WorldWideScience

Sample records for lte high energy

  1. Energy-efficient two-hop LTE resource allocation in high speed trains with moving relays

    Alsharoa, Ahmad M.

    2014-05-01

    High-speed railway system equipped with moving relay stations placed on the middle of the ceiling of each train wagon is investigated. The users inside the train are served in two hops via the 3GPP Long Term Evolution (LTE) technology. The objective of this work is to maximize the number of served users by respecting a specific quality-of-service constraint while minimizing the total power consumption of the eNodeB and the moving relays. We propose an efficient algorithm based on the Hungarian method to find the optimal resource allocation over the LTE resource blocks in order to serve the maximum number of users with the minimum power consumption. Moreover, we derive a closed-form expression for the power allocation problem. Our simulation results illustrate the performance of the proposed scheme and compare it with various previously developed algorithms as well as with the direct transmission scenario. © 2014 IFIP.

  2. Heterogeneous LTE/802.11a mobile relays for data rate enhancement and energy-efficiency in high speed trains

    Atat, Rachad

    2012-12-01

    Performance enhancements of cellular networks for passengers in high speed railway systems are investigated. Relays placed on top of each train car are proposed. These relays communicate with the cellular base station (BS) over Long Term Evolution (LTE) long range links and with the mobile terminals (MTs) inside the train cars using IEEE 802.11a short range links. Scenarios with unicasting and multicasting from the BS are studied, both in the presence and absence of the relays. In addition, LTE resource allocation is taken into account. The presence of the relays is shown to lead to significant enhancements in the effective data rates of the MTs, in addition to leading to huge savings in the energy consumption from the batteries of the MTs. © 2012 IEEE.

  3. Reducing LTE Uplink Transmission Energy by Allocating Resources

    Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben

    2011-01-01

    The effect of physical resource block (PRB) allocation on an LTE modem's transmit power and total modem energy consumption is examined. In this paper the uplink resource blocks are scheduled in either a Frequency Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA) manner......, to determine if low transmission power & long transmission time or high transmission power & short transmission time is most energy efficient. It is important to minimize the LTE modem's energy consumption caused by uplink transmission because it affects phone battery time, and because researchers rarely focus...

  4. Heterogeneous LTE/802.11a mobile relays for data rate enhancement and energy-efficiency in high speed trains

    Atat, Rachad; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    (LTE) long range links and with the mobile terminals (MTs) inside the train cars using IEEE 802.11a short range links. Scenarios with unicasting and multicasting from the BS are studied, both in the presence and absence of the relays. In addition, LTE

  5. An Empirical LTE Smartphone Power Model with a View to Energy Efficiency Evolution

    Lauridsen, Mads; Noël, Laurent; Sørensen, Troels Bundgaard

    2014-01-01

    measurements made on state-of-the-art LTE smartphones. Discontinuous Reception (DRX) sleep mode is also modeled, because it is one of the most effective methods to improve smartphone battery life. Energy efficiency has generally improved with each Radio Access Technology (RAT) generation, and to see......Smartphone users struggle with short battery life, and this affects their device satisfaction level and usage of the network. To evaluate how chipset manufacturers and mobile network operators can improve the battery life, we propose a Long Term Evolution (LTE) smartphone power model. The idea...... this evolution, we compare the energy efficiency of the latest LTE devices with devices based on Enhanced Data rates for GSM Evolution (EDGE), High Speed Packet Access (HSPA), and Wi-Fi*. With further generations of RAT systems we expect further improvements. To this end, we discuss the new LTE features, Carrier...

  6. LTE UE Energy Saving by Applying Carrier Aggregation in a HetNet Scenario

    Lauridsen, Mads; Wang, Hua; Mogensen, Preben

    2013-01-01

    In this work it is examined if downlink Carrier Aggregation (CA) can be used to save UE energy. A dual-receiver LTE release 10 UE is compared with a single-receiver LTE release 8 UE. The models are based on scaling of an existing LTE release 8 UE power model. The energy consumption of the UEs...... is examined in a Heterogeneous Network scenario consisting of macro and small cells. The unexpected conclusion is that CA UEs can save energy, compared to LTE release 8 UEs, if they, depending on cell load, experience a throughput gain of 20%. However if the UE throughput is unaltered the energy consumption...

  7. A high linearity downconverter for SAW-less LTE receivers

    Jiang Peichen; Guan Rui; Wang Wufeng; Chen Dongpo; Zhou Jianjun

    2012-01-01

    This paper presents a high linearity downconverter implemented in a 0.18 μm CMOS process for long term evolution (LTE) receivers without a surface acoustic wave (SAW) filter. The proposed downconverter is composed of a transconductance (G m ) stage, a passive mixer, a current buffer, a transimpedance (TIA) stage, and a DC-offset cancellation (DCOC) loop. The current buffer is utilized to provide very low load impedance for the passive mixer at high frequencies and reduce the output voltage swing induced by out-of-band blockers. This technique improves the input referred third-order intercept point (IIP3) and second-order intercept point (IIP2) of the down-converter by 4.5 dB and 11 dB, respectively. The measured results show that the proposed downconverter achieves a voltage conversion gain of 29.5 dB, double sideband noise figure of 12.7 dB, out-of-band IIP3 of 13 dBm and IIP2 of more than 62 dBm.

  8. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    , as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network

  9. Adaptive MCS selection and resource planning for energy-efficient communication in LTE-M based IoT sensing platform.

    Dao, Nhu-Ngoc; Park, Minho; Kim, Joongheon; Cho, Sungrae

    2017-01-01

    As an important part of IoTization trends, wireless sensing technologies have been involved in many fields of human life. In cellular network evolution, the long term evolution advanced (LTE-A) networks including machine-type communication (MTC) features (named LTE-M) provide a promising infrastructure for a proliferation of Internet of things (IoT) sensing platform. However, LTE-M may not be optimally exploited for directly supporting such low-data-rate devices in terms of energy efficiency since it depends on core technologies of LTE that are originally designed for high-data-rate services. Focusing on this circumstance, we propose a novel adaptive modulation and coding selection (AMCS) algorithm to address the energy consumption problem in the LTE-M based IoT-sensing platform. The proposed algorithm determines the optimal pair of MCS and the number of primary resource blocks (#PRBs), at which the transport block size is sufficient to packetize the sensing data within the minimum transmit power. In addition, a quantity-oriented resource planning (QORP) technique that utilizes these optimal MCS levels as main criteria for spectrum allocation has been proposed for better adapting to the sensing node requirements. The simulation results reveal that the proposed approach significantly reduces the energy consumption of IoT sensing nodes and #PRBs up to 23.09% and 25.98%, respectively.

  10. On the impact of D2D traffic offloading on energy efficiency in green LTE-A HetNets

    Yaacoub, Elias E.; Ghazzai, Hakim; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2014-01-01

    multiple access-based state-of-the-art LTE cellular networks, while taking resource allocation and intercell interference into account. Results show that the proposed approach leads to energy savings for both the operator and the MTs, while leading

  11. An Empirical LTE Smartphone Power Model with a View to Energy Efficiency Evolution

    Lauridsen, Mads; Noël, Laurent; Sørensen, Troels Bundgaard; Mogensen, Preben

    2014-01-01

    Smartphone users struggle with short battery life, and this affects their device satisfaction level and usage of the network. To evaluate how chipset manufacturers and mobile network operators can improve the battery life, we propose a Long Term Evolution (LTE) smartphone power model. The idea is to provide a model that makes it possible to evaluate the effect of different terminal and network settings to the overall user equipment energy consumption. It is primarily intended as an instrument...

  12. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    Ghazzai, Hakim

    2012-01-01

    The Base Station (BS) sleeping strategy has become a well-known technique to achieve energy savings in cellular networks by switching off redundant BSs mainly for lightly loaded networks. Besides, the exploitation of renewable energies, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from the smart grid without affecting the desired Quality of Service. © 2012 Springer-Verlag.

  13. Achieving energy efficiency in LTE with joint D2D communications and green networking techniques

    Yaacoub, Elias E.

    2013-07-01

    In this paper, the joint operation of cooperative device-to-device (D2D) communications and green cellular communications is investigated. An efficient approach for grouping mobile terminals (MTs) into cooperative clusters is described. In each cluster, MTs cooperate via D2D communications to share content of common interest. Furthermore, an energy-efficient technique for putting BSs in sleep mode in an LTE cellular network is presented. Finally, both methods are combined in order to ensure green communications for both the users\\' MTs and the operator\\'s BSs. The studied methods are investigated in the framework of OFDMA-based state-of-the-art LTE cellular networks, while taking into account intercell interference and resource allocation. © 2013 IEEE.

  14. On the Conductive Loss of High-Q Frequency Reconfigurable Antennas for LTE Frequencies

    Barrio, Samantha Caporal Del

    2018-01-01

    Intrinsically narrowband and highly tunable systems are a promising way to address the bandwidth challenge of LTE. However, narrowband antennas exhibit low efficiencies. This paper details the loss mechanism of narrowband antennas by investigating the contribution of the resistance of the tuner...

  15. Modelling of synchronisation and energy performance of FBE- and LBE-based standalone LTE-U networks

    Jiamin Li

    2017-06-01

    Full Text Available Without the aid of licensed channel, deploying long-term evolution (LTE networks over unlicensed spectrum (named standalone LTE-U networks faces the difficulty of establishing and maintaining synchronisation between user equipments and base stations. In this work, considering the two modes of listen-before-talk-based channel access scheme, frame-based equipment (FBE and load-based equipment (LBE, the authors propose analytical frameworks to study the successful probability of synchronisation and the energy consumption of synchronisation in a standalone LTE-U network. Specifically, for the LBE mode, the authors also propose a Lattice-Poisson algorithm-based approach to derive the distribution of the channel non-occupancy period of a standalone LTE-U network. Furthermore, the authors explore the impact of diverse protocol parameters of both FBE and LBE modes on the two studied performance metrics. Simulation results demonstrate the accuracy of the analysis, and shed some light on the selection of FBE and LBE for standalone LTE-U networks, in terms of synchronisation, energy consumption, and throughput of standalone LTE-U and Wi-Fi networks.

  16. Highly Compact MIMO Antenna System for LTE/ISM Applications

    Lingsheng Yang

    2015-01-01

    Full Text Available Planar monopole antenna is proposed as the antenna element to form a compact dual-element multiple-input-multiple-output (MIMO antenna system for LTE2300 (used in Asia and Africa and ISM band operation. The system can cover a 310 MHz (2.20–2.51 GHz operating bandwidth, with the total size of 15.5 mm × 18 mm × 1.6 mm. Measured isolation higher than 16 dB is obtained without any specially designed decoupling structures, while the edge-to-edge element spacing is only 7.8 mm (0.08λ at 2.20 GHz. Radiation characteristics, correlation coefficient, and the performance of the whole system with a metal sheet and a plastic housing show this system is competitive for practical MIMO applications. The antenna element is further used to build an eight-element MIMO antenna system; also good results are achieved.

  17. On the impact of D2D traffic offloading on energy efficiency in green LTE-A HetNets

    Yaacoub, Elias E.

    2014-08-11

    In this paper, the interplay between cooperative device-to-device (D2D) communications and green cellular communications in the long term evolution (LTE) and LTE-advanced (LTE-A) cellular systems is investigated. An efficient approach for grouping mobile terminals (MTs) into cooperative clusters is described. In each cluster, MTs cooperate via D2D communications to share content of common interest. In addition, an energy-efficient approach for putting base stations in sleep mode in an LTE-A heterogeneous network is presented. Finally, both methods are combined in order to ensure green communications for both the users\\' MTs and the operator\\'s base stations. The presented techniques are investigated in the framework of orthogonal frequency division multiple access-based state-of-the-art LTE cellular networks, while taking resource allocation and intercell interference into account. Results show that the proposed approach leads to energy savings for both the operator and the MTs, while leading to enhanced quality of service for mobile users. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Mobility Performance in Slow- and High-Speed LTE Real Scenarios

    Gimenez, Lucas Chavarria; Cascino, Maria Carmela; Stefan, Maria

    2016-01-01

    Mobility performance and handover data interruption times in real scenarios are studied by means of field measurements in an operational LTE network. Both slow- and high-speed scenarios are analyzed by collecting results from two different areas: Aalborg downtown and the highway which encircles...... in the city center as cells on the same site often cover different non-crossing street canyons. Moreover, no handover failures are experienced in the measurements which confirms robust LTE mobility performance. The average interruption time, which is at least equal to the handover execution time, lays within...... the same city. Measurements reveal that the terminal is configured by the network with different handover parametrization depending on the serving cell, which indicates the use of mobility robustness optimization. Although the network is dominated by three sector sites, no intra-site handovers are observed...

  19. An arc facility for investigating non-LTE thermodynamic and transport phenomena in low and high pressure plasmas

    Sedghinisab, A.; Eddy, T.L.; Murray, R.T.

    1986-01-01

    This paper discusses a high pressure arc facility modified for computerized control and data acquisition to simplify measurements of non-LTE plasmas. The non-LTE methods have shown that numerous spectral lines and continuum must be accurately, precisely and quickly measured.The instrumentation uses a 1-m monochrometer with programmed wavelength slews and scans; oplasma scans; and monitoring of chamber pressure, current, voltages, and location. Multiple flows of various gases can be provided simultaneously. Plasma self absorption is determined via a concave back mirror and shutter with final alignment via computer plots. The raw data is corrected for absorption, zeroed, centered and smoothed. The net line intensity is then determined and Abeled prior to feeding into LTE or non-LTE analysis methods. Sample results are presented at 0.1,1 and 10 atm

  20. Non-LTE modeling of the radiative properties of high-Z plasma using linear response methodology

    Foord, Mark; Harte, Judy; Scott, Howard

    2017-10-01

    Non-local thermodynamic equilibrium (NLTE) atomic processes play a key role in the radiation flow and energetics in highly ionized high temperature plasma encountered in inertial confinement fusion (ICF) and astrophysical applications. Modeling complex high-Z atomic systems, such as gold used in ICF hohlraums, is particularly challenging given the complexity and intractable number of atomic states involved. Practical considerations, i.e. speed and memory, in large radiation-hydrodynamic simulations further limit model complexity. We present here a methodology for utilizing tabulated NLTE radiative and EOS properties for use in our radiation-hydrodynamic codes. This approach uses tabulated data, previously calculated with complex atomic models, modified to include a general non-Planckian radiation field using a linear response methodology. This approach extends near-LTE response method to conditions far from LTE. Comparisons of this tabular method with in-line NLTE simulations of a laser heated 1-D hohlraum will be presented, which show good agreement in the time-evolution of the plasma conditions. This work was performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Energy Savings through Site Renewal in an HSPA/LTE Network Evolution Scenario

    Micallef, Gilbert; Mogensen, Preben

    Mobile network operators are committing themselves to reduce the energy consumption of their networks. However, the expected growth in traffic and the upgrades required to sustain this growth pose a serious question on whether these targets are achievable. Through a case study, this paper looks a...... to just 12%. In some cases, when a less aggressive traffic growth is assumed, the energy savings are enough to balance any increase in energy. In a best case scenario, where all sites are replaced when new equipment is available, energy savings close to 40% are achievable....... at how the energy consumption of a mobile network is likely to develop over a period of nine years, considering the evolution of an existing HSPA layer into a multi-layered (HSPA+LTE) network. Besides, this study also considers four different equipment versions released throughout the years, which...... are introduced in the network based on a replacement strategy. In addition, the two most modern sites are assumed to be configured with remote radio head. In comparison to the reference case which leads to an increase in energy consumption of almost 200%, considering these site upgrades can limit the increase...

  2. Optimized smart grid energy procurement for LTE networks using evolutionary algorithms

    Ghazzai, Hakim

    2014-11-01

    Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Moreover, introducing renewable energy as an alternative power source has become a real challenge among network operators. In this paper, we formulate an optimization problem that aims to maximize the profit of Long-Term Evolution (LTE) cellular operators and to simultaneously minimize the CO2 emissions in green wireless cellular networks without affecting the desired quality of service (QoS). The BS sleeping strategy lends itself to an interesting implementation using several heuristic approaches, such as the genetic (GA) and particle swarm optimization (PSO) algorithms. In this paper, we propose GA-based and PSO-based methods that reduce the energy consumption of BSs by not only shutting down underutilized BSs but by optimizing the amounts of energy procured from different retailers (renewable energy and electricity retailers), as well. A comparison with another previously proposed algorithm is also carried out to evaluate the performance and the computational complexity of the employed methods.

  3. LTE modeling of inhomogeneous chromospheric structure using high-resolution limb observations

    Lindsey, C.

    1987-01-01

    The paper discusses considerations relevant to LTE modeling of rough atmospheres. Particular attention is given to the application of recent high-resolution observations of the solar limb in the far-infrared and radio continuum to the modeling of chromospheric spicules. It is explained how the continuum limb observations can be combined with morphological knowledge of spicule structure to model the physical conditions in chromospheric spicules. This discussion forms the basis for a chromospheric model presented in a parallel publication based on observations ranging from 100 microns to 2.6 mm.

  4. Experimental Characterization of LTE Wireless Links in High-Speed Trains

    Tomás Domínguez-Bolaño

    2017-01-01

    Full Text Available Multimedia and data-based services experienced a nonstopping growth over the last few years. People are continuously on the move using devices to access multimedia contents or other data-based services. Due to this, railway companies are showing a great interest in deploying broadband mobile wireless networks in high-speed-trains with the aim of supporting both passenger services provisioning as well as automatic train control and signaling. Nowadays, the most widely used technology for communications between trains and the railway infrastructure is GSM for Railways (GSM-R; however, it has limited capabilities to support such advanced services. Due to its success in the mass market, Long Term Evolution (LTE seems to be the best candidate to substitute GSM-R. In this paper, we experimentally characterize the downlink between an LTE Evolved NodeB (eNodeB and a high-speed train in a commercial high-speed line. We consider two links: the one between the eNodeB and the antennas placed outdoors on the train roof, and the direct link between the eNodeB and a receiver inside the train. Such a characterization consists in assessing the path loss, the Signal to Noise Ratio, the K-Factor, the Power Delay Profile, the delay spread, and the Doppler Power Spectral Density.

  5. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  6. LTE Micro-cell Deployment for High-Density Railway Areas

    Sniady, Aleksander; Kassab, Mohamed; Soler, José

    2014-01-01

    Long Term Evolution (LTE) is a serious candidate for the future releases of the European Rail Traffic Management System (ERTMS). LTE offers more capacity and supports new communication-based applications and services for railways. Nevertheless, even with this technology, the classical macro...

  7. A non-LTE model for the Jovian methane infrared emissions at high spectral resolution

    Halthore, Rangasayi N.; Allen, J. E., Jr.; Decola, Philip L.

    1994-01-01

    High resolution spectra of Jupiter in the 3.3 micrometer region have so far failed to reveal either the continuum or the line emissions that can be unambiguously attributed to the nu(sub 3) band of methane (Drossart et al. 1993; Kim et al. 1991). Nu(sub 3) line intensities predicted with the help of two simple non-Local Thermodynamic Equilibrium (LTE) models -- a two-level model and a three-level model, using experimentally determined relaxation coefficients, are shown to be one to three orders of magnitude respectively below the 3-sigma noise level of these observations. Predicted nu(sub 4) emission intensities are consistent with observed values. If the methane mixing ratio below the homopause is assumed as 2 x 10(exp -3), a value of about 300 K is derived as an upper limit to the temperature of the high stratosphere at microbar levels.

  8. Assessment of LTE Wireless Access for Monitoring of Energy Distribution in the Smart Grid

    Madueño, Germán Corrales; Nielsen, Jimmy Jessen; Min Kim, Dong

    2016-01-01

    While LTE is becoming widely rolled out for human-type services, it is also a promising solution for cost-efficient connectivity of the smart grid monitoring equipment. This is a type of machine-to-machine (M2M) traffic that consists mainly of sporadic uplink transmissions. In such a setting...

  9. Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target

    Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.

    2016-10-01

    We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Effects of non-LTE multiplet dynamics on lumped-state modelling in moderate to high atomic number plasmas

    Whitney, K G; Dasgupta, A; Davis, J; Coverdale, C A

    2007-01-01

    Two atomic models of the population dynamics of substates within the n 4 and n = 3 multiplets of nickel-like tungsten and beryllium-like iron, respectively, are described in this paper. The flexible atomic code (FAC) is used to calculate the collisional and radiative couplings and energy levels of the excited states within these ionization stages. These atomic models are then placed within larger principal-quantum-number-based ionization dynamic models of both tungsten and iron plasmas. Collisional-radiative equilibrium calculations are then carried out using these models that demonstrate how the multiplet substates depart from local thermodynamic equilibrium (LTE) as a function of ion density. The effect of these deviations from LTE on the radiative and collisional deexcitation rates of lumped 3s, 3p, 3d, 4s, 4p, 4d and 4f states is then calculated and least-squares fits to the density dependence of these lumped-state rate coefficients are obtained. The calculations show that, with the use of lumped-state models (which are in common use), one can accurately model the L- and M-shell ionization dynamics occurring in present-day Z-pinch experiments only through the addition of these extra, non-LTE-induced, rate coefficient density dependences. However, the derivation and use of low-order polynomial fits to these density dependences makes lumped-state modelling both viable and of value for post-processing analyses

  11. A High Isolation MIMO Antenna without Decoupling Structure for LTE 700 MHz

    Yanjie Wu

    2015-01-01

    Full Text Available This paper presents a long-term evolution (LTE 700 MHz band multiple-input-multiple-output (MIMO antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λ at 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz with S11≤−6 dB and S21≤−23 dB.

  12. Non-LTE effects in inertial confinement fusion target chambers

    MacFarlane, J.J.; Moses, G.A.; Peterson, R.R.

    1989-01-01

    In previous studies of transport processes in inertial confinement fusion target chambers, the radiative properties of the background plasma were calculated under the assumption of local thermodynamic equilibrium (LTE). In this paper, the authors present a study of the equation of state and the radiative properties of high temperature, low-to-moderate density ( 21 cm -3 ) plasmas for the determination of the conditions under which non-LTE effects become important and for an assessment of the importance of non-LTE processes in target chambers during high yield inertial fusion target explosions. For this purpose, two-body (radiative and dielectronic) and three-body (collisional) recombination and de-excitation processes are considered in calculating the steady state ionization and excitation populations. The results of this study indicate that non-LTE processes generally become important at temperatures of > or approx. 1, 10 and 100 eV for plasma densities of 10 18 , 10 19 and 10 21 cm -3 , respectively. Radiation hydrodynamic simulations utilizing the equation of state and the opacities for a non-LTE argon plasma were performed to study the response of a background gas to an inertial fusion target explosion. These calculations indicate that non-LTE processes are often the dominant atomic processes in the background plasma and that they can strongly affect the radiative and shock properties as energy is transported away from the point of the target explosion. (author). 22 refs, 10 figs, 1 tab

  13. Energy Efficiency vs. Throughput Trade-Off in an LTE-A Scenario

    Mihaylov, Mihail Rumenov; Mihovska, Albena D.; Prasad, Ramjee

    2014-01-01

    . This paper proposes an approach to optimizing network performance by introducing an estimation of the energy consumption associated with the allocation of physical resources to users, as well as their offload from one serving base station to another (macro or pico). An algorithm for minimizing the energy...... with an estimate of the associated energy saving. The results show that the overall network expenses related to power savings may be reduced while maintaining a high performance level of the network....

  14. On the definition of adapted audio/video profiles for high-quality video calling services over LTE/4G

    Ndiaye, Maty; Quinquis, Catherine; Larabi, Mohamed Chaker; Le Lay, Gwenael; Saadane, Hakim; Perrine, Clency

    2014-01-01

    During the last decade, the important advances and widespread availability of mobile technology (operating systems, GPUs, terminal resolution and so on) have encouraged a fast development of voice and video services like video-calling. While multimedia services have largely grown on mobile devices, the generated increase of data consumption is leading to the saturation of mobile networks. In order to provide data with high bit-rates and maintain performance as close as possible to traditional networks, the 3GPP (The 3rd Generation Partnership Project) worked on a high performance standard for mobile called Long Term Evolution (LTE). In this paper, we aim at expressing recommendations related to audio and video media profiles (selection of audio and video codecs, bit-rates, frame-rates, audio and video formats) for a typical video-calling services held over LTE/4G mobile networks. These profiles are defined according to targeted devices (smartphones, tablets), so as to ensure the best possible quality of experience (QoE). Obtained results indicate that for a CIF format (352 x 288 pixels) which is usually used for smartphones, the VP8 codec provides a better image quality than the H.264 codec for low bitrates (from 128 to 384 kbps). However sequences with high motion, H.264 in slow mode is preferred. Regarding audio, better results are globally achieved using wideband codecs offering good quality except for opus codec (at 12.2 kbps).

  15. Predicted continuum spectra of type II supernovae - LTE results

    Shaviv, G.; Wehrse, R.; Wagoner, R. V.

    1985-01-01

    The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.

  16. Hydrogenic ionization model for mixtures in non-LTE plasmas

    Djaoui, A.

    1999-01-01

    The Hydrogenic Ionization Model for Mixtures (HIMM) is a non-Local Thermodynamic Equilibrium (non-LTE), time-dependent ionization model for laser-produced plasmas containing mixtures of elements (species). In this version, both collisional and radiative rates are taken into account. An ionization distribution for each species which is consistent with the ambient electron density is obtained by use of an iterative procedure in a single calculation for all species. Energy levels for each shell having a given principal quantum number and for each ion stage of each species in the mixture are calculated using screening constants. Steady-state non-LTE as well as LTE solutions are also provided. The non-LTE rate equations converge to the LTE solution at sufficiently high densities or as the radiation temperature approaches the electron temperature. The model is particularly useful at low temperatures where convergence problems are usually encountered in our previous models. We apply our model to typical situation in x-ray laser research, laser-produced plasmas and inertial confinement fusion. Our results compare well with previously published results for a selenium plasma. (author)

  17. Optimized smart grid energy procurement for LTE networks using evolutionary algorithms

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2014-01-01

    Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off

  18. Radio protocols for LTE and LTE-advanced

    Yi, SeungJune; Lee, YoungDae; Park, SungJun; Jung, SungHoon

    2012-01-01

    Provides a unique focus on radio protocols for LTE and LTE-Advanced (LTE-A) Giving readers a valuable understanding of LTE radio protocols, this book covers LTE (Long-Term Evolution) Layer 2/3 radio protocols as well as new features including LTE-Advanced. It is divided into two sections to differentiate between the two technologies' characteristics. The authors systematically explain the design principles and functions of LTE radio protocols during the development of mobile handsets. The book also provides essential knowledge on the interaction between mobile networks a

  19. Application of approximations for joint cumulative k-distributions for mixtures to FSK radiation heat transfer in multi-component high temperature non-LTE plasmas

    Maurente, André; França, Francis H.R.; Miki, Kenji; Howell, John R.

    2012-01-01

    Approximations for joint cumulative k-distribution for mixtures are efficient for full spectrum k-distribution (FSK) computations. These approximations provide reduction of the database that is necessary to perform FSK computation when compared to the direct approach, which uses cumulative k-distributions computed from the spectrum of the mixture, and also less computational expensive when compared to techniques in which RTE's are required to be solved for each component of the mixture. The aim of the present paper is to extend the approximations for joint cumulative k-distributions for non-LTE media. For doing that, a FSK to non-LTE media formulation well-suited to be applied along with approximations for joint cumulative k-distributions is presented. The application of the proposed methodology is demonstrated by solving the radiation heat transfer in non-LTE high temperature plasmas composed of N, O, N 2 , NO, N 2 + and mixtures of these species. The two more efficient approximations, that is, the superposition and multiplication are employed and analyzed.

  20. Scheduling strategies for LTE uplink with flow behaviour analysis

    Dimitrova, D.C.; Berg, J.L. van den; Litjens, R.; Heijenk, G.

    2010-01-01

    Long Term Evolution (LTE) is a cellular technology developed to support diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of two distinct scheduling schemes for LTE uplink (fa...

  1. MIMO Technologies in 3GPP LTE and LTE-Advanced

    Zhang Jianzhong(Charlie

    2009-01-01

    Full Text Available Abstract 3rd Generation Partnership Project (3GPP has recently completed the specification of the Long Term Evolution (LTE standard. Majority of the world's operators and vendors are already committed to LTE deployments and developments, making LTE the market leader in the upcoming evolution to 4G wireless communication systems. Multiple input multiple output (MIMO technologies introduced in LTE such as spatial multiplexing, transmit diversity, and beamforming are key components for providing higher peak rate at a better system efficiency, which are essential for supporting future broadband data service over wireless links. Further extension of LTE MIMO technologies is being studied under the 3GPP study item "LTE-Advanced" to meet the requirement of IMT-Advanced set by International Telecommunication Union Radiocommunication Sector (ITU-R. In this paper, we introduce various MIMO technologies employed in LTE and provide a brief overview on the MIMO technologies currently discussed in the LTE-Advanced forum.

  2. CBRS Spectrum Sharing between LTE-U and WiFi: A Multiarmed Bandit Approach

    Imtiaz Parvez

    2016-01-01

    Full Text Available The surge of mobile devices such as smartphone and tablets requires additional capacity. To achieve ubiquitous and high data rate Internet connectivity, effective spectrum sharing and utilization of the wireless spectrum carry critical importance. In this paper, we consider the use of unlicensed LTE (LTE-U technology in the 3.5 GHz Citizens Broadband Radio Service (CBRS band and develop a multiarmed bandit (MAB based spectrum sharing technique for a smooth coexistence with WiFi. In particular, we consider LTE-U to operate as a General Authorized Access (GAA user; hereby MAB is used to adaptively optimize the transmission duty cycle of LTE-U transmissions. Additionally, we incorporate downlink power control which yields a high energy efficiency and interference suppression. Simulation results demonstrate a significant improvement in the aggregate capacity (approximately 33% and cell-edge throughput of coexisting LTE-U and WiFi networks for different base station densities and user densities.

  3. Systematic investigation of NLTE phenomena in the limit of small departures from LTE

    Libby, S. B.; Graziani, F. R.; More, R. M.; Kato, T.

    1997-04-01

    In this paper, we begin a systematic study of Non-Local Thermal Equilibrium (NLTE) phenomena in near equilibrium (LTE) high energy density, highly radiative plasmas. It is shown that the principle of minimum entropy production rate characterizes NLTE steady states for average atom rate equations in the case of small departures form LTE. With the aid of a novel hohlraum-reaction box thought experiment, we use the principles of minimum entropy production and detailed balance to derive Onsager reciprocity relations for the NLTE responses of a near equilibrium sample to non-Planckian perturbations in different frequency groups. This result is a significant symmetry constraint on the linear corrections to Kirchoff's law. We envisage applying our strategy to a number of test problems which include: the NLTE corrections to the ionization state of an ion located near the edge of an otherwise LTE medium; the effect of a monochromatic radiation field perturbation on an LTE medium; the deviation of Rydberg state populations from LTE in recombining or ionizing plasmas; multi-electron temperature models such as that of Busquet; and finally, the effect of NLTE population shifts on opacity models.

  4. Systematic investigation of NLTE phenomena in the limit of small departures from LTE

    Libby, S.B.; Graziani, F.R.; More, R.M.; Kato, T.

    1997-01-01

    In this paper, we begin a systematic study of Non-Local Thermal Equilibrium (NLTE) phenomena in near equilibrium (LTE) high energy density, highly radiative plasmas. It is shown that the principle of minimum entropy production rate characterizes NLTE steady states for average atom rate equations in the case of small departures form LTE. With the aid of a novel hohlraum-reaction box thought experiment, we use the principles of minimum entropy production and detailed balance to derive Onsager reciprocity relations for the NLTE responses of a near equilibrium sample to non-Planckian perturbations in different frequency groups. This result is a significant symmetry constraint on the linear corrections to Kirchoff close-quote s law. We envisage applying our strategy to a number of test problems which include: the NLTE corrections to the ionization state of an ion located near the edge of an otherwise LTE medium; the effect of a monochromatic radiation field perturbation on an LTE medium; the deviation of Rydberg state populations from LTE in recombining or ionizing plasmas; multi-electron temperature models such as that of Busquet; and finally, the effect of NLTE population shifts on opacity models. copyright 1997 American Institute of Physics

  5. Systematic investigation of NLTE phenomena in the limit of small departures from LTE

    Libby, S. B.; Graziani, F. R.; More, R. M.; Kato, T.

    1997-01-01

    In this paper, we begin a systematic study of Non-Local Thermal Equilibrium (NLTE) phenomena in near equilibrium (LTE) high energy density, highly radiative plasmas. It is shown that the principle of minimum entropy production rate characterizes NLTE steady states for average atom rate equations in the case of small departures form LTE. With the aid of a novel hohlraum-reaction box thought experiment, we use the principles of minimum entropy production and detailed balance to derive Onsager reciprocity relations for the NLTE responses of a near equilibrium sample to non-Planckian perturbations in different frequency groups. This result is a significant symmetry constraint on the linear corrections to Kirchoff's law. We envisage applying our strategy to a number of test problems which include: the NLTE corrections to the ionization state of an ion located near the edge of an otherwise LTE medium; the effect of a monochromatic radiation field perturbation on an LTE medium; the deviation of Rydberg state populations from LTE in recombining or ionizing plasmas; multi-electron temperature models such as that of Busquet; and finally, the effect of NLTE population shifts on opacity models

  6. 4G LTE/LTE-advanced for mobile broadband

    Dahlman, Erik; Skold, Johan

    2013-01-01

    This book reflects the ongoing success of LTE throughout the world and focuses on LTE with full updates including LTE-Advanced (Release 11) to provide a complete picture of the LTE system. Overviews and detailed explanations are given for the latest LTE standards for radio interface architecture, the physical layer, access procedures, broadcast, relaying, spectrum and RF characteristics, and system performance. Key technologies presented include multi-carrier transmission, advanced single-carrier transmission, advanced receivers, OFDM, MIMO and adaptive antenna solutions, advanced radio res

  7. LTE-verkon mittaus

    Summanen, Mika

    2013-01-01

    Tämän insinöörityön tarkoituksena oli esitellä LTE-verkon rakennetta ja radiorajapinnassa käytettäviä parametreja, sekä suorittaa muutamia nopeusmittauksia verkossa. Parametrien mittaukseen käytettiin Ascomin TEMS Investigation -ohjelmiston versiota 14.4. Nopeustestit puolestaan suoritettiin matkapuhelimeen asennetun Ookla speedtest sovelluksen avulla. Työssä käydään läpi LTE-verkon arkkitehtuuria ja siinä sijaitsevia elementtejä, sekä esitellään radiotien standardoinnissa valittuja tekn...

  8. LTE for public safety

    Liebhart, Rainer; Wong, Curt; Merkel , Jürgen

    2015-01-01

    The aim of the book is to educate government agencies, operators, vendors and other regulatory institutions how LTE can be deployed to serve public safety market and offer regulatory / public safety features. It is written in such a way that it can be understood by both technical and non-technical personnel with just introductory knowledge in wireless communication. Some sections and chapters about public safety services offered by LTE network are intended to be understood by anyone with no knowledge in wireless communication.

  9. Scheduling strategies for LTE uplink with flow behaviour analysis

    Dimitrova, D.C.; Berg, J.L. van den; Litjens, R.; Heijenk, G.

    2010-01-01

    Long Term Evolution (LTE) is a cellular technology developed to support diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which

  10. Scheduling strategies for LTE uplink with flow behaviour analysis

    Dimitrova, D.C.; van den Berg, Hans Leo; Litjens, R.; Brogle, Marc; Osipov, Evgeny; Heijenk, Gerhard J.

    Long Term Evolution (LTE) is a cellular technology developed to support diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which

  11. Software Defined Networking to support IP address mobility in future LTE network

    Karimzadeh Motallebi Azar, Morteza; Valtulina, Luca; van den Berg, Hans Leo; Pras, Aiko; Liebsch, Marco; Taleb, Tarik

    2017-01-01

    The existing LTE network architecture dose not scale well to increasing demands due to its highly centralized and hierarchical composition. In this paper we discuss the major modifications required in the current LTE network to realize a decentralized LTE architecture. Next, we develop two IP

  12. System Level Analysis of LTE-Advanced

    Wang, Yuanye

    This PhD thesis focuses on system level analysis of Multi-Component Carrier (CC) management for Long Term Evolution (LTE)-Advanced. Cases where multiple CCs are aggregated to form a larger bandwidth are studied. The analysis is performed for both local area and wide area networks. In local area...... reduction. Compared to the case of reuse-1, they achieve a gain of 50∼500% in cell edge user throughput, with small or no loss in average cell throughput. For the wide area network, effort is devoted to the downlink of LTE-Advanced. Such a system is assumed to be backwards compatible to LTE release 8, i...... scheme is recommended. It reduces the CQI by 94% at low load, and 79∼93% at medium to high load, with reasonable loss in downlink performance. To reduce the ACK/NACK feedback, multiple ACK/NACKs can be bundled, with slightly degraded downlink throughput....

  13. Mobility management in LTE heterogeneous networks

    Karandikar, Abhay; Mehta, Mahima

    2017-01-01

    This book is the first of its kind, compiling information on the Long-Term Evolution (LTE) standards, which are enhanced to address new mobility-related challenges in Heterogeneous Networks (HetNets). It identifies the related challenges and discusses solutions and the simulation methodology for modeling HetNet mobility – cutting-edge information that was previously accessible only in the form of 3GPP specifications and documents, and research papers. The book reviews the current LTE mobility framework and discusses some of the changes for enhancing mobility management in HetNets. It describes the measurement procedures, handover (HO) mechanisms and HO success/failure scenarios. HetNets are intended to provide very high spectral efficiency while ensuring seamless coverage by deploying low-power nodes within the umbrella macrocell network. While mobility management in homogeneous networks is well understood, LTE standards are being enhanced to address the HetNet-specific mobility management challenges emergi...

  14. Non-LTE radiating acoustic shocks and Ca II K2V bright points

    Carlsson, Mats; Stein, Robert F.

    1992-01-01

    We present, for the first time, a self-consistent solution of the time-dependent 1D equations of non-LTE radiation hydrodynamics in solar chromospheric conditions. The vertical propagation of sinusoidal acoustic waves with periods of 30, 180, and 300 s is calculated. We find that departures from LTE and ionization recombination determine the temperature profiles of the shocks that develop. In LTE almost all the thermal energy goes into ionization, so the temperature rise is very small. In non-LTE, the finite transition rates delay the ionization to behind the shock front. The compression thus goes into thermal energy at the shock front leading to a high temperature amplitude. Further behind the shock front, the delayed ionization removes energy from the thermal pool, which reduces the temperature, producing a temperature spike. The 180 s waves reproduce the observed temporal changes in the calcium K line profiles quite well. The observed wing brightening pattern, the violet/red peak asymmetry and the observed line center behavior are all well reproduced. The short-period waves and the 5 minute period waves fail especially in reproducing the observed behavior of the wings.

  15. A high-linearity CMOS receiver achieving +44dBm IIP3 and +13dBm B1dB for SAW-less LTE radio

    Lien, Yuan-Ching; Klumperink, Eric A.M.; Tenbroek, Bernard; Strange, Jon; Nauta, Bram

    2017-01-01

    LTE-advanced wireless receivers require high-linearity up-front filtering to prevent corruption of the in-band signals by strong out-of-band (OOB) signals and self-interference from the transmitter. SAW duplexer filters are generally used for this purpose, but supporting the plethora of existing and

  16. High Energy $\

    2002-01-01

    This experiment is a high statistics exposure of BEBC filled with hydrogen to both @n and &bar.@n beams. The principal physics aims are : \\item a) The study of the production of charmed mesons and baryons using fully constrained events. \\end{enumerate} b) The study of neutral current interactions on the free proton. \\item c) Measurement of the cross-sections for production of exclusive final state N* and @D resonances. \\item d) Studies of hadronic final states in charged and neutral current reactions. \\item e) Measurement of inclusive charged current cross-sections and structure functions. \\end{enumerate}\\\\ \\\\ The neutrino flux is determined by monitoring the flux of muons in the neutrino shield. The Internal Picket Fence and External Muon Identifier of BEBC are essential parts of the experiment. High resolution cameras are used to search for visible decays of short-lived particles.

  17. High energy

    Bonner, B.E.; Roberts, J.B. Jr.

    1993-01-01

    We report here on progress made for the period from December 1, 1992 (the date of submission of our latest progress report) to November 30, 1993 for DOE Grant No. DE-FG05-92ER40717. The new results from the SMC experiment have generated a buzz of theoretical activity. Our involvement with the D0 experiment and the upgrade has increased substantially during the past two years so that we now have six people heavily committed and making what can only be described as a large and disproportionate impact on D0 physics output. Some of the new developments made here at Rice in Neural Network and Probability Density Estimation techniques for data analysis promise to have applications both in D0 and beyond. We report a load of new results from our high-p t jet photoproduction experiment. In addition we have been working on KTeV, albeit without having adequate funding for this work. Progress on the theoretical front has been nothing short of amazing, as is reported herein. In a grand lecture tour during this sabbatical year, Paul Stevenson has already reported his breakthroughs at ten institutions, including CERN, Oxford, Cambridge, Rutherford Lab, Imperial College, and Durham University. The group at Rice University has had an exceptionally productive year and we are justifiably proud of the progress which is reported here

  18. Visualization of electromagnetic exposure near LTE antennae

    Zvezdina, M. Yu; Shokova, Yu A.; Nazarova, O. Yu; Al-Ali, H. T. A.; Al-Farhan, G. H. A.

    2018-01-01

    Technical progress in wireless data transfer has given an opportunity to apply information and communication technologies in various areas of economics. Digital economy is linked to the 4th and 5th generation mobile network deployment. The peculiarities of the abovementioned standards decrease BTS antenna range three times in dense developed areas and worsen electromagnetic background in big cities. In the paper the comparative assessment results for rooftop electromagnetic exposure near BTS LTE and BTS GSM antennae are given. It is shown, that at the same level of transmitter power, energy flux density for LTE standard is three times less than the one for GSM. Moreover, the conclusion is made that the rooftop could be considered safe for people for indefinite time if antenna is placed more than 5 meters above the rooftop. The value of antenna height is taken to be on the safe side, as it is required by an application of “preventive principle”.

  19. LTE UE Power Consumption Model

    Jensen, Anders Riis; Lauridsen, Mads; Mogensen, Preben

    2012-01-01

    is based on a review of the major power consuming parts in an LTE UE radio modem. The model includes functions of UL and DL power and data rate. Measurements on a commercial LTE USB dongle were used to assign realistic power consumption values to each model parameter. Verification measurements......In this work a novel LTE user equipment (UE) power consumption model is presented. It was developed for LTE system level optimization, because it is important to understand how network settings like scheduling of resources and transmit power control affect the UE’s battery life. The proposed model...... on the dongle show that the model results in an average error of 2.6%. The measurements show that UL transmit power and DL data rate determines the overall power consumption, while UL data rate and DL receive power have smaller impact....

  20. A Wireless Location System in LTE Networks

    Liu, Qi; Hu, Rongyi; Liu, Shan

    2017-01-01

    Personal location technologies are becoming important with the rapid development of Mobile Internet services. In traditional cellular networks, the key problems of user location technologies are high-precision synchronization among different base stations, inflexible processing resources, and low accuracy positioning, especially for indoor environment. In this paper, a new LTE location system in Centralized Radio Access Network (C-RAN) is proposed, which makes channel and location measurement...

  1. Novel Architecture for LTE World-Phones

    Barrio, Samantha Caporal Del; Tatomirescu, Alexandru; Pedersen, Gert Frølund

    2013-01-01

    The 4th Generation of mobile communications (4G) came with new challenges on the antenna bandwidth and on the front-end architecture of mobile phones. This letter proposes a novel architecture overcoming these challenges. It includes narrow-band tunable antennas, co-designed with a tunable Front-......- End (FE). Simulations and measurements demonstrate the concept for low and high bands of the LTE frequency spectrum....

  2. Quad Band Handset Antenna for LTE MIMO and WLAN Application

    H. S. Wong

    2014-01-01

    Full Text Available A compact quad band antenna for long-term evolution (LTE MIMO and WLAN application in the handset is presented in this paper. The proposed antenna comprises two symmetrical quarter wavelength radiating strips and a slotted ground plane. On the ground plane, a T-shaped slot is cut from the bottom. Two symmetrical P-shaped slots are etched at both sides of the ground plane. The radiating strips and slots generate a lower resonant at 780 MHz and an upper resonant at 2.350 GHz to cover LTE 700 Band 14, LTE 2300, 2.4 GHz WLAN, and LTE 2500. A novel isolation technique by placing a rectangular patch between the radiating strips is presented. The rectangular patch creates a dedicated current path for each radiating strip. The proposed antenna has high isolation of less than −18 dBi at LTE 2300, 2.4 GHz WLAN, and LTE 2500 band.

  3. Enhanced cognitive Radio Resource Management for LTE systems

    Alqerm, Ismail

    2013-10-01

    The explosive growth in mobile Internet and related services has increased the need for more bandwidth in cellular networks. The Long-Term Evolution (LTE) technology is an attractive solution for operators and subscribers to meet such need since it provides high data rates and scalable bandwidth. Radio Resource Management (RRM) is essential for LTE to provide better communication quality and meet the application QoS requirements. Cognitive resource management is a promising solution for LTE RRM as it improves network efficiency by exploiting radio environment information, intelligent optimization algorithms to configure transmission parameters, and mitigate interference. In this paper, we propose a cognitive resource management scheme to adapt LTE network parameters to the environment conditions. The scheme optimizes resource blocks assignment, modulation selection and bandwidth selection to maximize throughput and minimize interference. The scheme uses constrained optimization for throughput maximization and interference control. It is also enhanced by learning mechanism to reduce the optimization complexity and improve the decision-making quality. Our evaluation results show that our scheme achieved significant improvements in throughput and LTE system capacity. Results also show the improvement in the user satisfaction over other techniques in LTE RRM.

  4. Non-LTE model atmospheres for supersoft X-ray sources

    Rauch, T.; Werner, K.

    2010-02-01

    In the last decade, X-ray observations of hot stellar objects became available with unprecedented resolution and S/N ratio. For an adequate interpretation, fully metal-line blanketed Non-LTE model-atmospheres are necessary. The Tübingen Non-LTE Model Atmosphere Package (TMAP) can calculate such model atmospheres at a high level of sophistication. Although TMAP is not especially designed for the calculation of spectral energy distributions (SEDs) at extreme photospheric parameters, it can be employed for the spectral analysis of burst spectra of novae like V4743 Sgr or line identifications in observations of neutron stars with low magnetic fields in low-mass X-ray binaries (LMXBs) like EXO 0748-676.

  5. Electron temperature determination in LTE and non-LTE plasmas

    Eddy, T.L.

    1983-01-01

    This article discusses how most experimental investigations assume a type of ''thermal equilibrium'' in which the excited levels are assumed to be populated according to the electron kinetic temperature, in the determination of electron temperature in LTE and non-LTE plasmas. This is justified on the basis that electron collisions dominate the equilibration of adjacent excited levels as shown by Byron, Stabler and Boartz. The comparison of temperature values calculated by various common methods as a check for local thermodynamic equilibrium (LTDE) or local thermal equilibrium (LTE) of the upper excited levels and the free electrons has been shown to indicate the excitation temperature in all cases utilized. Thomas shows that the source function of the first excited level may be dominated by non-local radiation, which would usually result in a different population than local collisional excitation would provide. Ionization from upper levels is by collisional means. The result may yield different valued excitation and electron temperatures

  6. Energy-efficient two-hop LTE resource allocation in high speed trains with moving relays

    Alsharoa, Ahmad M.; Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim

    2014-01-01

    of this work is to maximize the number of served users by respecting a specific quality-of-service constraint while minimizing the total power consumption of the eNodeB and the moving relays. We propose an efficient algorithm based on the Hungarian method

  7. Mobility and Bandwidth prediction in virtualized LTE systems: architecture and challenges

    Karagiannis, Georgios; Jamakovic, Almerima; Briggs, Keith; Karimzadeh Motallebi Azar, Morteza; Parada, Carlos; Iulian Corici, Marius; Taleb, Tarik; Edmonds, Andy; Bohnert, Thomas Michael

    2014-01-01

    Long Term Evolution (LTE) represents the fourth generation (4G) technology which is capable of providing high data rates as well as support of high speed mobility. The EU FP7 Mobile Cloud Networking (MCN) project integrates the use of cloud computing concepts in LTE mobile networks in order to

  8. Why high energy physics

    Diddens, A.N.; Van de Walle, R.T.

    1981-01-01

    An argument is presented for high energy physics from the point of view of the practitioners. Three different angles are presented: The cultural consequence and scientific significance of practising high energy physics, the potential application of the results and the discovery of high energy physics, and the technical spin-offs from the techniques and methods used in high energy physics. (C.F.)

  9. Single Carrier Transmission for UTRA LTE Uplink

    Priyanto, Basuki Endah; Berardinelli, Gilberto; Sørensen, Troels Bundgaard

    2009-01-01

    In this chapter, we have presented the key techniques for LTE uplink as well as presented the baseline performance. Radio access technology is the key aspect in LTE uplink and two radio access schemes, SC-FDMA and OFDMA, are studied. The performance results are obtained from a detailed UTRA LTE...

  10. Power Saving Scheduling Scheme for Internet of Things over LTE/LTE-Advanced Networks

    Yen-Wei Kuo

    2015-01-01

    Full Text Available The devices of Internet of Things (IoT will grow rapidly in the near future, and the power consumption and radio spectrum management will become the most critical issues in the IoT networks. Long Term Evolution (LTE technology will become a promising technology used in IoT networks due to its flat architecture, all-IP network, and greater spectrum efficiency. The 3rd Generation Partnership Project (3GPP specified the Discontinuous Reception (DRX to reduce device’s power consumption. However, the DRX may pose unexpected communication delay due to missing Physical Downlink Control Channel (PDCCH information in sleep mode. Recent studies mainly focus on optimizing DRX parameters to manage the tradeoff between the energy consumption and communication latency. In this paper, we proposed a fuzzy-based power saving scheduling scheme for IoT over the LTE/LTE-Advanced networks to deal with the issues of the radio resource management and power consumption from the scheduling and resource allocation perspective. The proposed scheme considers not only individual IoT device’s real-time requirement but also the overall network performance. The simulation results show that our proposed scheme can meet the requirements of the DRX cycle and scheduling latency and can save about half of energy consumption for IoT devices compared to conventional approaches.

  11. An introduction to LTE LTE, LTE-advanced, SAE, VoLTE and 4G mobile communications

    Cox, Christopher

    2014-01-01

    Following on from the successful first edition (March 2012), this book gives a clear explanation of what LTE does and how it works. The content is expressed at a systems level, offering less technically experienced readers the opportunity to grasp the key factors which make LTE the hot topic amongst vendors and operators across the globe. Assuming no more than a basic knowledge of mobile telecommunication systems, the reader is not expected to already understand complex mathematical operations.  This second edition both updates and introduces new material for the current state of the industry

  12. A Compact Frequency Reconfigurable Antenna for LTE Mobile Handset Applications

    Munyong Choi

    2015-01-01

    Full Text Available A compact (8 × 62 × 5 mm3; 2.48 cc frequency reconfigurable antenna that uses electrical switching with PIN diodes is proposed for the low frequency LTE band (699 MHz–862 MHz, high frequency LTE band (2496 MHz–2690 MHz, GSM850/900 bands (824 MHz–960 MHz, and DCS/PCS/WCDMA bands (1710 MHz–2170 MHz. The penta-band PIFA is first designed for GSM850/900/DCS/PCS/WCDMA bands by using two slits and ground pins within a limited antenna volume (8 × 54.6 × 5 mm3; 2.18 cc. The frequency reconfigurable antenna based on this penta-band PIFA is thus proposed to additionally cover all LTE bands. The proposed antenna has two PIN diodes with an optimal location. For State 1 (PIN diode 1: ON state, PIN diode 2: OFF state, the proposed antenna covers the low frequency LTE band, DCS/PCS/WCDMA bands, and high frequency LTE band. For State 2 (PIN diode 1: OFF state, PIN diode 2: ON state, the antenna covers the GSM850/900 bands. Simulated and measured results show that the total efficiency of the proposed antenna was greater than 40% for all operating frequency bands.

  13. Novel Miniaturized Octaband Antenna for LTE Smart Handset Applications

    Haixia Liu

    2015-01-01

    Full Text Available A novel octaband LTE mobile phone antenna is presented, which has a compact size with the overall dimension of 35 mm × 9 mm × 3 mm. The miniaturized octaband antenna is implemented by a simple prototype of three parts which include a folded monopole as feeding element, main radiator element, and parasitic radiator element. The main and parasitic radiator elements are excited by the folded monopole feeding element coupling and shorting to the handset ground plane. A wide bandwidth in low-frequency bands covering from 747 MHz to 960 MHz (LTE Band13/GSM850/GSM900 is contributed by both main and parasitic radiator elements. In addition, the folded monopole is designed to resonate at 2530 MHz, and the coupling between the feeding element and main radiator element is designed to resonate at 1840 MHz. Subsequently, the wide bandwidth in high-frequency bands covering from 1710 MHz to 2690 MHz (DCS1800/PCS1900/WCDMA2100/LTE2300/LTE2500 is contributed by both structures. The antenna has the total efficiency up to 30% in low bands and up to 75% in high bands, respectively. At the same time, the proposed miniaturized octaband LTE mobile phone antenna is fabricated and tested to verify the design.

  14. Non-LTE CO, revisited

    Ayres, Thomas R.; Wiedemann, Gunter R.

    1989-01-01

    A more extensive and detailed non-LTE simulation of the Delta v = 1 bands of CO than attempted previously is reported. The equations of statistical equilibrium are formulated for a model molecule containing 10 bound vibrational levels, each split into 121 rotational substates and connected by more than 1000 radiative transitions. Solutions are obtained for self-consistent populations and radiation fields by iterative application of the 'Lambda-operator' to an initial LTE distribution. The formalism is used to illustrate models of the sun and Arcturus. For the sun, negligible departures from LTE are found in either a theoretical radiative-equilibrium photosphere with outwardly falling temperatures in its highest layers or in a semiempirical hot chromosphere that reproduces the spatially averaged emission cores of Ca II H and K. The simulations demonstrate that the puzzling 'cool cores' of the CO Delta V = 1 bands observed in limb spectra of the sun and in flux spectra of Arcturus cannot be explained simply by non-LTE scattering effects.

  15. An approximate method to calculate ionization of LTE and non-LTE plasma

    Zhang Jun; Gu Peijun

    1987-01-01

    When matter, especially high Z element, is heated to high temperature, it will be ionized many times. The degree of ionization has a strong effect on many plasma properties. So an approximate method to calculate the mean ionization degree is needed for solving many practical problems. An analytical expression which is convenient for the approximate numerical calculation is given by fitting it to the scaling law and numerical results of the ionization potential of Thomas-Fermi statistical model. In LTE case, the ionization degree of Au calculated by using the approximate method is in agreement with that of the average ion model. By extending the approximate method to non-LTE case, the ionization degree of Au is similarly calculated according to Corona model and Collision-Radiatoin model(C-R). The results of Corona model agree with the published data quite well, while the results of C-R approach those of Corona model as the density is reduced and approach those of LTE as the density is increased. Finally, all approximately calculated results of ionization degree of Au and the comparision of them are given in figures and tables

  16. Pricing Resources in LTE Networks through Multiobjective Optimization

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution. PMID:24526889

  17. LTE for Railways: Impact on Performance of ETCS Railway Signaling

    Sniady, Aleksander; Soler, José

    2014-01-01

    The Global System for Mobile Communications-Railways (GSM-R) is an obsolete mobile technology with considerable shortcomings in terms of capacity and data transmission capabilities. Because of these shortcomings, GSM-R is becoming the element limiting the number of running trains in areas with high...... train concentration, such as major train stations. Moreover, GSM-R cannot support advanced data services. Hence, modern technologies, such as long-term evolution (LTE), have to be evaluated as possible railway communication technologies to replace GSM-R in the future. This article analyzes...... the characteristics of the LTE railway radio access network in terms of eNodeB (LTE base station) density and eNodeB transmission power. Based on this analysis, a set of computer-based simulation scenarios (e.g., OPNET) with varying numbers of eNodeBs is evaluated regarding the achieved transfer delay and data...

  18. Pricing resources in LTE networks through multiobjective optimization.

    Lai, Yung-Liang; Jiang, Jehn-Ruey

    2014-01-01

    The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS) to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid "user churn," which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO) problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1) maximizing operator profit and (2) maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.

  19. Pricing Resources in LTE Networks through Multiobjective Optimization

    Yung-Liang Lai

    2014-01-01

    Full Text Available The LTE technology offers versatile mobile services that use different numbers of resources. This enables operators to provide subscribers or users with differential quality of service (QoS to boost their satisfaction. On one hand, LTE operators need to price the resources high for maximizing their profits. On the other hand, pricing also needs to consider user satisfaction with allocated resources and prices to avoid “user churn,” which means subscribers will unsubscribe services due to dissatisfaction with allocated resources or prices. In this paper, we study the pricing resources with profits and satisfaction optimization (PRPSO problem in the LTE networks, considering the operator profit and subscribers' satisfaction at the same time. The problem is modelled as nonlinear multiobjective optimization with two optimal objectives: (1 maximizing operator profit and (2 maximizing user satisfaction. We propose to solve the problem based on the framework of the NSGA-II. Simulations are conducted for evaluating the proposed solution.

  20. Adaptive Modulation and Coding for LTE Wireless Communication

    Hadi, S. S.; Tiong, T. C.

    2015-04-01

    Long Term Evolution (LTE) is the new upgrade path for carrier with both GSM/UMTS networks and CDMA2000 networks. The LTE is targeting to become the first global mobile phone standard regardless of the different LTE frequencies and bands use in other countries barrier. Adaptive Modulation and Coding (AMC) is used to increase the network capacity or downlink data rates. Various modulation types are discussed such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM). Spatial multiplexing techniques for 4×4 MIMO antenna configuration is studied. With channel station information feedback from the mobile receiver to the base station transmitter, adaptive modulation and coding can be applied to adapt to the mobile wireless channels condition to increase spectral efficiencies without increasing bit error rate in noisy channels. In High-Speed Downlink Packet Access (HSDPA) in Universal Mobile Telecommunications System (UMTS), AMC can be used to choose modulation types and forward error correction (FEC) coding rate.

  1. Very high energy colliders

    Richter, B.

    1986-03-01

    The luminosity and energy requirements are considered for both proton colliders and electron-positron colliders. Some of the basic design equations for high energy linear electron colliders are summarized, as well as design constraints. A few examples are given of parameters for very high energy machines. 4 refs., 6 figs

  2. High energy neutron radiography

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-01-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos

  3. Handoff mechanisms in LTE networks

    Lal, Preeti; Yamini, Vidhu; Mohammed, V. Noor

    2017-11-01

    In this paper, we have analysed and studied the handoff mechanism in Long Term Evaluation (LTE) network. A LTE network has been defined with a set number of macro-cells, micro-cells and mobile devices. In this handoff mechanism distance and speed has been considered as an important parameters. The speed has been detected using the Gauss Markov Mobility Model, and from that distances have been predicted at different instances. In the handover process, Received Signal Power (RSP) for various users has been calculated with respect to base stations at various time intervals and the path loss between transmitter and receiver. A comparative study between path loss models is done in order to improve the signal power. A detailed study has been done on unnecessary handoff probability and handoff failure probability. Simulation results shows that there is an improvement in performance of the above mentioned parameters in the defined network.

  4. LTE-Advanced Relay Technology and Standardization

    Yuan, Yifei

    2013-01-01

    LTE-Advanced Relay Technology and Standardization provides a timely reference work for relay technology with the finalizing of LTE Release 10 specifications. LTE-Advanced is quickly becoming the global standard for 4G cellular communications. The relay technology, as one of the key features in LTE-Advanced, helps not only to improve the system coverage and capacity, but also to save the costs of laying wireline backhaul. As a leading researcher in the field of LTE-Advanced standards, the author provides an in-depth description of LTE-A relay technology, and explains in detail the standard specification and design principles.     Readers from both academic and industrial fields can find sections of interest to them: Sections 2 & 4 could benefit researchers in academia and those who are engaged in exploratory work, while Sections 3 & 4 are more useful to engineers. Dr. Yifei Yuan is the Technical Director at the Standards Department of ZTE Inc.

  5. Power efficient dynamic resource scheduling algorithms for LTE

    Han, C; Beh, KC; Nicolaou, M; Armour, SMD; Doufexi, A

    2010-01-01

    This paper presents a link level analysis of the rate and energy efficiency performance of the LTE downlink considering the unitary codebook based precoding scheme. In a multi-user environment, appropriate radio resource management strategies can be applied to the system to improve the performance gain by exploiting multi-user diversity in the time, frequency and space domains and the gains can be translated to energy reduction at the base station. Several existing and novel resource scheduli...

  6. High energy hadron scattering

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  7. The high energy galaxy

    Cesarsky, C.J.

    1986-08-01

    The galaxy is host to a wide variety of high energy events. I review here recent results on large scale galactic phenomena: cosmic-ray origin and confinement, the connexion to ultra high energy gamma-ray emission from X-ray binaries, gamma ray and synchrotron emission in interstellar space, galactic soft and hard X-ray emission

  8. LTE uplink scheduling - flow level analysis

    Dimitrova, D.C.; van den Berg, J.L.; Heijenk, G.; Litjens, R.; Sacchi, Claudio; Bellalta, Boris; Vinel, Alexey; Schlegel, Christian; Granelli, Fabrizio; Zhang, Yan

    Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and

  9. LTE uplink scheduling - Flow level analysis

    Dimitrova, D.C.; Berg, J.L. van den; Heijenk, G.; Litjens, R.

    2011-01-01

    Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and

  10. High energy colliders

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p anti p), lepton (e + e - , μ + μ - ) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed

  11. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-10-01

    SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.

  12. High energy astrophysics

    Engel, A.R.

    1979-01-01

    High energy astrophysical research carried out at the Blackett Laboratory, Imperial College, London is reviewed. Work considered includes cosmic ray particle detection, x-ray astronomy, gamma-ray astronomy, gamma and x-ray bursts. (U.K.)

  13. High energy positron imaging

    Chen Shengzu

    2003-01-01

    The technique of High Energy Positron Imaging (HEPI) is the new development and extension of Positron Emission Tomography (PET). It consists of High Energy Collimation Imaging (HECI), Dual Head Coincidence Detection Imaging (DHCDI) and Positron Emission Tomography (PET). We describe the history of the development and the basic principle of the imaging methods of HEPI in details in this paper. Finally, the new technique of the imaging fusion, which combined the anatomical image and the functional image together are also introduced briefly

  14. High-energy detector

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  15. High energy nuclear excitations

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  16. High energy radiation detector

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  17. Theoretical high energy physics

    Lee, T.D.

    1991-01-01

    This report discusses theoretical research in high energy physics at Columbia University. Some of the research topics discussed are: quantum chromodynamics with dynamical fermions; lattice gauge theory; scattering of neutrinos by photons; atomic physics constraints on the properties of ultralight-ultraweak gauge bosons; black holes; Chern- Simons physics; S-channel theory of superconductivity; charged boson system; gluon-gluon interactions; high energy scattering in the presence of instantons; anyon physics; causality constraints on primordial magnetic manopoles; charged black holes with scalar hair; properties of Chern-Aimona-Higgs solitons; and extended inflationary universe

  18. LTE-Advanced/WLAN testbed

    Plaisner, Denis

    2017-01-01

    Táto práca sa zaoberá skúmaním a vyhodnocovaním komunikácie štandardov LTE-Advance a WiFi (IEEE 802.11n/ac). Pri jednotlivých štandardoch je preskúmaný chybový parameter EVM. Pre prácu s jednotlivými štandardmi je navrhnuté univerzálne pracovisko (testbed). Toto univerzálne pracovisko slúži na nastavovanie vysielacieho a prijímacieho zariadenia a na spracovávanie prenášaných signálov a ich vyhodnocovanie. Pre túto prácu je vybrané prostredie Matlab, cez ktoré sa ovládajú použité prístroje ako...

  19. Theoretical high energy physics

    Lee, T.D.

    1992-01-01

    This progress report discusses research by Columbia University staff in high energy physics. Some of the topics discussed are as follows: lattice gauge theory; quantum chromodynamics; parity doublets; solitons; baryon number violation; black holes; magnetic monopoles; gluon plasma; Chern-Simons theory; and the inflationary universe

  20. High energy astrophysics

    Shklorsky, I.S.

    1979-01-01

    A selected list of articles of accessible recent review articles and conference reports, wherein up-to-date summaries of various topics in the field of high energy astrophysics can be found, is presented. A special report outlines work done in the Soviet Union in this area. (Auth.)

  1. High energy battery. Hochenergiebatterie

    Boehm, H.; Beyermann, G.; Bulling, M.

    1992-03-26

    In a high energy battery with a large number of individual cells in a housing with a cooling medium flowing through it, it is proposed that the cooling medium should be guided so that it only affects one or both sides of the cells thermally.

  2. High energy beam cooling

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  3. High Energy Physics

    Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP

  4. Estudio comparativo entre redes LTE Advanced y LTE a nivel de CORE.

    Castillo Contreras, David Oswaldo

    2017-01-01

    El presente trabajo de titulación contiene un estudio y análisis de las tecnologías LTE y LTE -Advanced a nivel de CORE de voz. Mediante la metodología de investigación descriptiva, se expondrán profundamente las principales características tecnológicas de las redes LTE y LTE Advanced, haciendo un enfoque hacia la arquitectura del CORE de voz y sus principales procesos para la administración de la movilidad, llamadas originadas y llamadas terminadas. Se detallará paso a paso ...

  5. Theoretical High Energy Physics

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  6. Handover Framework for Relay Enhanced LTE Networks

    Teyeb, Oumer Mohammed; Van Phan, Vinh; Raaf, Bernhard

    2009-01-01

    Relaying is one of the proposed technologies for future releases of UTRAN Long Term Evolution (LTE) networks. Introducing relaying is expected to increase the coverage and capacity of LTE networks. In order to enable relaying, the architecture, protocol and radio resource management procedures...... of LTE, such as handover, have to be modified. A user can be handed over not only between two base stations, but also between relays and base stations, and between two relays. With the introduction of relaying, there is a need for a new procedure to hand over a relay and all its associated users...... to another base station, allowing a flexible and dynamic relay deployment. In this paper, we extend the LTE release 8 handover mechanisms so that it can accommodate these new handover functionalities in a flexible manner....

  7. High energy dosimetry

    Ruhm, W.

    2010-01-01

    Full text: Currently, quantification of doses from high-energy radiation fields is a topical issue. This is so because high-energy neutrons play an important role for radiation exposure of air crew members and personnel outside the shielding of ion therapy facilities. In an effort to study air crew exposure from cosmic radiation in detail, two Bonner Sphere Spectrometers (BSSs) have recently been installed to measure secondary neutrons from cosmic radiation, one at the environmental research station 'Schneefernerhaus' at an altitude of 2650 m on the Zugspitze mountain, Germany, the other at the Koldewey station close to the North Pole on Spitsbergen. Based on the measured neutron fluence distributions and on fluence-to-dose conversion coefficients, mean ambient dose equivalent rate values of 75.0 ± 2.9 nSv/h and 8.7 ± 0.6 nSv/h were obtained for October 2008, respectively. Neutrons with energies above about 20 MeV contribute about 50% to dose, at 2650 m. Ambient dose equivalent rates measured by means of a standard rem counter and an extended rem counter at the Schneefernerhaus confirm this result. In order to study the response of state-of-the-art radiation instrumentation in such a high-energy radiation field, a benchmark exercise that included both measurements in and simulation of the stray neutron radiation field at the high-energy particle accelerator at GSI, Germany, were performed. This CONRAD (COordinated Network for RAdiation Dosimetry) project was funded by the European Commission, and the organizational framework was provided by the European Radiation Dosimetry Group, EURADOS. The Monte Carlo simulations of the radiation field and the experimental determination of the neutron spectra with various Bonner Sphere Spectrometers suggest the neutron fluence distributions to be very similar to those of secondary neutrons from cosmic radiation. The results of this intercomparison exercise in terms of ambient dose equivalent are also discussed

  8. High energy physics problems

    Arbuzov, B.A.

    1977-01-01

    Described are modern views on the particle structure and particle interactions at high energies. According to the latest data recieved, all particles can be classified in three groups: 1) strong interacting hadrons; 2) leptons, having no strong interactions; 3) photon. The particle structure is described in a quark model, and with the use of gluons. The elementary particle theory is based on the quantum field theory. The energy increase of interacting particles enables to check the main theory principles, such as conventions for causality, relativistic invariance and unitarity. Investigations of weak interactions are of great importance. The progress in this field is connected with unified gauge theories of weak and electromagnetic interactions. For weak interactions promissing are the experiments with colliding electron-proton rings. The new data, especially at higher energies, will lead to a further refinement of the nature of particles and their interactions

  9. Kajian Implementasi Standar Long-Term Evolution (LTE pada Sistem Komunikasi Taktis Militer

    Aris Pradana

    2012-09-01

    Full Text Available Sistem komunikasi taktis memungkinkan banyak pengguna dengan mobilitas tinggi, memiliki kemampuan network recovery dan network entry yang baik, serta diperkuat dengan sistem keamanan transmisi yang tahan terhadap jamming. Di sisi lain kemajuan telekomunikasi mendorong dikembangkannya LTE (Long-Term Evolution. LTE meningkatkan kapasitas sistem, cakupan area, high peak data rates, didukung dengan sistem keamanan yang baik guna mewujudkan pelayanan komunikasi menjadi lebih baik. Pada penelitian ini dilakukan simulasi dan pengkajian penggunaan standar teknologi LTE agar mampu mendukung dan meningkatkan kualitas sistem komunikasi taktis militer. Simulasi dilakukan untuk menguji kemampuan LTE terhadap jamming. Dari hasil simulasi dan pengkajian didapatkan bahwa sistem uplink LTE, dengan penambahan convolutional coding dan interleaver 8×8, memiliki ketahanan terhadap jamming dengan amplitudo di bawah 2,5 V, serta lebih tahan terhadap multitone-jamming pada sub-carrier yang berbeda daripada multitone-jamming pada sub-carrier yang sama. Arsitektur LTE dengan dukungan teknik AMC, AAA server, dan fast cell selection mampu mendukung sistem super network, network entry, dan network recovery pada sistem komunikasi taktis.

  10. High energy nuclear physics

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  11. Design and optimization of LTE 1800 MIMO antenna.

    Wong, Huey Shin; Islam, Mohammad Tariqul; Kibria, Salehin

    2014-01-01

    A multiple input and multiple output (MIMO) antenna that comprises a printed microstrip antenna and a printed double-L sleeve monopole antenna for LTE 1800 wireless application is presented. The printed double-L sleeve monopole antenna is fed by a 50 ohm coplanar waveguide (CPW). A novel T-shaped microstrip feedline printed on the other side of the PCB is used to excite the waveguide's outer shell. Isolation characteristics better than -15 dB can be obtained for the proposed MIMO antenna. The proposed antenna can operate in LTE 1800 (1710 MHz-1880 MHz). This antenna exhibits omnidirectional characteristics. The efficiency of the antenna is greater than 70% and has high gain of 2.18 dBi.

  12. Self-Optimization of LTE Networks Utilizing Celnet Xplorer

    Buvaneswari, A; Polakos, Paul; Buvaneswari, Arumugam

    2010-01-01

    In order to meet demanding performance objectives in Long Term Evolution (LTE) networks, it is mandatory to implement highly efficient, autonomic self-optimization and configuration processes. Self-optimization processes have already been studied in second generation (2G) and third generation (3G) networks, typically with the objective of improving radio coverage and channel capacity. The 3rd Generation Partnership Project (3GPP) standard for LTE self-organization of networks (SON) provides guidelines on self-configuration of physical cell ID and neighbor relation function and self-optimization for mobility robustness, load balancing, and inter-cell interference reduction. While these are very important from an optimization perspective of local phenomenon (i.e., the eNodeB's interaction with its neighbors), it is also essential to architect control algorithms to optimize the network as a whole. In this paper, we propose a Celnet Xplorer-based SON architecture that allows detailed analysis of network performan...

  13. High energy medical accelerators

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  14. Theoretical high energy physics

    Lee, T.D.

    1990-05-01

    This report discusses progress on theoretical high energy physics at Columbia University in New York City. Some of the topics covered are: Chern-Simons gauge field theories; dynamical fermion QCD calculations; lattice gauge theory; the standard model of weak and electromagnetic interactions; Boson-fermion model of cuprate superconductors; S-channel theory of superconductivity and axial anomaly and its relation to spin in the parton model

  15. Very high energy colliders

    Richter, B.

    1985-05-01

    The conclusions are relatively simple, but represent a considerable challenge to the machine builder. High luminosity is essential. We may in the future discover some new kind of high cross section physics, but all we know now indicates that the luminosity has to increase as the square of the center of mass energy. A reasonable luminosity to scale from for electron machines would be 10 33 cm -2 s -1 at a center of mass energy of 3 TeV. The required emittances in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, ''power is money'' - and efficient acceleration systems will be required

  16. Non-LTE radiation in laser-disk target couply

    Gu Peijun; Fei Weibing; Feng Tinggui; Wu Changshu

    2004-11-01

    The coupling of laser-disk target has been studied by Multi-group radiation transfer code RDMGL. The results show that the X-ray spectra are strongly non-LTE and dependent on the atomic model. The plasma states, laser energy absorption and X-ray conversion rates are almost the same as those simulated by three-temperature model code, which fact shows that the three-temperature model is reasonable to describe the exchange of different kinds of energy and the hydrodynamic phenomena of plasmas in laser-target coupling. (authors)

  17. Theoretical high energy physics

    Lee, T.D.

    1993-01-01

    Brief reports are given on the work of several professors. The following areas are included: quantum chromodynamics calculations using numerical lattice gauge theory and a high-speed parallel computer; the ''spin wave'' description of bosonic particles moving on a lattice with same-site exclusion; a high-temperature expansion to 13th order for the O(4)-symmetric φ 4 model on a four-dimensional F 4 lattice; spin waves and lattice bosons; superconductivity of C 60 ; meson-meson interferometry in heavy-ion collisions; baryon number violation in the Standard Model in high-energy collisions; hard thermal loops in QCD; electromagnetic interactions of anyons; the relation between Bose-Einstein and BCS condensations; Euclidean wormholes with topology S 1 x S 2 x R; vacuum decay and symmetry breaking by radiative corrections; inflationary solutions to the cosmological horizon and flatness problems; and magnetically charged black holes

  18. High frequency energy measurements

    Stotlar, S.C.

    1981-01-01

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  19. High energy ion implantation

    Ziegler, J.F.

    1985-01-01

    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  20. High energy physics

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1991-01-01

    This progress report presents a review of research done over the past five years by the Duke High Energy Physics Group. This research has been centered at Fermilab where we have had a continuing involvement with both the Tevatron collider and fixed-target programs. In 1988 we began extensive detector R ampersand D for the SSC through its Major Subsystem Program. Duke has been an active member of the Solenoidal Detector Collaboration (SDC) since its formation. These last five years has also been used to finish the analysis of data from a series of hybrid bubble chamber experiments which formed the core of Duke's research program in the early 1980's

  1. High energy cosmic rays

    Stanev, Todor

    2010-01-01

    Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models

  2. Prospects at high energies

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs

  3. Method for traceable measurement of LTE signals

    Sunder Dash, Soumya; Pythoud, Frederic; Leuchtmann, Pascal; Leuthold, Juerg

    2018-04-01

    This contribution presents a reference setup to measure the power of the cell-specific resource elements present in downlink long term evolution (LTE) signals in a way that the measurements are traceable to the international system of units. This setup can be used to calibrate the LTE code-selective field probes that are used to measure the radiation of base stations for mobile telephony. It can also be used to calibrate LTE signal generators and receivers. The method is based on traceable scope measurements performed directly at the output of a measuring antenna. It implements offline digital signal processing demodulation algorithms that consider the digital down-conversion, timing synchronization, frequency synchronization, phase synchronization and robust LTE cell identification to produce the downlink time-frequency LTE grid. Experimental results on conducted test scenarios, both single-input-single-output and multiple-input-multiple-output antenna configuration, show promising results confirming measurement uncertainties of the order of 0.05 dB with a coverage factor of 2.

  4. Resilience of LTE networks against smart jamming attacks

    Aziz, Farhan M.; Shamma, Jeff S.; Stuber, Gordon L.

    2014-01-01

    Commercial LTE networks are being studied for mission-critical applications, such as public safety and smart grid communications. In this paper, LTE networks are shown vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart

  5. High energy physics

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb - 1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989

  6. High energy astrophysical techniques

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  7. VoLTE performance in railway scenarios

    Sniady, Aleksander; Sønderskov, Morten; Soler, José

    2015-01-01

    GSM-Railways (GSM-R) is the current standard for railway voice and data communication. GSM-R provides railway specific voice services, such as Railway Emergency Call (REC). GSM-R provides also the European Train Control System (ETCS), which offers in-cab signaling and Automatic Train Protection...... (ATP). Despite these features and services, GSM-R has various major shortcomings. Therefore, alternative technologies are considered to replace GSM-R and become the next generation railway mobile communication network. 3GPP Long Term Evolution (LTE) is a likely candidate for GSM-R replacement. LTE...... is more efficient, flexible and offers much higher capacity, which allows the railway network to provide new communication-based applications for railways. Most of the research on LTE in railways has been focused on data-based railway applications (ETCS signaling and other). Nevertheless, voice...

  8. Deviations from LTE in a stellar atmosphere

    Kalkofen, W.; Klein, R.I.; Stein, R.F.

    1979-01-01

    Deviations from LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient b is smaller than unity when the radiative cross section αsub(ν) grows with frequency ν faster than ν 2 ; b exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of αsub(ν). Overpopulation (b > 1) always implies that the kinetic temperature in the statistical equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature. (author)

  9. Deviations from LTE in a stellar atmosphere

    Kalkofen, W.; Klein, R. I.; Stein, R. F.

    1979-01-01

    Deviations for LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient is smaller than unity when the radiative cross section grows with frequency faster than with the square of frequency; it exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of the radiative cross section. Overpopulation always implies that the kinetic temperature in the statistical-equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.

  10. Improved non-LTE simulation algorithm

    Busquet, Michel; Klapisch, Marcel; Colombant, Denis; Fyfe, David; Gardner, John

    2008-11-01

    The RAdiation Dependent Ionization Model (RADIOM)- a.k.a Busquet's model-[1] has proven its success in simulating non --LTE effects in laser fusion plasmas [2]. This improved algorithm can take into account Auger effect by a new parameter fitted to SCROLL [3] results. It is independent of the photon binning thanks to a projection on a standard grid. It guarantees smoother convergence to LTE. This algorithm has been implemented in a new way in the hydro-code FASTnD. Hydro simulations on the recent subMJ targets[4], with and without non-LTE corrections will be shown. [1] M. Busquet, Phys. Fluids B 5, 4191(1993). [2] D.G. Colombant et al, Phys. Plas. 7,2046 (2000). [3] A. Bar-Shalom, J. Oreg M. Klapisch, J. Quant. Spectr. Rad. Transf. 65 ,43 (2000). [4] S. P. Obenschain, D. G. Colombant, A. J. Schmitt et al., Phys. Plasmas 13, 056320 (2006).

  11. VoLTE Performance in Railway Scenarios

    Sniady, Aleksander; Sønderskov, Morten; Soler, José

    2015-01-01

    GSM-Railways (GSM-R) is the current standard for railway voice and data communication. GSM-R provides railway specific voice services, such as Railway Emergency Call (REC). GSM-R provides also the European Train Control System (ETCS), which offers in-cab signaling and Automatic Train Protection...... (ATP). Despite these features and services, GSM-R has various major shortcomings. Therefore, alternative technologies are considered to replace GSM-R and become the next generation railway mobile communication network. 3GPP Long Term Evolution (LTE) is a likely candidate for GSM-R replacement. LTE...... is more efficient, flexible and offers much higher capacity, which allows the railway network to provide new communication-based applications for railways. Most of the research on LTE in railways has been focused on data-based railway applications (ETCS signaling and other). Nevertheless, voice...

  12. Configuration interaction in LTE spectra of heavy elements

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.

    1992-11-01

    We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented

  13. Wi-Fi Coexistence with Duty Cycled LTE-U

    Yimin Pang

    2017-01-01

    Full Text Available Coexistence of Wi-Fi and LTE-Unlicensed (LTE-U technologies has drawn significant concern in industry. In this paper, we investigate the Wi-Fi performance in the presence of duty cycle based LTE-U transmission on the same channel. More specifically, one LTE-U cell and one Wi-Fi basic service set (BSS coexist by allowing LTE-U devices to transmit their signals only in predetermined duty cycles. Wi-Fi stations, on the other hand, simply contend the shared channel using the distributed coordination function (DCF protocol without cooperation with the LTE-U system or prior knowledge about the duty cycle period or duty cycle of LTE-U transmission. We define the fairness of the above scheme as the difference between Wi-Fi performance loss ratio (considering a defined reference performance and the LTE-U duty cycle (or function of LTE-U duty cycle. Depending on the interference to noise ratio (INR being above or below −62 dbm, we classify the LTE-U interference as strong or weak and establish mathematical models accordingly. The average throughput and average service time of Wi-Fi are both formulated as functions of Wi-Fi and LTE-U system parameters using probability theory. Lastly, we use the Monte Carlo analysis to demonstrate the fairness of Wi-Fi and LTE-U air time sharing.

  14. High energy magnetic excitations

    Endoh, Yasuo

    1988-01-01

    The report emphasizes that the current development in condensed matter physics opens a research field fit to inelastic neutron scattering experiments in the eV range which is easilly accessed by spallation neutron sources. Several important subjects adopted at thermal reactors are shown. It is desired to extend the implementation of the spectroscopic experiments for investigation of higher energy magnetic excitations. For La 2 CuO 4 , which is the mother crystal of the first high Tc materials found by Bednortz and Muller, it seems to be believed that the magnetism is well characterized by the two-dimensional Heisenberg antiferromagnetic Hamiltonian, and it is widely accepted that the magnetism is a most probable progenitor of high Tc superconductors. The unusual properties of spin correlations in this crystal have been studied extensively by standard neutron scattering techniques with steady neutrons at BNL. FeSi is not ordered magnetically but shows a very unique feature of temperature induced magnetism, which also has been studied extensively by using the thermal neutron scattering technique at BNL. In these experiments, polarized neutrons are indispensable to extract the clean magnetic components out of other components of non-magnetic scattering. (N.K.)

  15. Non LTE Effects in Laser Plasmas

    Klapisch, Marcel

    1997-11-01

    Laser produced plasmas are not in Local Thermodynamical Equilibrium(LTE) because of the strong gradients and the escaping radiation. Departure from LTE changes the average charge state Z^*, and through it the electron temperature and other thermodynamical variables. Hydrodynamic simulations using LTE and non LTE modes show that in some cases the temperatures can change by an order of magnitude. Several rad/hydro models have solved the approximate atomic rate equations in-line within the average atom model(W. A. Lokke and W. H. Grasburger, LLNL, Report UCRL-52276 (1977),G. Pollack, LANL, Report LA-UR-90-2423 (1990)), or with global rates(M. Busquet, J. P. Raucourt and J. C. Gauthier, J. Quant. Spectrosc. Radiat. Transfer, 54, 81 (1995)). A new technique developed by Busquet, the Radiation Dependent Ionization Model (RADIOM)(M. Busquet, Phys. Fluids B, 5, 4191 (1993)) has been implemented in the NRL hydro-code. It uses an ionization temperature Tz to obtain the opacities and EOS in table look-ups. A very elaborate LTE atomic physics such as the STA code( A. Bar-Shalom and J. Oreg, Phys. Rev. E, 54, 1850 (1996), and ref. therein), or OPAL, can then be used off-line for generating the tables. The algorithm for Tz is very simple and quick. RADIOM has recently been benchmarked with a new detailed collisional radiative model SCROLL(A. Bar-Shalom, J. Oreg and M. Klapisch, Phys. Rev. E, to appear in July (1997)) on a range of temperatures, densities and atomic numbers. RADIOM has been surprisingly successful in calculations of non-LTE opacities.

  16. Resource allocation using ANN in LTE

    Yigit, Tuncay; Ersoy, Mevlut

    2017-07-01

    LTE is the 4th generation wireless network technology, which provides flexible bandwidth, higher data speeds and lower delay. Difficulties may be experienced upon an increase in the number of users in LTE. The objective of this study is to ensure a faster solution to any such resource allocation problems which might arise upon an increase in the number of users. A fast and effective solution has been obtained by making use of Artificial Neural Network. As a result, fast working artificial intelligence methods may be used in resource allocation problems during operation.

  17. Computing in high energy physics

    Watase, Yoshiyuki

    1991-09-15

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors.

  18. FSU High Energy Physics

    Prosper, Harrison B. [Florida State Univ., Tallahassee, FL (United States); Adams, Todd [Florida State Univ., Tallahassee, FL (United States); Askew, Andrew [Florida State Univ., Tallahassee, FL (United States); Berg, Bernd [Florida State Univ., Tallahassee, FL (United States); Blessing, Susan K. [Florida State Univ., Tallahassee, FL (United States); Okui, Takemichi [Florida State Univ., Tallahassee, FL (United States); Owens, Joseph F. [Florida State Univ., Tallahassee, FL (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Wahl, Horst D. [Florida State Univ., Tallahassee, FL (United States)

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  19. High energy physics

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10 5 Z's by the end of 1989 and 10 6 in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry

  20. High energy plasma accelerators

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  1. High energy neutron generator

    Barjon, R.; Breynat, G.

    1987-01-01

    This patent describes a generator of fast neutrons only slightly contaminated by neutrons of energy less than 15 MeV, comprising a source of charged particles of energy equal to at least 15 MeV, a target made of lithium deuteride, and means for cooling the target. The target comprises at least two elements placed in series in the path of the charged particles and separated from each other, the thickness of each of the elements being selected as a function of the average energy of the charged particles emitted from the source and the energy of the fast neutrons to be generated such that neutrons of energy equal to at least 15 MeV are emitted in the forward direction in response to the bombardment of the target from behind by the charged particles. The target cooling means comprises means for circulating between and around the elements a gas which does not chemically react with lithium deuteride

  2. New computational method for non-LTE, the linear response matrix

    Fournier, K.B.; Grasiani, F.R.; Harte, J.A.; Libby, S.B.; More, R.M.; Zimmerman, G.B.

    1998-01-01

    My coauthors have done extensive theoretical and computational calculations that lay the ground work for a linear response matrix method to calculate non-LTE (local thermodynamic equilibrium) opacities. I will give briefly review some of their work and list references. Then I will describe what has been done to utilize this theory to create a computational package to rapidly calculate mild non-LTE emission and absorption opacities suitable for use in hydrodynamic calculations. The opacities are obtained by performing table look-ups on data that has been generated with a non-LTE package. This scheme is currently under development. We can see that it offers a significant computational speed advantage. It is suitable for mild non-LTE, quasi-steady conditions. And it offers a new insertion path for high-quality non-LTE data. Currently, the linear response matrix data file is created using XSN. These data files could be generated by more detailed and rigorous calculations without changing any part of the implementation in the hydro code. The scheme is running in Lasnex and is being tested and developed

  3. Dosimetry of high energy radiation

    Sahare, P D

    2018-01-01

    High energy radiation is hazardous to living beings and a threat to mankind. The correct estimation of the high energy radiation is a must and a single technique may not be very successful. The process of estimating the dose (the absorbed energy that could cause damages) is called dosimetry. This book covers the basic technical knowledge in the field of radiation dosimetry. It also makes readers aware of the dangers and hazards of high energy radiation.

  4. 'LTE-diffusion approximation' for arc calculations

    Lowke, J J; Tanaka, M

    2006-01-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  5. Correlation Evaluation on Small LTE Handsets

    Barrio, Samantha Caporal Del; Pedersen, Gert Frølund

    2012-01-01

    This paper presents measurements of the first MIMO handset on the market. It investigates the correlation coefficient computed from coaxial cable measurements and from optical fiber measurements. The results are compared and discussed. The question of the actual feasibility of low correlation...... for the LTE-700 band in small terminals is raised....

  6. Kesiapan Operator Seluler dalam Mengimplementasikan Teknologi Long Term Evolution (LTE

    Sri Ariyanti

    2012-06-01

    Full Text Available Penelitian ini bertujuan untuk mengetahui seberapa besar kesiapan operator seluler dalam mengimplementasikan teknologi Long Term Evolution (LTE. Model penelitian dengan menggunakan mengadopsi teknik Net Readiness Framwork. Adapun kriteria pengukurannya terdiri dari Leadership, Governance, Competencies dan Technology. Pengumpulan data dilakukan dengan menyebarkan kuesioner kepada operator seluler di Indonesia dan melakukan wawancara kepada regulator. Kajian ini menggunakan teknik analisis data kuantitatif deskriptif. Hasil penelitian menunjukkan bahwa PT. Axis, PT. HCPT dan PT. Telkomsel mempunyai tingkat kesiapan LTE Visionary yang berarti perusahaan sangat antusias dalam perubahan dan lebih dahulu mengambil resiko untuk mengimplementasikan LTE dalam organisasinya yang merupakan bagian yang tak terpisahkan proses bisnis perusahaan. PT. Indosat dan PT. XL mempunyai nilai kesiapan LTE leader  yang berarti perusahaan mampu mengadaptasi perubahan dan menginspirasi organsiasi lain dalam penerapan LTE. PT. Smartfren pada tingkat kesiapan LTE savvy yang berarti operator seluler memahami sebab dan efek dari perubahan dari munculnya LTE terhadap organisasi, namun belum melakukan adaptasi.

  7. Renewable Energy Riding High

    2012-01-01

    China is putting greater emphasis on green energy as it tries to clean up industry and meet target for cuts in carbon emissions over the past two years, China has already leapfrogged competitors from Denmark, Germany, Spain and the United States to become the world's largest maker of wind turbines and solar panels. At the same time, the country is also taking steps to build more nuclear reactors and energy-efficient coal power plants.

  8. Multiuser Scheduling on the Downlink of an LTE Cellular System

    Raymond Kwan

    2008-01-01

    Full Text Available The challenge of scheduling user transmissions on the downlink of a long-term evolution (LTE cellular communication system is addressed. In particular, a novel optimalmultiuser scheduler is proposed. Numerical results show that the system performance improves with increasing correlation among OFDMA subcarriers. It is found that only a limited amount of feedback information is needed to achieve relatively good performance. A suboptimal reduced-complexity scheduler is also proposed and shown to provide good performance. The suboptimal scheme is especially attractive when the number of users is large, in which case the complexity of the optimal scheme is high.

  9. Evaluation of a Cross Layer Scheduling Algorithm for LTE Downlink

    A. Popovska Avramova

    2013-06-01

    Full Text Available The LTE standard is a leading standard in the wireless broadband market. The Radio Resource Management at the base station plays a major role in satisfying users demand for high data rates and quality of service. This paper evaluates a cross layer scheduling algorithm that aims at minimizing the resource utilization. The algorithm makes decisions based on channel conditions, the size of transmission buffers and different quality of service demands. Simulation results show that the new algorithm improves the resource utilization and provides better guarantees for service quality.

  10. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  11. Why is observable radio recombination line emission from galactic HII regions always close to LTE

    Shaver, P.A.

    1980-01-01

    There is no evidence for significant deviations from LTE in single-dish observations of radio recombination line emission from galactic HII regions. This is in agreement with the known properties of HII regions, particularly their density variations and limited range of excitation parameters; the optimum configuration for strong observable non-LTE effects, low electron density and high emission measure, simply does not exist in galactic HII regions, and the observed lines are emitted under near-LTE conditions. Models of the Orion Nebulae and NGC 6604 are presented which fit all available data and show only weak stimulated emission. It is concluded that reliable electron temperatures can indeed be obtained from straightforward analysis of appropriate radio recombination lines. (orig.)

  12. Energy peaks: A high energy physics outlook

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  13. Towards detecting methanol emission in low-mass protoplanetary discs with ALMA: the role of non-LTE excitation

    Parfenov, S. Yu.; Semenov, D. A.; Sobolev, A. M.; Gray, M. D.

    2016-08-01

    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub)millimetre spectrum of gaseous methanol (CH3OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH3OH abundances along with the CH3OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH3OH lines can be lower by factor of >10-100 than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub)millimetre transitions, it does not lead to the strong maser amplification and noticeably high line intensities. We identify the strongest CH3OH (sub)millimetre lines that could be searched for with the Atacama Large Millimeter Array (ALMA) in nearby discs. The two best candidates are the CH3OH 50 - 40A+ (241.791 GHz) and 5-1 - 4-1E (241.767 GHz) lines, which could possibly be detected with the ˜5σ signal-to-noise ratio after ˜3 h of integration with the full ALMA array.

  14. BROOKHAVEN: High energy gold

    Bleser, Ed

    1992-01-01

    On April 24, Brookhaven's Alternating Gradient Synchrotron (AGS) started to deliver gold ions at 11.4 GeV per nucleon (2,000 GeV per ion) to experimenters who were delighted not only to receive the world's highest energy gold beam but also to receive it on schedule

  15. Influence of external radiation on non-LTE opacities of Xe

    Klapisch, Marcel; Busquet, Michel

    2010-11-01

    In Laboratory Astrophysics, where astrophysics phenomena are scaled down to the laboratory, Xenon is commonly used. In most cases, astrophysical plasmas are not dense enough to warrant LTE. However, they are surrounded by radiation fields. Extensive detailed level computations of non-LTE Xe around Te = 100eV were performed with HULLAC [1], with different radiation temperatures and/or dilution factors. Generally, the effects are very important, even with small dilution factors. [4pt] [1] M. Klapisch and M. Busquet, High Ener. Dens. Phys.5, (2009) 105-9; Bull. Am. Phys. Soc.54, (2009) 210.

  16. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6–Cu mixture

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-01-01

    SF 6 –Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF 6 –Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1–10 atm), non-equilibrium degrees (1–10), and copper molar proportions (0–50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF 6 –Cu system. This paper provides a more accurate database for computational fluid dynamic calculation. (paper)

  17. Coexistence of 3G repeaters with LTE base stations.

    Yeo, Woon-Young; Lee, Sang-Min; Hwang, Gyung-Ho; Kim, Jae-Hoon

    2013-01-01

    Repeaters have been an attractive solution for mobile operators to upgrade their wireless networks at low cost and to extend network coverage effectively. Since the first LTE commercial deployment in 2009, many mobile operators have launched LTE networks by upgrading their 3G and legacy networks. Because all 3G frequency bands are shared with the frequency bands for LTE deployment and 3G mobile operators have an enormous number of repeaters, reusing 3G repeaters in LTE networks is definitely a practical and cost-efficient solution. However, 3G repeaters usually do not support spatial multiplexing with multiple antennas, and thus it is difficult to reuse them directly in LTE networks. In order to support spatial multiplexing of LTE, the role of 3G repeaters should be replaced with small LTE base stations or MIMO-capable repeaters. In this paper, a repeater network is proposed to reuse 3G repeaters in LTE deployment while still supporting multilayer transmission of LTE. Interestingly, the proposed network has a higher cluster throughput than an LTE network with MIMO-capable repeaters.

  18. High energy cosmic ray astronomy

    Fonseca, V.

    1996-01-01

    A brief introduction to High Energy Cosmic Ray Astronomy is presented. This field covers a 17 decade energy range (2.10 4 -10 20 ) eV. Recent discoveries done with gamma-ray detectors on-board satellites and ground-based Cherenkov devices are pushing for a fast development of new and innovative techniques, specially in the low energy region which includes the overlapping of satellite and ground-based measurements in the yet unexplored energy range 20 keV-250 GeV. Detection of unexpected extremely high energy events have triggered the interest of the international scientific community. (orig.)

  19. High Energy Materials

    IAS Admin

    Propellants used in rockets, pyrotechnics used in festivities, explosives used for .... In World War II, Wernher von Braun designed the. V-2 rockets which were ... A. Solid Propellants. A solid propellant is made from low or diluted high explosives.

  20. Physical Layer Multi-Core Prototyping A Dataflow-Based Approach for LTE eNodeB

    Pelcat, Maxime; Piat, Jonathan; Nezan, Jean-François

    2013-01-01

    Base stations developed according to the 3GPP Long Term Evolution (LTE) standard require unprecedented processing power. 3GPP LTE enables data rates beyond hundreds of Mbits/s by using advanced technologies, necessitating a highly complex LTE physical layer. The operating power of base stations is a significant cost for operators, and is currently optimized using state-of-the-art hardware solutions, such as heterogeneous distributed systems. The traditional system design method of porting algorithms to heterogeneous distributed systems based on test-and-refine methods is a manual, thus time-expensive, task.   Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for LTE eNodeB provides a clear introduction to the 3GPP LTE physical layer and to dataflow-based prototyping and programming. The difficulties in the process of 3GPP LTE physical layer porting are outlined, with particular focus on automatic partitioning and scheduling, load balancing and computation latency reduction, specifically in sys...

  1. Computing in high energy physics

    Watase, Yoshiyuki

    1991-01-01

    The increasingly important role played by computing and computers in high energy physics is displayed in the 'Computing in High Energy Physics' series of conferences, bringing together experts in different aspects of computing - physicists, computer scientists, and vendors

  2. Dynamic Relaying in 3GPP LTE-Advanced Networks

    Van Phan Vinh

    2009-01-01

    Full Text Available Relaying is one of the proposed technologies for LTE-Advanced networks. In order to enable a flexible and reliable relaying support, the currently adopted architectural structure of LTE networks has to be modified. In this paper, we extend the LTE architecture to enable dynamic relaying, while maintaining backward compatibility with LTE Release 8 user equipments, and without limiting the flexibility and reliability expected from relaying. With dynamic relaying, relays can be associated with base stations on a need basis rather than in a fixed manner which is based only on initial radio planning. Proposals are also given on how to further improve a relay enhanced LTE network by enabling multiple interfaces between the relay nodes and their controlling base stations, which can possibly be based on technologies different from LTE, so that load balancing can be realized. This load balancing can be either between different base stations or even between different networks.

  3. Dynamic Relaying in 3GPP LTE-Advanced Networks

    Teyeb, Oumer Mohammed; Van Phan, Vinh; Redana, Simone

    2009-01-01

    Relaying is one of the proposed technologies for LTE-Advanced networks. In order to enable a flexible and reliable relaying support, the currently adopted architectural structure of LTE networks has to be modified. In this paper, we extend the LTE architecture to enable dynamic relaying, while...... maintaining backward compatibility with LTE Release 8 user equipments, and without limiting the flexibility and reliability expected from relaying.With dynamic relaying, relays can be associated with base stations on a need basis rather than in a fixed manner which is based only on initial radio planning....... Proposals are also given on how to further improve a relay enhanced LTE network by enabling multiple interfaces between the relay nodes and their controlling base stations, which can possibly be based on technologies different from LTE, so that load balancing can be realized. This load balancing can...

  4. From LTE to 5G for Connected Mobility

    Lauridsen, Mads; Gimenez, Lucas Chavarria; Rodriguez Larrad, Ignacio

    2017-01-01

    been initiated. In this article, we measure how current LTE network implementations perform in comparison with the initial LTE requirements. The target is to identify certain key performance indicators that have suboptimal implementations and therefore lend themselves to careful consideration when...... time, and coverage of four operational LTE networks based on 19,000 km of drive tests covering a mixture of rural, suburban, and urban environments. The measurements have been collected using commercial radio network scanners and measurement smartphones. Even though LTE has low air interface delays......, the measurements reveal that core network delays compromise the overall round-trip time design requirement. LTE's breakbefore- make handover implementation causes a data interruption at each handover of 40 ms at the median level. While this is in compliance with the LTE requirements, and lower values are certainly...

  5. High-energy communication

    CERN Communication Group

    2015-01-01

    On Wednesday at 10.40 a.m., the LHC operators declared “stable beams” after two years of technical stop and a few months of commissioning. It was an exciting day for all the teams involved, including those who worked on communicating the news to the public and the media on multiple platforms.   CERN’s most successful tweet on 3 June featured collision images from ALICE, ATLAS, CMS and LHCb and was shared 800 times by the Twitter audience. Live blogging, social media posts, a live webcast, and a constant outpouring of photos and videos: Wednesday morning was a crazy time for the communication teams from CERN, the experiments and various institutes around the world. Even though the event started very early in the morning (the live CCC blog started at 7 a.m. and the live webcast at 8.20 a.m.), the public and the media tuned in to follow and generously cover the start of the LHC’s physics run at an unprecedented energy of 13 TeV. The statistics showed th...

  6. LTE Adaptation for Mobile Broadband Satellite Networks

    Bastia Francesco

    2009-01-01

    Full Text Available One of the key factors for the successful deployment of mobile satellite systems in 4G networks is the maximization of the technology commonalities with the terrestrial systems. An effective way of achieving this objective consists in considering the terrestrial radio interface as the baseline for the satellite radio interface. Since the 3GPP Long Term Evolution (LTE standard will be one of the main players in the 4G scenario, along with other emerging technologies, such as mobile WiMAX; this paper analyzes the possible applicability of the 3GPP LTE interface to satellite transmission, presenting several enabling techniques for this adaptation. In particular, we propose the introduction of an inter-TTI interleaving technique that exploits the existing H-ARQ facilities provided by the LTE physical layer, the use of PAPR reduction techniques to increase the resilience of the OFDM waveform to non linear distortion, and the design of the sequences for Random Access, taking into account the requirements deriving from the large round trip times. The outcomes of this analysis show that, with the required proposed enablers, it is possible to reuse the existing terrestrial air interface to transmit over the satellite link.

  7. Delay efficient cooperation in public safety vehicular networks using LTE and IEEE 802.11p

    Atat, Rachad; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Filali, Fethi

    2012-01-01

    (LTE) is used for long range communications with the base station (BS) and 802.11p is considered for inter-vehicle collaboration on the short range. A high mobility environment with correlated shadowing is adopted. Both schemes are shown to outperform

  8. High-energy cosmic rays

    Gaisser, Thomas K. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)]. E-mail: gaisser@bartol.udel.edu; Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2006-10-17

    After a brief review of galactic cosmic rays in the GeV to TeV energy range, we describe some current problems of interest for particles of very high energy. Particularly interesting are two features of the spectrum, the knee above 10{sup 15} eV and the ankle above 10{sup 18} eV. An important question is whether the highest-energy particles are of extra-galactic origin and, if so, at what energy the transition occurs. A theme common to all energy ranges is use of nuclear abundances as a tool for understanding the origin of the cosmic radiation.

  9. Ultra high energy cosmic rays

    Watson, A.A.

    1986-01-01

    Cosmic radiation was discovered 70 years ago but its origin remains an open question. The background to this problem is outlined and attempts to discover the origin of the most energetic and rarest group above 10 15 eV are described. Measurements of the energy spectrum and arrival direction pattern of the very highest energy particles, mean energy about 6 x 10 19 eV, are used to argue that these particles originate outside our galaxy. Recent evidence from the new field of ultra high energy γ-ray astronomy are discussed in the context of a galactic origin hypothesis for lower energy cosmic rays. (author)

  10. High energy physics

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-01-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R ampersand D on silicon microstrip tracking devices for the SSC. High statistics studies of Z 0 decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka's program includes a detailed investigation of the magnetic-flip approach to the solar neutrino

  11. Non-LTE effects on the strength of the Lyman edge in quasar accretion disks

    Stoerzer, H.; Hauschildt, P. H.; Allard, F.

    1994-01-01

    We have calculated UV/EUV (300 A which is less than or equal to lambda which is less than or equal to 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) less than or equal to L(sub acc) less than 1.0 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 9) solar mass. The vertical gas pressure structure of the disk and the disk height are obtained analytically; the temperature stratification and the resulting continuum radiation fields are calculated numerically. We have included non-Local Thermodynamic Equilibrium (LTE) effects of both the ionization equilibrium and the level populations of hydrogen and helium. We show that these non-LTE effects reduce the strength of the Lyman edge when comapred to the LTE case. In non-LTE we find that the edge can be weakly in emission or absorption for disks seen face-on, depending on the disk parameters.

  12. High energy physics research

    Piroue, P.A.

    1992-10-01

    The goal of this research is to understand the fundamental constituents of matter and their interactions. At this time, the following activities are underway: e + e - interactions and Z 0 physics at CERN; studies to upgrade the L3 detector at LHC; very high statistics charm physics at Fermilab; search for the H particle at BNL; search for the fifth force; rare kaon decay experiments at BNL; study of B-meson physics at hadron colliders; e + e - pair creation by light at SLAC; R ampersand D related to SSC experiments and the GEM detector; and theoretical research in elementary particle physics and cosmology. The main additions to the activities described in detail in the original grant proposal are (1) an experiment at SLAC (E-144) to study strong-field QED effects in e-laser and γ-laser collisions, and (2) a search for the H particle at BNL (E-188). The R ampersand D efforts for the GEM detector have also considerably expanded. In this paper we give a brief status report for each activity currently under way

  13. High energy physics

    1992-01-01

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z degrees resonance include (a) a measurement of the strong coupling constant α s for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e + e - → ν bar νγ. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R ampersand D work on BaF 2 by joining the GEM collaboration

  14. Towards a QoE-Driven Resource Control in LTE and LTE-A Networks

    Gerardo Gómez

    2013-01-01

    Full Text Available We propose a novel architecture for providing quality of experience (QoE awareness to mobile operator networks. In particular, we describe a possible architecture for QoE-driven resource control for long-term evolution (LTE and LTE-advanced networks, including a selection of KPIs to be monitored in different network elements. We also provide a description and numerical results of the QoE evaluation process for different data services as well as potential use cases that would benefit from the rollout of the proposed framework.

  15. Conference on High Energy Physics

    2016-01-01

    Conference on High Energy Physics (HEP 2016) will be held from August 24 to 26, 2016 in Xi'an, China. This Conference will cover issues on High Energy Physics. It dedicates to creating a stage for exchanging the latest research results and sharing the advanced research methods. HEP 2016 will be an important platform for inspiring international and interdisciplinary exchange at the forefront of High Energy Physics. The Conference will bring together researchers, engineers, technicians and academicians from all over the world, and we cordially invite you to take this opportunity to join us for academic exchange and visit the ancient city of Xi’an.

  16. Future of high energy physics

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e - colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place

  17. The Vienna LTE-advanced simulators up and downlink, link and system level simulation

    Rupp, Markus; Taranetz, Martin

    2016-01-01

    This book introduces the Vienna Simulator Suite for 3rd-Generation Partnership Project (3GPP)-compatible Long Term Evolution-Advanced (LTE-A) simulators and presents applications to demonstrate their uses for describing, designing, and optimizing wireless cellular LTE-A networks. Part One addresses LTE and LTE-A link level techniques. As there has been high demand for the downlink (DL) simulator, it constitutes the central focus of the majority of the chapters. This part of the book reports on relevant highlights, including single-user (SU), multi-user (MU) and single-input-single-output (SISO) as well as multiple-input-multiple-output (MIMO) transmissions. Furthermore, it summarizes the optimal pilot pattern for high-speed communications as well as different synchronization issues. One chapter is devoted to experiments that show how the link level simulator can provide input to a testbed. This section also uses measurements to present and validate fundamental results on orthogonal frequency division multiple...

  18. High Energy Transport Code HETC

    Gabriel, T.A.

    1985-09-01

    The physics contained in the High Energy Transport Code (HETC), in particular the collision models, are discussed. An application using HETC as part of the CALOR code system is also given. 19 refs., 5 figs., 3 tabs

  19. Research in high energy physics

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas; quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  20. Computing in high energy physics

    Smith, Sarah; Devenish, Robin [Nuclear Physics Laboratory, Oxford University (United Kingdom)

    1989-07-15

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'.

  1. [Research in high energy physics

    1991-01-01

    This report discusses progress in the following research in high energy physics: The crystal ball experiment; delco at PEP; proton decay experiment; MACRO detector; mark III detector; SLD detector; CLEO II detector; and the caltech L3 group

  2. Computing in high energy physics

    Smith, Sarah; Devenish, Robin

    1989-01-01

    Computing in high energy physics has changed over the years from being something one did on a slide-rule, through early computers, then a necessary evil to the position today where computers permeate all aspects of the subject from control of the apparatus to theoretical lattice gauge calculations. The state of the art, as well as new trends and hopes, were reflected in this year's 'Computing In High Energy Physics' conference held in the dreamy setting of Oxford's spires. The conference aimed to give a comprehensive overview, entailing a heavy schedule of 35 plenary talks plus 48 contributed papers in two afternoons of parallel sessions. In addition to high energy physics computing, a number of papers were given by experts in computing science, in line with the conference's aim – 'to bring together high energy physicists and computer scientists'

  3. Problems of high energy physics

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  4. Developments in high energy theory

    journal of. July 2009 physics pp. 3–60. Developments in high energy theory .... and operated by CERN (European Organization for Nuclear Research), this ma- ...... [2] S Dodelson, Modern cosmology (Academic Press, Amsterdam, 2003).

  5. Research in high energy physics

    1992-01-01

    This report discusses research being conducted in high energy physics in the following areas: quantum chromodynamics; drift chambers; proton-antiproton interactions; particle decays; particle production; polarimeters; quark-gluon plasma; and conformed field theory

  6. Fast Control Channel Decoding for LTE UE Power Saving

    Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben

    2012-01-01

    in the current TTI. The cost is that some reference signals are not received leading to a degraded channel estimate. Calculations show that this causes an SINR degradation of approximately 0.5 dB, which will result in maximum 4 % throughput loss. Comparing this with energy saving potentials of 5 %-25...... % it is concluded that the FCCD method is a valuable aid to prolong LTE phones' battery lifetime. The results are generated using a two state Markov chain model to simulate traffic and scheduling, and verified mathematically. The work also includes an examination of various data traffic types' on/off relation...... and an evaluation of how the relation affects power consumption. The FCCD method can complement DRX sleep mode since it is applicable when the signal is too aperiodic or fast switching for DRX....

  7. High Energy Density Laboratory Astrophysics

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  8. On the Way towards Fourth-Generation Mobile: 3GPP LTE and LTE-Advanced

    David Martín-Sacristán

    2009-01-01

    Full Text Available Long-Term Evolution (LTE is the new standard recently specified by the 3GPP on the way towards fourth-generation mobile. This paper presents the main technical features of this standard as well as its performance in terms of peak bit rate and average cell throughput, among others. LTE entails a big technological improvement as compared with the previous 3G standard. However, this paper also demonstrates that LTE performance does not fulfil the technical requirements established by ITU-R to classify one radio access technology as a member of the IMT-Advanced family of standards. Thus, this paper describes the procedure followed by the 3GPP to address these challenging requirements. Through the design and optimization of new radio access techniques and a further evolution of the system, the 3GPP is laying down the foundations of the future LTE-Advanced standard, the 3GPP candidate for 4G. This paper offers a brief insight into these technological trends.

  9. On the Way towards Fourth-Generation Mobile: 3GPP LTE and LTE-Advanced

    Martín-Sacristán David

    2009-01-01

    Full Text Available Abstract Long-Term Evolution (LTE is the new standard recently specified by the 3GPP on the way towards fourth-generation mobile. This paper presents the main technical features of this standard as well as its performance in terms of peak bit rate and average cell throughput, among others. LTE entails a big technological improvement as compared with the previous 3G standard. However, this paper also demonstrates that LTE performance does not fulfil the technical requirements established by ITU-R to classify one radio access technology as a member of the IMT-Advanced family of standards. Thus, this paper describes the procedure followed by the 3GPP to address these challenging requirements. Through the design and optimization of new radio access techniques and a further evolution of the system, the 3GPP is laying down the foundations of the future LTE-Advanced standard, the 3GPP candidate for 4G. This paper offers a brief insight into these technological trends.

  10. Double-NAT Based Mobility Management for Future LTE Networks

    Karimzadeh Motallebi Azar, Morteza; Valtulina, Luca; Pras, Aiko; Liebsch, Marco; Taleb, Tarik

    2017-01-01

    In this paper we discuss the major modifications required in the current LTE network to realize a decentralized LTE architecture and develop a novel IP mobility management solution for it. The proposed solution can handle traffic redirecting and IP address continuity above the distributed anchor

  11. Performance of Flow-Aware Networking in LTE backbone

    Sniady, Aleksander; Soler, José

    2012-01-01

    technologies, such as Long Term Evolution (LTE). This paper proposes usage of a modified Flow Aware Networking (FAN) technique for enhancing Quality of Service (QoS) in the all-IP transport networks underlying LTE backbone. The results obtained with OPNET Modeler show that FAN, in spite of being relatively...

  12. Potential of dynamic spectrum allocation in LTE macro networks

    Hoffmann, H.; Ramachandra, P.; Kovacs, I.Z.; Jorguseski, L.; Gunnarsson, F.; Kurner, T.

    2015-01-01

    In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic

  13. Studi Pemanfaatan Digital Dividend Untuk Layanan Long Term Evolution (LTE

    Sri Ariyanti

    2013-09-01

    Full Text Available Sesuai dengan Permen kominfo No. 22/PER/M/KOMINFO/11/2011 tentang Penyelenggaraan Penyiaran Televisi Digital Terestrial Penerimaan Tetap Tidak Berbayar (Free To Air, pada tahun 2018 semua TV analog migrasi secara penuh ke TV digital. Dengan demikian ada alokasi tersisa sebesar 2 x 45 Mhz FDD yang disebut sebagai digital dividend. Frekuensi tersebut rencananya akan digunakan untuk teknologi LTE. Namun sebelum digelar teknologi LTE pada frekuensi digital dividend tersebut maka perlu dikaji bagaimana penggunaan digital dividend untuk layanan LTE. Penelitian ini bertujuan untuk mengetahui hasil perhitungan link budget frekuensi 700 MHz untuk LTE, mengetahui perbandingan kapasitas user pada daerah tipe dense-urban, urban, sub-urban dan rural, mengetahui estimasi jumlah pelanggan LTE, mengetahui jumlah operator LTE optimum dan pembagian bandwidthnya.  Metode penelitian dengan menggunakan studi literatur. Kajian ini menggunakan teknik analisis kuantitatif deskriptif.  Hasil penelitian menunjukkan bahwa jangkauan paling besar yaitu daerah rural kemudian disusul berturut-turut daerah sub urban, dense urban dan urban. Kapasitas user per site dalam 1 Km2 dari urutan terbesar ke kecil berturut-turut yaitu daerah rural, sub urban, urban dan dense urban. Estimasi jumlah pelanggan LTE di Indonesia paling besar yaitu di daerah dense-urban yaitu mencapai 500 user/Km2 pada tahun ke 8. Jumlah operator LTE-700 MHz paling optimum sebanyak 3 operator dengan pembagian bandwidth masing-masing 15 MHz.

  14. Resilience of LTE networks against smart jamming attacks: Wideband model

    Aziz, Farhan M.; Shamma, Jeff S.; Stuber, Gordon L.

    2015-01-01

    communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel

  15. High energy HF pulsed lasers

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  16. Assessing high wind energy penetration

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  17. Simulation of non LTE opacity with incoming radiation

    Klapisch, Marcel; Busquet, Michel

    2009-11-01

    Simulation of radiative properties of hot plasmas is important for ICF, other laboratory plasmas, and astrophysics. When mid-Z or high-Z elements are involved, the spectra are so complex that one commonly uses LTE approximation. This was recently done in interpreting a carefully calibrated experiment on Fe at 160 eV [1]. However some disagreement remains concerning the ion charge distribution. The newest version of HULLAC [2] has the capability to take into account an incoming radiation field in solving the rate equations of the coronal radiative model (CRM). We will show results with different representation of the radiation field.[4pt] [1] J.E. Bailey, G.A. Rochau, C.A. Iglesias, et al., Phys. Rev. Lett. 99, (2007) 265002-4.[0pt] [2] M. Klapisch and M. Busquet, High Ener. Dens. Phys. 5, (2009) 105-9.

  18. Capacity gain with an alternative LTE railway communication network

    Sniady, Aleksander; Soler, José

    2014-01-01

    , such as 3GPP Long Term Evolution (LTE). T his paper describe s how to adapt the reversible multi - chain/channel queuing system to model an LTE cell serving ETCS - equipped trains . It is proposed to use the multiple user chains available in the model to represent varying bitrate in LTE radio access network....... Usin g this model , LTE and GSM - R are compare d in terms of capacity on an example at Copenhagen Main Train Station . The purpose of this work is to demonstrate the benefits that railway operators and infrastructure managers can expect from the introduc tion of LTE , as a telecommunication technology...... Control System (ETCS) signaling , the capacity of GSM - R turns out to be insufficient . GSM - R cannot ful fill the railway requirements , in terms of the number of simultaneous ETCS connections . This is why , alternative , more efficient communication technologies should be considered by railways...

  19. Resilience of LTE networks against smart jamming attacks: Wideband model

    Aziz, Farhan M.

    2015-12-03

    LTE/LTE-A networks have been successfully providing advanced broadband services to millions of users worldwide. Lately, it has been suggested to use LTE networks for mission-critical applications like public safety, smart grid and military communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel, SINR estimation in frequency domain and computation of utilities based on observable parameters under the framework of single-shot and repeated games with asymmetric information. In a single-shot game formulation, network utility is severely compromised at its solutions, i.e. at the Nash Equilibria (NE). We propose evolved repeated-game strategy algorithms to combat smart jamming attacks that can be implemented in existing deployments using current technology. © 2015 IEEE.

  20. High energy proton PIXE [HEPP

    McKee, J.S.C.

    1993-01-01

    Studies of particle induced X-ray emission (PIXE) have been widespread and detailed in recent years and despite the fact that most data obtained are from low energy 1-3 MeV experiments, the value of higher energy proton work with its emphasis on K X-ray emission has become more marked as time has progressed. The purpose of this review paper is to outline the history of analysis using high energy protons and to compare and contrast the results obtained with those from lower energy analysis using more firmly established analytical techniques. The work described will concentrate exclusively on proton induced processes and will attempt to outline the rationale for selecting an energy, greater than 20 and up to 70 MeV protons for initiating particles. The relative ease and accuracy of the measurements obtained will be addressed. Clearly such X-ray studies should be seen as complementing low energy work in many instances rather than competing directly with them. However, it will be demonstrated that above a Z value of approximately 20, K X-ray analysis using high energy protons is the only way to go in this type of analysis. (author)

  1. High energy elastic hadron scattering

    Fearnly, T.A.

    1986-04-01

    The paper deals with the WA7 experiment at the CERN super proton synchrotron (SPS). The elastic differential cross sections of pion-proton, kaon-proton, antiproton-proton, and proton-proton at lower SPS energies over a wide range of momentum transfer were measured. Some theoretical models in the light of the experimental results are reviewed, and a comprehensive impact parameter analysis of antiproton-proton elastic scattering over a wide energy range is presented. A nucleon valence core model for high energy proton-proton and antiproton-proton elastic scattering is described

  2. Psychometric properties of the List of Threatening Experiences--LTE and its association with psychosocial factors and mental disorders according to different scoring methods.

    Motrico, Emma; Moreno-Küstner, Berta; de Dios Luna, Juan; Torres-González, Francisco; King, Michael; Nazareth, Irwin; Montón-Franco, Carmen; Gilde Gómez-Barragán, María Josefa; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Ángel; Vicens, Catalina; Moreno-Peral, Patricia; Bellón, Juan Ángel

    2013-09-25

    The List of Threatening Experiences (LTE) questionnaire is frequently used to assess stressful events; however, studies of its psychometric properties are scarce. We examined the LTE's reliability, factorial structure, construct validity and explored the association between LTE scores and psychosocial variables and mental disorders. This study involved interviewing 5442 primary care attendees from Spain. Associations between four different methods of quantifying LTE scores, psychosocial factors, major depression (CIDI), anxiety disorders (PRIME-MD), alcohol misuse and dependence (AUDIT) were measured. The LTE showed high test-retest reliability (Kappa range=0.61-0.87) and low internal consistency (α=0.44). Tetrachoric factorial analysis yielded four factors (spousal and relational problems; employment and financial problems; personal problems; illness and bereavement in close persons). Logistic multilevel regression found a strong association between greater social support and a lower occurrence of stressful events (OR range=0.36-0.79). The association between religious-spiritual beliefs and the LTE, was weaker. The association between mental disorders and LTE scores was greater for depression (OR range=1.64-2.57) than anxiety (OR range=1.35-1.97), though the highest ORs were obtained with alcohol dependence (OR range=2.86-4.80). The ordinal score (ordinal regression) was more sensitive to detect the strength of association with mental disorders. We are unable to distinguish the direction of the association between stressful events, psychosocial factors and mental disorders, due to our cross-sectional design of the study. The LTE is a valid and reliable measure of stress in mental health, and the strength of association with mental disorders depends on the method of quantifying LTE scores. © 2013 Elsevier B.V. All rights reserved.

  3. High Energy Physics Departments - Overview

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  4. Strong interactions at high energy

    Anselmino, M.

    1995-01-01

    Spin effects in strong interaction high energy processes are subtle phenomena which involve both short and long distance physics and test perturbative and non perturbative aspects of QCD. Moreover, depending on quantities like interferences between different amplitudes and relative phases, spin observables always test a theory at a fundamental quantum mechanical level; it is then no surprise that spin data are often difficult to accommodate within the existing models. A report is made on the main issues and contributions discussed in the parallel Session on the open-quote open-quote Strong interactions at high energy close-quote close-quote in this Conference. copyright 1995 American Institute of Physics

  5. Analysis of LTE 800MHz Network Deployment Strategy%LTE 800MHz网络部署策略分析

    余扬尧; 陈杨; 杨芙蓉

    2016-01-01

    Starting ifrst with the current mobile user development situation of the three operators, the paper analyzed the necessity of China telecom LTE 800 MHz network construction, the network coverage, terminal market, construction speed, the business competition, and etc., concluded the short-term, mid-term and long-term deployment strategy for LTE 800 MHz.%首先从当前三大运营商的移动业务用户发展情况入手,分析了中国电信LTE 800 MHz网络建设的必要性,对LTE 800 MHz的网络覆盖、终端市场、建设速度、业务竞争等几个方面进行分析,得出了LTE 800 MHz近、中、远期的部署策略。

  6. High energy astrophysics. An introduction

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  7. High-energy atomic physics

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  8. 5 Watt GaN HEMT Power Amplifier for LTE

    K. Niotaki

    2014-04-01

    Full Text Available This work presents the design and implementation of a stand-alone linear power amplifier at 2.4 GHz with high output power. A GaN HEMT transistor is selected for the design and implementation of the power amplifier. The device exhibits a gain of 11.7 dB and a drain efficiency of 39% for an output power of 36.7 dBm at 2.4 GHz for an input power of 25dBm. The carrier to intermodulation ratio is better than 25 dB for a two tone input signal of 25 dBm of total power and a spacing of 5 MHz. The fabricated device is also tested with LTE input signals of different bandwidths (5MHz to 20MHz.

  9. DSRC versus 4G-LTE for Connected Vehicle Applications: A Study on Field Experiments of Vehicular Communication Performance

    Zhigang Xu

    2017-01-01

    Full Text Available Dedicated short-range communication (DSRC and 4G-LTE are two widely used candidate schemes for Connected Vehicle (CV applications. It is thus of great necessity to compare these two most viable communication standards and clarify which one can meet the requirements of most V2X scenarios with respect to road safety, traffic efficiency, and infotainment. To the best of our knowledge, almost all the existing studies on comparing the feasibility of DRSC or LTE in V2X applications use software-based simulations, which may not represent realistic constraints. In this paper, a Connected Vehicle test-bed is established, which integrates the DSRC roadside units, 4G-LTE cellular communication stations, and vehicular on-board terminals. Three Connected Vehicle application scenarios are set as Collision Avoidance, Traffic Text Message Broadcast, and Multimedia File Download, respectively. A software tool is developed to record GPS positions/velocities of the test vehicles and record certain wireless communication performance indicators. The experiments have been carried out under different conditions. According to our results, 4G-LTE is more preferred for the nonsafety applications, such as traffic information transmission, file download, or Internet accessing, which does not necessarily require the high-speed real-time communication, while for the safety applications, such as Collision Avoidance or electronic traffic sign, DSRC outperforms the 4G-LTE.

  10. Non-LTE diagnositics of infrared radiation of Titan's atmosphere

    Feofilov, Artem; Rezac, Ladislav; Kutepov, Alexander; Vinatier, Sandrine; Rey, Michael; Nikitin, Andrew; Tyuterev, Vladimir

    2016-06-01

    Yelle (1991) and Garcia-Comas et al, (2011) demonstrated the importance of accounting for the local thermodynamic equilibrium (LTE) breakdown in the middle and upper atmosphere of Titan for the interpretation of infrared radiances measured at these heights. In this work, we make further advance in this field by: • updating the non-LTE model of CH4 emissions in Titan's atmosphere and including a new extended database of CH4 spectroscopic parameters • studying the non-LTE CH4 vibrational level populations and the impact of non-LTE on limb infrared emissions of various CH4 ro-vibrational bands including those at 7.6 and 3.3 µm • implementing our non-LTE model into the LTE-based retrieval algorithm applied by Vinatier et al., (2015) for processing the Cassini/CIRS spectra. We demonstrate that accounting for non-LTE leads to an increase in temperatures retrieved from CIRS 7.6 µm limb emissions spectra (˜10 K at 600 km altitude) and estimate how this affects the trace gas density retrieval. Finally, we discuss the effects of including a large number of weak one-quantum and combinational bands on the calculated daytime limb 3.3 µm emissions and the impact they may have on the CH4 density retrievals from the Cassini VIMS 3.3 µm limb emission observations.

  11. Multiprocessors for high energy physics

    Pohl, M.

    1987-01-01

    I review the role, status and progress of multiprocessor projects relevant to high energy physics. A short overview of the large variety of multiprocessors architectures is given, with special emphasis on machines suitable for experimental data reconstruction. A lot of progress has been made in the attempt to make the use of multiprocessors less painful by creating a ''Parallel Programming Environment'' supporting the non-expert user. A high degree of usability has been reached for coarse grain (event level) parallelism. The program development tools available on various systems (subroutine packages, preprocessors and parallelizing compilers) are discussed in some detail. Tools for execution control and debugging are also developing, thus opening the path from dedicated systems for large scale, stable production towards support of a more general job mix. At medium term, multiprocessors will thus cover a growing fraction of the typical high energy physics computing task. (orig.)

  12. High energy astrophysics an introduction

    Courvoisier, Thierry J -L

    2013-01-01

    High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad...

  13. Instrumentation in high energy physics

    Serin, L.

    2007-01-01

    The instrumentation in high energy physics is a wide and advanced domain which cannot be covered in a single lesson. The main basic physics processes for charged and neutral particles are recalled with the definition of a few concepts needed to understand or design a detector. The application of these principles to charged particle measurement devices (momentum), light detection or energy measurement are presented mostly with examples from collider experiments. The particle identification which is often the combination of different techniques in a same experiment is also discussed. Finally in a very short section, a few considerations about electronics/processing with their impact on the detector performance are given

  14. [Research on the identification method of LTE condition in the laser-induced plasma].

    Fan, Juan-juan; Huang, Dan; Wang, Xin; Zhang, Lei; Ma, Wei-guang; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2014-12-01

    Because of the poor accuracy of the commonly used Boltzmann plot method and double-line method, the Boltzmann-Maxwell distribution combined with the Saha-Eggert formula is proposed to improve the measurement accuracy of the plasma temperature; the simple algorithm for determining the linewidth of the emission line was established according to the relationship between the area and the peak value of the Gaussian formula, and the plasma electron density was calculated through the Stark broadening of the spectral lines; the method for identifying the plasma local thermal equilibrium (LTE) condition was established based on the McWhirter criterion. The experimental results show that with the increase in laser energy, the plasma temperature and electron density increase linearly; when the laser energy changes within 127~510 mJ, the plasma electron density changes in the range of 1.30532X10(17)~1.87322X10(17) cm(-3), the plasma temperature changes in the range of 12586~12957 K, and all the plasma generated in this experiment meets the LTE condition threshold according to the McWhirter criterion. For element Al, there exist relatively few observable lines at the same ionization state in the spectral region of the spectrometer, thus it is unable to use the Boltzmann plane method to calculate temperature. One hundred sets of Al plasma spectra were used for temperature measurement by employing the Saha-Boltzmann method and the relative standard deviation (RSD) value is 0.4%, and compared with 1.3% of the double line method, the accuracy has been substantially increased. The methods proposed can be used for rapid plasma temperature and electron density calculation, the LTE condition identification, and are valuable in studies such as free calibration, spectral effectiveness analysis, spectral temperature correction, the best collection location determination, LTE condition distribution in plasma, and so on.

  15. Computing in high energy physics

    Hertzberger, L.O.; Hoogland, W.

    1986-01-01

    This book deals with advanced computing applications in physics, and in particular in high energy physics environments. The main subjects covered are networking; vector and parallel processing; and embedded systems. Also examined are topics such as operating systems, future computer architectures and commercial computer products. The book presents solutions that are foreseen as coping, in the future, with computing problems in experimental and theoretical High Energy Physics. In the experimental environment the large amounts of data to be processed offer special problems on-line as well as off-line. For on-line data reduction, embedded special purpose computers, which are often used for trigger applications are applied. For off-line processing, parallel computers such as emulator farms and the cosmic cube may be employed. The analysis of these topics is therefore a main feature of this volume

  16. Harvard University High Energy Physics

    1993-01-01

    The mainly experimental research program in high energy physics at Harvard is summarized in a descriptive fashion according to the following outline: Proton endash antiproton colliding beam program at Fermilab -- CDF (forward/backward electromagnetic calorimeters -- FEM, central muon extension -- CMX, gas calorimetry and electronics development, front-end electronics upgrades, software development, physics analysis, timetable), electron -- positron collisions in the upsilon region -- CLEO (the hardware projects including CLEO II barrel TOF system and silicon drift detector R ampersand D, physics analysis), search for ν μ to ν τ oscillations with the NOMAD experiment at CERN, the solenoidal detector collaboration at the SSC, muon scattering at FNAL -- E665, the L3 experiment, and phenomenological analysis of high-energy bar pp cross sections. 149 refs

  17. A high energy physics perspective

    Marciano, W.J.

    1997-01-01

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional open-quotes Hidden Symmetries close quotes are discussed. Experimental approaches to uncover open-quotes New Physicsclose quotes associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given

  18. [Research in high energy physics

    LoSecco, J.

    1989-01-01

    We review the efforts of the Notre Dame non accelerator high energy physics group. Our major effort has been directed toward the IMB deep underground detector. Since the departure of the Michigan group our responsibilities to the group have grown. We are also very active in pursuing physics with the IMB 3 detector. Currently we are studying proton decay, point neutrino sources and neutrino oscillations with the contained event sample

  19. Cosmology for high energy physicists

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs

  20. High Energy Physics in Europe

    Anon.

    1980-01-01

    A thorough survey of the present and possible future activities and resources in high energy physics in the CERN Member States has been carried out by a Working Group of ECFA (European Committee for Future Accelerators) under the Chairmanship of John Mulvey. The aim has been to obtain a view of the present European scene and to see whether it looks well adapted to the effective exploitation of possible future machines in Europe (particular LEP) and the rest of the world

  1. High energy electron positron physics

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; Υ Spectroscopy; Hadronic Decays of the Υ; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles

  2. Astrophysics at very high energies

    Aharonian, Felix; Bergstroem, Lars; Dermer, Charles

    2013-01-01

    Presents three complementary lectures on very-high-energy astrophysics given by worldwide leaders in the field. Reviews the recent advances in and prospects of gamma-ray astrophysics and of multi-messenger astronomy. Prepares readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors. With the success of Cherenkov Astronomy and more recently with the launch of NASA's Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergstroem presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.

  3. High Energy Physics Departments - Overview

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  4. Quantum chromodynamics at high energy

    Kovchegov, Yuri V

    2012-01-01

    Filling a gap in the current literature, this book is the first entirely dedicated to high energy QCD including parton saturation. It presents groundbreaking progress on the subject and describes many of the problems at the forefront of research, bringing postgraduate students, theorists and advanced experimentalists up to date with the current status of the field. A broad range of topics in high energy QCD are covered, most notably on the physics of parton saturation and the Color Glass Condensate (CGC). The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear and non-linear BFKL/BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and experimental outlook and present the physics of strong interactions in a universal way, making it useful to physicists from various sub-communities and applicable to processes studied at high energy accelerators around the world.

  5. High energy overcurrent protective device

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  6. Photoproduction at high energy and high intensity

    2002-01-01

    The photon beam used for this programme is tagged and provides a large flux up to very high energies (150-200 GeV). It is also hadron-free, since it is obtained by a two-step conversion method. A spectrometer is designed to exploit this beam and to perform a programme of photoproduction with a high level of sensitivity (5-50 events/picobarn).\\\\ \\\\ Priority will be given to the study of processes exhibiting the point-like behaviour of the photon, especially deep inelastic Compton scattering. The spectrometer has two magnets. Charged tracks are measured by MWPC's located only in field-free regions. Three calorimeters provide a large coverage for identifying and measuring electrons and photons. An iron filter downstream identifies muons. Most of the equipment is existing and recuperated from previous experiments.

  7. Network performance and fault analytics for LTE wireless service providers

    Kakadia, Deepak; Gilgur, Alexander

    2017-01-01

     This book is intended to describe how to leverage emerging technologies big data analytics and SDN, to address challenges specific to LTE and IP network performance and fault management data in order to more efficiently manage and operate an LTE wireless networks. The proposed integrated solutions permit the LTE network service provider to operate entire integrated network, from RAN to Core , from UE to application service, as one unified system and correspondingly collect and align disparate key metrics and data, using an integrated and holistic approach to network analysis. The LTE wireless network performance and fault involves the network performance and management of network elements in EUTRAN, EPC and IP transport components, not only as individual components, but also as nuances of inter-working of these components. The key metrics for EUTRAN include radio access network accessibility, retainability, integrity, availability and mobility. The key metrics for EPC include MME accessibility, mobility and...

  8. Some non-LTE diagnostic methods for hydrogen plasmas

    Eddy, T.L.; Cho, K.Y.

    1986-01-01

    This paper shows that if electric and magnetic fields are not negligible, then the 2-T model assumed by many non-LTE plasma diagnostic techniques may lead to serious errors. Significant difference between T e and T ex have been shown to exist with electric field strengths as low as ∼10 V/cm. Multithermal equilibrium (MTE) calculations show significant deviations in line emission coefficients when T e ≠ T ex compared to equivalent T e ≠ T q . A quasi non-dimentional MTE continuum relation is present to assist in diagnostics. Normalized line emission coefficients verses N e are used to indicate the type and extent of non-LTE. The MTE state diagram for hydrogen is used to show why non-LTE plasmas often appear to be in LTE based on N e determinations

  9. Enhanced cognitive Radio Resource Management for LTE systems

    Alqerm, Ismail; Shihada, Basem; Shin, Kang G.

    2013-01-01

    as it improves network efficiency by exploiting radio environment information, intelligent optimization algorithms to configure transmission parameters, and mitigate interference. In this paper, we propose a cognitive resource management scheme to adapt LTE

  10. IV. Workshop on High Energy Spin Physics

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  11. New Configuration of Handset MIMO Antenna for LTE 700 Band Applications

    Byeonggwi Mun

    2013-01-01

    Full Text Available A compact handset multiple-input multiple-output (MIMO antenna for long-term evolution (LTE 700 band (746~787 MHz applications is proposed. The proposed antenna consists of two symmetrical PIFAs. Without the usage of any additional coupling elements between closely mounted antennas, a high isolation (>15 dB and a low enveloped correlation coefficient (ECC<0.35 are achieved by the optimum location and arrangement of MIMO antenna elements.

  12. Developments in high energy physics

    Mukhi, Sunil; Roy, Probir

    2009-01-01

    This non-technical review article is aimed at readers with some physics background, including beginning research students. It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the standard model, and proposals - including the radical paradigm of string theory - have been made to go beyond the standard model. The list of references provided here is not intended to properly credit all original work but rather to supply the reader with a few pointers to the literature, specifically highlighting work done by Indian authors. (author)

  13. Assessing high wind energy penetration

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  14. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  15. User-Location Aware Downlink Performance Analysis of LTE Networks

    Olaifa, John Olorunfemi

    2016-01-01

    In order to evaluate the performance of Long Term Evolution (LTE) networks, system-level simulation with detailed focus on network related effects such as mobility, scheduling and interference management must be emphasized. Existing studies evaluate user throughput and dimension LTE networks usually assuming uniform distribution of users within the cell. These studies report average user throughputs over the cell and the 5th percentile throughputs as estimates of the performance of the users ...

  16. Random access procedures and radio access network (RAN) overload control in standard and advanced long-term evolution (LTE and LTE-A) networks

    Kiilerich Pratas, Nuno; Thomsen, Henning; Popovski, Petar

    2015-01-01

    In this chapter, we describe and discuss the current LTE random access procedure and the Radio Access Network Load Control solution within LTE/LTE-A. We provide an overview of the several considered load control solutions and give a detailed description of the standardized Extended Access Class B...

  17. Duke University high energy physics

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and Χ meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report

  18. Location-assured, multifactor authentication on smartphones via LTE communication

    Kuseler, Torben; Lami, Ihsan A.; Al-Assam, Hisham

    2013-05-01

    With the added security provided by LTE, geographical location has become an important factor for authentication to enhance the security of remote client authentication during mCommerce applications using Smartphones. Tight combination of geographical location with classic authentication factors like PINs/Biometrics in a real-time, remote verification scheme over the LTE layer connection assures the authenticator about the client itself (via PIN/biometric) as well as the client's current location, thus defines the important aspects of "who", "when", and "where" of the authentication attempt without eaves dropping or man on the middle attacks. To securely integrate location as an authentication factor into the remote authentication scheme, client's location must be verified independently, i.e. the authenticator should not solely rely on the location determined on and reported by the client's Smartphone. The latest wireless data communication technology for mobile phones (4G LTE, Long-Term Evolution), recently being rolled out in various networks, can be employed to enhance this location-factor requirement of independent location verification. LTE's Control Plane LBS provisions, when integrated with user-based authentication and independent source of localisation factors ensures secure efficient, continuous location tracking of the Smartphone. This feature can be performed during normal operation of the LTE-based communication between client and network operator resulting in the authenticator being able to verify the client's claimed location more securely and accurately. Trials and experiments show that such algorithm implementation is viable for nowadays Smartphone-based banking via LTE communication.

  19. The high energy astronomy observatories

    Neighbors, A. K.; Doolittle, R. F.; Halpers, R. E.

    1977-01-01

    The forthcoming NASA project of orbiting High Energy Astronomy Observatories (HEAO's) designed to probe the universe by tracing celestial radiations and particles is outlined. Solutions to engineering problems concerning HEAO's which are integrated, yet built to function independently are discussed, including the onboard digital processor, mirror assembly and the thermal shield. The principle of maximal efficiency with minimal cost and the potential capability of the project to provide explanations to black holes, pulsars and gamma-ray bursts are also stressed. The first satellite is scheduled for launch in April 1977.

  20. Weak interactions at high energies

    Ellis, J.

    1978-08-01

    Review lectures are presented on the phenomenological implications of the modern spontaneously broken gauge theories of the weak and electromagnetic interactions, and some observations are made about which high energy experiments probe what aspects of gauge theories. Basic quantum chromodynamics phenomenology is covered including momentum dependent effective quark distributions, the transverse momentum cutoff, search for gluons as sources of hadron jets, the status and prospects for the spectroscopy of fundamental fermions and how fermions may be used to probe aspects of the weak and electromagnetic gauge theory, studies of intermediate vector bosons, and miscellaneous possibilities suggested by gauge theories from the Higgs bosons to speculations about proton decay. 187 references

  1. High temperature thermoelectric energy conversion

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  2. Investigation of Diagonal Antenna-Chassis Mode in Mobile Terminal LTE MIMO Antennas for Bandwidth Enhancement

    Zhang, Shuai; Zhao, Kun; Ying, Zhinong

    2015-01-01

    mechanism of the mismatch of these three bandwidth ranges is also explained. Furthermore, the diagonal antenna-chassis mode is also studied for MIMO elements in the adjacent and diagonal corner locations. As a practical example, a wideband collocated LTE MIMO antenna is proposed and measured. It covers......A diagonal antenna-chassis mode is investigated in long-term evolution multiple-input-multiple-output (LTE MIMO) antennas. The MIMO bandwidth is defined in this paper as the overlap range of the low-envelope correlation coefficient, high total efficiency, and -6-dB impedance matching bandwidths...... the bands of 740960 and 1700-2700 MHz, where the total efficiencies are better than -3.4 and -1.8 dB, with lower than 0.5 and 0.1, respectively. The measurements agree well with the simulations. Since the proposed method only needs to modify the excitation locations of the MIMO elements on the chassis...

  3. Body Loss Study of Beamforming Mode in LTE MIMO Mobile Terminals

    Zhang, Shuai; Zhao, Kun; Ying, Zhinong

    2015-01-01

    This paper mainly focuses on the investigation of the body loss of beamforming mode in LTE MIMO mobile terminals with CTIA user effects. The research of the body loss and radiation efficiency is carried out over different phase differences between two ports of each MIMO antenna. During studies......, four kinds of typical LTE MIMO antennas are used, namely, collocated ground free (GF), parallel GF, parallel on ground (OG) and orthogonal OG MIMO antennas, under four mobile terminal lengths at low and high frequencies. Two kinds of CTIA user effects are included in the research. From the studies......, the parallel GF MIMO antenna type exhibits the best beamforming performance in the four MIMO antenna types. In order to verify the simulations, envelope correlation coefficients of two MIMO antenna prototypes are measured. All the measured results agree well with the simulated....

  4. High energy beam manufacturing technologies

    Geskin, E.S.; Leu, M.C.

    1989-01-01

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  5. High energy polarized electron beams

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  6. Duke University High Energy Physics

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1993-03-01

    The research program of the Duke High Energy Physics Group is described in this Progress Report and a separate Proposal containing their plans for 1994. These two documents are supplemented by compilations of selected publications, thesis abstracts, and the curriculum vitae of the eleven Ph.D. physicists who are carrying out this research program. This Progress Report contains a review of the research which has been done over the first half (1992 and 1993 to date) of the current three-year DOE grant, plus some earlier research to establish a broader perspective of the research interests. High energy physics research at Duke has three components. The first, Task A, is based upon experiments carried out at Fermilab's Tevatron Collider. The group is finishing the analysis of data from their first collider experiment (E735), a study of inclusive particle production from bar p p collisions at √ bar s = 1.8 TeV. The second component of the research, Task B, deals primarily with heavy flavor physics. The third part of the research program, Task D, deals with preparation for research at the SSC. The authors have been active in the development of tracking detectors for the SSC since 1989, and are now concentrating on the design and construction of straw tube drift chambers for the solenoid detector

  7. Spinoff from high energy physics

    Hoffmann, Hans

    1994-01-01

    This year the CERN Courier is featuring the spinoff and technological benefits arising from research in fundamental physics. After initial illustrations in applied data processing sectors, this article by Hans Hoffman of CERN examines the rationale and underlying objectives of the 'new awareness' of the market value of basic science. He is the Chairman of a new panel on the subject set up recently by the International Committee for Future Accelerators (ICFA). The other members are: Oscar Barbalat of CERN, Hans Christian Dehne of DESY, Sin-ichi Kurakawa of KEK, Gennady Kulipanov of the Budker Institute (Novosibirsk), Anthony Montgomery, formerly of the SSC, A. H. Walenta of Siegen, Germany, and Zhongqiang Yu of IHEP Beijing. High energy physics - the quest to find and understand the structure of matter - is mainly seen as an essential part of human culture. However this basic science increasingly has to jostle for funding attention with other branches of science. Applied sciences aim for a rapid transformation of investment cash into viable market products. In times of economic difficulties this is attractive to funding agencies and governments, and economic usefulness and technological relevance also become criteria for a basic science like high energy physics.

  8. High energy physics and cosmology

    Silk, J.I.

    1991-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics of the evolution of the early universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including studies of the nature of dark matter and the signature of annihilations in the galactic halo, where the resulting γ-ray fluxes are potentially observable, and in stars, where stellar evolution may be affects. We will develop constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon, examining the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in both flat and curved cosmological models, and implications for observations of large-scale galaxy clustering and structure formation theories. We will also study spectral distortions in the microwave background radiation that are produced by exotic particle decays in the very early universe. We expect such astrophysical considerations to provide fruitful insights both into high-energy particle physics and into possible cosmological for the early universe

  9. Investigation of a new handover approach in LTE and WiMAX.

    Hindia, Mohammad Nour; Reza, Ahmed Wasif; Noordin, Kamarul Ariffin

    2014-01-01

    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.

  10. Non-LTE population probabilities of the excited ionic levels in a steady state plasma

    Salzmann, D.

    1982-01-01

    A Complete-Staedy-State (CSS) model for the charge state distribution and the ionic levels population probabilities of ions in hot non-LTE plasmas is described. The following properties of this model are described: (i) it is shown that CSS covers LTE and Corona Equilibrium (CE) in the high and low electron density regimes respectively, (ii) an explicit expression is found for the low electron density asymptotic behaviour of the population probabilities, (iii) it is shown that at intermediate density regions the CSS model predicts results similar to that of the Quasi-Steady-State model, (iv) new validity limits are derived for LTE and CE, (v) the population distribution of the excited levels is revised, (vi) an analytical expression is found for the high electron density asymptotic behaviour of the population distribution, (vii) the influence of the radiation reabsorption in a spherically symmetric CSS plasma is briefly described, and (viii) the effect of the inaccuracies in the rate-coefficients on the results of CSS calculations is evaluated. (author)

  11. The continuous UV flux of alpha lyrae: NON-LTE results

    Snijders, M.A.J.

    1977-01-01

    Non--LTE calculations for the ultraviolet C I and Si I continuous opacity show that LTE results overestimate the importance of these sources of opacity and underestimate the emergent flux in α Lyr. The largest errors occur between 1100 and 1160 A where the predicted flux in non--LTE is as much as 50 times larger than in LTE, in reasonable accord with Copernicus observations.The discrepancy between LTE models and observations has been interpreted by Praderie et al. to result from the existence of a chromosphere. Until a self--consistent non-LTE model atmosphere becomes available, such an interpretation is premature

  12. The continuous UV flux of Alpha Lyrae - Non-LTE results

    Snijders, M. A. J.

    1977-01-01

    Non-LTE calculations for the ultraviolet C I and Si I continuous opacity show that LTE results overestimate the importance of these sources of opacity and underestimate the emergent flux in Alpha Lyr. The largest errors occur between 1100 and 1160 A, where the predicted flux in non-LTE is as much as 50 times larger than in LTE, in reasonable accord with Copernicus observations. The discrepancy between LTE models and observations has been interpreted to result from the existence of a chromosphere. Until a self-consistent non-LTE model atmosphere becomes available, such an interpretation is premature.

  13. LTE/Wi-Fi Coexistence in 5 GHz ISM Spectrum: Issues, Solutions and Perspectives

    Abinader, Fuad; A. de Sousa Jr., Vicente; Choudhurry, Sayantan

    2018-01-01

    solutions is the aggregation of ISM unlicensed spectrum to licensed bands, using wireless networks defined by IEEE and 3GPP. While Wi-Fi networks are aggregated to LTE small cells via LTE/WLAN Aggregation (LWA), in proposals like LTE-U and LAA-LTE, the LTE air interface itself is used for transmission...... on the unlicensed band. Wi-Fi technology is widespread and also operates in the 5 GHz ISM spectrum bands, which may bring performance issues due to the coexistence of both technologies in the same spectrum band. This work is dedicated to the study of coexistence between LTE and Wi-Fi access systems operating in 5...

  14. Power Saving Scheduling Scheme for Internet of Things over LTE/LTE-Advanced Networks

    Kuo, Yen-Wei; Chou, Li-Der

    2015-01-01

    The devices of Internet of Things (IoT) will grow rapidly in the near future, and the power consumption and radio spectrum management will become the most critical issues in the IoT networks. Long Term Evolution (LTE) technology will become a promising technology used in IoT networks due to its flat architecture, all-IP network, and greater spectrum efficiency. The 3rd Generation Partnership Project (3GPP) specified the Discontinuous Reception (DRX) to reduce device’s power consumption. Howev...

  15. Experimental High Energy Physics Research

    Hohlmann, Marcus [Florida Inst. of Technology, Melbourne, FL (United States). Dept. of Physics and Space Sciences

    2016-01-13

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) for the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 Ge

  16. A non-LTE retrieval scheme for sounding the upper atmosphere of Mars in the infrared

    Lopez-Valverde, Miguel Angel; García-Comas, Maya; Funke, Bernd; Jimenez-Monferrer, Sergio; Lopez-Puertas, Manuel

    2016-04-01

    Several instruments on board Mars Express have been sounding the upper atmosphere of Mars systematically in a limb geometry in the IR part of the spectrum. Two of them in particular, OMEGA and PFS, performed emission measurements during daytime and detected the strongest IR bands of species like CO2 and CO (Piccialli et al, JGRE, submitted). Similarly on Venus, the instrument VIRTIS carried out observations of CO2 and CO bands at 2.7, 4.3 and 4.7 um at high altitudes (Gilli et al, JGRE, 2009). All these daylight atmospheric emissions respond to fluorescent situations, a case of non-local thermodynamic equilibrum conditions (non-LTE), well understood nowadays using comprehensive non-LTE theoretical models and tools (Lopez-Valverde et al., Planet. Space Sci., 2011). However, extensive exploitation of these emissions has only been done in optically thin conditions to date (Gilli et al, Icarus, 2015) or in a broad range of altitudes if in nadir geometry (Peralta et al, Apj, 2015). Within the H2020 project UPWARDS we aim at performing retrievals under non-LTE conditions including optically thick cases, like those of the CO2 and CO strongest bands during daytime in the upper atmosphere of Mars. Similar effort will also be applied eventually to Venus. We will present the non-LTE scheme used for such retrievals, based on similar efforts performed recently in studies of the Earth's upper atmosphere using data from the MIPAS instrument, on board Envisat (Funke et al., Atmos. Chem. Phys., 2009; Jurado-Navarro, PhD Thesis, Univ. Granada, 2015). Acknowledgemnt: This work is supported by the European Union's Horizon 2020 Programme under grant agreement UPWARDS-633127

  17. Optimized scheduling technique of null subcarriers for peak power control in 3GPP LTE downlink.

    Cho, Soobum; Park, Sang Kyu

    2014-01-01

    Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system.

  18. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  19. Wideband LTE power amplifier with integrated novel analog pre-distorter linearizer for mobile wireless communications.

    Eswaran Uthirajoo

    Full Text Available For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC power amplifier (PA is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR and error vector magnitude (EVM specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.

  20. Wideband LTE power amplifier with integrated novel analog pre-distorter linearizer for mobile wireless communications.

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.

  1. Wideband LTE Power Amplifier with Integrated Novel Analog Pre-Distorter Linearizer for Mobile Wireless Communications

    Uthirajoo, Eswaran; Ramiah, Harikrishnan; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA’s power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics. PMID:25033049

  2. Dynamics of high energy reactions

    Field, R.D.

    1979-01-01

    During last several years, a new framework to describe strong interaction physics has emerged, i.e. quantum chromodynamics (QCD). It is the simplest field theory which incorporates color-dependent force among quarks. This force is generated by the exchange of colored vector gluons coupled to the quarks in gauge-invariant manner. The theory is closely related to the most successful quantum field theory, QED, and the only but very important difference is the gauge group involved. Although the theory is well defined, precisely what it predicts is not yet clearly known. However, at very high energy or momentum transfer Q, the effective coupling between quarks and gluons decreases toward zero with increasing Q 2 , and the calculation of a process involving high Q 2 is possible by the use of perturbation theory. In this paper, many applications of QCD to the processes involving high momentum transfer are examined. The effective coupling resulting from strong interaction between quarks and gluons, the scale violation in deep inelastic lepton scattering, large mass muon pair production, quark and gluon fragmentation functions, large transverse momentum meson and jet production in hadron-hadron collision, and the search for three-jet events are discussed. (Kako, I.)

  3. High-energy particle diffraction

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  4. Diffraction of high energy electrons

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  5. Potential of dynamic spectrum allocation in LTE macro networks

    Hoffmann, H.; Ramachandra, P.; Kovács, I. Z.; Jorguseski, L.; Gunnarsson, F.; Kürner, T.

    2015-11-01

    In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic (i.e. the requested traffic from the users) increases the LTE deployment evolves with macro cells expanded with additional capacity boosting LTE carriers in higher frequency bands complemented with micro or small cells in traffic hotspot areas. For MNOs it is crucial to use the LTE spectrum assets, as well as the installed network infrastructure, in the most cost efficient way. The dynamic spectrum allocation (DSA) aims at (de)activating the available LTE frequency carriers according to the temporal and spatial traffic variations in order to increase the overall LTE system performance in terms of total network capacity by reducing the interference. This paper evaluates the DSA potential of achieving the envisaged performance improvement and identifying in which system and traffic conditions the DSA should be deployed. A self-optimised network (SON) DSA algorithm is also proposed and evaluated. The evaluations have been carried out in a hexagonal and a realistic site-specific urban macro layout assuming a central traffic hotspot area surrounded with an area of lower traffic with a total size of approximately 8 × 8 km2. The results show that up to 47 % and up to 40 % possible DSA gains are achievable with regards to the carried system load (i.e. used resources) for homogenous traffic distribution with hexagonal layout and for realistic site-specific urban macro layout, respectively. The SON DSA algorithm evaluation in a realistic site-specific urban macro cell deployment scenario including realistic non-uniform spatial traffic distribution shows insignificant cell throughput (i.e. served traffic) performance gains. Nevertheless, in the SON DSA investigations, a gain of up

  6. Non-LTE effects in Al I lines

    Menzhevitski, V. S.; Shimansky, V. V.; Shimanskaya, N. N.

    2012-07-01

    We present the theoretical analysis of the Al I line formation in the spectra of late-type stars ignoring the assumption of local thermodynamic equilibrium (LTE). The calculations were based on the 39-level aluminum atom model for one-dimensional hydrostatic stellar atmosphere models with the parameters: T eff from 4000 to 9000 K, log g = 0.0-4.5, and metallicity [ A] = 0.0;-1.0;-2.0;-3.0;-4.0. The aluminum atom model and the method of calculations were tested by the study of line profiles in the solar spectrum. We refined the oscillator strengths and Van-der-Vaals broadening constants C 6 of the investigated transitions. We conclude that the Al I atom is in the overionization state: the 3 p level is underpopulated in the line formation region. This leads to the line weakening, as compared with the LTE results. The overionization effect becomes more pronounced with increasing temperature and decreasing metallicity. We show that the use of various atomic data (ionization cross-sections) for the low levels of Al I does not change the behavior of non-LTE deviations, whereas the value of these deviations varies essentially. For nine selected Al I lines we calculated the grids of theoretical non-LTE corrections (Δ X NLTE = log ɛ NLTE - log ɛ LTE) to the Al abundances determinedwith the LTE assumption. The non-LTE corrections are positive and significant for the stars with temperatures T eff > 6000 K. These corrections weakly depend on log g, and increase with declining stellar metallicity.

  7. A New Non-LTE Model based on Super Configurations

    Bar-Shalom, A.; Klapisch, M.

    1996-11-01

    Non-LTE effects are vital for the simulation of radiation in hot plasmas involving even medium Z materials. However, the exceedingly large number of atomic energy levels forbids using a detailed collisional radiative model on-line in the hydrodynamic simulations. For this purpose, greatly simplified models are required. We implemented recently Busquet's model(M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form (M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995), and poster at this meeting.). This model is quick and the results make sense, but in the absence of precisely defined experiments, it is difficult to asses its accuracy. We present here a new collisional radiative model based on superconfigurations( A. Bar-Shalom, J. Oreg, J. F. Seely, U. Feldman, C. M. Brown, B. A. Hammel, R. W. Lee and C. A. Back, Phys. Rev. E, 52, 6686 (1995).), intended to be a benchmark for approximate models used in hydro-codes. It uses accurate rates from the HULLAC Code. Results for various elements will be presented and compared with RADIOM.

  8. Caging in high energy reactions

    Ache, H.J.

    1977-01-01

    The concept of caging high energy reactions is considered. It is noted that there is no easy and unambiguous way, short of a complete and very tedious product and mechanistic analysis, which is feasible only for very few systems, to determine the contribution made by caging. It is emphasized that some products resulting from the hot reaction with a certain substrate may be formed via caging while others are not. In research on the mechanism of caging the results of Roots work on the reactions of hot 18 F with the CF 3 CH 3 system seem to provide evidence for caging, with 18 F being the caged moiety, thus proceeding via a radical--radical recombination mechanism. Their work with H 2 S additive also seems to indicate that scavenging via hydrogen abstraction from H 2 S to form does not interfere with the radical--radical recombination consistent with Bunkers molecular approach to explain the cage effects. In other research a series of observations resulting from stereochemical and combined stereochemical density variation techniques seem to favor a caged-complex. It is clear that a more conclusive answer can only be reached by more systematic studies, utilizing the whole range of nuclear reactions such as (n,2n), (n,γ) and E.C. processes in mechanistically well defined systems to elucidate the effect of variations in the recoil energies, by carrying out studies in different solvents or host substances to assess the effect of the physical parameters, such as molecule size and intermolecular interactions on the escape probability or caging efficiencies

  9. High energy physics and cosmology

    Silk, J.I.; Davis, M.

    1989-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale--free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry-breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large-scale structures whose dynamics are dominated by weakly interacting particles such as axions, massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study of the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  10. [High energy physics and cosmology

    Silk, J.I.; Davis, M.

    1988-01-01

    This research will focus on the implications of recent theories and experiments in high energy physics for the evolution of the early Universe, and on the constraints that cosmological considerations can place on such theories. Several problems are under investigation, including the development of constraints on the inflationary predictions of scale-free primordial fluctuations in a universe at critical closure density by studying their linear and non-linear evolution after they re-enter the particle horizon. We will examine the observable imprint of primordial density fluctuations on the cosmic microwave background radiation in curved cosmological models. Most astronomical evidence points to an open universe: one of our goals is to reconcile this conclusion with the particle physics input. We will investigate the response of the matter distribution to a network of cosmic strings produced during an early symmetry--breaking transition, and compute the resulting cosmic microwave background anisotropies. We will simulate the formation of large--scale structures whose dynamics are dominated by weakly interacting particles such as axions massive neutrinos or photinos in order to model the formation of galaxies, galaxy clusters and superclusters. We will study the distortions in the microwave background radiation, both spectral and angular, that are produced by ionized gas associated with forming clusters and groups of galaxies. We will also study constraints on exotic cooling mechanisms involving axions and majorons set by stellar evolution and the energy input into low mass stars by cold dark matter annihilation in galactic nuclei. We will compute the detailed gamma ray spectrum predicted by various cold dark matter candidates undergoing annihilation in the galactic halo and bulge

  11. Quantum Sensing for High Energy Physics

    Ahmed, Zeeshan; et al.

    2018-03-29

    Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.

  12. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  13. Lasers and future high energy colliders

    Parsa, Z.

    1998-02-01

    Future high energy colliders, directions for particle physics and relationship to new technology such as lasers are discussed. Experimental approaches to explore New Physics with emphasis on the utility of high energy colliders are also discussed

  14. Voice over LTE via Generic access (Volga) as a possible solution of mobile networks transformation

    Stepaniuk, Oleg

    2010-01-01

    This paper is focused on Voice over LTE via Generic Access Network, which concept is to connect the already existing Mobile Switching Centers to the LTE network via a gateway supporting 2G or 3G voice environment.

  15. Hadron dynamics at high energies

    Storrow, J.K.

    1977-01-01

    The nine lectures give a very brief introduction to hadron dynamics at high energies. They concentrate on basic concepts such as Regge poles, duality and geometrical ideas, and simple applications of these ideas to the problem of understanding data. To some extent two body phenomenology is emphasized at the expense of multiparticle final states and when the latter have been considered they have concentrated on inclusive reactions. One lecture discussed data on 2-2 reactions in order to provide the motivation for Regge pole theory, then two lectures are devoted to basic concepts. Then duality is introduced and shown to provide reasonable restrictions on a pole model. A lecture is then devoted to discussing geometrical ideas i.e. the t-dependence of data is looked at from an s-channel point of view. The section on two-body phenomenology is then concluded by discussing applications of the above ideas to two reactions-pion-nucleon scattering and np charge exchange scattering. The remaining three lectures are devoted to multiparticle reactions. Exclusive reactions are considered briefly and then the remainder of the course is concerned with inclusive reactions. The concepts of scaling and limiting fragmentation are discussed and Mueller's generalised optical theorem introduced and then applied in various kinematic limits. (author)

  16. Recent developments in the super transition array model for spectral simulation of LTE plasmas

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1992-01-01

    Recently developed sub-picosecond pulse lasers have been used to create hot, near solid density plasmas. Since these plasmas are nearly in local thermodynamic equilibrium (LTE), their emission spectra involve a huge number of populated configurations. A typical spectrum is a combination of many unresolved clusters of emission, each containing an immense number of overlapping, unresolvable bound-bound and bound-free transitions. Under LTE, or near LTE conditions, traditional detailed configuration or detailed term spectroscopic models are not capable of handling the vast number of transitions involved. The average atom (AA) model, on the other hand, accounts for all relevant transitions, but in an oversimplified fashion that ignores all spectral structure. The Super Transition Array (STA) model, which has been developed in recent years, combines the simplicity and comprehensiveness of the AA model with the accuracy of detailed term accounting. The resolvable structure of spectral clusters is revealed by successively increasing the number of distinct STA's, until convergence is attained. The limit of this procedure is a detailed unresolved transition array (UTA) spectrum, with a term-broadened line for each accessible configuration-to-configuration transition, weighted by the relevant Boltzman population. In practice, this UTA spectrum is actually obtained using only a few thousand to tens of thousands of STA's (as opposed, typically, to billions of UTAs). The central result of STA theory is a set of formulas for the moments (total intensity, average transition energy, variance) of an STA. In calculating the moments, detailed relativistic first order quantum transition energies and probabilities are used. The energy appearing in the Boltzman factor associated with each level in a superconfiguration is the zero order result corrected by a superconfiguration averaged first order correction. Examples and application to recent measurements are presented

  17. Superconducting magnets in high energy physics

    Prodell, A.G.

    1978-01-01

    The applications of superconducting magnets in high energy physics in the last ten years have made feasible developments which are vital to high energy research. These developments include high magnetic field, large volume detectors, such as bubble chambers, required for effective resolution of high energy particle trajectories, particle beam transport magnets, and superconducting focusing and bending magnets for the very high energy accelerators and storage rings needed to pursue the study of interactions between elementary particles. The acceptance of superconductivity as a proven technology in high energy physics was reinforced by the recognition that the existing large accelerators using copper-iron magnets had reached practical limits in terms of magnetic field intensity, cost, space, and energy usage, and that large-volume, high-field, copper-iron magnets were not economically feasible. Some of the superconducting magnets and associated systems being used in and being developed for high energy physics are described

  18. Performance analysis of IMS based LTE and WIMAX integration architectures

    A. Bagubali

    2016-12-01

    Full Text Available In the current networking field many research works are going on regarding the integration of different wireless technologies, with the aim of providing uninterrupted connectivity to the user anywhere, with high data rates due to increased demand. However, the number of objects like smart devices, industrial machines, smart homes, connected by wireless interface is dramatically increasing due to the evolution of cloud computing and internet of things technology. This Paper begins with the challenges involved in such integrations and then explains the role of different couplings and different architectures. This paper also gives further improvement in the LTE and Wimax integration architectures to provide seamless vertical handover and flexible quality of service for supporting voice, video, multimedia services over IP network and mobility management with the help of IMS networks. Evaluation of various parameters like handover delay, cost of signalling, packet loss,, is done and the performance of the interworking architecture is analysed from the simulation results. Finally, it concludes that the cross layer scenario is better than the non cross layer scenario.

  19. Improvements to the RADIOM non-LTE model

    Busquet, M.; Colombant, D.; Klapisch, M.; Fyfe, D.; Gardner, J.

    2009-12-01

    In 1993, we proposed the RADIOM model [M. Busquet, Phys. Fluids 85 (1993) 4191] where an ionization temperature T z is used to derive non-LTE properties from LTE data. T z is obtained from an "extended Saha equation" where unbalanced transitions, like radiative decay, give the non-LTE behavior. Since then, major improvements have been made. T z has been shown to be more than a heuristic value, but describes the actual distribution of excited and ionized states and can be understood as an "effective temperature". Therefore we complement the extended Saha equation by introducing explicitly the auto-ionization/dielectronic capture. Also we use the SCROLL model to benchmark the computed values of T z.

  20. LTE HetNet Mobility Performance Through Emulation with Commercial Smartphones

    Jensen, Anders Riis; Pedersen, Klaus I.; Lauridsen, Mads

    2014-01-01

    In this paper we introduce a laboratory emulation setup for evaluation of Long Term Evolution (LTE) mobility performance in a co-channel heterogeneous network (HetNet). The setup consists of two eNodeB emulators, signal faders and release 9 LTE User Equipment (UE). It is shown how the LTE HetNet ...

  1. High energy physics and grid computing

    Yu Chuansong

    2004-01-01

    The status of the new generation computing environment of the high energy physics experiments is introduced briefly in this paper. The development of the high energy physics experiments and the new computing requirements by the experiments are presented. The blueprint of the new generation computing environment of the LHC experiments, the history of the Grid computing, the R and D status of the high energy physics grid computing technology, the network bandwidth needed by the high energy physics grid and its development are described. The grid computing research in Chinese high energy physics community is introduced at last. (authors)

  2. Optimized green operation of LTE networks in the presence of multiple electricity providers

    Ghazzai, Hakim

    2012-12-01

    Energy efficiency aspects in cellular networks can significantly contribute to the reduction of greenhouse gas emissions and help to save the environment. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Besides, introducing renewable energies as alternative power sources becomes a real challenge to network operators. In this paper, we propose a method that reduces the energy consumption of BSs by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from different retailers (Renewable energy and electricity retailers). We formulate an optimization problem that leads to the maximization of the profit of a Long-Term Evolution (LTE) cellular operator, and at the same time to the minimization of CO2 emissions in green wireless cellular networks without affecting the desired Quality of Service. © 2012 IEEE.

  3. Optimized green operation of LTE networks in the presence of multiple electricity providers

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2012-01-01

    Energy efficiency aspects in cellular networks can significantly contribute to the reduction of greenhouse gas emissions and help to save the environment. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Besides, introducing renewable energies as alternative power sources becomes a real challenge to network operators. In this paper, we propose a method that reduces the energy consumption of BSs by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from different retailers (Renewable energy and electricity retailers). We formulate an optimization problem that leads to the maximization of the profit of a Long-Term Evolution (LTE) cellular operator, and at the same time to the minimization of CO2 emissions in green wireless cellular networks without affecting the desired Quality of Service. © 2012 IEEE.

  4. Synchronized RACH-less Handover Solution for LTE Heterogeneous Networks

    Barbera, Simone; Pedersen, Klaus I.; Rosa, Claudio

    2015-01-01

    reductions in the data connectivity interruption time at each handover, no need for random access in the target cell, and reduced overall handover execution time. Laboratory handover measurement results, using commercial LTE equipment, are presented and analyzed to justify the latency benefits......Some of the most recent LTE features require synchronous base stations, and time-synchronized base stations also offer opportunities for improved handover mechanisms by introducing a new synchronized RACH-less handover scheme. The synchronized RACH-less handover solution offers significant...

  5. Power-Consumption Measurements for LTE User Equipment

    Lauridsen, Mads

    wireless communications test set and the Agilent N6705B DC power analyzer to establish a power consumption model for LTE user equipment (UE). The model is useful when you need to examine the UE battery life in system-level simulations. We will explain how the Agilent equipment can be used in manual tests......, but we do not discuss how to make automated tests (for example, using VEE software). In this application note, we analyze smartphones adhering to the 3GPP LTE standard [1]....

  6. LTE modem power consumption, SAR and RF signal strength emulation

    Musiige, Deogratius; Vincent, Laulagnet; Anton, François

    2012-01-01

    This paper presents a new methodology for emulating the LTE modem power consumption, emitted SAR and RF signal strength when transmitting an LTE signal. The inputs of the methodology are: modem logical/protocol commands, time advance, near-field specifier, and antenna characteristics. The power...... emulation model(s) are computed by a two layer 451 neural network based on physical power measurements. SAR is emulated by polynomial interpolation models based on FDTD simulations. The accuracies of the mathematical function approximations for the emulation models of power and SAR are 5.19% and 3...

  7. High density energy storage capacitor

    Whitham, K.; Howland, M.M.; Hutzler, J.R.

    1979-01-01

    The Nova laser system will use 130 MJ of capacitive energy storage and have a peak power capability of 250,000 MW. This capacitor bank is a significant portion of the laser cost and requires a large portion of the physical facilities. In order to reduce the cost and volume required by the bank, the Laser Fusion Program funded contracts with three energy storage capacitor producers: Aerovox, G.E., and Maxwell Laboratories, to develop higher energy density, lower cost energy storage capacitors. This paper describes the designs which resulted from the Aerovox development contract, and specifically addresses the design and initial life testing of a 12.5 kJ, 22 kV capacitor with a density of 4.2 J/in 3 and a projected cost in the range of 5 cents per joule

  8. States of high energy density

    Murray, M.

    1988-02-01

    The transverse energy, E/sub tau/ spectra for O 16 and S 32 incident for various elements at 200 GeVnucleon are shown. The target and projectile dependencies of the data are discussed. The energy density achieved is estimated. For O 16 on Tungsten the multiplicity spectrum is also presented as well as the pseudorapidity spectra as a function of the transverse energy. The multiplicity cross section dσdN as measured in the backward hemisphere (0.9 < /eta/ < 2.9/ is found to be very similar in shape to the transverse energy distribution dσdE/tau/ reflecting the particular geometry of nucleus nucleus nucleus collisions. The dependence on the atomic mass of the target, A/sub tau/ and projectile A/sub p/ is not what one would expect from naive considerations

  9. High energy neutrinos: sources and fluxes

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE 19716 (United States)

    2006-05-15

    We discuss briefly the potential sources of high energy astrophysical neutrinos and show estimates of the neutrino fluxes that they can produce. A special attention is paid to the connection between the highest energy cosmic rays and astrophysical neutrinos.

  10. Acoustic waves in the solar atmosphere. VII - Non-grey, non-LTE H(-) models

    Schmitz, F.; Ulmschneider, P.; Kalkofen, W.

    1985-01-01

    The propagation and shock formation of radiatively damped acoustic waves in the solar chromosphere are studied under the assumption that H(-) is the only absorber; the opacity is non-grey. Deviations from local thermodynamic equilibrium (LTE) are permitted. The results of numerical simulations show the depth dependence of the heating by the acoustic waves to be insensitive to the mean state of the atmosphere. After the waves have developed into shocks, their energy flux decays exponentially with a constant damping length of about 1.4 times the pressure scale height, independent of initial flux and wave period. Departures from LTE have a strong influence on the mean temperature structure in dynamical chromosphere models; this is even more pronounced in models with reduced particle density - simulating conditions in magnetic flux tubes - which show significantly increased temperatures in response to mechanical heating. When the energy dissipation of the waves is sufficiently large to dissociate most of the H(-) ions, a strong temperature rise is found that is reminiscent of the temperature structure in the transition zone between chromosphere and corona; the energy flux remaining in the waves then drives mass motions.

  11. Investigation on IMCP based clustering in LTE-M communication for smart metering applications

    Kartik Vishal Deshpande

    2017-06-01

    Full Text Available Machine to Machine (M2M is foreseen as an emerging technology for smart metering applications where devices communicate seamlessly for information transfer. The M2M communication makes use of long term evolution (LTE as its backbone network and it results in long-term evolution for machine type communication (LTE-M network. As huge number of M2M devices is to be handled by single eNB (evolved Node B, clustering is exploited for efficient processing of the network. This paper investigates the proposed Improved M2M Clustering Process (IMCP based clustering technique and it is compared with two well-known clustering algorithms, namely, Low Energy Adaptive Clustering Hierarchical (LEACH and Energy Aware Multihop Multipath Hierarchical (EAMMH techniques. Further, the IMCP algorithm is analyzed with two-tier and three-tier M2M systems for various mobility conditions. The proposed IMCP algorithm improves the last node death by 63.15% and 51.61% as compared to LEACH and EAMMH, respectively. Further, the average energy of each node in IMCP is increased by 89.85% and 81.15%, as compared to LEACH and EAMMH, respectively.

  12. Multiplicities in high energy interactions

    Derrick, M.

    1984-01-01

    Charged particle multiplicities in hadronic collision have been measured for all energies up to √s = 540 GeV in the center of mass. Similar measurements in e + e - annihilation cover the much smaller range - up to √s = 40 GeV. Data are also available from deep inelastic neutrino scattering up to √s approx. 10 GeV. The experiments measure the mean charged multiplicity , the rapidity density at y = O, and the distributions in prong number. The mean number of photons associated with the events can be used to measure the π 0 and eta 0 multiplicities. Some information is also available on the charged pion, kaon, and nucleon fractions as well as the K 0 and Λ 0 rates and for the higher energy data, the identically equal fraction. We review this data and consider the implications of extrapolations to SSC energies. 13 references

  13. High education and nuclear energy

    Ghitescu, Petre; Prisecaru, Ilie; Stefanescu, Petre

    1998-01-01

    The Faculty of Energy of the University 'Politecnica' in Bucharest is the only faculty in Romania in the field of nuclear energy education. With an experience of more than 29 years, the Faculty of Energy offers the major 'Nuclear Power Plants', which students graduate after a 5-year education as engineers in the Nuclear Power Plant major. Among the principal objectives of the development and reshape of the Romanian education system was mentioned the upgrading of organizational forms by introducing the transfer credit system, and starting in the fall '97 by accrediting Radioprotection and Nuclear Safety Master education. As a result of co-operation and assistance offered by TEMPUS-SENECA program, the new major is shaped and endowed with a modern curriculum harmonized with UE and IAEA requirements and a modern and performing laboratory. This way the Romanian higher education offers a fully correct and concordant structure with UE countries education. (authors)

  14. High energy particle accelerators as radiation Sources

    Abdelaziz, M E [National Center for Nuclear Safety and Radiation Vontrol, Atomic Energy Authority, Cairo (Egypt)

    1997-12-31

    Small accelerators in the energy range of few million electron volts are usually used as radiation sources for various applications, like radiotherapy, food irradiation, radiation sterilization and in other industrial applications. High energy accelerators with energies reaching billions of electron volts also find wide field of applications as radiation sources. Synchrotrons with high energy range have unique features as radiation sources. This review presents a synopsis of cyclic accelerators with description of phase stability principle of high energy accelerators with emphasis on synchrotrons. Properties of synchrotron radiation are given together with their applications in basic and applied research. 13 figs.,1 tab.

  15. Moderate energy ions for high energy density physics experiments

    Grisham, L.R.

    2004-01-01

    This paper gives the results of a preliminary exploration of whether moderate energy ions (≅0.3-3 MeV/amu) could be useful as modest-cost drivers for high energy density physics experiments. It is found that if the target thickness is chosen so that the ion beam enters and then leaves the target in the vicinity of the peak of the dE/dX (stopping power) curve, high uniformity of energy deposition may be achievable while also maximizing the amount of energy per beam particle deposited within the target

  16. Uplink scheduling and adjacent-channel coupling loss analysis for TD-LTE deployment.

    Yeo, Woon-Young; Moon, Sung Ho; Kim, Jae-Hoon

    2014-01-01

    TD-LTE, one of the two duplexing modes in LTE, operates in unpaired spectrum and has the advantages of TDD-based technologies. It is expected that TD-LTE will be more rapidly deployed in near future and most of WiMax operators will upgrade their networks to TD-LTE gradually. Before completely upgrading to TD-LTE, WiMax may coexist with TD-LTE in an adjacent frequency band. In addition, multiple TD-LTE operators may deploy their networks in adjacent bands. When more than one TDD network operates in adjacent frequency bands, severe interference may happen due to adjacent channel interference (ACI) and unsynchronized operations. In this paper, coexistence issues between TD-LTE and other systems are analyzed and coexistence requirements are provided. This paper has three research objectives. First, frame synchronization between TD-LTE and WiMax is discussed by investigating possible combinations of TD-LTE and WiMax configurations. Second, an uplink scheduling algorithm is proposed to utilize a leakage pattern of ACI in synchronized operations. Third, minimum requirements for coexistence in unsynchronized operations are analyzed by introducing a concept of adjacent-channel coupling loss. From the analysis and simulation results, we can see that coexistence of TD-LTE with other TDD systems is feasible if the two networks are synchronized. For the unsynchronized case, some special cell-site engineering techniques may be required to reduce the ACI.

  17. Harvard University High Energy Physics progress report

    1992-01-01

    The principal goals of this work are to carry out forefront programs in high energy physics research and to provide first rate educational opportunities for students. The experimental program supported through HEPL is carried out at the major accelerator centers in the world and addresses some of the most important questions in high energy physics. The program is based at Harvard's High Energy Physics Laboratory, which has offices, computing facilities, and engineering support, and both electronics and machine shops

  18. Split School of High Energy Physics 2015

    2015-01-01

    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  19. High-energy electron diffraction and microscopy

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  20. Particle accelerators and lasers high energy sources

    Watteau, J.P.

    1985-04-01

    Particle accelerators and lasers are to-day precious devices for physicist and engineer. Their performance and scope do not stop growing. Producing thin beams of high energy particles or photons, they are able to be very high energy sources which interact strongly with matter. Numerous applications use them: research, industry, communication, medicine, agroalimentary, defence, and soon. In this note, their operation principles are described and some examples of their use as high energy sources are given [fr

  1. Cloudified Mobility and Bandwidth Prediction in Virtualized LTE Networks

    Zhao, Zongliang; Karimzadeh Motallebi Azar, Morteza; Braun, Torsten; Pras, Aiko; van den Berg, Hans Leo

    Network Function Virtualization involves implementing network functions (e.g., virtualized LTE component) in software that can run on a range of industry standard server hardware, and can be migrated or instantiated on demand. A prediction service hosted on cloud infrastructures enables consumers to

  2. Modeling and Simulation of Downlink Subcarrier Allocation Schemes in LTE

    Popovska Avramova, Andrijana; Yan, Ying; Dittmann, Lars

    2012-01-01

    The efficient utilization of the air interface in the LTE standard is achieved through a combination of subcarrier allocation schemes, adaptive modulation and coding, and transmission power allotment. The scheduler in the base station has a major role in achieving the required QoS and the overall...

  3. MIH based mobility for TETRA-LTE network

    Popovska Avramova, Andrijana

    2013-01-01

    TETRA is a digital trunked mobile radio standard, devel- oped to meet the needs of traditional Professional Mobile Radio user or-ganizations. As TETRA does not provide for broadband services, many companies are looking into integration of LTE and TETRA in order to provide support for real time mu...

  4. Heterogeneous LTE-Advanced Network Expansion for 1000x Capacity

    Hu, Liang; Sanchez, Maria Laura Luque; Maternia, Michal

    2013-01-01

    this paper studies LTE (Long-Term Evolution)-Advanced heterogeneous network expansion in a dense urban environment for a 1000 times capacity increase and a 10 times increase in minimum user data rate requirements. The radio network capacity enhancement via outdoor and indoor small cell densificat...

  5. Performance of Uplink Carrier Aggregation in LTE-Advanced Systems

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2010-01-01

    Carrier aggregation (CA) has been proposed to aggregate two or more component carriers (CCs) to support a much wider transmission bandwidth for LTE-Advanced systems. With carrier aggregation, it is possible to schedule a user equipment (UE) on multiple component carriers simultaneously. In this p...

  6. TD-LTE maritime trunking communication system based on TVWS

    Ren, Chunxiang; Chen, Xing; Li, Wanchao; Chen, Baodan

    2014-10-01

    This paper collects the measurement results of 470 MHZ-960MHZ spectrum in the coastal areas, and analyzes the characteristics of TV broadcast spectrum occupancy in the measurement region. Moreover, this article proposes construct the TD-LTE maritime trunking communication system using geolocation database, television database (TVDB) and cognitive radio (CR) technology.

  7. RRM Strategies in LTE&WiMAX Interworking System

    Zakrzewska, Anna; Ruepp, Sarah Renée; Berger, Michael Stübert

    , that could be applied in 4G systems (LTE interworking with WiMAX is considered). Furthermore, it will also discuss the Radio Resource Management (RRM) problem addressing the challenges of designing a RRM system for such a multi-RAT wireless environment. Different functionalities and possibilities...

  8. Renewable energy at high altitudes

    Beltramo, R.; Cuzzolin, B.

    2000-01-01

    Improving environmental performance by paying greater attention to the environment factor is becoming the prime objective of many companies and organizations in general. But not theirs alone. Even the tourism sector is making a number of efforts in this direction. This is the case, for example, of the Regina Margherita Refuge located on Point Gnifetti on the Monte Rosa massif, where a research project called Crest was conducted. This was a study on the feasibility of meeting the refuge's energy sources, that is, by using a photovoltaic or hybrid (wind-based and photovoltaic) energy production system. A plant thus able to exploit the landscape and meteorological characteristics typical of a mountain refuge, saving money and reducing the pollution load [it

  9. High-energy cosmic rays

    Cronin, James Watson

    1996-01-01

    Recently two cosmic rays with energy in excess of 2 1020 eV have been recorded. These are some 108 times more energetic than the protons produced by accelerators on earth. There is no credible understanding of the mechanism of acceleration by known a Because of the short mean free path in the cosmic background radiation they must come from nearby distances on a cosmological scale (< 50 Mpc). Their magnetic rigidity suggests that they should point to their source. Lectures will cover the present available data on the highest energy cosmic rays, their detection, possible acceleration mechanisms, their propagation in the galaxy and in extra galactic space and design of new detectors where simulations of air show ers play an important role.

  10. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    Colvin, Jeffrey D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies, the spectral energy range where current x-ray sources are weak. All project goals were met.

  11. High Energy Astrophysics Science Archive Research Center

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  12. High Energy Solid State Laser Research Facility

    Federal Laboratory Consortium — A suite of laboratories with advanced spectroscopic and laser equipment, this facility develops materials and techniques for advanced solid state high energy lasers....

  13. High energy physics and cloud computing

    Cheng Yaodong; Liu Baoxu; Sun Gongxing; Chen Gang

    2011-01-01

    High Energy Physics (HEP) has been a strong promoter of computing technology, for example WWW (World Wide Web) and the grid computing. In the new era of cloud computing, HEP has still a strong demand, and major international high energy physics laboratories have launched a number of projects to research on cloud computing technologies and applications. It describes the current developments in cloud computing and its applications in high energy physics. Some ongoing projects in the institutes of high energy physics, Chinese Academy of Sciences, including cloud storage, virtual computing clusters, and BESⅢ elastic cloud, are also described briefly in the paper. (authors)

  14. High Average Power, High Energy Short Pulse Fiber Laser System

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  15. URBox : High tech energy and informal housing

    Cuperus, Y.J.; Smets, D.

    2011-01-01

    This paper reports on the URBox concept encompassing the high tech end of solar energy and informal low cost and affordable housing. It aims to contribute to solving the global energy crisis by building solar energy settlements in deserts where land is affordable and sunshine in abundance. First the

  16. Responding to high energy prices: energy management services

    Raynolds, M.

    2001-01-01

    Rapid growth in the number and sophistication of energy management companies has been observed in the wake of rising energy prices. These companies offer energy-efficiency consulting services to utilities, government and industry with the promise of improved cost efficiency, marketplace competitiveness and environmental commitments. The environmental benefits result from the reduction in emissions and pollutants associated with power production and natural gas used for space heating. In general, the stock in trade of these energy management companies is the energy audit involving evaluation of existing equipment in buildings and facilities and the resulting recommendations to install energy-efficient equipment such as lighting retrofits, boiler replacement, chiller replacement, variable speed drives, high-efficiency motors, improved insulation and weather proofing, water heaters and piping. The North American market for energy management services was estimated in 1997 at $208 billion (rising to $350 billion by 2004). Current market penetration is less than two per cent

  17. Performance Evaluation of Multicast Video Distribution using LTE-A in Vehicular Environments

    Thota, Jayashree; Bulut, Berna; Doufexi, Angela; Armour, Simon; Nix, Andrew

    2017-01-01

    Application Layer Forward Error Correction (AL-FEC) based on Raptor codes has been employed in Multimedia Broadcast/Multicast Services (MBMS) to improve reliability. This paper considers a cross-layer system based on the latest Raptor Q codes for transmitting high data rate video. Multiple Input Multiple Output (MIMO) channels in a realistic outdoor environment for a user moving at 50kmph in an LTE-A system is considered. A link adaptation model with optimized cross-layer parameters is propos...

  18. Next Phase of Mobile Communications – LTE: The End of Fixed Broadband?

    Eylert, Bernd; Eras, Martin; Zeh, Thomas

    2008-01-01

    With the introduction of the Internet in the early 90th years of the last century, broadband demand has increased tremendously. As ISDN was the modern technology at that time, which has had its correspondence in the mobile world in the GSM technology, DSL and its evolution has its correspondence in UMTS/3G and its evolution into HSPA (High Speed Packet Access) and soon in LTE (Long Term Evolution). With the globalisation of our industries business has changed during the last 15 years. Employe...

  19. Non-LTE considerations in spectral diagnostics of thermal transport and implosion experiments

    Epstein, R.; Skupsky, S.; Delettrez, J.; Yaakobi, B.

    1984-01-01

    Recent thermal-transport and target-implosion experiments have used the emission of radiation from highly-ionized ions to signal the advance of laser-driven heat fronts and to mark the trajectories and stagnation points of imploding shells. We examine the results of such experiments with particular attention given to non-LTE effects of non-Maxwellian electrons and of finite ionization times on the populations of signature-emitting atomic species and on the formation of signature spectra and x-ray images in these experiments

  20. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Back, C.A.; Feldman, U.; Weaver, J.L.; Seely, J.F.; Constantin, C.; Holland, G.; Lee, R.W.; Chung, H.-K.; Scott, H.A.

    2006-01-01

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, λ/δλ of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics

  1. Absolute, time-resolved emission of non-LTE L-shell spectra from Ti-doped aerogels

    Back, C.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)]. E-mail: tinaback@llnl.gov; Feldman, U. [Artep Inc. 2922 Excelsior Ct., Ellicott City, MD 21042 (United States); Weaver, J.L. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Seely, J.F. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Constantin, C. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Holland, G. [Naval Research Laboratory, 4555 Overlook Drive, SW, Washington DC 20375 (United States); Lee, R.W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Chung, H.-K. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States); Scott, H.A. [Lawrence Livermore National Laboratory, P.O. Box 808, L-21, Livermore, CA 94551 (United States)

    2006-05-15

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {lambda}/{delta}{lambda} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  2. High-Energy Neutrino Interactions

    2002-01-01

    This experiment studies neutrino interactions in iron at the highest available energies using the narrow-band neutrino beam N3 and the wide-band neutrino beam N1. The basis of the detector is a massive target-calorimeter in which the energy deposited by a neutrino (or antineutrino) is measured by electronic techniques and the momentum of outgoing muons is determined by magnetic deflection. The detector is constructed in the form of a 20 m long iron-cored toroidal magnet, composed of modules of length 70~cm and 90~cm, and of 3.75~m diameter. Drift chambers placed in between each module measure the trajectory of muons from the neutrino interactions. The modules are of three types. The first ten modules are constructed of 2.5~cm iron plates with 20~scintillator planes inserted between the plates. The next five modules are constructed of 5~cm plates with 15~planes of scintillator and the last six modules are constructed of 15~cm plates with 5~planes of scintillators. The total mass of the detector is @=~1400 tons...

  3. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

    Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

    2015-01-01

    Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system

  4. Interferometry of high energy nuclear collisions

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  5. High energy physics in the United States

    Month, M.

    1985-10-16

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range. (LEW)

  6. High energy physics in the United States

    Month, M.

    1985-01-01

    The US program in high energy physics from 1985 to 1995 is reviewed. The program depends primarily upon work at the national accelerator centers, but includes a modest but diversified nonaccelerator program. Involvement of universities is described. International cooperation in high energy physics is discussed, including the European, Japanese, USSR, and the People's Republic of China's programs. Finally, new facilities needed by the US high energy physics program are discussed, with particular emphasis given to a Superconducting Super Collider for achieving ever higher energies in the 20 TeV range

  7. A unified treatment of high energy interactions

    Drescher, H.J.; Werner, K.; Ostapchenko, S.; Centre National de la Recherche Scientifique, 44 - Nantes

    1999-01-01

    It is well known that high energy interactions as different as electron-positron annihilation, deep inelastic lepton-nucleon scattering, proton-proton interactions, and nucleus-nucleus collisions have many features in common. Based upon this observation, a model for all these interactions is constructed which relies on the fundamental hypothesis that the behavior of high energy interactions is universal. (author)

  8. CAMAC high energy physics electronics hardware

    Kolpakov, I.F.

    1977-01-01

    CAMAC hardware for high energy physics large spectrometers and control systems is reviewed as is the development of CAMAC modules at the High Energy Laboratory, JINR (Dubna). The total number of crates used at the Laboratory is 179. The number of CAMAC modules of 120 different types exceeds 1700. The principles of organization and the structure of developed CAMAC systems are described. (author)

  9. Expectations for ultra-high energy interactions

    Feynman, R.P.

    1978-01-01

    Strong interactions at ultra-high energies are discussed with emphasis on the hadrons produced in high energy collisions. Evidence is considered that quantum chromodynamics might be the right theory, and also some estimates are given of quantum chromodynamics asymptotic-freedom phenomena, the work under discussion being very preliminary. 6 references

  10. New aspects of high energy density plasma

    Hotta, Eiki

    2005-10-01

    The papers presented at the symposium on 'New aspects of high energy density plasma' held at National Institute for Fusion Science are collected in this proceedings. The papers reflect the present status and recent progress in the experiments and theoretical works on high energy density plasma produced by pulsed power technology. The 13 of the presented papers are indexed individually. (J.P.N.)

  11. High energy physics at UCR

    Kernan, A.; Shen, B.C.

    1997-07-01

    The hadron collider group is studying proton-antiproton interactions at the world`s highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t{bar t} decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-{mu}-{tau} universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices.

  12. High energy physics at UCR

    Kernan, A.; Shen, B.C.

    1997-01-01

    The hadron collider group is studying proton-antiproton interactions at the world's highest collision energy 2 TeV. Data-taking with the D0 detector is in progress at Fermilab and the authors have begun the search for the top quark. S. Wimpenny is coordinating the effort to detect t bar t decaying to two leptons, the most readily identifiable channel. At UC Riverside design and testing for a silicon tracker for the D0 upgrade is in progress; a parallel development for the SDC detector at SSC is also underway. The major group effort of the lepton group has been devoted to the OPAL experiment at LEP. They will continue to focus on data-taking to improve the quality and quantity of their data sample. A large number of papers have been published based on approximately 500,000 events taken so far. The authors will concentrate on physics analysis which provides stringent tests of the Standard Model. The authors are continuing participation in the RD5 experiment at the SPS to study muon triggering and tracking. The results of this experiment will provide critical input for the design of the Compact Muon Solenoid experiment being proposed for the LHC. The theory group has been working on problems concerning the possible vilation of e-μ-τ universality, effective Lagrangians, neutrino physics, as well as quark and lepton mass matrices

  13. High energy density lithium batteries

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  14. Remarks on High Energy Evolution

    Kovner, Alex; Lublinsky, Michael

    2005-01-01

    We make several remarks on the B-JIMWLK hierarchy. First, we present a simple and instructive derivation of this equation by considering an arbitrary projectile wave function with small number of valence gluons. We also generalize the equation by including corrections which incorporate effects of high density in the projectile wave function. Second, we systematically derive the dipole model approximation to the hierarchy. We show that in the dipole approximation the hierarchy has a simplifyin...

  15. Ultra high energy gamma-ray astronomy

    Wdowczyk, J.

    1986-01-01

    The experimental data on ultra high energy γ-rays are reviewed and a comparison of the properties of photon and proton initiated shower is made. The consequences of the existence of the strong ultra high energy γ-ray sources for other observations is analysed and possible mechanisms for the production of ultra high energy γ-rays in the sources are discussed. It is demonstrated that if the γ-rays are produced via cosmic ray interactions the sources have to produce very high fluxes of cosmic ray particles. In fact it is possible that a small number of such sources can supply the whole Galactic cosmic ray flux

  16. High- and middle-energy geothermics

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  17. High energy hadron spin-flip amplitude

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  18. Individual Dosimetry for High Energy Radiation Fields

    Spurny, F.

    1999-01-01

    The exposure of individuals on board aircraft increased interest in individual dosimetry in high energy radiation fields. These fields, both in the case of cosmic rays as primary radiation and at high energy particle accelerators are complex, with a large diversity of particle types, their energies, and linear energy transfer (LET). Several already existing individual dosemeters have been tested in such fields. For the component with high LET (mostly neutrons) etched track detectors were tested with and without fissile radiators, nuclear emulsions, bubble detectors for both types available and an albedo dosemeter. Individual dosimetry for the low LET component has been performed with thermoluminescent detectors (TLDs), photographic film dosemeters and two types of electronic individual dosemeters. It was found that individual dosimetry for the low LET component was satisfactory with the dosemeters tested. As far as the high LET component is concerned, there are problems with both the sensitivity and the energy response. (author)

  19. Intercomparison of high energy neutron personnel dosimeters

    McDonald, J.C.; Akabani, G.; Loesch, R.M.

    1993-03-01

    An intercomparison of high-energy neutron personnel dosimeters was performed to evaluate the uniformity of the response characteristics of typical neutron dosimeters presently in use at US Department of Energy (DOE) accelerator facilities. It was necessary to perform an intercomparison because there are no national or international standards for high-energy neutron dosimetry. The testing that is presently under way for the Department of Energy Laboratory Accreditation Program (DOELAP) is limited to the use of neutron sources that range in energy from about 1 keV to 2 MeV. Therefore, the high-energy neutron dosimeters presently in use at DOE accelerator facilities are not being tested effectively. This intercomparison employed neutrons produced by the 9 Be(p,n) 9 B interaction at the University of Washington cyclotron, using 50-MeV protons. The resulting neutron energy spectrum extended to a maximum of approximately 50-MeV, with a mean energy of about 20-MeV. Intercomparison results for currently used dosimeters, including Nuclear Type A (NTA) film, thermoluminescent dosimeter (TLD)-albedo, and track-etch dosimeters (TEDs), indicated a wide variation in response to identical doses of high-energy neutrons. Results of this study will be discussed along with a description of plans for future work

  20. Practical neutron dosimetry at high energies

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently

  1. Computing in high-energy physics

    Mount, Richard P.

    2016-01-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Lastly, I describe recent developments aimed at improving the overall coherence of high-energy physics software

  2. Computing in high-energy physics

    Mount, Richard P.

    2016-04-01

    I present a very personalized journey through more than three decades of computing for experimental high-energy physics, pointing out the enduring lessons that I learned. This is followed by a vision of how the computing environment will evolve in the coming ten years and the technical challenges that this will bring. I then address the scale and cost of high-energy physics software and examine the many current and future challenges, particularly those of management, funding and software-lifecycle management. Finally, I describe recent developments aimed at improving the overall coherence of high-energy physics software.

  3. CERN and the high energy frontier

    Tsesmelis Emmanuel

    2014-04-01

    Full Text Available This paper presents the particle physics programme at CERN at the high-energy frontier. Starting from the key open questions in particle physics and the large-scale science facilities existing at CERN, concentrating on the Large Hadron Collider(LHC, this paper goes on to present future possibilities for global projects in high energy physics. The paper presents options for future colliders, all being within the framework of the recently updated European Strategy for Particle Physics, and all of which have a unique value to add to experimental particle physics. The paper concludes by outlining key messages for the way forward for high-energy physics research.

  4. On the Future High Energy Colliders

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  5. Biological effects of high-energy radiation

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  6. New accelerators in high-energy physics

    Blewett, J.P.

    1982-01-01

    First, I should like to mention a few new ideas that have appeared during the last few years in the accelerator field. A couple are of importance in the design of injectors, usually linear accelerators, for high-energy machines. Then I shall review some of the somewhat sensational accelerator projects, now in operation, under construction or just being proposed. Finally, I propose to mention a few applications of high-energy accelerators in fields other than high-energy physics. I realize that this is a digression from my title but I hope that you will find it interesting

  7. Evaluating TCMS Train-to-Ground communication performances based on the LTE technology and discreet event simulations

    Bouaziz, Maha; Yan, Ying; Kassab, Mohamed

    2018-01-01

    is shared between the train and different passengers. The simulation is based on the discrete-events network simulator Riverbed Modeler. Next, second step focusses on a co-simulation testbed, to evaluate performances with real traffic based on Hardware-In-The-Loop and OpenAirInterface modules. Preliminary...... (Long Term Evolution) network as an alternative communication technology, instead of GSM-R (Global System for Mobile communications-Railway) because of some capacity and capability limits. First step, a pure simulation is used to evaluate the network load for a high-speed scenario, when the LTE network...... simulation and co-simulation results show that LTE provides good performance for the TCMS traffic exchange in terms of packet delay and data integrity...

  8. High energy physics. Ultimate structure of matter and energy

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  9. Analisis Kelayakan Implementasi Teknologi LTE 1.8 GHz Bagi Operator Seluler di Indonesia [Feasibility Analysis of LTE 1.8 GHz for Mobile Operators in Indonesia

    Sri Ariyanti

    2015-06-01

    Full Text Available Peningkatan kebutuhan layanan data mendorong operator telekomunikasi berusaha mengimplementasikan jaringan akses broadband yang lebih handal.  Teknologi LTE merupakan salah satu teknologi dengan kecepatan mencapai tiga kali dibanding teknologi HSDPA, sehingga diharapkan dapat memenuhi kebutuhan pelanggan data mobile. Refarming frekuensi 1.8 GHz  untuk penerapan teknologi LTE memberikan efisiensi karena tidak perlu membayar BHP lagi untuk menyewa frekuensi baru. Teknologi 2G GSM selama ini juga semakin ditinggalkan, masyarakat di daerah perkotaan cenderung lebih banyak menggunakan layanan data.  Sebelum diterapkannya teknologi LTE pada frekuensi 1.8 GHz perlu adanya kajian untuk mengetahui kelayakan teknologi LTE pada frekuensi 1.8 GHz. Penelitian ini bertujuan untuk melakukan cost-benefit analysis implementasi LTE pada frekuensi 1.8 GHz.  Metode penelitian menggunakan pendekatan kualitataif yang didukung dengan data kuantitatif.  Hasil penelitian menunjukkan bahwa minimal bandiwdth yang diperlukan agar implementasi LTE layak digunakan adalah 15 MHz.  Meskipun tanpa Global Frequency Returning, penggunaan bandwidth 10 MHz tidak layak digunakan untuk implementasi LTE.      *****The incresing of data demand drives mobile operators to implement more reliable broadband access network. LTE technology has downlink peak rate up to three times than HSDPA,  hence it may fulfill the mobile data user requirement. Frequency 1.8 GHz refarming can be implemented to provide efficiency because They do not need to pay licence fee for leasing new frequency. GSM technology will be abandoned since it is not growing anymore. Besides that, dense urban users tend to use data mobile.  Before implementing LTE technology  on 1.8 GHz frequency, It is necessary to analysis the feasibility such technology. This research used qualitative method supported by quantitative  approach.  The result of this research showed that minimum bandwidth to implement 1.8 GHz LTE

  10. Resilience of LTE networks against smart jamming attacks

    Aziz, Farhan M.

    2014-12-08

    Commercial LTE networks are being studied for mission-critical applications, such as public safety and smart grid communications. In this paper, LTE networks are shown vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers, who may employ simple narrowband jamming techniques to attack without any need to hack the network or its users. We modeled the utilities of jamming and anti-jamming actions played by the jammer and the network under the framework of single-shot and repeated Bayesian games. In a single-shot game formulation the only Nash Equilibria (NE) are pure strategy equilibria at which network utility is severely compromised. We propose a repeated-game learning and strategy algorithm for the network that outperforms single-shot games by a significant margin. Furthermore, all of our proposed actions and algorithms can be implemented with current technology.

  11. Using LTE Networks for UAV Command and Control Link

    Nguyen, Huan Cong; Amorim, Rafhael Medeiros de; Wigard, Jeroen

    2017-01-01

    In this paper we investigate the ability of Long-Term Evolution (LTE) network to provide coverage for Unmanned Aerial Vehicles (UAVs) in a rural area, in particular for the Command and Control (C2) downlink. The study takes into consideration the dependency of the large-scale path loss on the hei......In this paper we investigate the ability of Long-Term Evolution (LTE) network to provide coverage for Unmanned Aerial Vehicles (UAVs) in a rural area, in particular for the Command and Control (C2) downlink. The study takes into consideration the dependency of the large-scale path loss...... on the height of the UAV, which is derived from actual measurements, and a real-world cellular network layout and configuration. The results indicate that interference is the dominant factor limiting the cellular coverage for UAVs in the downlink: outage level increases from 4.2% at 1.5 m height to 51.7% at 120...

  12. Capacity planning for Carrier Ethernet LTE backhaul networks

    Checko, Aleksandra; Ellegaard, Lars; Berger, Michael Stübert

    2012-01-01

    With the introduction of LTE networks operators need to plan a new, IP-based mobile backhaul. In this paper, we provide recommendation on dimensioning LTE backhaul networks links using three methods: delay-, dimensioning formula- and overbooking factor-based. Results are obtained from OPNET simul...... and verified. Simulation in this work proves that Carrier Ethernet, one of the candidate technologies for mobile backhaul, protects the network from users that want to flood the network with their data and manages to keep the delay experienced by other users low....... simulations with traffic model based on traffic forecast for 2015. A delay-based approach gives recommended bandwidth for expected number of users. A dimensioning formula is proposed to calculate link bandwidth when mean value of aggregated traffic in the network is known. An overbooking factor is calculated...

  13. High to ultra-high power electrical energy storage.

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  14. High energy physics and nuclear structure

    Measday, D.F.; Thomas, A.W.

    1980-01-01

    These proceedings contain the papers presented at the named conference. These concern eletromagnetic interactions, weak interactions, strong interactions at intermediate energy, pion reactions, proton reactions, strong interactions at high energy, as well as new facilities and applications. See hints under the relevant topics. (HSI)

  15. Ultra high-energy cosmic ray composition

    Longley, N.P.

    1993-01-01

    The Soudan 2 surface-underground cosmic ray experiment can simultaneously measure surface shower size, underground muon multiplicity, and underground muon separation for ultra high energy cosmic ray showers. These measurements are sensitive to the primary composition. Analysis for energies from 10 1 to 10 4 TeV favors a light flux consisting of predominantly H and He nuclei

  16. Pi-nucleon phenomenology at high energies

    Kogitz, S.

    1973-01-01

    A brief introduction to the phenomenology of strong interactions at high energy is presented. This includes discussion of the topics including absorption, finite energy sum rules, and duality. The application of these ideas to two-particle inelastic reactions is examined. (author)

  17. Experiments on very high energy heavy ions

    Willis, W.J.

    1981-01-01

    In this paper I describe experimental techniques which could be used to investigate central collision of very high energy heavy ions. For my purposes, the energy range is defined by the number of pions produced, Nsub(π) >> 100, and consequently Nsub(π) >> Nsub(nucleon). In this regime we may expect that new phenomena will appear. (orig.)

  18. Energy confinement of high-density tokamaks

    Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.

    1977-01-01

    Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the

  19. Geometrical scaling in high energy hadron collisions

    Kundrat, V.; Lokajicek, M.V.

    1984-06-01

    The concept of geometrical scaling for high energy elastic hadron scattering is analyzed and its basic equations are solved in a consistent way. It is shown that they are applicable to a rather small interval of momentum transfers, e.g. maximally for |t| 2 for pp scattering at the ISR energies. (author)

  20. Development of a Buried Layer Platform at the OMEGA laser to Study Coronal (nonLTE) Plasmas

    Schneider, M. B.; Marley, E. V.; Brown, G. V.; Heeter, R. F.; Barrios, M. A.; Foord, M. E.; Gray, W. J.; Jarrott, L. C.; Liedahl, D. A.; Mauche, C. W.; Widmann, K.

    2016-10-01

    A buried layer platform is being developed at the OMEGA laser to study the radiative properties of coronal (non-LTE) plasmas (ne few 1021 /cm3 , Te 1 - 2 keV) of mid to high Z materials. In the current study, the target was a 200 μm square with equal atomic mixes of gold/iron/vanadium in the center of a 600 μm diameter, 10 μm thick beryllium tamper. The thickness of the buried layer was either 1200 A or 1800 A. Lasers heat the target from both sides for up to 4 ns. The size of the microdot vs time was measured with x-ray imaging (face-on) and x- ray spectroscopy (side-on). The radiant x-ray power was measured with a low-resolution absolutely calibrated x-ray spectrometer (DANTE). The temperature was measured from the Fe and V helium-beta complexes. The use of these measurements to deduce emissivity of the target in the 2-3 keV x-ray range and improvements for future experiments are discussed. This work was performed under the auspices of the U.S. Department of Energy by LLNS, LLC, under Contract No. DE-AC52-07NA27344.

  1. Novel Handover Optimization with a Coordinated Contiguous Carrier Aggregation Deployment Scenario in LTE-Advanced Systems

    Ibraheem Shayea

    2016-01-01

    Full Text Available The carrier aggregation (CA technique and Handover Parameters Optimization (HPO function have been introduced in LTE-Advanced systems to enhance system performance in terms of throughput, coverage area, and connection stability and to reduce management complexity. Although LTE-Advanced has benefited from the CA technique, the low spectral efficiency and high ping-pong effect with high outage probabilities in conventional Carrier Aggregation Deployment Scenarios (CADSs have become major challenges for cell edge User Equipment (UE. Also, the existing HPO algorithms are not optimal for selecting the appropriate handover control parameters (HCPs. This paper proposes two solutions by deploying a Coordinated Contiguous-CADS (CC-CADS and a Novel Handover Parameters Optimization algorithm that is based on the Weight Performance Function (NHPO-WPF. The CC-CADS uses two contiguous component carriers (CCs that have two different beam directions. The NHPO-WPF automatically adjusts the HCPs based on the Weight Performance Function (WPF, which is evaluated as a function of the Signal-to-Interference Noise Ratio (SINR, cell load, and UE’s velocity. Simulation results show that the CC-CADS and the NHPO-WPF algorithm provide significant enhancements in system performance over that of conventional CADSs and HPO algorithms from the literature, respectively. The integration of both solutions achieves even better performance than scenarios in which each solution is considered independently.

  2. Low energy current accumulator for high-energy proton rings

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  3. Design, deployment and performance of 4G-LTE networks a practical approach

    ElNashar, Ayman; Sherif, Mahmoud

    2014-01-01

    This book provides an insight into the key practical aspects and best practice of 4G-LTE network design, performance, and deployment Design, Deployment and Performance of 4G-LTE Networks addresses the key practical aspects and best practice of 4G networks design, performance, and deployment. In addition, the book focuses on the end-to-end aspects of the LTE network architecture and different deployment scenarios of commercial LTE networks. It describes the air interface of LTE focusing on the access stratum protocol layers: PDCP, RLC, MAC, and Physical Layer. The air interface described in this book covers the concepts of LTE frame structure, downlink and uplink scheduling, and detailed illustrations of the data flow across the protocol layers. It describes the details of the optimization process including performance measurements and troubleshooting mechanisms in addition to demonstrating common issues and case studies based on actual field results. The book provides detailed performance analysis of key fe...

  4. Laser fusion and high energy density science

    Kodama, Ryosuke

    2005-01-01

    High-power laser technology is now opening a variety of new fields of science and technology using laser-produced plasmas. The laser plasma is now recognized as one of the important tools for the investigation and application of matter under extreme conditions, which is called high energy density science. This chapter shows a variety of applications of laser-produced plasmas as high energy density science. One of the more attractive industrial and science applications is the generation of intense pulse-radiation sources, such as the generation of electro-magnetic waves in the ranges of EUV (Extreme Ultra Violet) to gamma rays and laser acceleration of charged particles. The laser plasma is used as an energy converter in this regime. The fundamental science applications of high energy density physics are shown by introducing laboratory astrophysics, the equation of state of high pressure matter, including warm dense matter and nuclear science. Other applications are also presented, such as femto-second laser propulsion and light guiding. Finally, a new systematization is proposed to explore the possibility of the high energy density plasma application, which is called high energy plasma photonics''. This is also exploration of the boundary regions between laser technology and beam optics based on plasma physics. (author)

  5. Traffic Dimensioning and Performance Modeling of 4G LTE Networks

    Ouyang, Ye

    2011-01-01

    Rapid changes in mobile techniques have always been evolutionary, and the deployment of 4G Long Term Evolution (LTE) networks will be the same. It will be another transition from Third Generation (3G) to Fourth Generation (4G) over a period of several years, as is the case still with the transition from Second Generation (2G) to 3G. As a result,…

  6. Physics at high energy photon photon colliders

    Chanowitz, M.S.

    1994-06-01

    I review the physic prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking

  7. Organisation of high-energy physics

    Kluyver, J C

    1981-01-01

    Tabulates details of major accelerator laboratories in western Europe, USA, and USSR, and describes the various organisations concerned with high-energy physics. The Dutch organisation uses the NIKHEF laboratory in Amsterdam and cooperates with CERN. (0 refs).

  8. New informative techniques in high energy physics

    Klimenko, S.V.; Ukhov, V.I.

    1992-01-01

    A number of new informative techniques applied to high energy physics are considered. These are the object-oriented programming, systems integration, UIMS, visualisation, expert systems, neural networks. 100 refs

  9. Multiplicity distributions in high energy collisions

    Giovannini, A.; Lupia, S.; Ugoccioni, R.

    1992-01-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.)

  10. Multiplicity distributions in high energy collisions

    Giovannini, A.; Lupia, S.; Ugoccioni, R. (Dipt. di Fisica Teorica, Univ. Turin (Italy) INFN, Turin (Italy))

    1992-03-01

    We discuss the important phases in the evolution of our understanding of multiplicity distributions in high energy collisions with particular emphasis to intermittent behavior and shoulder structure problem. (orig.).

  11. The evolution of high energy accelerators

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community

  12. High Energy Density Polymer Film Capacitors

    Boufelfel, Ali

    2006-01-01

    High-energy-density capacitors that are compact and light-weight are extremely valuable in a number of critical DoD systems that include portable field equipment, pulsed lasers, detection equipment...

  13. Research in High Energy Physics. Final report

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  14. Studies In Theoretical High Energy Particle Physics

    Keung, Wai Yee [Univ. of Illinois, Chicago, IL (United States)

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  15. Proceedings of progress in high energy physics

    Pauchy Hwang, W.Y.; Lee, S.C.; Lee, C.E.; Ernst, D.J.

    1991-01-01

    This book contains the proceedings of progress in high energy physics. Topics covered include: Particle Phenomology; Particles and Fields; Physics in 2 and 1 Dimensions; Cosmology, Astrophysics, and Gravitation; Some Perspertives on the Future of Particle Physics

  16. Elementary particle physics and high energy phenomena

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP)

  17. Scaling violations at ultra-high energies

    Tung, W.K.

    1979-01-01

    The paper discusses some of the features of high energy lepton-hadron scattering, including the observed (Bjorken) scaling behavior. The cross-sections where all hadron final states are summed over, are examined and the general formulas for the differential cross-section are examined. The subjects of scaling, breaking and phenomenological consequences are studied, and a list of what ultra-high energy neutrino physics can teach QCD is given

  18. Elementary particle physics and high energy phenomena

    Barker, A.R.; Cumalat, J.P.; de Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    This report discusses the following research in high energy physics: the properties of the z neutral boson with the SLD detector; the research and development program for the SDC muon detector; the fixed-target k-decay experiments; the Rocky Mountain Consortium for HEP; high energy photoproduction of states containing heavy quarks; and electron-positron physics with the CLEO II and Mark II detectors. (LSP).

  19. Non-LTE models of Titan's upper atmosphere

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  20. Improvements to Busquet's Non LTE algorithm in NRL's Hydro code

    Klapisch, M.; Colombant, D.

    1996-11-01

    Implementation of the Non LTE model RADIOM (M. Busquet, Phys. Fluids B, 5, 4191 (1993)) in NRL's RAD2D Hydro code in conservative form was reported previously(M. Klapisch et al., Bull. Am. Phys. Soc., 40, 1806 (1995)).While the results were satisfactory, the algorithm was slow and not always converging. We describe here modifications that address the latter two shortcomings. This method is quicker and more stable than the original. It also gives information about the validity of the fitting. It turns out that the number and distribution of groups in the multigroup diffusion opacity tables - a basis for the computation of radiation effects in the ionization balance in RADIOM- has a large influence on the robustness of the algorithm. These modifications give insight about the algorithm, and allow to check that the obtained average charge state is the true average. In addition, code optimization resulted in greatly reduced computing time: The ratio of Non LTE to LTE computing times being now between 1.5 and 2.

  1. Research of high energy radioactivity identification detector

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  2. High-energy cosmic-ray acceleration

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  3. Analysis of the LTE Access Reservation Protocol for Real-Time Traffic

    Thomsen, Henning; Kiilerich Pratas, Nuno; Stefanovic, Cedomir

    2013-01-01

    LTE is increasingly seen as a system for serving real-time Machine-to-Machine (M2M) communication needs. The asynchronous M2M user access in LTE is obtained through a two-phase access reservation protocol (contention and data phase). Existing analysis related to these protocols is based...... of the two-phase LTE reservation protocol and asses its performance, when assumptions (1) and (2) do not hold....

  4. Analysis And Augmentation Of Timing Advance Based Geolocation In Lte Cellular Networks

    2016-12-01

    measurements to validate TA-based positioning approaches in LTE . Their approach did not, however, focus on characterizing the TA. Rather, similar to...UE will measure the time difference of arrival of the LTE Positioning Reference Signal (PRS) from multiple eNBs. This information is then sent to a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA DISSERTATION ANALYSIS AND AUGMENTATION OF TIMING ADVANCE-BASED GEOLOCATION IN LTE CELLULAR NETWORKS by

  5. Performance of multi-rate equalizer with lte standard turbo code

    Du, D. (Dongyang)

    2014-01-01

    Abstract In the uplink channel of the 3GPP long term evolution (LTE) and LTE-Advanced (LTE-A) systems, signal carrier frequency-division multiplexing access (SC-FDMA) transmission scheme is employed instead of orthogonal frequency-division multiplexing (OFDM) to reduce the peak-to-average power ratio (PAPR). However, compared to OFDM, SC-FDMA has lower channel throughput, since it suffers from inter-symbol interference (ISI...

  6. Report on high energy neutron dosimetry workshop

    Alvar, K.R.; Gavron, A.

    1993-01-01

    The workshop was called to assess the performance of neutron dosimetry per the responses from ten DOE accelerator facilities to an Office of Energy Research questionnaire regarding implementation of a personnel dosimetry requirement in DRAFT DOE 5480.ACC, ''Safety of Accelerator Facilities''. The goals of the workshop were to assess the state of dosimetry at high energy accelerators and if such dosimetry requires improvement, to reach consensus on how to proceed with such improvements. There were 22 attendees, from DOE Programs and contract facilities, DOE, Office of Energy Research (ER), Office of Environmental Safety and Health (EH), Office of Fusion Energy, and the DOE high energy accelerator facilities. A list of attendees and the meeting agenda are attached. Copies of the presentations are also attached

  7. Ultra-High-Energy Cosmic Rays

    Dova, M.T.

    2015-05-22

    The origin of the ultra high energy cosmic rays (UHECR) with energies above E > 10 17 eV, is still unknown. The discovery of their sources will reveal the engines of the most energetic astrophysical accelerators in the universe. This is a written version of a series of lectures devoted to UHECR at the 2013 CERN-Latin-American School of High-Energy Physics. We present anintroduction to acceleration mechanisms of charged particles to the highest energies in astrophysical objects, their propagation from the sources to Earth, and the experimental techniques for their detection. We also discuss some of the relevant observational results from Telescope Array and Pierre Auger Observatory. These experiments deal with particle interactions at energies orders of magnitude higher than achieved in terrestrial accelerators.

  8. Cosmic physics: the high energy frontier

    Stecker, F W

    2003-01-01

    Cosmic rays have been observed up to energies 10 8 times larger than those of the best particle accelerators. Studies of astrophysical particles (hadrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. Thus, the cosmic high energy frontier is the nexus to new particle physics. This overview discusses recent advances being made in the physics and astrophysics of cosmic rays and cosmic γ-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. These topics touch on questions of grand unification, violations of Lorentz invariance as well as Planck scale physics and quantum gravity. (topical review)

  9. Collisional-radiative switching - A powerful technique for converging non-LTE calculations

    Hummer, D. G.; Voels, S. A.

    1988-01-01

    A very simple technique has been developed to converge statistical equilibrium and model atmospheric calculations in extreme non-LTE conditions when the usual iterative methods fail to converge from an LTE starting model. The proposed technique is based on a smooth transition from a collision-dominated LTE situation to the desired non-LTE conditions in which radiation dominates, at least in the most important transitions. The proposed approach was used to successfully compute stellar models with He abundances of 0.20, 0.30, and 0.50; Teff = 30,000 K, and log g = 2.9.

  10. Understanding LTE with Matlab from mathematical modeling to simulation and prototyping

    Zarrinkoub, Houman

    2014-01-01

    An introduction to technical details related to the Physical Layer of the LTE standard with MATLAB® The LTE (Long Term Evolution) and LTE-Advanced are among the latest mobile communications standards, designed to realize the dream of a truly global, fast, all-IP-based, secure broadband mobile access technology. This book examines the Physical Layer (PHY) of the LTE standards by incorporating three conceptual elements: an overview of the theory behind key enabling technologies; a concise discussion regarding standard specifications; and the MATLAB® algorithms needed to simulate the standard.

  11. Target simulations with SCROLL non-LTE opacity/emissivity databases.

    Klapisch, M.; Colombant, D.; Bar-Shalom, A.

    2001-10-01

    SCROLL[1], a collisional radiative model and code based on superconfigurations, is able to compute high Z non-LTE opacities and emissivities accurately and efficiently. It was used to create opacity/emissivity databases for Pd, Lu, Au on a 50 temperatures/80 densities grid. Incident radiation field was shown to have no effect on opacities in the case of interest, and was not taken into account. These databases were introduced in the hydrocode FAST1D[2]. SCROLL also gives an ionization temperature Tz which is used in FAST1D to obtain non-LTE corrections to the equation of state. Results will be compared to those of a previous version using Busquet’s algorithm[3]. Work supported by USDOE under a contract with NRL. [1] A. Bar-Shalom, J. Oreg and M. Klapisch, J. Quant. Spectrosc. Radiat. Transfer, 65, 43(2000). [2] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, C. J. Pawley, S. E. Bodner, S. P. Obenschain, V. Serlin and Y. Aglitskiy, Phys. Plasmas, 5, 1935 (1998). [3] M. Busquet, Phys. Fluids B, 5, 4191 (1993).

  12. A Multistage Decision-Feedback Receiver Design for LTE Uplink in Mobile Time-Variant Environments

    Juinn-Horng Deng

    2012-01-01

    Full Text Available Single-carrier-frequency division multiple access (SC-FDMA has recently become the preferred uplink transmission scheme in long-term evolution (LTE systems. Similar to orthogonal frequency division multiple access (OFDMA, SC-FDMA is highly sensitive to frequency offsets caused by oscillator inaccuracies and Doppler spread, which lead to intercarrier interference (ICI. This work proposes a multistage decision-feedback structure to mitigate the ICI effect and enhance system performance in time-variant environments. Based on the block-type pilot arrangement of the LTE uplink type 1 frame structure, the time-domain least squares (TDLS method and polynomial-based curve-fitting algorithm are employed for channel estimation. Instead of using a conventional equalizer, this work uses a group frequency-domain equalizer (GFDE to reduce computational complexity. Furthermore, this work utilizes a dual iterative structure of group parallel interference cancellation (GPIC and frequency-domain group parallel interference cancellation (FPIC to mitigate the ICI effect. Finally, to optimize system performance, this work applies a novel error-correction scheme. Simulation results demonstrate the bit error rate (BER performance is markedly superior to that of the conventional full-size receiver based on minimum mean square error (MMSE. This structure performs well and is a flexible choice in mobile environments using the SC-FDMA scheme.

  13. High energy physics advisory panel's subpanel on vision for the future of high-energy physics

    1994-05-01

    This report was requested by the Secretary of Energy to (1) define a long-term program for pursuing the most important high-energy physics goals since the termination of the Superconducting Super Collider (SSC) project, (2) assess the current US high-energy physics program, and (3) make recommendations regarding the future of the field. Subjects on which recommendations were sought and which the report addresses were: high-energy physics funding priorities; facilitating international collaboration for future construction of large high-energy physics facilities; optimizing uses of the investment made in the SSC; how to encourage displaced scientists and engineers to remain in high-energy physics and to attract young scientists to enter the field in the future. The report includes a description of the state of high-energy physics research in the context of history, a summary of the SSC project, and documentation of the report's own origins and development

  14. Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method

    Hubeny, I.; Lanz, T.

    1995-01-01

    A new munerical method for computing non-Local Thermodynamic Equilibrium (non-LTE) model stellar atmospheres is presented. The method, called the hybird complete linearization/accelerated lambda iretation (CL/ALI) method, combines advantages of both its constituents. Its rate of convergence is virtually as high as for the standard CL method, while the computer time per iteration is almost as low as for the standard ALI method. The method is formulated as the standard complete lineariation, the only difference being that the radiation intensity at selected frequency points is not explicity linearized; instead, it is treated by means of the ALI approach. The scheme offers a wide spectrum of options, ranging from the full CL to the full ALI method. We deonstrate that the method works optimally if the majority of frequency points are treated in the ALI mode, while the radiation intensity at a few (typically two to 30) frequency points is explicity linearized. We show how this method can be applied to calculate metal line-blanketed non-LTE model atmospheres, by using the idea of 'superlevels' and 'superlines' introduced originally by Anderson (1989). We calculate several illustrative models taking into accont several tens of thosands of lines of Fe III to Fe IV and show that the hybrid CL/ALI method provides a robust method for calculating non-LTE line-blanketed model atmospheres for a wide range of stellar parameters. The results for individual stellar types will be presented in subsequent papers in this series.

  15. The high energy accelerator program in Japan

    Ozaki, S.

    1987-01-01

    The author observes that in order to survey the intentions of Japanese high energy physicists and to make a recommendation to the High Energy Committee on future plans for high energy physics in Japan, including accelerators after TRISTAN, international collaboration projects and non-accelerator physics, a subcommittee of fifteen members is formed. The committee recommendation reads: A) For a new energy frontier, 1. Immediate initiation of R/D efforts for an e/sup +/e/sup -/ linear collider of TeV class, constructs a possible home-based facility, 2. Promotes international collaborative experiments using the SSC for the hadron sector, B) As projects of immediate concern: 1. The energy of the TRISTAN main ring increases further makes a possible low energy, high luminosity e/sup +/e/sup -/ collider operation in the TRISTAN complex, 2. The intensity of the 12 GeV PS at KEK increases, 3. Experiments in non-accelerator particle physics are promoted. In this contribution, the current status of the TRISTAN project and some of the R/D program on accelerator technology are reported

  16. Indiana University High Energy Physics, Task A

    Brabson, B.; Crittenden, R.; Dzierba, A.

    1993-01-01

    This report discusses research at Indians University on the following high energy physics experiments: A search for mesons with unusual quantum numbers; hadronic states produced in association with high-mass dimuons; FNAL E740 (D0); superconducting super collider; and OPAL experiment at CERN

  17. High energy experimental physics: Progress report

    Rosen, J.; Miller, D.

    1988-01-01

    This report contains papers of high energy physics experiments and detector equipment design. Proposals are also given for future experiments. Some of the topics covered in this report are: high energy predictions for /bar char/pp and pp elastic scattering and total cross sections; D0 forward drift chambers; polarized beam facility; analyzing power measurment in inclusive pion production at high transverse momentum; Skyrme model for baryons; string models for color flux tubes; hadronic decays for the /tau/ lepton; and meson form factors in perturbative QCD

  18. Opportunities for high wind energy penetration

    Tande, J.O.; Hansen, J.C.

    1997-01-01

    Wind power is today a mature technology, which at windy locations, is economically competitive to conventional power generation technologies. This and growing global environmental concerns have led governments to encourage and plan for wind energy development, a typical aim being 10% of electricity...... consumption. The successful operation of the three major power systems of Cape Verde, with a total wind energy penetration of about 15% since December 1994, demonstrates that power systems can be operated with high penetration of wind energy by adding simple control and monitoring systems only. Thorough...... analyses conclude that expanding to even above 15% wind energy penetration in the Cape Verde power systems is economical. Worldwide, numerous locations with favorable wind conditions and power systems similar to the Capeverdean provide good opportunities for installing wind farms and achieving high wind...

  19. High-energy capacitance electrostatic micromotors

    Baginsky, I. L.; Kostsov, E. G.

    2003-03-01

    The design and parameters of a new electrostatic micromotor with high energy output are described. The motor is created by means of microelectronic technology. Its operation is based on the electromechanic energy conversion during the electrostatic rolling of the metallic films (petals) on the ferroelectric film surface. The mathematical simulation of the main characteristics of the rolling process is carried out. The experimentally measured parameters of the petal step micromotors are shown. The motor operation and its efficiency are investigated.

  20. High energy collisions of nuclei: experiments

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  1. High energy cosmic rays: sources and fluxes

    Stanev, Todor; Gaisser, Thomas K.; Tilav, Serap

    2014-04-01

    We discuss the production of a unique energy spectrum of the high energy cosmic rays detected with air showers by shifting the energy estimates of different detectors. After such a spectrum is generated we fit the spectrum with three or four populations of cosmic rays that might be accelerated at different cosmic ray sources. We also present the chemical composition that the fits of the spectrum generates and discuss some new data sets presented this summer at the ICRC in Rio de Janeiro that may require new global fits.

  2. Hardon cross sections at ultra high energies

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  3. High Energy Density Sciences with High Power Lasers at SACLA

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  4. High-energy hadron-hadron collisions

    Yang, C.N.

    1983-01-01

    While high energy collision experiments yield a wealth of complicated patterns, there are a few general and very striking features that stand out. Because of the universality of these features, and because of the dominating influence they have on high energy phenomena, it is the authors opinion that a physical picture of high energy collisions must address itself first of all to these features before going into specific details. In this short talk these general and striking features are stated and a physical picture developed in the last few years to specifically accommodate these features is described. The picture was originally discussed for elastic scattering. But it leads naturally, indeed inevitably as they shall discuss, to conclusions about inelastic processes, resulting in an idea called the hypothesis of limiting fragmentation

  5. Experimental and theoretical high energy physics research

    1992-01-01

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e + e - analysis, bar P decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the φ factory project; (III) theoretical high-energy physics; (IV) H dibaryon search, search for K L 0 → π 0 γγ and π 0 ν bar ν, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R ampersand D

  6. Detailed non-LTE calculations of the iron emission from NGC 1068

    Band, David L.; Klein, Richard I.; Castor, John I.; Nash, J. K.

    1989-01-01

    The X-ray iron line emission from NGC 1068 observed by the Ginga satellite is modeled using the new multiline, multilevel, non-LTE radiative transport code ALTAIR and a detailed atomic model for Ne-like through stripped iron. The parameter space of the obscured type 1 Seyfert nucleus model for this object is studied. The equivalent width is greater than previously predicted. It is found that detailed radiative transfer can have a significant effect on the observed line flux both for the K alpha line and for the L-shell emission. The ionization of the iron increases with temperature. Therefore the K alpha equivalent width and energy is a function not only of the ionization parameter, but also of the column depth and temperature. For a likely model of NGC 1068 it is found that the iron abundance is about twice solar, but that modifications of this model may permit a smaller abundance.

  7. The HESP (High Energy Solar Physics) project

    Kai, K.

    1986-01-01

    A project for space observations of solar flares for the coming solar maximum phase is briefly described. The main objective is to make a comprehensive study of high energy phenomena of flares through simultaneous imagings in both hard and soft X-rays. The project will be performed with collaboration from US scientists. The HESP (High Energy Solar Physics) WG of ISAS (Institute of Space and Astronautical Sciences) has extensively discussed future aspects of space observations of high energy phenomena of solar flares based on successful results of the Hinotori mission, and proposed a comprehensive research program for the next solar maximum, called the HESP (SOLAR-A) project. The objective of the HESP project is to make a comprehensive study of both high energy phenomena of flares and quiet structures including pre-flare states, which have been left uncovered by SMM and Hinotori. For such a study simultaneous imagings with better resolutions in space and time in a wide range of energy will be extremely important.

  8. Elementary particle physics and high energy phenomena

    Barker, A.R.; Cumalat, J.P.; De Alwis, S.P.; DeGrand, T.A.; Ford, W.T.; Mahanthappa, K.T.; Nauenberg, U.; Rankin, P.; Smith, J.G.

    1992-06-01

    Experimental and theoretical high-energy physics programs at the University of Colorado are reported. Areas of concentration include the following: study of the properties of the Z 0 with the SLD detector; fixed-target K-decay experiments; the R ampersand D program for the muon system: the SDC detector; high-energy photoproduction of states containing heavy quarks; electron--positron physics with the CLEO II detector at CESR; lattice QCD; and spin models and dynamically triangulated random surfaces. 24 figs., 2 tabs., 117 refs

  9. High energy physics computing in Japan

    Watase, Yoshiyuki

    1989-01-01

    A brief overview of the computing provision for high energy physics in Japan is presented. Most of the computing power for high energy physics is concentrated in KEK. Here there are two large scale systems: one providing a general computing service including vector processing and the other dedicated to TRISTAN experiments. Each university group has a smaller sized mainframe or VAX system to facilitate both their local computing needs and the remote use of the KEK computers through a network. The large computer system for the TRISTAN experiments is described. An overview of a prospective future large facility is also given. (orig.)

  10. Progress in high-energy laser technology

    Miyanaga, Noriaki; Kitagawa, Yoneyoshi; Nakatsuka, Masahiro; Kanabe, Tadashi; Okuda, Isao

    2005-01-01

    The technological development of high-energy lasers is one of the key issues in laser fusion research. This paper reviews several technologies on the Nd:glass laser and KrF excimer laser that are being used in the current laser fusion experiments and related plasma experiments. Based on the GEKKO laser technology, a new high-energy Nd: glass laser system, which can deliver energy from 10 kJ (boad-band operation) to 20 kJ (narrow-band operation), is under construction. The key topics in KrF laser development are improved efficiency and repetitive operation, which aim at the development of a laser driven for fusion reactor. Ultra-intense-laser technology is also very important for fast ignition research. The key technology for obtaining the petawatt output with high beam quality is reviewed. Regarding the uniform laser irradiation required for high-density compression, the beam-smoothing methods on the GEKKO XII laser are reviewed. Finally, we discuss the present status of MJ-class lasers throughout the world, and summarize by presenting the feasibility of various applications of the high-energy lasers to a wide range of scientific and technological fields. (author)

  11. High Tc superconducting energy storage systems

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  12. Baryon number violation in high energy collisions

    Farrar, G.R.; Meng, R.

    1990-08-01

    We study the phenomenology of baryon number violation induced by electroweak instantons. We find that if the naive-instanton amplitudes were valid for arbitrarily high energies, the event rate at the SSC would be a few per hour, with a typical event consisting of 3 'primary' antileptons and 7 'primary' antiquark jets, accompanied by ≅ 85 electroweak gauge bosons, having a sharp threshold in the total sub-energy at about 17 TeV. We describe how to establish their electroweak-instanton-induced origin. The naive instanton approximation is known to overestimate the rate for these processes, so this work focusses attention on the need for more accurate calculations, and for a calculational method which is appropriate when the energy of the initial particles is above the sphaleron energy. (orig.)

  13. Using adaptive antenna array in LTE with MIMO for space-time processing

    Abdourahamane Ahmed Ali

    2015-04-01

    Full Text Available The actual methods of improvement the existent wireless transmission systems are proposed. Mathematical apparatus is considered and proved by models, graph of which are shown, using the adaptive array antenna in LTE with MIMO for space-time processing. The results show that improvements, which are joined with space-time processing, positively reflects on LTE cell size or on throughput

  14. Utilizing ICN/CCN for service and VM migration support in virtualized LTE systems

    Karimzadeh Motallebi Azar, Morteza; Satria, Triadimas; Karagiannis, Georgios

    2014-01-01

    One of the most important concepts used in mobile networks, like LTE (Long Term Evolution) is service continuity. A mobile user moving from one network to another network should not lose an on-going service. In cloud-based (virtualized) LTE systems, services are hosted on Virtual Machines (VMs) that

  15. Efficient LTE Access with Collision Resolution for Massive M2M Communications

    Madueño, Germán Corrales; Stefanovic, Cedomir; Popovski, Petar

    2014-01-01

    outage. In this work we propose a LTE RACH scheme tailored for delay-sensitive M2M services with synchronous traffic arrivals. The key idea is, upon detection of a RACH overload, to apply a collision resolution algorithm based on splitting trees. The solution is implemented on top of the existing LTE...

  16. Jammer Type Estimation in LTE with a Smart Jammer Repeated Game

    Aziz, Farhan; Shamma, Jeff S.; Stuber, Gordon L.

    2017-01-01

    LTE/LTE-Advanced networks are known to be vulnerable to denial-of-service (DOS) and loss-of-service attacks from smart jammers. The interaction between the network and the smart jammer has been modeled as an infinite-horizon general-sum (non

  17. A Tractable Model of the LTE Access Reservation Procedure for Machine-Type Communications

    Nielsen, Jimmy Jessen; Min Kim, Dong; Madueño, Germán Corrales

    2015-01-01

    A canonical scenario in Machine-Type Communications (MTC) is the one featuring a large number of devices, each of them with sporadic traffic. Hence, the number of served devices in a single LTE cell is not determined by the available aggregate rate, but rather by the limitations of the LTE access...

  18. Application of nanotechnologies in high energy physics

    Angelucci, R.; Corticelli, F.; Cuffiani, M.; Dallavalle, G.M.; Malferraxi, L.; Montanari, A.; Montanari, C.; Odorici, F.; Rizzoli, R.; Summonte, C.

    2003-01-01

    In the past, the progressive reduction of electronics integration scale has allowed high energy physics experiments to build particle detectors with a high number of sensitive channels and high spatial granularity, down to the micron scale. Nowadays, the increasing effort towards nanoelectronics and progresses in various fields of nanotechnologies, suggests that the time for nanodetectors is not far to come. As an example of possible application of nanotechnologies in HEP, we present results on fabrication of nanochannel matrices in anodic porous alumina as a template for preparing an array of carbon nanotubes, which we believe can be a promising building block in developing particle detectors with high spatial resolution

  19. 22nd DAE High Energy Physics Symposium

    2018-01-01

    These proceedings gather invited and contributed talks presented at the XXII DAE-BRNS High Energy Physics (HEP) Symposium, which was held at the University of Delhi, India, on 12–16 December 2016. The contributions cover a variety of topics in particle physics, astroparticle physics, cosmology and related areas from both experimental and theoretical perspectives, namely (1) Neutrino Physics, (2) Standard Model Physics (including Electroweak, Flavour Physics), (3) Beyond Standard Model Physics, (4) Heavy Ion Physics & QCD (Quantum Chromodynamics), (5) Particle Astrophysics & Cosmology, (6) Future Experiments and Detector Development, (7) Formal Theory, and (8) Societal Applications: Medical Physics, Imaging, etc. The DAE-BRNS High Energy Physics Symposium, widely considered to be one of the leading symposiums in the field of Elementary Particle Physics, is held every other year in India and supported by the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India. As man...

  20. Photodisintegration of the deuteron at high energy

    Holt, R.J.

    1992-01-01

    Measurements of the angular distribution for the γd→+pn reaction were performed at SLAC for photon energies between 0.7 and 1.8 GeV (experiment NE8) and between 1.6 and 4.4. GeV (experiment NE17). The final results for experiment NE8 will be presented, but only preliminary results for NE17 will be discussed. The data at θ cm = 90 degrees appear to follow the constituent counting rules. The angular distribution at high photon energies exhibit large values of the cross section at forward angles. There is evidence that the cross section may also be large at backward angles and high energies

  1. High energy excitations in itinerant ferromagnets

    Prange, R.E.

    1984-01-01

    Itinerant magnets, those whose electrons move throughout the crystal, are described by band theory. Single particle excitations offer confirmation of band theory, but their description requires important corrections. The energetics of magnetism in iron and nickel is also described in band theory but requires complex bands. Magnetism above the critical temperature and the location of the critical temperature offer discriminants between the two major models of magnetism at high temperature and can be addressed by high energy excitations

  2. Charged current weak interactions at high energy

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  3. High energy electron multibeam diffraction and imaging

    Bourret, Alain.

    1980-04-01

    The different theories of dynamical scattering of electrons are firstly reviewed with special reference to their basis and the validity of the different approximations. Then after a short description of the different experimental set ups, structural analysis and the investigation of the optical potential by means of high energy electrons will be surveyed

  4. Nuclear emulsion and high-energy physics

    Sun Hancheng; Zhang Donghai

    2008-01-01

    The history of the development of nuclear emulsion and its applications in high-energy physics, from the discovery of pion to the discovery of tau neutrino, are briefly reviewed in this paper. A new stage of development of nuclear-emulsion technique is discussed

  5. High energy spin isospin modes in nuclei

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  6. Theoretical and experimental high energy physics

    Walsh, T.; Ruddick, K.

    1990-01-01

    This report discusses the following topics: The Soudan enterprise; study of strange quarks at Fermilab; direct photons at Fermilab; the Brookhaven programs; AMY and CLEO: studies of e + e - annihilations; cosmic ray studies with the DO muon chamber; progress report on HEP computer upgrade; muon triggering and reconstruction at SSC; and, theoretical high energy physics

  7. Studies of high energy phenomena using muons

    Hedin, D.; Kaplan, D.; Green, J.

    1993-02-01

    The NIU high energy physics group has three main efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiment 789. Finally, members of the group participate in the SDC collaboration at the SSC

  8. PC database for high energy preprint collections

    Haymaker, R.

    1985-06-01

    We describe a microcomputer database used by the high energy group to keep track of preprints in our collection. It is used as a supplement to the SLAC-SPIRES database to retrieve preprints on hand. This was designed as a low overhead system for a small group

  9. Indiana University High Energy Physics, Task A

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider

  10. High energy electron irradiation of flowable materials

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  11. Trends in experimental high-energy physics

    Sanford, T.W.L.

    1982-06-01

    Data from a scan of papers in Physical Review Letters and Physical Review are used to demonstrate that American high-energy physicists show a pattern of accelerator and instrumentation usage characteristic of that expected from the logistic-substitution model of Marchetti and of Fischer and Pry

  12. High energy radiation from neutron stars

    Ruderman, M.

    1985-04-01

    Topics covered include young rapidly spinning pulsars; static gaps in outer magnetospheres; dynamic gaps in pulsar outer magnetospheres; pulse structure of energetic radiation sustained by outer gap pair production; outer gap radiation, Crab pulsar; outer gap radiation, the Vela pulsar; radioemission; and high energy radiation during the accretion spin-up of older neutron stars. 26 refs., 10 figs

  13. Indiana University High Energy Physics, Task A

    Brabson, B.; Crittenden, R.; Dzierba, A.; Hanson, G.; Martin, H.; Marshall, T.; Mir, R.; Mouthuy, T.; Ogren, H.; Rust, D.; Teige, S.; Zieminska, D.; Zieminski, A.

    1991-01-01

    This report discusses research in High Energy Physics under the following experiments: Meson spectroscopy at BNL; dimuon production at FNAL; the DO collider experiment at FNAL; the Mark II experiment at SLC and PEP; the OPAL experiment at CERN; and the superconducting supercollider.

  14. Synthesis and Characterization of High Energy Polymers.

    1981-03-31

    and characterization of new high energy elastomers. IV. References 1. J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su and R. S. Miller, J...Catalyzed Nitromercuration of Diene Polymers, J.C.W. Chien, T. Kohara , C. P. Lillya, T. Sarubbi, B.-H. Su, and R. S. Miller, J. Polm.. Sci. Polym. Chem. Ed

  15. Perspective in high energy physics instrumentation

    Rossi, L.

    1995-10-01

    The discovery potential of the next generation of particle accelerators, and in particular of the large hadron collider (LHC), can only be fully exploited by very sophisticated particle detectors. The basics of detectors for momentum and energy measurement is here presented together with a recollection of recent developments which are relevant for use at high luminosity accelerators

  16. High energy hadron-nucleus scattering

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  17. Theoretical and experimental high energy physics

    Gasiorowicz, S.; Ruddick, K.

    1988-01-01

    This report discusses experimental and theoretical work in High Energy Physics. Some topics discussed are: quantum field theory; supersymmetry; cosmology; superstring model; relic photinos; inflationary universe; dark matter; standard model; supernovae; semileptonic decay; quantum Langevin equation; underground neutrino detection at Soudan; strange quark systems; cosmic ray detection; superconducting super collider detectors; and studies of direct photon production

  18. Prizes reward high-energy physics

    2005-01-01

    The European Physical Society (EPS) has recognized four individuals and a collaboration for their work on charge-parity (CP) violation, gamma-ray astronomy, cosmology and outreach activities. Heinrich Wahl, formerly of CERN, and the NA31 collaboration share the 2005 High Energy and Particle Physics Prize for their work on CP violation at CERN (½ page)

  19. Astrophysics, cosmology and high energy physics

    Rees, M.J.

    1983-01-01

    A brief survey is given of some topics in astrophysics and cosmology, with special emphasis on the inter-relation between the properties of the early Universe and recent ideas in high energy physics, and on simple order-of-magnitude arguments showing how the scales and dimensions of cosmic phenomena are related to basic physical constants. (orig.)

  20. Heavy ion fragmentation in high energy

    Nemes, M.C.

    1985-01-01

    A review is made on the theoretical aspects of heavy ion collisions at high energies. A comparison with several experimental data obtained in a large variety of experiments is present. An emphasis is given on the basis of Glauber's theory of scattering. (L.C.) [pt

  1. SU(5) at very high energies

    Hueffel, H.

    1982-01-01

    By exhibiting the relationship between the full SU(5) theory in the unitary gauge and the underlying Higgs-Goldstone system in the t'Hooft-Feynman gauge the high energy limits of amplitudes (involving gauge and Higgs bosons) can be calculated easily. As an application tree unitarity bounds on Higgs parameters and masses are discussed. (Author)

  2. Status of (US) High Energy Physics Networking

    Montgomery, H.E.

    1987-02-01

    The current status of Networking to and between computers used by the High Energy Physics community is discussed. Particular attention is given to developments over the last year and to future prospects. Comparison between the current status and that of two years ago indicates that considerable strides have been made but that much remains to be done to achieve an acceptable level of functionality

  3. UNIX at high energy physics Laboratories

    Silverman, Alan

    1994-03-15

    With more and more high energy physics Laboratories ''downsizing'' from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

  4. Studies in theorectical high energy particles physics

    Aratyn, H.; Keung, Wai-Yee; Panigrahi, P.; Sukhatme, U.

    1990-02-01

    This paper discusses the research being done at the University of Illinois in theoretical high energy physics. Some areas discussed are string models, collider physics, symmetries in gauge theories, sigma model, radiative decay of mesons, supersymmetry, superconducting, and hydroproduction of charm

  5. Saving energy via high-efficiency fans.

    Heine, Thomas

    2016-08-01

    Thomas Heine, sales and market manager for EC Upgrades, the retrofit arm of global provider of air movement solutions, ebm-papst A&NZ, discusses the retrofitting of high-efficiency fans to existing HVAC equipment to 'drastically reduce energy consumption'.

  6. Activities in nuclear and high energy physics

    1983-01-01

    High energy and nuclear physics research concerning bubble chamber investigations, European hybrid system ACCMOR, WA 18, PETRA, PEP, VA 4, SING, LENA, LEP 3 and DELPHI experiments is summarized. Experiments with electron beams, and in pions and muons physics, and radiochemistry are reported on.

  7. Resume: networking in high energy physics

    Hutton, J.S.

    1985-11-01

    Networking in High Energy Physics covers communications inside the experiment and internationally. Inside the experiment the need for agreed 'codes of practice' is now accepted. Within Europe it is accepted that a common infrastructure based on the use of the ISO OSI protocols should be used. In the USA a community initiative has been proposed. The background to these approaches is discussed. (author)

  8. Microphysics, cosmology, and high energy astrophysics

    Hoyle, F.

    1974-01-01

    The discussion of microphysics, cosmology, and high energy astrophysics includes particle motion in an electromagnetic field, conformal transformations, conformally invariant theory of gravitation, particle orbits, Friedman models with k = 0, +-1, the history and present status of steady-state cosmology, and the nature of mass. (U.S.)

  9. High-Energy Physics: Exit America?

    Seife, Charles

    2005-01-01

    Budget cuts and cancellations threaten to end U.S. exploration of the particle frontier. Fermilab's Tevatron, due to shut down around 200, could be the last large particle accelerator in the United States; the Large Hadron Collider in Geneva should ensure European dominance of high-energy physics (3 pages)

  10. A Gas Calorimeter for High-Energy Experiment and Study of High-Energy Cascade Shower

    Miyata, Hitoshi [Univ. of Tsukuba (Japan)

    1984-09-01

    High energy behavior of the electromagnetic cascade shower has been studied. high energy showers were created by electron and hadron beams with energies between 25 GeV and 150 GeV at Fermi National Accelerator Laboratory. The showers were observed by a shower detector consisting of multi-layer of lead plates and proportional chambers. The experimental results were analyzed with special emphasis on the fluctuation problem of the electromagnetic cascade shower.

  11. Performance Analysis of Relays in LTE for a Realistic Suburban Deployment Scenario

    Coletti, Claudio; Mogensen, Preben; Irmer, Ralf

    2011-01-01

    Relays are likely to play an important role in the deployment of Beyond 3G networks, such as LTE-Advanced, thanks to the possibility of effectively extending Macro network coverage and fulfilling the expected high data-rate requirements. Up until now, the relay technology potential and its cost......-effectiveness have been widely investigated in the literature, considering mainly statistical deployment scenarios, like regular networks with uniform traffic distribution. This paper is envisaged to illustrate the performances of different relay technologies (In-Band/Out-band) in a realistic suburban network...... scenario with real Macro site positions, user density map and spectrum band availability. Based on a proposed heuristic deployment algorithm, results show that deploying In-band relays can significantly reduce the user outage if high backhaul link quality is ensured, whereas Out-band relaying and the usage...

  12. Assessment of general public exposure to LTE and RF sources present in an urban environment.

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc

    2010-10-01

    For the first time, in situ electromagnetic field exposure of the general public to fields from long term evolution (LTE) cellular base stations is assessed. Exposure contributions due to different radiofrequency (RF) sources are compared with LTE exposure at 30 locations in Stockholm, Sweden. Total exposures (0.2-2.6 V/m) satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels (from 28 V/m for frequency modulation (FM), up to 61 V/m for LTE) at all locations. LTE exposure levels up to 0.8 V/m were measured, and the average contribution of the LTE signal to the total RF exposure equals 4%.

  13. Portable high energy gamma ray imagers

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  14. High energy hadron-hadron collisions

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  15. Non-critical strings at high energy

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  16. MU-MIMO in LTE Systems

    Duplicy, Jonathan; Badic, Biljana; Balraj, Rajarajan

    2011-01-01

    A relatively recent idea of extending the benefits of MIMO systems to multi-user scenarios seems promising in the context of achieving high data rates envisioned for future cellular standards after 3G (3rd Generation). Although substantial research has been done on the theoretical front, recent...

  17. Automatic Energy Schemes for High Performance Applications

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  18. Very High Energy Neutron Scattering from Hydrogen

    Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I

    2010-01-01

    The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.

  19. Chemistry of high-energy materials

    Klapoetke, Thomas M. [Ludwig-Maximilians-Univ., Muenchen (Germany). Dept. of Chemistry; Maryland Univ., College Park, MD (US). Center of Energetic Concepts Development (CECD)

    2011-07-01

    The graduate-level textbook Chemistry of High-Energy Materials provides an introduction to and an overview of primary and secondary (high) explosives as well as propellant charges, rocket propellants and pyrotechnics. After a brief historical overview, the main classes of energetic materials are discussed systematically. Thermodynamic aspects, as far as relevant to energetic materials, are discussed, as well as modern computational approaches to predict performance and sensitivity parameters. The most important performance criteria such as detonation velocity, detonation pressure and heat of explosion, as well as the relevant sensitivity parameters suc as impact and friction sensitivity and electrostatic discharge sensitivity are explored in detail. Modern aspects of chemical synthesis including lead-free primary explosives and high-nitrogen compounds are also included in this book together with a discussion of high-energy materials for future defense needs. The most important goal of this book, based on a lecture course which has now been held at LMU Munich for over 12 years, is to increase knowledge and know-how in the synthesis and safe handling of high-energy materials. Society needs now as much as ever advanced explosives, propellant charges, rocket propellants and pyrotechnics to meet the demands in defense and engineering. This book is first and foremost aimed at advanced students in chemistry, engineering and materials sciences. However, it is also intended to provide a good introduction to the chemistry of energetic materials and chemical defense technology for scientists in the defense industry and government-run defense organizations. (orig.)

  20. Intermediate/high energy nuclear physics

    Vary, J.P.

    1992-01-01

    Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e + e - resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs

  1. Radiation monitoring in high energy research facility

    Miyajima, Mitsuhiro

    1975-01-01

    In High Energy Physics Research Laboratory, construction of high energy proton accelerator is in progress. The accelerator is a cascaded machine comprising Cockcroft type (50 keV), linac (20 MeV), booster synchrotron (500 MeV), and synchrotron (8-12 GeV). Its proton beam intensity is 1x10 13 photons/pulse, and acceleration is carried out at the rate of every 2 minutes. The essential problems of radiation control in high energy accelerators are those of various radiations generated secondarily by proton beam and a number of induced radiations simultaneously originated with such secondary particles. In the Laboratory, controlled areas are divided into color-coded four regions, red, orange, yellow and green, based on each dose-rate. BF 3 counters covered with thick paraffin are used as neutron detectors, and side-window GM tubes, NaI (Tl) scintillators and ionization chambers as γ-detectors. In red region, however, ionization chambers are applied to induced radiation detection, and neutrons are not monitored. NIM standards are adopted for the circuits of all above monitors considering easy maintenance, economy and interchangeability. Notwithstanding the above described systems, these monitors are not sufficient to complete the measurement of whole radiations over wide energy region radiated from the accelerators. Hence separate radiation field measurement is required periodically. An example of the monitoring systems in National Accelerator Laboratory (U.S.) is referred at the last section. (Wakatsuki, Y.)

  2. Proposal for a High Energy Nuclear Database

    Brown, David A.; Vogt, Ramona

    2005-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews

  3. Rare earth magnets with high energy products

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  4. High-Energy Beam Transport system

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  5. A high-energy nuclear database proposal

    Brown, D.A.; Vogt, R.; UC Davis, CA

    2006-01-01

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from the Bevalac, AGS and SPS to RHIC and LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews. (author)

  6. Proposal for a High Energy Nuclear Database

    Brown, D A; Vogt, R

    2005-01-01

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews

  7. Experimental microdosimetry in high energy radiation fields

    Spurny, F.; Bednar, J.; Vlcek, B.; Bottollier-Depois, J.-F.; Molokanov, A.G.

    2000-01-01

    To determine microdosimetric characteristics in the beams and fields of high energy panicles with the goal, also, to compare the classical method of experimental microdosimetry, a tissue equivalent low pressure proportional counter (TEPC) with the linear energy transfer (LET) spectrometer based on a chemically etched polyallyldiglycolcarbonate as a track etched detector (TED). To test the use of TED LET spectrometer in the conditions, where the use or TEPC is not possible (high energy charged particle beams at high dose rates). The results obtained with the TEPC NAUSICAA were used in this work to compare them with other data. This TEPC measures directly the linear energy in the interval between 0.15 and 1500 keV/μm in tissue, the low gas pressure (propan based TE mixture) permits to simulate a tissue element of about 3 μm. It can be used in the fields with instantaneous dose equivalent rates between 1 μSv/hour and 1 mSv/ hour. TED LET spectrometer developed to determine LET spectra between 10 and 700 keV/μm in tissue. Primarily, track-to-bulk etch rate ratios are determined through the track parameters measurements, the spectra of these ratios are convened to LET spectra using the calibration curve established by means of heavy charge panicles. The critical volume of thi spectrometer is supposed to be a few nm. There is no limit of use for the dose rate, the background tracks limit the lowest threshold to about 1 mSv, the overlapping of tracks (the highest one) to 100 mSv. Both experimental microdosimetry methods have been used in on board aircraft radiation fields, in on-Earth high energy radiation reference fields, and in the beams of protons with energies up to 300 MeV (Dubna, Moscow, Loma Linda). First, it should be emphasized, that in all high energy radiation fields studied, we concentrated our analysis on the region, where both methods overlap, i.e. between 10 and 1000 keV/μm in tissue. It should be also stressed, that the events observed in this region

  8. Ionization of atoms by high energy photons

    Amusia, M.Y.; Ioffe, A.F.

    1994-01-01

    Photoionization of atoms by high energy photons is considered. It is emphasized that in this frequency region the cross section and other characteristics of the process are strongly effected by electron shell polarization and rearrangement effects, including that due to inner vacancy Auger decay. In the effects of nuclear structure could be important and noticeable, i.e. of virtual or real excitation of the nucleus degrees of freedom and of the Quantum Electrodynamics vacuum. Ionization accompanied by secondary photon emission (Compton ionization) is analyzed in the considered domain of energies

  9. High energy photons production in nuclear reactions

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  10. Models of high energy nuclear collisions

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  11. High temperature underground thermal energy storage system for solar energy

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  12. Tunable Design for LTE Mobile-Phones

    Barrio, Samantha Caporal Del; Bahramzy, Pevand; Svendsen, Simon

    2014-01-01

    Antenna volume has become a critical parameter in mobile phone antenna design, as broader bandwidths are required for high connectivity between users. Shrinking the antenna size affects its efficiency, if one does not sacrifice bandwidth. This paper proposes an architecture to address the need...... for small and wide-band antennas. The study focuses on the low-frequencies (700 MHz - 960 MHz) in order to address a tough scenario for small platforms. A tunable design of the front-end and the antennas of the mobile phone is proposed and investigated. Operation is achieved on all low...

  13. LTE-advanced a practical systems approach to understanding 3GPP LTE releases 10 and 11 radio access technologies

    Ahmadi, Sassan

    2013-01-01

    This book is an in-depth, systematic and structured technical reference on 3GPP's LTE-Advanced (Releases 10 and 11), covering theory, technology and implementation, written by an author who has been involved in the inception and development of these technologies for over 20 years. The book not only describes the operation of individual components, but also shows how they fit into the overall system and operate from a systems perspective. Uniquely, this book gives in-depth information on upper protocol layers, implementation and deployment issues, and services, making it suitable for engine

  14. First high energy hydrogen cluster beams

    Gaillard, M.J.; Genre, R.; Hadinger, G.; Martin, J.

    1993-03-01

    The hydrogen cluster accelerator of the Institut de Physique Nucleaire de Lyon (IPN Lyon) has been upgraded by adding a Variable Energy Post-accelerator of RFQ type (VERFQ). This operation has been performed in the frame of a collaboration between KfK Karlsruhe, IAP Frankfurt and IPN Lyon. The facility has been designed to deliver beams of mass selected Hn + clusters, n chosen between 3 and 49, in the energy range 65-100 keV/u. For the first time, hydrogen clusters have been accelerated at energies as high as 2 MeV. This facility opens new fields for experiments which will greatly benefit from a velocity range never available until now for such exotic projectiles. (author) 13 refs.; 1 fig

  15. Production processes at extremely high energies

    Gastmans, R; Wu, Tai Tsun

    2013-01-01

    The production processes are identified that contribute to the rise of the total cross section in proton-proton scattering at extremely high energies, s->~. At such energies, the scattering can be described by a black disk (completely absorptive) with a radius expanding logarithmically with energy surrounded by a gray fringe (partially absorptive). For the leading term of (lns)^2 in the increasing total cross section, the gray fringe is neglected, and geometrical optics is generalized to production processes. It is known that half of the rise in the total cross section is due to elastic scattering. The other half is found to originate from the production of jets with relatively small momenta in the center-of-mass system.

  16. Energy harvesting in high voltage measuring techniques

    Żyłka, Pawel; Doliński, Marcin

    2016-01-01

    The paper discusses selected problems related to application of energy harvesting (that is, generating electricity from surplus energy present in the environment) to supply autonomous ultra-low-power measurement systems applicable in high voltage engineering. As a practical example of such implementation a laboratory model of a remote temperature sensor is presented, which is self-powered by heat generated in a current-carrying busbar in HV- switchgear. Presented system exploits a thermoelectric harvester based on a passively cooled Peltier module supplying micro-power low-voltage dc-dc converter driving energy-efficient temperature sensor, microcontroller and a fibre-optic transmitter. Performance of the model in laboratory simulated conditions are presented and discussed. (paper)

  17. PASOTRON high-energy microwave source

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  18. Wideband PIFA antenna for higher LTE band applications

    Carlos Arturo Suárez-Fajardo

    2015-01-01

    Full Text Available Este artículo presenta una antena plana F invertida (PIFA de b anda ancha con la técnica de excitación capacitiva en U para ap licaciones en la banda alta de LTE. La ante na propuesta se basa en una sim ple PIFA, donde las placas de excitación capacitiva, de radiaci ón y de tierra se modifican a una geometrí a en U de tal manera que la a ntena puede poseer características de ancho de banda amplio. Me diante el uso de la configuración de excitación propuesta, la antena mues tra un ancho de banda amplio de diagrama e impedancia del 81.6 % para un VSWR ≤ 2.0 desde 1.66GHz a 3.95GHz la cual puede cubrir apli caciones en la banda alta de LTE (1.71GHz3.8GHz, DCS 1800, DCS 1900, UCDMA, UMTS, IMT 2000, DMB, WiFi, 2.4GHz, WiMAX (2.3 –2.5 GHz, WiMAX (3.4–3 .5 GHz y Bl uetooth.

  19. Privacy-Enhancing Security Protocol in LTE Initial Attack

    Uijin Jang

    2014-12-01

    Full Text Available Long-Term Evolution (LTE is a fourth-generation mobile communication technology implemented throughout the world. It is the communication means of smartphones that send and receive all of the private date of individuals. M2M, IOT, etc., are the base technologies of mobile communication that will be used in the future cyber world. However, identification parameters, such as International Mobile Subscriber Identity (IMSI, Radio Network Temporary Identities (RNTI, etc., in the initial attach section for accessing the LTE network are presented with the vulnerability of being exposed as clear text. Such vulnerability does not end in a mere identification parameter, but can lead to a secondary attack using the identification parameter, such as replication of the smartphone, illegal use of the mobile communication network, etc. This paper proposes a security protocol to safely transmit identification parameters in different cases of the initial attach. The proposed security protocol solves the exposed vulnerability by encrypting the parameters in transmission. Using an OPNET simulator, it is shown that the average rate of delay and processing ratio are efficient in comparison to the existing process.

  20. High energy multi-cycle terahertz generation

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  1. High energy multi-cycle terahertz generation

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  2. Shielding for high energy, high intensity electron accelerator installation

    Warawas, C.; Chongkum, S.

    1997-03-01

    The utilization of electron accelerators (eBA) is gradually increased in Thailand. For instance, a 30-40 MeV eBA are used for tumor and cancer therapy in the hospitals, and a high current eBA in for gemstone colonization. In the near future, an application of eBA in industries will be grown up in a few directions, e.g., flue gases treatment from the coal fire-power plants, plastic processing, rubber vulcanization and food preservation. It is the major roles of Office of Atomic Energy for Peace (OAEP) to promote the peaceful uses of nuclear energy and to regulate the public safety and protection of the environment. By taking into account of radiation safety aspect, high energy electrons are not only harmful to human bodies, but the radioactive nuclides can be occurred. This report presents a literature review by following the National Committee on Radiation Protection and Measurements (NCRP) report No.31. This reviews for parametric calculation and shielding design of the high energy (up to 100 MeV), high intensity electron accelerator installation

  3. The evolution of high energy accelerators

    Courant, E.D.

    1994-01-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  4. [Experimental and theoretical high energy physics

    Boulware, D.

    1988-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled us to make the world's most accurate determination of the composition of the cosmic rays above 10 13 eV. We have the only detector that can observe interaction vertices and identify particles at energies up to 10--15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detectors will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques are also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15--200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  5. Efficient Resource Allocation and Sectorization for Fractional Frequency Reuse (FFR in LTE Femtocell Systems

    M. T. Kawser

    2015-12-01

    Full Text Available The Fractional Frequency Reuse (FFR is a resource allocation technique that can effectively mitigate inter-cell interference (ICI in LTE based HetNets and it is a promising solution. Various FFR schemes have been suggested to address the challenge of interference in femtocell systems. In this paper, we study the scopes of interference mitigation and capacity improvement. We propose a resource allocation scheme that gradually varies frequency resource share with distance from the eNodeB for both macrocells and femtocells in order to attain better utilization of the resources. This is performed effectively using three layers in the cell. The proposal also employs high number sectors in a cell, low interference and good frequency reuse. Monte-Carlo simulations are performed, which show that the proposed scheme achieves significantly better throughput compared to the existing FFR schemes.

  6. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  7. Improved Mobility Performance in LTE Co-Channel HetNets Through Speed Differentiated Enhancements

    Barbera, Simone; Michaelsen, Per Henrik; Säily, Mikko

    2012-01-01

    , requiring minimum assistance and signaling from the network. Extensive system level simulations are used to quantify the benefits. Results confirm that the proposed solutions offer improvements in several mobility key performance indicators such as radio link failure, number of handovers, offload to pico......This paper analyzes the mobility performance of LTE (Long Term Evolution) co-channel heterogeneous networks (HetNet) with macro and pico cells. Improved methods for differentiating offload and mobility robustness as a function of the UE (User Equipment) mobility are proposed. The suggested solution...... comprises two key elements, namely enhanced UE MSE (Mobility State Estimation), as well as optimized methods such that high speed users are primarily kept at the macro layer, while the offload to pico cells for low speed users is maximized. The proposed methods are designed as UE autonomous solutions...

  8. Basis expansion model for channel estimation in LTE-R communication system

    Ling Deng

    2016-05-01

    Full Text Available This paper investigates fast time-varying channel estimation in LTE-R communication systems. The Basis Expansion Model (BEM is adopted to fit the fast time-varying channel in a high-speed railway communication scenario. The channel impulse response is modeled as the sum of basis functions multiplied by different coefficients. The optimal coefficients are obtained by theoretical analysis. Simulation results show that a Generalized Complex-Exponential BEM (GCE-BEM outperforms a Complex-Exponential BEM (CE-BEM and a polynomial BEM in terms of Mean Squared Error (MSE. Besides, the MSE of the CE-BEM decreases gradually as the number of basis functions increases. The GCE-BEM has a satisfactory performance with the serious fading channel.

  9. Delay efficient cooperation in public safety vehicular networks using LTE and IEEE 802.11p

    Atat, Rachad

    2012-01-01

    Cooperative schemes for critical content distribution over vehicular networks are presented and analyzed. The first scheme is based on unicasting from the base station, whereas the second is based on threshold based multicasting. Long Term Evolution (LTE) is used for long range communications with the base station (BS) and 802.11p is considered for inter-vehicle collaboration on the short range. A high mobility environment with correlated shadowing is adopted. Both schemes are shown to outperform non-cooperative unicasting and multicasting, respectively, when the appropriate 802.11p power class is used. The first scheme achieves the best performance among the compared methods, and a practical approximation of that scheme is shown to be close to optimal performance. © 2012 IEEE.

  10. [Studies of high energy phenomena using muons

    Albanese, R.C.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March--December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  11. [Studies of high energy phenomena using muons

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contract AC02-87ER40368 during the period from March through December of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a portion of the group in Fermilab Experiments 772 and 789. Finally, we are also participating in the design of detectors for the SSC. A more detailed description of the work of the NIU high energy physics group may be found in the narrative accompanying our contract renewal proposal

  12. Studies of high energy phenomena using muons

    Hedin, D.; Kaplan, D.; Green, J.

    1990-01-01

    This report covers the activities of the NIU high energy physics group as supported by DOE contact AC02-87ER40368 during the period from March of 1989 to February of 1990. Our group has two primary efforts. The first is the D0 experiment at the Fermilab proton-antiproton collider, with major emphasis on its muon system. The second is the involvement of a precision study of the A-dependence of massive muon-pion production and a study of low-multiplicity decay modes of charm. We are also participating in the design of detectors for the SSC. Finally, a minor effort is being given to analyzing data from Fermilab of particles with lifetime between 10 -12 and 10 -13 seconds. A more detailed description of the work of the NIU high energy physics group can be found in the narrative accompanying our grant renewal proposal. 10 refs

  13. Prospects of High Energy Laboratory Astrophysics

    Ng, Johnny S.T.; SLAC

    2006-01-01

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms

  14. Compilation of current high energy physics experiments

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  15. A Parton Shower for High Energy Jets

    Andersen, Jeppe R; Smillie, Jennifer M

    2011-01-01

    We present a method to match the multi-parton states generated by the High Energy Jets Monte Carlo with parton showers generated by the Ariadne program using the colour dipole model. The High Energy Jets program already includes a full resummation of soft divergences. Hence, in the matching it is important that the corresponding divergences in the parton shower are subtracted, keeping only the collinear parts. We present a novel, shower-independent method for achieving this, enabling us to generate fully exclusive and hadronized events with multiple hard jets, in hadronic collisions. We discuss in detail the arising description of the soft, collinear and hard regions by examples in pure QCD jet-production.

  16. Bell inequalities in high energy physics

    Ding Yibing; Li Junli; Qiao Congfeng

    2007-01-01

    We review in this paper the research status on testing the completeness of Quantum mechanics in High Energy Physics, especially on the Bell Inequalities. We briefly introduce the basic idea of Einstein, Podolsky, and Rosen paradox and the results obtained in photon experiments. In the content of testing the Bell inequalities in high energy physics, the early attempts of using spin correlations in particle decays and later on the mixing of neutral mesons used to form the quasi-spin entangled states are covered. The related experimental results in K 0 and B 0 systems are presented and discussed. We introduce the new scheme, which is based on the non-maximally entangled state and proposed to implement in φ factory, in testing the Local Hidden Variable Theory. And, we also discuss about the possibility of realising it to the tau charm factory. (authors)

  17. Origin of the universe and high energy

    Montoya Z, M.

    1994-01-01

    In this book it is briefly exposed what it is done in the world in relation with the high energy physics. Also, it is presented a brief historical description of the earth evolution, the universe and physics in general. This book counts with eight chapters. The first chapter deals with the relationship of man with science. The second chapter speaks about the origin of universe. The third chapter comments about the stars and galaxies formation. The fourth chapter treats how the scientists and researchers continue to studying the subnuclear world. The fifth chapter deals with subjects and models of nuclear physics. In the sixth chapter it is described the function of the particles accelerator. The seventh chapter comments about the multidisciplinary aspects of the research of elementary particles. Finally, the eighth chapter deals with the advances of high energy physics in the andean region of Latin America. (author)

  18. New Prospects in High Energy Astrophysics

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  19. High energy materials. Propellants, explosives and pyrotechnics

    Agrawal, Jai Prakash

    2010-07-01

    Authored by an insider with over 40 years of high energy materials (HEMs) experience in academia, industry and defence organizations, this handbook and ready reference covers all important HEMs from the 1950s to the present with their respective properties and intended purposes. Written at an attainable level for professionals, engineers and technicians alike, the book provides a comprehensive view of the current status and suggests further directions for research and development. An introductory chapter on the chemical and thermodynamic basics allows the reader to become acquainted with the fundamental features of explosives, before moving on to the important safety aspects in processing, handling, transportation and storage of high energy materials. With its collation of results and formulation strategies hitherto scattered in the literature, this should be on the shelf of every HEM researcher and developer. (orig.)

  20. Very high energy gamma-ray astronomy

    Weekes, T.C.

    1988-01-01

    Current interest in gamma-ray astronomy at energies above 100 GeV comes from the identification of Cygnus X-3 and other X-ray binaries as sources. In addition there are reports of emission from radio pulsars and a variety of other objects. The statistical significance of many of the observations is not high and many reported effects await confirmation, but there are a sufficient number of independent reports that very high energy gamma-ray astronomy must now be considered to have an observational basis. The observations are summarized with particular emphasis on those reported since 1980. The techniques used - the detection of small air showers using the secondary photons and particles at ground level - are unusual and are described. Future prospects for the field are discussed in relation to new ground-based experiments, satellite gamma-ray studies and proposed neutrino astronomy experiments. (orig.) With 296 refs