescent pathway is likely c...

  18. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code".

    Science.gov (United States)

    Vaghi, Valentina; Polacchini, Alessio; Baj, Gabriele; Pinheiro, Vera L M; Vicario, Annalisa; Tongiorgi, Enrico

    2014-10-03

    The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Dashuai Mu

    Full Text Available Ganoderma lucidum is one of the most important medicinal mushrooms; however, molecular genetics research on this species has been limited due to a lack of reliable reverse genetic tools. In this study, the endogenous orotidine 5'-monophosphate decarboxylase gene (URA3 was cloned as a silencing reporter, and four gene-silencing methods using hairpin, sense, antisense, and dual promoter constructs, were introduced into G. lucidum through a simple electroporation procedure. A comparison and evaluation of silencing efficiency demonstrated that all of the four methods differentially suppressed the expression of URA3. Our data unequivocally indicate that the dual promoter silencing vector yields the highest rate of URA3 silencing compared with other vectors (up to 81.9%. To highlight the advantages of the dual promoter system, we constructed a co-silencing system based on the dual promoter method and succeeded in co-silencing URA3 and laccase in G. lucidum. The reduction of the mRNA levels of the two genes were correlated. Thus, the screening efficiency for RNAi knockdown of multiple genes may be improved by the co-silencing of an endogenous reporter gene. The molecular tools developed in this study should facilitate the isolation of genes and the characterization of the functions of multiple genes in this pharmaceutically important species, and these tools should be highly useful for the study of other basidiomycetes.

  20. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Zou, Shenghao; Wang, Huan; Li, Yiwen; Kong, Zhaosheng; Tang, Dingzhong

    2018-04-01

    Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Magnetic Nanoparticles of Chitosan for Targeted Delivery System of Plasmids to the Lungs

    International Nuclear Information System (INIS)

    Baez, C.A.A.; Cruz, I.E.L.; Padilla, M.C.R.; Gonzalez, J.M.A.

    2014-01-01

    One of the major problems of gene therapy is the efficient, specific, and targeted delivery as well as the safety of the materials used in such systems. The specific targeted delivery of genes to the lung offers the possibility to treat a variety of specific diseases. We developed chitosan nanoparticles with the plasmid pCEM-Luc, which contains a promoter activated by magnetic field. Nanoparticles of 200-250 nm obtained by ionic gelation with a 99% retention rate were transfected in B16F10 cells and in vivo in the lungs of Balb/c mice by intratracheal administration. We observed that an external magnetic field increased the expression of the luciferase reporter gene in B16F10 cells transfected with magnetic nanoparticles and in homogenized lungs of mice which determined differences in levels of expression between different regions of the lungs (apical or distal and left or right). The highest levels of luciferase activity were observed in the apical left region. The magnetic nanoparticles prove an efficient delivery system to in vitro transfection of cells and lung tissue.

  2. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    International Nuclear Information System (INIS)

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V.

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-κB ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity in

  3. Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.

    Science.gov (United States)

    Tencomnao, T; Yu, R K; Kapitonov, D

    2001-02-16

    UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.

  4. Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil.

    Science.gov (United States)

    Cheng, Hsiao-Ying; Masiello, Caroline A; Bennett, George N; Silberg, Jonathan J

    2016-08-16

    Traditional visual reporters of gene expression have only very limited use in soils because their outputs are challenging to detect through the soil matrix. This severely restricts our ability to study time-dependent microbial gene expression in one of the Earth's largest, most complex habitats. Here we describe an approach to report on dynamic gene expression within a microbial population in a soil under natural water levels (at and below water holding capacity) via production of methyl halides using a methyl halide transferase. As a proof-of-concept application, we couple the expression of this gas reporter to the conjugative transfer of a bacterial plasmid in a soil matrix and show that gas released from the matrix displays a strong correlation with the number of transconjugant bacteria that formed. Gas reporting of gene expression will make possible dynamic studies of natural and engineered microbes within many hard-to-image environmental matrices (soils, sediments, sludge, and biomass) at sample scales exceeding those used for traditional visual reporting.

  5. Magnetic resonance-guided regional gene delivery strategy using a tumor stroma-permeable nanocarrier for pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Wang Q

    2015-07-01

    Full Text Available Qingbing Wang,1,2 Jianfeng Li,3 Sai An,3 Yi Chen,1 Chen Jiang,3 Xiaolin Wang1,2 1Department of Interventional Radiology, Zhongshan Hospital, Fudan University, 2Shanghai Institute of Medical Imaging, 3Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China Background: Gene therapy is a very promising technology for treatment of pancreatic ductal adenocarcinoma (PDAC. However, its application has been limited by the abundant stromal response in the tumor microenvironment. The aim of this study was to prepare a dendrimer-based gene-free loading vector with high permeability in the tumor stroma and explore an imaging-guided local gene delivery strategy for PDAC to promote the efficiency of targeted gene delivery.Methods: The experimental protocol was approved by the animal ethics committee of Zhongshan Hospital, Fudan University. Third-generation dendrigraft poly-L-lysines was selected as the nanocarrier scaffold, which was modified by cell-penetrating peptides and gadolinium (Gd chelates. DNA plasmids were loaded with these nanocarriers via electrostatic interaction. The cellular uptake and loaded gene expression were examined in MIA PaCa-2 cell lines in vitro. Permeability of the nanoparticles in the tumor stroma and transfected gene distribution in vivo were studied using a magnetic resonance imaging-guided delivery strategy in an orthotopic nude mouse model of PDAC.Results: The nanocarriers were synthesized with a dendrigraft poly-L-lysine to polyethylene glycol to DTPA ratio of 1:3.4:8.3 and a mean diameter of 110.9±7.7 nm. The luciferases were strictly expressed in the tumor, and the luminescence intensity in mice treated by Gd-DPT/plasmid luciferase (1.04×104±9.75×102 p/s/cm2/sr was significantly (P<0.05 higher than in those treated with Gd-DTPA (9.56×102±6.15×10 p/s/cm2/sr and Gd-DP (5.75×103± 7.45×102 p/s/cm2/sr

  6. Triple Bioluminescence Imaging for In Vivo Monitoring of Cellular Processes

    Directory of Open Access Journals (Sweden)

    Casey A Maguire

    2013-01-01

    Full Text Available Bioluminescence imaging (BLI has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc and Renilla or Gaussia (Gluc luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and D-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL delivered using an adeno-associated viral vector (AAV on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.

  7. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  8. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  9. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    Science.gov (United States)

    Wang, Cheng; Yu, Jie; Kallen, Caleb B

    2008-01-01

    The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  10. Efficient transfection of Xenobiotic Responsive Element-biosensor plasmid using diether lipid and phosphatidylcholine liposomes in differentiated HepaRG cells.

    Science.gov (United States)

    Demazeau, Maxime; Quesnot, Nicolas; Ripoche, Nicolas; Rauch, Claudine; Jeftić, Jelena; Morel, Fabrice; Gauffre, Fabienne; Benvegnu, Thierry; Loyer, Pascal

    2017-05-30

    In this study, we evaluated cationic liposomes prepared from diether-NH 2 and egg phosphatidylcholine (EPC) for in vitro gene delivery. The impact of the lipid composition, i.e. the EPC and Diether-NH 2 molar ratio, on in vitro transfection efficiency and cytotoxicity was investigated using the human HEK293T and hepatoma HepaRG cells known to be permissive and poorly permissive cells for liposome-mediated gene transfer, respectively. Here, we report that EPC/Diether-NH 2 -based liposomes enabled a very efficient transfection with low cytotoxicity compared to commercial transfection reagents in both HEK293T and proliferating progenitor HepaRG cells. Taking advantage of these non-toxic EPC/Diether-NH 2 -based liposomes, we developed a method to efficiently transfect differentiated hepatocyte-like HepaRG cells and a biosensor plasmid containing a Xenobiotic Responsive Element and a minimal promoter driving the transcription of the luciferase reporter gene. We demonstrated that the luciferase activity was induced by a canonical inducer of cytochrome P450 genes, the benzo[a]pyrene, and two environmental contaminants, the fluoranthene, a polycyclic aromatic hydrocarbon, and the endosulfan, an organochlorine insecticide, known to induce toxicity and genotoxicity in differentiated HepaRG cells. In conclusion, we established a new efficient lipofection-mediated gene transfer in hepatocyte-like HepaRG cells opening new perspectives in drug evaluation relying on xenobiotic inducible biosensor plasmids. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  12. Splicing defect in FKBP10 gene causes autosomal recessive osteogenesis imperfecta disease: a case report.

    Science.gov (United States)

    Maghami, Fatemeh; Tabei, Seyed Mohammad Bagher; Moravej, Hossein; Dastsooz, Hassan; Modarresi, Farzaneh; Silawi, Mohammad; Faghihi, Mohammad Ali

    2018-05-25

    Osteogenesis imperfecta (OI) is a group of connective tissue disorder caused by mutations of genes involved in the production of collagen and its supporting proteins. Although the majority of reported OI variants are in COL1A1 and COL1A2 genes, recent reports have shown problems in other non-collagenous genes involved in the post translational modifications, folding and transport, transcription and proliferation of osteoblasts, bone mineralization, and cell signaling. Up to now, 17 types of OI have been reported in which types I to IV are the most frequent cases with autosomal dominant pattern of inheritance. Here we report an 8- year- old boy with OI who has had multiple fractures since birth and now he is wheelchair-dependent. To identify genetic cause of OI in our patient, whole exome sequencing (WES) was carried out and it revealed a novel deleterious homozygote splice acceptor site mutation (c.1257-2A > G, IVS7-2A > G) in FKBP10 gene in the patient. Then, the identified mutation was confirmed using Sanger sequencing in the proband as homozygous and in his parents as heterozygous, indicating its autosomal recessive pattern of inheritance. In addition, we performed RT-PCR on RNA transcripts originated from skin fibroblast of the proband to analyze the functional effect of the mutation on splicing pattern of FKBP10 gene and it showed skipping of the exon 8 of this gene. Moreover, Real-Time PCR was carried out to quantify the expression level of FKBP10 in the proband and his family members in which it revealed nearly the full decrease in the level of FKBP10 expression in the proband and around 75% decrease in its level in the carriers of the mutation, strongly suggesting the pathogenicity of the mutation. Our study identified, for the first time, a private pathogenic splice site mutation in FKBP10 gene and further prove the involvement of this gene in the rare cases of autosomal recessive OI type XI with distinguished clinical manifestations.

  13. WellReader: a MATLAB program for the analysis of fluorescence and luminescence reporter gene data.

    Science.gov (United States)

    Boyer, Frédéric; Besson, Bruno; Baptist, Guillaume; Izard, Jérôme; Pinel, Corinne; Ropers, Delphine; Geiselmann, Johannes; de Jong, Hidde

    2010-05-01

    Fluorescent and luminescent reporter gene systems in combination with automated microplate readers allow real-time monitoring of gene expression on the population level at high precision and sampling density. This generates large amounts of data for the analysis of which computer tools are missing to date. We have developed WellReader, a MATLAB program for the analysis of fluorescent and luminescent reporter gene data. WellReader allows the user to load the output files of microplate readers, remove outliers, correct for background effects and smooth and fit the data. Moreover, it computes biologically relevant quantities from the measured signals, notably promoter activities and protein concentrations, and compares the resulting expression profiles of different genes under different conditions. WellReader is available under a LGPL licence at http://prabi1.inrialpes.fr/trac/wellreader.

  14. Toward the Discovery of a Novel Class of YAP–TEAD Interaction Inhibitors by Virtual Screening Approach Targeting YAP–TEAD Protein–Protein Interface

    Directory of Open Access Journals (Sweden)

    Floriane Gibault

    2018-05-01

    Full Text Available Intrinsically disordered protein YAP (yes-associated protein interacts with TEADs transcriptional factors family (transcriptional enhancer associated domain creating three interfaces. Interface 3, between the Ω-loop of YAP and a shallow pocket of TEAD was identified as the most important TEAD zone for YAP-TEAD interaction. Using the first X-ray structure of the hYAP50–71-hTEAD1209–426 complex (PDB 3KYS published in 2010, a protein-protein interaction inhibitors-enriched library (175,000 chemical compounds was screened against this hydrophobic pocket of TEAD. Four different chemical families have been identified and evaluated using biophysical techniques (thermal shift assay, microscale thermophoresis and in cellulo assays (luciferase activity in transfected HEK293 cells, RTqPCR in MDA-MB231 cells. A first promising hit with micromolar inhibition in the luciferase gene reporter assay was discovered. This hit also decreased mRNA levels of TEAD target genes.

  15. Detection of estrogen receptor endocrine disruptor potency of commonly used organochlorine pesticides using the LUMI-CELL ER bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J D; Chu, A C; Clark, G C [Xenobiotic Detection Systems, Inc., Durham, NC (United States); Chu, M D [Alta Analytical Perspectives, Wilmington, NC (United States); Denison, M S [Dept. of Environmental Toxicology, Univ. of California, Davis, CA (United States)

    2004-09-15

    In order to detect the endocrine disrupting potency of organochlorine pesticides and other compounds, BG-1 (human ovarian carcinoma) cells containing a stably transfected estrogenresponsive luciferase reporter gene plasmid (BG1Luc4E2), was used. This cell line, termed the LUMI-CELL trademark ER estrogenic cell bioassay system, responds in a time-, dose dependent- and chemical-specific manner with the induction of luciferase gene expression in response to exposure to estrogen (but not other steroid hormones) and estrogenic chemicals in a high-throughput screening (HTPS) format6. Here we describe studies in which the LUMI-CELL trademark ER estrogenic cell bioassay system was used for high throughput screening (HTPS) analysis of the estrogenic disrupting potency of several commonly used pesticides and organochlorines: p,p'DDT; p,p'-DDE; DDD; {alpha}a-chlordane; {psi}-chlordane; Kepone; Methoxychlor; Vinclozolin; Fenarimol; 2,4,5-Trichlorophenoxyacetic Acid; and Dieldrin. Our results demonstrate the utility of XDS's LUMI-CELL trademark ER bioassay HTPS system for screening chemicals for estrogenic activity.

  16. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector

    International Nuclear Information System (INIS)

    Rumi, Mohammad; Ishihara, Shunji; Aziz, Monowar; Kazumori, Hideaki; Ishimura, Norihisa; Yuki, Takafumi; Kadota, Chikara; Kadowaki, Yasunori; Kinoshita, Yoshikazu

    2006-01-01

    RNA polymerase III promoters of human ribonuclease P RNA component H1, human U6, and mouse U6 small nuclear RNA genes are commonly used in short hairpin RNA (shRNA) expression vectors due their precise initiation and termination sites. During transient transfection of shRNA vectors, we observed that H1 or U6 promoters also express longer transcripts enough to express several reporter genes including firefly luciferase, green fluorescent protein EGFP, and red fluorescent protein JRed. Expression of such longer transcripts was augmented by upstream RNA polymerase II enhancers and completely inhibited by downstream polyA signal sequences. Moreover, the transcription of firefly luciferase from human H1 promoter was sensitive to RNA polymerase II inhibitor α-amanitin. Our findings suggest that commonly used polymerase III promoters in shRNA vectors are also prone to RNA polymerase II mediated transcription, which may have negative impacts on their targeted use

  17. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    Science.gov (United States)

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  18. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  19. Effective in vivo and ex vivo gene transfer to intestinal mucosa by VSV-G-pseudotyped lentiviral vectors

    Directory of Open Access Journals (Sweden)

    Kasahara Noriyuki

    2010-05-01

    Full Text Available Abstract Background Gene transfer to the gastrointestinal (GI mucosa is a therapeutic strategy which could prove particularly advantageous for treatment of various hereditary and acquired intestinal disorders, including inflammatory bowel disease (IBD, GI infections, and cancer. Methods We evaluated vesicular stomatitis virus glycoprotein envelope (VSV-G-pseudotyped lentiviral vectors (LV for efficacy of gene transfer to both murine rectosigmoid colon in vivo and human colon explants ex vivo. LV encoding beta-galactosidase (LV-β-Gal or firefly-luciferase (LV-fLuc reporter genes were administered by intrarectal instillation in mice, or applied topically for ex vivo transduction of human colorectal explant tissues from normal individuals. Macroscopic and histological evaluations were performed to assess any tissue damage or inflammation. Transduction efficiency and systemic biodistribution were evaluated by real-time quantitative PCR. LV-fLuc expression was evaluated by ex vivo bioluminescence imaging. LV-β-Gal expression and identity of transduced cell types were examined by histochemical and immunofluorescence staining. Results Imaging studies showed positive fLuc signals in murine distal colon; β-Gal-positive cells were found in both murine and human intestinal tissue. In the murine model, β-Gal-positive epithelial and lamina propria cells were found to express cytokeratin, CD45, and CD4. LV-transduced β-Gal-positive cells were also seen in human colorectal explants, consisting mainly of CD45, CD4, and CD11c-positive cells confined to the LP. Conclusions We have demonstrated the feasibility of LV-mediated gene transfer into colonic mucosa. We also identified differential patterns of mucosal gene transfer dependent on whether murine or human tissue was used. Within the limitations of the study, the LV did not appear to induce mucosal damage and were not distributed beyond the distal colon.

  20. DNA hypomethylation of a transcription factor binding site within the promoter of a gout risk gene NRBP1 upregulates its expression by inhibition of TFAP2A binding.

    Science.gov (United States)

    Zhu, Zaihua; Meng, Weida; Liu, Peiru; Zhu, Xiaoxia; Liu, Yun; Zou, Hejian

    2017-01-01

    Genome-wide association studies (GWASs) have identified dozens of loci associated with gout, but for most cases, the risk genes and the underlying molecular mechanisms contributing to these associations are unknown. This study sought to understand the molecular mechanism of a common genetic variant, rs780093, in the development of gout, both in vitro and in vivo. Nuclear receptor binding protein 1 ( NRBP1 ), as a gout risk gene, and its regulatory region, 72 bp upstream of the transcription start site, designated as B1, were identified through integrative analyses of genome-wide genotype and DNA methylation data. We observed elevated NRBP1 expression in human peripheral blood mononuclear cells (PBMCs) from gout patients. In vitro luciferase reporter and protein pulldown assay results showed that DNA methylation could increase the binding of the transcription factor TFAP2A to B1, leading to suppressed gene expression. There results were further confirmed by in vivo bisulfite pyrosequencing showing that hypomethylation on B1 is associated with increased NRBP1 expression in gout patients. Hypomethylation at the promoter region of NRBP1 reduces the binding of TFAP2A and thus leads to elevated NRBP1 expression, which might contribute to the development of gout.

  1. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.

    Science.gov (United States)

    Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A

    2013-12-01

    Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

  2. Optical imaging of luminescence for in vivo quantification of gene electrotransfer in mouse muscle and knee

    Directory of Open Access Journals (Sweden)

    Scherman D

    2006-03-01

    Full Text Available Abstract Background Optical imaging is an attractive non-invasive way to evaluate the expression of a transferred DNA, mainly thanks to its lower cost and ease of realization. In this study optical imaging was evaluated for monitoring and quantification of the mouse knee joint and tibial cranial muscle electrotransfer of a luciferase encoding plasmid. Optical imaging was applied to study the kinetics of luciferase expression in both tissues. Results The substrate of luciferase (luciferin was injected either intraperitonealy (i.p. or in situ into the muscle or the knee joint. Luminescence resulting from the luciferase-luciferin reaction was measured in vivo with a cooled CCD camera and/or in vitro on tissue lysate. Maximal luminescence of the knee joint and muscle after i.p. (2.5 mg or local injection of luciferin (50 μg in the knee joint, 100 μg in the muscle were highly correlated. With the local injection procedure adopted, in vivo and in vitro luminescences measured on the same muscles significantly correlated. Luminescence measurements were reproducible and the signal level was proportional to the amount of plasmid injected. In vivo luciferase activity in the electrotransfered knee joint was detected for two weeks. Intramuscular electrotransfer of 0.3 or 3 μg of plasmid led to stable luciferase expression for 62 days, whereas injecting 30 μg of plasmid resulted in a drop of luminescence three weeks after electrotransfer. These decreases were partially associated with the development of an immune response. Conclusion A particular advantage of the i.p. injection of substrate is a widespread distribution at luciferase production sites. We have also highlighted advantages of local injection as a more sensitive detection method with reduced substrate consumption. Besides, this route of injection is relatively free of uncontrolled parameters, such as diffusion to the target organ, crossing of biological barriers and evidencing variations in

  3. Eliminating HIV-1 Packaging Sequences from Lentiviral Vector Proviruses Enhances Safety and Expedites Gene Transfer for Gene Therapy.

    Science.gov (United States)

    Vink, Conrad A; Counsell, John R; Perocheau, Dany P; Karda, Rajvinder; Buckley, Suzanne M K; Brugman, Martijn H; Galla, Melanie; Schambach, Axel; McKay, Tristan R; Waddington, Simon N; Howe, Steven J

    2017-08-02

    Lentiviral vector genomic RNA requires sequences that partially overlap wild-type HIV-1 gag and env genes for packaging into vector particles. These HIV-1 packaging sequences constitute 19.6% of the wild-type HIV-1 genome and contain functional cis elements that potentially compromise clinical safety. Here, we describe the development of a novel lentiviral vector (LTR1) with a unique genomic structure designed to prevent transfer of HIV-1 packaging sequences to patient cells, thus reducing the total HIV-1 content to just 4.8% of the wild-type genome. This has been achieved by reconfiguring the vector to mediate reverse-transcription with a single strand transfer, instead of the usual two, and in which HIV-1 packaging sequences are not copied. We show that LTR1 vectors offer improved safety in their resistance to remobilization in HIV-1 particles and reduced frequency of splicing into human genes. Following intravenous luciferase vector administration to neonatal mice, LTR1 sustained a higher level of liver transgene expression than an equivalent dose of a standard lentivirus. LTR1 vectors produce reverse-transcription products earlier and start to express transgenes significantly quicker than standard lentiviruses after transduction. Finally, we show that LTR1 is an effective lentiviral gene therapy vector as demonstrated by correction of a mouse hemophilia B model. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Solubilization and folding of a fully active recombinant Gaussia luciferase with native disulfide bonds by using a SEP-Tag.

    Science.gov (United States)

    Rathnayaka, Tharangani; Tawa, Minako; Nakamura, Takashi; Sohya, Shihori; Kuwajima, Kunihiro; Yohda, Masafumi; Kuroda, Yutaka

    2011-12-01

    Gaussia luciferase (GLuc) is the smallest known bioluminescent protein and is attracting much attention as a potential reporter protein. However, its 10 disulfide bond forming cysteines have hampered the efficient production of recombinant GLuc and thus limited its use in bio-imaging application. Here, we demonstrate that the addition of a short solubility enhancement peptide tag (SEP-Tag) to the C-terminus of GLuc (GLuc-C9D) significantly increased the fraction of soluble protein at a standard expression temperature. The expression time was much shorter, and the final yield of GLuc-C9D was significantly higher than with our previous pCold expression system. Reversed phase HPLC indicated that the GLuc-C9D variant folded with a single disulfide bond pattern after proper oxidization. Further, the thermal denaturation of GLuc-C9D was completely reversible, and its secondary structure content remained unchanged until 40°C as assessed by CD spectroscopy. The (1)H-NMR spectrum of GLuc indicated sharp well dispersed peaks typical for natively folded proteins. GLuc-C9D bioluminescence activity was strong and fully retained even after incubation at high temperatures. These results suggest that solubilization using SEP-Tags can be useful for producing large quantities of proteins containing multiple disulfide bonds. Copyright © 2011. Published by Elsevier B.V.

  5. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  6. A rapid method for the determination of microbial susceptibility using the firefly luciferase assay for adenosine triphosphate (ATP)

    Science.gov (United States)

    Vellend, H.; Tuttle, S. A.; Barza, M.; Weinstein, L.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was optimized for pure bacteria in broth in order to evaluate if changes in bacterial ATP content could be used as a rapid measure of antibiotic effect on microorganisms. Broth cultures of log phase bacteria were incubated at 310 K (37 C) for 2.5 hours at antimicrobial concentrations which resulted in the best discrimination between sensitive and resistant strains. Eighty-seven strains of 11 bacterial species were studied for their susceptibility to 12 commonly used antimicrobial agents: ampicillin, Penicillin G, nafcillin, carbenicillin, cephalothin, tetracycline, erythromycin, clindamycin, gentamicin, nitrofurantoin, colistin, and chloramplenicol. The major advantage of the ATP system over existing methods of rapid microbial susceptibility testing is that the assay can be made specific for bacterial ATP.

  7. Genomic organization and identification of promoter regions for the BDNF gene in the pond turtle Trachemys scripta elegans.

    Science.gov (United States)

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2014-08-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I-III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI-III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression.

  8. Gene polymorphisms in association with self-reported stroke in US adults

    Directory of Open Access Journals (Sweden)

    Amy Z Fan

    2010-03-01

    Full Text Available Amy Z Fan1, Jing Fang1, Ajay Yesupriya2, Man-huei Chang2, Greta Kilmer1, Meaghan House3, Donald Hayes1, Renée M Ned2, Nicole F Dowling2, Ali H Mokdad1 1National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 2Office of Public Health Genomics, Coordinating Center for Health Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 3School of Public Health, Emory University, Atlanta, GA, USAPurpose: Epidemiologic studies suggest that several gene variants increase the risk of stroke, and population-based studies help provide further evidence. We identified polymorphisms associated with the prevalence of self-reported stroke in US populations using a representative sample.Methods: Our sample comprised US adults in the Third National Health and Nutrition Examination (NHANES III DNA bank. We examined nine candidate gene variants within ACE, F2, F5, ITGA2, MTHFR, and NOS3 for associations with self-reported stroke. We used multivariate regression and Cox proportional hazards models to test the association between these variants and history of stroke.Results: In regression models, the rs4646994 variant of ACE (I/I and I/D genotypes was associated with higher prevalence adjusted prevalence odds ratio [APOR] = 2.66 [1.28, 5.55] and 2.23 [1.30, 3.85], respectively compared with the D/D genotype. The heterozygous genotype of MTHFR rs1801131 (A/C was associated with lower prevalence of stroke (APOR = 0.48 [0.25, 0.92] compared with A/A and C/C genotypes. For rs2070744 of NOS3, both the C/T genotype (APOR = 1.91 [1.12, 3.27] and C/C genotype (APOR = 3.31 [1.66, 6.60] were associated with higher prevalence of stroke compared with the T/T genotype.Conclusion: Our findings suggest an association between the prevalence of self-reported stroke and polymorphisms in ACE, MTHFR, and NOS3 in a population-based sample. Keywords: stroke, gene, polymorphisms, NHANES III, gene

  9. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex.

    Science.gov (United States)

    Mor, Michal; Nardone, Stefano; Sams, Dev Sharan; Elliott, Evan

    2015-01-01

    MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). However, these technologies have not yet been employed to uncover changes in microRNAs in the brain of individuals diagnosed with asd. Small RNA next-generation sequencing was performed on RNA extracted from 12 human autism brain samples and 12 controls. Real-time PCR was used to validate a sample of the differentially expressed microRNAs, and bioinformatic analysis determined common pathways of gene targets. MicroRNA expression data was correlated to genome-wide DNA methylation data to determine if there is epigenetic regulation of dysregulated microRNAs in the autism brain. Luciferase assays, real-time PCR, and Western blot analysis were used to determine how dysregulated microRNAs may regulate the expression and translation of an autism-related gene transcript. We determined that miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and miR-21-5p are overexpressed in the asd brain. Furthermore, the promoter region of the miR-142 gene is hypomethylated in the same brain samples, suggesting that epigenetics plays a role in dysregulation of microRNAs in the brain. Bioinformatic analysis revealed that these microRNAs target genes that are involved in synaptic function. Further bioinformatic analysis, coupled with in vitro luciferase assays, determined that miR-451a and miR-21-5p can target the oxytocin receptor (OXTR) gene. OXTR gene expression is increased in these same brain samples, and there is a positive correlation between miR-21-5p and OXTR expression. However, miR-21-5p expression negatively correlates to production of OXTR protein from the OXTR transcript. Therefore, we suggest that miR-21-5p may attenuate OXTR expression in

  10. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention.

    Science.gov (United States)

    Srivastava, Niloo; Manvati, Siddharth; Srivastava, Archita; Pal, Ranjana; Kalaiarasan, Ponnusamy; Chattopadhyay, Shilpi; Gochhait, Sailesh; Dua, Raina; Bamezai, Rameshwar N K

    2011-04-04

    New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests

  11. Ostreococcus tauri Luminescent Reporter Lines as Biosensors for Detecting Pollution From Copper-Mine Tailing Effluents in Coastal Environments

    Directory of Open Access Journals (Sweden)

    Carlos Henríquez-Castillo

    2018-05-01

    Full Text Available Phytoplankton cells are excellent biosensors for environmental monitoring and toxicity assessments in different natural systems. Green algae, in particular, appear to be more responsive to copper (Cu disturbances. This is interesting considering that Cu pollution in coastal environments has increased over the last century, with enormous repercussions to marine ecosystems. Unfortunately, no high-throughput method exists for the environmental monitoring of Cu toxicity in seawater. To assess potential uses as biosensors of Cu pollution, high-throughput screening was performed on five luminescence reporter lines constructed in the green algae Ostreococcus tauri RCC745. The reporter line expressing the iron storage ferritin protein fused to luciferase (Fer-Luc was the most sensitive, responding to Cu concentrations in the μM range. Fer-Luc was also the most sensitive reporter line for detecting toxicity in mining-derived polluted seawater predominantly contaminated by soluble Cu. Nevertheless, the Cyclin-Dependent-Kinase A (CDKA reporter was most suitable for detecting the toxicity of copper-mine tailing effluents containing other metals (e.g., iron. These results highlight that Ostreococcus biosensors can serve as a reliable, inexpensive, and automated, high-throughput laboratory approach for performing seawater analyses of coastal areas subjected to metal disturbances. When challenged with Cu, O. tauri not only evidenced a rapid, transcriptional response for the tested genes, but also showed changes in a broad range of genes, especially as related to the stress response. Overall, the obtained results reinforce that a single biosensor is insufficient when dealing with complex mixtures of toxic compounds in natural environments.

  12. Warm Water Bath Stimulates Phase-Shifts of the Peripheral Circadian Clocks in PER2::LUCIFERASE Mouse

    Science.gov (United States)

    Kuriki, Daisuke; Haraguchi, Atsushi; Shibata, Shigenobu

    2014-01-01

    Circadian clocks in the peripheral tissues of mice are known to be entrained by pulse stimuli such as restricted feeding, novel wheel running, and several other agents. However, there are no reports on high temperature pulse-mediated entrainment on the phase-shift of peripheral clocks in vivo. Here we show that temperature treatment of mice for two days at 41°C, instead of 37°C, for 1–2 h during the inactive period, using a temperature controlled water bath stimulated phase-advance of peripheral clocks in the kidney, liver, and submandibular gland of PER2::LUCIFERASE mice. On the other hand, treatment for 2 days at 35°C ambient room temperature for 2 h did not cause a phase-advance. Maintenance of mice at 41°C in a water bath, sustained the core body temperature at 40–41°C. However, the use of 37°C water bath or the 35°C ambient room temperature elevated the core body temperature to 38.5°C, suggesting that at least a core body temperature of 40–41°C is necessary to cause phase-advance under light-dark cycle conditions. The temperature pulse stimulation at 41°C, instead of 37°C water bath for 2 h led to the elevated expression of Per1 and Hsp70 in the peripheral tissue of mice. In summary, the present study demonstrates that transient high temperature pulse using water bath during daytime causes phase-advance in mouse peripheral clocks in vivo. The present results suggest that hot water bath may affect the phase of peripheral clocks. PMID:24933288

  13. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency.

    Science.gov (United States)

    Sato, Toshinori; Nakata, Mitsuhiro; Yang, Zhihong; Torizuka, Yu; Kishimoto, Satoko; Ishihara, Masayuki

    2017-08-01

    Lyophilization is an effective method for preserving nonviral gene vectors. To improve the stability and transgene expression of lyophilized plasmid DNA (pDNA) complexes, we coated the surfaces of pDNA/chitosan complexes with hyaluronic acid (HA) of varying molecular masses. The transgene expression of pDNA/chitosan/HA ternary complexes was characterized in vitro and in vivo. pDNA complexes were lyophilized overnight and the resultant products with spongy, porous consistencies were stored at -30, 4 or 25°C for 2 weeks. Rehydrated complexes were characterized using gel retardation assays, aiming to confirm complex formation, measure particle size and evaluate zeta potential, as well as conduct luciferase gene reporter assays. The anti-tumor effects of pDNA ternary complexes were evaluated using suicide gene (pTK) coding thymidine kinase in Huh7-implanted mice. Transfection efficiencies of pDNA/chitosan/HA ternary complexes were dependent on the average molecular masses of HA. The coating of pDNA/chitosan complexes with HA maintained the cellular transfection efficiencies of lyophilized pDNA ternary complexes. Furthermore, intratumoral injection of lyophilized, rehydrated pDNA ternary complexes into tumor-bearing mice showed a significant suppression of tumor growth. The coating of pDNA/chitosan complexes with high-molecular-weight HA augmented the stability and cellular transfection ability of the complexes after lyophilization-rehydration. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.

    Science.gov (United States)

    Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E

    2001-12-01

    Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the

  15. Use of reporter-gene based bacteria to quantify phenanthrene biodegradation and toxicity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Doyun [Department of Civil and Environmental Engineering, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of); Moon, Hee Sun [School of Earth and Environmental Science, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of); Lin, Chu-Ching; Barkay, Tamar [Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901 (United States); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of)

    2011-02-15

    A phenanthrene-degrading bacterium, Sphingomonas paucimobilis EPA505 was used to construct two fluorescence-based reporter strains. Strain D harboring gfp gene was constructed to generate green fluorescence when the strain started to biodegrade phenanthrene. Strain S possessing gef gene was designed to die once phenanthrene biodegradation was initiated and thus to lose green fluorescence when visualized by a live/dead cell staining. Confocal laser scanning microscopic observation followed by image analysis demonstrates that the fluorescence intensity generated by strain D increased and the intensity by strain S decreased linearly at the phenanthrene concentration of up to 200 mg/L. Such quantitative increase and decrease of fluorescence intensity in strain D (i.e., from 1 to 11.90 {+-} 0.72) and strain S (from 1 to 0.40 {+-} 0.07) were also evident in the presence of Ottawa sand spiked with the phenanthrene up to 1000 mg/kg. The potential use of the reporter strains in quantitatively determining biodegradable or toxic phenanthrene was discussed. - Research highlights: A novel reporter bacterial strain has been developed. The bacterium can quantitatively determine the change in fluorescence intensity. The intensity can represent the bioavailable phenanthrene in solid matrix. - A cell-killing gene harboring reporter bacterium shows phenanthrene toxicity.

  16. MR molecular imaging of tumours using ferritin heavy chain reporter gene expression mediated by the hTERT promoter

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yan [Third Military Medical University, Department of Radiology, XinQiao Hospital, ChongQing (China); The First Affiliated Hospital of ChengDu Medical College, Department of Radiology, ChengDu (China); Gong, Ming-fu; Yang, Hua; Zhang, Song; Wang, Guang-xian; Su, Tong-sheng; Wen, Li; Zhang, Dong [Third Military Medical University, Department of Radiology, XinQiao Hospital, ChongQing (China)

    2016-11-15

    Using the human telomerase reverse transcriptase (hTERT) promoter and the modified ferritin heavy chain (Fth) reporter gene, reporter gene expression for MRI was examined in telomerase positive and negative tumour cells and xenografts. Activity of the reporter gene expression vector Lenti-hTERT-Fth1-3FLAG-Puro was compared to constitutive CMV-driven expression and to the untransfected parental control in five tumour cell lines: A549, SKOV3, 293T, U2OS and HPDLF. In vitro, transfected cells were evaluated for FLAG-tagged protein expression, iron accumulation and transverse relaxation. In vivo, tumours transduced by lentiviral vector injection were imaged using T2*WI. Changes in tumour signal intensity were validated by histology. Only telomerase positive tumour cells expressed FLAG-tagged Fth and displayed an increase in R2* above the parental control, with a corresponding change in T2*WI. In addition, only telomerase positive tumours, transduced by injection of the reporter gene expression construct, exhibited a change in signal intensity on T2*WI. Tumour histology verified the expression of FLAG-tagged Fth and iron accumulation in telomerase positive tissue. Reporter gene expression for MRI, using the Fth reporter and the hTERT promoter, may be a useful strategy for the non-invasive diagnosis of many types of cancer. (orig.)

  17. Using reporter gene assays to identify cis regulatory differences between humans and chimpanzees.

    Science.gov (United States)

    Chabot, Adrien; Shrit, Ralla A; Blekhman, Ran; Gilad, Yoav

    2007-08-01

    Most phenotypic differences between human and chimpanzee are likely to result from differences in gene regulation, rather than changes to protein-coding regions. To date, however, only a handful of human-chimpanzee nucleotide differences leading to changes in gene regulation have been identified. To hone in on differences in regulatory elements between human and chimpanzee, we focused on 10 genes that were previously found to be differentially expressed between the two species. We then designed reporter gene assays for the putative human and chimpanzee promoters of the 10 genes. Of seven promoters that we found to be active in human liver cell lines, human and chimpanzee promoters had significantly different activity in four cases, three of which recapitulated the gene expression difference seen in the microarray experiment. For these three genes, we were therefore able to demonstrate that a change in cis influences expression differences between humans and chimpanzees. Moreover, using site-directed mutagenesis on one construct, the promoter for the DDA3 gene, we were able to identify three nucleotides that together lead to a cis regulatory difference between the species. High-throughput application of this approach can provide a map of regulatory element differences between humans and our close evolutionary relatives.

  18. Confocal quantification of cis-regulatory reporter gene expression in living sea urchin.

    Science.gov (United States)

    Damle, Sagar; Hanser, Bridget; Davidson, Eric H; Fraser, Scott E

    2006-11-15

    Quantification of GFP reporter gene expression at single cell level in living sea urchin embryos can now be accomplished by a new method of confocal laser scanning microscopy (CLSM). Eggs injected with a tissue-specific GFP reporter DNA construct were grown to gastrula stage and their fluorescence recorded as a series of contiguous Z-section slices that spanned the entire embryo. To measure the depth-dependent signal decay seen in the successive slices of an image stack, the eggs were coinjected with a freely diffusible internal fluorescent standard, rhodamine dextran. The measured rhodamine fluorescence was used to generate a computational correction for the depth-dependent loss of GFP fluorescence per slice. The intensity of GFP fluorescence was converted to the number of GFP molecules using a conversion constant derived from CLSM imaging of eggs injected with a measured quantity of GFP protein. The outcome is a validated method for accurately counting GFP molecules in given cells in reporter gene transfer experiments, as we demonstrate by use of an expression construct expressed exclusively in skeletogenic cells.

  19. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zhu, Jinyong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2016-08-15

    Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that affect the environment and the health of humans and wildlife. In this study, the zebrafish liver (ZFL) cell line was used in vitro to investigate two major PBDE contaminants: 2, 2′, 4, 4′, 5-pentabromodiphenyl ether (BDE-99) and 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47). BDE-99 was found to significantly induce cytochrome P450 (CYP1A), uridine diphosphate glucuronosyl transferase 1 family a, b (ugt1ab), 7-ethoxyresorufin-O-deethylase activity and an aryl hydrocarbon receptor (Ahr) dependent xenobiotic response element luciferase reporter system, confirming the Ahr-mediated activation of CYP1A by BDE-99. The time-course effect indicated that the role of BDE-99 in Ahr-mediated signaling is likely to be transient and highly dependent on the ability of BDE-99 to induce CYP1A and ugt1ab, and presumably its metabolism. BDE-99 also exhibited a significant dose-response effect on a developed zebrafish pregnane X receptor luciferase reporter gene system. However, the other abundant contaminant under study, BDE-47, did not exhibit the above effects. Together, these results indicated that the molecular mechanism of PBDEs induced in ZFL cells is a chemically specific process that differs between members of the PBDE family. CYP1A induction derived by BDE-99 warrants further risk assessment as the humans, wildlife and environment are exposed to a complex mixture including dioxin-like compounds and carcinogenic compounds. - Highlights: • BDE-99 is an aryl hydrocarbon receptor (Ahr) agonist in zebrafish liver cell-line ZFL. • BDE-99 induced EROD activity, CYP1A and ugt1ab gene expression, in ZFL. • BDE-99 induced the pregnane X receptor (Pxr) luciferase reporter gene system in ZFL. • BDE-47 did not show any effects in ZFL to induce CYP1A, ugt1ab, and EROD. • BDE-47 and -99 showed no induction of Rxr and Pxr pathways in ZFL cells.

  20. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa.

    Science.gov (United States)

    Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu

    2014-12-01

    Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Alternative transcription of sodium/bicarbonate transporter SLC4A7 gene enhanced by single nucleotide polymorphisms.

    Science.gov (United States)

    Park, Hae Jeong; Lee, Soojung; Ju, Eunji; Jones, Jayre A; Choi, Inyeong

    2017-03-01

    Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH 2 -terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter. Copyright © 2017 the American Physiological Society.

  2. Two estrogen response element sequences near the PCNA gene are not responsible for its estrogen-enhanced expression in MCF7 cells.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available The proliferating cell nuclear antigen (PCNA is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2 enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2.Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays.We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.

  3. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  5. Concordant association of insulin degrading enzyme gene (IDE variants with IDE mRNA, Abeta, and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Minerva M Carrasquillo

    2010-01-01

    Full Text Available The insulin-degrading enzyme gene (IDE is a strong functional and positional candidate for late onset Alzheimer's disease (LOAD.We examined conserved regions of IDE and its 10 kb flanks in 269 AD cases and 252 controls thereby identifying 17 putative functional polymorphisms. These variants formed eleven haplotypes that were tagged with ten variants. Four of these showed significant association with IDE transcript levels in samples from 194 LOAD cerebella. The strongest, rs6583817, which has not previously been reported, showed unequivocal association (p = 1.5x10(-8, fold-increase = 2.12,; the eleven haplotypes were also significantly associated with transcript levels (global p = 0.003. Using an in vitro dual luciferase reporter assay, we found that rs6583817 increases reporter gene expression in Be(2-C (p = 0.006 and HepG2 (p = 0.02 cell lines. Furthermore, using data from a recent genome-wide association study of two Croatian isolated populations (n = 1,879, we identified a proxy for rs6583817 that associated significantly with decreased plasma Abeta40 levels (ss = -0.124, p = 0.011 and total measured plasma Abeta levels (b = -0.130, p = 0.009. Finally, rs6583817 was associated with decreased risk of LOAD in 3,891 AD cases and 3,605 controls. (OR = 0.87, p = 0.03, and the eleven IDE haplotypes (global p = 0.02 also showed significant association.Thus, a previously unreported variant unequivocally associated with increased IDE expression was also associated with reduced plasma Abeta40 and decreased LOAD susceptibility. Genetic association between LOAD and IDE has been difficult to replicate. Our findings suggest that targeted testing of expression SNPs (eSNPs strongly associated with altered transcript levels in autopsy brain samples may be a powerful way to identify genetic associations with LOAD that would otherwise be difficult to detect.

  6. Metastasizing, Luciferase Transduced MAT-Lu Rat Prostate Cancer Models: Follow up of Bolus and Metronomic Therapy with Doxorubicin as Model Drug

    International Nuclear Information System (INIS)

    Jantscheff, Peter; Esser, Norbert; Geipel, Andreas; Woias, Peter; Ziroli, Vittorio; Goldschmidtboing, Frank; Massing, Ulrich

    2011-01-01

    The most fatal outcomes of prostate carcinoma (PCa) result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting. An intravenous bolus treatment with doxorubicin was used to demonstrate the basic applicability of in vivo imaging to follow up therapeutic intervention in these models. In vitro analysis of tissue homogenates confirmed major metastatic spread of subcutaneous tumors into the lung. Our sensitive method, however, for the first time detects metastasis also in lymph node (11/24), spleen (3/24), kidney (4/24), liver (5/24), and bone tissue (femur or spinal cord - 5/20 and 12/20, respectively). Preliminary data of orthotopic implantation (three animals) showed metastatic invasion to investigated organs in all animals but with varying preference (e.g., to lymph nodes). Intravenous bolus treatment of MAT-Lu PCa with doxorubicin reduced subcutaneous tumor growth by about 50% and the number of animals affected by metastatic lesions in lymph nodes (0/4), lung (3/6) or lumbar spine (0/2), as determined by in vivo imaging and in vitro analysis. Additionally, the possible applicability of the luciferase transduced MAT-Lu model(s) to study basic principles of metronomic therapies via jugular vein catheter, using newly established active microport pumping systems, is presented

  7. Metastasizing, Luciferase Transduced MAT-Lu Rat Prostate Cancer Models: Follow up of Bolus and Metronomic Therapy with Doxorubicin as Model Drug

    Energy Technology Data Exchange (ETDEWEB)

    Jantscheff, Peter, E-mail: jantscheff@tumorbio.uni-freiburg.de [Tumour Biology Center, Clinical Research, Department Lipids & Liposomes, Breisacher Str.117, D-79106 Freiburg (Germany); Esser, Norbert [ProQinase GmbH, Breisacher Str. 117, D-79106 Freiburg (Germany); Geipel, Andreas; Woias, Peter [Laboratory for Design of Microsystems, Department of Microsystems Engineering (IMTEK), Georges-Köhler-Allee 106, D-79110 Freiburg (Germany); Ziroli, Vittorio [Tumour Biology Center, Clinical Research, Department Lipids & Liposomes, Breisacher Str.117, D-79106 Freiburg (Germany); Goldschmidtboing, Frank [Laboratory for Design of Microsystems, Department of Microsystems Engineering (IMTEK), Georges-Köhler-Allee 106, D-79110 Freiburg (Germany); Massing, Ulrich [Tumour Biology Center, Clinical Research, Department Lipids & Liposomes, Breisacher Str.117, D-79106 Freiburg (Germany)

    2011-06-17

    The most fatal outcomes of prostate carcinoma (PCa) result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting. An intravenous bolus treatment with doxorubicin was used to demonstrate the basic applicability of in vivo imaging to follow up therapeutic intervention in these models. In vitro analysis of tissue homogenates confirmed major metastatic spread of subcutaneous tumors into the lung. Our sensitive method, however, for the first time detects metastasis also in lymph node (11/24), spleen (3/24), kidney (4/24), liver (5/24), and bone tissue (femur or spinal cord - 5/20 and 12/20, respectively). Preliminary data of orthotopic implantation (three animals) showed metastatic invasion to investigated organs in all animals but with varying preference (e.g., to lymph nodes). Intravenous bolus treatment of MAT-Lu PCa with doxorubicin reduced subcutaneous tumor growth by about 50% and the number of animals affected by metastatic lesions in lymph nodes (0/4), lung (3/6) or lumbar spine (0/2), as determined by in vivo imaging and in vitro analysis. Additionally, the possible applicability of the luciferase transduced MAT-Lu model(s) to study basic principles of metronomic therapies via jugular vein catheter, using newly established active microport pumping systems, is presented.

  8. Metastasizing, Luciferase Transduced MAT‑Lu Rat Prostate Cancer Models: Follow up of Bolus and Metronomic Therapy with Doxorubicin as Model Drug

    Directory of Open Access Journals (Sweden)

    Peter Woias

    2011-06-01

    Full Text Available The most fatal outcomes of prostate carcinoma (PCa result from hormone-refractory variants of the tumor, especially from metastatic spread rather than from primary tumor burden. The goal of the study was to establish and apply rat MAT-Lu prostate cancer tumor models for improved non-invasive live follow up of tumor growth and metastasis by in vivo bioluminescence. We established luciferase transduced MAT-Lu rat PCa cells and studied tumor growth and metastatic processes in an ectopic as well as orthotopic setting. An intravenous bolus treatment with doxorubicin was used to demonstrate the basic applicability of in vivo imaging to follow up therapeutic intervention in these models. In vitro analysis of tissue homogenates confirmed major metastatic spread of subcutaneous tumors into the lung. Our sensitive method, however, for the first time detects metastasis also in lymph node (11/24, spleen (3/24, kidney (4/24, liver (5/24, and bone tissue (femur or spinal cord - 5/20 and 12/20, respectively. Preliminary data of orthotopic implantation (three animals showed metastatic invasion to investigated organs in all animals but with varying preference (e.g., to lymph nodes. Intravenous bolus treatment of MAT-Lu PCa with doxorubicin reduced subcutaneous tumor growth by about 50% and the number of animals affected by metastatic lesions in lymph nodes (0/4, lung (3/6 or lumbar spine (0/2, as determined by in vivo imaging and in vitro analysis. Additionally, the possible applicability of the luciferase transduced MAT-Lu model(s to study basic principles of metronomic therapies via jugular vein catheter, using newly established active microport pumping systems, is presented.

  9. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy.

    LENUS (Irish Health Repository)

    van Pijkeren, Jan Peter

    2012-01-31

    Bacteria-mediated transfer of plasmid DNA to mammalian cells (bactofection) has been shown to have significant potential as an approach to express heterologous proteins in various cell types. This is achieved through entry of the entire bacterium into cells, followed by release of plasmid DNA. In a murine model, we show that Listeria monocytogenes can invade and spread in tumors, and establish the use of Listeria to deliver genes to tumors in vivo. A novel approach to vector lysis and release of plasmid DNA through antibiotic administration was developed. Ampicillin administration facilitated both plasmid transfer and safety control of vector. To further improve on the gene delivery system, we selected a Listeria monocytogenes derivative that is more sensitive to ampicillin, and less pathogenic than the wild-type strain. Incorporation of a eukaryotic-transcribed lysin cassette in the plasmid further increased bacterial lysis. Successful gene delivery of firefly luciferase to growing tumors in murine models and to patient breast tumor samples ex vivo was achieved. The model described encompasses a three-phase treatment regimen, involving (1) intratumoral administration of vector followed by a period of vector spread, (2) systemic ampicillin administration to induce vector lysis and plasmid transfer, and (3) systemic administration of combined moxifloxacin and ampicillin to eliminate systemic vector. For the first time, our results reveal the potential of Listeria monocytogenes for in vivo gene delivery.

  10. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    Directory of Open Access Journals (Sweden)

    Shian-Ying Sung

    Full Text Available Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.

  11. The first report of prion-related protein gene (PRNT) polymorphisms in goat.

    Science.gov (United States)

    Kim, Yong-Chan; Jeong, Byung-Hoon

    2017-06-01

    Prion protein is encoded by the prion protein gene (PRNP). Polymorphisms of several members of the prion gene family have shown association with prion diseases in several species. Recent studies on a novel member of the prion gene family in rams have shown that prion-related protein gene (PRNT) has a linkage with codon 26 of prion-like protein (PRND). In a previous study, codon 26 polymorphism of PRND has shown connection with PRNP haplotype which is strongly associated with scrapie vulnerability. In addition, the genotype of a single nucleotide polymorphism (SNP) at codon 26 of PRND is related to fertilisation capacity. These findings necessitate studies on the SNP of PRNT gene which is connected with PRND. In goat, several polymorphism studies have been performed for PRNP, PRND, and shadow of prion protein gene (SPRN). However, polymorphism on PRNT has not been reported. Hence, the objective of this study was to determine the genotype and allelic distribution of SNPs of PRNT in 238 Korean native goats and compare PRNT DNA sequences between Korean native goats and several ruminant species. A total of five SNPs, including PRNT c.-114G > T, PRNT c.-58A > G in the upstream of PRNT gene, PRNT c.71C > T (p.Ala24Val) and PRNT c.102G > A in the open reading frame (ORF) and c.321C > T in the downstream of PRNT gene, were found in this study. All five SNPs of caprine PRNT gene in Korean native goat are in complete linkage disequilibrium (LD) with a D' value of 1.0. Interestingly, comparative sequence analysis of the PRNT gene revealed five mismatches between DNA sequences of Korean native goats and those of goats deposited in the GenBank. Korean native black goats also showed 5 mismatches in PRNT ORF with cattle. To the best of our knowledge, this is the first genetic research of the PRNT gene in goat.

  12. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    Science.gov (United States)

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  13. Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses

    Directory of Open Access Journals (Sweden)

    Zhi-Juan eFeng

    2015-12-01

    Full Text Available It was reported that Nuclear Factor Y (NF-Y genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica, an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam NtERD10, NtLEA5, NtCAT, NtSOD or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC and contents of chlorophyll, superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and malondialdehyde (MDA in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5 and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.

  14. Molecular mechanisms involved in modulation of p-glycoprotein expression from squamous cell carcinoma by low dose fractionated radiation (LDFR)

    International Nuclear Information System (INIS)

    Shajahan; Shahin; Shareef, Mohammed M.; Sathishkumar, Sabapathi; Mohiuddin, Mohammed; Ahmed, Mansoor M.; Brown, Brandee C.; Jones, Raleigh; Spring, Paul M.

    2004-01-01

    In the present study, two squamous cell carcinoma oral cavity cells (SCCOC), T-167 (p53 wild type) and T-409 (p53 mutant), were exposed to either clinically relevant dose (2 Gy), high dose (7Gy) or fractionated low dose (LDFR) (0.5 Gy x 4) and the expression of Mdr1 gene was assessed by real time RT-PCR, semiquantitative 32 P RT-PCR and luciferase reporter assay

  15. The first report of the vanC1 gene in Enterococcus faecium isolated from a human clinical specimen

    Directory of Open Access Journals (Sweden)

    Mingyue Sun

    2014-09-01

    Full Text Available The vanC1 gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC1gene. Polymerase chain reaction (PCR assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC1and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC1 gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC1gene. However, this study is the first to report the presence of the vanC1gene in E. faecium of human origin. Additionally, our research showed the vanC1gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC1gene from different species.

  16. Establishment of a hepatocellular carcinoma cell line expressing dual reporter genes: sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP)

    International Nuclear Information System (INIS)

    Kwak, Won Jung; Koo, Bon Chul; Kwon, Mo Sun

    2007-01-01

    Dual reporter gene imaging has several advantages for more sophisticated molecular imaging studies such as gene therapy monitoring. Herein, we have constructed hepatoma cell line expressing dual reporter genes of sodium iodide symporter (NIS) and enhanced green fluorescence protein (EGFP), and the functionalities of the genes were evaluated in vivo by nuclear and optical imaging. A pRetro-PN vector was constructed after separating NIS gene from pcDNA-NIS. RSV-EGFP-WPRE fragment separated from pLNRGW was cloned into pRetro-PN vector. The final vector expressing dual reporter genes was named pRetro-PNRGW. A human hepatoma (HepG2) cells were transfected by the retrovirus containing NIS and EGFP gene (HepG2-NE). Expression of NIS gene was confirmed by RT-PCR, radioiodine uptake and efflux studies. Expression of EGFP was confirmed by RT-PCR and fluorescence microscope. The HepG2 and HepG2-NE cells were implanted in shoulder and hindlimb of nude mice, then fluorescence image, gamma camera image and I-124 microPET image were undertaken. The HepG2-NE cell was successfully constructed. RT-PCR showed NIS and EGFP mRNA expression. About 50% of cells showed fluorescence. The iodine uptake of NIS-expressed cells was about 9 times higher than control. In efflux study, T 1/2 of HepG2-NE cells was 9 min. HepG2-NE xenograft showed high signal-to-background fluorescent spots and higher iodine-uptake compared to those of HepG2 xenograft. A hepatoma cell line expressing NIS and EGFP dual reporter genes was successfully constructed and could be used as a potential either by therapeutic gene or imaging reporter gene

  17. Detection of estrogen receptor endocrine disruptor potency of commonly used organochlorine pesticides using the LUMI-CELL ER bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.D.; Chu, A.C.; Clark, G.C. [Xenobiotic Detection Systems, Inc., Durham, NC (United States); Chu, M.D. [Alta Analytical Perspectives, Wilmington, NC (United States); Denison, M.S. [Dept. of Environmental Toxicology, Univ. of California, Davis, CA (United States)

    2004-09-15

    In order to detect the endocrine disrupting potency of organochlorine pesticides and other compounds, BG-1 (human ovarian carcinoma) cells containing a stably transfected estrogenresponsive luciferase reporter gene plasmid (BG1Luc4E2), was used. This cell line, termed the LUMI-CELL trademark ER estrogenic cell bioassay system, responds in a time-, dose dependent- and chemical-specific manner with the induction of luciferase gene expression in response to exposure to estrogen (but not other steroid hormones) and estrogenic chemicals in a high-throughput screening (HTPS) format6. Here we describe studies in which the LUMI-CELL trademark ER estrogenic cell bioassay system was used for high throughput screening (HTPS) analysis of the estrogenic disrupting potency of several commonly used pesticides and organochlorines: p,p'DDT; p,p'-DDE; DDD; {alpha}a-chlordane; {psi}-chlordane; Kepone; Methoxychlor; Vinclozolin; Fenarimol; 2,4,5-Trichlorophenoxyacetic Acid; and Dieldrin. Our results demonstrate the utility of XDS's LUMI-CELL trademark ER bioassay HTPS system for screening chemicals for estrogenic activity.

  18. Space-time analysis of gravitropism in etiolated Arabidopsis hypocotyls using bioluminescence imaging of the IAA19 promoter fusion with a destabilized luciferase reporter.

    Science.gov (United States)

    Yamamoto, Kotaro T; Watahiki, Masaaki K; Matsuzaki, Jun; Satoh, Soichirou; Shimizu, Hisayo

    2017-07-01

    Imaging analysis was carried out during the gravitropic response of etiolated Arabidopsis hypocotyls, using an IAA19 promoter fusion of destabilized luciferase as a probe. From the bright-field images we obtained the local deflection angle to the vertical, A, local curvature, C, and the partial derivative of C with respect to time, [Formula: see text]. These were determined every 19.9 µm along the curvilinear length of the hypocotyl, at ~10 min intervals over a period of ~6 h after turning hypocotyls through 90° to the horizontal. Similarly from the luminescence images we measured the luminescence intensity of the convex and concave flanks of the hypocotyl as well as along the median of the hypocotyl, to determine differential expression of auxin-inducible IAA19. Comparison of these parameters as a function of time and curvilinear length shows that the gravitropic response is composed of three successive elements: the first and second curving responses and a decurving response (autostraightening). The maximum of the first curving response occurs when A is 76° along the entire length of the hypocotyl, suggesting that A is the sole determinant in this response; in contrast, the decurving response is a function of both A and C, as predicted by the newly-proposed graviproprioception model (Bastien et al., Proc Natl Acad Sci USA 110:755-760, 2013). Further, differential expression of IAA19, with higher expression in the convex flank, is observed at A = 44°, and follows the Sachs' sine law. This also suggests that IAA19 is not involved in the first curving response. In summary, the gravitropic response of Arabidopsis hypocotyls consists of multiple elements that are each determined by separate principles.

  19. Inflammation and Gli2 suppress gastrin gene expression in a murine model of antral hyperplasia.

    Directory of Open Access Journals (Sweden)

    Milena Saqui-Salces

    Full Text Available Chronic inflammation in the stomach can lead to gastric cancer. We previously reported that gastrin-deficient (Gast⁻/⁻ mice develop bacterial overgrowth, inflammatory infiltrate, increased Il-1β expression, antral hyperplasia and eventually antral tumors. Since Hedgehog (Hh signaling is active in gastric cancers but its role in precursor lesions is poorly understood, we examined the role of inflammation and Hh signaling in antral hyperplasia. LacZ reporter mice for Sonic hedgehog (Shh, Gli1, and Gli2 expression bred onto the Gast⁻/⁻ background revealed reduced Shh and Gli1 expression in the antra compared to wild type controls (WT. Gli2 expression in the Gast⁻/⁻ corpus was unchanged. However in the hyperplastic Gast⁻/⁻ antra, Gli2 expression increased in both the mesenchyme and epithelium, whereas expression in WT mice remained exclusively mesenchymal. These observations suggested that Gli2 is differentially regulated in the hyperplastic Gast⁻/⁻ antrum versus the corpus and by a Shh ligand-independent mechanism. Moreover, the proinflammatory cytokines Il-1β and Il-11, which promote gastric epithelial proliferation, were increased in the Gast⁻/⁻ stomach along with Infγ. To test if inflammation could account for elevated epithelial Gli2 expression in the Gast⁻/⁻ antra, the human gastric cell line AGS was treated with IL-1β and was found to increase GLI2 but decrease GLI1 levels. IL-1β also repressed human GAST gene expression. Indeed, GLI2 but not GLI1 or GLI3 expression repressed gastrin luciferase reporter activity by ∼50 percent. Moreover, chromatin immunoprecipitation of GLI2 in AGS cells confirmed that GLI2 directly binds to the GAST promoter. Using a mouse model of constitutively active epithelial GLI2 expression, we found that activated GLI2 repressed Gast expression but induced Il-1β gene expression and proliferation in the gastric antrum, along with a reduction of the number of G-cells. In summary

  20. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    Science.gov (United States)

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins. (c) 2008 Wiley-Liss, Inc.

  1. Momordica charantia Inhibits Inflammatory Responses in Murine Macrophages via Suppression of TAK1.

    Science.gov (United States)

    Yang, Woo Seok; Yang, Eunju; Kim, Min-Jeong; Jeong, Deok; Yoon, Deok Hyo; Sung, Gi-Ho; Lee, Seungihm; Yoo, Byong Chul; Yeo, Seung-Gu; Cho, Jae Youl

    2018-01-01

    Momordica charantia known as bitter melon is a representative medicinal plant reported to exhibit numerous pharmacological activities such as antibacterial, antidiabetic, anti-inflammatory, anti-oxidant, antitumor, and hypoglycemic actions. Although this plant has high ethnopharmacological value for treating inflammatory diseases, the molecular mechanisms by which it inhibits the inflammatory response are not fully understood. In this study, we aim to identify the anti-inflammatory mechanism of this plant. To this end, we studied the effects of its methanol extract (Mc-ME) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Specifically, we evaluated nitric oxide (NO) production, mRNA expression of inflammatory genes, luciferase reporter gene activity, and putative molecular targets. Mc-ME blocked NO production in a dose-dependent manner in RAW264.7 cells; importantly, no cytotoxicity was observed. Moreover, the mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 were decreased by Mc-ME treatment in a dose-dependent manner. Luciferase assays and nuclear lysate immunoblotting analyses strongly indicated that Mc-ME decreases the levels of p65 [a nuclear factor (NF)-[Formula: see text]B subunit] and c-Fos [an activator protein (AP)-1 subunit]. Whole lysate immunoblotting assays, luciferase assays, and overexpression experiments suggested that transforming growth factor [Formula: see text]-activated kinase 1 (TAK1) is targeted by Mc-ME, thereby suppressing NF-[Formula: see text]B and AP-1 activity via downregulation of extracellular signal-regulated kinases (ERKs) and AKT. These results strongly suggest that Mc-ME exerts its anti-inflammatory activity by reducing the action of TAK1, which also affects the activation of NF-[Formula: see text]B and AP-1.

  2. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiroko; Ohta, Yasuharu; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio

    2013-01-01

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1 −/− A y /a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the Arnt

  3. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio, E-mail: tanizawa@yamaguchi-u.ac.jp

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  4. A portable bioluminescence engineered cell-based biosensor for on-site applications.

    Science.gov (United States)

    Roda, Aldo; Cevenini, Luca; Michelini, Elisa; Branchini, Bruce R

    2011-04-15

    We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  6. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    Science.gov (United States)

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis

  7. Ethanol extract of Portulaca Oleracea L. reduced the carbon tetrachloride induced liver injury in mice involving enhancement of NF-κB activity

    Science.gov (United States)

    Shi, Hongguang; Liu, Xuefeng; Tang, Gusheng; Liu, Haiyan; Zhang, Yinghui; Zhang, Bo; Zhao, Xuezhi; Wang, Wanyin

    2014-01-01

    Acute hepatic injury causes high morbidity and mortality world-wide. Management of severe acute hepatic failure continues to be one of the most challenging problems in clinical medicine. In present study, carbon tetrachloride (CCl4) was used to induce acute liver damage in mice and the protective effects of ethanol extract of Portulaca Oleracea L. (PO) were examined. The aminotransferase activities were biochemical estimated and the liver damage was tested by morphological histological analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The role of PO on the activity of NF-κB was determined by luciferase reporter gene assay and immunohistochemistry. The level of p-p65 was tested by western blot. Our results showed that PO administration on mice would decrease the serum aminotransferase level and reduced the liver histological damage. We also found that nuclear translocation of p65 was enhanced in liver tissues of mice treated with PO compared with control animals. In addition, in cultured hepatic cells, PO increased the NF-κB luciferase reporter gene activity and upregulated the level of phosphorylation of p65, but had no effects on mice liver SOD activity and MDA level. Collectively, PO attenuated CCl4 induced mice liver damage by enhancement of NF-κB activity. PMID:25628785

  8. Functional analysis of the promoter of the molt-inhibiting hormone (mih) gene in mud crab Scylla paramamosain.

    Science.gov (United States)

    Zhang, Xin; Huang, Danping; Jia, Xiwei; Zou, Zhihua; Wang, Yilei; Zhang, Ziping

    2018-04-01

    In this study, the 5'-flanking region of molt-inhibiting hormone (MIH) gene was cloned by Tail-PCR. It is 2024 bp starting from the translation initiation site, and 1818 bp starting from the predicted transcription start site. Forecast analysis results by the bioinformatics software showed that the transcription start site is located at 207 bp upstream of the start codon ATG, and TATA box is located at 240 bp upstream of the start codon ATG. Potential transcription factor binding sites include Sp1, NF-1, Oct-1, Sox-2, RAP1, and so on. There are two CpG islands, located at -25- +183 bp and -1451- -1316 bp respectively. The transfection results of luciferase reporter constructs showed that the core promoter region was located in the fragment -308 bp to -26 bp. NF-kappaB and RAP1 were essential for mih basal transcriptional activity. There are three kinds of polymorphism CA in the 5'-flanking sequence, and they can influence mih promoter activity. These findings provide a genetic foundation of the further research of mih transcription regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    Science.gov (United States)

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  10. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Daffolyn Rachael Fels Elliott

    2017-05-01

    Full Text Available Esophageal adenocarcinoma (EAC develops in an inflammatory microenvironment with reduced microbial diversity, but mechanisms for these influences remain poorly characterized. We hypothesized that mutations targeting the Toll-like receptor (TLR pathway could disrupt innate immune signaling and promote a microenvironment that favors tumorigenesis. Through interrogating whole genome sequencing data from 171 EAC patients, we showed that non-synonymous mutations collectively affect the TLR pathway in 25/171 (14.6%, PathScan p = 8.7x10-5 tumors. TLR mutant cases were associated with more proximal tumors and metastatic disease, indicating possible clinical significance of these mutations. Only rare mutations were identified in adjacent Barrett's esophagus samples. We validated our findings in an external EAC dataset with non-synonymous TLR pathway mutations in 33/149 (22.1%, PathScan p = 0.05 tumors, and in other solid tumor types exposed to microbiomes in the COSMIC database (10,318 samples, including uterine endometrioid carcinoma (188/320, 58.8%, cutaneous melanoma (377/988, 38.2%, colorectal adenocarcinoma (402/1519, 26.5%, and stomach adenocarcinoma (151/579, 26.1%. TLR4 was the most frequently mutated gene with eleven mutations in 10/171 (5.8% of EAC tumors. The TLR4 mutants E439G, S570I, F703C and R787H were confirmed to have impaired reactivity to bacterial lipopolysaccharide with marked reductions in signaling by luciferase reporter assays. Overall, our findings show that TLR pathway genes are recurrently mutated in EAC, and TLR4 mutations have decreased responsiveness to bacterial lipopolysaccharide and may play a role in disease pathogenesis in a subset of patients.

  11. A Mini Zinc-Finger Protein (MIF from Gerbera hybrida Activates the GASA Protein Family Gene, GEG, to Inhibit Ray Petal Elongation

    Directory of Open Access Journals (Sweden)

    Meixiang Han

    2017-09-01

    Full Text Available Petal appearance is an important horticultural trail that is generally used to evaluate the ornamental value of plants. However, knowledge of the molecular regulation of petal growth is mostly derived from analyses of Arabidopsis thaliana, and relatively little is known about this process in ornamental plants. Previously, GEG (Gerbera hybrida homolog of the gibberellin [GA]–stimulated transcript 1 [GAST1] from tomato, a gene from the GA stimulated Arabidopsis (GASA family, was reported to be an inhibitor of ray petal growth in the ornamental species, G. hybrida. To explore the molecular regulatory mechanism of GEG in petal growth inhibition, a mini zinc-finger protein (MIF was identified using yeast one-hybrid (Y1H screen. The direct binding of GhMIF to the GEG promoter was verified by using an electrophoretic mobility shift assay and a dual-luciferase assay. A yeast two-hybrid (Y2H revealed that GhMIF acts as a transcriptional activator. Transient transformation assay indicated that GhMIF is involved in inhibiting ray petal elongation by activating the expression of GEG. Spatiotemporal expression analyses and hormone treatment assay showed that the expression of GhMIF and GEG is coordinated during petal development. Taken together, these results suggest that GhMIF acts as a direct transcriptional activator of GEG, a gene from the GASA protein family to regulate the petal elongation.

  12. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish.

    Science.gov (United States)

    Tchoudakova, A; Kishida, M; Wood, E; Callard, G V

    2001-11-01

    Teleost fish are characterized by exceptionally high levels of neural estrogen biosynthesis when compared with the brains of other vertebrates or to the ovaries of the same fish. Two P450arom mRNAs which derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (b>a) and ovary (a>b) and have a different developmental program (b>a) and estrogen upregulation (b only). A polymerase chain reaction (PCR)-based genomic walking strategy was used to isolate the 5'-flanking regions of the goldfish (Carassius auratus) cyp19 genes. Sequence analysis of the cyp19b gene approximately 1.8 kb upstream of the transcription start site revealed a TATA box at nucleotide (nt) -30, two estrogen responsive elements (EREs; nt -351 and -211) and a consensus binding site (NBRE) for nerve growth factor inducible-B protein (NGFI-B/Nur77) at -286, which includes another ERE half-site. Also present were a sequence at nt -399 (CCCTCCT) required for neural specificity of the zebrafish GATA-2 gene, and 16 copies of an SRY/SOX binding motif. The 5'-flanking region ( approximately 1.0 kb) of the cyp19a gene had TATA (nt -48) and CAAT (nt -71) boxes, a steroidogenic factor-1 (SF-1) binding site (nt -265), eight copies of the SRY/SOX motif, and two copies of a recognition site for binding the arylhydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) heterodimer. Both genes had elements previously identified in the brain specific exon I promoter of the mouse aromatase gene. Cyp19a- and -b/luciferase constructs showed basal promoter activity in aromatase-expressing rodent pituitary (GH3) cells, but differences (a>b) did not reflect expression in fish pituitary in vivo (b>a), implying a lack of appropriate cell factors. Consistent with the onset of cyp19b expression in zebrafish embryos, microinjection of a green fluorescent protein (GFP) reporter plasmid into fertilized eggs revealed labeling in neural tissues at 30-48 h post-fertilization (hpf), most

  13. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2.

    Science.gov (United States)

    Gopinath, Gajula; Arunkumar, Kallare P; Mita, Kazuei; Nagaraju, Javaregowda

    2016-08-01

    Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis

    KAUST Repository

    Heckmann, J M

    2009-08-13

    Complement activation in myasthenia gravis (MG) may damage muscle endplate and complement regulatory proteins such as decay-accelerating factor (DAF) or CD55 may be protective. We hypothesize that the increased prevalence of severe extraocular muscle (EOM) dysfunction among African MG subjects reported earlier may result from altered DAF expression. To test this hypothesis, we screened the DAF gene sequences relevant to the classical complement pathway and found an association between myasthenics with EOM paresis and the DAF regulatory region c.-198CG SNP (odds ratio8.6; P0.0003). This single nucleotide polymorphism (SNP) results in a twofold activation of a DAF 5?-flanking region luciferase reporter transfected into three different cell lines. Direct matching of the surrounding SNP sequence within the DAF regulatory region with the known transcription factor-binding sites suggests a loss of an Sp1-binding site. This was supported by the observation that the c.-198CG SNP did not show the normal lipopolysaccharide-induced DAF transcriptional upregulation in lymphoblasts from four patients. Our findings suggest that at critical periods during autoimmune MG, this SNP may result in inadequate DAF upregulation with consequent complement-mediated EOM damage. Susceptible individuals may benefit from anti-complement therapy in addition to immunosuppression. © 2010 Macmillan Publishers Limited. All rights reserved.

  15. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhao QQ

    2012-06-01

    Full Text Available Qing-Qing Zhao,1,2 Yu-Lan Hu,1 Yang Zhou,3 Ni Li,1 Min Han,1 Gu-Ping Tang,4 Feng Qiu,2 Yasuhiko Tabata,5 Jian-Qing Gao,11Institute of Pharmaceutics, Zhejiang University, Hangzhou, China; 2Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; 3Institute of Biochemistry, Iowa State University, Ames, IA, USA; 4Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, China; 5Institute for Frontier Medical Sciences, Kyoto University, Kyoto, JapanBackground: The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity.Methods: A liver cancer-targeted specific peptide (FQHPSF sequence was successfully synthesized and linked with chitosan-linked polyethylenimine (CP to form a new targeted gene delivery vector called CPT (CP/peptide. The structure of CPT was confirmed by 1H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model.Results: The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT

  16. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  17. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  18. Bright to Dim Oscillatory Response of the Neurospora Circadian Oscillator

    OpenAIRE

    Gooch, Van D.; Johnson, Alicia E.; Larrondo, Luis F.; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    The fungus Neurospora crassa constitutes an important model system extensively used in chronobiology. Several studies have addressed how environmental cues, such as light, can reset or synchronize a circadian system. By means of an optimized firefly luciferase reporter gene and a controllable lighting system, we show that Neurospora can display molecular circadian rhythms in dim light when cultures receive bright light prior to entering dim light conditions. We refer to this behavior as the “...

  19. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    OpenAIRE

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.; Nettelbeck, Dirk M.

    2010-01-01

    Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show t...

  20. Identification of a locus controlling expression of luminescence genes in Vibrio harveyi.

    Science.gov (United States)

    Martin, M; Showalter, R; Silverman, M

    1989-05-01

    Mutagenesis with transposon mini-Mulac was used to identify loci containing genes for bioluminescence (lux) in the marine bacterium Vibrio harveyi. Transposon insertions which resulted in a Lux- phenotype were mapped to two unlinked regions of the genome. Region I contained the luxCDABE operon which was previously shown to encode the enzymes luciferase and fatty acid reductase, which are required for light production. The other locus, region II, which was identified for the first time in this study, appeared to have a regulatory function. In Northern blot analysis of mRNA from mutants with defects in this region, no transcription from the luxCDABE operon could be detected. Strains with transposon-generated lux::lacZ gene fusions were used to analyze control of the transcription of these regions. Expression of luminescence in the wild type was strongly influenced by the density of the culture, and in strains with the lacZ indicator gene coupled to the luxCDABE operon, beta-galactosidase synthesis was density dependent. So, transcription of this operon is responsive to a density-sensing mechanism. However, beta-galactosidase synthesis in strains with lacZ fused to the region II transcriptional unit did not respond to cell density. The organization and regulation of the lux genes of V. harveyi are discussed, particularly with regard to the contrasts observed with the lux system of the fish light-organ symbiont Vibrio fischeri.

  1. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    Science.gov (United States)

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Warburg effect regulated by amphiregulin in the development of colorectal cancer

    International Nuclear Information System (INIS)

    Nam, Sung Ouk; Yotsumoto, Fusanori; Miyata, Kohei; Fukagawa, Satoshi; Yamada, Hiromi; Kuroki, Masahide; Miyamoto, Shingo

    2015-01-01

    Colorectal cancer (CRC) is one of the most frequently occurring cancers with high morbidity and mortality worldwide. Amphiregulin (AREG), a member of the epidermal growth factor family and a rational target for CRC therapy, is essential for the three-dimensional structure of tumor formation. To clone the genes associated with increased AREG expression, we performed a cDNA microarray analysis in two CRC cell lines undergoing two-dimensional (2DC) and three-dimensional culture (3DC). Upregulated (>2.0-fold) and downregulated (<0.5-fold) genes in 3DC compared with 2DC were selected. Pathway analysis using DAVID based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases revealed a number of genes involved in glycolysis. In CRC cells, glucose elevated the expression of GLUT1 and AREG as well as the activity of the hypoxia-inducible factor 1 (HIF-1) luciferase reporter promoter. The suppression of AREG expression reduced the uptake of glucose and production of lactate. Luciferase assay identified a critical regulatory region for AREG expression between −130 and −180 bp upstream of the start site, which contained a carbohydrate response element (ChoRE). Max-like protein X (MLX) bound to ChoRE and enhanced the expression of AREG. Together these data suggest that AREG plays a pivotal role in the development of CRC through activation of the Warburg effect

  3. The effect of chemical carcinogenesis on rat glutathione S-transferase P1 gene transcriptional regulation.

    Science.gov (United States)

    Liu, D; Liao, M; Zuo, J; Henner, W D; Fan, F

    2001-03-01

    To investigate mechanisms of rat glutathione S-transferase P1 gene (rGSTP1) expression regulation during chemical carcinogenesis. we studied enhancer elements located in the region between -2.5 kb to -2.2 kb. The region was upstream from the start site of transcription and was divided into two major fragments, GPEI and GPEII. The GPEII fragment was further divided into two smaller fragments, GPEII- I and GPEII-2. Using a luciferase reporter system, we identified a strong enhancer of GPEI and a weak enhancer of GPEII in HeLa and a rat hepatoma cell line CBRH79 19 cell. The enhancer of GPEII was located within the GPEII-I region. Chemical stimulation by glycidyl methatylate (GMA) and phorbol 12-o-tetradecanoate 13-acetate (TPA) analysis revealed that induction of rGSTP1 expression was mainly through GPEI. Although H2O2 could enhance GPEII enhancer activity, the enhancement is not mediated by the NF-kappaB factor that bound the NF-kappaB site in GPEII. Using electrophoretic mobility shift assays (EMSA) and the UV cross-linking assays, we found that HeLa and CBRH7919 cells had proteins that specifically bound GPEI core sequence and a 64 kDa protein that interacted with GPEII-1. The cells from normal rat liver did not express the binding proteins. Therefore, the trans-acting factors seem to be closely related to GPEI, GPEII enhancer activities and may play an important role in high expression of rGSTPI gene.

  4. A novel mutation of WFS1 gene in a Chinese patient with Wolfram syndrome: a case report.

    Science.gov (United States)

    Li, Min; Liu, Jia; Yi, Huan; Xu, Li; Zhong, Xiufeng; Peng, Fuhua

    2018-03-17

    Wolfram syndrome (WS), caused by mutations of the Wolfram syndrome 1 (WFS1) gene on chromosome 4p16.1, is an autosomal recessive disorder characterized by diabetes insipidus (DI), neuro-psychiatric disorders, hearing deficit, and urinary tract anomalies. Here we report a 11-year-old Chinese boy who presented with visual loss, was suspected with optic neuritis (ON) or neuromyelitis optica (NMO) and referred to our department for further diagnosis. Finally he was diagnosed with WS because of diabetes mellitus (DM) and optic atrophy (OA). Eight exons and flanking introns of WFS1 gene were analyzed by sequencing. A novel mutation c.1760G > A in WFS1 gene of exon 8 was identified. This report reviews a case of WS associated with a novel mutation, c.1760G > A in WFS1 gene of exon 8, and emphasizes that WS should be taken into account for juveniles with visual loss and diabetes mellitus.

  5. Co-Introduced Functional CCR2 Potentiates In Vivo Anti-Lung Cancer Functionality Mediated by T Cells Double Gene-Modified to Express WT1-Specific T-Cell Receptor

    Science.gov (United States)

    Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki

    2013-01-01

    Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer

  6. Co-introduced functional CCR2 potentiates in vivo anti-lung cancer functionality mediated by T cells double gene-modified to express WT1-specific T-cell receptor.

    Directory of Open Access Journals (Sweden)

    Hiroaki Asai

    Full Text Available BACKGROUND AND PURPOSE: Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR or chimeric antigen receptor (CAR has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. METHODOLOGY/PRINCIPAL FINDINGS: Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1, and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402(+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8(+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1(235-243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3(+ T cells both in vitro and in vivo. Double gene-modified CD3(+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modified CD3(+ T cells. CONCLUSION/SIGNIFICANCE: Introduction of the CCL2/CCR2 axis successfully potentiated in

  7. Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2016-01-01

    Viral pseudotyped particles (pp) are enveloped virus particles, typically derived from retroviruses or rhabdoviruses, that harbor heterologous envelope glycoproteins on their surface and a genome lacking essential genes. These synthetic viral particles are safer surrogates of native viruses and acquire the tropism and host entry pathway characteristics governed by the heterologous envelope glycoprotein used. They have proven to be very useful tools used in research with many applications, such as enabling the study of entry pathways of enveloped viruses and to generate effective gene-delivery vectors. The basis for their generation lies in the capacity of some viruses, such as murine leukemia virus (MLV), to incorporate envelope glycoproteins of other viruses into a pseudotyped virus particle. These can be engineered to contain reporter genes such as luciferase, enabling quantification of virus entry events upon pseudotyped particle infection with susceptible cells. Here, we detail a protocol enabling generation of MLV-based pseudotyped particles, using the Middle East respiratory syndrome coronavirus (MERS-CoV) spike (S) as an example of a heterologous envelope glycoprotein to be incorporated. We also describe how these particles are used to infect susceptible cells and to perform a quantitative infectivity readout by a luciferase assay. PMID:28018942

  8. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  9. Inclusion of Moloney murine leukemia virus elements upstream of the transgene cassette in an E1-deleted adenovirus leads to an unusual genomic integration in epithelial cells

    International Nuclear Information System (INIS)

    Zheng Changyu; O'Connell, Brian C.; Baum, Bruce J.

    2003-01-01

    Classically, the 5' and 3' long terminal repeats (LTRs) are considered necessary but not sufficient for retroviral integration. Recently, we reported that inclusion of these and additional elements from Moloney murine leukemia virus (MoMLV) facilitated transgene integration, without retroviral integrase, when placed in an adenoviral context (AdLTR-luc vector) (Nat. Biotech. 18 (2000), 176; Biochem. Biophys. Res. Commun. 300 (2003), 115). To help understand this nonhomologous DNA recombination event, we constructed another vector, AdELP-luc, with 2.7 kb of MoMLV elements identically placed into an E1-deleted adenovirus type 5 backbone upstream of a luciferase cDNA reporter gene. Unlike AdLTR-luc, no MoMLV elements were placed downstream of the expression cassette. AdELP-luc readily infected epithelial cells in vitro. Southern hybridizations with DNA from cloned cells showed that disruption of the MoMLV sequences occurred. One cell clone, grown in vitro without any special selection medium for 9 months, exhibited stable vector integration and luciferase activity. Importantly, both Southern hybridization and FISH analyses showed that in addition to the MoMLV elements and expression cassette, substantial adenoviral sequence downstream of the luciferase cDNA was genomically integrated. These results suggest that the 2.7 kb of MoMLV sequence included in AdELP-luc have cis-acting functions and mediates an unusual integration event

  10. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  11. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation

    International Nuclear Information System (INIS)

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook

    2007-01-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1α (HIF-1α) and induced the nuclear translocation of C/EBPβ. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1α siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1α activation, and suggest HIF-1α for the therapeutic target of HBV-mediated chemoresistance

  12. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  13. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene.

    Science.gov (United States)

    Qiang, Jun; Tao, Yi-Fan; He, Jie; Xu, Pao; Bao, Jin-Wen; Sun, Yi-Lan

    2017-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3'untranslated region (3'UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3'UTR, as shown by a 3' UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3'UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    International Nuclear Information System (INIS)

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen; Yuan Wuzhou; Wu Xiushan

    2007-01-01

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation

  15. Tamoxifen induces the expression of maspin through estrogen receptor-alpha.

    Science.gov (United States)

    Liu, Zesheng; Shi, Heidi Y; Nawaz, Zafar; Zhang, Ming

    2004-06-08

    Maspin (mammary serine protease inhibitor) is a tumor suppressor gene that plays an important role in inhibiting tumor growth, invasion and metastasis. Maspin expression is down regulated at transcription level in primary and metastatic breast tumor cells. Previous studies on hormonal regulation of maspin prompt us to test whether an estrogen antagonist tamoxifen (TAM) can exert its anti-tumor function by up regulating maspin gene expression. For this purpose, we first tested whether maspin promoter could be activated in normal and several breast tumor cells. We then carried out a series of promoter analysis in which estrogen receptors and TAM were reconstituted in an in vitro cell culture system. Here we report our new finding that tumor suppresser gene maspin is one of the TAM target genes. TAM induces a maspin/luciferase reporter in cell culture and this induction requires the presence of (estrogen receptor alpha) ERalpha but not estrogen receptor-beta (ERbeta). Maspin promoter deletion and mutation analysis showed that the cis element(s) within a region between -90and+87 bp but not the HRE site (-272 bp) was involved in TAM induction of maspin expression. TAM bound ERalpha may directly control maspin gene expression through the interaction with cofactor (s). Analysis using several ERalpha mutants showed that the N-terminal A/B motif (AF-1) was critical for maspin basal level transcription activation. An ERalpha mutant with point mutations at DNA binding domain abolished estrogen induction of an ERE-luciferase reporter but was still active in activating maspin promoter by TAM. LBD-AF2 domain was required for ERalpha-dependent TAM induction. Deletion of LBD-AF2 or a point mutation in the ERalpha LBD-AF2 region (LBDmtL539A) completely abolished the activation of maspin promoter, suggesting that TAM induction of maspin involves the recruitment of cofactor(s) by ERalpha to the maspin promoter region. This finding indicates that one of the pathways for cancer

  16. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Science.gov (United States)

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  17. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Hee-Kyoung Kim

    Full Text Available Fusarium graminearum, the causal agent of Fusarium head blight in cereal crops, produces mycotoxins such as trichothecenes and zearalenone in infected plants. Here, we focused on the function of FgLaeA in F. graminearum, a homolog of Aspergillus nidulans LaeA encoding the global regulator for both secondary metabolism and sexual development. Prior to gene analysis, we constructed a novel luciferase reporter system consisting of a transgenic F. graminearum strain expressing a firefly luciferase gene under control of the promoter for either TRI6 or ZEB2 controlling the biosynthesis of these mycotoxins. Targeted deletion of FgLaeA led to a dramatic reduction of luminescence in reporter strains, indicating that FgLaeA controls the expression of these transcription factors in F. graminearum; reduced toxin accumulation was further confirmed by GC-MS analysis. Overexpression of FgLaeA caused the increased production of trichothecenes and additional metabolites. RNA seq-analysis revealed that gene member(s belonging to ~70% of total tentative gene clusters, which were previously proposed, were differentially expressed in the ΔFgLaeA strain. In addition, ΔFgLaeA strains exhibited an earlier induction of sexual fruiting body (perithecia formation and drastically reduced disease symptoms in wheat, indicating that FgLaeA seems to negatively control perithecial induction, but positively control virulence toward the host plant. FgLaeA was constitutively expressed under both mycotoxin production and sexual development conditions. Overexpression of a GFP-FgLaeA fusion construct in the ΔFgLaeA strain restored all phenotypic changes to wild-type levels and led to constitutive expression of GFP in both nuclei and cytoplasm at different developmental stages. A split luciferase assay demonstrated that FgLaeA was able to interact with FgVeA, a homolog of A. nidulans veA. Taken together, these results demonstrate that FgLaeA, a member of putative FgVeA complex

  18. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  19. Impact of miR-208 and its Target Gene Nemo-Like Kinase on the Protective Effect of Ginsenoside Rb1 in Hypoxia/Ischemia Injuried Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Xu Yan

    2016-09-01

    Full Text Available Background/Aims: Ginsenoside Rb1 (GS-Rb1 is one of the most important active pharmacological extracts of the Traditional Chinese Medicine ginseng, with extensive evidence of its cardioprotective properties. Mir-208 has been shown to act as a biomarker of acute myocardial infarction in vivo studies including man. However the impact of miR-208 on the protective effect of GS-Rb1 in hypoxia/ischemia injured cardiomyocytes remains unclear. The current study aims to investigate the target gene of miR-208 and the impact on the protective effect of GS-Rb1 in hypoxia/ischemia (H/I injuried cardiomyocytes. Materials and Methods: Primary cultures of neonatal rat cardiomyocytes (NRCMs was subjected to the H/I conditions with or without GS-Rb1. Cell viability was calculated by MTT assay and confirmed by flow cytometry analysis. Mir-208 was then detected by qRT-PCR. Luciferase reporter assay was carried out to detect the target gene of Mir-208. Then the NRCMs were transfected with miR-208 mimics and inhibitors to evaluate the impact on cardioprotective properties of Rb1. Results: The miR-208 expression level was clearly upregulated in the H/I treated NRCMs accompanied by the percentage of the apoptotic cells which could be reversed by GS-Rb1 pretreatment. The nemo-like kinase (NLK mRNA and protein expression levels were decreased in H/I group measured by RT-PCR and western blotting. Luciferase activity assay was then carried out to identify that NLK may be a direct target of mir-208. MTT assay showed that miR-208 inhibitor slightly decreased the protective effect of Rb1 on the H/I impaired NRCMs. However, results showed no statistical difference. Conclusions: These findings proved that NLK was a direct target of mir-208 and miR-208 act indirectly during Rb1 protecting H/I impaired NRCMs and further researches were needed to explore the relationship that microRNAs and other signal pathways in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in

  20. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles.

    Science.gov (United States)

    Xie, Aris; Belcik, Todd; Qi, Yue; Morgan, Terry K; Champaneri, Shivam A; Taylor, Sarah; Davidson, Brian P; Zhao, Yan; Klibanov, Alexander L; Kuliszewski, Michael A; Leong-Poi, Howard; Ammi, Azzdine; Lindner, Jonathan R

    2012-12-01

    Ultrasound-mediated gene delivery can be amplified by acoustic disruption of microbubble carriers that undergo cavitation. We hypothesized that endothelial targeting of microbubbles bearing cDNA is feasible and, through optimizing proximity to the vessel wall, increases the efficacy of gene transfection. Contrast ultrasound-mediated gene delivery is a promising approach for site-specific gene therapy, although there are concerns with the reproducibility of this technique and the safety when using high-power ultrasound. Cationic lipid-shelled decafluorobutane microbubbles bearing a targeting moiety were prepared and compared with nontargeted microbubbles. Microbubble targeting efficiency to endothelial adhesion molecules (P-selectin or intercellular adhesion molecule [ICAM]-1) was tested using in vitro flow chamber studies, intravital microscopy of tumor necrosis factor-alpha (TNF-α)-stimulated murine cremaster muscle, and targeted contrast ultrasound imaging of P-selectin in a model of murine limb ischemia. Ultrasound-mediated transfection of luciferase reporter plasmid charge coupled to microbubbles in the post-ischemic hindlimb muscle was assessed by in vivo optical imaging. Charge coupling of cDNA to the microbubble surface was not influenced by the presence of targeting ligand, and did not alter the cavitation properties of cationic microbubbles. In flow chamber studies, surface conjugation of cDNA did not affect attachment of targeted microbubbles at microvascular shear stresses (0.6 and 1.5 dyne/cm(2)). Attachment in vivo was also not affected by cDNA according to intravital microscopy observations of venular adhesion of ICAM-1-targeted microbubbles and by ultrasound molecular imaging of P-selectin-targeted microbubbles in the post-ischemic hindlimb in mice. Transfection at the site of high acoustic pressures (1.0 and 1.8 MPa) was similar for control and P-selectin-targeted microbubbles but was associated with vascular rupture and hemorrhage. At 0.6 MPa